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ABSTRACT. This paper argues that Einstein’s conventionalist definition of 
time is sufficient for, but not necessary to the geometric modelling of Spe-
cial Relativity. A different convention allows that any time interval t, can be 
measured by dc, the distance travelled from an origin by the spherical 
wave-front of a light pulse, c.  This means that the relationships represented 
by the hyperbolic geometry of Minkowski can also be represented by circu-
lar function geometry (CFG), where the spherical surface of c provides both 
a fourth set t, of frame-dependent co-ordinate points and a parameter s, for 
measuring intervals that are invariant between reference frames.  However, 
sine values under the circle range from 1-0, rather than 1-∞. This does not 
allow that for a reference frame velocity ≈ c, any interval length ≈ ∞.  Fur-
thermore, since CFG does not subdivide space-time into past and future 
zones, it excludes the possibility of backwards time travel for signal veloci-
ties > c. 

 
RÉSUMÉ.  Cet article argue que la définition conventionalist d'Einstein du 
temps est suffisante pour, mais non nécessaire de modeler géométrique de 
la relativité spéciale. Une convention différente permet ce quand l'intervalle 
t, peut être mesuré par dc, la distance a voyagé d'une origine par le front des 
ondes sphérique d'une pulsation lumineuse, c. Ceci signifie que les rapports 
représentés par la géométrie hyperbolique de Minkowski peuvent également 
être représentés par la géométrie circulaire de fonction (CFG), où la surface 
sphérique de c fournit un quatrième ensemble t, des points de coordination 
et un paramètre s, pour les intervalles de mesure qui sont invariables entre 
les référentiels. Cependant, les valeurs de sinus sous le cercle s'étendent de 
1-0, plutôt que de 1-∞. Ceci ne permet pas à cela pour une vitesse référen-
tiel ≈ c, d'aucune longueur d'intervalle ≈ ∞. En outre, puisque CFG ne sub-
divise pas l'espace-temps en zones passées et futures, il exclut la possibilité 
de vers l'arrière voyage de temps pour des vitesses de signal > c. 
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1 Introduction : The conventionalist definition of time  

This paper argues that if physicists choose a convention different to the 
one Einstein adopted for indicating time units, then they can model the four 
co-ordinate manifold of Einstein’s Special Relativity (SR) with a Euclidean 
geometry that is governed by the functions of the circle. It will be demon-
strated that the circular function model provides exactly the same numerical 
solutions to SR problems as does the established Minkowksi geometry, a 
non Euclidean form governed by the functions of the hyperbola. The one 
significant difference between the models is that the Minkowski one uses the 
length of the directrix under the hyperbola to indicate the relative length of 
time intervals, whilst the Euclidean one uses the height of sine under the 
circle. Hence, in Minkowski modelling the relative length of a time interval 
ranges from one to infinity, whilst in the Euclidean model, the length only 
ranges from one to zero under the circle. It will be suggested that this differ-
ence proves highly instructive when investigating the challenging notions of 
‘infinite’ energy and time ‘travel’, which are problematic for present relativ-
ity theory.  

Minkowski’s geometric approach was based on Einstein’s innovative 
strategy for defining space and time. Einstein had managed to circumvent 
notoriously difficult philosophical issues by electing to define space and 
time solely in terms of the established conventions for measuring each.1The 
presence of rigid measuring sticks would indicate intervals of space, and as 
for time: 
 

‘…we understand by the “time” of an event the reading (position of the hands) 
of that one of these clocks which is in the immediate vicinity (in space) of the 
event.’2  

 
Philosophers have termed this pragmatic approach to space and time 

‘conventionalist’.3 In the case of time, this has proved a successful strategy 
because it postulates that in physics, what is meant by a ‘time’ interval is in 
fact, a clock interval. Clocks of course, are indicators for the concept of 
time, not detectors or measurers of a physical “state” of time. Thus, Ein-
stein’s approach effectively bypasses philosophical concerns about the unob-
servable “presence” of time by focussing attention solely on the observable 
behaviour of clocks. 

However, Einstein’s conventionalist definition of time still leaves much 
to be desired. Any cursory observation of the kind of pocket watch he de-
scribes above finds the ‘position of the hands’ to be cyclical and reversible 
about the same starting point. Yet, the convention of western science is to 
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see time as a linearly asymmetric ordering. This is evidenced in Minkowski 
geometry, which portrays any sequence of clock readings as forming part of 
a linearly asymmetric axis, t. The reasons for re-arranging a cyclical se-
quence of clock readings into an asymmetric ‘time’ ordering need to be 
explained by reference to a process omitted from Einstein’s definition – that 
of record-keeping.  

Recording is implicit in the act of observing, and an observer or observa-
tional device that cannot record data is of little use to science. The key char-
acteristic of recording is that every registry of data is additive, never subtrac-
tive. Hence, a ‘later’ record must always accumulate more data than an ‘ear-
lier’ one, in just the way that a given natural number set must by definition, 
always include all its predecessor numbers among its elements. The tempo-
ral ordering of physical events is typical of this characterisation, requiring by 
convention that clock readings t are arranged {t1,t2,t3...} in the linear, asym-
metric order of the set of counting numbers N, so forming a set T of clock 
readings or ‘times’. The conventions for this ordering of T date back at least 
as far as Aristotle (‘Time is the number of motion in respect of before and 
after’)4 and were established independently of any later theories concerning 
irreversible processes and so forth.  

Hence, the raw observation of the movement of hands about a clock face 
is not in itself sufficient to explain why their positions indicate time read-
ings. Underlying this observation is the more fundamental understanding 
that records always show the journey followed by the clock hands to be one 
of constantly increasing length. An observable process that perfectly demon-
strates such a constant asymmetric journey is the propagation of light from a 
point origin in space. Light propagation c, is of course, the third essential 
observable measure for Einstein’s SR theory. Yet, rather than adopt intervals 
of light propagation to indicate time, for understandable practical reasons, 
Einstein and Minkowski chose to retain ‘seconds’ of the arc, the established 
measures of the pocket watch. 

Nevertheless, Minkowski immediately realised that the journey of a light 
pulse provided a fundamental ‘natural’ measure for his geometric manifold, 
which could be viewed either in terms of a ‘dynamic’ temporal period, such 
as one second of light travel, or in terms of a ‘static’ distance, 300,000 kilo-
metres of light travel.5 The fact that these measures were completely inter-
changeable demonstrated Minkowski’s most celebrated claim - that this 
geometric manifold was in fact unitary, being the union of two sets of differ-
ent interval types, metre and second, which by tradition indicated space and 
time respectively.6 Only hyperbolic geometry appeared to provide the way 
of uniting these different measures of the same relativistic interval, and in a 
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form that still preserved the traditional conceptual distinctions, as seen in the 
differences between the ‘timelike’ region within the ‘light cone’ and ‘space-
like’ region outside of it. 

Yet if it is true that the measures of light metre and light second are com-
pletely interchangeable, then in principle, it should be perfectly acceptable to 
use only one of these measures to model the space-time continuum. This 
principle is easily demonstrated by considering the mapping of events that 
do not even involve relativity, such as those illustrated in Figure 1, which is 
a scale map of two objects on a table, a stopwatch with hands C, and a ball 
A, rolling across the surface. The map is created by observers plotting what 
they record to be the successive coincidences {C1,A1},{C2,A2}… of the posi-
tion of the second hand about the clock face, with the position of the ball on 
the tabletop. Since the map accurately plots all displacements, it gives ob-
servers the same freedom of choice about whether they wish to measure the 
intervals travelled by the hand of C as ‘seconds’, or as ‘millimetres’.  
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Figure 1.  Comparison of motion of clock hands with the motion of a ball A. 

 
The main reason for preferring ‘seconds’ is that the number of millimetres 

travelled by a hand may vary according to the size of the clock. However, if 
observers elected to standardise the size of all stop watches, then it would be 
perfectly acceptable to substitute a standard number of millimetres in place 
of the standard second. So the fact that some observers could choose to char-
acterise the intervals {C1,A1}-{C2,A2} over which these events are recorded 
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as ‘periods of duration’ does not in any way prevent other observers from 
electing to measure the same interval in terms of the displacement they actu-
ally observe, as distinct from the ‘time elapse’ they ‘sense’.  

 
To subscribers of this alternative convention, the map itself simply shows 

two spatial displacements dA and dC. Comparing the lengths of these two 
displacements provides a perfectly satisfactory measure of their relative 
motion, without reference to seconds. So under this new convention, time is 
always measured in units of spatial displacement, and the velocity vA of the 
moving moving ball can be redefined as the ratio of its displacement dA, 
from an initial position Ai to a final one Af, relative to the displacement dC, 
over the interval i-f by the designated clock motion, C: 

 vA = (Af -Ai):(Cf -Ci) = dA/dC (1) 

Moving on to situations involving SR, if light propagation is selected as 
the standard clock, then its unique properties as the natural constant of SR 
allow for the development of a further new rule for mapping events. Since 
SR postulates that nothing travels at a velocity greater than c, then:  

 For all v, vc ≥ v, hence for dA > 0, dc > 0,  
 and where dc = 0, then dA = 0 (2) 

This choice of convention then permits observers to substitute the time 
‘measured in light seconds’ axis ct of the Minkowski ‘light cone’, with a 
‘time measured in distances travelled by a light pulse’ parameter, s. As is 
illustrated in Figure 2, rather than being a flat plane like the ct one of 
Minkowski space, s is the curved surface of a ‘light sphere’ centred on the 
spatial origin of the light pulse, with dc being the radius of s. Events occur-
ring within this sphere may then analysed using circular function geometry, 
which reveals a Euclidean analogue of the hyperbolic function space-time 
(HFS) of Minkowski, herein called “CFS”. 



594 A. Crabbe 

2 Circular Function Analysis of Special Relativity 
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Figure 2 

 
Figure 2 could be seen as a two-dimensional map made just like its 

Minkowski analogue, where observers in the S frame of reference retrospec-
tively plot data retrieved from a series of observational devices such as 
movie cameras, placed at regular distances throughout the S frame. The 
circle centred on the origin o, of the S coordinate system, o,x,y, represents 
their observations of the wave-front of a light flash c, expanding equidis-
tantly from o. This light flash provides the necessary readings by which to 
measure all the intervals traditionally regarded as being spatial or temporal. 
Since c is a natural constant, observers who retrieve data from detectors that 
are regularly spaced throughout their reference frame will obtain records of a 
regular sequence of light travel intervals, dc1, dc2, dc3 .., the unit size of 
which are determined solely by the chosen spacing of their observational 
devices. S observers may then use any sequence of these ‘snapshot’ records 
of the propagating wave-front s to relate the coincidences of all ‘point’ parti-
cles observed at ‘point’ places in S, with what they judge to be the simulta-
neous position of s.  

In Figure 2, S' is a translating, inertial frame of reference, separated from 
the x,y plane of S by a negligible “point” distance in the z direction. Over the 
interval of 1 lm, S' translates 0.63 lm in a +xy direction. Assume that the 
wave-front c is a light flash triggered by the close coincidence of the origins 
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o and o'. Then circular function geometry allows observers in either refer-
ence frame to measure the relative differences in interval measurement be-
tween S and S', by comparing their measurements of the distance travelled 
dc, along the S' spatial axis that is perpendicular to its translating trajectory. 
In this case, the perpendicular axis is y' and so observers at S rotate their own 
y axis by the angle α to find the point tp at which the wave-front c meets y' 
across a given translation interval r, where: 

 α = sin-1y/r (3) 

In CFS, it is the set of all these coordinate points tp for translating frames 
that forms the surface of the spherical parameter s, and it is the length of dc 
that gives the observer’s constant, frame-dependent, space-time interval t:  

 dc = t = 1 (4) 

The interval separating tp from o' gives the S' frame’s simultaneous meas-
urement dc' of the observer’s interval dc. The angle θr, relating the juncture 
of dc and dc' is given by: 

 θr = cos-1r (5) 

Following the first postulate of SR that the velocity of light propagation is 
the same for observers in all inertial reference frames, the judgement of the 
length of dc' will remain frame invariant, with dc' being another function of 
the circle: 

 dc' = sin θr. (6) 

and 

 dc' 2 = dc2 – (dx2 + dy2 + dz2) (7) 

The length of dc' then provides the frame invariant metric ds for CFS, 
analogous to that of the Minkowski metric, ds2 = c2dt2 – dx2 – dy2 – dz2, with 
the CFS metric being: 

 ds2 = dc' 2 = dc2 – (dx2 + dy2 + dz2) (8) 
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The equivalence found in Minkowski geometry between ds, the velocity 
parameter β = [1 - (v/c)2]1/2 and the proper time dτ = dt/(1/β) is also found in 
CFS: 

 dc' = ds = dτ  = β (9) 

In CFS, the observer’s plotting of successive tp points on the axes of 
translating inertial frames reveals a straight line otp, related to the origin of 
the S co-ordinate system by the angle θr.  These lines bear some similarities 
to the sloping world lines of Minkowski geometry, since at any point Δr 
along the trajectory of a translating inertial frame, the ratio dc:dc' can be 
easily measured using the familiar rules of circular function geometry: 

 cos2 θr + sin2 θr = 1 = dc (10) 

Let these useful lines be designated in CFS as “clock lines”. By combin-
ing rotation of axes with measurement of the invariant interval sin θr under a 
clock line, observers can then deduce the Lorentz transformations of their 
coordinates to the simultaneous space of translating inertial frames such as 
S'. Observers in S use the length of dc' to determine the simultaneous space 
of S', which appears as another light sphere of relatively smaller dimension, 
shown in Figure 2 by the grey circle centred on o'. Thus, in CFS the Lorentz 
transformation of coordinates between reference frames appears as a dis-
placement and shrinking of Euclidean spheres, rather than the tilting and 
stretching of non Euclidean light cones. In CFS, the Lorentz transformation 
factor γ is given by: 

 γ = 1/sin θr = 1/dc' (11) 

In Figure 2, for v = 0.63c, θr = cos-10.63 = 51o. Then γ = 1/sin 51o = 1.29, 
which is exactly the same value found for a frame S' translating at 0.63c 
when using the standard SR equation for the Lorentz factor, γ = 1/β.  So it 
emerges that the functions of the circle - radius, sine and cosine - can be 
used to represent respectively: t, τ and v for the analysis of ‘inertial’ refer-
ence frames as described in SR. The analogous relationship between CFS 
and Minkowski geometry is further illustrated by the comparisons made in 
Figures 3A and 3B. 
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Figure 3A. SR relationships in Minkowski 
geometry 

Figure 3B. SR relationships in CFS 

 

3 Simultaneity 

The CFS approach can be further illustrated by consideration of the dif-
fering views of simultaneity held by observers in the S and S' frames of 
reference, as shown in Figure 4. Following a well-known example, called 
“Einstein’s Train Paradox”,7 observers at o judge themselves to be near 
coincident with observers at o', and mid-way between two events along their 
x axis, A and B, which appear to be simultaneous light flashes to observers at 
o.  However, observers at o', will judge event B to have preceded event A 
and that when o' was near coincident to o, they were closer to place B than 
place A.  This can be ascertained using the standard equations (SE) of SR, by 
comparing the each frame’s measurements of the time interval Δt separating 
event A from event B, where L is the distance separating them. 
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Figure 4. CFS representation of the “Einstein Train Paradox” 
 

If the S frame judgement of L is 2 metres of light travel (lm), then ob-
servers in that frame may use the above equation to agree that for observers 
in S' translating at v = 0.6c, the value of Δt' = 1.5 lm. Figure 4 shows that 
exactly the same values can be obtained from CFS, by comparison of the S 
and S' spheres of simultaneity, where for v = 0.6c, θr = 53.13o: 

 CFS: Δdc' = [L(r/dc)] / [1 - (r/dc)2] 1/2  

 = (L cosθr) / (sinθr) = 1.2/0.8 = 1.5 lm (12) 

The S frame calculation of the time tB = dcB at which o' receives the light 
signal from B can be determined equally from both the SE and CFS:  

 SE: tB = LB / (LB vB + LB) = 2/(2 x 0.6c + 2) = 0.625 lm (13) 

 CFS: dcB = LB /(LB cosθr + LB) = 2/(2 x 0.6 + 2) = 0.625 lm (14) 

From which tB', rB and rB' are easily found, as shown in Figure 4: 
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 CFS: tB' = tB sinθr = 0.625 x 0.8 = 0.5 lm (15) 

 CFS: rB = dcB cosθr = 0.625 x 0.6 = 0.375 lm (16) 

 CFS: rB' = rB sinθr = 0.375 x 0.8 = 0.3 lm (17) 

To find the distance rA at which o' receives the light signal travelling at v 
= c from A, and thereafter, the time tA: 

 SE: rA = vS' tA = vS' (rA + L) / c = (0.6rA + 0.6) / 1 = 1.5 lm (18) 

 CFS: rA = cosθr (rA + L) / (rsignal /dc) = (0.6rA + 0.6) / (1/1) = 1.5 lm (19) 

 CFS: rA' = rA sinθr = 1.5 x 0.8 = 1.2 lm (20) 

 CFS: tA = rA / cosθr = 1.5 / 0.6 = 2.5 lm (21) 

 CFS: tA' = tA sinθr = 2.5 x 0.8 = 2 lm (22) 

So it is found both from the usual equations of SR and the rules of CFS 
that the views of simultaneity differ in S and S' , since: 

 tA - tB = 2.5 – 0.625 = 1.875 lm (23) 

 tA' - tB' = 2 – 0.5 = 1.5 lm (24) 

4 Comparison of momentum-energy vectors in CFS and HFS  

In Minkowski geometry, illustrated in Figure 5B, the relationships be-
tween relativistic mass, energy and momentum, m, E and p, can be derived 
by dividing all vector lengths under s by the frame invariant displacement 
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dτ. The analogous operation for vectors in CFS is to divide all vector lengths 
under s by the displacement dc. As illustrated in Figure 5A, energy-
momentum relationships appear differently under the circle compared to the 
hyperbola. The radius dc gives a fixed measure for the observer’s reference 
frame, with the ratio dc/dc indicating the total energy Eo, of objects rela-
tively at rest to that frame.  
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Figure 5A Momentum-energy rela-
tionships in CFS 

Figure 5B Momentum-energy relation-
ships in HFS 

 
In Minkowski vector space, m = dτ, is the frame invariant measure and 

may have values ranging from 1- ∞. Yet in CFS, since dc = dt = Eo = 1, it is 
the ratio dc/dc' that gives Eo', the relative rest energy in the accelerated 
frame, and dc/dr indicates the relativistic momentum p of the accelerated 
reference frame in terms of 1/p = Eo/p. Hence in CFS vector space:  

 sin2dc + cos2dc = dc2 = (Eo')2 + (Eo/p)2 = 12 (25) 

 Eo = dc = dt = 1 (26) 

 Eo' = dc' = dτ = 1/γ = Eo/γ (27) 
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 m = Eo/Eo' = dc/dc' = γEo (28) 

As comparison of the models in Figure 5 shows, in CFS, the displacement 
dc' = sinθ diminishes from 1 at relative rest, to 0 at the limit spatial dis-
placement dr = dc. Whereas in the Minkowski analogue, the directrix of the 
hyperbola, dτ = coshθ, grows from 1 to infinity at the limit velocity v = c.  
Hence in CFS, comparison of the rest value o, with the limit velocity value * 
for momentum-energy, reveals the following: 

 Eo/po = 0,  Eo = dc,  po = 0 (29) 

 Eo/p* = 1,  Eo = dc,  p* = dc   (30) 

 Eo/Eo' o = 1,  Eo = dc,  Eo' o = dc  (31) 

 Eo/Eo' * = 0,  Eo = dc,  Eo' * = 0  (32) 

Equations (29) – (32) agree with Minkowski momentum-energy vectors 
in one respect: For differing velocities, total momentum-energy remains 
constant in all frames, but measurements of the ratios between momentum 
and energy vary from frame to frame. For instance, CFS reflects the ob-
server’s judgement that Eo' relatively diminishes from 1 to 0 at the limit, and 
Eo/p grows in proportion from 0 to 1 at the limit. However, the fundamental 
difference between CFS and HFS revealed by Equations (25) – (32) is that 1 
= dc, and dc is a finite physical measure, 2.998 x 108 lm. In CFS, combina-
tion of Equations (25) to (32) indicates: 

 p*/Eo = E*/Eo = dc = 1    (33) 

These are the correct values required to preserve the principle of equiva-
lence between the two reference frames in question. Yet this is not some-
thing obviously evident from the mathematics of the Lorentz factor equation 
(11) and HFS, which indicate that γ* = ∞ and p* = ∞. However, in CFS, γ* 
= dc/dc'* = 0. To derive the result γ* = ∞ from CFS requires reference to the 
values of cosecθ = 1/sin, but cosecθ is not one of the functions under the 
circle through which CFS represents the fundamental measures of observer’s 
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time, proper time and velocity. As argued above, these differences between 
HFS and CFS appear to be ones only of mathematical form, and it should be 
noted that in its original Einsteinian form, the Lorentz factor equation γ = 
1/β is an algebraic expression for measures of velocity, not mass-energy. 
While mathematically, there may be an infinity of differing lengths for sinθ 
under the circle, the reference interval for all CFS judgements is the finite 
measure dc, the radius of the observer’s light sphere. Bearing this in mind 
and applying the same procedure as in Equations (31)-(34) to the factor γ, 
where 1/γo = 1 and 1/γ* = 0, it is found that:  

 1/γo – 1/γ* = dc = 1 = Eo (34) 

which leads to: 

 γo – γ* = 1/dc = 1/Eo (35) 

Multiplying both 1/dc and 1/Eo by dc gives: 

 γo – γ* = dc/Eo = 1 (36) 

The odd looking conclusion of these equations that both γo = 1 and γo – γ* 
= 1, accords fully with the principle of relativity. If observers in some rest 
frame believe their measures to be finite, then they should never encounter a 
situation where other observers could view other systems as having rela-
tively infinite measures. The traditional approach of relativity theory has 
been to exclude this possibility by pointing to the infinite dimensions of both 
the Lorentz factor equation and Minkowski ‘length’, dτ /dτ, which suggest 
that it requires infinite energy to accelerate a particle to v = c. Unfortunately, 
when this alleged exclusion is applied in the general theory of relativity, it 
appears to be in conflict with the black hole hypothesis, which proposes a 
natural mechanism that actually can accelerate particles to light velocity at 
its ‘event horizon’! 

The revelation of CFS that the proportions of γo, E* and p* are all equal 
to dc = 1, obviates such difficulties by suggesting that that the infinite di-
mensions of the Lorentz factor and Minkowski length are solely features of a 
chosen mathematical model, and not of the natural world. The fact that this 
world can also be modelled by an analogue geometry CFS, which is based 
on finite dimensions, indicates that the scales of Minkowski geometry are 
not necessarily true of natural scales. Hence, it is worth considering what 
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sense CFS makes of situations where v=c, by proportioning all the values of 
Equation (36) only in terms of finite natural constants. 

Strictly speaking, there are no units for relativistic ratios such as E/m or 
c/E.8 To find the numerical value of the ratio dc/Eo then requires selection of 
a natural constant for Eo to proportion it with the natural constant c.  The 
obvious choice is the quantum of energy, Planck’s constant h, (also appro-
priate because light propagation c is a manifestation of quantum physics). In 
conventional units, the ratio c/h appears as a momentum of 4.524 x 
1041kg/m-1/s-1. Division of this value by the factor c gives this ratio in units 
of mass-energy, 1.509 x 1033kg. This equates to the numerical factor implied 
by 1/Eo in Equation (35) of (1 kg/m2/sec-2)/h. Thus, these proportions put a 
number, 1.509 x 1033, to the difference γo – γ*, which will now be denoted as 
the limit Lorentz factor value, γi. 

Application of this finite limit value γi, permits a consistent account of a 
hypothetical test object α, translating at v = c. To observers in any sub-light 
reference frame, such an object is indistinguishable from a photon, because 
in this case, mo/mo'  = dc/dc' = γ* = 0. Now imagine the frequency f of this 
photon is numerically equivalent to the factor γi, then its relativistic energy 
would be: 

 Eα = hfα = hγi = (6.626 x 10-34kg/m2/sec-2)1.509 x 1033 = 1 kg/m2/sec-2  (37) 

The wavelength λ of this photon would be:  

 λα = c/f = c/γi = 1.987 x 10-25m (38) 

Then imagine it were asserted that this same object a, was a particle with 
va = c.  From equation (37) Observers in sub-light frames would deduce that 
the rest energy of this object was (1kg/m2/sec-2)/γi = h.  Consider how they 
would then judge α’s de Broglie and Compton wavelengths, λB and λC.  
Since for this velocity Eα = pα, they would need to divide Eα by the conver-
sion factor c to obtain pα in conventional units and Eα by c2 to obtain its 
relativistic mass mα, giving:  

 λBα = h/pα = h/(Eα/c) = h/(h/c) = 1.987 x 10-25m (39) 

 λCα = h/mαc = h/(Eα/c2)c = h/(h/c2)c = 1.987 x 10-25m (40) 
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From which it would be evident that for any test object in this limit case, 
there is no distinction to be drawn between its properties as a particle or as a 
photon, since: 

 λα = λBα = λCα= 1.987 x 10-25m  (41) 

Development of the relationships illustrated in Figure 5A then indicates 
that special relativity and quantum theory appear to meet at a limit Lorentz 
factor γi. This should not be interpreted as an argument for the quantisation 
of space-time at the scale of 10-25m. It is only to say that for any particle α 
accelerated to vα ≈ c – 10-38m/s, where γEoα = (1/h)Eoα , Eα will not rise for 
any further increase in vα. In principle, this hypothesis could be the subject 
of experimental test. 

5 Time Travel 

Time travel is another philosophically difficult idea that finds support in 
relativity theory, because the construction of the Minkowski light cone gives 
the time axis a clear “direction” relative to spatial axes, and it partitions the 
continuum into “past” and “future”. Since this construction also sets c as the 
limit rate for all physical signals, efforts to consider faster than light signals 
(FLT) end in paradox after it is found that some observers of the same events 
will judge FLT signals to be travelling “back” into the past.  

FLT can be analysed without paradox in CFS, because although meas-
urements are made relative to four co-ordinates, x,y,z,c, c is not a member of 
the mutually orthogonal axis set x,y,z. Since the temporal co-ordinates tp of 
CFS are found on the surfaces of asymmetrically expanding light spheres c, 
by definition, no light sphere is going to reverse direction relative to x,y,z. So 
although the “travel” of a reference frame may be reversible relative to x,y,z, 
it can never be so relative to dt = dc. Nor is there any subdivision of the CFS 
continuum into past and future; the mapping starts at any chosen “now” and 
leads only to later events.  

Following a thought experiment summarised by Penrose,9 it can be shown 
that events which appear paradoxical when mapped in Minkowski geometry, 
are not so when mapped in CFS. The situation, illustrated in Figures 6A and 
6B, compares the viewpoints of three different observers of FLT signalling, 
P,Q and R.  
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Figure 6A. FLT signalling in CFS Figure 6B. FLT signalling in HFS 
 
Observers at Q judge themselves to be in between two reference frames P 

and R each translating away from Q at v=0.8c in opposite x directions. Ob-
servers in reference frame P send an FLT signal at 3c towards Q and R. Call 
the transmission of this signal event A, which from the Q viewpoint occurs at 
time t = 0sec, and at a place A, 0.5 lm away on their -x axis. P observers 
judge that their FLT signal arrives at event BP, 2.1 lm distant, at a time tP = 
0.7sec. Now analyse Q’s view of this situation following the rules of 
Minkowski geometry, as illustrated in Figure 6B.  

For Q observers to map the P and R judgements of the same events in 
Minkowski geometry, they must plot the slopes Sr of the t axes of the trans-
lating reference frames, to determine the Poincaré transformations of their 
co-ordinate systems, relative to the observer’s: 

 Sr = Δt/Δr = tanθr (42) 

For all observers, the slope Sr of an FLT signal is obviously greater than 
the 45o slope limit for timelike events set by c, so FLT signals must travel to 
places in their spacelike zones. For Q observers, the relative slope SP for P’s 
velocity of 0.8c, is 38.7o, for which the Poincaré transformation of P’s co-
ordinate system (illustrated in Figure 6B puts B at a spacelike point in P, 
which is coincident with a point in the past timelike zone of Q that is earlier 
than A in Q’s judgement. Thus Q observers are fodced to conclude that if P 
observers are capable of transmitting an FLT signal to B, it travels from a 
later to an earlier time. A deeper paradox involving backward causation 
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arises if it is further imagined that event B is constituted by the arrival of the 
FLT signal at a mirror fixed in the R reference frame, which can reflect the 
FLT signal back to P.  Q observers would then conclude by symmetry, that 
the reflected signal will also travel backwards in time to arrive in P at an 
event C, that all observers will agree is actually earlier than A!  

 
For Penrose and many others,10 such paradoxes demonstrate the absurdity 

of FLT and the validity of the original postulate that c marks the limit of any 
signal velocity. However, a better considered view would be that these para-
doxes prove only that Minkowski modelling of Einstein’s relativity theory 
cannot model behaviour at variance with the theory’s original assumptions 
about c. CFS is likewise constructed on assumptions about the nature of light 
propagation, but these do not involve placing any limits on signal velocity. 
CFS measures motions by reference inter-alia and c just happens to be the 
chosen reference constant in situations involving the Einstein principle of 
relativity. Accordingly, it is not surprising to discover that the above para-
doxes do not occur when the same events are modelled in CFS.  

In the CFS model shown in Figure 6A, Q observers set event A as the 
starting point t = 0, for analysis. From the Q viewpoint, at this time, the 
position of A is at -x = 0.5 lm and the position of the R origin is at +x = 0.424 
lm, separated from A by 0.924 lm. Thus, for observers in all three reference 
frames, any signal sent from A at 3 x dc will have to travel across the inter-
val AB to reach R at B, and all three frames will measure the time and dis-
tance co-ordinates for this interval differently. From Equations 20 and 22 
above, where vP = vR = 0.8c, Q observers will determine that the distance ΔrR 
travelled by R before the signal of v = 3c arrives from A at event B is:  

 ΔrR = cos 36.9(ΔrR + 0.924) / (3/1) = 0.8(ΔrR + 0.924)/3 = 0.336 lm (43) 

Since Q observers judge P to be coincident at A at t = 0, then they must 
judge that the time taken for the FLT signal to cover the interval AB is: 

 ΔtAB = ΔrR / cos 36.9 = 0.42 lm (44) 

Hence the temporal separation between A and B is +0.42 lm, and the spa-
tial separation ABQ is: 

 ABQ = ΔtAB / (dc/3dc) = 0.42 / (1/3) = 1.26 lm (45) 
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From the Q viewpoint, for observers in P, the intervals AB and ΔtAB will 
appear as: 

 ABP = ABQ / sin 36.9 = 2.1 lm (46) 

 ΔtP = ΔtQ / sin 36.9 = 0.7 lm (47) 

These are the same values initially specified for this thought experiment, 
and none of the time values are negative. Then for the Q judgement of the 
same FLT signal reflected back from B to C: 

 ΔrBC = cos 36.9 (Δr + 1.26) / (3/1) = 0.58 lm (48) 

 ΔtBC = Δr / cos 36.9 = 0.725 lm (49) 

 BCQ = ΔtBC / (dc/3dc) = 0.725 / (1/3) = 2.176 lm (50) 

And 

 ΔtAB + ΔtBC = 0.42 + 0.725 = 1.145 lm (51) 

From the Q viewpoint, for observers in P, the intervals ΔrBC and ΔtBC will 
appear as: 

 BCP = BCQ / sin 36.9 = 0.966 lm (52) 

 ΔtP = ΔtQ / sin 36.9 = 0.907 lm (53) 

Again, all the time intervals here are positive and the paradox found when 
using Minkowski modelling disappears. CFS then supports the common 
sense intuition that backward time travel is no more than an improper ex-
trapolation from the characteristics of the Minkowski light cone. 
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6 Conclusion 

The development of a Euclidean analogue for Minkowski geometry from 
philosophical first principles may then provide useful service. It indicates 
that Minkowski space is not the only “proper” model of Special Relativity. It 
warns against literal understandings of the terms “time travel” and “direc-
tion” and suggest that “backwards causality” is not an obstacle to the consid-
eration of FLT reference frames. The analogue also indicates that finite, 
rather than infinite quantities are found at the limits of relativity theory, 
which proposition may help protect relativity from the philosophical suspi-
cion that the discovery of infinite quantities reveals a limitation, rather than a 
limit in the theory. 
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