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Abstract—Physiological monitoring has been used in a wide
range of scenarios to assist in disease diagnosis, athlete moni-
toring and other activities. There are also many opportunities
in analysing aggregate data from groups of people rather than
individuals such as public event monitoring or athletic team
performance optimisation. Numerous difficulties exist pertaining
to this, particularly concerning how to process and transform the
resulting physiological data in real-time when many devices are
producing data. This paper proposes a system that is designed
to monitor, analyse and report physiological data in real-time by
leveraging mobile devices as distributed processors.

I. INTRODUCTION

Physiological monitoring can provide a plethera of health
and fitness data in real-time. Useful measures such as pulse,
heart rate and blood oxygen levels can be used successfully
to diagnose and aid in the treatment of such diseases as
sleep apnoea [1] and other respiratory disorders, as well as
assisting in the monitoring of cardiac systems [2]. By utilising
readily-available sensor devices with low power requirements,
long-term monitoring can enhance the quality of care for
patients and providing numerous advances to research asso-
ciating physiological markers with mental states, such as the
measurement and analysis of stress levels [3]. Many physio-
logical monitors can be used to derive useful information from
subjects toward a wide range of potential uses.

As well as monitoring individuals, it is possible to examine
interconnected physiological monitoring devices operating in
a group context. By analysing and aggregating data from
groups, conclusions can be drawn regarding the state of the
entire group. This technique has a wide range of possible
usage scenarios, such as monitoring the life-signs of miners
in underground tunnels in order to hasten awareness of emer-
gency situations [4], or monitoring a population for symptoms
of influenza to locate outbreaks [5]. Applications for this
technique can also be found in monitoring of groups for
crowd control purposes, tracking of vehicles for civic planning
purposes and enhanced targeting of advertisements.

There are opportunities to be leveraged with real-time
processing of physiological data on portable devices. Unfor-
tunately, while the processing capability of mobile CPUs has
increased dramatically over recent years, power drain and stor-
age remain bottlenecks. In order to alleviate these issues, real-
time processing could be packaged and distributed to other

nodes within the local area that are more capable of handling
the work. If nodes are unable to handle the workload, data can
be passed upstream to the Cloud which can efficiently process
the work in the required time frame. Other factors, such as the
available bandwidth and/or an inaccessible connection that can
make distribution to Cloud resources difficult or impossible to
utilise, forcing the devices to rely on each other to process
data in as timely a manner as possible.

This paper proposes a system that aims to support the pack-
aging and distribution of real-time physiological processing
across a diverse selection of devices by dynamically allocating
resources based on contextual/environmental data and specific
rulesets. Any transformations required by the devices should
be supported and processed in a pipeline that provides the best
compromise between efficiency and timeliness. Considerations
such as the current battery state in the group of devices and
the required computation govern the decisions that need to be
made in distributing physiological processing.

The remainder of this paper is as follows. Section II
provides a background of physiological monitoring. Section III
introduces three scenarios that illustrate the usefulness of the
system. Section IV proposes the design of a system to package
and distribute the workflow amongst devices, and Section V
analyses the suitability of the system to the proposed scenarios.
Section VI highlights specific issues and solutions. Finally,
Section VII concludes.

II. BACKGROUND

The monitoring of physiological markers for specific pur-
poses has been utilised extensively in recent years. However,
most of these uses have been limited to specialised equip-
ment in hospitals and health care clinics due to expense or
because they are simply not portable. Advancements in certain
types of monitoring equipment (such as electrocardiogram
monitors [6]) have allowed for them to be used in different
environments (e.g. mobile), for purposes beyond simple diag-
nosis and health monitoring procedures. Communications are
made trivial by devices that can utilise either a mobile phone
network [1] or home wireless internet connection [2] that
allows the devices to be monitored remotely. Software updates
can also be automatically deployed to suit future purposes
without requiring physical interaction by a technician.
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As noted, physiological monitoring can be used for a num-
ber of other purposes and is not limited to health care. Athletes
can be monitored in real-time for performance and referee-
assist services [7] by attaching sensors monitoring heart rate
and position. Monitoring levels of fatigue in drivers by using
a neural network to analyse eye shape and position [8] can
also assist in improving road safety. Monitoring equipment
is progressing to a point where it is more portable than ever
before [9], which allows its use in a wider range of scenarios
while being minimally invasive to the wearer.

In order to analyse physiological data, a number of filters
and transformations often need to be executed [10]. This can
be as simple as converting an inter-beat interval to heart-rate
or a sequence of complex algorithms that can require more
processing power, such as extracting the inter-beat interval
from an electrocardiogram and transforming it into its spectral
properties for the purposes of heart rate variability analysis. To
process these transformations in a responsive manner, adequate
computer resources must be accessible.

Some research has been attempted specifically involving
group physiological monitoring [11]. However, a significant
amount of groundwork required has been completed; useful
research has been completed to allow for the synchronisation
of real-time data sources [3], as well as several techniques pro-
viding means of routing [7], [12] and management of wireless
sensor networks [13]–[15] that can be utilised. By combining
these network organisational techniques with our own methods
for other components of our theoretical networking stack, a
complete solution could be developed.

There remains a number of problems with physiological
monitoring, particularly focused on power supply and con-
sumption [16]. Performing transformations upon collected data
in real-time is a significant strain on resources, so any improve-
ment in efficiency through intelligent distributed processing is
both desirable and achievable [17]. Power consumption is also
affected considerably by wireless transmission specifications,
so devices with lower power consumption also tend to have
low transmission ranges [11]. In order to save additional
resources, it is possible to dynamically select the mode of
communications [18] in order to achieve significant power
consumption reductions.

III. DISTRIBUTED PHYSIOLOGICAL PROCESSING

Physiological monitoring is a useful method of deriving
data from subjects for a range of purposes, including mea-
suring stress and activity levels amongst others. However,
there remains further opportunities in group physiological
monitoring - particularly in determining crowd behaviour from
physiological markers. In order to effectively transform the
data in real-time and aggregate it, significant processing power
is required - processing that is not necessarily always available.
In order to alleviate the strain on external resources for this
method of analysis, the devices collecting and transmitting
the physiological data should be able to handle some or all
of the processing occurring. For the system to cope with
devices with different levels of ability or power resources,

processing should be distributed across all devices such that
their weighted load provides a more efficient use of group
resources.This would allow the system to monitor groups for
longer and with greater responsiveness than otherwise possi-
ble, which is an important consideration in certain situations.

To ease definition and description of the system being
proposed, three scenarios have been designed that would allow
the system to demonstrate its benefits in areas that would
otherwise encounter problems if group physiological monitor-
ing were attempted. Such scenarios cover a range of different
potential applications, from safety monitoring to crowd control
and general monitoring for the purposes of enhancing other
services (such as advertising or camera control); as follows.

A. Case: Athlete Performance and Service Delivery
There are a number of opportunities in monitoring the phys-

iological data being produced by athletes actively participating
in a group sport such as football. By examining localised
player groups for levels of exertion, it is possible to focus
on areas most likely to be of interest to spectators, such as
complex ball plays and brawls. While the ball is not directly
involved in these events, such situations tend to be desirable
to spectators. Other physiological data can be helpful to team
managers, such as general player well-being - the ability to
diagnose player fatigue early is desirable, as they can be
substituted for more rested players.

As noted in previous studies [7], there are often problems
with monitoring players. Communications tend to be sporadic
and limited, and attenuation from player’s bodies often prevent
connections from occurring to some base stations. There is the
possibility of device damage occurring due to player contact
or other forces applied to the monitoring devices themselves.
While physical damage mitigation lies outside the realm of
this paper, connection interruption can be worked around.

Because of the nature of the proposed system, processing
of physiological transformations can take place at any stage
of the device communications pathway. As an example, if a
player’s monitoring device was unable to contact either; a) a
nearby wireless base station; or b) another player that was able
to forward the data to the base station, transformations could
be completed on the player’s device (or distributed among
available player devices) with results transmitted when the
connection becomes available again. This allows services to
remain real-time, as an upstream processor is not required to
quickly transform data that was unable to be transmitted -
potentially several seconds worth.

Distribution of processing would also allow power man-
agement to be handled more effectively. Players that have
been on the field for longer periods of time could encounter
power supply issues to monitoring devices, so distribution
of processing to other devices with more plentiful resources
could occur - or, if latency allowed, Cloud resources could be
dynamically allocated to compute the transformations.

B. Case: Shared Experiences in Crowds
Aggregation of physiological data taken from crowds could

potentially be used to enhance shared experiences in crowds at



sporting or cultural events (e.g. musical festivals). Measures of
autonomic arousal and movement can be used to provide real-
time feedback to the crowd about the state of the people around
them which can potentially improve the shared experience of
an event (e.g. improved feelings of co-presence [19]).

Distribution of wristbands with built-in monitoring and
wireless capability would allow organisers to collect data to
provide a visual feedback to attendees of the crowd experi-
ence. Wireless base stations would provide connectivity to a
wide area of the event, while peer-to-peer connections would
provide connections to devices outside specified areas. The
devices would monitor physiological signs and transform the
raw data as appropriate either individually or in a distributed
manner across other devices and available Cloud resources,
before sending them to be aggregated.

Distribution of processing becomes essential in situations
such as these, where base stations are likely to be positioned
sparsely, and there is unlikely to be significant processing
resources to maintain real-time transformations. Devices need
to assist in routing to base stations for other nodes, and act as
supervisors for local node groups to effectively organise pro-
cessing distribution amongst devices with available resources.

C. Case: Monitoring Miner Safety

Distributed physiological processing can also be extremely
useful for safety monitoring in areas with intermittent or
weak connections to headquarters - particularly in labyrinthine
mining tunnels and similar areas. Physiological monitoring
is already proposed in mining scenarios, particular in rescue
scenarios [4], although the proposed solutions require a large
amount of on-site infrastructure. While monitoring devices and
processing equipment would likely represent a significant cost
to a resources corporation, the potential for improved safety
(and therefore decreased fines/penalties) may justify the cost.

Miners equipped with monitoring devices and small pro-
cessing units that could be built into existing safety equip-
ment. Large spikes in heart-rate and other indicators within
a localised area could indicate a problem not visible to
other sensors. If no connection to headquarters is available,
units would collaboratively processes the workload and alert
localised alarm units to indicate a problem - even without
connection to or interaction with superiors. A monitoring
system could also include other types of sensors looking for
issues with air quality or poisonous gasses, able to be entirely
processed by the mobile units. By collating data from units,
it would be possible to locate areas with poor habitability and
alert workers to avoid certain areas. While workers are likely to
hold higher power reserves for processing than other scenarios,
efficient distribution of work processing would allow for more
accurate monitoring, as more available processing could cater
for lower intervals between sensor readings.

IV. DESIGN

A. Overview

The proposed system has been designed as a standard
networking stack as seen in Table I, inheriting a number of

existing standards and protocols for dealing with tasks such
as routing, addressing and physical media access. Existing
techniques suffice for our purposes, with the exception of a
modified network layer, incorporating dynamic radio switching
depending on distance and required bandwidth - a measure
taken to save a substantial amount of energy.

TABLE I
PROPOSED IMPLEMENTATION

Application Distributed Physiological Processing protocol

Transport TCP

Network IPv4, CoolSpots [18]

Link Dynamic 802.11b/g/n, Bluetooth

The proposed system is a generic architecture for real-
time physiological transformations that is designed to manage
the packaging and distribution of processing to other devices.
Any available device can be utilised for processing, including
similar nearby monitoring devices, wireless base stations and
Cloud resources. Figure 1 represents the proposed usage ar-
chitecture of the system, including optional components (such
as the super-nodes and available Cloud resources).

Fig. 1. Proposed Architecture for Distributed Real-Time Physiological
Processing



B. Architecture
In order to effectively manage groups of sensor nodes,

a hierarchical peer-to-peer network architecture is used to
group monitoring devices for data collection and processing,
as represented in Figure 1. Within each group of sensor
nodes, a super-node is selected. Determined amongst nodes
by a number of metrics (such as remaining power resources,
processing ability and strength of connection to both other
nodes and upstream), the super-node manages load distribu-
tion, connections to other super-nodes and data aggregation
for upload. In the event that a super-node is disabled or leaves
the group, a new super-node is selected. If other supervising
devices are available (such as wireless base-stations), these
static supervisors effectively replace the role of a super-node
in the system.

Individual nodes performing processing as detailed by the
super-node, which would often be their own processing. If
resources on other nodes are depleted, the super-node would
re-allocate work to other nodes with abundant resources,
and processing can continue unimpeded. If all nodes have
depleted resources, processing is restricted to collection and
transmission - the super-node would then send all results
upstream to Cloud resources for processing. The benefits
and disadvantages of processing at each of these layers is
modelled in Figure 2. Importantly, it is noted that latency
and difficulty of access increases dramatically as processing is
shifted further away from individual nodes, as fast and reliable
network connections can be difficult to procure in some usage
scenarios.

Fig. 2. Benefits and Disadvantages of Processing Layers

In order to effectively load-balance the swarm, nodes are
also required to report their current state to the super-node.
This includes details such as current load, remaining power
resources, current processing details and others. Because the
stream registration system already exists for data collection
and transmission purposes between client and server, minimal
effort is required to extend it to include reporting of device
state to the super-node.

The super-node balances load and resources by monitoring
the state of clients, allowing it to distribute work to low-load
devices with plentiful resources. The super-node also keeps
aggregate state details, such as an average power resource level
of the group. This provides the super-node with supplementary
data, allowing it to decide if the swarm is unable to cope
with current work-load for a sustained period of time. In this
event, the super-node would trigger offloading of work-load to

Cloud resources (if accessible). Logic such as this is decided
by pre-determined decision trees, as described in Section VI.
The trees are able to be updated over-the-air by controllers, in
the case of change situational parameters. The super-nodes
examine the trees to make decisions about distribution to
individuals or groups.

V. APPLICATIONS

The proposed processing framework would, in its generic
form, handle all three example studies with a minimum of
alteration. While minor redevelopment for individual device
types may be necessary, a substantial part of core functionality
is platform-agnostic. The software itself can also be easily
adapted to unusual situations, if required. It is expected
that fine-tuned decision tree modifications should enable the
majority of situations to be supported by the system as desired.

A. Athlete Performance

Due to the fixed area of operation involved in this scenario,
wireless base stations with considerable processing power and
virtually limitless power resources are able to be utilised.
By positioning these stations as processing nodes with an
overarching controller, devices attached to players can be made
smaller and lighter. Because they have no need to individually
process data, they can be placed in a monitoring-only role
- advantageous due to the physical nature of the sport and
potential damage to the unit if it were made bulkier with higher
processing capabilities.

The application interface can also allow for a range of in-
formation to be delivered to different sources as authentication
permits. Heart rate and other direct physiological markers can
be delivered directly to the teams coaching and medical staff
for review, while aggregated data could be made available to
camera crews for use in partially-automated filming.

B. Shared Experiences in Crowds

Several challenges are introduced by this scenario; a gener-
ally fixed area but with uneven population distribution, varying
levels of connectivity to devices and limited power resources.
The system should handle the scenario with optional extras
implemented and modifications to the primary decision tree to
emphasise battery conservation except in times of interrupted
connectivity.

Swarm super-node selection and setup may be required for
the system to operate correctly, due to the possibility of groups
moving out of range of base stations. In the event that a base
station ceased operation or a group of subjects were not within
communications range, the swarm would select a super-node
to manage distribution of processing and report back to the
controller whenever possible. Communications could be re-
established either through movement of the group back within
range of a station, or bunny-hopping through multiple other
devices until any device was able to communicate with the
controller. Once a connection isestablished, the full backlog
of data can be transmitted to the controller for analysis.



In order to prioritise power resources over processing, the
decision tree would be modified to emphasise the use of
distributed processing amongst peers only in the event of
interrupted connectivity, preferring instead to pass data up the
chain to more capable processing resources. Combined with
swap and/or recharge stations, monitoring devices could more
easily last the full length of events described in this scenario.

C. Miner Safety

Adaptation of the system for this scenario follows similar
principles to the otherscenarios, as population density is re-
duced and connectivity becomes sparse. Equipment supporting
higher processing ability and more power resources is able to
be integrated into safety harnesses and mining equipment.

Due to the importance of maintaining connections in safety-
conscious situations such as mining, it is recommended that
wireless relays are situated throughout the mines to ensure
controllers have connectivity at all times. Unfortunately, band-
width is not necessarily plentiful with such solutions, so
transformations should still be distributed amongst equipment
available on mining and safety rigs and only resulting data
should be transmitted to controllers.

VI. ISSUES/DISCUSSION

This section highlights important implementation issues.

A. Implementation Details

For ease of use and compatibility reasons, the processing
framework is implementaiton as a standalone Python ap-
plication utilising the Twisted Matrix Internet development
library. The resulting software should execute on any Cloud
platform, PC-compatible system or (with minor alterations)
Android smart-phone, allowing a broad range of devices to be
deployed to support the operation of the system. Programmatic
and manual connections are be made to servers through a
RESTful web API, allowing connections by any software
that implements the correct interface. Monitoring devices also
register users, streams and transmit data using this API, as
well as hosting their own interface through which users may
request connections to specific peers - lessening potential load
on the selected super-node or other server resource.

B. Resource Allocation

Determining the quantity of work to allocate to a single
node can be a difficult task. There are models able to man-
age resource allocation, from auction-based approaches [20]
to process scheduling in high-performance computing [15].
Techniques used within these models can be adapted to
provide resource allocation in the proposed system, which
similarly consists of a group of heterogeneous devices with
varying resources levels. In order to balance workload across
a group, individual nodes report their state to the supervisor
in an identical format to normal physiological data. The node
registers a stream containing its state to the supervisor, which
in turn uses the data to make decisions about work allocation.

To maintain a fair balance of work, current system load and
remaining battery resources should be reported by the node to

the supervisor. Work should be allocated in such a way that
individual node load should be less than 1.0, while remaining
battery lifetime should be approximately equal across devices.
This should distribute work to more powerful devices in
greater amounts, but without compromising battery life.

In the event that aggregate swarm load is greater than 1.0
or remaining power resources are less than a user-specific
amount, processing should be distributed upstream to available
processing resources. If available, this would be on-site com-
puting hardware to ensure lowest possible cost and latency.
If hardware is not accessible on-site but sufficient Internet
bandwidth is available, transformations should be distributed
to Cloud Computing resources [21].

C. Transformation Distribution

Distribution of transformations involves requests being sent
in XML. Likewise, data to be processed by transformations can
be sent using XML or (if necessary) using a simple TCP socket
to reduce processing overhead. All post-transformation data
is available externally by sending specific requests in XML
format to the controllers RESTful [22] API.

In normal usage, a node registers with the nearest available
super-node or base station. After receiving authentication
tokens, the node registers data-streams with the super-node
containing physiological data including its state. Any desired
transformations is specified to the super-node, which will dis-
tribute work as appropriate amongst nodes or other resources.
All transformed data is then sent upstream to the controller,
though requests for raw data may still be made to the super-
nodes. Finally, any aggregated information required externally
by the end-user may be requested from the controller.

D. Decision Trees

In order to provide a customisable decision process for use
in a range of environments, a decision tree [23] can be utilised
by the system to aid in optimisation of system parameters.
Ideally, these would be modified by the controllers (either at
run-time or during setup) to provide the best possible balance
of system responsiveness and resource usage.

Anexample of decision tree usage is for prioritising bat-
tery life over processing ability by initialising monitors in
monitoring-only mode, which would only pass data upstream
to be transformed. If no other processing was available,
devices would default to working in a co-operative fashion
to transform data for transmission to controllers. A hybrid
approach can also be used, with individual resources being
used until such a time that either power or processing is
depleted, and data is sent upstream. This is desirable if more
plentiful processing facilities had a higher cost; for example,
using Cloud computing (which incurs costs incrementally as
resources are used) as the primary transformation processor.

The decision trees are implemented using a standard XML
tree format, which is timestamped and distributed to all peers -
while standard monitoring peers would not utilise it, any peer
later selected as a super-node would. A simple example of a
decision tree in XML format is described in Figure 3.



• Individual
– CurrentBattery ≤ 20 : MonitoringOnly

• Group
– CurrentBattery ≤ 40 : Redistribute
– CurrentLoad ≥ 1.0 : DistributeToCloud

Fig. 3. An Example Decision Tree

E. Super-node Selection

If the system is required to operate standalone without
the assistance of a dedicated super-node (such as a wireless
base station), the swarm of monitors must decide amongst
themselves which peers will act as supervisors. A number of
techniques [24] [25] have been developed to cover this even-
tuality in other peer-to-peer networks, which can be adapted
to suit the proposed system. Additional factors will need to
be included in decision-making; remaining battery capacity,
available bandwidth to controllers and overall processing abil-
ity. As the supervisor, the super-node acts as a load-balancer
and primary distributor of transformation workloads across the
swarm, and must be kept up-to-date as to the swarm state
at any given time. For the purposes of this system, normal
supervisor software (such as that used on base stations) should
be easily adapted to run on any monitoring hardware, allowing
for dynamic allocation of super-node status.

VII. CONCLUSION

This paper describes a number of case studies in which the
proposed system could potentially provide data for the purpose
of increasing safety or productivity. By leveraging devices
within a system for use as distributed processing clients, we re-
use resources in an efficient manner to transform physiological
data in real-time. This allows for the aggregation and analysis
of physiological data covering a whole population, rather than
individuals, which opens up a significant range of applications.

The system is designed with the aim of extensibility through
the implementation of new physiological transformations, and
adaptability through the modification of decision trees. These
decision trees would allow the controllers to prioritise device
lifetime through minimisation of power expenditure, or real-
time processing through distribution of transformation tasks to
dedicated processing hardware, such as Cloud resources. This
system enables the use of physiological transformations that
can be used to improve a range of scenarios.
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