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Weak randomness seriously limits the security of quantum key distribution
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In usual security proofs of quantum protocols the adversary (Eve) is expected to have full control over any
quantum communication between any communicating parties (Alice and Bob). Eve is also expected to have full
access to an authenticated classical channel between Alice and Bob. Unconditional security against any attack by
Eve can be proved even in the realistic setting of device and channel imperfection. In this paper we show that the
security of quantum key distribution protocols is ruined if one allows Eve to possess a very limited access to the
random sources used by Alice. Such knowledge should always be expected in realistic experimental conditions
via different side channels.
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I. INTRODUCTION

The emergence of quantum theory in the early 20th century
led to a revolution in many areas of physics. One of its main
features was the introduction of intrinsic randomness, origi-
nating from the very nature of the theory. This probabilistic
nature led to questioning of concepts of (macro)realism and
locality [1] which was considered as an unwanted consequence
of quantum theory. True randomness, much undesired from the
point of view of classical physics, serves as a valuable resource
in many cryptographic protocols. It is for this reason that
quantum random number generators (QRNGs) were one of the
first commercially available devices utilizing basic principles
of quantum physics in its elementary nature.

Towards the latter part of the 20th century it was recognized
that quantum mechanics could lead another revolution and
dramatically extend the premise of information processing.
Classical notions of security underpinned by computational
conditions were seriously threatened by the results of quantum-
information processing and by the emergence of Shor’s
algorithm [2]. However, quantum mechanics offered a new
security paradigm whereby the use of quantum states imparted
unconditional secure communication through quantum key
distribution (QKD) [3]. QKD protocols enable two commu-
nicating parties to produce a shared random secret key. The
secret key can be used later to implement an unconditionally
secure encryption [4].

The security of QKD has not only been established for an
ideal noiseless experimental setting, it has also been proven
robust within more realistic settings to the extent that QKD
systems are now commercially available [5]. Interestingly,
the robustness of QKD protocols has only been proven with
respect to possible attacks on quantum data exchanged by the
communicating parties with the assumption that a third party
possesses knowledge of all exchanged classical data.

Sources of classical random bits, repeatedly used during
different phases of quantum protocols, were implicitly con-
sidered perfect (unbiased). An assumption in the standard
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proofs of security [6–8] is that the source of random bits
used in the protocol is unbiased and completely unaccessible
to the adversary. Unfortunately, however, perfect (unbiased)
randomness is very difficult to obtain in practice. All classical
sources of random bits provide in fact rather pseudorandom
bit strings, which might be fully accessible to the adversary
together with knowledge of its preparation procedure and
input bits. Even specialized QRNG devices produce weak
(biased) randomness and require classical postprocessing [9],
something one has to consider as accessible to the adversary.
Real-world random number generators leak information via
side channels and, thus, may be vulnerable to outside condi-
tions (e.g., temperature, input power, EM radiation, etc.) which
are potentially controlled by the adversary.

Although the problem of weak randomness has been
broadly studied and is relatively well understood in classical-
information processing [10–13], only a handful of results have
been extended to the quantum domain (see, e.g., Refs. [14,15]).
Recent investigations have shown that quantum-information
processing can help to increase security of communication
using weak randomness even for regions of parameters
where purely classical processing would inevitably reveal all
information to the adversary [16,17]. Here we show that on
the contrary, weak randomness can negatively influence the
security and correctness of existing quantum protocols.

In this paper we examine the security setting of QKD in
which the adversary, aside from having full control of the quan-
tum and classical channel, has some limited control over the
sources of randomness that the communicating parties employ
during the protocol (Fig. 1). We show that with an increasing
key length, only negligible control of the randomness is neces-
sary to render the QKD insecure. In particular, we demonstrate
that the secret key individually held by communicating parties
will differ significantly. Moreover, knowledge pertaining to
the secret key held by the adversary will be comparable to the
knowledge held by the receiving party. This is achieved by
the fact that the adversary will be able to exclude a portion of
exchanged qubits from testing by communicating parties.

II. WEAK SOURCES

Random processes are usually described by their probabil-
ity distributions. However, it is insufficient to model a weak
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FIG. 1. A sketch version of the BB84 protocol. Eve has full access
to both the quantum channel (Q.C.) and to authenticated classical
channels (A.C.C.) and possesses partial access to random sources of
Alice and Bob.

random source by a single probability distribution because the
bias of the source is typically unknown. The only information
usually known about the source is that it is random to a certain
extent; thus, we allow the output of the weak random source
to be distributed according to any probability distribution
containing sufficient randomness. We quantify the amount of
randomness of a distribution by the min-entropy of its source.
The min-entropy of the random variable X is defined by

H∞(X) = min
x∈X

[−log2Pr(X = x)]. (1)

A nonuniform source of randomness is an (N,b) source
if it emits N -bit strings drawn according to a probability
distribution with a min-entropy of at least b bits. Thus, every
specific N -bit sequence is drawn with a probability smaller
than or equal to 2−b. For b = N , one obtains a perfect source
where all sequences are drawn with the same probability.

The bias of the source can be easily quantified by the min-
entropy loss denoted c = N − b. A distribution is (N,b) flat if
it is an (N,b) source and it is uniform on a subset of 2b sample
points; i.e., each string is output with a probability of either
zero or 2−b.

Min-entropy is a prominent measure of weak randomness
and is used in many important papers (e.g., Ref. [12]), and its
use is justified by its many desirable properties. Min-entropy
is sufficiently general and most real-world sources can be
described as min-entropy sources with sufficiently low min-
entropy. In fact, it nicely models the most general information
leak, since the drop of the min-entropy directly relates to the
number of bits learned by the adversary. Last, but not least, it
is also very convenient for calculations.

On the other hand it is fair to denote that even for a relatively
small min-entropy decrease the adversary might get locally
very strong information. In particular, the adversary is able
to exclude some of the possible sequence completely, thus
knowing with certainty that a specific sequence will never
appear. This might help the adversary to design specific attacks
utilizing this knowledge.

The quantity b/N is called the min-entropy rate and it
achieves unity for perfect random sources that deliver one bit of
entropy per bit produced. We are particularly interested in the
min-entropy loss rate, which is denoted by quantity c/N . This
quantity is (almost) zero for (almost) perfect random sources
and approaches unity as the quality of the source decreases.

Throughout the paper the quality of the source used by
communicating parties is the best, ultimate quality that is
achievable for them. This includes any procedures they could
potentially use to enhance their source(s) such as randomness
extractors, as well as obtaining new sources such as direct use
of their quantum source as QRNGs.

III. THE QKD PROTOCOL

Here we demonstrate the attack using a variation of the
well-known BB84 protocol [3] which serves as a representative
for the prepare-measure family of protocols. Note, however,
that the same issue arises in entanglement-based protocols
as well (when selecting a subset of systems to verify the
entanglement).

A. Distribution phase

Using a random number generator Alice produces a 2n-bit
string X. Then depending on a 2n-bit string from a random
variable Y , Alice encodes each bit of X into a qubit from
one of four possible states {|0〉,|1〉, |+〉,|−〉}. The state of the
ith qubit is conditioned on the ith bits of both X and Y . In
particular, each bit of X with value 0 is encoded into either |0〉
or |+〉 depending on whether the corresponding bit of Y is 0
or 1, respectively. A similar case holds for the bit 1 encoding
into the states |1〉 and |−〉. Alice subsequently transmits all 2n

qubits to Bob. In order to obtain information about the 2n-bit
string X, the adversary will be compelled to interact with these
transmitted qubits which inevitably will lead to a disturbance in
the transmitted sequences. Bob measures each received qubit
to obtain a 2n-bit string. Similar to the encoding procedure, a
set of measurement bases are chosen according to a uniformly
distributed random variable Z that outputs a 2n-bit string. If
the ith bit of Z has value 0, Bob measures in the computational
basis, otherwise Bob measures in the diagonal basis.

B. Sifting phase

The sequence of measurement bases is revealed by Bob
whereupon Alice then announces the locations of those qubits
for which the corresponding preparation and measurement
bases do not coincide. After discarding these qubits, Alice and
Bob possess on average n-bit strings XA and XB . Following
the sifting phase, the adversary has an estimate XE of Alice’s
string XA that depends on the degree to which the adversary
interacted with the transmitted qubits. If there is no interaction
then the adversary possesses no information on the n-bit string
XA. In the case of faultless quantum communication, XA and
XB will be identical. However, in the case of the adversary
choosing to interact with many qubits, the estimate XE will
be a good approximation to XA, and this causes XB to differ
significantly from XA.
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C. Parameter estimation

The primary aim of parameter estimation is to approximate
the number of errors between the n-bit strings XA and XB .
The source of the errors may be attributed to a combination
of quantum channel imperfections and eavesdropping by the
adversary. However, in security proofs, one always considers
the worst case scenario and, thus, assumes the adversary to be
responsible for all errors.

Random sampling provides a way to estimate the number
of errors between XA and XB . According to the output from a
random variable T , Alice chooses a set of bit positions of XA

and assigns these as the test positions. Alice and Bob reveal the
bit value in each test position. The number of errors t provides
a reasonable estimate r on the actual number of errors in the
remaining bits of XR

A and XR
B [7]. If the number of errors in

the test positions is excessive then there is a high probability
that the adversary is present and the protocol is aborted.

In any practical application one wants the test set to be
relatively small in order to achieve a maximal possible key
length. In existing QKD protocols, the size of the test set is
typically on the order of

√
n or log(n) [18–20]. In the following

asymptotic analysis, we assume the most general case and post
only a condition that the size of the test set is sublinear in n. In
particular, we assume it is equal to �(n1−α) with 0 < α < 1.

D. Information reconciliation and privacy amplification

Following parameter estimation, the bit strings XR
A and XR

B

contain with a high probability up to r errors. The goal of the
information reconciliation is to remove these errors even at
the cost of revealing some information about XR

A and XR
B . This

task is usually realized by one-way communication [7,8,20].
Such one-way information reconciliation can be implemented
as long as Bob has more information than the adversary about
Alice’s string XR

A [21].
The goal of the privacy amplification is to remove any

knowledge possessed by Eve about the shared string XR
A . A

widely used method [22,23] is based on the random choice
of a hashing function. In this case, Alice randomly chooses a
hashing function f and sends it to Bob. The final shared key is
f (XR

A) = f (XR
B ). Importantly, this method also uses one-way

communication.

IV. THE ADVERSARY’S ATTACK

The use of uniform randomness is widespread throughout
the various steps of the QKD protocol. The first instance of
uniform randomness occurs during the distribution phase when
Alice chooses 2n-bit strings X and Y uniformly. Also, Bob
must decide on a set of measurement bases which is again
dependent upon a uniformly distributed random variable that
outputs a 2n-bit string. In the parameter estimation phase, a
subset of the strings is chosen as a test set according to a
uniformly distributed random variable T and, again, another
source of random bits is used to select the hashing function.
In light of these cases, we investigate a scenario in which
Alice’s randomness source—used to select the positions of
test qubits—is biased.

This can be modeled by a scenario whereby the random
variable T is distributed according to any (n,n − c)

distribution. We consider the worst-case approach (the worst
distribution in the given range, where we attribute all ran-
domness imperfections to the adversary) and assume that the
adversary knows the actual distribution (what, e.g., represents
the situation when the adversary learns c bits of information
form a side channel). We assume that c is large enough to
guarantee the existence of a distribution such that at least half
of the qubits will not be tested. Later we calculate the required
value of c.

Without the loss of generality, let us suppose that the
first half of Bob’s measurement outcomes will not be tested.
The adversary can measure the first half of the 2n qubits
in the {|0〉,|1〉} basis. If Eve’s measurement outcome is
|0〉, she sends a state |1〉 to Bob, and if her measurement
outcome is |1〉, she sends a state |0〉. Following this procedure
and the sifting phase, the adversary has on average n/2
measurement outcomes. The adversary adds another n/2 bits
chosen randomly and uniformly to obtain her estimate XE of
Alice’s string XA. Since Alice and Bob have not tested those
bits measured by the adversary, the protocol will continue on
to remaining phases.

We now quantify the amount of information that Bob
and the adversary possess about Alice’s n-bit string XA. To
obtain the result, we calculate the Hamming distance D(A,B)
between strings A and B. There are three cases to consider.
First, the adversary may have measured a transmitted qubit in
the correct basis. In such a case, the adversary obtains a bit
value that coincides with the corresponding bit value in XA

with Bob then obtaining the bit complement. This happens
on average in n/4 measurement cases. Second, it may happen
that the adversary measures a transmitted qubit in an incorrect
basis. Here both Bob and the adversary obtain the correct value
with probability 1/2. This happens on average in n/4 bits. The
final situation to consider is the case in which the adversary
does not perform a particular qubit measurement, which is
the case in n/2 bits. The adversary then chooses random
values for these bit positions and correctly guesses the value
with probability 1/2, giving a correct guess of n/4 positions.
In this situation, Bob’s measurement value is given by the
measurement in the correct basis and, thus, he determines the
value of Alice’s bit with certainty.

The amount of information that Bob and the adversary
possess about Alice’s string XA is given by D(XB,XA) and
D(XE,XA), respectively. Both of these quantities are on
average equal to 3n/8. Consequently, the adversary and Bob
possess on average the same level of knowledge about Alice’s
string. As the subsequent steps of the protocol demand that
only Alice communicates information, it follows that, with the
conclusion of the protocol, the adversary and Bob continue
to share the same level of information about Alice’s bit sting.
This illustrates that ultimately there can be no privacy between
Alice and Bob.

V. THE STRENGTH OF THE ADVERSARY

It remains for us to quantify how much information in terms
of min-entropy loss the adversary requires in order to prevent
parameter estimation on half of the bit positions. Alice needs
log( n

n1−α ) bits to specify n1−α positions out of n. On the other
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hand, the adversary wants Alice to choose the n1−α test bits
only from n/2 of the positions. Apparently, the best option for
the adversary—in terms of the smallest entropy loss—is to set
any ( log( n

n1−α ), log( n/2
n1−α ))-flat distribution to Alice’s random

number generator. Such a distribution would uniformly select
test bits only within the preselected half of all positions.

Of particular importance here is an analysis of the relative
behavior of two quantities: the first quantity is the length of
the test-bit string N = log( n

n1−α ), and the second quantity is

the min-entropy loss c = log( n

n1−α ) − log( n/2
n1−α ). Both of these

quantities diverge since Alice demands an increased level of
randomness to choose the test bits from an ever increasing set
size. Nevertheless, this is not the case for the min-entropy loss
rate c/N expressing the fraction of total randomness required
to restrict all possible test-bit positions within a prescribed
subset of the total bit set. We show that the rate c/N , which is
given as

c

N
= log

(
n

n1−α

) − log
(

n/2
n1−α

)

log
(

n

n1−α

) , (2)

drops with n.
We consider this expression in the limit of large n as most

of the current security proofs for various QKD protocols have
only been proven in the asymptotic regime of infinite key
length. In evaluating the min-entropy loss rate c/N in the limit
of large n, we make use of the Stirling approximation of the fac-
torial function log(n!) = (n + 1/2) log(n) − n. Furthermore,
we can approximate the quantity c as n1−α log(2) + O( log(n))
while the quantity N can be approximated to n1−α log(n) +
O(n1−α). The min-entropy loss rate c/N in the limit of large
n can be evaluated as

c

N
≈ 1

log(n)
. (3)

Under the assumption of perfect randomness, all QKD
protocols have been proven to be perfectly secure in the limit
of an infinitely large key size. However, implementing perfect
randomness is difficult. By relaxing such an assumption to
reflect real life conditions, Eq. (3) illustrates that QKD no
longer remains robust. In particular, negligible control on the
source of randomness renders QKD insecure.

VI. ENTANGLEMENT-BASED PROTOCOLS

In entanglement-based protocols [6,24], parties share entan-
gled pairs of photons and employ monogamy of entanglement
to build up security. A portion of these states is used to
check the monogamy—and, thus, exclude the presence of an

adversary—while the remaining states are used to perform the
protocol itself. The test pairs are selected by a random source
exactly in the same way as in the prepare-measure-based
protocols. Having access to the random source of the selecting
party, Eve might easily perform an attack where she could
entangle herself to pairs not being tested in the future and,
thereby, obtain information about the secret key.

VII. CONCLUSION

In this paper we demonstrated that if one allows an
adversary limited access to random sources used by the
communicating parties then both the security (Eve learns a
significant amount of information about Alice’s bit string) and
the correctness (Alice and Bob end with different bit strings) of
QKD protocols are completely compromised. This is the case
for almost all known QKD protocols that use only a sublinear
part of the data set to test for an adversary. In such instances,
the adversary is able to restrict the test sample efficiently.

The obvious countermeasure against such an attack is to
increase the number of test states to a significant linear portion
of the raw key. This would, however, profoundly decrease the
length of the secret key. Note also that an optional testing of the
final bit strings of Alice and Bob would be subject to weak ran-
domness in the selection phase as well and hardly can be more
efficient than testing bits in the parameter estimation phase.

Another possible countermeasure is to use interactive error-
correcting procedure with two way communication [25]. In
such a scheme Alice and Bob should be able to see, that the
number of errors is much higher than the estimate would have
suggested. This would be a sign that something is wrong in
the system and would lead to an interruption of the protocol.
On the other hand these schemes use further randomness that,
if not perfect, influences its results.

The most important message of this Paper is that one
should consider the presence of weak randomness even within
quantum information processing tools as a slight bias can
totally jeopardize their functionality.
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