

A Pragmatic Approach to Semantic Repositories

Benchmarking

 Dhavalkumar Thakker
1,2
, Taha Osman

1
, Shakti Gohil

1
, Phil Lakin

2

1Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
2Press Association, 16 Castle Boulevard, Pavilion House, Nottingham, UK

Email: {Dhaval.Thakker, Phil.Lakin}@pressassociation.com,

{Taha.osman, N0239676}@ntu.ac.uk

Abstract. The aim of this paper is to benchmark various semantic repositories

in order to evaluate their deployment in a commercial image retrieval and

browsing application. We adopt a two-phase approach for evaluating the target

semantic repositories: analytical parameters such as query language and

reasoning support are used to select the pool of the target repositories, and

practical parameters such as load and query response times are used to select

the best match to application requirements. In addition to utilising a widely

accepted benchmark for OWL repositories (UOBM), we also use a real-life

dataset from the target application, which provides us with the opportunity of

consolidating our findings. A distinctive advantage of this benchmarking study

is that the essential requirements for the target system such as the semantic

expressivity and data scalability are clearly defined, which allows us to claim

contribution to the benchmarking methodology for this class of applications.

1 Introduction

Based on the concept of autonomous interpretation of machine-understandable

metadata, semantic web technologies can deliver intelligent management of user-

transparent access to an increasingly complex mesh of interrelated information, which

makes these technologies especially appealing to organizations with complex

information taxonomy and rich data sets such as the BBC [1], Reuters [2] and Yahoo

 [3]. However, to promote the adoption of the semantic web technologies beyond

organisations that are resourceful in technology-related innovation, clear benchmarks

are required that indicate that the tools facilitating the deployment of the semantic

technologies are capable of cost-effectively handling potentially enormous amounts of

data and increasingly complex information structures. There are many aspects for the

organisations to consider: the expertise required for semantically enabling the

organization’s information infrastructure, the costs involved in superimposing the

extra layer of meta-data and the overheads related with processing it, the technical

challenges in synchronising with existing data stores, etc. In this study, we focus on

evaluating the computing engine of the semantic web technologies, semantic

repositories (SR).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham Trent Institutional Repository (IRep)

https://core.ac.uk/display/30644342?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Kiryakov et al. define a semantic repository as “a tool, which combines the

functionality of an RDF-based DBMS and an inference engine and can store data and

evaluate queries, regarding the semantics of ontologies and metadata schemata.” [4].

As semantic technologies become more lucrative, an increasing number of commercial

and freeware semantic repositories are being offered. These repositories vary

significantly at a number of levels that might affect their deployment decision in the

target systems, to mention few: supported query languages, semantic expressivity

(reasoning capability), load and query response times, and scalability. It might also be

necessary to analyze the combined effect of one or two parameters in the target

systems, for instance the capacity of the semantic repositories in handling increasing

dataset sizes has to be considered in tandem with the supported semantic expressivity

and the retrieval throughput.

A distinctive feature of this study is that it is motivated by the practical deployment

requirements for semantically-enabling an existing application for a digital images

retailer’s retrieval and browsing engine. This allows us to inform the benchmarking

exercise about the precise essential and desirable requirements of the semantic

repository, which we also claim presents a roadmap for benchmarking this rich class

of applications.

We uniquely classify the benchmarking parameters into non-functional (analytical)

and functional (practical). The analytical parameters, such as expected level of

reasoning and query language support aid in narrowing down the pool of

benchmarked semantic repositories, while the practical parameters such as the query

response time helps to select the optimum repository for the target system.

In order to consolidate our results, we use a public benchmark that satisfies the

requirements of our target system (the University Ontology benchmark - UOBM [5]),

as well as devising a dataset from the applications knowledge base. This allows us to

consolidate our results and vet them against published work on semantic repositories

benchmarking.

The rest of the paper is structured as follows: section 2 surveys the current

semantic repositories benchmarking approaches. Section 3 discusses the details the

commercial deployment case study for benchmark. Section 4 studies the

benchmarking methodology, while section 5 analyzes the experimental results. The

paper’s conclusion and plans for further work is detailed in section 6.

2 Benchmarking Semantic Web Technologies

Benchmarking semantic repositories is significantly more challenging than that of

RDMS, primarily because of the complexity of evaluating the additional reasoning

layer. For semantic repositories, unlike relational databases there exists no standard

benchmark similar to TPC [6].

Benchmarking approaches can be classified into studies of the reasoning engines

and studies of the semantic repositories (the RDF stores and the inferencing engine).

The first approach [7] [8] mainly targets the description logic community or

developers interested in optimising the reasoning engines and integrating them into

their semantic datastores. This benchmarking exercise is motivated by the requirement

of deploying semantic web technology in a commercial search and browsing engine,

and hence is chiefly interested in benchmarking approaches evaluating ready-to-

deploy semantic repositories. Below we discuss some of the published work on

semantic repositories benchmarking.

The Lehigh University Benchmark LUBM [9] was the first standard platform to

benchmark OWL systems, but it gradually fell behind with the increasing expressivity

of OWL reasoning and could not support a modest reasoning logic such as OWL Lite

 [10]. The University Ontology Benchmark (UOBM) benchmark [5] was devised to

improve the reasoning coverage of LUBM by adding TBox axioms that make use of

all OWL Lite and OWL DL constructs. Both benchmarks predate the advent of the

SPARQL RDF query language, and hence do not evaluate advanced query features

such as OPTIONAL filters and UNION operations [11].

 [12] introduces the Berlin SPARQL benchmark (BSBM) for comparing the

performance of systems that expose SPARQL endpoints. The benchmark is built

around an e-commerce use case, which extends its benefits to similar class of

applications desiring to embrace semantic technologies. BSBM focuses provides

comprehensive evaluation for SPARQL query features. However, the benchmark does

not evaluate update operation on the RDF stores and has no information on

precision/recall and primarily targets the throughput results with the assumption that

the systems are precise and complete. The list of benchmarked systems by BSBM is

not exhaustive.

All the works discussed above represent valuable contributions to the methodology

of semantic technologies benchmarking and can also offer reusable datasets and query

results at the practical level, which allow us to compare our results with other

published benchmarking studies. However, we believe that for the decision to adopt a

specific semantic repository for the deployment of our commercial application can

only be based on a benchmarking study that mirrors the demands of our semantic

retrieval and browsing engine within an enterprise setup. This entails using a similar

dataset, evaluating the required level of expressivity, and considering the evaluation of

all established semantic repositories including freeware systems such Jena TDB [13]

and Sesame [14], as well as commercial offerings such as Allegrograph [15], Virtuoso

 [16] and BigOWLIM [17].

3 Commercial Deployment Case Study

This study has been conducted with a commercial deployment case study at the heart

of its objectives. This section gives more details on the motivations of the exercise

with the nature of the proposed application.

3.1. Motivation

Press Association (PA) is the UK’s leading multimedia news and information provider

and supplier of business-to-business media services. The photography arm of the PA,

Press Association Images is looking into the utilization of semantic web technologies

to improve the image browsing experience for their customers. Therefore this study

focuses on the particular concerns of this implementation, such as the sheer volume of

data and other fundamental performance measures such as load time, query response

time and level of inference.

Along with gauging potential benefits of semantic technologies, our motivation to

perform this benchmarking is to evaluate the scalability of current semantic

technologies in handling potentially large datasets while maintaining reasoning and

retrieval throughput. Our concern about the scalability stems from the fact that

unplanned use of the OWL properties can result into impractical reasoning

complexity. For the benefit of the reader, it is useful to highlight the complexity of the

ontology we utilize in our implementation. The PA Images ontology in its current

form has total 147 classes, 60 object properties and 30 object properties. The OWL

species of the ontology is OWL-DL and the DL expressivity is ALCHOIN (D).

Apart from the standard classification hierarchy and object and data type

properties, we utilize what we see as the “smart” properties of OWL. One example of

these properties is the inverse property “owl:inverseOf”, which implicitly allows

defining relationship in both directions [18]. For example, an application based on PA

Images ontology has a relationship category where father-son, parent-child, husband-

wife bi-directional relationship are heavily utilized. The other property which we find

very useful is the value constraint in OWL-DL “owl:hasValue” that links a restriction

class to a value. For example, “Actor is a person who has value for the property

profession equal to acting”. This is very useful property as it allows for the automatic

classification of individuals into categories depending on the value of some of their

properties. This is a desirable functionality as instead of relying on the annotator to

remember category of an entity while entering data it could be automatically inferred

based on the properties of entities.

These properties make reasoning challenging and require a level of language

expressivity in the domains of OWL-LITE and OWL-DL. For example, when inverse

properties are used in some of the reasoning engines, it prohibits the use of highly

efficient optimization techniques [10]. The aim of this benchmarking study is to

investigate how various repositories will handle such reasoning requirements while

maintaining acceptable query response time.

As discussed, the PA Images ontology is light-weight DL ontology. For increasing

the confidence of our benchmarking, we researched the availability of published

benchmarks with datasets with characteristics similar to ours, i.e. datasets that support

OWL-DL level of reasoning and contain few million triples. We selected UOBM for

this purpose as the prime focus of the UOBM dataset has been inferencing and

reasoning which meets our requirements. UOBM also supplies dataset of variable

length ranging from 0.2 million triples in UOBM-1 to around 6.6 million triples in

UOBM-30. We discarded using the BSBM [12] dataset as it is primarily designed to

test Repositories in terms of RDF and SPARQL support instead of higher order of

reasoning capabilities. The DBpedia [19] dataset was also not considered relevant to

the task due to the lack of formal ontology structure in its datasets as it is governed by

combination of external ontologies SKOS, UMBEL and WordNet in addition to its

own custom ontology, making judgment on precision and recall challenging task.

3.2 PA Dataset

In this section, we provide useful information on the PA Dataset which contains three

components: PA Images ontology, Knowledge base and image captions.

1. PA Images ontology

The first component of the dataset is layered owl-dl ontologies: one of these

ontologies defines the entities in our domains primarily consisting of sports, news and

entertainment images. This ontology contains entities such as footballers, sport teams,

politicians, stadiums, tournaments, actors, award events. The set of ontologies

contains another ontology – a media ontology defining image metadata attributes.

2. PA Knowledge base(KB)

PA KB is the data operating on the PA ontology. Manual generation of such data

as part of a knowledge base is a colossal and quite cumbersome task. However, we

alleviated the burden of manual compilation of creating such KB by leveraging the

rich amount of structured knowledge publically available in DBpedia [19]. We see

DBpedia being at the centre of the linked data cloud (LoD) efforts [20] mainly due to

its knowledge coverage across multiple domains. LoD is a medium for domain

experts to come together and share the knowledge about the domains they are expert

in. We have successfully used SPARQL CONSTRUCT [11] queries to achieve

ontology mapping between PA Images and DBpedia ontologies to extract the

instances from DBpedia KB and generate a clean, contexualised PA KB.

3. Image captions

Image captions triples were generated randomly using an instance generator that

links an image with list of entities from the KB. The images represent an adequate

mixture of indices of People (player, actor, politician) at Events (Tournaments,

Signing, Awards etc), or people seen with other people. Apart from the ontology, the

dataset is expressed in N-Triples serialization fromat. Table 1 gives more information

on the dynamics of PA dataset components.

Dataset No of Triples Entities/Images Disk space

KB 6.6 Millions 1.2 Millions 1.23 GB

Image captions 8 Millions 5 Millions 1.57 GB

Schema 136 KB

Table 1. PA Dataset dynamics

4 Benchmarking Methodology

4.1 Semantic Repository Selection and Benchmarking Environment

We have selected the Semantic Repositories for this benchmarking based on the

following selection criteria.

1. Minimum level of inference required is RDFS reasoning

2. Support for SPARQL or SPARQL-like RDF query language

3. As per the definition of the Semantic Repository, any tool that is combination

of reasoner and storage backend. This criterion ruled out the selection of Pellet, Racer,

and KAON2 as these tools need to be used in conjunction with the databases. The

repositories that satisfy the aforementioned criteria hence selected for benchmarking

are: Virtuoso [16], Allegrogaph [15], Sesame [14], Jena TDB [13], Oracle [23] and

BigOWLIM [17].

Hardware Setup. The experiment was conducted on a DELL workstation (processor:

Intel Core 2 Quad Q9400 2.66GHz; memory: 8GB DDR2 667; hard disks: 160GB

(10,000 rpm) SATA2, 750GB (7,200 rpm) SATA2) running Windows XP

professional x64 edition, 2003, Service pack 2 as operating system using Java version

1.6.0_16.

4.2 Benchmarking parameters

We uniquely classify the benchmarking parameters into non-functional (A=analytical)

and functional (P=practical). This section gives more information on these parameters.

1. Identification of the Semantic Repositories storage technology in Native,

Memory-based or Database-based storage systems (A). Both native and database

based techniques store data persistently while memory-based stores utilize main

memory to store RDF graphs. The database technique uses RDBMS to store data

while native store use a flat file structure. Understanding the behaviour of the semantic

repositories in these classifications helps predicting the store’s behaviour under

various conditions, for example scalability of the memory based repositories will be

limited to the amount of memory space available.

2. Identification of Semantic Repositories in forward, backward or hybrid chaining

reasoning strategies (A). The forward-chaining repositories support materialisation

where they compute and store the possible inferencing of facts at load time. The

backward-chaining repositories perform the inferencing at the query time.

3. Load time (P) is a standard benchmarking parameter that measures the

performance of repositories in terms of the time it takes loading datasets. We believe

that for the class of application similar to ours, update time is more relevant as the

load time is generally one-off and could be performed offline. We cover update time

in 6 below.

4. Using query response time (P), we measure the time for issuing a query and

obtaining the results. We have created a query-mix that exploits OWL-DL and OWL-

Lite constructs from PA images ontology and we use the queries provided by the

UOBM to exploits different construct of UOBM.

5. We use query results analysis (P) to measure completeness and correctness of the

query results. The results of this analysis will allow us to judge a repository as sound,

complete or both. With the query results analysis, where possible we also want to

analyze the results to verify the OWL properties supported by a Semantic Repository

under the dataset load in this experiment. The repositories advertise type of

inferencing supported by them however as observed by [7] [10], for larger datasets

most of the tools seem to fail simplest of OWL reasoning queries.

6. Most triple-stores use SPARQL for querying RDF; however there is no

standardization for modification to RDF data. SPARQL/Update is an effort to

standardize the update language for RDF graphs for updating graphs with

modification operations. The alternative is to use a programming language and custom

APIs. With RDF store update tests (A&P) parameter, we test and analyze repositories

by schemata and data update queries and indentify the repositories that use either

SPARQL/Update or custom APIs for doing so.

7. The identification of repository support for RDF serialization formats (A) allows

us to study different serialisation (RDF/XML, N-Triples, N3, Turtle) offered by the

repositories.

8. We also want to analyze the scalability (P) of the repositories, i.e. loading and

querying time of semantic data is linear with the dataset sizes.

9. Reasoner Integration (A) is a parameter designed to identify the reasoners

integration supported by a repository.

10. We will also identify query languages supported (A) by a repository.

11. Inferencing and reasoning is computationally challenging task and clustering

support (A) is helpful for practical implementations. We want to identify semantic

stores that supports clustering configuration in their standard setup.

12. From the application development perspective, we want to analyze the client API

supported (A) in various programming languages.

13. Identification of different platform supported (A) by a semantic repository. This

could be a crucial factor for many organisations.

14. The trend to move relational data to RDF graphs can be encouraged by

repositories that have in-built support for converting relational data into RDF data

(A). We will identify the stores that have in-built support for such functionality.

Table 2 shows our observation for the selected repositories.

Parame

ters

Jena TDB Virtuoso Allegrograph BigOWLIM Sesame Oracle

Storage

Type

Native Native,

RDBMS

-based

Native Memory,

Native

Memory,

Native,

RDBMS

Native

Reasoni

ng

strategy

Backward

chaining

Backward

Chaining
Backward

chaining

Forward

chaining

Forward

chaining

Forward

chaining

Serializ

ation

format

rdf/xml,

n3,ntriples

rdf/xml,

n3

rdf/xml, n3,

ntriples

rdf/xml,

n3, triples

rdf/xml,

n3, triples

rdf/xml,

ntriples

Reason

er

Integrat

ion

Built-in Built-in,

Jena,

Sesame,

Redland

Built-in,

Jena, Racerpro,

Sesame

Built-in,

Sesame

Built-in Built-in,

Jena

RDFvie

w

support

No Yes Not

conclusive

No No Not

conclusive

RDF

Update

sparql/

udpate

sparql/

update

api api api api

Query

Langua

ge

Support

tql,

sparql

sparql,

spasql

sparql,

twinql,

serql, prolog

sparql,

serql

sparql,

serql, rql

bespoke,

sparql

Clusteri No Yes Yes Not No Not

ng conclusive conclusive

Client

side

Java PL/SQL

Java, C

Java, Python,

Ruby, Lisp,

Java Java PL/SQL,

Java

Platfor

m

support

ed

Windows,

Unix, Mac,

Solaris

Windows

Unix,Mac

,

Solaris

Mac,

Windows,

Unix, Solaris

Windows,

Unix, Mac,

Solaris

Windows,

Unix, Mac,

Solaris

Unix,

Solaris,

Windows,

Mac

Licensi

ng

Free Free,

Commerc

ial

Free,

Commercial

Free,

Commercia

l

Free Commercia

l

Table 2. Analytical Parameter observation

5 Benchmarking results

5.1 UOBM Dataset results and Analysis

UOBM Dataset Load timings. Although UOBM-30 is the super set of other datasets

of UOBM, as an opportunity to gauge the load time scalability, we decided to load all

the four datasets. The datasets were loaded in four different graphs as these datasets

contain overlapping data and if loaded in the same graph it will generate redundancy

and unexpected results when queried. The aim here was to evaluate the load time as

the dataset size increases.

UOBM Loading Time

Virtuoso

Sesame

JenaTDB

Oracle

BigOWLIM

AllegroGraph

0

50

100

150

200

250

300

350

UOBM1 UOBM5 UOBM10 UOBM30 Total

UOBM dataset(s)

T
im

e
 (
m
in
u
te
s
)

Figure 1. UOBM Loading Time

From the graph in Figure 1, we can clearly identify that virtuoso performs best

among these tools for loading A-Box by taking approx 27.5 minutes to load UOBM

data-set with 30 university and allegro-graph is the closest competitor of virtuoso in

loading data into a store. BigOWLIM performs second slowest among the tools as it

performs the “forward-chaining” of facts and stores them explicitly. Oracle is the

slowest in loading all four datasets as it take more time than BigOWLIM in forward

chaining process. Another interesting observation can be made about the performance

of these repositories in terms of how well they scale for the increase in dataset sizes.

Virtuoso and Allegrograph are quite consistent and scalable in terms of dataset sizes

and takes almost same amount of time (linear) as the load increases.

Query Result and Execution Speed Analysis. UOBM supplied 15 queries with

different levels of complexity where 12 queries fall under OWL-Lite and the

remaining 3 queries are of OWL-DL expressivity. To our knowledge, the UOBM

benchmark has not published a query result set. Therefore we had to generate the

answer keys in order to enable checking the correctness and completeness of the

returned results. We generated answer keys by modifying queries to remove complex

inference and firing them against the benchmarked repositories. Our precision and

recall analysis is based on this and for the scrutiny we publish the result sets [24].

Next, we analyze query response times taking into account the context of the

precision and recall. In the Table 3, “N” against a query indicates empty result set

when at least some results were expected. (P) next to a timing indicates that the

repository took that much amount of time but returned partial results.

From Table 3, we can conclude that BigOWLIM answers 12 out of 15 queries

completely while answering query no. 9 partially and performs the execution faster in

most of the cases with the average time 0.038 seconds. Sesame answers 4 queries

completely while answering 2 queries partially. Average time to answer these queries

is 0.09 seconds. Allegrograph answers 7 queries completely, while answering 2

queries partially. However Allegrograph is the slowest and takes on average 219

seconds to answer queries. Virtuoso has the worst recall, as virtuoso answers 1 query

partially and the other completely at the average speed of 3.388 seconds. We would

also like to draw attention to virtuoso's different behaviour in answering a query from

a SPARQL end-point and from the Jena Adapter API. From the API, Virtuoso

repository is able to answer only 2 query while from a SPARQL end-point it answer 3

queries. Moreover, for the UOBM query 1, virtuoso's SPARQL end-point returns 21

triple which is correct as well as complete but when we fire the same query from the

API it returns 105 triples. 21 triples out of these 105 triples are correct. We believe

that this can be attributed to a bug in the API implementation rather than problem with

the soundness of the repository.

 Execution Timings (seconds)

No. Virtuoso Allegrograph Oracle Sesame Jena TDB BigOWLIM

Q1 6.766 (P) 21.921 0.141 0.203 0.031 0.047

Q2 N 8.906(P) N 0.001(P) 0.001(P) 0.062

Q3 N 651.237 N 0.109 0.016 0.062

Q4 N N(infinite) N 0.14 120 0.063

Q5 N 1.281 N N N 0.047

Q6 N 1153.025 N N N 0.047

Q7 N 300.12 N N N 0.001

Q8 N 6.843(P) N N N 0.031

Q9 N N N N N 0.031(P)

Q10 0 0.25 0.001(P) 0.001 0.001 0.016

Q11 N N(infinite) 0.001(P) 0.094(P) N(infinite) 0.062

Q12 N 476.507 N N N 0.016

Q13 N N N N N N

Q14 N N(infinite) N N N 0.016

Q15 N N N N N N

Table 3. UOBM Query execution speed and result analysis

Jena TDB answers 4 queries completely while one partially. Average speed is 24

seconds which is skewed by the time it takes to answer Q4. Oracle answers 3 queries,

among them one completely and two partially at the average speed of 0.048 seconds.

Closer examinations of queries show that queries Q5 and Q7 are not answered by

all the repositories except Allegrograph and BigOWLIM. Queries Q5 and Q7 involves

transitive (owl:TransitiveProperty) property based inference. As this is the case for

both of the queries it is possible to conclude that this property is not supported by

Virtuoso, Sesame, Jena TDB and Oracle. Q6 relies on semantic repositories to support

(owl:inverseOf) and all except Allegrograph and BigOWLIM answers this query.

However, to consolidate the conclusion that other tools do not yet support inverse

property, we can rely on the PA Dataset results as the dataset includes some queries of

the same complexity. Q10 requires symmetric property support and is correctly

answered by all the SRs. Q13 requires support for OWL lite-level of cardinality and

not answered by any of these tools. OWL Lite cardinality restrictions allow

statements concerning cardinalities of value 0 or 1 i.e. min 1, max 1. Q15 requires

support for dl-level of cardinality that is not answered by any of these tools.

At the time of compiling this paper, correspondence with the semantic technologies

team at Oracle established that they introduced improved OWL reasoning capability

in the new release of Oracle (11g Release 2). Unfortunately the release is currently not

available for our benchmarking platform, Windows OS. Hence we decided to omit

Oracle from experimentation with the PA Data set (below).

5.2 PA Dataset Experiment Analysis

KB
Image Capt ions

Total

KB
Image Captions
Total

KB
Image Captions

Total

KB
Image Captions

Total

KB
Image Captions

Total

0 50 100 150 200 250 300 350

Time

(minutes)

Virtuoso

Allegrograph

Sesame

JenaTDB

BigOWLIM

Semantic

Repository

PA Dataset Loading Time

Figure 2. PA Dataset Loading Timings

Loading time for KB and Images. Allegrograph was able to load whole of the

dataset in under 15 minutes. This result is inline with the UOBM results as it was

comparatively (second place to Virtuoso) faster. Similar to the UOBM benchmark

results, BigOWLIM performs slower in loading PA datasets. This pattern repeats for

Jena TDB and Sesame, which are again in the list of slower performers as is with

UOBM results. However, the major difference in PA Dataset results from UOBM

results is the performance of Virtuoso which took the least amount of time in loading

all four of the UOBM datasets, for PA Dataset takes the maximum amount of the time

among the repositories. There is an operational distinction between UOBM and PA

Dataset, in which UOBM dataset is in RDF/XML serialization where PA Dataset is

expressed in N-Triples. Virtuoso’s Jena Adapter API lacks the functionality to load N-

Triples and we had to load the PA Dataset using TTLP_MT function from the

command line, which can explain the store’s relatively lengthy loading time.

Query execution speed and results analysis. The list of PA Dataset queries is

available here [24]. The results are outlined in Table 4. Carrying forward the

observations from the UOBM query results, it is possible to conclude that inverse

property of OWL expressivity as required to answer queries 6, 12, 15 is not supported

by Virtuoso and Sesame.

In our tests, BigOWLIM was able to answer all the queries. Allegrograph answered

all the queries except two. Sesame answered six queries completely while two queries

partially. On a one-to-one comparison between Allegrograph and BigOWLIM , two

repositories that answered maximum number of queries and between Sesame and

BigOWLIM, two fastest repositories, it is clear to see that execution speed-wise

BigOWLIM outperforms Allegrograph and sesame for almost all of the dataset

queries.

Query No. Virtuoso Allegrograph Sesame Jena TDB BigOWLIM

Q1 2.234 (P) 26.422 0.469(P) 0.047 0.219

Q2 N N N N 0.063

Q4 N N N N 0.047

Q5 0.172 1.719 0.141 N 0.078

Q6 N 3.765 N 0.001 0.45

Q7 84.469 28.688 0.203 N 0.093

Q8 0.047 3.39 0.11 0.001 0.062

Q9 0.156 1.782 0.171 N 0.016

Q10 0.001 1.734 0.047 N 0

Q11 N 1.734 0.11 0.001 0.062

Q12 N 16.14 N N 0.079

Q13 5.563(P) 1.812 0.016(P) 0.001 0.641

Q15 N 1.688 N N 0.031

Table 4. PA Images Query Execution speed results

Modifications Tests. Modifications to the data and ontology is an important task

performed against a SR [12]. Although the complexity of modifications can change

considerably across applications and usage patterns, the execution speed and

correctness of modifications is vitally important for any commercial application. This

area of benchmarking has been ignored so far. As SPARQL specification in its current

state provides no implementation of update or delete parameters these experiments

also provide an insight to how each SR handles them in absence of standardization.

T-Box/ontology modifications. One of the main advantages of using a semantic

ontology is the possibility of loose couplings of schemata from the data. In Virtuoso,

the schema is loaded separately from the data and the repository requires any query to

inform the SR which schema it shall use for the purpose of inferencing. This is done

using “define input:inference 'schema name'” prefix as part of the query. We believe

that this approach allows maximum loose coupling of data from schemata as the same

dataset can be reasoned using different schemata. BigOWLIM protects and places

restriction on deleting components of the base schema. In BigOWLIM, the schemata

is stored as "imports" parameter of the repository configuration and are treated as

"read-only", thus these schemata are protected from delete operations. Jena TDB,

Oracle, Allegrograph expects an ontology to be present at its absolute or relative

URL; hence modifications could be made to the schemata outside the scope of these

repositories.

A-box Insertion operations. We believe that in most of the applications, loading of

datasets of size of UOBM dataset is done once, while most of the loadings are

insertion in small sizes. Here we test these tools on how they fare under small

insertions and utilize the same methods we used for loading the whole of the dataset to

perform insertions. The results in the Figure 3 illustrate this with small KB addition

and small number of image additions to the PA Dataset. The results provide

reassurance that all the repositories (virtuoso and Allegrograph when warmed up), can

handle small amount of loading (insertions) relatively fast. It is also important to

highlight here that all the repositories have approximately 12 million triples already

stored when this loading call occurs.

U1
U2

U3

U1
U2
U3

U1
U2

U3

U1
U2

U3

U1

U2

U3

0 5 10 15 20

Time (seconds)

Virtuoso

Allegrogaph

Sesame

Jena TDB

BigOWLIM

S
e
m

a
n
ti
c
 R

e
p
o
s
it
o
ry

Image Insert Operations

U1
U2
U3

U1
U2

U3
U1

U2
U3

U1
U2
U3

U1
U2

U3

0 0.5 1 1.5 2

Time(seconds)

Allegrogaph

Virtuoso

Sesame

Jena TDB

BigOWLIM

S
e
m

a
n
ti
c
 R

e
p
o
s
it
o
ry

KB Insert operations

Figure 3. Insertion operations

Update and deletion operations.

U1= updating two actors relationship from “partner” to “spouse”, U2= updating an image

caption to identify previously incorrectly identified person, U3= updating ontology to make

“Person” and “Group” classes to be disjoint classes., D1= Deleting relationship between two

British Royalty., D2= Deleting a player’s playing position, D3= Deleting a band’s genre

Table 5. Modification queries

D1
D2

D3
U1

U2
U3

Average

BigOWLIM

Allegrograph

Virtuoso

Sesame

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Time (seconds)

Modification Queries

Modification execution speed

Figure 4. Modification operation results

Again, similar to the small data insertions, it is important to test these SRs on their

performance on small routine deletion or updates () that happens in small amounts but

in higher frequency. The aim here is to analyze the execution speed and also

determine how they deal with modifications in the absence of a standardized SPARQL

protocol. We treat the update and delete queries in the same frame and display and

compare in the same graph (Figure 4). This is because for most of these tools the

update operation is two step operation: a. delete a fact and b. insert a new fact instead

of the deleted fact.

In BigOWLIM, deletion of the fact is performed from the API, as the repository

does not implement a customized extension of SPARQL. There is also an area of

concern for this class of repository that utilizes “forward chaining” as by nature the

delete operation is slow, i.e. any fact deletion shall also delete any other facts that are

inferred based on them. We found that the latest version of BigOWLIM (3.2.3)

provided to us with a major improvement in delete operation, which means that upon

delete, BigOWLIM invalidates only the inferred facts which are

no longer inferable as opposed to dropping all inferred facts and inferring everything

from scratch. However in these experiments, whenever this process (invalidating only

the inferred facts) was involved such as in the query D2 the performance of system is

slower than other simpler delete operations.

Allegrograph deals with the deletion of triples from the store using the base API

and the execution speed is quite fast. Similar to Jena, Virtuoso provides an extension

of SPARQL for the update and deletes queries. Using the SPARQL/UPDATE queries,

Virtuoso runs very fast. We were not able to perform similar operations with Jena

TDB as it runs out of the memory for each of these operations.

6 Conclusions and Future Work

Utilising semantic web technologies in commercial applications requires confidence

by the decision makers that the underlying semantic repositories can deliver the

required quality of service while managing the overhead of processing the metadata of

potentially huge amount of information organized in complex taxonomies. This paper

investigates the benchmarking of the major freeware and commercial semantic

repositories for a commercial image retrieval and browsing application. Our

benchmarking methodology translates the precise essential and desirable requirements

of our application into a set of functional (practical) and non-functional (analytical)

parameters for benchmarking the target semantic repositories, and we claim that this

methodology will prove useful for benchmarking applications with similar

characteristics. In order to consolidate our benchmarking results, we use UOBM, a

public benchmark that satisfies the requirements of our target system, as well as devise

a dataset from the application’s knowledge base.

Our analysis of the benchmarking results established that all the evaluated

repositories were sound for both the dataset queries as the query results returned by

the repositories were correct for corresponding queries. However none of the

benchmarked repositories were able to answer all the queries in the UOBM dataset,

and hence we conclude that the evaluated repositories currently cannot handle the

OWL reasoning level required to answer the UOBM queries.

In our tests, BigOWLIM provides the best average query response time and

answers maximum number of queries for both the datasets. Sesame, Jena, Virtuoso

and Oracle offered sub-second query response time for the majority of queries they

answer. Allegrograph answers more queries than the former four repositories hence

offers better coverage of OWL properties. However, we found that the average query

response time for Allegrograph was the highest for both the dataset and believe that

this repository requires further optimisation to handle complex OWL capabilities. The

modifications operations testing confirmed that the forward chaining repositories offer

slower response times compared to the backward chaining repositories. This is

especially more noticeable for delete operation where sesame was consistently and

BigOWLIM was variably slower in deleting triples.

Our plans for further work involve expanding this benchmark exercise to billion

triples of extended PA Dataset and adding extra benchmarking parameters such as the

performance impact of concurrent users and transaction-related operations. We would

also like to test the new capabilities of the Oracle’s semantic repository.

7 References

[1] Kobilarov, G., Scott, T., Raimond, Y., Oliver, S., Sizemore, C., Smethurst, M., Bizer,

C., Lee, R.: Media Meets Semantic Web – How the BBC Uses DBpedia and Linked Data

to Make Connections. In: European Semantic Web Conference (ESWC2009), pp. 723 - 737,

Springer-Verlag Berlin, Heidelberg (2009).

[2] http://www.opencalais.com/

[3] Mika, P.: Microsearch: An Interface for Semantic Search. In: Proceedings of the

Workshop on Semantic Search (SemSearch 2008) at the 5th European Semantic Web

Conference (ESWC 2008) , June 2, 2008, Tenerife, Spain , Vol. 334CEUR-WS.org (2008)

[4] Kiryakov, A.:Measurable Targets for Scalable Reasoning., Ontotext Technology

White Paper, Nov 2007.

[5] Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., Liu, S.: Towards a Complete OWL

Ontology Benchmark. In Sure, Y., Domingue, J., eds.: Proc. of the 3rd European Semantic

Web Conference (ESWC’06). pp. 125 - 139 Volume 4011 of LNCS., Budva, Montenegro,

Springer (2006)

[6] TPC Database Benchmark, http://www.tpc.org/information/benchmarks.asp

[7] Bock, J., Haase, P., Ji, Q., Volz, R.: Benchmarking OWL Reasoners. In: Proc. Of the

ARea2008 Workshop, Tenerife, Spain (June 2008)

[8] T. Gardiner, I. Horrocks, D. Tsarkov, Automatic benchmarking of description logic

reasoners, in: Proceedings of the 2006 International Workshop on Description Logics (DL06),

Windermere, UK, 2006.

[9] Guo, Y., Pan, Z., Heflin, J.: An Evaluation of Knowledge Base Systems for Large

OWL Datasets. In: Proc. of Third International Semantic Web Conference, pp. 274-288,

Springer-Verlag Berlin, Heidelberg (2009).

[10] T. Weithöner, T. Liebig, M. Luther, and S. Böhm, What's Wrong with OWL

Benchmarks?,Proceedings of the Second International Workshop on Scalable Semantic Web

Knowledge Base Systems (SSWS 2006),Athens, GA, USA November 2006

[11] http://www.w3.org/TR/rdf-sparql-query/

[12] Bizer C., Schultz, A.: Benchmarking the Performance of Storage Systems that expose

SPARQL Endpoints. In: Proceedings of the ISWC Workshop on Scalable Semantic Web

Knowledge-base systems (SSWS), Karlsruhe, Germany (2008)

[13] http://openjena.org/TDB/

[14] Broekstra, J., Kampman, A., Harmelen, A.v.: Sesame: A generic architecture for

storing and querying RDF and RDF Schema. In Ian Horrocks and James Hendler, editors,

Proceedings of the first Int’l Semantic Web Conference (ISWC 2002.Springer Verlag (2002)

[15] http://www.franz.com/agraph/allegrograph/

[16] Erling, O., Mikhailov, I.: RDF Support in the Virtuoso DBMS.In: Proceedings of the

1st Conference on Social Semantic Web (CSSW), pp. (7-24), Springer Berlin / Heidelberg

(2009)

[17] Kiryakov, A.: OWLIM: balancing between scalable repository and light-weight

reasoner. In:Developer's Track, WWW2006 (2006).

[18] http://www.w3.org/TR/owl-guide/

[19] Auer, S.,Bizer, C., Cyganiak, R., Ives, Z.: DBpedia: A Nucleus for a Web of Open

Data. In: 2nd Asian Semantic Web Conference. Springer Berlin / Heidelberg (2007)

[20] Hausenblas, M.:Exploiting Linked Data to Build Web Applications. IEEE Internet

Computing, vol. 13, no. 4, 68-73 (2009)

[21] Ding, Z., Peng, Y., Pan, R., Yu, Y.: A Bayesian Methodology towards Automatic

Ontology Mapping. In:Proceedings of the AAAI-05 C&O Workshop on Contexts and

Ontologies: Theory, Practice and Applications, AAAI Press (2005)

[22] Mongiello, M., Totaro, R.:Automatic Ontology Mapping for Agent Communication

in an e-Commerce Environment, In: Proceedings of EC-Web, Copenhagen, Denmark pp.21-30,

Springer Berlin, Heidelberg (2005)

[23] http://www.oracle.com/technology/tech/semantic_technologies/index.html

[24] http://realizingsemanticweb.blogspot.com/2010/03/benchmarking.html

