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Abstract 

 

 

It is regarded as best practice for psychologists to report effect size when disseminating 

quantitative research findings. Reporting of effect size in the psychological literature is patchy 

– though this may be changing – and when reported it is far from clear that appropriate effect 

size statistics are employed. This paper considers the practice of reporting point estimates of 

standardized effect size and explores factors such as reliability, range restriction and 

differences in design that distort standardized effect size unless suitable corrections are 

employed. For most purposes simple (unstandardized) effect size is more robust and versatile 

than standardized effect size. Guidelines for deciding what effect size metric to use and how 

to report it are outlined. Foremost among these are: i) a preference for simple effect size over 

standardized effect size, and ii) the use of confidence intervals to indicate a plausible range of 

values the effect might take. Deciding on the appropriate effect size statistic to report always 

requires careful thought and should be influenced by the goals of the researcher, the context 

of the research and the potential needs of readers. 
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There is now near universal agreement in the psychological literature that reports of statistical 

procedures such as null hypothesis significance tests should be accompanied by an 

appropriate measure of the magnitude of the effect (e.g., Abelson, 1995; Wilkinson & APA 

Task Force on Statistical Inference, 1999). Reporting effect size aims to facilitate: i) 

understanding of the importance of an effect – in particular its practical importance (see Kirk, 

1996), ii) comparison of effect sizes within or between studies, and iii) secondary analysis 

(e.g., power calculations or meta-analysis). 

 The practice of reporting effect size is complicated, however, by the large number of 

different measures of effect size from which to select. There is a growing literature on what 

measure ought to be selected (e.g., Kirk, 1996; Olejnik & Algina, 2000; 2003), but it would 

be unrealistic to expect many researchers to keep up with the full range of available effect size 

metrics. The aim of this paper is to consider how best to report effect size, with particular 

focus on the choice between standardized and simple effect size. 

 

Standardized measures of effect size 

A standardized measure of effect is one which has been scaled in terms of the variability of 

the sample or population from which the measure was taken. In constrast, simple effect size 

(Frick, 1999) is unstandardized and expressed in the original units of analysis. Rosenthal 

(1994) classifies standardized effect sizes into one of two main families: the r family and the 

d family. An important distinction between r and d is that in a two-group independent design 

when both are applicable, d but not r is not sensitive to the base rates (n1 and n2) of the groups 

(McGrath & Meyer, 2006). The r family includes Pearson's r and variants such as 2r  or 

Fisher’s z transformation. The d family includes standardized mean differences such as 

Cohen’s d and Hedge’s g. Within each family measures may be descriptive (e.g., d or η2 that 
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reflect variance explained in a sample) or inferential (e.g., g or ω2 that estimate population 

parameters). In order to properly appreciate the distinction between standardized and simple 

measures of effect it is important to consider how measures such as r or d are computed.  

 The starting point for Cohen’s d is a simple effect size metric: the simple difference 

between the means being compared: 21 MM −  (e.g., the experimental group mean minus the 

control group mean). Standardization is achieved by dividing the difference 21 MM − by a 

standard deviation (SD) – usually the pooled SD ( pooledσ ) of the scores that contribute to the 

mean. Although other members of the d family use variants of 21 MM −  as the numerator 

(e.g., Morris & DeShon, 2002) or alternatives to pooledσ  as the denominator (see Rosenthal, 

1994), what they share is that they scale a simple difference between means in SD units. In 

other words d = 1 represents a 1 SD difference in the means. 

 An r value can be thought of in much the same way. Consider a simple linear 

regression between X and Y. The original values of X and Y may be standardized by replacing 

them by z scores (i.e., by subtracting the mean of X or Y from each score and dividing the 

result by the SD of X or Y). Linear regression of X and Y expressed as z scores produces a 

standardized coefficient, β, for the slope of the regression line. In the case of bivariate linear 

regression, β is identical to r. Just as the unstandardized slope of a regression line can be 

interpreted as the number of units of increase in Y associated with an increase of 1 unit in X, r 

(or β) is the number of SDs we expect Y to increase for each SD increase in X. 

 These examples should make it clear that both r and d take an effect in the original 

units of analysis and transform them by replacing those original units with the SD. Other 

standardized measures operate in a similar way. Thus measures of ‘variance explained’ such 

as 2r standardize using the variance (SD
2). The rationale for using such measures is intuitively 
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appealing (but potentially dangerous): we can replace the original units with common units 

that supposedly facilitate comparison. Thus, the decision to report standardized effect size in 

place of simple effect size is, in essence, a decision about whether to switch from the original 

units to the SD. 

 

Difficulties arising from standardization 

The principal aim of standardization is to equate effects measured on different scales. It is not 

clear that standardization is successful in this aim. For example, two studies reporting d may 

well compute the statistic with different choices of SD unit (Morris & DeShon, 2002). A 

highly desirable property in an effect size measure would be that it remain stable between 

different versions of the same measurement instrument, between individuals scoring high or 

low on one of the variables, or between different study designs. Standardized effect size is 

particularly vulnerable to changes in any of these factors, because all three influence sample 

variance. 

Reliability. In a statistical model we can consider a parameter estimate (such as a 

mean) as a sum of its true value plus error. The error term in the model can in turn be broken 

down into other components (such as individual differences between the people or units being 

measured). One component in the error term is the measurement error associated with a 

sample of scores – though this itself can be partitioned into different sources of error (Schmidt 

& Hunter, 1999). Amongst other things, it will vary with the precision of the scores obtained 

from a measurement instrument (e.g., measuring height with a ruler is less precise than with a 

tape measure). Studies using two versions of the same instrument, such as the short and long 

form of a psychometric scale, usually differ in reliability (even if all other sources of error are 
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held constant). This will produce spurious differences in standardized effect size statistics 

such as r or d. 

The influence of reliability on effect size depends on the nature of the statistical 

model that is employed. In a simple model with a single predictor and a single outcome 

unreliability of X or Y will always reduce standardized effect size. Unreliability also always 

reduces standardized effect sizes in ANOVA models where all the factors are orthogonal. 

This is because unreliability inflates the estimate of variability in the population of interest 

and exaggerates the size of the SD or variance used to scale the effect (Ree & Caretta, 2006). 

It should also be noted that in some non-orthogonal designs it is reasonable to assume that all 

X variables are measured with perfect or near-perfect reliability (e.g., for predictors such as 

gender). If so, unreliability of Y will likewise depress standardized effect size. However, in 

complex designs with correlated predictors that differ in reliability both standardized and 

simple effect sizes estimates may be distorted (Ree & Caretta, 2006). 

Corrections for reliability.  The effect of reliability on correlation is shown by the 

attenuation formula in classical measurement theory (e.g., Ghiselli, 1964): 

( )
yyxxyxxy

rrrr
tt

=      [1] 

This shows that the observed correlation between X and Y, 
xy

r , is a function of the 'true' 

correlation in the population sampled, 
tt yx

r , and the reliability with which X and Y are 

measured (
xx

r  and
 yy
r ). In this simple case, we can simply rearrange the attenuation formula 

to disattenuate the correlation for the effects of reliability: 
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Bobko, Roth and Bobko (2001) report an equivalent, but less well known, correction for use 

with d: 

yy

observed

corrected

r

d
d =      [3] 

This correction corrects only for the reliability of Y (and thus assumes that the dichotomous X 

variable is measured without error). Few researchers (outside specialist applications such as 

meta-analysis) correct for measurement error (Bobko et al., 2001). Many researchers are 

unaware of the desirability of such corrections, or collect data for which the reliability of 

some measures is unknown (or hard to obtain). Even when appropriate corrections are 

employed researchers frequently use reliability estimates that do not take into account all 

potential sources of measurement error and thus tend to “undercorrect” (Schmidt & Hunter, 

1999). It is also possible to overcorrect by applying the wrong reliability estimate. If some 

sources of error contained in the reliability estimate are an intrinsic aspect of the effect of 

interest (e.g., if the effect is changing over time) such errors are particularly difficult to avoid 

(DeShon, 2003). 

Range restriction. Standardized effect size is also influenced by the way people (or 

other units of analysis) are sampled. If the sample is restricted to a subset of the population of 

interest this will influence the variance. Sampling from a truncated distribution (missing one 

or both tails) will reduce the SD. Sampling only the tails will increase the SD.1 So selecting 

participants who score above some threshold on a criterion (e.g., extraversion) will lower the 

SD. If what is measured correlates with this criterion the covariance between X and Y will also 

decrease. This tends to reduce the sample correlation relative to the 'true' value in the 

                                                 
1  If this relationship does not seem obvious, recall that the SD is calculated using the squared distances from the 
mean. For a linear relationship we’d expect the mean to be in a similar location whether the tails or the middle of 
the distribution are sampled. Sampling from the tails inevitably increases the distance from the mean and hence 
the SD. Excluding the tails decreases distance from the mean and reduces the SD. 
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unrestricted population. To illustrate this, consider the relationship between r and the 

unstandardized slope, b, in a regression: 

    
y

x

xyxy
SD

SD
br =      [4] 

It follows (except when bxy = 0) that if something reduces SDx relative to SDy then it will 

decrease r. If X and Y are correlated then range restriction on X tends also to decrease SDy but 

the expected decrease in SDx always exceeds that of SDy unless r = 1. 

A corollary of range restriction is that sampling the extremes or tails of the criterion 

variable (i.e., avoiding the middle) will tend to increase the observed correlation with Y. This 

strategy of sampling extreme values is a common way to increase the power of a study, but it 

is rarely appreciated that it also inflates standardized effect size (Preacher, Rucker, 

MacCallam & Nicewander, 2005). Figure 1 (a) and (b) show how sampling the extremes of X 

has negligible impact on an unstandardized slope, but increases the slope of the standardized 

slope (d) relative to that of full data set (c). 

Range restriction is a common consequence of any selective sampling strategy. Such 

selection often occurs inadvertently (e.g., if sampling a subpopulation with a mean higher or 

lower than the overall population). Range restriction can also arise after data collection 

through practices such as trimming or 'outlier' deletion (Wright, 2006). 

Corrections for range restriction.  Correcting for range restriction is even less widely 

practised than correcting for reliability. The correction can be illustrated with the case of 

simple regression or correlation in which direct range restriction occurs on X, but Y is 

unrestricted (e.g., Ghiselli, 1964): 

1222 +−
=

xyxy

xy
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rrk

kr
r
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     [5] 
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Here 
tt yx

r is the ‘true’, unrestricted correlation in the population, 
xy

r is the observed sample 

correlation and k is the ratio of the unrestricted to restricted variance. Similar corrections can 

be applied for d (Bobko et al., 2001). It is also possible to combine corrections for reliability 

and range restriction, although the corrections are more complex. Furthermore, although most 

cases of range restriction are indirect, many researchers inappropriately apply direct range 

restriction equations (Hunter et al., 2006). 

Study design. Common standardized measures of effect size are typically not stable 

between studies with different designs. One illustration of this is the case of independent and 

repeated measures designs. Consider a data set of reading times for four-sentence spatial 

descriptions adapted from Baguley & Payne (2000). The data consist of reading times per 

syllable (in seconds) averaged over a number of descriptions (summarized in Table 1). 

INSERT TABLE 1 ABOUT HERE 

The original data were repeated measures and produce a statistically significant main effect, 

F(3,210) = 5.34, p < .05, ηp
2 = .071. This effect size measure, partial eta-squared (ηp

2) can be 

readily calculated from the ANOVA table: 

erroreffect

effect

p
SSSS

SS

+
=

2
η , or 

)(
erroreffect

effect

dfFdf

Fdf

+×

×
   [6] 

Suppose that the same numerical values had been obtained from an independent measures 

design. In this case the main effect, F(3,280) = 3.64, p < .05, ηp
2 = .037, is still statistically 

significant, but ηp
2 is considerably lower. This is problematic because it is purely an artefact 

of the method by which ηp
2 is calculated: it calculates the proportion of variance explained for 

an effect excluding all other effects. Here the repeated measures design treats individual 

differences as a separate effect and therefore excludes them from the calculation. This type of 

problem can occur whenever any partial effect size statistic is used (not just ηp
2). Nor does it 
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occur merely because the two designs aim to test different hypotheses. The advantage of 

using repeated measures designs is that, in principle, it estimates the same population 

parameters as the independent measures design with greater statistical power. 

A further important influence of study design on standardized effect size arises from 

the distinction between manipulated and stratified factors (Gillett, 2003; Olejnik & Algina, 

2003). A manipulated factor is an “experimenter-devised treatment variable” such as the 

retention interval or length of a word list in a memory experiment. A stratified factor 

(sometimes called a measured or individual difference factor) is a partitioning of a sample 

into homogeneous subsets (e.g., by gender). If the variances of the subpopulations being 

sampled differ then an identical mean difference will (trivially) produce a larger standardized 

effect size for the more homogeneous group. Buchner & Mayr (2004) argue that precisely this 

problem has contributed to an apparent young-old difference in auditory negative priming. 

Unstandardized reaction times tend to show larger negative priming effects for older than 

younger adults (e.g., 86 ms versus 53 ms), yet because older adults have more variable 

responses the standardized effect is smaller for older participants than younger ones (e.g., d = 

0.58 versus d = 0.83).2 If Buchner & Mayr are correct then misapplication of standardized 

effect size has contributed to at least one influential, but erroneous, finding in experimental 

psychology. 

There are also more subtle consequences of the type of factor. Gillett (2003) 

compared one-factor (factor A manipulated alone) and two-factor (adding stratified factor B) 

analyses of a data set. If the subpopulations (e.g., males and females) used to stratify B have 

different means then d or r will be smaller in the one-factor design than the two-factor design. 

This happens because of the reduction in model error with the inclusion of factor B 

                                                 
2 Buchner and Mayr (2004, Experiment 1). 
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(analogous to how individual differences influence ηp
2). For designs where only manipulated 

factors are employed and where participants are randomly assigned to a treatment level, 

things are more straight-forward. Under the assumption of unit-treatment additivity (i.e., that 

the only effect of a treatment is to add or subtract a constant to the mean) standardized effect 

size will remain stable. If unit-treatment additivity is violated the estimates may be distorted 

by the particular levels of a manipulated factor selected by the researcher. For instance, a 

study looking at the effect of caffeine on heart rate might expect to find that caffeine 

increased heart rate, but one might also expect large doses of caffeine to make heart rate  

more variable. If so, the effects of high doses of caffeine would be underestimated using r or 

d. 

A particularly thorny issue concerns the role of fixed and random effects in the 

calculation of effect size. A fixed effect is one that is considered to sample the population of 

interest exhaustively, whereas a random effect is one for which a finite sample is taken from 

the population of interest (which is presumed to be infinite). Many statistical analyses familiar 

to psychologists assume that there is a single locus of error in the sample: random variation 

between the units of analysis (usually people). In some analyses there are additional loci of 

random variation that ought to be modelled (e.g., within people in a repeated measures 

design). Aside from repeated measures designs, the context in which most psychologists 

encounter this issue (if they encounter it at all) is in terms of the language-as-a-fixed- effect 

fallacy (Clark, 1973), but it can also arise in many other contexts. Clark noted that whilst 

psychologists routinely treat participants as a random factor in statistical designs they 

routinely treat samples of words as fixed. Clark argued that this is inappropriate if researchers 

want their findings to generalize beyond the words they sampled. A common, albeit flawed, 

solution (Raaijmakers, Schrijnemakers & Gremmen, 1999) is to report separate analyses of 
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the effects by participants (treating only participants as a random factor) and by items 

(treating items, but not participants, as a random factor). Each such analysis ignores a major 

source of sampling variability (participants or items) and arguably inflates standardized effect 

size. In addition, it is inappropriate to compare standardized effect sizes computed from by 

items and by participants analyses because they are computed using different denominators 

and are thus on different scales. 

 Adjusting for differences in study design.  The main difficulty in dealing with 

differences in design is that the precise nature of the adjustment required to equate two effect 

size statistics depends both on the statistic that is used and on the comparison one wishes to 

make. A relatively simple case is that of a difference in means. If one calculates d from a 

paired t test the observed d will typically be much higher than the value for the equivalent 

independent design. For this reason Dunlap, Cortina, Vaslow and Burke (1996) propose that 

the original sample SDs should be used to calculate d. However, this will not always be 

appropriate: an alternative conception of d using a change score rather than a difference score 

will be preferable in some situations (Morris & DeShon, 2002). 

The appropriate procedure for other contexts is also difficult. We can sometimes avoid 

problems associated with use of ηp
2 by reporting eta-squared (η2): 

total

effect

SS

SS
=2η       [7] 

In the simple case of comparing one-factor repeated with independent measures ANOVA, η2 

works reasonably well. As one-factor independent measures ANOVA only partitions variance 

into two sources: SSeffect and SSerror (and because these must sum to SStotal) ηp
2 and η2 are 

equivalent. Complications arise in factorial ANOVA. Consider the comparison of effects of 

factor A in a two-factor design (factors A and B) with a one-factor design (factor A alone). In 
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this case ηp
2 will be preferable to η2 provided both A and B are manipulated factors, because 

ηp
2 strips out the extraneous variation introduced by manipulating B. The appropriate 

correction to standardized effect size thus depends on type of design, the nature of the factors 

(manipulated or stratified) and the comparisons one wishes to make. Olejnik and Algina 

(2000; 2003) describe how to calculate generalized versions of statistics such as d, η2 or ω2 

that are stable across a range of different designs. 

 The nature of the comparisons one wishes to make is particularly important in 

considering the appropriate adjustment for standardized effect sizes computed from studies 

where items may be considered a random factor. There are some contexts (e.g., theory 

testing) where it might be sufficient to show by participants or by items effects. In contrast, an 

effect size estimate that ignores substantial sources of variability in the populations of interest 

would be very misleading for assessing practical importance. An effect might account for 

substantial variation between participants (e.g., η2 = .60) but a negligible proportion between 

items (e.g., η2  = .04). A by participants analysis would therefore give a misleading estimate 

of the practical importance of the effect for items other than those sampled (for which the 

estimate of η2 could not exceed .04). In this case minF’ (Clark, 1973) might be used to derive 

a conservative effect size estimate, for example via equation [6], though there appears to be 

no specific support for this in the literature. 

 

The robust beauty of simple effect size 

A straight-forward alternative to standardized effect size is to rely on simple effect size (e.g., 

a raw difference in means or an unstandardized slope coefficient). This approach has three 

principal advantages over standardized effect size. 
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The first advantage is that the scale is independent of the variance. This means that 

simple effect size avoids all problems that arise solely from standardization. Simple effect 

size is therefore far more robust than standardized effect size. Although problems with 

standardization are well documented (though often ignored) in relation to regression models 

(e.g., Tukey, 1969; Kim & Ferree, 1981; Greenland, Schliesselman & Criqui, 1986) they are 

not widely known in relation to other statistical procedures. Even if standardized effect sizes 

are adjusted for reliability, range restriction and differences in study design those adjustments 

can at best put standardized and simple effect size on equivalent terms. 

The second advantage is that, because simple effect size is scaled in terms of the 

original units of analysis, it will nearly always be more meaningful than standardized effect 

size. As Tukey (1969, p.89) put it: “being so disinterested in our variables that we do not care 

about their units can hardly be desirable.” Baguley (2004) emphasized this point in the 

context of applied research – where it is likely that many consumers of research will be 

familiar with the interpretation of common units of measurement in their field, but less 

familiar with how to interpret standardized effect size metrics. (Worse still psychologists may 

be familiar with standardized effect such metrics such as R2, but consistently misinterpret 

them because they do not understand how they are calculated and what factors influence 

them.) 

A similar point can be made for theoretical research. Units of measurement are rarely 

completely arbitrary and their advantages, disadvantages and appropriate interpretation are 

typically part of the 'lore' of a discipline (Abelson, 1995). In general, the more that is known 

about the context of a study and the more familiar researchers and research consumers are 

with the units of measurement being used, the more useful simple effect size is as an indicator 

of the importance of a finding. 
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The argument here is not that simple effect size has a one-to-one mapping with the 

underlying psychological construct or constructs of interest. Rather, simple effect size retains 

more information about the context of the data than standardized effect size. Even if the 

measure is not particularly meaningful (e.g., an arbitrary rating scale with unknown 

psychometric properties) standardization obscures the deficiencies of the measure (Tukey, 

1969) as well as limiting the application of what we do understand about the measure. Most 

researchers know that a 2 point difference on a five point rating scale is substantial (e.g., 

indicating a shift from an extreme position to a neutral one), whereas d = 0.25 might indicate 

a large shift in a noisy sample or a small shift in a very homogenous one. 

 The third advantage is a practical one. Simple effect size is easier to compute than 

standardized effect size. Less computation means less opportunity for computational or other 

errors to occur (e.g., correcting using the wrong reliability coefficient). Metrics such as ηp
2 

are easy to obtain from widely used computer packages, but no computer package can 

automatically incorporate reliability corrections, range restriction corrections or deal with 

issues relating to study design. Such decisions are sensitive to specific context. For many 

situations, calculating an appropriate correction or adjustment is an unnecessary step that 

either replicates the information in simple effect size or risks introducing errors. 

 In addition to these principal advantages it is worth noting the relationship between 

simple effect size and what Abelson (1995) has termed causal efficacy – the ratio of the size 

of an effect to the size of its cause. An effect is potentially more interesting or important if it 

produces a relatively large effect from a relatively small cause. Simple effect size, in the form 

of the unstandardized slope of a regression line, is itself a measure of causal efficacy. With a 

little care it is very easy to recover causal information using simple effect size. For example, 

regression can often replace ANOVA if the levels of a factor are sampled from a continuous 
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distribution (e.g., different delays in a memory task). Not only is the analysis likely to be 

more powerful, but the slope (b) will provide an easy-to-interpret estimate of the effect (e.g., 

the rate of forgetting). This approach is particularly useful because it strips out both the 

effects of range restriction illustrated in equation [4] and the dose-effect relationship of X on 

Y. 

 Simple, unstandardized effect size eliminates many, but not all, of the problems 

associated with selecting and calculating an appropriate and accurate standardized effect size 

metric. If a statistical model is mis-specified in some way (e.g., if a confounding factor is not 

included, or the dose-effect relationship is not linear) any measure of effect size derived from 

that statistical model will be inaccurate. It is also possible that the original units of 

measurement may not be ideal (e.g., more appropriate units may involve a transformation). A 

memory researcher might consider a measure of signal detection such as d’ or a simpler 

measure such as the proportion of hits minus false alarms. In these cases an important 

consideration is the theoretical model being considered (as different measures may imply 

different models). The point made here is not that the original measures are always the best 

choice, but that simple effect size is much more robust than uncorrected standardized effect 

size and typically much easier to interpret than either corrected or uncorrected standardized 

effect size. 

 

Reporting effect sizes for categorical data 

Thus far discussion has focussed on effect sizes for continuous measures. Standardized effect 

size is rarely advocated for categorical outcomes – in part because some problems associated 

with standardized effect size are aggravated when an outcome is not continuous. A popular 

standardized effect size in this case is φ (phi): equivalent to Pearson's r between the variables 
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in a 2 x 2 contingency table. For artificial categories φ is particularly misleading: a continuous 

measure behaves as if measured with extremely low reliability when dichotomized. Even if 

restricted to genuine categories, φ has undesirable properties: two tables with the same 

percentage outcomes but different marginal totals may produce quite different values of φ 

(Fleiss, 1994). 

 A full discussion of effect sizes for categorical data is beyond the scope of this article, 

but it seems likely that many psychologists would benefit from using odds ratios when 

reporting categorical effects (not least because they readily generalize to techniques such as 

logistic regression). Odds ratios are base-rate insensitive measures of effect size (McGrath & 

Meyer, 2006). Base-rate sensitive measures such as risk ratios or number needed to treat may 

be more appropriate for applications such as communicating findings in clinical settings (e.g., 

Walter, 2000). 

 

Should standardized effect sizes ever be used? 

There are, however, two broad situations where standardized effect size may be preferable to 

simple effect size: i) when the primary goal of the research is to estimate standardized effect 

size, and ii) when comparing conceptually similar effects using different units of 

measurement. 

 Estimating a standardized effect size is rarely the primary goal of research. In applied 

research users nearly always want to relate the observed effect size to the original context 

using the original units of measurement (Baguley, 2004). For standardized measures in the d 

family of effect size metrics it is difficult to imagine situations in which the primary goals of 

the researcher could not be met using a simple difference in means. The precise value d takes 

is somewhat arbitrary (with the exception of d = 0) and substantive questions about the 
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magnitude of effect can be readily answered using the simple difference. For the r family 

there are several situations involving continuous outcomes where simple effect size may be 

inferior to standardized effect size. r may take the non-arbitrary values of -1, 0 and 1, while r2 

can take the non-arbitrary values of 0 and 1. If the goal of a researcher is to address a 

substantive hypothesis corresponding to one of these non-arbitrary values then it may be 

useful to focus on standardized effect size. This case is equivocal when the hypothesis is one 

of no effect (e.g., r = 0). In these cases a simple regression coefficient would provide similar 

information (and the original units may be more revealing in terms of practical importance). 

More striking is the situation when a substantive hypothesis is that r = 1 or -1 (or r2 = 1). 

It is important here to clarify what is meant by a substantive hypothesis. A substantive 

hypothesis is derived from theory and is somewhat plausible (e.g., it is reasonable to believe 

that r2 = 1 or very close to 1). This definition rules out the traditional null hypothesis (H0) in 

statistical testing. H0 is usually somewhat implausible (and only rarely of theoretical interest). 

Prime examples of substantive hypotheses of this type occur in the psychometric literature 

where the hypothesis that a scale is highly reliable or valid is of genuine interest. For 

reliability, the proposition that ryy = 1 is of interest (as this is desired level of reliability for 

any measure) and it is quite possible to obtain reliabilities very close to 1. The standardized 

slope of the regression does lose information (relative to b) about the relationship between 

measures, but the lost information is of low relevance to the research question and is balanced 

by increased focus. Use of standardized coefficients might also be appropriate in certain 

experimental situations. Consider a hypothesis that two variables are monotonically related: 

that is as one variable increases the other always increases (or decreases). This is equivalent 

to predicting that the ranks of two variables are perfectly correlated. The hypothesis might 
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therefore be most clearly reported using r for the ranks (or the equivalent Spearman 

correlation coefficient, rs, for the raw scores). 

 A similar case can be made for r2. For most psychological theories, explaining 100% 

of the variance of a phenomenon is not a realistic goal of research and the proportion of 

variance explained may have little theoretical relevance (Fichman, 1999). Most psychological 

phenomena are multifactorial – also limiting the contribution of any single predictor 

(O’Grady, 1982). Yet in specific situations, variance explained is a very useful tool. One 

particularly useful application is in contrast analysis. If an ANOVA effect has a single degree 

of freedom (df) then it is relatively simple to interpret. For effects with more than 1 df a single 

df contrast (in particular when defined a priori) is useful for interpreting the effect (Loftus, 

2001). Thus a main effect could be decomposed into variance accounted for by a linear 

contrast and that left over, and the variance explained by the contrast could then be expressed 

as a proportion of the main effect: SSlinear/SSeffect. 

 The above arguments may be extended to other non-arbitrary values (e.g., values 

derived by theory), though these may be rare or (like r = 0) be more-or-less interchangeable 

with salient simple effect size values. Such non-arbitrary values are also potentially useful as 

'absolute' benchmarks for interpreting effects. Statements about the absolute magnitude of an 

effect are difficult to justify under normal circumstances. This is particularly true if the 

absolute magnitude is related to verbal labels such as ‘small’, ‘medium’ and ‘large’ (e.g., 

Cohen, 1988). Although such 'canned' effect sizes (Lenth, 2001) are often used there is 

increasing consensus that they are highly misleading and should be avoided (e.g., Glass, 

McGaw & Smith, 1981; Baguley, 2004). Indeed, comments about effect size that incorporate 

such verbal labels can lead people to misinterpret statistical findings (Robinson, Whittaker, 
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Williams & Beretevas, 2003). On the other hand, statements about the relative size of effect 

will often place the observed magnitude of the effect into an appropriate context. 

 Researchers often wish to compare effects obtained with non-identical measures. In 

these cases a transformation to a common metric is essential. In cases where the measures are 

re-expressions of one another (Bond, Wiitala & Richard, 2003) this transformation can be 

achieved using simple effect size. Where the scales are not mere re-expressions 

standardization is often advocated. However, non-standardized alternatives exist that may be 

better suited to the problem at hand. For example, Cohen and colleagues have argued that 

POMP (percentage of maximum possible score) may be superior to standardized units 

(Cohen, Cohen, Aiken & West, 1999). Nor do all variables in an analysis need to be 

standardized (Kim & Ferree, 1981). 

 Where appropriate, non-identical measures may be expressed on a common scale 

pertinent to the goals of the research (e.g., financial cost). In cases where no suitable 

alternative to standardization is available, particular care needs to be taken to ensure that 

issues such as reliability and study design are addressed. It should never be assumed that the 

mere act of adopting a (superficially) standard metric makes comparisons legitimate (Morris 

& DeShon, 2002; Bond et al., 2003). It should also be remembered that there is nothing 

magical about the standardization process: it will not create meaningful comparisons when the 

original units are themselves not meaningful (Tukey, 1969). 

 One putative defense of a standardized effect size metric is that it allows the 

comparison of effects with more than 1 df (e.g., η2 or ω2  in ANOVA). The utility of such 

comparisons is doubtful and reports of multiple df effects are generally considered less 

meaningful than 1 df effects (e.g., APA, 2001, p.26). Multiple df effects are rarely replicated 

exactly (e.g., if the treatment represents time intervals these will rarely be identical between 
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studies). Even if the levels of the effect were identical this would not imply identical effects. 

Two studies may report similar generalized ω2 yet have radically different patterns of effects. 

Even so, one might reasonably use a standardized effect size statistic to test a substantive 

hypothesis such as ω2 = 1 (especially where separate 1 df effects would result in unacceptably 

small sample sizes). As a rule, reports of effect size should focus on 1 df effects (Wilkinson & 

APA Task Force on Statistical Inference, 1999). 

 

Point estimates or confidence intervals? 

Standard practice in psychology, if effect size is reported at all, is to report point estimates of 

the effect size. A superior approach is to report a confidence interval (CI). A CI conveys more 

information than a simple point estimate and gives an indication of a plausible range of values 

that the ‘true’ effect might take (Loftus, 2001). This use of a CI is an informal aid to 

interpretation of an effect is distinct from formal inference (such as a substitute for a 

significance test). The point estimate of an effect is easily misinterpreted because it carries no 

information about the uncertainty of the estimate. Imagine that a study reports a correlation of 

r29 = .064 and the researcher concludes that the observed relationship is negligible (or worse 

still that there is no relationship whatsoever). Reporting the correlation as a CI would offer 

protection against this incautious interpretation. An approximate CI for the effect (-.30, .41) 

can be obtained using the Fisher z transformation. An informal interpretation of this finding is 

that the correlation might plausibly be as large as .41 in the same direction (or .30 in the 

opposite direction). It also suggests that the study was underpowered. 

 The argument for reporting a CI applies equally to simple effect size. An effect with 

small variability is probably of more practical importance than one with large variability. 

Presenting simple effect size as a CI allows psychologists to consider the point estimate of an 
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effect alongside an indication of how variable the effect is. A further advantage of CIs for 

simple effect size is that there is a clear distinction between the magnitude and variability of 

an effect (useful quantities that are confounded in standardized effect size). 

 

Conclusions 

There are strong arguments for reporting effect size in psychological research. In spite of 

these arguments, reporting of effect size in published work is patchy, though it may be 

improving (Cumming et al., 2007). One reason for this may be that researchers are uncertain 

of what effect size metric to report and how best to report it. There is, at present, no consensus 

on these issues. For example, although The APA Task Force on Statistical Inference 

expressed a preference for reporting simple, unstandardized effect size and use of confidence 

intervals, APA publication guidelines are often interpreted as encouraging point estimates of 

standardized effect size (Fidler, 2002). It is also likely that no single effect size metric would 

be appropriate for gauging the importance of an effect, comparison between findings or the 

diverse requirements of different forms of secondary analysis. 

 It is possible, however, to set out guidelines for what to report and how to report it. 

The main guidelines can be summarized as follows: 

 

1) Prefer simple effect size to standardized effect size 

2) Avoid reporting effect sizes for multiple df effects 

3) Prefer confidence intervals to point estimates of effect size 

4) Always include adequate descriptive statistics (e.g., sufficient statistics) 

5) Comment on the relative rather than the absolute magnitude of effects 

6) Avoid using ‘canned’ effect sizes to interpret an effect (Lenth, 2001) 
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7) Prefer corrected to uncorrected standardized effect size estimates 

 

 Some common queries relating to some of these guidelines can be anticipated. In 

particular, why not routinely report both simple and standardized effect size? First, in many 

cases, standardized effect size can obscure the theoretical and practical importance of an 

effect. Researchers and consumers of research often assume that 'standardization' 

automatically makes a comparison meaningful (Tukey, 1969). Second, correcting these 

deficiencies and anticipating the range of applications research consumers will use effect size 

estimates for require a great deal of additional work, often for little or no gain. DeShon (2003, 

p.398) notes that “unless great care is used when correcting for measurement error, it is quite 

likely to make interpretation of correlation coefficients more difficult after the correction than 

before the correction was applied”. Similarly, Hunter et al. (2006, p.594) state "corrections for 

both direct and indirect range restriction are more complicated than is generally realized and 

are often erroneously applied". Correcting standardized effect size also increases the width of 

its CI, although this should not be taken as an argument for not making the correction (see 

Schmidt & Hunter, 1999). Adjusting for differences in design is possible in principle, but will 

often be impractical without commonly agreed reference points in terms of both design and 

sample characteristics. 

 Only rarely will uncorrected standardized effect size be more useful than simple effect 

size. It is usually far better to report simple effect size along with descriptive statistics that 

allow others to derive a range of alternative effect size metrics (e.g., for comparison between 

studies, power calculations or meta-analysis). Reporting standardized effect size adjusted for 

reliability, range restriction and study design is a useful complement to reporting simple 

effect size. Researchers need to decide whether the additional work (and potential pitfalls) of 
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making these adjustments is worth the effort it requires. This trade-off will be different for an 

individual study than for a meta-analytic review. 

 These guidelines are intended to sharpen routine practice in reporting effect size. This 

practice should be informed by the goals of the researcher and the needs of the wider research 

community. These guidelines are not intended to be absolute rules and several exceptions 

have been explicitly considered in the preceding discussion. In determining the appropriate 

way to report the magnitude of an effect there is no substitute for careful thought and 

reflection (Tukey, 1969). 
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Figure Caption 

 

Figure 1.  The corollary of range restriction: Sampling the extremes of X has negligible effect 

on the unstandardized slope, but increases the standardized slope for the regression of Y on X. 

(a) The unstandardized slope between two normal, random variables: X and Y; Y = 26.34 + 

0.4743X. (b) The unstandardized slope, selecting only the upper and lower quartiles of X; Y = 

26.10 + 0.4894X. (c) The standardized slope of X and Y (r99 = .605). (d) The standardized 

slope of X and Y selecting only the upper and lower quartiles of X (r49 = .735). 
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Figure 1 
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Table 1. 

Mean and Standard Deviation Reading Times per Syllable by Sentence Number (Adapted 

From Baguley & Payne, 2000) 

 n M SD 

Sentence 1 71 1.200 1.000 

Sentence 2 71 1.058 1.201 

Sentence 3 71 0.914 0.422 

Sentence 4 71 0.761 0.397 

 


