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New DNA sequencing technologies deliver data at dramatically lower costs but demand new analytical methods to
take full advantage of the very short reads that they produce. We provide an initial, theoretical solution to the
challenge of de novo assembly from whole-genome shotgun “microreads.” For 11 genomes of sizes up to 39 Mb, we
generated high-quality assemblies from 80× coverage by paired 30-base simulated reads modeled after real
Illumina-Solexa reads. The bacterial genomes of Campylobacter jejuni and Escherichia coli assemble optimally, yielding
single perfect contigs, and larger genomes yield assemblies that are highly connected and accurate. Assemblies are
presented in a graph form that retains intrinsic ambiguities such as those arising from polymorphism, thereby
providing information that has been absent from previous genome assemblies. For both C. jejuni and E. coli, this
assembly graph is a single edge encompassing the entire genome. Larger genomes produce more complicated graphs,
but the vast majority of the bases in their assemblies are present in long edges that are nearly always perfect. We
describe a general method for genome assembly that can be applied to all types of DNA sequence data, not only
short read data, but also conventional sequence reads.

[Supplemental material is available online at www.genome.org.]

Recently introduced DNA sequencing technologies yield short
“microreads” only 25–50 bases long, at per-base costs that might
better Sanger-chemistry sequencing by two orders of magnitude
(Sanger et al. 1975; Shendure et al. 2005). Two systems (Illumina-
Solexa and ABI-SOLiD) are presently available. These yield data
suitable for straightforward mapping of biological features such
as transcription factor binding sites and chromatin modifications
(Johnson et al. 2007; Mikkelsen et al. 2007), and also for the more
demanding problem of detecting differences between an un-
known genome and a previously sequenced close relative (T.K.
Ohsumi, M.G. Grabherr, C. Nusbaum, B.W. Birren, and D.B.
Jaffe, in prep.).

A much harder problem is de novo assembly of whole-
genome shotgun microreads. In this study, we present a theoret-
ical analysis of this problem and describe an algorithm for ad-
dressing it, which we apply to simulated data based on real Sol-
exa reads. We present results for small- to mid-size (39 Mb)
genomes, describing assembly completeness, continuity, and
correctness.

Briefly, the paper proceeds as follows: (1) We start by dis-
cussing the difficulty of applying conventional assembly meth-
ods to this type of data, which would involve finding all overlaps
between reads. The very large number of (mostly false) overlaps
makes this approach intractable. (2) Next, we consider the case of
unpaired reads. We determine exactly how good an assembly of
such data could possibly be. The answer is captured by a graph,
allowing for alternatives in cases where the data lack power to

determine the correct answer. (3) Then, we consider the case of
paired reads, which in principle enables much better assemblies.
Paired-read assembly turns out to be considerably more compli-
cated than unpaired assembly, and although we cannot describe
a simple answer as to its best possible result, we do describe an
algorithm for it and a research software system, ALLPATHS, that
instantiates this algorithm.

There are two key concepts in the ALLPATHS algorithm: (1)
finding all paths across a given read pair, i.e., all sequences from
one read to the other that are covered by other reads, and (2)
localization, a way of using pairs to isolate small regions of the
genome and assemble them independently.

Importantly, an ALLPATHS assembly is presented as a graph
that retains intrinsic ambiguities, arising from limitations of the
data set and also from polymorphism in diploid genomes. Thus,
in principle, the assemblies capture exactly what can be known
from the data. We have implemented this here for microreads.
The same conceptual framework can apply to DNA sequence data
of any type.

The reference sequences used in this paper are described in
the Supplemental material (Part a). The Source code used in com-
putations is distributed with the paper (Supplemental material
Part b).

The challenge of microread assembly

The goal of microread assembly is to build an assembly from
reads of size L = 25–50 bases. This is challenging because there are
far too many overlaps between reads to compute and most of
these overlaps are wrong. A direct approach to assembly would
compare reads to each other, glue overlapping ones together, and
thereby progressively agglomerate the genome. Table 1A shows
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that when the size of the minimum allowed overlap (K) is small,
the probability of gluing correctly along such overlaps is very
low, but can improve dramatically with increase in K. The value
of K is limited both by read length and by coverage: Two different
reads can overlap by at most L � 1 bases, but many of these
“long” overlaps will be missing unless coverage is very high; thus,
increasing K requires increasing read length or raising coverage.

Finding all overlaps between microreads is also computa-
tionally very expensive because there are so many overlaps.
Reads are shorter than the long reads from Sanger-chemistry se-
quencing, thus at the same level of coverage there will be more
reads and hence more true overlaps. But the same level of cov-
erage is not enough: One needs to raise coverage to get a usable
minimum overlap K, and as one does this, the number of true
overlaps rises further (increasing quadratically as coverage rises).
To make matters worse, the true overlaps may be swamped by
false overlaps (Table 1A). In all, there are too many overlaps, and
thus the standard assembly paradigm of finding all overlaps is
unlikely to be the best approach for microreads.

Limits of unpaired-read assembly

Setting aside the problem of how genomes might be assembled
from microreads, we first describe how good an assembly could
possibly be if it were based solely on unpaired reads. While the
answer for unpaired reads is not simple, it is precisely comput-
able from the genome. In the process of explaining how this is
done, we introduce key concepts needed to assemble genomes
from paired microreads.

First, for given minimum overlap K, a “branch” in a genome
is a place where there is a sequence of K bases (K-mer) that ap-
pears in two or more places and for which the next (or previous)
bases are different. By breaking the genome at every branch, we
decompose it into a collection of sequences that we call “uni-
paths” (see Methods, “K-mer Terminology” and “Unipath and
Unipath Graph Definitions”). These unipaths form the edges of a
“sequence graph,” by which we mean a directed graph whose
edges are sequences (Fig. 1; Pevzner et al. 2001; see Methods,
“Sequence Graphs”). In fact, the unipath graph is the best pos-
sible assembly of the genome from reads of length K + 1, achiev-
able in theory given infinite coverage by perfect reads, which

contain all genomic (K + 1)-mers and hence reveal all branches.
We will see in the next section that imperfect reads at high cov-
erage will suffice, provided that the reads are longer.

Figure 1 exhibits the unipath graph for the 1.8-Mb genome
of Campylobacter jejuni, for a huge value of the overlap parameter
K (6000). The graph is simple, as is its relation to the genome:
There are two ways to traverse the graph from beginning to end,
one of which is correct and one of which is a misassembled ver-
sion of the genome. It is impossible to do better using unpaired
reads unless one has reads longer than 6.2 kb. The graph thus
encodes exactly what can be known from the data: it tells us that
there are two possibilities for the complete sequence of the ge-
nome, but it does not tell us which one is right.

When the minimum overlap K is lowered to 20, we find
instead that the unipath graph of C. jejuni has 4161 edges, and it
is very tangled. The N50 size of the unipaths is 3.1 kb; that is, half
of the total bases in the unipaths are present in unipaths of size
3.1 kb or larger. Moreover, 87% of the genome is in unipaths of
size �1 kb; thus, there is some continuity in spite of the tangle.
Raising K to 24 improves matters strikingly: although there is still
a tangle of 1106 unipaths, the N50 size rises to 35.7 kb, corre-
sponding to a level of completeness and continuity that might be
adequate for some applications. We see that potential assembly
quality is highly sensitive to the minimum overlap K, and hence
to both read length and coverage.

As a sequence graph (see Methods, “Sequence Graphs”), the
unipath graph captures exactly what can be known about a ge-
nome from unpaired reads of a given length, at least under ideal
conditions (perfect reads, essentially infinite coverage). It reveals
both what can be known from the data and what cannot be
known. We set the same goal for assemblies of reads, thus build-
ing a sequence graph that retains intrinsic ambiguities arising
from polymorphism in the genome or the limited power of the
data. If this is done correctly, errors should be exceedingly rare,
and where there is uncertainty, the assembly will display the
alternatives, rather than picking the one that is judged to be true.

Algorithmic ingredients for unpaired-read assembly

We have not yet explained how unipaths may be constructed
from reads. Here we outline the basic ideas. The first step is to
correct as many errors as possible in the reads (see Methods,
“Error Correction”). Next we assign numbers to K-mers in the
reads and build a compact searchable data structure based on
these numbers (see Methods, “K-mer Numbering and Database”
and “K-mer Numbering Algorithm”). This strategy allows us to

Table 1B. Fraction of K-mers having a unique placement on the
genome

K E. coli (%) S. cerevisiae (%) A. thaliana (%) H. sapiens (%)

200 98.5 95.9 97.4 97.6
160 98.3 95.6 97.1 97.2
120 98.2 95.2 96.6 96.6
80 98.0 94.7 95.4 95.2
60 97.8 94.4 94.4 93.1
50 97.7 94.2 93.4 91.2
40 97.6 93.9 92.2 88.3
30 97.4 93.5 90.4 83.4
20 97.0 92.9 86.5 71.8
10 0.0 0.0 0.0 0.0

For a given K and a given genome, we show the fraction of its K-mers that
have a unique placement on the genome. Values were estimated using a
sample size of 104.

Table 1A. Mean number of false placements of K-mers on the
genome

K
Escherichia

coli
Saccharomyces

cerevisiae
Arabidopsis

thaliana
Homo

sapiens

200 0.063 0.26 0.053 0.18
160 0.068 0.31 0.064 0.49
120 0.074 0.39 0.086 1.7
80 0.082 0.49 0.15 7.2
60 0.088 0.58 0.27 18
50 0.091 0.63 0.39 32
40 0.095 0.69 0.65 78
30 0.11 0.77 1.5 330
20 0.15 1.0 5.7 2100
10 18 63.8 880 40,000

For a given K and a given genome, we show the mean number of perfect
placements on the genome for a K-mer drawn at random from the ge-
nome, excluding the true placement. This number is the expected ratio
of false to true overlaps between reads overlapping by exactly K bases.
Values were estimated using a sample size of 106. The procedure used to
generate this table is in the Supplemental material Part c. To provide
context for Table 1A, we also show the fraction of K-mers having a unique
placement on the genome in Table 1B.
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avoid the standard operation of computing all overlaps between
reads, which is unsuitable for microreads (see “The Challenge of
Microread Assembly,” above). Approximate unipaths can then be
computed from this data structure (see Methods, “Unipath Gen-
eration”), roughly by walking along the reads until a branch is
encountered.

At least for simulated reads (modeled on real data), these
approximate unipaths closely match the true genomic unipaths.
For example, computing unipaths from simulated reads for the
linearized Escherichia coli genome (see “Results for Assemblies of
Simulated Data,” below) yields approximate unipaths that agree
essentially exactly with the true genomic unipaths. (The only
exception is that the first and last seven bases are missing; this is
an artifact of linearizing a circular genome for this analysis.)

Algorithmic ingredients for paired-read assembly

For paired reads, the assembly problem is far more complex. If we
sequence both ends of DNA fragments of size N, then the result-
ing assemblies can be no better than assemblies from unpaired
reads of size N, and the best possible assembly of these can be
understood as in the section “Limits of Unpaired-Read Assem-
bly,” above. But this represents an absolute limit, which is not
necessarily achievable. To approach this limit, new paired-read
assembly algorithms are needed.

In this direction, we begin by describing two core concepts
at the heart of the ALLPATHS algorithm. We then elaborate in
subsequent sections.

Find all paths across a read pair

Given a read pair (representing the two ends of a single DNA
fragment), one may computationally bridge the gap between the
two reads by filling in using other reads (without regard to their
pairing) having some minimum overlap K with each other, via a
process of “walking” from one read to the other (see Methods,
“All Paths Definition” and “How to Find All Paths across a Given
Read Pair”). Each such sequence, going from the beginning of the
one read, across the gap, and on to the end of the other read, is
called a “path” (or closure). If the coverage is high enough, this
approach is guaranteed to yield the correct path, that is, the true
closure of the read pair. However, the approach will typically also
yield other, incorrect paths. Our assembly method involves ini-

tially finding all of the paths, keeping track of them, and ulti-
mately sorting out which one is right, where possible.

Localization

We use pairs to group together most or all of the reads from a
given region of the genome (sometimes accidentally including
reads from other regions), then assemble each group separately,
in an in silico analog of clone-by-clone sequencing. The idea is to
tile the genome by overlapping regions (even though we do not
know the genome in advance), assemble each of these in turn,
then glue all these local assemblies together to form one big
assembly of the entire genome.

The results of the algorithm depend on the variation in the
size of the DNA fragments. Table 2 illustrates how the number of
paths connecting a given read pair can vary, both across pairs
and also as a function of the standard deviation (SD) in the size
of the DNA fragment. First, consider walking across read pairs
using reads from the entire E. coli data set (left half of table). We
find that for tight variation in fragment size (500 bp �1%, i.e.,
mean = 500 bp, SD = 5 bp), 94.3% of read pairs have a unique
closure, while 0.3% have �103 closures (which arise from repeti-
tive sequence). For the larger variation in fragment size (500 bp
�10%), we instead find that 1.9% of read pairs have �103 clo-
sures. In either case, there are some read pairs that have >107

closures; in these cases, the all paths process might be said to
“blow up.”

These read pairs having large numbers of closures pose a
complex series of problems. First, the number of closures could
easily be so large that it would be impossible to store them, let
alone compute them. More importantly, even if we could com-
pute all these closures, there would be no way to sort them out so

Figure 1. Unipath graph of the 1.8-Mb genome of C. jejuni for K =
6000, which is also the best possible assembly of its genome from un-
paired reads of length 6001. The genome was treated as linear to simplify
computation. Each unipath is labeled with its number of copies (multi-
plicity) in the genome and with a letter to facilitate discussion. Formally,
the graph also includes a reversed copy corresponding to the reverse-
complemented sequence (data not shown). The middle horizontal edge
represents a 6.2-kb perfect repeat present three times in the genome.
This edge is present exactly because the reads are shorter than the repeat.
If the reads were longer than 6.2 kb, then the graph would be a single
edge. This graph (along with edge sequences and multiplicities) repre-
sents exactly what can be known from the data: There are exactly two
ways to traverse the graph from end to end, ABCDBCEFCEG and ABCE-
FCDBCEG, but it is not possible to know from the data which of these
alternatives represents the true genome. When K = 20, one instead has
4161 unipaths in total, and the graph is far too tangled to display, or even
to separate the genome from its complemented copy.

Table 2. Number of read pair closures in E. coli using 30-base
reads and K = 20

Closures
found

Walk using entire genome Walk within 20-kb region

500% � 1%
(% of pairs)

500% � 10%
(% of pairs)

500% � 1%
(% of pairs)

500% � 10%
(% of pairs)

0 0.19 0.29 0.20 0.22
1 94.3 93.3 98.7 98.3
2 1.17 1.07 0.30 0.29
3–5 1.21 1.06 0.41 0.33
6–9 0.91 0.74 0.14 0.17
101– 1.32 1.28 0.22 0.51
102– 0.58 0.36 0.03 0.15
103– 0.12 0.62 0 0.05
104– 0.12 0.58 0 0
105– 0.06 0.43 0 0
106– 0.04 0.19 0 0
107– 0.003 0.07 0 0

Pairs of simulated 30-base reads with separations ∼500 bp from E. coli
were walked, using high coverage (100�) (Supplemental material Part
d). The table shows the histogram of the number of closures found per
read pair, for each of two choices of library SD, and for each of two
strategies. (Rows give the nonoverlapping closure count ranges.) In the
first strategy, reads from the entire genome are used in the walk. In the
second strategy, we picked 20-kb regions and walked short fragments
from them using only the reads within a given region. For strategy 1, the
sample size was 100 K for 500% � 1% and 10 K for 500% � 10%. For
strategy 2, we used 200 randomly chosen 20-kb regions and 500 short
fragments from each. It is possible for a pair to be reported as having zero
closures because whereas we searched for closures having no more than
3 SDs of stretch, the underlying distribution of fragments includes some
that are stretched more. It is also possible that zero closures could result
from lack of coverage, although this would be a rare event.
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as to ultimately yield a usable and relatively untangled final an-
swer for the assembly.

Finally, since we cannot compute, store, or use such a gar-
gantuan set of closures, the algorithms must be designed to ter-
minate in the worst cases, thereby failing to return any closures
at all. This will lead to holes in the final assembly, generally in
the most repetitive places. This is also where errors in ALLPATHS
assemblies originate. Indeed, if we always found all paths, we
would expect assemblies to have ambiguities rather than errors,
in all cases. However, if some paths are missing, as is the case
when all paths “blows up,” errors can occur. As we shall see in the
section “Results for Assemblies of Simulated Data,” below, they
are very rare.

One approach to this problem of too many closures is to
localize the reads, so that only reads from the correct region are
used to construct closures. Table 2 offers an optimistic preview of
how well this might work: If we could localize, then the all paths
problem would become much simpler. The right half of Table 2
reports the results that would be obtained if one could use only
reads from a 20-kb region containing the read pair. With tightly
constrained fragment size (500 bp �1%), the fraction of pairs
having a unique closure rises from 94.3% to 98.7%. Moreover, all
read pairs have fewer than 103 closures (whereas some have >107

when global data are used).

Sketch of ALLPATHS paired-read assembly algorithm

We now outline the ALLPATHS algorithm for assembling paired
reads, postulating a mix of fragment sizes for the paired reads,
ranging from short (∼0.5 kb) to long (∼50 kb).

Step 1: Creating approximate unipaths

As with unpaired reads, the first step is to use the reads to com-
pute an approximation to the unipaths (see “Algorithmic Ingre-
dients for Unpaired-Read Assembly,” above). We do this without
ever computing the set of all overlaps between reads, since, as
discussed in “The Challenge of Microread Assembly” above, this
would be computationally prohibitive. The unipath computa-
tion ignores the pairing of reads.

Step 2: Selecting seeds

Now with the unipaths and read pairs in hand, we are ready to
localize. The first step is to pick “seeds”: these are unipaths
around which we will build assemblies of genomic regions. The
ideal seed unipaths are long and of low copy number (ideally
one). Copy number is inferred from read coverage of the uni-
paths. (Implementation for real reads will need to take account of
deviations from even coverage that are characteristic of particular
sequencing technologies.) Using read pairing, we can choose
seeds judiciously, spacing them so that the regional assemblies
will overlap by a few kilobases where possible, facilitating subse-
quent gluing (see Methods, “Finding Seed Unipaths”). It is not
necessary to use every ideal unipath as a seed.

Step 3: Building neighborhoods around
the seeds

The genomic region containing the seed
and extending 10 kb on each side is
called the “neighborhood” of the seed.
Our goal is to assemble the neighbor-
hood. To that end, we first build a col-
lection of sequences (reads, unipaths,
etc.) that lie mostly within it.

First, define a collection of low-copy-number unipaths that
partially cover the neighborhood. This is done by iterative link-
ing (Fig. 2A). Each unipath is assigned coordinates relative to the
seed, with error bars. Because the error bars are in general large,
the precise order of the unipaths is unknown, and thus the struc-
ture is better thought of as a “cloud” rather than a “scaffold.”

Next, we construct two sets of reads for the neighborhood:
the “primary read cloud,” generally containing only reads whose
true genomic locations are near the seed (but not all such reads),
and the “secondary read cloud,” generally containing all the
short-fragment read pairs near the seed, and some outsiders as
well. In more detail, the primary read cloud consists of those
reads incident upon one of the neighborhood unipaths, plus
their partners, some of which reach into gaps (Fig. 2B). If both
reads in a pair land entirely within high-copy-number unipaths,
the pair will not be in the primary read cloud; thus, sufficiently
repetitive read pairs are excluded. The secondary read cloud con-
sists of all short-fragment read pairs (∼0.5 kb) from the entire data
set for which the sequence of both reads could be assembled from
reads in the primary cloud (Fig. 3). This operation pulls in some
pairs from outside the neighborhood, but usually finds all short-
fragment pairs from inside the neighborhood, including highly
repetitive ones; thus, the secondary read cloud is complete but
can be contaminated.

In addition to completeness, the secondary read cloud has
the advantage that it consists of short-fragment pairs, which gen-
erally have far fewer closures than longer-fragment pairs. Never-
theless, the same problem of “too many closures” (see “Algorith-
mic Ingredients for Paired-Read Assembly,” above) persists. There
are parts of genomes that are locally repetitive, typically consist-
ing of low-complexity sequence. Thus, even though localization
allows us to zoom in on a small region of the genome (∼20 kb),
and even though short-fragment (∼0.5 kb) read pairs capture a
very small piece of this region, there are still many cases in which
the number of closures of these pairs is too large to compute or
store or use. This does not happen for E. coli (Table 2) but can
happen for more complex genomes. The problem is com-
pounded by the large number of short-fragment read pairs.

To mitigate this problem, we take the short-fragment read
pairs in the neighborhood (the secondary read cloud) and pro-
gressively merge these pairs together (see Methods, “Short-
Fragment Pair Merger”). The end result is that we obtain a smaller

Figure 2. Localization. (A) Lines represent unipaths, and curves represent paired-read links between
them; from seed, iteratively link to low-copy-number unipaths within a 10-kb radius of it. (B) Reads
aligning to these unipaths have partners (red) that dangle in repetitive gaps between them.

Figure 3. Finding pairs in secondary read cloud. An arbitrary short-
fragment read pair is shown (red). If both its reads can be separately
subsumed as perfect matches to contigs built from reads from the pri-
mary cloud (black), the pair is placed in the secondary read cloud. The
black contigs represent all possible ways of combining reads from the
primary read cloud using perfect overlaps that are at least K bases long.
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number of pairs, and the pairs themselves are more informative:
the reads are lengthened (effectively turned into contigs), and
the pair separations and their SDs are reduced. Because there are
fewer pairs and they are more informative, they will have fewer
closures.

Step 4: Finding all paths

Next, we compute the closures of all the merged short-fragment
pairs, using only the reads from these pairs. The resulting set of
closure sequences should cover the neighborhood correctly, but
in general will also include false closures that do not align per-
fectly to it. These closures are then used, as though they were
reads, to walk a selection of mid-length (∼5 kb) read pairs from
the primary read cloud.

Step 5: Gluing together the local assembly

The closures of these mid-length read pairs are glued together,
yielding a sequence graph: the assembly graph for the neighbor-
hood. This gluing process works by iteratively joining closures
that have long end-to-end overlapping stretches (Fig. 4). This
process will join together some identical sequences that come
from different parts of the genome. See Step 7, below, for how
these may be subsequently pulled apart.

As suggested in “Algorithmic Ingredients for Paired-Read
Assembly,” above, both the local and the global fragment-
walking processes can blow up in sufficiently repetitive regions,
by exceeding predetermined computational limits. The typical
effect of this computational failure is that the neighborhood
assembly contains a hole, where sequence from the neighbor-
hood is completely missing. This effect will be seen in the final
assemblies (see “Results for Assemblies of Simulated Data,” be-
low), where, for example, a few percent of the genome may be
absent.

Step 6: Building the global assembly

The local assemblies run in parallel. Once complete, their outputs
(local assembly graphs) are glued together formally (Fig. 4), yield-
ing a single sequence graph (see Methods, “Sequence Graphs”),
which may have several components, depending on the number
of chromosomes in the genome and the success of the assembly
process. At this stage, if there are long perfect repeats, they are
likely assembled on top of each other. These collapsed parts of
the assembly may be pulled apart in the next step, provided that
the repeat length is less than the longest library fragment size.

Step 7: Editing the assembly

This graph generally provides an imperfect representation of the
genome, and can be improved. To do so, we first find all perfect
placements of the error-corrected reads on the assembly graph.
Then we find all consistent placements for read pairs. This step is
time- and memory-intensive, and we note that it would not nec-
essarily work in precisely the same fashion for mammalian-size
genomes, where a read pair with two repetitive ends could have
a huge number of placements on the genome. We next carry out
a series of editing steps (Fig. 5) to create the final assembly, which
is again a sequence graph. These editing steps remove detritus,
eliminate ambiguity in some cases, and where possible pull apart
regions where repeats are assembled on top of each other.

Results for assemblies of simulated data

To test the algorithm, we chose 10 finished reference genomes
from bacteria and fungi (ranging from 2 to 39 Mb) and a 10-Mb
segment of the human genome (Supplemental material Part a).
Circular genomes were linearized to simplify simulation. The mi-
crobial genomes were all treated as haploid (i.e., without poly-
morphism). The human genomic segment was treated as diploid,
in that we randomly introduced single nucleotide polymor-
phisms (SNPs) at 1/1200 bp, approximately the rate of SNPs in
the human genome (Sachidanandam et al. 2001), thereby using

Figure 4. Merger of sequence graphs in ALLPATHS. The process is
iterative. It starts with a collection of sequence graphs, and progressively
glues them together. Note the simplest case: all the sequence graphs
might consist of single edges. Example: (A) two sequence graphs match
at graph and sequence level along common portion consisting of bubble
extended on both ends; (B) the algorithm identifies a common linear
stretch (blue) that extends from a source on one graph to a sink on the
other, then glues the graphs along this stretch; however, parallel black
and red edges at the bottom are not yet glued; (C) now these edges are
zipped up.

Figure 5. Editing assembly graphs. Assembly graphs are edited to im-
prove their quality. (A) Clean-up operations, for example, removal of
short “hanging ends,” like the middle vertical edge; other clean-up op-
erations include deletion of sequence that is not covered by paired reads
and deletion of tiny graph components. (B) Disambiguation operations.
Here, given sufficient paired-read links from the left to the right edge, the
precise number of copies of the loop edge may be determined, and it
may then be unrolled, thereby replacing all three edges by a single edge.
(C) Pulling-apart operations. If paired-read links go from the left red edge
to the right red edge, and from the left black edge to the right black edge,
but not from red to black or black to red, the middle edge may be
duplicated, yielding as output two composite edges.
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both the original reference sequence and a second version having
alternative alleles.

For each reference genome, we generated simulated 30-base
reads to a total of 80� coverage. The simulated reads consisted of
1� coverage in paired reads from long fragments (50 kb � 10%),
39.5� coverage in paired reads from moderate-size fragments
(6 kb � 10%), and 39.5� coverage in short fragments (0.5
kb � 1%) (see the formal simulation procedure in the Sup-
plemental material Part e). These fragment sizes are similar to
those used in current genome assembly strategies; we note that
the short fragment library has a particularly narrow size dis-
tribution; the effect of broadening the distribution is discussed
below. The genomic positions of the fragments were chosen at
random.

We introduced errors into the reads, at a frequency of
∼0.3%, as follows (Batzoglou et al. 2002). We took actual reads
generated by Solexa sequencing of a human BAC clone with a
known finished sequence (see Supplemental material), filtered
them to eliminate failing reads based on intrinsic criteria (see
Methods, “Filtering of Solexa Reads”), aligned the reads to the
known reference, and marked the positions of errors. In this fash-
ion, we created a set of “error templates” (distributed as Supple-
mental), indicating the position and nature (substitution, inser-
tion, or deletion) of the errors in each read, if any. For each
simulated read, we randomly selected an error template and in-
troduced errors into the simulated read at the exact same posi-
tions indicated by the template. We also defined quality scores
for the simulated read by copying them from the Solexa read that
gave rise to the template.

We then applied the ALLPATHS code (minimum overlap
K = 20) to the simulated reads to generate an assembly for each
genome. The ALLPATHS software is distributed with this paper,
as are the assemblies themselves (Supplemental material). The
assemblies were all run with essentially the same version of the
code, apart from slight modifications. The arguments to the soft-
ware, including modifications for the diploid case and the com-

putational resources (time and memory), are described in the
Supplemental material Parts f and g.

We assessed each assembly by aligning it back to its refer-
ence genome, noting all defects (Supplemental material Part h).
Summary statistics for completeness, continuity, ambiguity, and
accuracy are shown in Table 3. (For E. coli, there is a parallel table
[Supplemental material Part i] showing what happens when the
small-fragment library is broadened: not too much, other than a
modest increase in the number of ambiguities.) Some represen-
tative parts of these assemblies are shown in Figure 6.

Completeness and contiguity

All of the assemblies are highly complete and contiguous. The
proportion of the genome covered is >96% in all cases. For the
haploid genomes, the N50 sizes of the components are typically
at least half of the theoretical upper limit (the N50 sizes of the
reference sequences), and the N50 sizes of the edges are typically
hundreds of kilobases. For the human diploid region with poly-
morphism, the N50 sizes are lower. The N50 component size is
∼0.5 Mb. The N50 edge size is ∼2 kb, which is as expected given
the SNP frequency. (Every SNP introduces a bubble.) If we col-
lapse the SNP bubbles, effectively putting ambiguity codes in for
the SNP bases, the N50 edge size increases to 32 kb.

Assembly ambiguities

Most of the assemblies contain at least some inherent ambigu-
ities, regions where there are alternative solutions that could not
be resolved with the available data. However, these are generally
<20 per megabase. Figure 6 illustrates the nature and distribution
of these ambiguities. For the haploid assemblies, there are both
isolated and clustered ambiguities. Isolated ambiguities include
loops, typically at long homopolymers, where the exact length
has not been determined. Figure 6D exhibits a cluster of ambi-
guities. In the haploid cases, such small clusters account for most
ambiguities and tend to occur in small (100–1000 bp) isolated

Table 3. ALLPATHS assemblies of simulated 30-base microreads

Inputs Outputs

Species Ploidy
Genome
size (kb)

Reference
N50 (kb)

Component
N50 (kb)

Edge
N50 (kb)

Ambiguities
per megabase

Coverage
(%)

Coverage by
perfect edges

≥10 kb (%)

C. jejuni 1 1800 1800 1800 1800 0.0 100.0 100.0
E. coli 1 4600 4600 4600 4600 0.0 100.0 100.0
B. thailandensis 1 6700 3800 1800 890 2.7 99.8 99.5
E. gossypii 1 8700 1500 1500 890 2.6 100.0 99.9
S. cerevisiae 1 12,000 920 810 290 28.7 98.7 94.9
S. pombe 1 13,000 4500 1400 500 19.1 98.8 97.5
P. stipitis 1 15,000 1800 900 700 8.6 97.9 96.3
C. neoformans 1 19,000 1400 810 770 4.5 96.4 93.4
Y. lipolytica 1 21,000 3600 2200 290 6.2 99.1 98.6
Neurospora crassa 1 39,000 660 640 90 17.4 97.0 92.5
H. sapiens region 2 10,000 10,000 490 2 68.2 97.3 0.2

Statistics for assemblies of 11 genomes. All are entire genomes except for H. sapiens, for which we used the 10-Mb region on chromosome 22 starting
at base 28,939,432 in NCBI build 36. Ploidy and genome size are characteristics of the input data sets, as is reference N50, which depends on both the
genome and the connectivity of the reference. For ploidy 1, we treated the genome as having no polymorphism. For ploidy 2, we introduced SNPs at
random every 1200 bp. The remaining columns provide summary statistics for the assemblies. Continuity: The N50 size of the assembly graph
components, and edges. Ambiguity: We define the number of ambiguities in the assembly to be the total number of bubbles, loops, and so forth that
appear in the graph, formally computed as (the number of components) + (the number of edges) � (the number of vertices), and report the number
of ambiguities per megabase of genome, excluding ambiguities arising from SNPs in the diploid case. Completeness (coverage): The fraction of the
genome that is covered by the assembly. Last column: fraction of genome covered by assembly edges that are perfect and have length �10 kb. The
number for the H. sapiens region is low because edges are interrupted every ∼1200 bp at SNPs: there are virtually no long edges.
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regions of the genome (as is suggested by the large N50 edge size).
For the diploid human data set, ambiguities should occur at SNPs
(approximately every 1.2 kb), and they do: 96.1% of the SNPs in
the reference are present as ambiguities in the assembly.

Assembly accuracy

The assemblies of the two smallest genomes (C. jejuni and E. coli)
have no errors. In fact, these assemblies are perfect: in each case,
the assembly graph is a single edge that matches the reference
perfectly (exclusive of a few missing bases at the ends, because
the genomes were linearized for convenience of simulation). Al-
though these genomes are small, they do contain significant re-
peats. For example, C. jejuni has a 6-kb perfect repeat that occurs
three times and yet is perfectly resolved (cf. Fig. 1). The assembly
of Eremothecium gossypii also has no errors.

The other assemblies each contain only a very few errors,
ranging from single-base errors to large-scale incorrect joins, in
total at a rate of less than one event per megabase. We illustrate
this by enumerating all errors in three of the assemblies:

● The assembly of Burkholderia thailandensis (6.7 Mb) has only
one error: a misjoin between two large components that arises
from a 5-kb perfect two-copy repeat.

● The assembly of Yarrowia lipolytica (21 Mb) has two errors: a
single-base mismatch (the first base of a 44-kb edge) and a
412-base deletion that occurs between 55-copy and 44-copy
pentanucleotide repeats.

● The assembly of Cryptococcus neoformans (19 Mb) has more
errors: 12 single-base mismatches (of which 10 occur in the last
19 bases of one 257-kb edge) and three incorrect joins of seg-
ments (a component consisting of 12- and 15-kb segments that
are incorrectly glued along a 9-kb perfect repeat; a component
consisting of two edges of size 6 kb and 2 kb, of which the latter
does not align to the genome; and a component consisting of
two edges of sizes 69 kb and 0.1 kb, from different parts of the
genome).

The overall base accuracy is extremely high, exceeding Q60,
or less than one error per 106 bases. The vast majority of the
sequence occurs in large edges (>10 kb), and sequence errors are
rare in these edges; there are only a dozen exceptions, all minor

(Table 4). In most cases, a very high pro-
portion of the genome is covered by
long perfect edges (Table 3, last column).
In addition, the sequence errors cluster
near the ends of the edges. Outside the
terminal 30 bases of edges, the sequence
quality is Q70.

Results for assemblies of artificially
paired real reads

Finally, we applied ALLPATHS to actual
data generated from Solexa sequencing.
Because read pairs with high-quality and
library parameters as in the section “Re-
sults for Assemblies of Simulated Data,”
above, are not yet routinely available, we
instead took single-read data from Sol-
exa sequencing and imposed artificial
pairing. Specifically, we started with a
large pool of passing 36-base Solexa

reads from E. coli (see Methods, “Artificially Paired Solexa Reads”)
and mapped these reads to their position on the reference ge-
nome. (All reads were mapped.) In parallel, we defined simulated
paired reads at 80� coverage, exactly as in the section “Results
for Assemblies of Simulated Data,” above. For each such simu-
lated pair, we noted the start point of the first read and the end
point of the second read on the reference, and searched the pool
for two real reads in opposite orientations having the exact same
start and end points. If two such reads were not in the pool, we
shifted both start and end by the smallest possible amount so
that the corresponding reads were present in the pool. We then
created an artificial read pair from these two reads and marked
the two reads to avoid reuse. The read pairs thus have real error

Figure 6. ALLPATHS assemblies of simulated 30-base microreads. Four assembly graphs or parts are
shown, with edges color-coded to reflect length: (gray) <100; (black) 100–1000; (red) 1000–10,000;
(magenta) >10,000. (Image created using Graphviz [Low 2004].) None of the graph parts have errors,
but some have ambiguities. (A) Assembly of E. coli is one edge. (B) 1.1-Mb component from assembly
of 21-Mb fungal genome Y. lipolytica. Five ambiguities are seen: All are loops labeled “1” correspond-
ing to mononucleotide runs whose exact length is unknown. (C) Tiny section of component of as-
sembly of diploid human 10-Mb region. Five ambiguities are seen: All are bubbles arising from SNPs,
which are intrinsic to the genome. (D) Correct but tangled component of Pichia stipitis assembly. There
is a unique path between the two light blue vertices that matches the reference perfectly.

Table 4. ALLPATHS assemblies: All edges of size ≥10 kb that
contain errors

Species
No. of
edges Nature of error

S. cerevisiae 1 2 mismatches
S. cerevisiae 1 1-base deletion from long homopolymer
P. stipitis 2 1 mismatch
C. neoformans 1 10 mismatches (in last 19 bases)
C. neoformans 1 1 mismatch
Y. lipolytica 1 1 mismatch
N. crassa 11 1 mismatch
N. crassa 2 2 mismatches
N. crassa 2 1-base deletion from long homopolymer
N. crassa 1 7-base deletion from long homopolymer
N. crassa 1 3 mismatches (in last 7 bases)
N. crassa 1 10 mismatches (in last 23 bases)

All edges of size �10 kb from the 11 assemblies of Table 3 were aligned
to the reference. We report all edges that did not align perfectly from end
to end. For N. crassa, there were in addition five cases whose interpreta-
tion is problematic, all involving the ends of incompletely finished refer-
ence contigs. In all five cases, the assembly is wrong, in the sense that it
does not match the reference sequence. However, in three of the five
cases, the assembly might match the true Neurospora genome. In each of
these cases, the assembly contains an end-to-end perfect join along ref-
erence contigs overlapping perfectly by several hundred bases. In these
cases, the assembly could correctly represent the genome. Of the two
remaining cases, one joins the 140-kb end of one reference contig to the
2-kb interior of another. In the last case, the assembly extends 28 bases
off the end of a reference contig.
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characteristics, but a coverage pattern and pairing parameters
taken from the simulation.

We then trimmed each read, using the other reads as a guide
(see Methods, “Artificially Paired Solexa Reads”), and assembled
the data using ALLPATHS exactly as in the section “Results
for Assemblies of Simulated Data” above, with no change to its
parameters. The resulting assembly has 58 components and
covers 99.1% of the genome. The N50 size of the components is
145 kb, the N50 size of the edges is 129 kb, and there are a total
of 11 ambiguities (2.4 per Mb). All but four of the components
consist of single edges, with the smallest component having a
size of 6 kb.

We then used the read pairs to order and orient the compo-
nents into “scaffolds,” by linking together components joined by
multiple read pairs. A simple algorithm connected the 58 com-
ponents into a single scaffold, having a median gap size of 11 bp
and an N50 gap size of 4.6 kb.

The final assembly matches the reference sequence exactly,
with only 12 exceptions: there were four single-base mismatches
(three at the first or last base of an edge), seven indels (of sizes 2,
3, 5, 5, 5, 7, and 16 bp), and a single graph defect (an edge of size
of 245 bp was missing). We studied the 11 cases of mismatches or
indels to see if they corresponded to inherent defects in the as-
sembly: we observed that in every case, the reads aligned discrep-
antly to the assembly; this suggests that, at a minimum, the
assembly could have been marked to suggest possible errors at
these loci.

In summary, the ALLPATHS assembly using actual Solexa
read data (but artificial read pairing) is slightly worse than that
obtained with simulated data, but is nonetheless quite good. It
has high coverage (99.1%), high continuity (a single scaffold),
and high accuracy (only 12 discrepancies with the reference).
With better understanding of the error properties of the data, it
should be possible to further improve the results.

Discussion

Genome sequencing has entered a new era, one that may be
dominated by very short and inexpensive reads. Each application
of these new data will require significant algorithmic develop-
ment. Among the many applications, de novo assembly is likely
the hardest, both in the laboratory and computationally. A grow-
ing base of installed instruments is beginning to generate huge
quantities of data. In preparation for this, we have begun this
theoretical investigation.

Several recent papers (Dohm et al. 2007; Jeck et al. 2007;
Warren et al. 2007) have demonstrated assembly of unpaired
microreads (for comparison, see Supplemental material Part j),
but the quality of such assemblies is limited by the use of un-
paired-read data. Here, we establish that it is possible to produce
very high-quality assemblies based entirely on paired microreads
at high coverage. We have demonstrated that short read assem-
bly can succeed for genomes up to 40 Mb. The next step will be
to move from simulated data to real data. Real data will not
perfectly fit our model. Real reads may not land randomly on the
genome, and certain positions in the genome may be particularly
susceptible to sequencing errors. Nonetheless, the results here
suggest that high-quality assemblies should be achievable with
microreads. With sufficient amounts of real data, we will be able
to establish the parameters of these assemblies, including, for
example, read length, pairing rate, and depth of coverage.

The ALLPATHS approach of representing assemblies by
graphs also offers the tantalizing prospect of accurately capturing
polymorphism within the assemblies themselves, and more gen-
erally the systemic capture of ambiguity, regardless of source. In
addition to the power of this approach in assembling short reads,
ALLPATHS provides a generalized representation suitable to all
types of DNA sequence data including traditional sequence reads.
By accurately representing ambiguities, this richer view of draft
assemblies offers greater capability in applying genome assem-
blies to biological problems. At the same time, the large edges in
these graphs for haploid data sets are nearly all perfect and con-
tain nearly all the genome, thus an excellent “traditional” assem-
bly could be obtained by treating the large edges as contigs and
putting aside the graph structure. For diploid assemblies, the
same idea will work so long as the principal ambiguities (bubbles
from SNPs) are “flattened” by substituting ambiguous base codes.

Methods

K-mer terminology (Pevzner et al. 2001)
A K-mer in a genome is a sequence of K consecutive bases in it.
K-mer x is adjacent to K-mer y (written x → y) if there is a (K + 1)-
mer in the genome whose first K bases are x and whose last K
bases are y. (It follows that x and y overlap by K � 1 bases.) By
taking the K-mers as vertices and the adjacencies as edges, one
obtains a graph, called the de Bruijn graph. This is related to, but
distinct from, the unipath graph described next.

Unipath and unipath graph definitions
Informally, a “unipath” is a maximal unbranched sequence in a
genome G, relative to a given minimum overlap K. Formally,
consider the de Bruijn graph of G. A sequence U of length �K in
the genome is expressible as a sequence of successively adjacent
K-mers x1, . . . , xN, in which case N = length(U) � K + 1. If
x1, . . . , xN � 1 have outdegree one and x2, . . . , xN have indegree
one, and U cannot be lengthened without violating these con-
straints, U is a “unipath” (Fig. 7). Branchpoint-free circles are also
unipaths.

A given K-mer from G can occur in only one unipath, and
every K-mer in a unipath is represented by one or more instances
in G. In this sense, every K-mer in G lies in exactly one unipath.
Two unipaths x, y are “adjacent” if the last K-mer of x is adjacent
to the first K-mer of y. This allows us to define a graph, that we
call the “unipath graph,” whose edges are the unipaths.

Sequence graphs
We represent knowledge about a given genome using a directed
graph whose edges are DNA sequences. We call this structure a

Figure 7. Unipaths in a genome. A hypothetical genome has 12 K-
mers, represented here as vertices. There are five unipaths, one for each
of five colors. Vertex L has indegree 2 and vertex R has outdegree 2,
delineating branches.
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“sequence graph.” A unipath graph, which we compute exactly
from a genome or approximately from reads, is one example, as
are the assemblies that ALLPATHS produces. A connected com-
ponent of a sequence graph is a connected component of it as a
graph, that is, a physically connected subgraph, that is discon-
nected from all vertices and edges not included within it. Any
sequence graph may be divided into its connected components.
For a haploid genome whose sequence is completely known,
there is one connected component for each chromosome, and
each component has no branches, that is, each component is a
single edge. In all other cases, branches represent our uncertainty
about the exact genomic sequence. For a diploid genome, ho-
mologous chromosomes are merged in the graph, generally lead-
ing to bubbles (Fig. 6C) in places where there is polymorphism.

Formally, for fixed K, a “sequence graph” is a directed graph
whose edges are sequences, having the property that whenever
x → y → z are edges, the end of the first edge perfectly overlaps
the beginning of the second edge by exactly K � 1 bases. (The
case K = 1 is allowed, in which case these edges abut but do not
overlap.) Note that if we represent edges as sequences of adjacent
K-mers, then the last K-mer of the first edge is adjacent to the first
K-mer of the second edge. This is computationally convenient.
The value of K can be changed by adjusting the edge sequences.

A sequence graph has a natural output format: a FASTA file
of the edge sequences, with header lines of the form

>edge_name v1:v2,

where v1 and v2 are vertex indices for the edge (v1 → v2). Note
that the overall numbering of vertices is arbitrary. The vertex
numbering does not contain any genomic information, other
than indicating which edges are juxtaposed in the graph.

Error correction
We correct errors in reads using an approach related to Pevzner et
al. (2001). For each read, we either keep it as is, edit it, or discard
it. The process for this is as follows:

Create a list of all K-mers in the reads. If there are N reads of
length L, then the list has N(L � K + 1) entries. Any given K-mer
occurs a certain number of times in the list. Let f(m) denote the
total number of entries in the list that occur m times in the list.
For example, if the list were AC, AC, AC, AT, AT, CG, CG, then
f(2) would be 4.

We expect the graph of f to have a sharp peak for low m,
especially m = 1, arising primarily from incorrect K-mers (those
containing sequencing errors), and a smooth hump for higher m,
arising primarily from correct K-mers (those not containing se-
quencing errors).

Let m1 be the first local minimum of f, expected to lie be-
tween the “sharp peak” and “smooth hump,” as above. Most
K-mers having multiplicity less than m1 are incorrect, whereas
most K-mers having multiplicity at least m1 are correct. We call
these high-frequency K-mers “strong.”

We consider various values of K (16, 20, 24) and compute m1

(and thus define strong) for each. If for all values of K, all the
K-mers in a read are strong, we leave the read as is. Otherwise, for
each K, we attempt to correct the read by making a “change”: one
or two substitutions. (More could be allowed, but the process
would take longer.) Each change is assigned a probability based
on the quality scores at the changed bases. We consider only
changes that make all the K-mers in the read strong, for all K
values. If the most probable change is 10 times more likely than
the next most probable change, we make the most probable
change. Otherwise we discard the read.

K-mer numbering and database
In ALLPATHS, genome sequence is represented in one of three
ways: as a sequence of bases, via K-mer numbering (as described
here), and as a sequence of unipaths. For fixed K and a fixed
collection S of DNA sequences closed under reverse-
complementation, a “numbering of K-mer space” is an assign-
ment of a unique integer to each K-mer that appears in S. If the
same K-mer appears more than once, each instance must be as-
signed the same integer. We regard a numbering as “good” if it
tends to assign consecutive numbers to K-mers appearing con-
secutively in the genome. It is reasonable to assume that there
exists such a good numbering because if we knew the sequence of
the genome, we could walk through it from beginning to end,
numbering K-mers as 1, 2, 3, and so on, changing the numbering
only when we hit a K-mer that had already been assigned a num-
ber. If we do not know the genome in advance, we need an
algorithm that takes reads as input (see Methods, “K-mer Num-
bering Algorithm”). Given a good numbering of the K-mers of S,
any DNA sequence that is in S may be translated first into a
sequence of K-mers, then into the corresponding sequence of
K-mer numbers (e.g., 100, 101, 102, 500, 501, 502, 503, 504, 505),
and thence into a sequence of closed intervals of K-mer numbers
(e.g., [100, 102], [500, 505]), which we call a “K-mer path.” A
good K-mer numbering thus enables a compact representation of
each sequence in S. More importantly, these K-mer paths, once
computed, may be represented as a searchable database in the
form of a sorted vector of pairs (x, y), where x is a K-mer path
interval (e.g., [100, 102]) and y identifies the K-mer path from
whence it came. Given any sequence s from S, represented as a
K-mer path, this database allows rapid identification of all se-
quences in S that share a K-mer with s. (Software note: see
KmerPath.{cc,h} and KmerPathInterval.{cc,h} for implementa-
tion.)

K-mer numbering algorithm
First we fix some terminology. A collection of reads is given. We
distinguish between a K-mer, and an “occurrence” of that K-mer
in the reads (or their reverse complements). A given K-mer may
occur several times, but all will be assigned the same K-mer num-
ber. Now we describe the process for defining K-mer numbers,
which has three steps.

1. Given two sequences, a “maximal perfect alignment” between
them is a choice of a window of equal length on each se-
quence, such that the bases in the respective windows match
exactly, and such that the windows cannot be extended in
either direction without violating this matching. We build
certain maximal perfect alignments between the reads (and
also their reverse complements). We do not build all such
alignments, which would be computationally prohibitive.
Rather, for a given K-mer x occurring in the reads (or their
reverse complements), we consider the set S of all its occur-
rences (id, or, pos) where “id” is the numerical identifier of a
read, “or” is the orientation of x on read id (forward or re-
verse), and “pos” is the start position of x on read id. We
define the “canonical” occurrence of x to be the element of S
that is lexicographically first. Read id is called the canonical
read associated to x. For each other occurrence of x, we create
a maximal perfect alignment between the read for the given
occurrence and the read for the canonical occurrence, seeding
on x. These alignments are shared in the sense that two dif-
ferent K-mers may ultimately contribute to the same align-
ment, and by so doing, we reduce the number of alignments
to a manageable level. (The methodology of this step is
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adapted from the algorithm in Batzoglou et al. 2002 for find-
ing all proper alignments between reads seeded on a K-mer
not occurring more than a given number of times in the
reads.)

2. Assign temporary numbers to the occurrences of K-mers in the
reads and their reverse complements. This temporary num-
bering system assigns different numbers to occurrences of the
same K-mer. It numbers the occurrences in read 0 consecu-
tively, starting with the number 0, then continues this con-
secutive numbering with the occurrences in read 1, and so
forth. Now if n is the number of an occurrence of a K-mer on
a read, then the number of the reverse complemented K-mer
on the reverse complemented read is set to M � n, where M is
a large fixed constant, unless the K-mer is a palindrome, in
which case the number is set to n.

3. Use the alignments of Step 1 to map K-mers on an arbitrary
read to K-mers on the canonical reads associated to those
K-mers, then assign them numbers via Step 2, thereby causing
all occurrences of a given K-mer to have the same number.
(Software note: see ReadsToPathsCore.cc for implementation.)

Unipath generation
We build the unipaths as K-mer paths (see Methods, “K-mer
Numbering and Database”). The unipaths can then be converted
into sequences as needed. Each K-mer path is a sequence of K-mer
path intervals. The first step in generating unipaths is to find all
the K-mer path intervals that will appear in any of them. Then we
string together the intervals to form the unipaths.

To find the intervals that make up the unipaths, we note for
each interval in the K-mer path database the K-mer number be-
fore and after it, if any, in the path from which it came. Starting
with the first K-mer number of the first interval in the table, we
set the goal of finding the longest branchless interval of K-mer
numbers containing that K-mer number, which will form a
K-mer path interval in some unipath. To do this, starting with
the first interval that contains that K-mer number, a branchless
interval is posited beginning at the first K-mer number of that
interval and ending at the last K-mer number of that interval. We
proceed forward through the database looking for intervals that
extend the posited interval or that indicate branches within it,
lengthening or shortening the posited interval accordingly. As
soon as an interval in the database is encountered that begins
after the posited interval ends, work on the posited interval is
complete, and it is a unipath interval, since all subsequent inter-
vals in the database will not intersect the posited interval. The
process is repeated for the next highest K-mer number not yet in
a unipath interval, until no K-mers remain.

With the unipath intervals in hand, it is a simple matter to
build the unipaths. All we have to do is take the first (last) K-mer
number in a given unipath interval, look it up in the database,
thereby determine its possible predecessors (successors), and if
there is exactly one, join the given unipath interval to the one on
its left (right). This iterative joining process produces the uni-
paths.

All paths definition
Given a read pair (L, R) from a library with fragment size distri-
bution D � d, given K, and given a fixed constant e (typically ∼3),
a path across the read pair (or closure) is a sequence that starts
with L, ends with R, has length between D � ed and D + ed, and
that can be covered by reads that perfectly match it, in such a
way that one can walk from L to R using overlaps between reads
that are all �K. That is one path across the read pair. By all paths

across a read pair, we mean all the paths that can be obtained in
this way.

How to find all paths across a given read pair
First, we assign numerical identifiers to each read in the set to be
used in the search, including the reads in the pair. Then we find
the minimal extensions of each read in that set. Conceptually,
these are the reads that extend the given read in distinct ways by
the smallest amount. Most reads have exactly one minimal ex-
tension; reads that have multiple minimal extensions border on
branches in the genome. The search for closures over the mini-
mal extensions therefore branches only when such a branch is
determined by the content of the genome.

To define an extension, we must choose a direction; without
loss of generality, we consider extensions to the right. An exten-
sion is a read that aligns perfectly with the given read such that
it overhangs the given read to the right, or it ends at the same
base and has an identifier greater than that of the given read. A
minimal extension is an extension that cannot be found transi-
tively, i.e., if B is a minimal extension of A, then there is no
extension X of A where B is also an extension of X. We also find
the subsumptions of each read, where read A subsumes B if they
align perfectly and A overhangs B to the left and right. The com-
putation of minimal extensions and subsumptions can be done
collectively for a large set of pairs that will be crossed using the
same set of reads, as is the case with localized assembly.

We then perform a depth-first search with these minimal
extensions, beginning with one read of the pair and terminating
a branch of the search either when the other read is encountered
at a suitable distance (either directly or indirectly through a read
that subsumes it), or the maximum distance (D + ed) has been
exceeded. To make the results of this search usable, the solutions
are stored as a graph structure in which the nodes are reads an-
notated with their offset from the start of the search. If the read
under consideration can be extended by a read that has already
led to solutions, the reads in the current search path are added to
the solution graph, and the last read is linked to its previously
encountered extending read, sharing the search results from that
read on. This allows a further optimization: if a read has already
been seen at a given offset and it is not part of the solution graph,
that branch of the search can be pruned.

Finding seed unipaths
To find the seed unipaths, the idea is to start with all unipaths,
then iteratively remove unipaths from that set. On a given itera-
tion, we test unipaths for removal, in an order that favors uni-
paths of higher copy number, and secondarily to that, shorter
unipaths. To see if a given unipath can be removed, we use read
pairing to find the closest unipaths in the set that are to the left
and to the right of the given unipath. We infer the distance
between these left and right neighbors. If this distance is less
than a threshold (set to 4 kb), then the given (middle) unipath
can be removed. The iterations continue until no further uni-
paths can be removed from the set. (Software note: see Unipath-
Seeds.cc for implementation.)

Short-fragment pair merger
We start with the set of short-insert pairs for a neighborhood,
that is, the secondary read cloud. The goal is to condense this set,
reducing to a smaller set of pairs, and in the process making the
residual pairs more informative, both by lengthening their
“reads” and by reducing the SD of the separation between them.

To that end, we first translate to a natural and highly com-
pact local representation for all the short-fragment read pairs in
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the neighborhood. More specifically, we use the reads in the
neighborhood to define local unipaths, in exactly the same way
that approximate unipaths for the entire data set are defined.
Each read may then be expressed as a sequence of local unipaths.
(If a read does not fall on a unipath end, we extend it to the end
of the unipath.) Furthermore, every read pair has a representa-
tion in terms of local unipaths, which might look like the fol-
lowing:

B.C —�50 � 5� → W.X.X.Y

where the local unipaths are symbolized A, B, C, . . . for conve-
nience, and the notation means that the predicted gap between
the reads is 50 � 5 K-mers. The right read has been reverse
complemented so that a closure for the read pair has the form
B.C. . . . .W.X.X.Y, where the ellipsis is filled with local unipath
symbols.

Each local unipath is itself expressible as a sequence of glob-
al unipaths. We assign to each local unipath the minimum of the
predicted copy numbers for each of its constituent global uni-
paths. This “local copy number” is an upper bound on the num-
ber of times that the local unipath can appear in the genome.

With these tools in hand, the short-fragment read pairs now
admit a certain calculus that enables their condensation into a
smaller set of pairs, whose reads are longer and whose separation
SDs are smaller (and hence which tend to have fewer closures).
For example, suppose we have pairs

B.C —�40 � 5� → W.X.X.Y

and A.B —�50 � 5� → W.X

where B has local copy number one and C is 10 K-mers long.
Then we may merge the two pairs together, yielding a single pair

A.B.C —�40 � 5��2� → W.X.X.Y

one of whose reads is longer and whose separation SD is smaller.
Via several similar rules, the short-fragment read pairs may typi-
cally be condensed to a much smaller and more specific set. In
relatively easy parts of haploid genomes, it is common for all the
short-fragment pairs to reduce to a single “degenerate” pair, for
example:

D.E.F —�−n � 0� → D.E.F

where n is the length of D.E.F in K-mers—so that the read pair is
its own closure and this closure is itself the assembly of the neigh-
borhood.

Filtering of Solexa reads
Reads were filtered based on their intrinsic quality by removing
non-passing reads. We describe here the definition of a passing
read. The Solexa system reports an intensity for each possible
base (A,C,G,T) at each position on the read. We define a read to
be “passing” if for each of the first 10 bases of the read, the
intensity at the called base is at least 1000 and the ratio of the
intensity at the called base to the next highest intensity is at least
2.

Artificially paired Solexa reads
A DNA isolate for E. coli K12 MG1655 from the Weinstock Lab at
Baylor University was sequenced by Solexa. We combined the

reads from 14 lanes on six flowcells: 7986.{1,2}, 7987.{1,2},
8009.{1,2}, 7706.{1,2}, 9547.{1,2,3}, 8898.{2,3,4}. Passing reads
were selected as in the “Filtering of Solexa Reads” section, above,
except that we required intensity �1500. (Non-passing reads
were discarded.) Then we aligned each read to the reference, pick-
ing at random one of its best placements. If a read was not
aligned, we placed it randomly on the reference, thereby ensur-
ing that every read was placed. The order of the reads was ran-
domized. We then selected simulated read pairs, as described in
the text. Prior to assembly, we trimmed the reads, using the fol-
lowing procedure. (1) For each read X, find all other reads that
have a gap-free end-to-end alignment with it of length �20,
seeded on a 12-mer, with four or less errors. (2) Call a base on X
“supported” if there exist two such reads, with different orienta-
tions or offsets, that agree with the given base. Treat all other
bases as “errors.” (3) Trim bases from the end of X until at most
two errors remain.
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