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Abstract 42 
43 

Enterobacter sakazakii has been implicated in outbreaks of meningitis, septicemia, and 44 

necrotizing enterocolitis in immunocompromised and premature neonates. In this study, 45 

the effect of desiccation stress, starvation stress, heat shock and cold shock on thermal 46 

inactivation of E. sakazakii in rehydrated infant milk formula was evaluated. Stressed 47 

cells were mixed with rehydrated infant milk formula at 52, 54, 56, and 58°C for various 48 

time periods. The D- and z-values were determined by using linear regression analysis. 49 

Z)-values for unstressed E. sakazakii at 52, 54, 56 and 58°C were 15.33, 4.53, 2.00 and 50 

0.53 min, respectively. Desiccation and heat stress, but not starvation or cold stress, 51 

caused significant reduction in Z)-values. For example, D52 was 15.33 min for unstressed 52 

cells compared with 8.72 and 7.36 after desiccation and heat stress. Z-values of 53 

desiccated, starved, heat shocked and cold shocked E. sakazakii were not significantly 54 

different from unstressed cells (4.22°C). The results of this study may be of use to 55 

regulatory agencies, infant milk producers and infant caregivers to design heating 56 

processes to eliminate E. sakazakii that may be present in infant milk formula. 57 
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1. Introduction 72 
73 

Enterobacter sakazakii is a Gram negative, facultatively anaerobic, motile, non-spore 74 

forming bacterium belonging to the Enterobacter genus and the Enterobacteriaceae 75 

family. It was known as "yellow-pigmented Enterobacter cloacae" but in 1980 was 76 

renamed E. sakazakii because of differences with E. cloacae in DNA-DNA hybridization, 77 

biochemical reactions, and pigment production (Farmer, Asbury, Hickmann, & Brenner, 78 

1980). 79 

E. sakazakii is considered an opportunistic pathogen, which can cause severe forms of 80 

infections including meningitis, bacteraemia, and necrotizing enterocolitis in neonates 81 

and infants (Farmer et al., 1980; Bar-Oz, Preminger, Pel eg, Block, & Arad, 2001; Van 82 

Acker, De Smet, Muyldermans, Bougatef, Naessens, & Lauwers, 2001; Block, Pel eg, 83 

Minster, Bar-Oz, Simhon, Arad, & Shapiro, 2002; Himelright, Harris, Lorch, Anderson, 84 

Jones, Craig, Kuehnert, Forster, Arduino, Jensen, & Jernigan, 2002; FAO/WHO, 2004). 85 

Although documented outbreaks caused by this pathogen are rare, E. sakazakii was 86 

grouped together with Listeria monocytogenes, Clostridium perfringens types A and B 87 

and Cryptosporidium parvum, into 'Severe hazard for restricted populations, life 88 

threatening or substantial chronic sequelae or long duration' by the International 89 

Commission for Microbiological Specification for Foods (2002). 90 

This organism has been isolated from a variety of foods, food factories and environments 91 

(Muytjens, Zanen, Sonderkamp, Kolee, Wachsmuth, & Farmer, 1983; Iversen & 92 

Forsythe, 2004; Kandhai, Reij, Gorris, Guillaume-Gentil, & Van Schothorst, 2004; 93 

Guillaume-Gentil, Sonnard, Kandhai, Marugg, & Jousten, 2005; Nassereddin & Yamani, 94 

2005; Restaino, Frampton, Lionberg, & Becker, 2006; Shaker, Osaili, Al-Omary, 95 

Jaradat, & Al-Zuby, 2007). However, E. sakazakii infections are associated with powder 96 
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infant formulas or preparation equipment (Bar-Oz et al., 2001; Van Acker et al., 2001; 97 

Block et al., 2002). 98 

Because the potential risk of E. sakazakii in infant milk formula is a major concern to 99 

regulatory agencies and infant formula producers, different methods have been 100 

investigated to inactivate E. sakazakii in powdered and rehydrated infant milk formula 101 

such as gamma radiation (Osaili, Shaker, Abu Al-Hassan, Ayyash, & Martin, 2007a; 102 

Lee, Oh, Kim, Yook, & Byun, 2006), probiotics (Osaili, Shaker, Ayyash, & Holley, 103 

2007b), bacteriophages (Kim, Klumpp, & Loessner, 2006), high pressure processing 104 

(Gonzalez, Flick, Arritt, Holliman, & Meadows, 2006), pulsed electrical field (Perez, 105 

Aliaga, Bernat, Enguidanos, & Lopez, 2007) and heat treatment (Edelson-Mammel & 106 

Buchanan, 2004). Heating rehydrated infant milk formula before feeding the infants has 107 

been recommended by FAO/WHO (2004) to eliminate the risk of E. sakazakii in infant 108 

milk formula. 109 

Heat treatment remains the primary method of eliminating foodborne pathogens from 110 

foods. Although the thermotolerance of microorganisms is affected by their physiological 111 

states (Lou & Yousef, 1996; Doyle, Mazzotta, Wang, Wiseman, & Scott, 2001; Wesche, 112 

Marks, & Ryser, 2005), all published thermal inactivation studies of E. sakazakii in 113 

rehydrated infant formula have employed cells that were prepared under optimal 114 

laboratory conditions (Nazarowec-White & Farber, 1997; Breeuwer, Lardeau, Peterz, & 115 

Joosten, 2003; Edelson-Mammel & Buchanan, 2004; Iversen, Lane, & Forsythe, 2004). 116 

In the environment, however, microorganisms are exposed to various stresses, e.g., 117 

chemical, physical or nutritional stresses. Therefore, it would be appropriate to study the 118 

thermotolerance properties of the stressed microbes that might contaminate the products 119 

from the food processing or preparation environment. 120 
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Desiccation stress can occur when microbes are exposed to dry conditions. Exposure of 121 

growing microbes to low nutrient conditions can lead to starvation stress (Dickson & 122 

Frank, 1993; Wesche et al., 2005). Heat shock can occur when bacteria are exposed for a 123 

short period to high temperature within or higher than their normal growth temperature 124 

(Bunning, Crawford, Tierney, & Peeler, 1990; Pagan, Condon, & Sala, 1997). Cold shock 125 

can occur when microbes are exposed to sudden drop in temperature of more than 15 126 

degrees (Jones, Mitta, Kim, Jiang, & Inouyi, 1996). 127 

The effect of stresses on the thermotolerance of pathogenic bacteria in the family of 128 

Enterobacteriaceae in food, water or broth system has been studied (Shenoy & Murano, 129 

1996; Juneja, Klein, & Marmer, 1998; Leenanon & Drake, 2001; Wesche et al., 2005; 130 

Spinks, Dunstan, Harrison, Coombes, & Kuczera, 2006). However, there are no 131 

published studies investigating the effect of environmental stresses on thermal resistance 132 

of E. sakazakii in rehydrated infant milk formula. Thus, the present study was undertaken 133 

to quantify the effect of desiccation, starvation, heat and cold stresses on the thermal 134 

inactivation of E. sakazakii in rehydrated infant milk formula. 135 

Such information may be useful to regulatory agencies, infant milk producers and infant 136 

care givers to design heating processes that are sufficient to kill E. sakazakii that may be 137 

present in infant milk formula. 138 

139 
2. Materials and Methods 140 

141 
2.1. E. sakazakii strains 142 

Five E. sakazakii strains were used in this study; ATCC (51329) strain and four food 143 

isolates (Shaker et al., 2007). Al l cultures were stored in brain heart infusion (BHI) 144 

(Oxoid Ltd., Basingstoke, UK) broth with 20% glycerol at -40°C. E. sakazakii cultures 145 

were subcultured in BHI three times before use. 146 

147 
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2.2. Preparation of the unstressed E. sakazakii cultures 148 

Equal volumes (1ml) of each E. sakazakii strain were combined to form a cocktail 149 

culture. The mixed culture was centrifuged (3008 g, 20 min). The supernatant was 150 

discarded and the pellet was resuspended in 1 ml of 0.1% peptone water (Becton 151 

Dickinson, Sparka, Md, USA) to a concentration of approximately 1010 CFU/ml. 152 

153 

2.3. Preparation of stressed E. sakazakii cultures 154 

2.3.1. Desiccation treatment 155 

The E. sakazakii cocktail was desiccated as described by Breeuwer et al. (2003) with 156 

minor modifications. One millilitre of freshly prepared E. sakazakii cocktail was divided 157 

into 50 ul portions in a sterile Petri dish. The plate was kept without lid in a 40°C 158 

incubator for drying. Dehydrated silica gel was placed in the incubator. After drying (< 159 

2h) the plate was covered and kept at 21°C for 4 days. Preliminary study showed that the 160 

drying and storage times decreased the initial number of the cells 1 log and < 1 log/ ml, 161 

respectively. 162 

163 

2.3.2. Starvation treatment 164 

The starvation treatment method used in the present study was similar to that described 165 

by Leenanon and Drake (2001) for E. coli 0157:H7. One millilitre of freshly prepared E. 166 

sakazakii cocktail was added to 9 ml of sterile saline solution (0.85% NaCl) in 15 ml 167 

screw cap test tube, mixed thoroughly for 1 min, and then incubated for 48h at 37°C. 168 

169 

2.3.3. Heat shock treatment 170 

Heat shocked cultures were prepared as described by Gurtler and Beuchat (2005). One 171 

milliltre of freshly prepared E. sakazakii cocktail was added to 9 ml of sterile potassium 172 
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phosphate buffer (0.1 M : pH 6.8) in 15 ml screw cap test tube that was placed in a water 173 

bath (Memmert, Germany) at temperature of 55°C. After 5 min of holding, the test tube 174 

was removed and cooled immediately under running tap water. Preliminary studies 175 

showed that heat stress decreased the number of E. sakazakii < 1 log/ml 176 

177 

2.3.4. Cold shock treatment 178 

The cold shock culture was prepared as described by Wesche et al. (2005) for 179 

Salmonella. One millilitre of freshly prepared E. sakazakii cocktail was added to 9 ml of 180 

sterile potassium phosphate buffer (0.1 M , pH 6.8) in 15 ml screw cap test tube and 181 

mixed thoroughly for 1 min then stored for 24 h at 4°C. Preliminary study showed that 182 

cold stress decreased the number of E. sakazakii < 1 log/ml 183 

184 

2.4. Infant formula 185 

Commercial dehydrated infant milk formula (56.6% carbohydrate, 11.4% protein, and 186 

25.4%) fat) was rehydrated according to the manufacture's instruction at the ratio of 1/6.7 187 

(w/v). The infant milk formula was screened before use and no E. sakazakii were 188 

detected. 189 

190 

2.5. Thermal inactivation 191 

Prior to heat treatments, unstressed, starved, heat shocked or cold shocked cultures were 192 

centrifuged, as described before, and resuspended in 1 ml peptone water (0.1%>) to be 193 

used in the thermal inactivation studies. Desiccated cells were rehydrated by adding 1 ml 194 

of peptone water. 195 

Fifty millilitre of rehydrated infant milk formula were prepared in sterile 100-ml capacity 196 

Duran bottles. The formula was heated prior of inoculation to 52, 54, 56, or 58°C in a 197 
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temperature-controlled shaking water bath. A calibrated thermocouple was placed in a 198 

replicate diluent bottle to monitor the temperature profile over the experimental periods. 199 

One millilitre of the unstressed, desiccated, starved, heat shocked or cold shocked 200 

cocktails was mixed individually with heated rehydrated infant formula at each 201 

temperature. At timed intervals, depending on temperature, samples (1 ml) were 202 

transferred to sterile tubes and cooled in an ice-water bath. Aliquots (0.1ml) of 203 

appropriate dilutions of the samples were plated in duplicate on tryptone soy agar (TSA) 204 

(Oxoid Ltd., Basingstoke, UK) supplemented with 0.1% sodium pyrovate, and incubated 205 

at 37°C. After 48h of incubation survivor cells were enumerated. Triplicate thermal 206 

inactivation trials were performed at each studied temperature. 207 

208 

2.6. D- and z-value determinations 209 

The logarithms of the number of E. sakazakii survivors in rehydrated infant milk formula 210 

after each heat treatment were plotted against the heating time. The Z)-value for the 211 

microorganism at each temperature was calculated from the linear regression model for 212 

the logio of surviving bacterial cells and heating time. The Z)-value is the negative inverse 213 

slope of the plot: 214 

log(A) = log(Ao)--^ 215 

where N is the number of survivors (CFU/ml) at time t and Ao is the number of survivors 216 

at time 0. 217 

The z-values for E. sakazakii were calculated by determining the linear regression of the 218 

logio of Z)-values and temperatures (7). The z-value is the negative inverse slope of the 219 

plot: 220 

\og(D) = log(£><>) - - 221 
z 



where D is the decimal reduction time (min) at temperature T (°C). Do is the decimal 222 

reduction time at temperature 52°C and z is thermal resistant constant (°C). 223 

224 

2.7. Process lethality calculation 225 

Sixty millilitre of rehydrated infant milk formula in 125 ml-capacity sterile Duran bottle 226 

was heated in water bath to 63°C (minimum temperature used for pasteurization process) 227 

then immediately cooled under running tap water to 40°C. The temperature during 228 

heating and cooling the rehydrated formula was monitored using a calibrated 229 

thermometer at 5 second timed intervals. Process lethality was calculated from the 230 

integration of the time-temperature relationship during heating and cooling of the milk 231 

formula: 232 

[r(p-r(Re/)] 

F=fl0 2 dt 233 

Jo 

Where T(t) is the temperature of rehydrated infant milk formula at time t, and T(Ref) is 234 

the reference temperature. The T(Ref) was 58°C and the D58 and z values obtained for E. 235 

sakazakii in rehydrated infant milk formula were used in predicting pathogen lethality for 236 

the heating processes. 237 

238 

2.8. Statistical analysis 239 

The means of the D-and z-values of desiccated, starved, heat shocked or cold shocked E. 240 

sakazakii in rehydrated infant milk formula were compared with those values of 241 

unstressed E. sakazakii in rehydrated infant milk formula by using the student's t-test at 242 

0.05 significant level. 243 

244 

245 

246 



3. Results 247 

The E. sakazakii death kinetics were modeled using linear regression analysis. The 248 

regression curves were fitted with r values (coefficient of determination) of > 0.90 for all 249 

four temperatures. Figures 1-4 show the survivor curves of unstressed, desiccated, starved, 250 

heat shocked and cold shocked E. sakazakii at temperature range of 52 to 58°C (Table 1). 251 

Desiccation and heat stress, but not starvation or cold stress, caused significant reductions 252 

in D-values. For example, D 5 2 was 15.33 min for unstressed cells compared with 8.72 and 253 

7.36 after desiccation and heat stress. Desiccation and heat stresses significantly (P < 0.05) 254 

decreased thermal resistance of E. sakazakii in rehydrated infant milk formula. Desiccation 255 

stress decreased the D-values by 43.1, 54.8, 57.8 and 43.4% and heat stress decreased the 256 

D-values by 52.0, 54.3, 62.0, and 49.1% at temperatures 52, 54, 56 and 58°C, respectively. 257 

Starvation and cold stresses did not affect significantly (P > 0.05) the thermal resistance of 258 

E. sakazakii in rehydrated infant milk formula. 259 

The z-values of unstressed, desiccated, starved, heat shocked and cold shocked E. sakazakii 260 

were 4.22 (± 0.16, SD), 4.20 (± 0.09), 4.23 (± 0.40), 4.22 (± 0.09), and 4.12 (±0.13), 261 

respectively, with correlation coefficients >0.97 (Figure 5). There were no statistical 262 

differences (P > 0.05) between the z-values of the unstressed and stressed cells. 263 

The time-temperature profile during heating and cooling the rehydrated infant milk formula 264 

was monitored (Figure 6). The maximum temperature (63°C) was reached after 4 minutes, 265 

and reduced to 40°C within 7 minutes. 266 

267 

4. Discussion 268 

Previously the thermal resistance of E. sakazakii in rehydrated infant milk formula has 269 

been studied using unstressed cultures that were grown under optimal laboratory 270 

conditions. Breeuwer et al. (2003) reported Z)-values for two strains of E. sakazakii within 271 
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the same range as those reported in the present study at 54, 56, and 58°C. Iversen et al. 272 

(2004) and Nazarowec-White and Farber (1997) reported higher £>-values at 52, 54, 56, 273 

and 58°C for E. sakazakii in infant milk formula than our values for stressed and unstressed 274 

cultures. 275 

The effect of desiccation on the thermotolerance of E. sakazakii has not previously been 276 

reported. Breeuwer et al. (2003) studied the survival of E. sakazakii in dry conditions and 277 

found that E. sakazakii is more resistant to osmotic and dry stresses than other 278 

Enterobacteriaceae members and that resistance is most likely linked to the accumulation 279 

of trehalose in the cells. In our study, desiccation stress failed to provide cross-protection 280 

against heat treatment. This is possibly because simultaneous exposure of the microbe to 281 

different stresses, as in this study exposure to desiccation stress is combined with starvation 282 

stress, required energy-consuming production of a number of protective stress shock 283 

proteins, which may cause the microorganisms to be metabolically exhausted (Beales, 284 

2004) and thus less heat resistant. 285 

The changes in Z)-values obtained for starved E. sakazakii were consistent with those 286 

reported for other starved pathogens. Lou and Yousef (1996) observed that exposing L . 287 

monocytogenes Scott A to starvation stress for 48h increased the Z)-value at 56°C 5.5-fold 288 

compared with the control sample. Bang and Drake (2002) reported that starvation 289 

increased the Z)-values at 47°C for three strains of Vibrio vulnificus by 6 to 26% compared 290 

with control cultures. Leenanon and Drake (2001) found that starvation enhanced the 291 

thermotolerance in two E. coli strains. They reported that the Z)-values at 56°C increased 292 

from 7.1 and 5.4 min to 9.7and 7.2 min, respectively. 293 

Several investigators have reported that heat shock increases the thermotolerance of 294 

bacteria through the induction of a specific set of proteins known as heat shock proteins 295 

(Juneja et al., 1998; Wesche et al., 2005). However, this study found that heat shock prior 296 
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to heat treatment made E. sakazakii more sensitive to heat. Yousef and Courtney (2003) 297 

mentioned that there are three levels of microbial stresses; mild stress that does not cause 298 

viability loss but arrests growth rate, moderate stress that causes some viability loss and 299 

arrests growth, and severe stress that causes microbial death. It seems that the heat shock 300 

(55°C for 5 min) used in this study resulted in injured cells which when were exposed to 301 

heat treatment died quickly. 302 

Cold stress can decrease the heat tolerance of bacteria. Leenanon and Drake (2001) 303 

reported that the Z)-values of three E. coli strains at 56°C in broth system decreased after 304 

exposure to cold stress. Generally, change in thermotolerance of microorganisms after 305 

environmental stresses may be explained by stress induced physiological changes (Lou 306 

and Yousef, 1996). In our study, the decrease in heat tolerance following cold stress may 307 

be due to the induction of cold shock proteins and the repression of heat shock proteins or 308 

to the incorporation of more unsaturated fatty acids into cell membranes to maintain 309 

membrane fluidity (Beales, 2004). 310 

The z-values for E. sakazakii (4.22, 4.20, 4.23, 4.22, and 4.12 °C) were similar to those 311 

previously published optimally grown, unstressed cells. Nazarowec-White and Farber 312 

(1997) reported z-value of 5.8°C for a cocktail of E. sakazakii. Breeuwer et al. (2003) 313 

reported z-values of 3.1 and 3.6°C for E. sakazakii 1787-2 and 16, respectively. Edelson- 314 

Mammel and Buchanan (2004) and Iversen et al. (2004) have reported z-value of 5.6°C 315 

for E. sakazakii in rehydrated infant milk formula. The similarity between the z-values of 316 

unstressed and shocked E. sakazakii indicating that stresses had no effect on the 317 

sensitivity of the microbe to temperature changes. 318 

The z-value of E. sakazakii in rehydrated infant milk formula is required to calculate 319 

process lethality (F). For instance, heating the infant milk formula to temperature of 63°C 320 

then cooling to 40°C will achieve average process lethality at reference temperature 58°C 321 
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of 18 min. This process lethality will result in ca 60, 27, 67, and 38 log reduction (F/ 322 

£>58°c) of desiccated, starved, heat shocked, and cold shocked E. sakazakii and 40 log 323 

reduction of unstressed E. sakazakii in rehydrated infant milk formula. Therefore the 324 

presence of E. sakazakii in reconstituted powdered infant milk formula will probably be 325 

due to contamination after pasteurization during the manufacturing process. This study 326 

would be useful to infant milk formula processors, regulatory agencies and infant care 327 

givers to design heating processes that are sufficient to destroy E. sakazakii that may be 328 

present in dehydrated infant milk formula. 329 

330 
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Tablel. Z)-values of unstressed, desiccated, starved, heat shocked and cold shocked E. 543 
sakazakii in rehydrated infant milk formula. 544 

Temperature 
(°Q 
52 
54 
56 
58 

Unstressed 
15.33±2.19 
4.53 ±0.55 
2.00 ±0.35 
0.53 ±0.03 

Desiccation 
8.72±0.92* 
2.05±0.11* 
0.84±0.07* 
0.30±0.04* 

Z)-values (min)a 

Treatment 

Starvation 
17.47± 3.11 
6.67 ± 1.27 
2.07 ±0.21 
0.67 ±0.06* 

Heat 
7.36 ±0.52* 
2.07 ±0.35* 
0.76 ± 0.20* 
0.27 ±0.01* 

Cold 
14.43 ± 1.36 
3.93 ±0.15 
1.47 ±0.04 
0.48 ±0.03 

a Arithmetic mean of three replications ± standard deviation. 545 
The value is significantly different (P < 0.05) compared with that of unstressed cells at the s&ttfe 

temperature. 547 
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Figure 1- Survivor curves of unstressed, desiccated, starved, heat shocked and cold shocked £585 
sakazakii at 52°C in rehydrated infant milk formula. 586 
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Figure 2- Survivor curves of unstressed, desiccated, starved, heat shocked and cold shocked 
sakazakii at 54°C in rehydrated infant milk formula. 
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Figure 3- Survivor curves of unstressed, desiccated, starved, heat shocked and cold shocked £642 
sakazakii at 56°C in rehydrated infant milk formula. 643 
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Figure 4- Survivor curves of unstressed, desiccated, starved, heat shocked and cold shocked £675 
sakazakii at 58°C in rehydrated infant milk formula. 676 
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Figure 5- Thermal resistance curves of unstressed, desiccated, starved, heat shocked and cold SKMcked 
E. sakazakii in rehydrated infant milk formula. 702 
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