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Abstract 

An approach to mass and liquid sensitivity for both the phase velocity and insertion loss of shear 
mode acoustic wave sensors based on the dispersion equations for layered systems is outlined; 
the approach is sufficiently general to allow for viscoelastic guiding layers. An equation for the 
phase velocity and insertion loss sensitivities is given which depends on the slope of the complex 
phase velocity dispersion curves. This equation contains the equivalent of the Sauerbrey and 
Kanazawa equations for loading of a quartz crystal microbalance by rigid mass and Newtonian 
liquids, respectively, and also describes surface loading by viscoelastic layers. The theoretical 
approach can be applied to a four-layer system, with any of the four layers being viscoelastic, so 
that mass deposition from a liquid can also be modelled. The theoretical dispersion equation 
based approach to layer-guided shear horizontal acoustic wave modes on finite substrates 
presented in this work, provides a unified view of Love wave and shear horizontal acoustic plate 
mode (SH-APM) devices, which have been generally regarded as distinct in sensor research. It is 
argued that SH-APMs with guiding layers possessing shear acoustic speeds lower than that of the 
substrate and Love waves are two branches of solution of the same dispersion equation. The layer 
guided SH-APMs have a phase velocity higher than that of the substrate and the Love waves a 
phase velocity lower than that of the substrate. Higher order Love wave modes are continuations 
of the layer guided SH-APMs. The generalized concept of SH-APMs and Love waves provides a 
basis for understanding the change in sensitivity with higher frequency operation and the 
relationship between multiple modes in Love wave sensors. It also explains why a relatively thick 
layer of a high loss polymer can be used as a waveguide layer and so extends the range of 
materials that can be considered experimentally. Moreover, it is predicted that a new type of 
sensor, a layer-guided SH-APM sensor, can be constructed in a manner analogous to a Love 
wave device. The sensitivity of such a device is predicted to approach that of a Love wave sensor 
whilst retaining the advantage of the SH-APM of using the face opposite the one possessing the 
transducers as the sensing surface. 
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1 Introduction 
Acoustic wave sensors designed for operation in liquid usually use a mode with a shear 
horizontal polarization in order to avoid the generation of compressional waves in the liquid that 
would arise from any surface normal displacement [1,2]. The exception to this occurs for flexural 
plate wave devices, which have a wave speed less than the speed of sound in the liquid and 
whose vertical component of displacement does not then generate compressional waves [3]. 
Amongst the most widely used acoustic wave devices is the thickness shear mode (TSM) quartz 
crystal microbalance (QCM). The shift in resonant frequency, Af„, of the quartz crystal to loading 
by thin layers, A% of rigidly coupled mass is described by the Sauerbrey equation, Af„/f„=-
2fpiAti/(jusps) where/is the fundamental resonant frequency,/„ is the resonant frequency of the 
ri mode {n=\ is the fundamental), jus is the shear stiffness of the quartz substrate and pi and ps 

are the densities of the loading layer and the quartz substrate, respectively [4]. The combination 
of the loading layer density and the thickness of the layer gives the mass per unit area, Amf=piA% 
loading the crystal and hence justifies the term "microbalance". The response of a quartz crystal 
to immersion in a Newtonian liquid is more complex and involves a frequency shift and a 
broadening of the resonance, thus indicating both an energy storage and an energy dissipation 
[5,6]. The prediction of Kanazawa and Gordon was that the frequency shift is given by Afnlfn=-

(pir/i/mzjUsPs) , where the pi and r/i are the density and viscosity of the layer. In a liquid the 
shear mode oscillation of the crystal surface entrains the liquid and the liquid motion has an 
exponential decay into the liquid of exp(-X3/<5) where X3 is a coordinate normal to the surface and 
d={rjiln fnpi) is the decay length or shear wave penetration depth. The concept of liquid 
entrainment enables the Kanazawa and Gordon frequency shift to be written in terms of a 
frequency dependent interfacial mass loading layer of thickness 8, i.e. Afnlfn=-fpi8l{jdsps) 
Modelling of the T S M response to mass loading layers has developed well beyond the simple 
Sauerbrey and the Kanazawa and Gordon equations and the frequency and damping response of a 
quartz crystal to single or multiple viscoelastic layers, which contain the rigid mass and 
Newtonian liquid limits, can now be calculated [7-10]. However, these original equations still 
provide an important conceptual reference for how solid and liquid properties, and changes in 
operating frequency, influence acoustic wave response. 

T h e / a n d / 2 mass and liquid loading frequency responses of the TSM indicates that for higher 
sensitivity the fundamental frequency should be increased. However, the fundamental frequency 
corresponds to fitting a half-wavelength standing wave pattern into the crystal thickness. 
Increasing frequency therefore requires a reduction in crystal thickness and crystals then become 
fragile. This has motivated the development of surface acoustic wave (SAW) devices which have 
a wavelength determined by the spacing of the fingers in a surface fabricated interdigital 
transducer (DDT) [11]. One of the most sensitive of these types of acoustic wave sensors for 
biosensing uses Love waves [12,13]. Traditionally, a Love wave is a propagating shear mode 
supported on a semi-infinite substrate possessing a wave-guide overlayer which has an intrinsic 
shear acoustic speed lower than that of the substrate [14]; in practice a Love wave is created 
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using a finite thickness substrate (fig. la). Other types of acoustic wave sensors utilizing 
propagating shear modes excited and detected by IDTs include shear horizontal polarized surface 
acoustic waves (SH-SAWs) and surface transverse waves (STWs). Shear horizontal acoustic 
plate modes (SH-APMs) are propagating modes involving both the substrate thickness and 
excitation and detection by IDTs (fig. lb) [15]. Numerical modelling of mass and liquid response 
the surface acoustic wave types of sensors is well developed, but tends to be specific to a given 
device type and does not always provide a simple interpretation. 

In this work, we review a dispersion equation based viewpoint of sensor response that provides a 
common conceptual framework for Love waves and SH-APMs and which is easily extendable to 
Q C M sensors [16-19]. In particular, the dispersion equation approach provides general rules for 
frequency and mode behavior that should prove useful in designing sensors. The effect of 
dispersion is possible to understand within this framework and differences between continuous 
wave and pulse experiments can be predicted [20]. The work also provides a generalisation of the 
Sauerbrey equation to layer guided shear mode acoustic wave sensors that can be used to evaluate 
the effect of viscoelasticity in either the layer or the loading medium. One consequence of the 
dispersion equation approach is the prediction of a new type of layer guided SH-APM sensor, 
which combines into a single device the higher sensitivity of the Love wave due to layer guiding 
with the advantage of the SH-APM of being able to use the face opposite the one with the IDTs 
as the sensor surface. 

2 Love Waves on Semi-Infinite Substrates 
2.1 The Sauerbrey Equation and Love Wave Mass Sensitivity 
The TSM based quartz crystal microbalance provides a simple model for understanding mass 
sensitivity. Consider a quartz crystal of thickness ts operating at its fundamental frequency,/,, so 
that the upper and lower surfaces are antinodes in the displacement and the crystal thickness is 
related to the wavelength by A0=2ts. The wave must satisfy the equation vs=f0A0 where 
vs=(jj,Jps) is the intrinsic speed of shear waves in the substrate. To obtain the frequency based 
mass sensitivity, imagine depositing a thin layer, Ats, of quartz on the quartz substrate. The 
equation vs=/A must still be satisfied, but with changes in the wavelength compensated by 
changes in the frequency, i.e. vs=(f0+Af)(A0+AA), so that to first order, 

fo K 

However, we also know that, prior to deposition of the thin layer, the substrate thickness was half 
a wavelength and that the wavelength was given by the shear speed divided by the frequency, so 
that we can write, 

A/ 2psAtsf0 

fo i 
(2) 

MsPs 
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Defining the frequency based mass sensitivity as, 

Sh = lim 
Am^-0 Am 

i (^ (3) 
Jo 

and recognizing that in Eq. (2), Am=psAts we obtain the sensitivity of the TSM, 

si,«—^= (4) 

Eq. (4) can be regarded as the sensitivity of the crystal towards a layer of any material provided 
that material is thin enough. Significantly, Eq. (4) depends only upon the properties of the 
substrate and the operating frequency,/,. 

The relevance to layer-guided acoustic waves, such as Love waves, of the argument used in 
deriving Eq. (4) is in how we interpret the dispersion curve. If we can solve the wave equations 
for a layered system with specific boundary conditions, then mass and liquid sensitivity of the 
phase velocity, which can be complex if damping is present in any layer, will depend upon the 
changes that occur by increasing a layer by an infinitesimal amount [18,19]. The sensitivity 
function will not depend on the perturbing layer properties, but only on the properties of the 
original substrate and guiding layer, and the operating frequency; this should be valid at least to a 
first approximation. Another way of stating the above is to note that if we can obtain theoretically 
from the dispersion equation, the graph of the phase speed dependence on layer thickness then we 
can predict the mass sensitivity of a device. Alternatively, if the phase speed dependence on layer 
thickness is known experimentally then we can predict the mass sensitivity of a device. Consider 
the Love wave dispersion curves shown in fig. 2 for the first three Love wave modes on an 
infinitely thick substrate possessing a shear speed of v^=5100 ms"1 and coated with a guiding 
layer possessing a shear speed of v/=1100 ms"1. For illustrative purposes this calculation 
corresponds to propagation orthogonal to the crystalline X direction on a polymer coated ST-cut 
quartz substrate. The horizontal axis in fig. 2 uses a normalized scale of z=dlXi where Xf= vi/f and 
is therefore frequency dependent. For any given substrate, the operating frequency, f0, and 
guiding layer thickness, d, determine an operating point, z0, on the dispersion curve. If, having 
chosen the operating point, we now imagine depositing a thin layer, Aft, of the same material as 
the guiding layer onto the guiding layer, the operating point z0 will move along the horizontal 
axis. The net effect will be to reduce the phase speed by an amount Av from the phase speed, v0, 
at the original operating point. The larger the slope of the dispersion curve at the original 
operating point, the larger the fractional change in phase speed and the larger the phase velocity 
defined mass sensitivity. This idea has been developed rigorously and the result for the mass 
sensitivity of a Love wave device can be expressed by the equation [18,19], 
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S^ = lim 
Am^-oAm 

^ 

VVoJ 

2 / 2 
•vp/v0 

I 
fo fdlogev^ 

Ml Pi I dz JZr 

(5) 

1 jr\ 

where vp=(jup/pp) is the intrinsic speed of shear waves in the perturbing material; when the 
perturbing material is the same material as the layer the factor in square brackets is unity. Eq. (5) 
is an analogue to the Sauerbrey result (Eq. (4)) and indicates that the fractional shift in phase 
speed of a Love wave device is proportional to the operating frequency,/,, and the local slope of 
the dispersion curve at the operating point, z0. This local slope may itself be frequency dependent 
and so it would not be correct to conclude that, in general, the sensitivity is necessarily 
proportional to the operating frequency. 

Figure 3 shows the mass sensitivity curves from Eq. (5) corresponding to the data in fig. 2. For 
each mode there is a maximum phase speed sensitivity corresponding to the operating point z 
being at the point of maximum slope in the dispersion curves. A physical interpretation of the 
mass sensitivity arising from the Love wave dispersion curve is that the point of steepest slope 
corresponds to the device being placed at the transition point for the wave displacement being 
dominantly in the substrate to dominantly in the guiding layer. When the Love wave 
displacement is dominantly in the substrate its phase speed is close to that of a shear wave in the 
substrate (i.e. v~vs). In contrast, when the Love wave displacement is dominantly in the guiding 
layer its phase speed is close to that of a shear wave in the guiding layer (i.e. v~v/). The high mass 
sensitivity of the Love wave does not therefore arise because the wave has been fully localized in 
the guiding layer, but because the wave is on the transition point whereby mass added to the 
guiding layer will rapidly cause the wave to become fully localized to the guiding layer [18,19]. 

2.2 Polymer Guiding Layer 
The interpretation developed for phase speed mass sensitivity in a Love wave device also 
suggests that by using a polymer guiding layer the insertion loss can, in principle, be a good 
sensor parameter [19]. How effectively the principle could be applied depends on the relative 
precision that could be obtained practically compared to a frequency or phase measurement. 
When the Love wave displacement is dominantly in the substrate the loss is relatively low, but 
when mass is added to the guiding layer surface the operating point moves down the complex 
phase velocity dispersion curve and the Love wave displacement becomes dominantly in the 
layer. If this guiding layer is a polymer, a large change in insertion loss will arise even if the 
sensed material itself is rigid mass. In a Maxwell model for the viscoelasticity of the guiding 
layer the insertion loss per metre propagation path, IL, on localization in the guiding layer 
becomes, 

IL = -20(log10e)lm CD 
-» 20(log10e 

1 + (corf 

2cor 
F_(COT) (6) 
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1/2 
where co=2nf is the angular frequency, 7=r/i/jUi is the Maxwellian relaxation time and the 
superscript in v/° implies the solid limit for a viscoelastic guiding layer (i.e. v/°=[G/(0r-^oo)/p/] 
where G/ is the shear modulus of the guiding layer). The function F^az) is given by, 

F+(oz) 
f I—;—— \ 

+ COT ^l + iprrf 
1/2 

1 + {cor)7 
(7) 

? v - l so that for thick guiding layers (i.e. d such that v—»v/) and COT»\, ILCC{CDZ)' . Figure 4 shows the 
insertion loss as a function of normalized guiding layer thickness zx=d/Ar where X?= vflf 
calculated using a> z=104 and a frequency of 100 MHz. The horizontal dotted line is the result 
from Eq. (6). The implication from fig. 4 is that an insertion loss mass sensitivity can be defined 
in a similar manner to a phase velocity mass sensitivity and that changes in insertion loss can be 
used to monitor both deposition of rigid mass from the vapor or liquid phase and changes in 
liquid viscosity-density. 

2.3 Frequency Hopping 
Considering the dispersion equation graph for the case of a mass based guiding layer on a semi-
infinite substrate, it is possible to understand the effect of higher frequency or thicker guiding 
layers on the mass sensitivity of a Love wave device [18]. Two possible routes to higher 
frequency operation are: i) to increase the fundamental frequency, and ii) to use IDTs capable of 
working at harmonic frequencies. In both cases, Eq. (5) shows that if the guiding layer thickness 
is reduced inversely proportional to the frequency, so that the operating point z0 does not alter, 
then the phase velocity mass sensitivity will scale directly with frequency. However, if the 
operating frequency is increased whilst retaining the guiding thickness at a constant value, e.g. by 
using a harmonic of the DDT operating frequency, then several possibilities can occur. An 
increase in frequency may result in a new operating point on the dispersion curve with an 
increased or decreased slope and may also result in a change in the Love wave mode; several of 
these possibilities are shown in fig. 5. In each of the example cases a)-d) the normalized guiding 
layer thickness z0, defining the operating point, is increased by increasing the operating 
frequency. Transition a) will result in an increased phase velocity mass sensitivity because both 
the slope factor and the explicit frequency factor in Eq. (5) increase. However, transitions b)-d) 
all result in lower slopes at the new operating points on the dispersion curves and, of these, only 
transition d) has a sufficient increase in operating frequency to overcome the reduction in slope. 
Thus, increasing the operating frequency for a Love wave device may or may not result in higher 
mass sensitivity. The issue of change of Love wave mode is particularly important for a polymer 
based guiding layer as in this case transition c), rather than transition b), would be expected due 
to the high insertion loss for a fully localized Love wave mode. 

3 Layer-guided Waves on Finite Thickness Substrates 
3.1 Generalized Sauerbrey Equation 
The result in Eq. (5) can be extended to the loading by a finite thickness viscoelastic fluid of 
density p/, thickness h and complex shear speed v/=(G/pf) , where G/ is the complex shear 
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modulus, of a polymer waveguide layer on a finite thickness substrate [19]. The fractional change 
in phase speed is then, 

Av ^ l o g e v ^ 

I dz )z=zr 

where the wavevector Tf is given by, 

f 
Ij- =co0 

tanlffh) 

T°fh 

J 1_ 
~2 2 
vf v0 

Pfhfo 
^Gl(aT^co)pl 

J /2 

(8) 

(9) 

It should be noted that both the slope term in Eq. (8) and the operating point phase speed v0 in Eq. 
(9) depend on the operating frequency f0. The similarity of Eq. (8) to the Sauerbrey, and 
Kanazawa and Gordon equations can be seen by noting that in the Maxwell model for a 
viscoelastic loading the tanx/x type factor in Eq. (8) has the solid and liquid limits given by, 

tan(rj/z) 

T°h 
- H 

1 

4^ 
2h^-v2

fjvl) 12 

2*7/ 

COr Pf 

h^O 

/z^-oo and <y„r—»0 
(10) 

where a0 is the angular frequency and 1=77////is the Maxwellian relaxation time for the loading 
layer. In the thin solid limit tanx/x^-1 and Avlv0ccpfh so that the fractional shift in phase speed is 
proportional to the deposited mass per unit area. In this limit, providing the guiding layer is 
composed of rigid mass, only a real velocity shift arises. The explicit frequency dependence of 
the Av/v0 is also proportional to frequency, although the slope factor will introduce an additional 
frequency dependence. In the limit of an infinitely deep Newtonian liquid Eq. (8) has a 
dependence on the square root of the density-viscosity product, i.e. (p/r/f) , and the explicit 
frequency dependence is reduced to f0 , although again the slope factor will introduce an 
additional frequency dependence. In addition the (-2/) means that the Av/v0 response to a 
Newtonian liquid includes a damping term even if the guiding layer is composed of rigid mass. 
The change in insertion loss per unit propagation length due to a small change in the (complex) 
phase velocity can be calculated from Eq. (8) using, 

AIL = 20(log10 e)lm cor 
^ 

\VoJ 
(11) 

3.2 Layer-Guided SH-APMs 
Up to this stage in this work, the dispersion equation has been used primarily as a tool to 
understand traditional Love wave devices composed of a guiding layer on a semi-infinite 
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substrate. However, in any experiment a finite thickness substrate is used and the results in 
section 3.1 are sufficiently general to be accurate in this case. Consider again fig. la) for a Love 
wave device using a finite substrate and fig. lb) for a SH-APM device. These sensor devices 
have many common features: both use IDTS to excite propagating waves with shear 
displacements parallel to the surface and, when the SH-APM is used as a sensor, both will have a 
layer on one surface. The difference between the devices is that the Love wave displacement has 
an antinode at the top surface of the layer and decays with depth into the substrate whereas the 
SH-APM has antinodes at both the top surface of the layer and at the lower surface of the 
substrate. Thus, within a model neglecting electric field effects, it is possible to use a common set 
of equations of motion and boundary conditions to describe both the Love wave on a finite 
substrate and the SH-APM with a guiding layer [16,17]. In this approach, the substrate and layer 
solutions can be written in the forms, 

^=(0,1,0) Cse~T^ +JD5e
7>3 j ^ V - M i ) (12) 

(0,l,0)[(4/e"-/T'*3 + BieJTlX* \^at~k^) (13) 

where the subscripts s and / indicate substrate and guiding layer, and k\={<alv) gives the phase 
speed, v, of the solution. Substituting these solutions into the equations of motion for the 
substrate and guiding layer materials and applying boundary conditions gives a dispersion 
equation for the system of shear mode propagation on the substrate with the guiding layer. This 
approach has been developed to describe a system a substrate plus three viscoelastic layers [19]. 
Since in the extreme relaxation time limits a viscoelastic layer can be regarded either as rigid 
mass or as a Newtonian liquid, the developed model has wide applicability. For example, with 
four layers, the first two layers could represent the substrate and guiding layers, the fourth layer 
could represent a liquid in which a device was immersed and the third layer could represent mass 
deposited from the liquid phase. Increasing the model to more than four layers is straightforward 
in principle, but involves additional algebraic complexity. 

In the simplest case of a substrate of thickness, w, overlayed with a single layer of rigid mass of 
thickness, d, applying the boundary conditions gives a dispersion equation, 

tmfad) = £ tanh(7>) (14) 

where E, is defined as, 

Figure 6 shows the numerical calculation of the full spectrum for the solution of the dispersion 
equation, Eq. (14), for a frequency of 100 MHz. In contrast to the calculation in fig. 3, the curves 
in fig. 6 are only valid for the specific frequency of the calculation. The thickness of the 
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substrate, w, determines the number of Love wave modes and the spacing of the associated 
acoustic plate modes. At the start of each successive Love wave mode the phase speed of the 

9 1/9 

Love wave is v=vs and the speeds of the associated plate modes are vm=vj(\-(mnvjwa))) , 
where m=\, 2, 3, ... . Significantly, from Eq. (14), the wavevector Ts can be real or imaginary 
with the real solution corresponding to v<vs and the imaginary solution corresponding to v>vs. 
Plots of the displacements show that the real solutions for Ts have displacements decaying into 
the substrate (i.e. Love wave type behavior) whereas the imaginary solutions for Ts have 
displacements representing substrate resonances (i.e. SH-APMs) [17]. Because both types of 
solution fully satisfy the boundary conditions at both the upper and lower faces, it means that 
there is no requirement for a critical penetration depth on the finite substrate for the Love wave 
type solution to exist. Thus, in fig. 6 the curves beginning with phase speeds higher than 5100 
ms"1 correspond to SH-APM type solutions with guiding layers and those with phase speeds 
lower than 5100 ms"1 correspond to Love wave type solutions on finite thickness substrates. 

The guiding layer thickness can be chosen to simultaneously satisfy both the Love wave 
condition tan(Tid)=0 and the SH-APM condition tan(ksw)=0, where Ts=jks, by choosing a 
thickness dnm given by, 

I [V 2 

1-
r mXs \ 
{2w J 

where n=0,l,2,3, .... labels the successive Love wave modes and As=vjf. The start of each Love 
wave mode and the start of each associated plate mode are shown by the solid circles in fig. 6. As 
the guiding layer thickness increases, the «=0 Love wave evolves into a displacement with a 
single node located close to the substrate-layer interface and an antinode at the surface of the 
guiding layer. Each higher order Love wave introduces an additional node within the layered 
system. Graphical illustrations showing how the displacements evolve as the guiding layer 
thickness increases are given in reference [17]. This theoretical approach therefore provides a 
combined model of Love wave and SH-APM sensors and predicts that layer-guiding is possible 
for SH-APMs and that layer guided SH-APMs evolve into Love wave modes as the guiding layer 
thickness is increased. Previously published work has also shown that the approach can 
incorporate SH-SAWs [19]. It has also provided a range of analytical approximations for 
sensitivity of all these devices with viscoelastic guiding layers to deposition of rigid and non-
rigid mass from the vapor/liquid phase and to liquid properties. 

In the previous sections, it was shown that the dispersion equation provided a powerful tool for 
understanding the sensitivity of Love wave devices. It can be shown that Eq. (8) continues to be 
valid for both the layer-guided SH-APMs and the Love waves on a finite substrate. Thus, the 
slope at the operating point of the dispersion curve determines the sensitivity of a device. An 
immediate consequence is that by introducing a guiding layer, a significant enhancement in the 
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mass/liquid sensitivity can be achieved for a SH-APM device. Indeed, the effect on a given mode 
of a SH-APM device of increasing the guiding layer thickness is to eventually cause a step-like 
transition in the phase speed down to that of the next mode. The separation in phase speeds of the 
two highest SH-APM modes can be larger than the difference between the substrate and guiding 
layer speeds between which the Love wave makes a step-like transition. Thus, a layer-guided SH-
A P M device with a sensitivity approaching that of a Love wave device may be possible. Fig. 7 
shows the SH-APM mass sensitivities corresponding to fig. 6; the zero thickness guiding layer 

9 1 

limit mass sensitivities for the three n>0 SH-APM modes are 3.85, 4.92 and 8.91 m kg" , 
respectively. The peak increase in mass sensitivity of the SH-APMs due to an optimum guiding 
layer thickness is several orders of magnitude for the highest mode, but not quite as high as the 
mass sensitivity of the Love wave modes (see fig. 3) 

4 Conclusions and Experimental Implications 
The purpose of this work has been to provide a conceptual framework in which the behavior of a 
wide range of acoustic wave sensors employing guiding layers can be understood. Although the 
focus of this work has been on Love wave and layer-guided SH-APM devices, the methodology 
used can be applied to the frequency response of TSM quartz crystal resonators. Experimentally, 
for Love wave devices using polymers the existence of multiple Love wave modes has been 
confirmed, as has the change in phase speed mass sensitivity [21,22]. Higher order Love wave 
modes have potential for sensors using alternative guiding layer materials which may need to be 
thicker, an example would be a molecularly imprinted polymer used as both a selective and a 
guiding layer [23]. The relationship between sensitivity and frequency is potentially useful 
because it provides predictions of how to design devices with optimum sensitivity. Examples 
include scaling guiding layer thickness inversely with frequency and using third, but not second, 
harmonic frequency transducers to hop between the optimum sensitivity of the first and third 
modes; it should be noted that the frequency change needs to be slightly greater than a factor of 
three [18]. Hopping between frequencies may provide a route to examining relaxation time 
effects in polymers films or liquids [24,25]. For viscoelastic guiding layers, it is possible to 
understand why an insertion loss response may arise even when the deposition sensed is of rigid 
mass. Thus, the theory suggests that an experimental focus solely on phase velocity changes is 
too restrictive. The change in insertion loss with guiding layer thickness predicted by the theory 
is qualitatively correct for Love wave devices created by using a substrate supporting a pure SH-
SAW, such as 36° YX-LiTaCh with a metallized path. However, it does not correctly predict the 
initial insertion loss behavior with guiding layer thickness for devices constructed on a substrate 
using a surface skimming bulk wave (SSBW), such as propagation orthogonal to the X-axis on 
ST-cut quartz [22]. Experimentally, the initial effect of a guiding layer on such a substrate is to 
effectively short circuit some of the SSBW attenuation. Nonetheless, the idea of sensitivity being 
related to the slope of the experimentally determined dispersion curve remains relevant to the 
initial behavior of the insertion loss for such devices and the concepts developed in this work 
explain the multiple mode behavior of such devices. Whilst not discussed in this work, the 
dispersion curve is also useful in relating group velocity to the mass sensitivity and understanding 
pulse mode based sensors [21,26]. One of the strongest predictions of the dispersion curve 
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approach to Love wave sensors has been to unite their treatment with that of SH-APM sensors. 
This has resulted in the prediction that a guiding layer can significantly enhance sensitivity of 
SH-APM devices; similar effects can be anticipated for T S M quartz crystal resonators. The 
experimental confirmation of the prediction of sensitivity enhancement due to the guiding layer 
has been obtained and it has been shown to remain effective for the SH-APM even when the face 
used for sensing is on the opposite side to that containing the IDTs [22,27]. Thus, it should be 
possible to construct devices having a sensitivity approaching that of Love wave devices, but 
without the problems of liquids and liquid seals on the same face as the transducers. 
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Figure Captions 

Figure 1 
a) Love wave device, b) SH-APM device. In both cases the displacements for the first mode are 
shown schematically. 

Figure 2 
Phase speed variation with normalized guiding layer thickness z=dlXi, where Xf= vi/f, for the first 
three Love wave modes; the solid circles are analytical results. The parameters used in the 

1 1 Q Q 

calculation are v^=5100 m s" , v/=l 100 m s" , p^=2655 kg m" and p/=1000 kg m" , and the guiding 
layer is assumed to be rigid mass and the substrate of semi-infinite thickness. 

Figure 3 
Mass sensitivity (Eq. (5)) as a function of normalized guiding layer thickness z=dlXi, for the Love 
wave modes shown in fig. 2. 

Figure 4 
The insertion loss as a function of normalized guiding layer thickness zx=d/Xr where X^= vj°lf 
using a viscoelastic guiding layer with coz=\04 and a frequency of 100 MHz; other parameters are 
the same as in fig. 2. The horizontal dotted line is the limiting result from Eq. (6). 

Figure 5 
Illustrations of possible changes in Love wave operating point and mode due to a frequency 
increase. Transitions a) and d) both give increased mass sensitivity whereas transitions b) and c) 
result in lower mass sensitivity. 

Figure 6 
Phase speed variation with normalized guiding layer thickness z=dlXi, where Xf= vi/f, for the first 
three Love wave modes and associated SH-APMs on a finite thickness substrate; the solid circles 
are analytical results. The parameters used in the calculation are v^=5100 ms"1, v/=1100 ms"1, 
Ps=2655 kg m" , p/=1000 kg m" and >v=100 urn, and the guiding layer is assumed to be rigid 
mass. 

Figure 7 
Mass sensitivity (Eq. (5)) as a function of normalized guiding layer thickness z=dlXi, for the SH-
APMs shown in fig. 6. The mass sensitivity of the corresponding Love wave modes is similar to 
that shown in fig. 3. 
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McHale - Generalized concept of SH-APM and Love wave sensors 

Figure 1 
a) Love wave device, b) SH-APM device. In both cases the displacements for the first mode are 

shown schematically. 
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McHale - Generalized concept of SH-APM and Love wave sensors 

Figure 2 
Phase speed variation with normalized guiding layer thickness z=dlXi, where Xf= vi/f, for the first 
three Love wave modes; the solid circles are analytical results. The parameters used in the 

1 1 Q Q 

calculation are v^=5100 m s" , v/=l 100 m s" , p^=2655 kg m" and p/=1000 kg m" , and the guiding 
layer is assumed to be rigid mass and the substrate of semi-infinite thickness. 
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McHale - Generalized concept of SH-APM and Love wave sensors 

Figure 3 
Mass sensitivity (Eq. (5)) as a function of normalized guiding layer thickness z=dlXi, for the Love 
wave modes shown in fig. 2. 
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McHale - Generalized concept of SH-APM and Love wave sensors 

Figure 4 
The insertion loss as a function of normalized guiding layer thickness zx=d/Ar where /l/c0= vj°lf 
using a viscoelastic guiding layer with coz=\04 and a frequency of 100 MHz; other parameters are 
the same as in fig. 2. The horizontal dotted line is the limiting result from Eq. (6). 
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McHale - Generalized concept of SH-APM and Love wave sensors 

Figure 5 
Illustrations of possible changes in Love wave operating point and mode due to a frequency 
increase. Transitions a) and d) both give increased mass sensitivity whereas transitions b) and c) 
result in lower mass sensitivity. 
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McHale - Generalized concept of SH-APM and Love wave sensors 

Figure 6 
Phase speed variation with normalized guiding layer thickness z=dlXi, where Xf= vi/f, for the first 
three Love wave modes and associated SH-APMs on a finite thickness substrate: the solid circles 

-i are analytical results. The parameters used in the calculation are v^=5100 ms" , v/=1100 ms -i 

ps=2655 kg m" 
mass. 
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McHale - Generalized concept of SH-APM and Love wave sensors 

Figure 7 
Mass sensitivity (Eq. (5)) as a function of normalized guiding layer thickness z=dlXi, for the SH-
APMs shown in fig. 6. The mass sensitivity of the corresponding Love wave modes is similar to 
that shown in fig. 3. 
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