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Abstract. We consider the formation energies and stabilities of dopants in semiconductor
alloys. We show that they are not bounded by the formation energies in the related pure
materials. On the contrary, by tuning the alloy composition, dopant solubility can be increased
significantly above that in the pure materials. Furthermore, it is not always necessary to carry
out full defect calculations in alloy supercells, since good estimates of the formation energies at
the most stable substitution sites can be obtained by calculating the formation energies in the
various component pure materials, but strained to the lattice parameter of the alloy.

1. Introduction
Atomic scale point defects play a defining role in a great many industrially and environmentally
relevant materials properties and processes, from electronic doping in semiconductors, to
hydrogen transport within fuel cells, to the active sites in metal/metal oxide catalysts. Our
ability to study such defect properties and processes from as many angles as possible is therefore
extremely important. One very important angle is now the use of ab initio Density Functional
Theory (DFT). [1] The key property usually calculated is the defect formation energy,

EF
q = ETot

def (q)− ETot
ideal −

∑

i

niµi + q(εF + εV ), (1)

where ETot
def (q) and ETot

ideal are the total energies of a particular supercell or atomic cluster with
and without the charge q defect. ni atoms of type i and chemical potential µi are added while
forming the defect. εF is the Fermi level, and εV is the valence band edge (VBE) measured
relative to it. Almost all defect properties can be obtained from EF

q , and the ways in which it
varies with structure, lattice site, host composition, pressure, etc.

The calculation of EF
q in the bulk of pure materials has become routine (see review [3])

although there remain problems due to the approximations required (see discussion in [4]).
Calculations become more complex and expensive if we consider defects at surfaces (e.g. [5])
or interfaces between pure materials (rarely treated [3]), but overall a broad understanding
of defects in pure materials has been achieved. However, many of the most important
semiconductor materials are not pure at all, but alloys: either binary (e.g. Si1−xC1−x), tertiary
(e.g. AlxGa1−xAs), or quarternary (e.g. InxGa1−xAsyP1−y). Calculations here are far more
challenging. The simplest approach is to use the Virtual Crystal Approximation (VCA) [6],
in which we replace, say, both the Al and Ga in AlxGa1−xAs with a pseudo-atom whose
properties are a weighted average of those of As and Ga. The underlying assumption is that

2nd Workshop on Theory, Modelling and Computational Methods for Semiconductors IOP Publishing
Journal of Physics: Conference Series 242 (2010) 012014 doi:10.1088/1742-6596/242/1/012014

c© 2010 IOP Publishing Ltd 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham Trent Institutional Repository (IRep)

https://core.ac.uk/display/30641105?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


the properties of the alloy are a linear, or near linear interpolation between the properties of
the pure materials, and local details do not matter. For the lattice parameter this is a rather
good approximation, known as Vegard’s Law [2]: the lattice constant aAB

0 of an alloy AxB1−x

is given by aAB
0 = xaA

0 + (1 − x)aB
0 . For some materials the VBE and conduction band edge

(CBE) and hence the band gap also follow a similar relation, although more generally there is
some curvature. The VCA would predict that in alloys the defect formation energies, EF

q , vary
monotonically, (probably linearly) between those of the pure materials.

However, in most cases [3] the details of local relaxations and the identity of nearby ions make
a significant contribution to EF

q . In a random alloy such as GaxIn1−xP some local environments
will resemble InP and some GaP, with others in between. One might therefore anticipate a
spread of EF

q values, bounded by those in pure InP and GaP. However, in a recent study of
dopants in both alloys and thin multilayers [7] we found that while there is a wide spread of EF

q
values, it is not bounded by those in the pure materials. Indeed, dopants can be far more stable
in the alloy or multilayer than in either pure material, causing significant increases in solubility.
Here, we report further results and details regarding the behaviour of dopants in disordered and
ordered alloys. Since strain effects turn out to dominate, we consider the examples of Zn−III and
Cd−III in GaxIn1−xP. The cationic radii follow the order Zn ≈ Ga < In ≈ Cd, so we can study
the substitution of both In and Ga with smaller, similar and larger radius dopants.

2. Computational details
We use plane wave ab initio DFT [1] within the Local Density Approximation (LDA) [10]
together with ultrasoft pseudopotentials [11, 12] using the VASP code.[13] The indium 4d
electrons are treated as core, and for charged defects a uniform compensating background
maintains the charge neutrality of the supercell.[14]. All ions are relaxed fully. Where both
ions and volume are relaxed this is done iteratively, alternating between relaxing the volume
with fixed ions and relaxing the ions at fixed volume, until both are simultaneously converged.
LDA lattice constants of 5.39 Å and 5.83 Å are used for GaP and InP [8, 9].

Calculations in strained pure materials use 216 atom cells. For the ordered phase of
Ga0.5In0.5P we use a 512 atom CuPt structured supercell, [15, 16] with alternating Ga and
In atomic layers in the [111] direction. For disordered Ga0.5In0.5P we use 216 atom supercells.
(Pair correlations are not optimized, but would have little impact, since the strongest effect
turns out to be internal strain - see section 3.) K-point integration is at the "k = 1

4(1, 1, 1) special
point, and the planewave cutoff is 250eV.

Since the two examples defects are both p-type dopants, and we consider the strong doping
regime, we assume that the Fermi level lies at the VBE, hence εF = 0. For the chemical
potentials we use stoichiometric values. If we define µi = µBulk

i +∆µi, then these correspond to
∆µstoich

i = 1
2∆Hform for GaxIn1−xP. Here, ∆Hform is the formation enthalpy of the compound,

such that ∆Hform
AB = µAxB1−x − xµBulk

A − (1− x)µBulk
B and the denominator of the prefactor is

2 in this alloy. The bulk chemical potentials are µBulk
Ga =-3.610 eV, µBulk

In =-3.269 eV, µBulk
P =-

6.028 eV, µBulk
Zn =-1.891 eV and µBulk

Cd = -1.531 eV. This gives formation enthalpies of -0.59 eV
in CuPt-ordered Ga0.5In0.5P, -0.62 eV for disordered Ga0.5In0.5P.

3. Results
For undoped disordered Ga0.5In0.5, full relaxations of both ions and volume gives a0=5.606 Å.
The CuPt-ordered structure has a symmetry axis [111], so without dopants the Ga-P bonding
distances are 2.32 Å parallel to [111] and 2.40 Å perpendicular to it, with the corresponding
In-P bonding distances being 2.52 Å and 2.47 Å. The resulting average lattice parameter is
a0=5.614 Å. These a0 values (5.606 Å and 5.614 Å) differ by only +0.07% and -0.05% from the
prediction of Vegard’s law, which is 5.61 Å using the LDA values for aInP

0 and aGaP
0 . On the
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other hand, the LDA VBE of InxGa1−xP is not quite so linear. It lies 0.456 eV higher in pure
GaP than in pure InP. A linear interpolation therefore predicts a value for In0.5Ga0.5P which
is 0.312 eV higher than in pure InP. The values obtained are 0.341 eV and 0.390 eV for the
ordered and disordered alloys respectively, which differ by 9% and 25%.
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Figure 1. Formation energy of a) Zn−III and b) Cd−III in InxGa1−xP, versus average bond length
at the dopant site. Lines link values in strained InP or GaP, with (solid) or without (dashed)
local relaxation after substitution. (Multilayer data from [7], further details in [17].)

In the ordered alloy, the dopants can occupy two possible sites: in the Ga-planes or in the
In-planes. For Zn, EF

q is 0.45 eV lower when substituting In rather than Ga (see Fig. 1) so
the majority of Zn−III should locate on the In sublattice. Furthermore, EF

q of Zn−In is actually
0.35 eV lower than in pure InP, indicating a significant increase in solubility. On the other hand,
for Zn−Ga, EF

q is practically the same as in pure GaP -just 0.01 eV higher. For cadmium, EF
q of

Cd−In is close to that in pure InP (0.07 eV lower), but for Cd−Ga it is 0.38 eV more stable in the
ordered alloy than in pure GaP. (In this case the stability improvement of Cd−Ga will not affect
the solubility, as Cd−In remains 0.16 eV more stable.)

For Zn in the disordered alloy, we consider only sites with either a maximal number of In
or of Ga second neighbours, or half of each. As expected, there is a wide spread of EF

q values,
though we only plot the highest two (both with Ga second neighbours) and the lowest two (both
with In second neighbours) in Fig 1. We find that the type of second neighbour has rather less
influence than the identity of the substituted cation. In practise, only the sites with the lowest
formation energies are likely to be occupied, and for these we get very similar results to those in
the ordered alloy (a difference of only 0.004 eV). Hence Zn is again considerably more stable than
in either pure InP or pure GaP. We have noted elsewhere [7, 17] that we also find a very similar
increase in stability in an (InP)x/(GaP)1−x multilayer structure. (The data are reproduced in
Fig 1.) For the multilayers we estimated the resulting defect solubility and its dependence on x.
For x = 0.1 we found a solubility five orders of magnitude larger than in either pure InP or pure
GaP. It seems reasonable to expected a very similar solubility increase if we tune x for either
the random or the ordered alloys.

Fig 1 also shows EF
q for Zn−III and Cd−III in pure GaP and InP under strain, plotted both with

and without additional ion relaxation after the substitution. Allowing this relaxation lowers
EF

q by an almost constant amount, so the local relaxation energy is more-or-less independent of
lattice parameter. Also, when the dopant has a similar size to the host atom substituted (Zn on
Ga or Cd on In) there is little local relaxation. If we now compare the relaxed EF

q in strained
pure materials, to those in ordered and disordered alloys and multilayers, we find that they are
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very similar. This is significant, since it is computationally much cheaper to calculate EF
q in the

strained pure materials than in either the ordered or disordered alloys, and yet this result gives
a reasonable estimate (±0.1 eV) of EF

q in the alloy.

4. Discussion and Conclusion
It is clear that the formation energy of dopants in semiconductor alloys depends strongly on
the local structure, and in particular on the local strain. It is also clear that there is very little
effect, regardless of the identities of second neighbours, when the dopant is of a similar size to
the ion substituted (Zn on Ga or Cd on In). Large increases in dopant stability relative to the
pure materials occur only when there is a large difference in ionic radii (Zn on In or Cd on Ga.)
For example, when Zn−In forms in InP, the four Zn-P bonds formed are stretched significantly
beyond their equilibrium length, destabilizing the dopant. However, when we alloy with GaP,
the lattice parameter is reduced, since Ga is smaller than In. The Zn-P bonds are then allowed
to return closer to their preferred lengths, reducing the formation energy and increasing the
stability and hence solubility. Similarly, when Cd−Ga forms in GaP, the resulting Cd-P bonds are
over-compressed. Alloying with InP then increases the lattice parameter, releasing this stress
and lowering the formation energy. To summarize this, if we wish to increase the solubility of
dopant Z in alloy AxB1−x (where the formation energy is lower in A than in B), the solubility
of Z in A can be raised by alloying it with B if either:

1. If Z is smaller than the substituted ion in A and aB
0 < aA

0
2. If Z is larger than the substituted ion in A and aB

0 > aA
0

Since the identity of the substituted ion is important, (rather than that of the second
neighbours,) direct experimental studies of this effect would probably depend upon precise
preparation methods, with, say, ion implantation being more likely to achieve a solubility
increase. Such studies have not been made to our knowledge, but the results of several earlier
studies may be attributed to our strain-solubility mechanism (see [7, 17]). For example, MgGa
accumulates at the interface when cubic GaN is grown on a GaAs substrate.[18] Since Mg atoms
are larger than the substituted Ga atoms and GaN is stretched near the interface, the formation
energy of MgGa should be lowered near the interface, explaining the accumulation. Similarly, in
some InP/InGaAsP lasers, Zn dopants diffuse over time, and build up inside the alloyed active
region. [19] Our results suggest that Zn would indeed be on average more stable there, though
further work is needed to confirm this.
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