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Different Geometries for Special Relativity 

Anthony Crabbe

Abstract 
This paper introduces a different time-measuring convention for special relativity 
(SR), where a time interval t can be measured by dc, the distance traveled from an 
origin by the spherical wave-front of a light pulse c. Adoption of this convention 
leads to a Euclidean geometry for SR, different from the Euclidean geometry al-
ready proposed by Montanus. The present geometry is governed by the functions 
of the circle, rather than the hyperbola, and the spherical wave-front of a light 
pulse provides both a fourth set t of frame-dependent coordinate points and a pa-
rameter w for measuring intervals that are invariant between reference frames. 
Since sine values under the circle range from 1 to 0, rather than 1 to ∞, the new 
model does not allow, for a reference frame velocity ≈ c, any interval to have 
length ≈ ∞. Furthermore, the form of the new model excludes any notion of 
“travel” with respect to time. 

Key words: time, conventionalism, Minkowski geometry, circular function ge-
ometry, time travel, infinite energy 

 
 

1. INTRODUCTION 
This paper argues that the established non-

Euclidean geometry of Minkowski is not the exclu-
sive or “necessary” means of modeling special 
relativity (SR). Given different conventions for space-
time, SR can be satisfactorily modeled with Euclidean 
geometry, governed by the functions of the circle, 
rather than the hyperbola. Hans Montanus has already 
described one such Euclidean model, which he has 
called absolute Euclidean space-time (AEST).(1,2) 
This paper introduces another relativistic Euclidean 
geometry, herein termed circular function space-time 
(CFS). 

The value of considering these alternative methods 
of modeling SR is not so much to advocate the use of 
one rather than another but to test the extent to which 
physicists are entitled to claim that the structure of the 
natural world “corresponds” to the particular proper-
ties of the geometry employed. Architects would not 
quarrel whether a perspective projection drawing of a 
building is more or less “true” than an orthographic 
one, as long as they agree that both representations 
accurately identify the interrelationships of the 
building’s observable features. This also seems to be 
the relevant criterion in considering different space-
time geometries. Where there is disagreement about 
what is represented, it would appear sensible to 

consider more fully the consistency of the means of 
representation. It will be argued below that one 
benefit of considering Euclidean space-time geometry 
is that it shows that conundrums concerning infinite 
quantities and “travel” relative to time are due to the 
properties of Minkowski geometry rather than those 
of nature. 

2. THE CONVENTIONALIST DEFINITION OF 
TIME 

Minkowski’s geometry results from the approach 
Einstein adopted to define space and time. Einstein 
chose to define each solely by appealing to the 
established conventions physicists used to measure 
them.(3) The presence of rigid measuring sticks would 
indicate intervals of space, and, as for time, “… we 
understand by the ‘time’ of an event the reading 
(position of the hands) of that one of these clocks 
which is in the immediate vicinity (in space) of the 
event.”(4) 

This pragmatic approach to space and time is ter-
med “conventionalist,”(5) and it allowed Einstein to 
bypass deeper philosophical consideration of these 
terms simply by postulating that in physics, spatial 
intervals are indicated by observations of rigid rods 
and temporal intervals are indicated by observing the 
movements of the hands of a pocket watch. Conven-
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tionally, rods are measured in meters and the dis-
placements of hands about a circular clock face are 
measured in seconds of the arc. By focusing solely on 
the observation of instruments, it would appear that 
Einstein disposed of any need for a deeper under-
standing of how it is that these observations can 
satisfactorily identify the essential features of space 
and time. However, the most naive consideration of 
the behavior of a watch shows that Einstein’s conven-
tionalist definition of time is far from being either 
self-evident or self-sufficient. 

Observation of the kind of pocket watch he de-
scribes above reveals the “position of the hands” to be 
cyclical and reversible about the same starting point. 
Yet the convention of Western science is to see time 
as a linearly asymmetric ordering, such as the t axis of 
Minkowski geometry that is formed by the graphic 
plotting of successive clock readings. Furthermore, 
while it is conventional to measure the displacement 
of clock hands in seconds, it is conceivable that if all 
watches had been constructed with a standard size 
face, then the displacements of all hands could have 
been measured in spatial units, such as millimeters. 
Had physicists created such a convention in the era 
when the pocket watch was being developed, then it 
is highly unlikely Minkowski would have developed a 
space-time geometry that employed two different 
units of measure, meter and second. 

These considerations reveal Einstein’s convention-
alist definition of time to be an impoverished one, 
since its adoption is only justifiable by appeal to more 
fundamental inherited concepts of time. The first of 
these is that any record of the displacements of a 
clock hand shows its journey about the clock face to 
be one of constantly increasing length. The second is 
that the observer must acquire records of such events 
in order to acquire any usable notion of time. Since 
events appear as transient orderings, it is only the 
records of them that appear to form the “tangible” or 
“durable” physical orderings, which can be usefully 
employed in theoretical speculation. 

Let us here consider record-keeping as a feature of 
the kind of mental activity that also includes the 
mapping and geometrical analysis of spatio-temporal 
events. The key characteristic of recording is that 
every registry of data is additive, never subtractive. 
Hence, a “later” record must always accumulate more 
data than an “earlier” one, in just the way that a given 
natural number set must by definition always include 
all its predecessor numbers among its elements. The 
Western convention for ordering a set of clock 
readings T requires that the readings {t1, t2, t3, …} be 

arranged in the linear, asymmetric order of the set of 
counting numbers N in order to form a set of time 
coordinates. The conventions for this ordering of T 
date back at least as far as Aristotle (“Time is the 
number of motion in respect of before and after”)(6) 
and were established independently of any later 
theories concerning irreversible processes and the 
like. 

Hence it is not easy to divorce the raw observation 
of the movements of hands about a clock face from 
the recognition that records always show their journey 
to comprise a constantly accumulating number of 
regular displacements. An observable process that 
perfectly demonstrates such a constant asymmetric 
journey is the propagation of light from a point origin 
in space. Light propagation c is, of course, the third 
essential observable measure for Einstein’s SR 
theory. Yet, rather than adopt intervals of light 
propagation to indicate time, Einstein and Minkowski 
chose to retain “seconds” of the arc for understand-
able practical reasons. 

However, Minkowski recognized that the expansion 
of a light pulse provided a fundamental “natural” 
measure for his geometric manifold, which could be 
viewed either in terms of a “dynamic” temporal 
period, such as 1 s of light travel, or in terms of a 
“static” distance of 300 000 km of light travel.(7) The 
fact that these measures were completely inter-
changeable led Minkowski to claim that this geomet-
ric manifold was a unitary one, being the union of two 
sets of different interval measures, meter and sec-
ond.(8) Hyperbolic geometry provided the most 
elegant means of uniting these different measures of 
the same relativistic interval, which preserved the 
distinctions between space and time in the form of a 
“time-like” region within the “light cone” and a 
“space-like” region outside of it. 

Yet if it is true that the measures of light meter and 
light second are interchangeable, then in principle it 
should be possible to use only one of these measures 
in modeling the space-time continuum. This possibil-
ity is easily demonstrated by considering the mapping 
of nonrelativistic events such as those illustrated in 
Fig. 1, which is a scale map of two objects on a table, 
a stopwatch with hands C, and a ball A, rolling across 
the surface. 

Observers create the map by plotting what they 
record to be the successive coincidences {C1, A1}, 
{C2, A2}, … of the positions of the second hand about 
the clock face with the positions of the ball on the 
tabletop. Since the map plots all displacements to 
scale, it gives observers freedom of choice about whether 
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Figure 1. Velocity of a body A, measured as a ratio of distances 
traveled. 

 
 

they wish to measure the intervals traveled by the hand 
of C as “seconds” or as “millimeters.” While some 
observers could choose to characterize the intervals {C1, 
A1} to {C2, A2} over which these events are recorded as 
“periods of duration,” that does not prevent other 
observers from electing to measure these same intervals 
in terms of the displacement they actually observe, as 
distinct from the “time elapse” they “sense.” 

To subscribers of this alternative convention, the 
map itself simply shows two spatial displacements dA 
and dC. Comparing the lengths of these two dis-
placements provides a proper measure of their relative 
motion, without reference to seconds. Under this new 
convention, time is always measured in units of 
spatial displacement, and the velocity vA of the 
moving ball can be redefined as the ratio of its 
displacement dA, from an initial position Ai to a final 
one Af, relative to the displacement dC, over the 
interval i to f by the designated clock motion C: 
 

 ( ) : ( ) .a f i f i

dA
v A A C C

dC
= − − =  (1) 

 
In situations involving SR, if light propagation is 
selected as the standard clock, then its properties as 
the natural constant of SR allow for the development 
of a further new rule for mapping events. Since SR 
postulates that nothing travels at a velocity greater 
than c, then we have the following: 

 

For all ,  .

Hence for 0,  0,
and where 0,  then 0.

cv v v

da dc

dc da

≥
> >
= =

 (2) 

 
This choice of convention then permits observers to 
substitute the time “measured in light seconds” axis ct 
of the Minkowski “light cone” with a “time measured 
in distances traveled by a light pulse” parameter w. 
As is illustrated in Fig. 2, rather than being a flat 
plane like the ct one of Minkowski space, w is the 
curved surface of a “light sphere” centered on the 
spatial origin of the light pulse o, with dc being the 
radius of w. Events occurring within this sphere may 
then be analyzed using circular function geometry, 
revealing a Euclidean analogue, CFS, of Minkowski’s 
hyperbolic function space-time (HFS). 

In common with AEST, CFS is what Montanus 
calls an “absolute” space-time in that it takes the 
observer’s reference frame as the preferred one and 
takes the observer’s time as the time parameter.(9) 
However, AEST retains the ct axis of Minkowski 
geometry as a general time parameter and introduces 
a fifth dimension, the proper times of objects, to act 
as their time coordinates.(10) In contrast, CFS is only 
four-dimensional, and, as will be discussed below, its 
time parameter is the spherical surface w, which may 
be seen to comprise an infinite set of unique points tp 
that act as the time coordinates of objects. 

3. CIRCULAR FUNCTION ANALYSIS OF SR 
Figure 2 is a two-dimensional map of the relativis-

tic relationship between an observer’s reference frame 
S and a translating reference frame S′. The map is 
made by the same means as employed by its Min-
kowski analogue, where observers in the S frame of 
reference retrospectively plot data retrieved from a 
series of observational devices such as movie cam-
eras, placed at regular distances throughout the S 
frame. The circle, centered on the origin o of the S 
coordinate system o, x, y, represents their observa-
tions of the wave-front w of a light flash c, expanding 
equidistantly from o. Since c is a natural constant, 
observers who retrieve data from detectors that are 
regularly spaced throughout their reference frame will 
obtain records of a regular sequence of light expan-
sion intervals, dc1, dc2, dc3, …, the unit length of 
which are determined by the actual spacing of their 
observational devices. S observers may then use any 
sequence of these “snapshot” records of the expand-
ing wave-front s to relate the coincidences of all “point” 
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Figure 2. CFS modeling of translating system S′, viewed from observers’ rest-frame S. 

 
 

particles observed at “point” places in S, with what 
they judge to be the simultaneous position of s. 

The time coordinates of any reference frame may 
then be found as a unique pair of points tp located on 
the surface w. The points tp are found by following 
the trajectory of the given reference frame over the 
interval dc and plotting the axis that is perpendicular 
to the direction of the trajectory, which in the case of 
S′ in Fig. 2 is the y′ axis. S′ is a translating, inertial 
frame of reference, separated from the x, y plane of S 
by a negligible point distance in the z direction. Over 
the interval dc, S′ translates 0.63dc in a +xy direction. 
Assume that the light flash c is triggered by the near 
coincidence of the origins of S and S′. Observers in S 
can then find two points where the y′ axis meets the 
sphere w, and by mapping a straight line dc from their 
origin to one of these points tp, they find a common 
coordinate for both their measurement of time and 
that of observers in S′. 

Since the trajectory of S′ is relatively diagonal to 
observers in S, they rotate their own y axis by the 
angle α to find the point tp at which the wave-front c 
meets y′ across a given translation interval r = (x2 + y2 
+ z2)1/2, where 
 
 1cos .rα −=  (3) 
 
The length of the line dc that connects the observer’s 
origin o to tp gives the observer’s constant, frame-
dependent, space-time interval t: 
 
 1.dc t= =  (4) 

 
The interval separating tp from o′ gives the S′ frame’s 
simultaneous measurement dc′ of the observer’s 
interval dc. The angle θr relating the juncture of dc 
and dc′ is given by 
 
 1cos .r rθ −=  (5) 

 
Following the first postulate of SR that the velocity of 
light propagation is the same for observers in all 
inertial reference frames, the judgment of the length 
of dc′ will remain frame invariant, with dc′ being 
another function of the circle, i.e., 
 
 sin ,rdc θ′ =  (6) 

 
and 
 
 2 2 2 2 2( ).dc dc dx dy dz′ = − + +  (7) 

 
The length of dc′ then provides the frame-invariant 
metric ds for CFS, analogous to that of the Min-
kowski (HFS) metric: 
 

 
2 2 2 2 2 2

2 2 2 2 2

HFS: ,

CFS: ( ).

ds c dt dx dy dz

ds dc dx dy dz

= − − −
= − + +

 (8) 

 
As for the spatial separation between two points A 
and B, we have the following: 
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2 2 2 2

2 2

HFS: ( ) ( )

( ) ,
AB A B A B

A B

s c t t r r

c τ τ
∆ = − − −

= −
 (9) 

 

 
2 2 2

2

CFS: ( ) ( )

( ) .
AB A B A B

A B

s dc dc r r

dc dc

∆ = − − −
′ ′= −

 (10) 

 
In Minkowski geometry there is an equivalence 
between ds, the proper time τ, and the velocity 
parameter β = [1 – (v/c)2]1/2, which is also found in 
CFS: 
 

 
2 2 2

2 2

HFS: ,

CFS: .

ds c d

ds dc

τ=
′=

 (11) 

 
From this it follows that, in CFS, 
 
 .dc ds τ β′ = = =  (12) 
 
Figures 3a and 3b further compare CFS and HFS, 
showing that in CFS, the observer’s plotting of 
successive tp points on the axes of translating inertial 
frames reveals a straight line otp, related to the origin 
of the S coordinate system by the angle θr. These lines 
can be designated in CFS as “clock lines,” since at 
any point ∆r along the trajectory of a translating 
inertial frame, the frame’s proper time τ = dc′ = sin θr 
can be easily measured using the familiar rules of 
circular function geometry: 
 
 2 2cos sin 1 .r r dcθ θ+ = =  (13) 
 
By combining rotation of axes with measurement of 
dc′ under a clock line, observers can further deduce 
the Lorentz transformations of their coordinates to the 
simultaneous space of translating inertial frames, such 
as S′ in Fig. 2. Observers in S use the frame-invariant 
length of dc′ to determine the simultaneous space of 
S′, which is another light sphere of relatively smaller 
dimension, shown in Fig. 2 by the gray circle centered 
on o′. Hence in CFS the Lorentz transformation of 
coordinates between reference frames is a displace-
ment and shrinking of Euclidean spheres rather than a 
tilting and stretching of non-Euclidean light cones. In 
CFS the Lorentz transformation factor γ  is given by 
 

 
1

.
sin r

dc
dc

γ
θ

= =
′

 (14) 

 

Returning to the example illustrated in Fig. 2, for v = 
0.63c, θr = cos–1 0.63 = 51°. Then γ = 1/sin 51° = 
1.29, which is exactly the same value found for a 
frame S′ translating at 0.63c when using the standard 
SR equation for the Lorentz factor: 
 

 
2

1
.

1 ( / )v c
γ =

−
 (15) 

 
Thus the functions of the circle — radius, sine and 
cosine — can be used to represent, respectively, t, τ, 
and v for the analysis of “inertial” reference frames as 
described in SR. CFS analysis of accelerating refer-
ence frames raises issues that will only be touched 
upon here. 

As illustrated in Fig. 4, the presence of forces act-
ing on a translating object will be indicated by the 
curvature of clock lines and the corresponding 
variations in the length of dc′ = τ relative to the 
length of otp = dc = t. In the case of gravitational 
forces, this does not necessarily imply a curvature of 
the axes or deformation of the light sphere, especially 
not over the infinitesimal distances presumed in CFS. 
The only space-time “curvature” is that of clock lines 
within the (locally) Euclidean space. This is also 
characteristic of AEST, where Montanus argues that 
the notion of curved space-time is dispensable.(11) 

4. COMPARISON OF MOMENTUM-ENERGY 
VECTORS IN CFS AND HFS 

Figure 5b illustrates how in Minkowski geometry 
the relationships between relativistic mass, energy, 
and momentum, m, E, and p, are derived by dividing 
all vector lengths under the hyperbolic parameter s by 
the frame-invariant displacement dτ. 

The analogous operation in CFS is to divide all 
vector lengths under the circular parameter w by the 
displacement dc, as illustrated in Fig. 5a. Different 
energy-momentum relationships appear under the 
circle compared to the hyperbola. Since the radius dc 
= t is the chosen reference frame interval, the ratio 
dc/dc indicates the total energy E0 of objects rela-
tively at rest to that frame. In Minkowski geometry 
the frame-invariant vector m = dτ is the chosen 
measure and may have values ranging from 1 to �. In 
CFS, since dc = dt = E0 = 1, the ratio dc/dc′ gives E0′, 
the relative rest energy in the accelerated frame, and 
dc/dr indicates the relativistic momentum p of the 
accelerated reference frame in terms of E0/p = 1/p. 
Thus, in CFS vector space, 
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 (a) (b) 
  
Figure 3. Comparison of Minkowski and CFS mapping of the translation ∆r = 0.55. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Figure 4. CFS mapping of accelerating reference frames. 
 
 

 
2

2 2 2 2 20
0sin cos ( ) 1 ,

E
dc dc dc E

p
� �′+ = = + =� �
� �

 (16) 

 
 0 1,E dc dt= = =  (17) 
 

 0
0

1
,

E
E dc dτ

γ γ
′ ′= = = =  (18) 

 

 0
0

0

.
E dc

m E
E dc

γ= = =
′ ′

 (19) 

 
As comparison of Figs. 5a and 5b shows, in CFS, the 
displacement dc′ = sin θ diminishes from 1 at relative 
rest to 0 at the limit spatial displacement dr = dc, 
whereas in the Minkowski analogue, the directrix of 
the hyperbola, dτ = cosh θ, grows from 1 to infinity at 
the limit velocity v = c. Hence in CFS comparison of 
the rest value 0 with the limit velocity value * for 
momentum-energy reveals the following set of 
relationships: 
 

 00
00 0, , 0,

E
E dc p

p
= = =  (20) 

 

 0
01, , * ,

*
E

E dc p dc
p

= = =  (21) 

 

 00
0 00

0

1, , ,
E

E dc E dc
E

′= = =
′

 (22) 

 

 0
0 0

0

*0, , 0.
*

E
E dc E

E
′= = =

′
 (23) 

 
In one respect, (20)–(23) lead to the same conclusions 
derived from Minkowski momentum-energy vectors: 
For differing frame velocities, total momentum-
energy remains constant in all frames, but measure-
ments of momentum and energy vary from frame to 
frame. In common with HFS, CFS indicates that the  
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 (a) (b) 
  
Figure 5. Comparison of momentum-energy 4-vectors in CFS and HFS. 
 
 
observer’s judgment of E0′ will be that it relatively 
diminishes from 1 to 0 at the limit, while E0/p grows 
in proportion from 0 to 1 at the limit. However, (16)–
(23) reveal a fundamental difference between CFS 
and HFS, which is that 1 = dc, and dc is a finite 
physical measure, 2.998 × 108 lm. In CFS, combina-
tion of (20)–(23) indicates that in the limit case v = c, 
 

 
0 0

* *
1.

p E
dc

E E
= = =  (24) 

 
These are the correct values required to preserve the 
principle of equivalence between the two reference 
frames 0 and *. This is not something obviously 
evident from the mathematics of the Lorentz factor 
equation (15) and HFS, which indicate that γ * = � 
and p* = �. In CFS, γ * = dc/dc′* = 0, so in order to 
derive the result γ * = � from CFS, one must make 
reference to the values of cosec θ = 1/sin θ. However, 
it is evident from (6)–(13) above that cosec θ is not 
one of the functions under the circle through which 
CFS represents the fundamental measures of ob-
server’s time, proper time, and velocity. These 
differences between HFS and CFS appear due only to 
the peculiarities of the chosen mathematical form and 
therefore should not be regarded as fundamental. 
Furthermore, it should be noted that in its original 
Einsteinian form the Lorentz factor equation (15) is 
an algebraic expression for measures of velocity, not 
mass-energy. There is an important difference be-

tween the fact that there may be an infinity of differ-
ing lengths between 0 and 1 for sin θ under the circle 
and the fact that the value 0 or 1 also corresponds to a 
physically finite measure dc, the radius of the ob-
server’s light sphere. By considering the difference 
between the limit values of dc′0 and dc′* in terms of 
the factor γ, where 1/γ 0 = 1 and 1/γ * = 0, it is found 
that 
 

 00

1 1
1 ,

*
dc E

γ γ
− = = =  (25) 

 
which leads to 
 

 0

0

1 1
* .

dc E
γ γ− = =  (26) 

 
Multiplying both 1/dc and 1/E0 by dc gives 
 

 0

0

1 *.
dc
E

γ γ= = −  (27) 

 
The conclusion of these equations that both γ 0 = 1 
and γ 0 – γ * = 1 accord properly with the principle of 
relativity. The situation should never arise where 
observers in some rest-frame who measure the 
dimensions of physical processes in their frame as 
finite would encounter situations where other observ-
ers could measure the same processes as relatively 
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infinite. The standard approach in relativity theory 
has been to exclude this possibility by arguing that the 
infinite dimensions of both the Lorentz factor equa-
tion and limit Minkowski “length” show it would 
require an impossible “infinite” energy to accelerate a 
particle to v = c. Unfortunately, the general theory can 
be used to hypothesize gravitational black holes as 
naturally occurring mechanisms that defy this alleged 
exclusion principle by accelerating particles to light 
velocity at its “event horizon”! 

CFS then offers an alternative solution to this con-
flict by indicating that the proportions of γ 0, E*, and 
p* are all equal to dc = 1 and that the infinite dimen-
sions of the Lorentz factor and Minkowski length are 
solely features of a chosen mathematical model, 
rather than the natural world. The fact that this world 
can also be modeled by analogous geometries such as 
AEST and CFS indicates that the scales of Min-
kowski geometry are not necessarily true of natural 
scales. This insight may be developed further by 
proportioning all the values of (27) solely in terms of 
natural constants. 

Strictly speaking, there are no units for relativistic 
ratios such as E/m or c/E.(12) To find the numerical 
value of the ratio dc/E0 requires finding a natural 
constant for E0 in order to proportion it with the 
natural constant c. The obvious choice is the quantum 
of energy, Planck’s constant h, essential to the photon 
hypothesis for light propagation c. In conventional 
units the ratio c/h appears as a momentum of 4.524 × 
1041 kg/m–1/s–1. Division by the factor c gives this 
ratio in units of mass-energy, 1.509 × 1033 kg. The 
same number value is found in the relationship 1/E0 in 
(26), either by seeing it in terms of 1/h or by seeing it 
as the ratio between h and the measuring units of 
mass-energy, (1 kg/m2/s–2)/h. Hence these ratios put a 
number, 1.509 × 1033, to the difference γ 0 – γ *, 
which will now be denoted as the limit Lorentz factor 
value γ i. 

This finite limit value γ i can be used to give a con-
sistent account of a hypothetical test object α, trans-
lating at v = c. To observers in any sublight reference 
frame, such an object is indistinguishable from a 
photon, because in this case m0/m0′ = dc/dc′ = γ * = 0. 
Imagine that the frequency f of this photon is numeri-
cally equivalent to the factor γ i; then its relativistic 
energy would be 
 

 34 2 2 33

2 2

(6.626 10  kg/m /s )(1.509 10 )

1 kg/m /s .

iE hf hα α γ
− −

−

= =

= × ×
=

 (28) 

The wavelength λ of this photon would be 
 

 251.987 10  m.i

c c
fαλ

γ
−= = = ×  (29) 

 
Now consider that this same object α might be a 
particle with v = c. From (28) observers in sublight 
frames would deduce that the hypothesized rest 
energy of this object was (1 kg/m2/s–2)/γ i = h. Con-
sider next how they would judge α’s de Broglie and 
Compton wavelengths, λB and λC. For this velocity 
Eα = pα, so Eα needs to be divided by the conversion 
factor c to obtain pα in conventional units and by c2 to 
obtain its relativistic mass mα, giving 
 

 251.987 10  m,
/ /B

h h h
p E c h cα

α α

λ −= = = = ×  (30) 

 

 2 2

25

( / ) ( / )

1.987 10  m.

C

h h h
m c E c c h c cα

α α

λ

−

= = =

= ×

 (31) 

 
Thus for any test object in this limit case there is no 
distinction between its properties as a particle and as a 
photon, since 
 
 251.987 10  m.B Cα α αλ λ λ −= = = ×  (32) 
 
It is noteworthy that Montanus also derives the 
conclusion from the consideration of AEST that 
photons and other hypothetically massless particles 
should be considered to have a rest mass.(11) For its 
part, CFS indicates that SR and quantum theory 
appear to meet at a limit Lorentz factor γ i. This 
should not be interpreted as an argument for the 
quantization of space-time at the scale of 10–25 m. It is 
only to say that for any particle α accelerated to vα � 
c – 10–38 m/s, where γ E0α = (1/h)E0α, Eα will not rise 
for any further increase in vα. In principle, this 
hypothesis could be the subject of an experimental 
test. 

5. TIME TRAVEL 
Time “travel” is a philosophically difficult idea 

encouraged by the fact that the construction of the 
Minkowski light cone gives the time axis a clear 
“direction” relative to spatial axes, and it partitions 
the continuum into “past” and “future.” Since the 
construction of the light cone also sets c as the limit 
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rate for all physical signals, efforts to consider faster 
than light (FTL) signals lead to paradox when it is 
found that some observers of the same events will 
judge FTL signals to be traveling “back” into the past. 

By contrast, the construction of the light sphere 
does not permit any notion of time travel, and so it 
allows FTL signaling to be considered without paradox. 
Although measurements in CFS are made relative to 
four coordinates, x, y, z, and dc, dc is not a member of 
the mutually orthogonal axis set x, y, z. Since the 
temporal coordinates of CFS are found on the sur-
faces of asymmetrically expanding light spheres w, by 
definition, no light sphere will reverse direction 
relative to x, y, z. So although the “travel” of a reference 
frame may be reversible relative to x, y, z, it can never 
be so with respect to dc = t. Furthermore, the mapping 
of CFS starts at any chosen “now” and leads only to 
later events, so it does not divide space-time into past 
and future zones, as does Minkowski mapping. 

An example serves to show that events that appear 
paradoxical when mapped in Minkowski geometry 
are not so when mapped in CFS. The example is also 
useful in demonstrating how CFS can be used to 
analyze transformations of coordinates between 
reference frames. The example follows a thought 
experiment summarized by Penrose,(13) which is 
illustrated in Fig. 6b. 

The Minkowski space-time diagram there shows 
the point of view of observers at Q, who judge 
themselves to be between two reference frames P and 
R each translating away from Q at v = 0.8c in oppo-
site x directions. Observers in reference frame P send 
an FTL signal at 3c toward Q and R. Call the trans-
mission of this signal event A, which from the Q 
viewpoint occurs at time t = 0, and at a place A, 0.5 m 
of light travel away on their –x axis. P observers 
judge that their FTL signal arrives at event BP, 2.1 lm 
distant, at a time tP = 0.7 m. For observers in Q, B is 
an event in the R frame of reference, at which a 
mirror is located that reflects the FTL signal back to 
the P frame, where it arrives at an event C. 

In Minkowski geometry, FTL signals lie in the space-
like region outside the light cone, and the plotting of the 
coordinate transformations for translating frames like P 
and R requires Q observers to calculate the relative 
slope Sr = tan θr of the t axes in P and R, which deter-
mines the relative folding and stretching of their Carte-
sian grid coordinates. From the Q perspective the sum 
of these transformations produces the paradox that the 
FTL signals travel relatively backward in time such 
that observers in all three frames must agree that 
event C precedes its cause, event B. 

Penrose, in common with many others,(14) believes 
such paradoxes demonstrate the absurdity of FTL 
signaling and prove the validity of the original 
postulate that c marks the limit of any signal velocity. 
A more considered view might suggest that these 
paradoxes only prove that Minkowski geometry 
cannot model behavior at variance with relativity 
theory’s original assumptions about c. CFS is also 
constructed on assumptions about the nature of light 
propagation, but these do not require a limit for signal 
velocity. CFS measures the motions of objects by 
mutual reference and c just happens to be the chosen 
reference constant in situations involving the Einstein 
principle of relativity. That allows these same events 
to be mapped without paradox in CFS. 

In the CFS map shown in Fig. 6a, Q observers set 
event A as the starting point t = 0, for analysis. From 
the Q viewpoint, at this time, the position of A is at – 
= 0.5 m of light travel and the position of the R origin 
is at +x = 0.424 lm, separated from A by 0.924 lm. Q 
observers will determine that the distance ∆rR trav-
eled by R before the signal of v = 3c arrives from A at 
event B is 
 

 

cos36.9 ( 0.924)
3 /1

0.8( 0.924)
0.336 lm.

3

R
R

R

r
r

r

° ∆ +∆ =

∆ += =
 (33) 

 
Since Q observers judge P to be coincident at A at t = 
0, then they must judge that the time taken for the 
FTL signal to cover the interval AB is 
 

 0.42 lm.
cos36.9

R
AB

r
t

∆∆ = =
°

 (34) 

 
Hence the temporal separation ∆tAB between A and B 
is +0.42 lm, and the spatial separation ABQ is 
 

 
0.42

1.26 lm.
/ 3 1/ 3

AB
Q

t
AB

dc dc
∆= = =  (35) 

 
From the Q viewpoint, for observers in P, the inter-
vals AB and ∆tAB will appear as 
 

 2.1 lm,
sin 36.9

Q
P

AB
AB = =

°
 (36) 

 

 0.7 lm.
sin 36.9

Q
P

t
t

∆
∆ = =

°
 (37)
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  (a)  (b) 
  
Figure 6. Mapping FTL signaling from A to B to C, using CFS and HFS. 
 
 
These are the same values initially specified for this 
thought experiment, and none of the time values are 
negative. Then, for the Q judgment of the same FTL 
signal reflected back from B to C, 
 

 
cos36.9 ( 1.26)

0.58 lm,
3 /1

R
BC

r
r

° ∆ +∆ = =  (38) 

 

 0.725 lm,
cos36.9BC

r
t

∆∆ = =
°

 (39) 

 

 
0.725

2.176 lm,
/ 3 1/ 3

BC
Q

t
BC

dc dc
∆= = =  (40) 

 
and 
 
 0.42 lm 0.725 lm 1.145 lm.AB BCt t∆ + ∆ = + =  (41) 
 
From the Q viewpoint, for observers in P, the inter-
vals ∆rBC and ∆tBC will appear as 
 

 0.966 lm,
sin 36.9

Q
P

BC
BC = =

°
 (42) 

 

 0.907 lm.
sin 36.9

Q
P

t
t

∆
∆ = =

°
 (43) 

 
Since all the time intervals here are positive, the 
paradox found when using Minkowski mapping 
disappears. This difference in results suggests that 

time travel may be an appropriate metaphor for 
describing the characteristics of world-lines in 
Minkowski geometry, but a wholly inappropriate 
description of temporal ordering in both space-time 
theory and nature. 

6. CONCLUSION 
CFS is a Euclidean geometry for SR that emerges 

from a philosophical critique of Einstein’s conven-
tionalist definition of time. Montanus, who has found 
another Euclidean analogue of Minkowski geometry, 
AEST, comments that his model shows Einstein got 
relativity mostly “right,” while Minkowski got the 
foundations of space-time mainly wrong.(15) The 
conclusions of this paper are that space-time geome-
tries are no more “right” than one another if they 
produce the same numerical results. When they do 
not, then physicists are obliged to attend more closely 
to the distinction between something being a property 
of a mathematical entity and it being a property of 
nature. It is also important that the geometry be easily 
usable. CFS is perhaps the simplest geometry to learn, 
since it maps the translations of systems in the way 
that they might actually be observed. However, the 
others each offer valuable insights into relativity, and 
CFS, only outlined in this paper, might not prove to 
be as useful in analyzing more complex situations 
involving gravitation and dynamics. One service CFS 
may perform is to clarify the concept of physical 
time, which Einstein did not get wrong, but neither 
did he get right. 
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Résumé 
Cet article présente une convention différente de la mesure du temps de la relati-
vité spéciale où un intervalle de temps t pourrait être mesuré par dc, la distance 
voyagée d’une origine par le front d’onde sphérique d’une pulsation lumineuse c. 
L’adoption de cette convention mène à une géométrie euclidienne pour la relativi-
té spéciale, qui est différente de celle de la géométrie euclidienne déjà proposée 
par Montanus. La géométrie actuelle est régie par les fonctions du cercle, plutôt 
que par l’hyperbole, et le front d’onde sphérique d’une pulsation lumineuse four-
nit soit un quatrième ensemble t des points des coordonnées et un paramètre w 
pour mesurer les intervalles qui sont invariables entre les référentiels. Puisque les 
valeurs de sinus sous le cercle s’étendent de 1 à 0, plutôt que de 1 à ∞, le nouveau 
modèle ne permet pas dans le cas d’un objet voyageant à la vitesse ≈ c, que toute 
intervalle ait une longueur ≈ ∞. En outre, la forme du nouveau modèle exclut la 
notion du ‘voyage’ relativement au temps. 
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