

The macroinvertebrate seedbank promotes community persistence in temporary rivers across climate zones

Journal:	Freshwater Biology
Manuscript ID:	FWB-P-Sep-12-0522.R2
Manuscript Type:	Standard Paper
Date Submitted by the Author:	n/a
Complete List of Authors:	STUBBINGTON, RACHEL; Nottingham Trent University, School of Science and Technology Datry, Thibault; Irstea,
Keywords:	Climate change < Applied Issues, Running water / rivers / streams < Habitat, Benthos < Taxonomic Group / Assemblage, Community < Level of Organisation, Experimental ecology < Process / Approach / Methods

Freshwater Biology

1	The macroinvertebrate seedbank promotes community persistence in temporary rivers
2	across climate zones
3	
4	RACHEL STUBBINGTON [*] AND THIBAULT DATRY [†]
5	
6	* School of Science and Technology, Nottingham Trent University, Nottingham,
7	Nottinghamshire NG11 8NS, UK
8	[†] IRSTEA, UR-MALY, 3 bis quai Chauveau, Lyon Cedex, France
9	
10	Correspondence: Rachel Stubbington, School of Science and Technology,
11	Nottingham Trent University, Nottingham, Nottinghamshire NG11 8NS, UK. E-mail:
12	rachel.stubbington@ntu.ac.uk
13	
14	Running head line: The invertebrate seedbank of temporary rivers
15	
16	Keywords: seed bank, egg bank, aestivation, refuge, flow intermittence

17 SUMMARY

 Aquatic macroinvertebrates inhabiting temporary rivers are typically described as
 having low resistance to riverbed drying. However, little research has examined the
 'seedbank' within dry riverbed sediments, which comprises aquatic life stages that
 survive in dewatered sediments and from which active organisms may develop only
 after surface water returns.

2. We synthesized published and unpublished data from studies that had experimentally rehydrated sediments collected from dry riverbeds, to establish the importance of the seedbank in promoting macroinvertebrate community resistance. Studies from across climate zones were included, to examine seedbank importance in relation to environmental harshness, and in particular, sediment moisture. We also assessed the importance of the seedbank relative to alternative habitats promoting persistence of the flowing river (FR) assemblage. We predicted that the proportion of the FR assemblage present in rehydrated sediments (RS) would decrease with environmental harshness, due to conditions within the sediments becoming less conducive to the survival of biota.

3. A negative relationship between the proportion of FR taxa present in RS and
harshness was observed, and this contributed to a reduction in the compositional
similarity of FR and RS assemblages as harshness increased. Significant positive
correlations were identified between sediment moisture content and macroinvertebrate
community metrics (density and taxon richness) in some systems.

4. Habitats external to the dry reach, which contribute to community resilience, were
invariably inhabited by a greater number of FR taxa than rehydrated sediments.
However, rehydrated sediments included several FR taxa that were not found in any
other habitats during the dry phase, including families of Coleoptera and Diptera.

5. Our results indicate the importance of the seedbank as a resistance mechanism for
temporary river macroinvertebrates. With climate change scenarios predicting an
increase in riverbed drying, maintaining habitats that facilitate the persistence of
instream communities during dry phases is an increasing priority. We identified

Freshwater Biology

1
2
3
4
5
6
0
1
8
9
10
11
11
12
13
14
15
16
17
1/
18
19
20
21
22
22
23
24
25
26
27
21
28
29
30
31
32
22
33
34
35
36
37
38
20
39
40
41
42
43
44
 /-
40
46
47
48
49
50
50
51
52
53
54
55
55
0C

- 51 strong relationships between sediment moisture and taxon richness, and river
- 52 management and rehabilitation activities should therefore aim to retain moisture in
- 53 drying sediments, by manipulating parameters such as riparian shading.
- 54
- 55

Introduction

Temporary rivers, which experience seasonal drying of riverbed sediments, are the dominant type of lotic ecosystem in Mediterranean and arid climates (Gasith & Resh, 1999; Tooth & Nansen, 2011) and are also common in temperate regions (Williams, 1996; Larned *et al.*, 2010). In temporary systems, as well as in typically perennial rivers, the spatiotemporal extent of riverbed drying may increase during droughts (Williams, 2006; Sponseller et al., 2010; Bogan & Lytle, 2011). Climate change scenarios predict an increase in drought frequency and severity in many global regions (Solomon et al., 2007), with increasing water resource pressures exacerbating surface water deficits in anthropogenically-influenced systems (Kundzewicz et al., 2008; Vörösmarty et al., 2010). The dry period duration in naturally temporary systems and the occurrence of drying in typically perennial rivers are therefore both expected to increase (Solomon et al., 2007; Döll & Schmied, 2012), with consequences for the persistence of stream communities (Robson, Chester & Austin, 2011).

Macroinvertebrate community responses to drying are considered to be characterised by low resistance (capacity to withstand drying) and high resilience (capacity to recover after flow resumes; Stanley et al., 1994; Fritz & Dodds, 2004; Acuña et al., 2005). This means that recolonisation of a rewetted reach is achieved primarily by individuals originating from external sources, not by emergence of those withstanding drying in situ. However, this apparently low resistance conflicts with predictions that communities exposed to regular drying will have adaptive traits, including desiccation tolerance, to facilitate survival of dry phases (Lytle & Poff, 2004; Diaz, Alonso & Gutierrez, 2008; Robson et al., 2011).

Previous research considering macroinvertebrate survival within sediments extracted from dry channels has demonstrated that some taxa have active life stages that are resistant to drying, including dytiscid beetles (Fenoglio, Bo & Bosi, 2006), gastropod molluscs (Miller, Ponder & Clark, 1999; Lysne & Koetsier, 2006) and larval trichopterans (Wickson, Chester & Robson, 2012). However, there is increasing recognition that these active individuals are only one part of an invertebrate 'seedbank' (sensu Tronstad, Tronstad & Benke, 2005a; Datry, Corti & Philippe, 2012), which comprises all aquatic life stages that remain viable in dry riverbed

Page 5 of 51

1

Freshwater Biology

2
3
4
5
5
6
7
8
9
10
11
10
12
13
14
15
16
17
10
10
19
20
21
22
<u>~~</u>
23
24
25
26
27
21
28
29
30
31
22
32
33
34
35
36
27
37
38
39
40
<u>4</u> 1
ті 40
42
43
44
45
46
47
4/
48
49
50
51
50
52
53
54
55
56
50
э/ Т
58
59
60

123

90	sediments. As such, the seedbank includes both active forms and dormant life stages
91	that develop only after rewetting. The importance of seedbanks as a resistance
92	mechanism has previously been recognised in temporary lentic waters including
93	ponds (Kenk, 1949; Williams, 2005), wetlands (Brock et al., 2003; Dietz-Brantley et
94	al., 2002) and floodplain habitats (Boulton & Lloyd, 1992; Benigno & Sommer,
95	2008), and in particular for meiofauna (Boulton & Lloyd, 1992; Brock et al., 2003).
96	
97	Recent sediment rehydration experiments have demonstrated that a substantial
98	proportion of the macroinvertebrate community may also survive in the dry sediments
99	of lotic ecosystems (see Table 1). Many of these published studies have provided
100	system-specific indications of the taxa present in rehydrated sediments, while the
101	wider importance of the seedbank as a mechanism allowing communities to persist in
102	temporary rivers remains unclear (Zwick, 1996). A quantitative synthesis of existing
103	data from across climate zones is required to improve understanding of the
104	contribution the seedbank makes to community persistence in temporary rivers and to
105	identify environmental drivers of seedbank composition. Previous experimental work
106	and field observations have indicated that many taxa show partial but not complete
107	desiccation tolerance (Robson et al., 2011; Wickson et al., 2012; Poznańska et al.,
108	2013), indicating that resistance is likely to be related to sediment moisture content.
109	
110	We synthesized published and unpublished data to determine the importance of the
111	seedbank as a resistance mechanism for macroinvertebrates in temporary rivers.
112	Seedbank 'importance' was defined as the proportion of flowing river (FR) taxa
113	present in the rehydrated sediment (RS) assemblage; this metric acknowledges the
114	influence of the FR assemblage on that present in RS, and also recognises that taxa
115	need only survive at low abundance to contribute to community recovery upon
116	rewetting. Studies from across climate zones were examined to determine how
117	contrasting conditions, in particular environmental harshness (defined as conditions
118	that limit community diversity and abundance; Fritz & Dodds, 2005), influence the
119	role of the seedbank. We hypothesized that the composition of the assemblage
120	surviving in dry sediments would be related to harshness, and in particular to
121	sediment moisture and therefore to the dry period duration, climatic variables and
122	sediment characteristics. We predicted that the proportion of FR taxa in dry sediments

would decrease in relation to harshness, and that this would be observed as a

reduction in taxonomic similarity between FR and RS assemblages as harshness
increased. To establish the relative importance of the seedbank as one resistance
mechanism within wider survival strategies, we examined the contribution of other
habitats to the persistence of FR communities, including other instream areas
promoting resistance (e.g. moist surface microhabitats) and instream and external
habitats increasing resilience (e.g. the hyporheic zone and local perennial waters,
respectively).

32 Methods

134 The datasets: criteria for inclusion and search parameters

Our synthesis examined macroinvertebrate persistence in lotic ecosystems following the loss of free water from the main channel; habitats lateral to the channel (e.g. floodplains) were not included. Flow intermittence occurs along a continuum and we considered it arbitrary to define a cut-off point anywhere along this continuum; rivers with any degree of flow intermittence were therefore eligible for inclusion in our analysis, from ephemeral to near-permanent systems (*sensu* Williams, 2006).

For inclusion in our analysis of seedbank importance, a dataset comprising two taxa lists was required: (i) taxa present in sediments extracted from a dry riverbed and experimentally rehydrated; (ii) taxa found within the same system during a period of surface flow either preceding and/or subsequent to the dry phase. 'Dry' sediments were considered as retaining a measured or undetermined amount of moisture but lacking free water. Dry sediments that were not rehydrated prior to examination were excluded, to avoid including deceased individuals in the recorded assemblage.

To warrant inclusion, the taxonomic resolution of a study needed to reach a level equivalent to other selected datasets, to facilitate comparison between systems. In practice, this meant Acarina, Oligochaeta and Tricladida were left at the group level stated; Bivalvia, Coleoptera, Diptera and Trichoptera were identified to family level; and Amphipoda, Cnidaria, Ephemeroptera, Gastropoda, Isopoda, Megaloptera, Odonata and Plecoptera were identified to genus. Meiofauna (Copepoda, Cladocera, Nematoda and Ostracoda) were excluded from our analyses as sampling and sample processing methods were not suitable for their retention in many studies. Basic

m

Page 7 of 51

1 2

Freshwater Biology

2
1
4 5
5
6
7
8
9
10
11
12
12
13
14
15
16
17
18
19
20
21
21
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
37
20
30
39
40
41
42
43
44
45
16
40
47
48 46
49
50
51
52
53
54
55
55
50
5/
58
59
60

158	environmental information was required for each study system, including the climate
159	zone and a qualitative description of sediment characteristics. Details such as
160	sediment grain size distribution, moisture content and organic matter content were
161	desirable but not essential, as such requirements would have excluded most datasets.
162	
163	To identify relevant datasets, 89 searches incorporating combinations of 22 words or
164	terms (aestivat*; desiccat*; dried sediment*; dry sediment*; egg bank*; eggbank*;
165	emers*; ephemeral; intermittent; inundat*; invertebrate; macroinvertebrate; rehydrat*;
166	re-hydrat*; rewet*; river; sediment*; seed bank*; seedbank*; stream; substrat*;
167	temporary) were performed in the ISI Web of Knowledge database (Thomson Reuters
168	New York). Seven datasets fulfilling the criteria for inclusion were identified using
169	this process: Boulton (1989), Stanley et al. (1994), Paltridge et al. (1997), Larned,
170	Datry & Robinson (2007), Stubbington et al. (2009), Chester & Robson (2011) and

Datry *et al.* (2012). Unpublished data underpinning the published work of Larned *et al.* (2007), Stubbington *et al.* (2009) and Datry *et al.* (2012) were used to supplement
published results. Stanley *et al.* (1994) did not fully report the composition of the FR

assemblage; in place of this, a satisfactory list was compiled from Stanley *et al.* (1994)
and other studies conducted within the same system (Boulton *et al.*, 1992; Velasco &

176 Millan, 1998; Sponseller *et al.*, 2010). The FR assemblage relevant to Boulton (1989)

177 was reported by Boulton & Lake (1992). Paltridge *et al.* (1997) identified FR and RS

samples using contrasting taxonomic approaches, with FR identification focussing ononly three orders; this study was therefore excluded from certain analyses. In addition

180 to the seven published studies, three unpublished datasets were acquired, two from R.

181 Stubbington and one from P. J. Wood (Table 1, Table 2), making a total of 10 datasets.

182 Further information on the aims, study sites, methods and results of the three

unpublished studies are provided in Appendix S1 of the Supporting Information.

Five of the 10 datasets fulfilling our basic criteria also investigated the effect of dry
period duration on seedbank assemblages. Larned *et al.* (2007) and Datry *et al.* (2012)
sampled multiple sites along a spatial gradient of increasing dry period duration.
Stanley *et al.* (1994), Stubbington *et al.* (2009) and Stubbington (R. Stubbington,
unpublished a) addressed the same question from a temporal perspective by sampling

- 190 the same sites on repeated occasions during a prolonged dry phase. These five
- 191 datasets were used to analyse the effect of dry period duration on seedbank

 composition, and where data were available (Larned *et al.*, 2007; Datry *et al.*, 2012; R. Stubbington, unpublished a), the effects of sediment moisture were also considered. Data analysis Determination of environmental harshness To compare environmental conditions across studies, we ranked systems in order of relative harshness (i.e. conditions limiting survival of aquatic biota), where 1 reflected a relatively benign environment and 6 indicated the harshest conditions (Table 3). Ranks were based on sediment moisture content and were determined using quantitative measurements and qualitative descriptions, alongside factors influencing moisture content: dry period duration, climatic variables (temperature, precipitation inputs) and sediment characteristics (grain size distribution, organic matter content). All studies were conducted in reaches that typically dry annually (Table 1). Conditions in Sycamore Creek (Stanley et al., 1994) were considered harshest (6) due to the effects of extreme high temperatures, virtual absence of precipitation and coarse sediment composition on sediment moisture retention (Table 1). The semi-arid Victoria Range rivers (Chester & Robson, 2011) were also ranked as harsh (5), with drought conditions reducing average rainfall values (Table 3) and coarse sediments exacerbating water loss (Table 1). Of the temperate zone studies, Larned et al. (2007) noted very low mean % sediment moisture; this study was therefore ranked as 4 (Table 3). Moisture content was not stated by Boulton (1989), but rainfall was similar to Larned *et al.* (2007), which in combination with higher maximum temperatures is likely to have limited sediment moisture retention; this system was therefore also ranked as 4. Datry et al. (2012) recorded moderate moisture content, rainfall and temperatures, earning a rank of 3; in comparison, Stubbington (R. Stubbington, unpublished a) noted higher moisture, higher rainfall and lower temperatures, earning a rank of 2. Harshness assessment in two other temperate system studies (Stubbington et al., 2009; P. J. Wood, unpublished) was hampered by a lack of sediment moisture data; the climate and sediment moisture retention capacity of these systems were judged as comparable to Stubbington (R. Stubbington, unpublished a) and also assigned a rank of 2. Conditions reported by Stubbington (R. Stubbington, unpublished b) were most benign: the rainfall total was high, rain fell on 24/31 days in

Page 9 of 51

Freshwater Biology

the dry month, and maximum temperatures (Table 3) were reached only briefly; this study was therefore allocated the lowest harshness rank (1; Table 3). Ranks were verified by researchers who had studied multiple systems (A.J. Boulton and P.J. Wood, pers. comm.). Environmental harshness and the importance of seedbank To test our prediction that the proportion of the FR assemblage surviving within dry sediments would decrease as harshness increased, we expressed the number of FR taxa present within the RS of a system as a proportion of FR taxon richness. Sampling effort and timing of FR sample collection varied (pre-drying, during the dry phase and/or post-drying; Table 2) but all studies strived to represent peak FR diversity, thus validating comparison between studies. To avoid over-estimating richness, taxa lists were reduced to the coarsest resolution noted, for example 'Limnephilidae (early instar)' and 'Limnephilus sp.' were considered one taxon. All terrestrial and semi-aquatic taxa were excluded. These measures resulted in some taxonomic totals differing from previously published values (e.g. Datry *et al.*, 2012) and values stated in the Supporting Information (e.g. Table S2). Proportions were arc-sine square-root transformed then regressed against harshness ranks using linear and non-linear models. To test the prediction that RS and FR assemblage composition would decrease in similarity as environmental harshness increased, non-metric multidimensional scaling (NMDS) was conducted, producing two-dimensional solutions with ecologically-interpretable solutions (final stress <0.2; Clarke, 1993). For each system, the similarity between RS and FR assemblages was examined using Bray-Curtis distances based on taxonomic richness at the order level, to account for differences in taxonomic resolution between datasets. ANOSIM (analysis of similarity) was used to examine variability in FR and RS samples across harshness ranks using the ANOSIM test statistic R (range -1 to 1); $\alpha = 0.05$. Linear regression analyses were performed to examine relationships between RS–FR similarity values and harshness ranks. Assemblage response to the dry period duration To examine trajectories of change in seedbank assemblage composition with increasing dry period duration, NMDS was performed using a Bray-Curtis similarity matrix based on presence-absence data from the five suitable datasets. To explain

patterns observed in the ordination, samples were allocated to one of four dry period durations (0.1-7 d, 8-30 d, 31-63 d, 64-287 d) and taxon richness and macroinvertebrate density (converted to individuals kg^{-1} for all studies) calculated. The significance of temporal change in these community metrics was assessed using Kruskal-Wallis non-parametric one-way ANOVA tests, with Mann-Whitney U-tests to examine differences between pairs of durations. Abundance data were log-transformed prior to statistical analysis. Linear and non-linear regression analyses were used to investigate relationships between community metrics and sediment moisture.

270 Seedbank importance relative to other persistence mechanisms

To determine the importance of the seedbank relative to other community persistence mechanisms, the occurrence of alternative sources of dry-phase survivors and recolonists was examined. Recolonist sources external to the dry reach comprised upstream and downstream perennial reaches, nearby lentic perennial waters and upwelling groundwater springs; instream recolonist sources included perennial pools and the hyporheic zone; habitats facilitating dry-phase resistance in situ comprised localised microhabitats such as leaf packs, bryophytes and filamentous algae. For all studies, the potential of each source as a persistence mechanism was estimated from its proximity to the dry reach and its spatial extent. Where data were available (eight studies), the number of taxa present in each alternative habitat was calculated and expressed as a proportion of the number of taxa in FR samples, to allow comparison with seedbank importance.

Significance testing and regression analyses were conducted in IBM SPSS Statistics
19 (IBM, New York, USA) and NMDS and ANOSIM analyses were performed using
PRIMER v6 (Clarke & Gorley, 2006).

Results

290 Assemblage composition

An overall mean of 12.1 ± 2.1 taxa occurred in the study river systems. Total taxon

- richness was highest in the temperate Albarine (24 taxa; Datry *et al.*, 2012) and
- Lerderderg and Werribee Rivers (22 taxa; Boulton, 1989), and lowest in the semi-arid

Page 11 of 51

1

60

Freshwater Biology

2		
3	294	Victoria Range rivers (3 taxa; Chester & Robson, 2011; Table 4). Chironomidae
4 5	295	(Diptera) and Oligochaeta were the most common taxa, occurring in 9 of 10 river
6 7	296	systems, while Ceratopogonidae (Diptera) was found in RS in 8 studies. Some orders
8	297	were represented by a diverse range of families, including Diptera (12 families),
9 10	298	Trichoptera (11 families) and Coleoptera (8 families), while Odonata and
11	299	Megaloptera were both represented by one species in one study (Table 4).
12	300	
14 15	301	Seedbank importance in relation to environmental harshness
16	302	Considering all nine studies (but not Paltridge <i>et al.</i> , 1997), a mean of 32.0 ± 5.3 % of
18	303	FR taxa were present in RS. The proportion of the FR assemblage present in RS was
19 20	304	highest in two temperate systems of low to moderate harshness (rank 1-3): the
21	305	Albarine (54 %; Datry et al., 2012) and upper reaches of the Lathkill (52 %; R.
22 23	306	Stubbington, unpublished b; Table 5). In contrast, Chester & Robson (2011) noted
24 25	307	only 5 % of the FR assemblage (a single taxon) in the RS of a harsh semi-arid system
26	308	(rank 5). Other studies recorded 18-42 % of FR taxa in RS, including systems with
27 28	309	harshness ranks of 2 (e.g. Stubbington <i>et al.</i> , 2009) to 6 (Stanley <i>et al.</i> , 1994). Orders
29 20	310	commonly present in FR samples but absent from RS included Ephemeroptera.
31	311	Amphipoda and Hemiptera (Table 5). Regression analysis indicated a moderate linear
32 33	312	negative relationship between environmental harshness and the proportion of FR taxa
34	313	in RS ($R^2 = 0.339$, $P = 0.100$), which became significant when an outlying system
35 36	314	(Sycamore Creek USA: Stapley <i>et al.</i> 1994) was excluded ($R^2 = 0.647$, $P = 0.016$;
37 38	315	(by called $(R = 0.017, 1 = 0.010, 1)$
39	216	1 ig. 1).
40 41	017	The NMDS ordination distinguished between ED and DS complex (ANOSIM $R =$
42	317	The NMDS ordination distinguished between FR and RS samples (ANOSIM $R = 0.125$, $D = 0.024$), with some left from individual contained between FR and RS samples (ANOSIM $R = 0.125$, $D = 0.024$), with some left individual contained between FR and RS samples (ANOSIM $R = 0.024$).
43 44	318	0.125, P = 0.034), with samples from individual systems plotting in variable
45 46	319	proximity (Fig. 2). Sample pairs from harsher systems (ranks 4-6; Table 3) tended to
47	320	be more distinct than pairs from more benign environments (ranks 1-3), with
48 49	321	similarity between FR and RS assemblages being lowest in the Victoria Range (37.0;
50	322	Chester & Robson, 2011; rank 5) and highest in the Lathkill upper reaches (78.2; R.
52	323	Stubbington, unpublished b; rank 1). Regression analysis indicated a linear decline in
53 54	324	compositional similarity between FR & RS assemblages as harshness increased (R^2 =
55	325	0.774, P = 0.002; Fig. 3).
56 57	326	
58 59	327	Assemblage response to the dry period duration

NMDS indicated that site-specific features were a greater influence on assemblage composition than dry period duration, with individual systems plotting as distinct clusters with minimal overlap (Fig. 4); in particular, samples from arid Sycamore Creek formed a distinct cluster separate from temperate systems. Trajectories of temporal change varied between systems (Fig. 4). In Sycamore Creek (Stanley et al., 1994), assemblage composition remained relatively stable over time and was not clearly related to dry period duration (Fig. 4). Assemblage stability was also observed in the Selwyn (Larned et al., 2007), with 1 d samples being more variable in composition than other samples. In contrast, in both the Albarine (Datry et al., 2012) and Lathkill headwaters (R. Stubbington, unpublished a), assemblage composition changed in relation to the dry period duration (Fig. 4).

 Considering all five systems, taxon richness decreased steadily and became less variable as the dry period duration increased, from 9.4 ± 1.3 taxa for sediments exposed to 0.1-7 d dry periods, to 4.7 ± 0.3 taxa where the dry period exceeded 64 d (Kruskal-Wallis, P = 0.001; Fig. 5a). The reduction in density was sharper, falling from 101 ± 18 individuals to 49 ± 7 individuals between the 0.1-7 d and 8-30 d dry period duration categories (Mann-Whitney U-test, P = 0.038; Fig. 5b). After this initial decline, densities remained stable for dry period durations of <287 d (Fig. 5b).

Relationships between dry period duration and taxon richness were system-specific and could be related to sediment moisture content (Fig. 6a). In Sycamore Creek, Stanley et al. (1994) recorded a rapid reduction in taxon richness over the 15 d study period, and although moisture data were not collected, the authors emphasized the rapidity with which sediment moisture declined in this arid system. A similar reduction occurred in the temperate Albarine in the first 7 d after drying (Datry et al., 2012), the rate of taxon loss then stabilising over the 142 d study period. Excepting a notable outlier for the 0.1 d dry period duration, in which few taxa were recorded despite high moisture content, a strong positive linear relationship was observed between moisture content and taxon richness in the Albarine ($R^2 = 0.829, P < 0.001$; Fig. 6a; Datry et al., 2012). In the temperate Lathkill headwaters, taxon richness remained stable (Stubbington et al., 2009) or increased slightly (R. Stubbington, unpublished a) during the dry period; stable sediment moisture content characterised this system, resulting in a positive, linear relationship with the number of taxa present

Freshwater Biology

2
2
3
4
5
6
7
<i>'</i>
8
9
10
11
10
12
13
14
15
16
10
17
18
19
20
20
21
22
23
24
25
25
26
27
28
20
29
30
31
32
33
00
34
35
36
37
20
38
39
40
41
12
40
43
44
45
46
40
47
48
49
50
50
51
52
53
54
54
55
56
57
58
50
วษ

60

362	$(R^2 = 0.670)$ which was not significant due to the low number of samples ($P = 0.181$;
363	Fig. 6a). Similar stability in taxon richness was observed in the temperate Selwyn, but
364	no relationship was apparent between the number of taxa and the moisture content in
365	this study ($R^2 = 0.043$; Fig. 6a; Larned <i>et al.</i> , 2007).

366

Temporal changes in macroinvertebrate density were similar to patterns described for taxon richness, being positively related to sediment moisture in two of the three temperate systems for which data were available (Fig. 6b). However, while a strong positive linear relationship between moisture content and invertebrate densities was observed on the Selwyn ($R^2 = 0.538$, P = 0.001), a moderate linear relationship was observed in the Lathkill headwaters ($R^2 = 0.376$, P = 0.387) and no relationship was apparent in the Albarine (Fig. 6b).

374

375 Seedbank importance in relation to community resilience

376 In all eight studies reporting taxa in alternative recolonist sources during the dry 377 period, at least one such habitat contained a greater proportion of FR taxa than RS 378 samples (Table 6). Habitats supporting the greatest proportion of FR taxa were 379 invariably perennial surface waters, namely pools (Boulton, 1989; Chester & Robson, 380 2011), downstream reaches (Stubbington et al., 2009; R. Stubbington, unpublished a, b; P. J. Wood, unpublished) and upstream reaches (Larned et al., 2007; Datry et al., 381 382 2012). Reference to the raw data indicated that multiple habitats supported the same 383 recolonists; for example all taxa recorded in groundwater springs by Stubbington et al. 384 (2009) also occurred in downstream perennial reaches. Some taxa were recorded 385 exclusively in RS samples in four studies: Boulton (1989), Stubbington et al. (2009), 386 Stubbington (R. Stubbington, unpublished a) and Wood (P. J. Wood, unpublished). 387 Boulton (1989), for example, found Scirtidae (Coleoptera), Ceratopogonidae, 388 Dolichopodidae, Psychodidae (Diptera), Glacidobidae (Gastropoda) and Calocidae 389 (Trichoptera) in RS and no other habitat sampled during the dry phase, whilst 390 Stubbington et al. (2009) recorded Dytiscidae, Hydrophilidae (Coleoptera), Dixidae 391 (Diptera) and Nemoura cambrica (Plecoptera, Nemouridae) only in RS. 392

393 Discussion

Previous research has indicated that macroinvertebrate community persistence in
 temporary rivers is achieved primarily through resilience mechanisms (Stanley *et al.*,

 1994; Fritz & Dodds, 2004; Acuña et al., 2005; Chester & Robson, 2011), and the capacity of dry sediments to enhance community resistance has been considered low (Boulton & Stanley, 1995; Young, Norris & Sheldon, 2011). Our analysis indicated that survival within dry sediments has previously been underestimated, with a diverse macroinvertebrate assemblage including up to 54 % of FR taxa emerging following rehydration of sediments collected across climate zones. Macroinvertebrates survived alongside an abundant meiofauna, which was beyond the scope of our analysis; our determination of seedbank importance is therefore likely to remain an underestimate for the entire invertebrate community. The small size of RS sampling areas may also have reduced our richness estimates: riverbed sediments are heterogeneous and consequent spatial variability in assemblage composition (Townsend & Hildrew, 1994) may have excluded some taxa. This is demonstrated, for example, by Chester & Robson's (2011) observation of the FR crayfish Geocharax in aestivation chambers constructed beneath cobbles in the dry thalweg, but not in RS. Seedbank importance in relation to environmental harshness We predicted that seedbank importance would decrease with increasing environmental harshness, and that this would be observed as a reduction in similarity between FR and RS assemblages as harshness increased. The negative linear relationship observed between harshness and the proportion of FR taxa in RS samples largely supported this prediction, although the high proportion of the FR assemblage present in RS from the harshest system (Sycamore Creek, Stanley et al., 1994) was a notable outlier and reflected the presence of high proportion of a taxon-poor FR assemblage in RS. The declining proportion of the FR assemblage in RS contributed to these assemblages becoming more distinct as harshness increased. Moisture content is considered to be a crucial influence on seedbank viability (Stanley et al., 1994; Tronstad et al., 2005a). Moisture is influenced by climate (precipitation, temperature, humidity), shading, sediment characteristics (hydraulic conductivity, grain size distribution, organic matter content) and surface microhabitats that limit evaporation (e.g. leaf packs; Paltridge et al., 2007), as well as the dry period duration. Regression analyses confirmed the importance of moisture as a determinant of assemblage richness and density in temperate systems, but with some exceptions; these are tentatively attributed to a coarse temporal sampling resolution at short dry

Freshwater Biology

period durations (Larned et al., 2007) and spatial heterogeneity of invertebrate densities within dry sediments (Datry et al., 2012). Relationships with sediment moisture were stronger for taxon richness than invertebrate densities, with taxa needing only to survive at low densities to facilitate community recovery upon rewetting. Effect of sediment moisture on the seedbank assemblage For the seedbank to function as a resistance mechanism, inhabitants must survive an entire dry phase, which may vary from hours to months (Larned et al., 2007). However, invertebrate density and taxon richness were negatively related to sediment moisture content and consequently experienced pronounced temporal reductions in both arid and temperate systems that lacked significant dry phase precipitation (Stanley et al., 1994; Larned et al., 2007; Datry et al., 2012). In such systems, seedbank importance decreased with dry period duration, due to fewer taxa and individuals having the physiological traits required to tolerate complete desiccation (Robson et al., 2011; Wickson et al., 2012; Poznańska et al., 2013). However, a linear relationship between time and moisture should not be assumed, and where moisture is maintained by precipitation in conjunction with other variables (e.g. shading, organic-rich sediments), this is reflected by stable assemblage composition (R. Stubbington, unpublished a). Stubbington et al. (2009) even recorded a temporal increase in seedbank richness during a year of high rainfall in the temperate Lathkill headwaters, with terrestrial adult insects potentially adding taxa through oviposition (Towns, 1983). Seedbank importance within wider community persistence strategies Alternative sources of recolonists, particularly perennial surface waters, supported more FR taxa than RS. This finding is consistent with reports that temporary river communities recover primarily through resilience, with recolonists from perennial upstream reaches (Fritz & Dodds, 2004; Bogan & Lytle, 2007; Corti & Datry, 2012), instream pools (Boulton, 1989; Chester & Robson, 2011), connected lentic waters (Paltridge et al., 1997) and aerial recolonists (Carl, 1989; Gagneur & Chaoui-

- 461 Boudghane, 1991) contributing to recovery. Downstream perennial reaches may also
 - 462 be inhabited by many FR taxa (Arscott *et al.*, 2010; R. Stubbington, unpublished a)
- 463 and are important recolonist pools for positively rheotaxic taxa (Hughes, 1970; Hultin,

1971). In addition, the hyporheic zone may support FR taxa and can therefore contribute to community resilience (Datry, Larned & Scarsbrook, 2007; Datry, 2012; Stubbington, 2012); these saturated sediments form a temporal ecotone that may dry to be inhabited by a desiccation-tolerant seedbank. Complementing these resilience mechanisms, microhabitats promoting community resistance within a dry reach include riparian plant roots (Fritz & Feminella, 2011) and leaf litter (Boulton, 1989; Chester & Robson, 2011; Wickson et al., 2012). Our results, however, suggest that the seedbank is the resistance mechanism supporting the richest assemblage. Recolonist sources may show considerable redundancy (Robson et al., 2011); for example the assemblage in upwelling springs may be a subset of that in downstream perennial reaches (Stubbington et al., 2009). Such redundancy facilitates community persistence: if the viability of one habitat is compromised, others may still function. Redundancy was, however, less pronounced for RS than other recolonist sources, with Diptera, Coleoptera, Trichoptera and Plecoptera taxa being found exclusively in RS (e.g. Boulton, 1989; Stubbington et al., 2009). The seedbank therefore forms a single element in an armoury of community persistence mechanisms. From a landscape perspective, the spatial arrangement of temporary reaches, perennial waters and other sources from which recolonists originate (Lake, 2003) affects the extent to which different habitats function as refuges (Davey & Kelly, 2007). The seedbank may therefore be a particularly important resistance mechanism in certain areas, including headwaters (which lack perennial upstream reaches), reaches several km downstream of perennial water (Paltridge et al., 1997), isolated catchments (with limited aerial recolonisation) and reaches lacking saturated hyporheic sediments (Datry, 2012). The seedbank may also have particular value for certain taxa, including those with low dispersal and recolonisation abilities (Robson *et al.*, 2011) such as insects whose adults are weak fliers (e.g. some Ephemeroptera and Plecoptera genera; Churchel & Batzer, 2006). These taxa must, however, have some physiological tolerance of desiccation to survive in the seedbank (Robson et al., 2011). In addition, our analysis indicated the seedbank as particularly important in certain environments, with the proportion of FR

- 495 taxa supported by RS being greatest in less harsh systems, typically in temperate
- 496 climates. Relatively few studies have been conducted in non-temperate climate zones,

Freshwater Biology

497	and further research is therefore required to establish whether the patterns observed in
498	our study were typical.
499	
500	Recreating inundation: current practice and future challenges.
501	Rewetting of a dry reach represents a short phase of high biological activity following
502	a longer period of quiescence, or a 'hot moment' (McClain et al., 2003), in which
503	many taxa simultaneously start to develop (Larned et al., 2007). Once the
504	fundamental criterion of free water has been met, other secondary variables influence
505	development, including temperature (Newell & Minshall, 1978; Zwick, 1996) and
506	chemical signals (Jensen, Carlson & Barnard, 1999; Evans & Dennehy, 2005).
507	Conditions of experimental rehydration must therefore adequately represent field
508	conditions, but to date, studies have differed in their replication of various parameters.
509	Firstly, no experiment has attempted to simulate flowing water, and although
510	hydraulic cues that break dormancy are poorly understood (Brock et al., 2003), simple
511	inundation may not trigger development in some taxa (Danks, 1987). Second, while
512	some studies have replicated a natural light/dark cycle (e.g. Datry et al., 2012), others
513	have covered containers to prevent loss of emerging insects (e.g. Stubbington et al.,
514	2009), obscuring photoperiod-related cues (Chapman, 1998). Third, some studies
515	have kept samples at ambient temperatures (e.g. Stubbington et al., 2009), while
516	others have followed constant temperature regimes (e.g. Datry et al., 2012),
517	suppressing thermal development triggers (Zwick, 1996). Other relevant factors
518	include the occurrence of aquatic and riparian predators (Larned et al., 2007), and the
519	duration of rehydration. The latter should be sufficient for macroinvertebrates to
520	develop to an identifiable stage, which may exceed the 28-32 d duration typically
521	used (Jackson & Sweeney, 1995), particularly since physiological desiccation
522	tolerance often involves entering a resting state (Williams, 1996) and subsequent
523	development in response to inundation may be delayed (Wickson et al., 2012). It is
524	noteworthy that the sole plecopteran (Brachyptera risi) recorded by Stubbington (R.
525	Stubbington, unpublished a) occurred in a single RS sample rehydrated for 9 months.
526	Future rehydration experiments should seek to manipulate biotic and abiotic
527	parameters to promote development of seedbank inhabitants.
528	
529	Current estimates of seedbank richness may be underestimates due to the spatial
530	design of sampling strategies. Invertebrates may follow a receding waterline in

preference to burrowing into sediments, and such movements may concentrate individuals into the last microhabitats to lose free water (Larimore, Childers & Heckrotte, 1959; Tronstad, Tronstad & Benke, 2005b; Stubbington, Wood & Reid, 2011) prior to other behaviours such as vertical migration, egg deposition and entrance into a desiccation-resistant dormant state. This relocation over small spatial scales increases existing heterogeneity in invertebrate distribution. Sampling designs should therefore be informed by observation of hydrological conditions preceding the dry phase.

Seedbank importance in a changing climate

Previous conceptualisation of dry riverbeds as biologically inactive (Stanley, Fisher & Grimm, 1997) has left dry reaches vulnerable to anthropogenic impacts (Larned *et al.*, 2010). However, recognition that dry sediments contribute to aquatic community persistence provides impetus for their protection (Steward *et al.*, 2012). In addition, the total biota supported by temporary rivers may be high, due to temporal transitions between wet and dry phases and use of dry sediments by terrestrial and amphibious communities (Fritz & Feminella, 2011; Datry et al., 2012; Corti & Datry, 2012). Communities may be interdependent due to reciprocal energy exchanges (Nakano & Murakami, 2011; Fritz & Feminella, 2011), with aquatic taxa providing prey for riparian predators (Paetzold, Bernet & Tockner, 2006; Greenwood & McIntosh, 2010) and aquatic predators exploiting inputs of terrestrial prey engulfed by advancing wetted fronts (Corti & Datry, 2012).

With climate change scenarios predicting an increase in drought severity (Solomon et al., 2007) and therefore in the extent and duration of riverbed drying (Sponseller et al., 2010; Döll and Schmied, 2012), ensuring the integrity of persistence mechanisms used by temporary river communities is an increasing priority. Climate change adaptation strategies need to be system specific (Aldous et al., 2011) and the importance of protecting dry sediments as a feature promoting community resistance should therefore be judged on a site-by-site basis. Where the seedbank is found to be of high value, action may be required to protect its ecological integrity. Our analysis identified strong relationships between sediment moisture and taxon richness, and rehabilitation and management strategies should therefore aim to maintain moisture content during periods of low precipitation. Such efforts could manipulate any

Page 19 of 51

1

Freshwater Biology

2	
2	
3	
4	
5	
6	
7	
1	
8	
9	
10	
11	
11	
12	
13	
14	
15	
10	
10	
17	
18	
19	
20	
20	
21	
22	
23	
21	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
202	
33	
34	
35	
36	
27	
31	
38	
39	
40	
/1	
41	
42	
43	
44	
15	
40	
46	
47	
48	
10	
49	
50	
51	
52	
53	
JJ F 4	
54	
55	
56	
57	
57	
58	
59	

60

565 parameter influencing moisture including, for example, sediment organic matter 566 content or shading of the dry reach. As such, consideration of both riparian and 567 instream habitats may help to maintain a rich seedbank that promotes community 568 resistance to riverbed drying. 569 570 Acknowledgements 571 We extend our grateful thanks to Paul J. Wood and Scott T. Larned for allowing us to 572 include their unpublished data and Emily H. Stanley and Andrew J. Boulton for 573 supporting our work. Thanks to Alexandra Pitcher for her contribution to the study of 574 P. J. Wood (unpublished). We also thank Paul, Scott, Andrew, Belinda Robson and an 575 anonymous reviewer for insightful comments that greatly improved this manuscript. 576 Unpublished data from RS were collected with the support of a Faculty of Social 577 Sciences and Humanities Research Studentship from Loughborough University. 578 579 References 580 Acuña V., Muñoz I., Adonis G., Omella M., Sabater F. & Sabater S. (2005) Drought 581 and postdrought recovery cycles in an intermittent Mediterranean stream: structural 582 and functional aspects. Journal of the North American Benthological Society, 24, 919-583 933. 584 585 Aldous A., Fitzsimons J., Richter B. & Bach L. (2011) Droughts, floods and 586 freshwater ecosystems: evaluating climate change impacts and developing adaptation 587 strategies. Marine and Freshwater Research, 62, 223-231. 588 589 Arscott D.B., Larned S.T., Scarsbrook M.R. & Lambert P. (2010) Aquatic 590 invertebrate community structure along an intermittence gradient: Selwyn River, New 591 Zealand. Journal of the North American Benthological Society, 29, 530–545.

592

Benigno G.M. & Sommer T.R. (2008) Just add water: sources of chironomid drift in a
large river floodplain. *Hydrobiologia*, **600**, 297-305.

595

- 596 Bogan M.T. & Lytle D.A. (2007) Seasonal flow variation allows 'time-sharing' by
- 597 disparate aquatic insect communities in montane desert streams. Freshwater Biology,

598 52, 290–304.

599	
600	Bogan M.T. & Lytle D.A. (2011) Severe drought drives novel community trajectories
601	in desert stream pools. Freshwater Biology, 56, 2070-2081.
602	
603	Boulton A.J. (1989) Over-summering refuges of aquatic macroinvertebrates in two
604	intermittent streams in central Victoria. Transactions of the Royal Society of South
605	Australia, 113, 23-34.
606	
607	Boulton A.J. & Lake P.S. (1992) The macroinvertebrate assemblages in pools and
608	riffles in two intermittent streams (Werribee and Lerderderg Rivers, southern central
609	Victoria. Occasional Papers from the Museum of Victoria, 5, 55-71.
610	
611	Boulton A.J. & Lloyd L.N. (1992) Flooding frequency and invertebrate emergence
612	from dry floodplain sediments of the River Murray, Australia. Regulated Rivers:
613	Research & Management, 7, 137-151.
614	
615	Boulton A.J., Peterson C.G., Grimm N.B. & Fisher S.G. (1992) Stability of an aquatic
616	macroinvertebrate community in a multiyear hydrologic disturbance regime. Ecology,
617	73 , 2192-2207.
618	
619	Boulton A.J. & Stanley E.H. (1995) Hyporheic processes during flooding and drying
620	in a Sonoran Desert stream 2. Faunal dynamics. Archiv für Hydrobiologie, 134, 27-52.
621	
622	Brock M.A., Nielsen D.L., Shiel R.J., Green J.D. & Langley J.D. (2003) Drought and
623	aquatic community resilience: the role of eggs and seeds in sediments of temporary
624	wetlands. Freshwater Biology, 48, 1207-1218.
625	
626	Carl M. (1989) The ecology of a wadi in Iraq with particular reference to colonization
627	strategies of aquatic macroinvertebrates. Archiv für Hydrobiologie, 116, 499-515.
628	
629	Chapman R.F. (1998) The Insects: Structure and Function. Cambridge University
630	Press, Cambridge.
631	

Freshwater Biology

632	Chester E.T. & Robson B.J. (2011) Drought refuges, spatial scale and recolonisation
633	by invertebrates in non-perennial streams. Freshwater Biology, 56, 2094-2104.
634	
635	Churchel M.A. & Batzer D.P. (2006) Recovery of aquatic macroinvertebrate
636	communities from drought in Georgia Piedmont headwater streams. American
637	Midland Naturalist, 156, 259-272.
638	
639	Clarke K.R. (1993) Non-parametric multivariate analyses of changes in community
640	structure. Austral Ecology, 18, 117–143.
641	
642	Clarke K.R. & Gorley R.N. (2006) PRIMER v6: User Manual/Tutorial. PRIMER-E
643	Ltd, Plymouth.
644	
645	Corti R. & Datry T. (2012) Invertebrate and sestonic matter in an advancing wetted
646	front travelling down a dry riverbed (Albarine, France). Freshwater Science, 31,
647	1187-1201.
648	
649	Danks H.V. (1987) Insect Dormancy: an Ecological Perspective. Biological Survey of
650	Canada Monograph Series No. 1. National Museum of Natural Sciences, Ottawa,
651	Canada.
652	
653	Datry T. (2012) Benthic and hyporheic invertebrate assemblages along a flow
654	intermittence gradient: effects of duration of dry events. Freshwater Biology, 57, 563-
655	574.
656	
657	Datry T., Corti R. & Philippe M. (2012) Spatial and temporal aquatic-terrestrial
658	transitions in the temporary Albarine River, France: responses of invertebrates to
659	experimental rewetting. Freshwater Biology, 57, 716-727.
660	
661	Datry T., Larned S.T. & Scarsbrook M.R. (2007) Responses of hyporheic invertebrate
662	assemblages to large-scale variation in flow permanence and surface-subsurface
663	exchange. Freshwater Biology, 52, 1452–1462.
664	

665	Davey A.J.H. & Kelly D.J. (2007) Fish community responses to drying disturbances
666	in an intermittent stream: a landscape perspective. Freshwater Biology, 52, 1719-1733.
667	
668	Diaz A.M., Alonso M.L.S. & Gutierrez M.R.V-A. (2008) Biological traits of stream
669	macroinvertebrates from a semi-arid catchment: patterns along complex
670	environmental gradients. Freshwater Biology, 53, 1-21.
671	
672	Dietz-Brantley S.E., Taylor B.E., Batzer D.P. & DeBaise A.E. (2002) Invertebrates
673	that aestivate in dry basins of Carolina bay wetlands. Wetlands, 22, 767-775.
674	
675	Döll P. & Schmied H.M. (2012) How is the impact of climate change on river flow
676	regimes related to the impact on mean annual runoff? A global-scale analysis.
677	Environmental Research Letters, 7, 014037.
678	
679	Evans M.E.K. & Dennehy J.J. (2005) Germ banking: bet-hedging and variable release
680	from egg and seed dormancy. The Quarterly Review of Biology, 80, 431-451.
681	
682	Fenoglio S., Bo T. & Bosi G. (2006) Deep interstitial habitat as a refuge for Agabus
683	paludosus (Fabricus) (Coleoptera: Dytiscidae) during summer droughts. The
684	Coleopterists Bulletin, 60, 37-41.
685	
686	Fritz K.M. & Dodds W.K. (2004) Resistance and resilience of macroinvertebrate
687	assemblages to drying and flood in a tallgrass prairie stream. <i>Hydrobiologia</i> , 527 , 99–
688	112.
689	
690	Fritz K.M. & Dodds W. (2005) Harshness: characterisation of intermittent stream
691	habitat over space and time. Marine and Freshwater Research, 56, 13-23.
692	
693	Fritz K.M. & Feminella J.W. (2011) Invertebrate colonization of leaves and roots
694	within sediments of intermittent coastal plain streams across hydrologic phases.
695	Aquatic Sciences, 73 , 459-469.
696	
697	Gagneur J. & Chaoui-Boudghane C. (1991) Sur le role du milieu hyporhéique pendant
698	l'assèchement des oueds de l'Ouest Algérien. Stygologia, 6, 77-89.

Freshwater Biology

699	
700	Gasith A. & Resh V.H. (1999) Streams in Mediterranean climate regions: abiotic
701	influence and biotic responses to predictable seasonal events. Annual Review of
702	Ecology & Systematics, 30, 51-81.
703	
704	Greenwood M.J. & McIntosh A.R. (2010) Low river flow alters the biomass and
705	population structure of a riparian predatory invertebrate. Freshwater
706	<i>Biology</i> , 55 , 2062-2076.
707	
708	Hughes D.A. (1970) Some factors affecting drift and upstream movements of
709	Gammarus pulex. Ecology, 51, 301-305.
710	
711	Hultin L. (1971) Upstream movements of Gammarus pulex pulex (Amphipoda) in a
712	South Swedish stream. Oikos, 22, 329-347.
713	
714	Jackson J.K. & Sweeney B.W. (1995) Egg and larval development times for 35
715	species of tropical stream insects from Costa-Rica. Journal of the North American
716	Benthological Society, 14, 115-130.
717	
718	Jensen T., Carlson D.A. & Barnard D.R. (1999) Factor from swamp water induces
719	hatching in egg of Anopheles diluvialis (Diptera: Culicidae) mosquitoes.
720	Environmental Entomology, 28, 545-550.
721	
722	Kenk R. (1949) The animal life of temporary and permanent ponds in Southern
723	Michigan. Miscellaneous Publication from the Museum of Zoology at the University
724	<i>of Michigan</i> , 71 , 1-66.
725	
726	Kundzewicz Z.W., Mata L.J., Arnell N.W., Döll P., Jimenez B., Miller K. et al. (2008)
727	The implications of projected climate change for freshwater resources and their
728	management. Hydrological Sciences Journal, 53, 3-10.
729	
730	Lake P.S. (2003) Ecological effects of perturbation by drought in flowing waters.
731	Freshwater Biology, 48 , 1161-1172.
732	

733	Larimore R.W., Childers W.F. & Heckrotte C. (1959) Destruction and re-
734	establishment of stream fish and invertebrates affected by drought. Transactions of
735	the American Fisheries Society, 88, 261-285.
736	
737	Larned S., Datry T., Arscott D. & Tockner K. (2010) Emerging concepts in
738	temporary-river ecology. Freshwater Biology, 55, 717-738.
739	
740	Larned S.T., Datry T. & Robinson C.T. (2007) Invertebrate and microbial responses
741	to inundation in an ephemeral river reach in New Zealand: effects of preceding dry
742	periods. Aquatic Sciences, 69, 554-567.
743	
744	Lysne S. & Koetsier P. (2006) Experimental studies on habitat preference and
745	tolerances of three species of snails from the Snake River of southern Idaho,
746	USA. American Malacological Bulletin, 21, 77-85.
747	
748	Lytle D.A. & Poff N.L. (2004) Adaptation to natural flow regimes. <i>Trends in Ecology</i>
749	& Evolution, 19 , 94-100.
750	
751	McClain M., Boyer E., Dent C., Gergel S., Grimm N., Groffman P. et al. (2003)
752	Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic
753	ecosystems. Ecosystems, 6, 301-312.
754	
755	Miller A.C., Ponder W.F. & Clark S.A. (1999) Freshwater snails of the genera
756	Fluvidona and Austropyrgus (Gastropoda, Hydrobiidae) from northern New South
757	Wales and southern Queensland, Australia. Invertebrate Taxonomy, 13, 461-493.
758	
759	Nakano S. & Murakami M. (2001) Reciprocal subsidies: dynamic interdependence
760	between terrestrial and aquatic food webs. Proceedings of the National Academy of
761	Sciences of the United States of America, 98, 166-170.
762	
763	Newell R.L. & Minshall G.W. (1978) Effect of temperature on the hatching time of
764	Tricorythodes minutus (Ephemeroptera: Tricorythidae). Journal of the Kansas
765	Entomological Society, 51, 504-506.
766	

Freshwater Biology

767	Paetzold A., Bernet J.F. & Tockner K. (2006) Consumer-specific responses to riverine
768	subsidy pulses in a riparian arthropod assemblage. Freshwater Biology, 51, 1103-
769	1115.
770	
771	Paltridge R.M., Dostine P.L., Humphrey C.L. & Boulton A.J. (1997)
772	Macroinvertebrate recolonization after re-wetting of a tropical seasonally-flowing
773	stream (Magela Creek, Northern Territory, Australia). Marine and Freshwater
774	Research, 48, 633-645.
775	
776	Poznańska M., Kakareko T., Krzyżyński M. & Kobak J. (2013) Effect of substratum
777	drying on the survival and migrations of Ponto-Caspian and native gammarids
778	(Crustacea: Amphipoda). Hydrobiologia, 700, 47-59.
779	
780	Robson B.J., Chester E.T. & Austin C. M. (2011) Why life history information
781	matters: drought refuges and macroinvertebrate persistence in non-perennial streams
782	subject to a drier climate. Marine & Freshwater Research, 62, 801-810.
783	
784	Solomon S., Qin D., Manning M., Alley R.B., Berntsen T., Bindoff N.L. et al. (2007)
785	Technical Summary. In: Climate Change 2007: The Physical Science Basis.
786	Contribution of Working Group I to the Fourth Assessment Report of the
787	Intergovernmental Panel on Climate Change (Eds S. Solomon, D. Qin, M. Manning,
788	Z. Chen, M. Marquis, K.B. Averyt, M et al.), Cambridge University Press, Cambridge.
789	
790	Sponseller R.A., Grimm N.B., Boulton A.J. & Sabo J.L. (2010) Responses of
791	macroinvertebrate communities to long-term flow variability in a Sonoran Desert
792	stream. Global Change Biology, 16, 2891-2900.
793	
794	Stanley E.H., Buschman D.L., Boulton A.J., Grimm N.B. & Fisher S.G. (1994)
795	Invertebrate resistance and resilience to intermittency in a desert stream. American
796	Midland Naturalist, 131, 288-300.
797	
798	Stanley E.H., Fisher S.G. & Grimm N.B. (1997) Ecosystem expansion and
799	contraction in streams. <i>BioScience</i> , 47 , 427–435.
800	

801	Steward A.L., von Schiller D., Tockner K., Marshall J.C. & Bunn S.E. (2012) When
802	the river runs dry: human and ecological values of dry riverbeds. Frontiers in Ecology
803	and the Environment, 10, 202-209.
804	
805	Stubbington R. (2012) The hyporheic zone as an invertebrate refuge: a review of
806	variability in space, time, taxa and behaviour. Marine and Freshwater Research, 63,
807	293-311.
808	
809	Stubbington R., Greenwood A.M., Wood P.J., Armitage P.D., Gunn J. & Robertson
810	A.L. (2009) The response of perennial and temporary headwater stream invertebrate
811 812	communities to hydrological extremes. <i>Hydrobiologia</i> , 630 , 299-312.
813	Stubbington R Wood P I & Reid I (2011) Spatial variability in the hypothesic zone
814	refugium of temporary streams <i>Aquatic Sciences</i> 73 , 499-511
815	Terugium of temporary subanta riquare solences, re, iss erri
816	Stubbington R., Wood P.L., Reid I. & Gunn J. (2011) Benthic and hyporheic
817	invertebrate community responses to seasonal flow recession in a groundwater-
818	dominated stream. <i>Ecohydrology</i> , 4 , 500-511.
819	
820	Tooth S. & Nansen G.C. (2011) Distinctiveness and Diversity of Arid Zone River
821	Systems. In: Arid Zone Geomorphology: Process, Form and Change in Drylands. 3rd
822	edition (Ed D.S.G. Thomas), pp. 269-300. John Wiley & Sons Ltd, Chichester.
823	
824	Towns D.R. (1983) Terrestrial oviposition by two species of caddisfly in South
825	Australia (Trichoptera: Leptoceridae). Australian Journal of Entomology, 22, 113-
826	118.
827	
828	Townsend C. & Hildrew A. (1994) Species traits in relation to a habitat templet for
829	river systems. Freshwater Biology, 31, 265-275.
830	
831	Tronstad L.M., Tronstad B.P. & Benke A.C. (2005a) Invertebrate seedbanks:
832	rehydration of soil from an unregulated river floodplain in the south-eastern U.S
833	Freshwater Biology, 50 , 646–655.
834	

Freshwater Biology

835	Tronstad L.M., Tronstad B.P. & Benke A.C. (2005b) Invertebrate responses to
836	decreasing water levels in a subtropical river floodplain wetland. Wetlands, 25, 583-
837	593.
838	
839	Velasco J. & Millan A. (1998) Feeding habits of two large insects from a desert
840	stream: Abedus herberti (Hemiptera: Belostomatidae) and Thermonectus marmoratus
841	(Coleoptera: Dytiscidae). Aquatic Insects, 20, 85-96.
842	
843	Vörösmarty C.J., McIntyre P.B., Gessner M.O, Dudgeon D., Prusevich A., Green P.
844	et al. (2010) Global threats to human water security and river biodiversity. Nature,
845	467 , 555-561.
846	
847	Wickson S., Chester E.T. & Robson B.J. (2012) Aestivation provides flexible
848	mechanisms for survival of stream drying in a larval trichopteran (Leptoceridae).
849	Marine and Freshwater Research, 63, 821-826.
850	
851	Williams D.D. (1996) Environmental constraints in temporary fresh waters and their
852	consequences for the insect fauna. Journal of the North American Benthological
853	Society, 15 , 634-650.
854	
855	Williams D.D. (2005) Temporary forest pools: can we see the water for the trees?
856	Wetlands Ecology and Management, 13, 213-233.
857	
858	Williams D.D. (2006) The Biology of Temporary Waters. Oxford University Press,
859	Oxford.
860	
861	Young B., Norris R. & Sheldon F. (2011) Is the hyporheic zone a refuge for
862	macroinvertebrates in drying perennial streams? Marine and Freshwater Research, 62,
863	1373-1382.
864	
865	Zwick P. (1996) Variable egg development of <i>Dinocras</i> spp. (Plecoptera, Perlidae)
866	and the stonefly seed bank theory. Freshwater Biology, 35, 81-100.
867	
868	

869	Figure legends
870	
871	Fig. 1 Relationship between the proportion of flowing river (FR) taxa in rehydrated
872	sediments (RS) and environmental harshness (see text for determination; $1 = $ least
873	harsh; 6 = most harsh). Arc-sine square-root transformed data. See Table 1 for site
874	details.
875	
876	Fig. 2 Two-dimensional non-metric multidimensional scaling (NMDS) plot of
877	macroinvertebrate assemblages in flowing river (FR) and rehydrated sediment (RS)
878	samples across a gradient of environmental harshness (see text for determination;
879	numbers indicate harshness ranks, where $1 = \text{least harsh and } 6 = \text{most harsh}$. Filled
880	symbols = FR samples; open symbols = RS samples; lines link FR and RS samples
881	from the same system.
882	
883	Fig. 3 Relationship between environmental harshness, and Bray-Curtis similarity
884	between flowing-river and rehydrated sediment samples. See text for determination of
885	harshness; 1 = least harsh; 6 = most harsh.
886	
887	Fig. 4 Two-dimensional non-metric multidimensional scaling (NMDS) plot of
888	macroinvertebrate assemblages in rehydrated sediment samples, along a spatial or
889	temporal gradient of increasing dry period. Numbers indicate dry period duration (d).
890	
891	Fig. 5 Metrics for the macroinvertebrate community persisting in riverbed sediments
892	during dry periods of different durations: mean ± 1 S.E. (a) taxa per sample; (b)
893	individuals kg ⁻¹ sediment. Number of samples per duration: 0.1-7 d, $n = 14$; 8-30 d, n
894	= 7; 31-63 d, <i>n</i> = 7; 64-287 d, <i>n</i> = 17.
895	
896	Fig. 6 Relationship between macroinvertebrate community metrics and sediment
897	moisture content in experimentally rehydrated riverbed sediments: (a) total number of
898	taxa; (b) densities (individuals kg^{-1}). See Table 1 for site details.
899	
900	

Freshwater Biology

- **Table 1** Characteristics of river systems included in the analysis of the
- macroinvertebrate seedbank

Authors	Location	Climate	Typical dry period, mo p.a.	Geology / sediments
Boulton, 1989	Werribee and Lerderderg Rivers, Victoria, Australia	Temperate	2	Cobble-gravel sediments over mixed alluvium
Chester & Robson, 2011	16 streams, Victoria mountain range, Australia	Mediterranean to semi-arid	Varied between streams	Boulder and cobble sediments over sandstone
Datry, Corti & Philippe, 2012	Lower reaches, Albarine River, France	Temperate	0.1-5	Glacio-fluvial deposits
Larned, Datry & Robinson, 2007	Mid-reaches, Selwyn River, New Zealand	Temperate	0.1-10	Glacio-fluvial deposits
Paltridge et al., 1997	Lowland reach, Magela Creek, Australia.	Tropical / Monsoonal	5	Sand-dominated sediments over sandstone
Stanley et al., 1994	Mid-basin, Sycamore Creek, Sonoran Desert, USA	Arid	<9	Coarse sand and pebble dominated sediments
Stubbington et al., 2009 / R. Stubbing- ton, unpublished a*	Headwaters, River Lathkill, England	Temperate	5-6	Soil / bedrock over karst limestone
R. Stubbington, unpublished b	Upper reaches, River Lathkill, England	Temperate	2-3	Mixed sediments over karst limestone
P. J. Wood, unpublished	Chitterne Brook and River Till, England	Temperate	6	Gravel dominated sediment over chalk
*referred to as I	Lathkill headwaters (1)	and (2) respe	ctively in figu	ires

			Flowing river samples							Ι	Dry sedimen	t sample	s			
Authors	Study reach (km)	Туре	Pre-, post- or during drying	No. sites (a)	No. per site (b)	Dates (c)	(a)*(b)*(c) = no. of samples	Area (m ²)	Sample depth (cm)	No. sites (a)	No. per site (b)	Dates (c)	(a)*(b)*(c) = no. of samples	Weight (kg, each/total)	Rehydr- ation duration	Physical data
Boulton 1989	2 & 5	Sweep, various	Pre-, post	<4	10	23	= 845	~0.06	0-10	4	Riffles, pools	1	= 61	estimated 1.5 / 90	14 d	Moisture
Chester & Robson, 2011	16 x 0.5	Surber	Post- + after 1 yr	16	6	3	= 192	0.2	NS	16	6	1	= 96	estimated > 1 / >96	21 d	None
Datry, Corti & Philippe, 2012	15	Hess	Pre-, Post-	5	4	2	= 40	0.2	0-10	13	2-3	1	= 34	2.5 / 85	32 d	Moisture
Larned, Datry & Robinson, 2007	32	Surber	Pre-, Post-	16	2	2-11	= 73	NS	0-10 & 10-20	9	3 x 2 depths,	1	= 54	2.5 / 135	17 d	Moisture; OM; GSD
Paltridge et al., 1997	22	Various	Post-	3	6	6	= 108	0.16	0-5	3	10	1	= 30	estimated 3 / 90	14 d	None
Stanley et al., 1994	122 & 140m	80 cm ² cores	Pre-	2	5	NS, ≥ 4	= ≥40	80cm ²	0-10	5	2	5	= 50	estimated 0.25 / 13	1 d	Moisture
			Post-	1	5	3	= 15									
Stubbington et al., 2009	<1	Surber Kick	Pre-, Post-	<6	1-3	<7	= 35	~0.1	0-5	6	1	3	= 18	1 / 18	28 d	Not available
R. Stubbington, unpublished a	<1	Surber Kick	Pre-	1	4	1	= 4	~0.1	0-5	7	1	6	= 42	0.5-1 / <42	28 d	Moisture; OM; GSD
R.Stubbington, unpublished b	<1	Surber	During	2	3-4	1	= 7	0.05	0-10	2	1	1	= 2	1.5/3	28 d	Moisture; OM; GSD
P. J. Wood, unpublished	2 x <1	Surber	Pre-	3	3-4	1	= 10	0.1	0-10	3	3	1	= 9	2 /~18	28 d	None

Table 2 Sampling strategy and experimental procedures of analysed datasets

NS = not stated. Physical data abbreviations: moisture = sediment moisture content; OM = sediment organic matter content; GSD = sediment
 grain size distribution

1 Table 3 Estimation of relative harshness of river systems from which rehydrated

2 sediments were extracted

	Sedi	ment r (%)	noisture)	Air temperature (average monthly	Rain (average monthly total during	Organic matter	Shading	Harshness (Rank 1-6)
Study	Mean	Min	Trend	max. during DP; °C)	DP; mm)	(%)		
Stanley et al., 1994	NS; ra loss no	pid moted	oisture	Actual max >60 C in previous year	NS 1-3 at Phoenix	NS	Unshaded	6
Chester & Robson, 2011	NS NS None			NS 16-34 at Horsham December to May	NS 13-31 at Horsham March to May	NS	Forest	5
Larned , Datry & Robinson, 2007	2.2 NS None		None	NS 14 at Christchurch September	NS 46 at Christchurch September	1.8	Unshaded	4
Boulton 1989	NS			Actual max 35	NS 26-45 at Ballan, Jan- Apr long term mean	NS	Part- shaded	4
Datry, Corti & Philippe, 2012	8.3	8.3 4.8 Decline		NS 20-27 at Lyon June to September	NS 56-93 at Lyon June to September	NS	Part- shaded	3
R.Stubbington, unpublished a	20.0 8.9 Stable		Stable	24 Actual max during DP	65-118 Actual monthly total during DP	<1 - 26	Part shaded	2
Stubbington et al., 2009	t NS			14.5 monthly mean (not max)	NS 93-108 in Manchester August to September	<1 - 26	Part shaded	2
P. J. Wood, Sediments moist unpublished			noist	20 at Heathrow in June	53 at Bracknell June	Organic rich	Part shaded	2
Paltridge et al., 1997	NS; te climat litter	mpera e unde	te micro- er leaf	Actual max 39 at Jabiru Airport in s	168 total ampling month	NS	Dense riparian plants	2
R.Stubbington, unpublished b	, NS NS None		None	24 Actual max during DP month	118 Actual total during DP month	NS	Wooded	1

NS = not stated or not available; DP = dry period.

- 1 Table 4 Macroinvertebrate taxa present in sediments extracted from dry riverbeds and
- 2 experimentally rehydrated. Numbers indicate the presence of ≥ 1 representative of the
- 3 taxon stated, where: F = family; G = genus; S = species; SF = sub-family

Taxa		Boulton, 1989	Chester & Robson, 2011	Datry, Corti & Philippe, 2012	Larned, Datry & Robinson, 2007	Paltridge et al.,1997	Stanley et al., 1994	Stubbington et al., 2009	R. Stubbington, unpublished a	R. Stubbington, unpublished b	P. J. Wood, unpublished	Occurrence (/10)
Acarina		2F			\checkmark	\checkmark	\checkmark			\checkmark		5
Bivalvia	Sphaeriidae			\checkmark				\checkmark	\checkmark	\checkmark		4
Cnidaria	Hydra			\checkmark	\checkmark							2
Coleoptera	Dryopidae			\checkmark								1
	Dytiscidae	\checkmark			/			\checkmark			\checkmark	3
	Elmidae	5S		3G	\checkmark			/	/	2S	/	4
	Helophoridae							V	~	v	~	4
	Hydraenidae						./	./		v ./		1
	Beenhonidae						v	v		v		3
	Scirtidae	1										1
Crustacea	Amphipoda			2 E				\checkmark				2
Clustacea	Isopoda			$\sqrt{\frac{21}{}}$								1
	Malacostraca					\checkmark						1
Diptera	Ceratopogonidae	2G	~	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		8
-	Chironomidae	6G	\checkmark	3SF	3G		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	9
	Dixidae							\checkmark				1
	Dolichopodidae	~							,	,		1
	Empididae	~		~					\checkmark	√		4
	Muscidae	~				\checkmark				~		3
	Psychodidae	\checkmark		/						~		2
	Simuliidaa			v								1
	Strationvidae	\checkmark										1
	Tabanidae			\checkmark			\checkmark					2
	Tipulidae	2G				\checkmark	~				\checkmark	4
Ephemeroptera	Baetidae			2G		\checkmark						2
	Heptageniidae			\checkmark								1
	Leptophlebiidae	\checkmark		\checkmark								2
Gastropoda	Ancylidae	√										1
	Glacidorbidae	~										1
	Hydrobiidae	\checkmark		,							,	1
	Lymnaeidae			\checkmark			/		\checkmark		~	3
	Physidae Disperiedae						v ./				./	1
	Valvatidaa			1			v				v	2
Megaloptera	Corvdalidae			•	\checkmark							1
Oligochaeta	Coryuanuae	\checkmark		\checkmark	4F	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	9
Plecoptera	Gripoptervgidae	\checkmark	\checkmark									2
	Leuctridae			\checkmark						\checkmark		2
	Nemouridae							\checkmark				1
	Perlidae									\checkmark		1
	Taeniopterygidae								\checkmark			1
Trichoptera	Calocidae	\checkmark			,							1
	Conoesucidae				\checkmark					/		1
	Glossosomatidae									\checkmark		1
	Hydropsychidae			v	1							1
	Lontocoridae	\checkmark		\checkmark	v							1
				•								

Page	39	of	51
------	----	----	----

Freshwater Biology

2 3 4 5 6 7 8 9 4 10 11 5 12 13 14 15	Tricladida	Odontoceridae Polycentropodidae Psychomyiidae Sericostomatidae Total taxa kg of sediment	✓ 22 90	3 96	√ √ 24 85	✓ 9 55	✓ 9 90	9 13	2G 12 39	✓ 9 42	✓ 17 3	7 18	1 1 1 5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													

Table 5 A comparison of the taxonomic composition of flowing river (FR) and

rehydrated sediment (RS) samples

	Boulton, 1989	Chester & Robson, 2011	Datry, Corti & Philippe, 2012	Larned, Datry & Robinson, 2007	Stanley et al., 1994	Stubbington et al., 2009	R. Stubbington, unpublished a	R. Stubbington, unpublished b	P. J. Wood, unpublished
Community metric									
% of FR taxa in RS	18	5	54	22	33	31	31	52	42
No. FR taxa in RS	33	1	27	13	7	5	4	16	5
No. taxa in RS only	1	2	3	1	2	8	5	2	2
No. taxa in FR only	147	21	23	47	14	11	9	15	7
FR Orders not in RS	A B Cn H I M O	Co E Tr	None	A E G H P Tl	E H O Tr	E G H	A I Tr	A E G I	Е
Sampling strategy		6							
No. / type of FR samples	845 sweep + other	192 Surber	8 Hess	10 Surber	NS / cores	15 kick + 20 Surber	1 kick + 3 Surber	7 Surber	6 Surber
FR area, where RS area = 1	>1	>1*	<1	<1	>1	1	<1	>1	1
FR sample times (pre, post-, during drying)	Pre-, post	Post-	Pre-; post-	Pre-, post	Pre-; post-	Pre-	Pre-	During	Pre-

Order abbreviations: A, Amphipoda; B, Bivalvia; Cn, Cnidaria; Co, Coleoptera; E,

Ephemeroptera; G, Gastropoda; H, Hemiptera; I, Isopoda; M, Megaloptera; O,

Odonata; P, Plecoptera; Tl, Tricladida; Tr, Trichoptera.

Freshwater Biology

Table 6 Occurrence and numerical importance of alternative recolonist sources. P = proportion (the number of taxa found in the habitat as a2proportion of the number in rehydrated sediments); \checkmark = habitat occurred but distance/extent not described; NS = not stated/refuge potential3cannot be determined; * = combined values for >1 habitat; high = qualitative author assessment of importance; RS = rehydrated sediment4samples (values in final column reproduced from Table 5).

		External to the dry channel							Within the dry channel						
	Upstream re	aches	Downstream	n reaches	Perennial lentic	Perennial lentic waters Groundwater springs		Perennial p	pools	Hyporheic	rheic zone Microhabitats		8	RS	
	Distance / Extent	Р	Distance	Р	Distance / Extent	Р	Distance / Extent	Р	Extent	Р	Extent	Р	Extent	Р	Р
Boulton, 1989	None	0	NS	-	>6 km / 0.02m ² 1 lake	0.29	NS	-	Several; NS	0.87	NS	0.10	Leaves, wood algae, , roots, burrows	0.24	0.35
Chester & Robson, 2011	Distance NS 7 of 16 sites	0.95	NS	-	NS	-	Supply pools in the dry channel	-	Many, 1-10m length, fed by groundwater	1.1	<0.5m to bedrock	-	Under stones, leaf litter	0.27	0.05
Datry, Corti & Philippe, 2012	0-15km away >30km extent	-	<1km	-	NS	-	NS		NS	-	✓ dry	-	NS	-	0.57
Larned, Datry & Robinson, 2007	<0.1km away 10km extent	-	13 km	-	NS	-	NS	-	NS	-	✓	-	NS	-	0.23
Stanley et al., 1994	0.8-2.5 km	1*	0.8-1.2 km	1*	NS	-	NS	-	NS		✓ dry	<0.1	None	0	0.41
Stubbington et al., 2009	None	0	<1 km	1.8	NS	-	<0.5km. 1 cave/ 3 springs of 0.5m ²	0.56	None	0	None	0	Under stones, bryophytes	-	0.31
R.Stubbington, unpublished a	None	0	<1 km	2.7	NS	-	<0.5km. 1 cave, 3 springs of 0.5m ²	0.57	None	0	None	0	Under stones, bryophytes	-	0.42
R.Stubbington, unpublished b	<1 m	2.3*	<1 m	2.3*	NS	-	<1km. 2 springs of 0.5m ²	-	NS	-	Widespread, depth 0.5m	2.0	Marginal vegetation	-	0.53
P. J. Wood, unpublished	None	0	5-9 km	-	<1 km away 1 pond	-	Location NS 1 spring, 1 well	0.36	None	0	Widespread, depth >0.3m	0.45	NS	-	0.36

Appendix S1 Supporting information on unpublished studies

Study sites and research aims

R. Stubbington (unpublished a)

Stubbington (R. Stubbington, unpublished a) collected samples from the ephemeral karstic headwaters of the River Lathkill (Derbyshire, UK; Fig. S1). This is the same area as described and studied by Stubbington et al. (2009), but with an additional seventh site located within the reach (Fig. S1; Table 1). This study was conducted in a year of typical hydrological conditions, to complement the work of Stubbington et al. (2009), which characterised seedbank composition during an unusually short dry phrase preceded by a high-magnitude flood event.

Fig. S1 Map of the River Lathkill, indicating the location of the seven sampling site in the study of Stubbington (R. Stubbington, unpublished a). Small-scale spatial variability in the flow regime is described by Stubbington et al. (2009). Originally published in Stubbington et al. (2009) and adapted for reproduction here from the author's original figure.

R. Stubbington (unpublished b)

Stubbington (R. Stubbington, unpublished b) studied the upper reaches of the River Lathkill (Derbyshire, UK), <2 km downstream of the headwaters, in which flow is

Freshwater Biology

intermittent and the karst bedrock is overlain by mixed alluvium (Fig. S2). Samples were collected opportunistically as part of a wider study (see Stubbington et al., 2011) following localised sediment drying at two sites (Fig. S2); samples were treated as described in Stubbington et al. (2009).

Figure S2 Map of the River Lathkill, indicating the location of the sampling sites in the study of Stubbington (R. Stubbington, unpublished b; originally published in Stubbington et al. (2011) and adapted for reproduction here from the author's original figure).

P. J. Wood (unpublished)

This study examined invertebrate persistence in dry sediments of temperate –zone headwater streams underlain by chalk geology. Such streams, which are not associated with perennial springs, typically experience a period of drying from late spring until autumn then a period of surface flow during winter, and hence are locally termed 'winterbourne streams' (Wright et al., 1984; Berrie, 1992). The study examined the intermittent headwaters of two chalk streams, the Chitterne Brook and River Till, which are adjacent tributaries of the River Wylye (Wiltshire, UK; 51° 12.3N, -1° 57.6 W). The catchment is predominantly agricultural, with numerous small villages and minor roads (Fig. S3)

Figure S3 Map of Chitterne Brook and the River Till, indicating the location of the sampling sites in the study of Wood (P. J. Wood, unpublished; original drawing).

Methods

All unpublished studies were conducted by the same research group and rehydration and subsequent sample processing were conducted following the procedure outlined in Stubbington et al. (2009). However, other aspects of these studies differed, as detailed below.

R. Stubbington (unpublished a)

Flowing river (FR) samples comprised one 3-minute kick sample and three 30-second Surber samples taken at one site (site 3; Fig. S1) on one occasion two months prior to the dry phase. One sediment sample was then collected for rehydration at each of sites 1-7 (Fig. S1) within 7 d of sediment drying, and then again 14 d, 34 d, 63 d, 91 d and 126 d after this first sampling occasion.

Sediment moisture content was determined for two samples taken on day 34 and for all samples taken on days 63, 91 and 126. A sediment sample of approx. 50 g was extracted from the same area as the RS sample, sealed in sample bag, and returned to the laboratory. Samples were placed in pre-weighed aluminium dishes and the weight determined using an electronic balance. Samples were then oven-dried at 50 °C until the weight remained constant for 12 hours, and % moisture calculated using the original and final weights.

Sediment grain size distribution (GSD) was determined for three sets (day 63, 91 and 126) of seven RS samples, following completion of the rehydration experiment. Clasts estimated to have an *a*-axis >100 mm were excluded from the sample, to reduce the influence of atypically large particles on the calculated percentage of fine sediment. Course particulate organic matter was also removed. Sediments were oven dried at 105 °C until the sample weight remained constant over a 12 hour period. Where oven drying caused aggregation of fine sediments, dried samples were gently disaggregated using a porcelain pestle and mortar, with care taken not to apply undue force which could result in particle abrasion. Disaggregated sediments were drysieved through a sieve tower (8, 4, 2, and 1 mm, 500, 250, 125 and 63 μ m) using a sieve shaker (Endecotts Ltd, London, UK) for five minutes, and each size fraction then weighed. The % of grains in each fraction was determined and the mean of the three samples calculated.

R. Stubbington (unpublished b)

A single sediment sample was collected for rehydration at each of sites 1 and 2 (Fig. S2) on a single date following contraction of the submerged area. The short duration of marginal drying prevented further samples being taken. FR samples comprised 3-4 30-second Surber samples taken within 50 m of the two RS sampling points, on the same date that RS samples were extracted.

The GSD was examined for one set of two replicates sample per site. Sediment samples were collected using a MacNeil sampler, following the procedure outlined by Bunte and Abt (2001), collecting samples of approx. 5 kg each. These were processed using the method outlined for Stubbington (R. Stubbington, unpublished a). Sediment

moisture was analysed in situ using a ThetaProbe soil moisture sensor (Delta-T Devices, Cambridge, UK).

P. J. Wood (unpublished)

FR samples comprised three 30-second Surber samples taken at each site from which dry sediments were later sampled (Fig. S3). Following drying, three sediment samples were collected from each site and rehydrated.

Results

The taxa recorded recorded in both FR and rehydrated sediment (RS) samples in the studies of Stubbington (R. Stubbington, unpublished a), Stubbington (R. Stubbington, unpublished b) and Wood (P. J. Wood, unpublished) are shown in Tables S1-S3, respectively. Sediment moisture and GSD data is then provided for Stubbington (R. Stubbington, unpublished a) in Tables S4 and S5, and GSD data for Stubbington (R. Stubbington, unpublished b) in Tables S6.

Table S1 Invertebrate taxa recorded in the karstic headwaters of the River Lathkill by Stubbington (R. Stubbington, unpublished a). FR = flowing river samples; RS = rehydrated sediment samples; a = adult; l = larvae; p = pupae. Sample numbers (*n*) are detailed in the text.

	Site:	1	2	3	3	4	5	6	7
		RS	RS	RS	FR	RS	RS	RS	RS
Coleoptera	Dytiscidae spp. (I)				✓				
	Helophorus sp (l.)		\checkmark						
	Helophorus brevipalpis (a)				\checkmark				
Crustacea	Gammarus pulex				√				
	Cyclopoida						\checkmark	\checkmark	
	Harpacticoida	\checkmark				\checkmark	\checkmark	\checkmark	\checkmark
	Asellus aquaticus				\checkmark				
	Ostracoda	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
Diptera	Ceratopogonidae (I)							\checkmark	\checkmark
	Chironomidae (I)			\checkmark	\checkmark			\checkmark	\checkmark
	Chironomidae (p)			\checkmark					
	Diptera (unidentified) (I)	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
	Diptera (unidentified) (p)								\checkmark
	Empididae (I)			\checkmark				\checkmark	\checkmark
	Psychodidae (I)						\checkmark		
	Tipulidae (I)				\checkmark				
Gastropoda	<i>Lymnaea</i> spp.			\checkmark	\checkmark				
	Sphaeriidae	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark
Nematoda		\checkmark							
Oligochaeta		\checkmark							

Freshwater Biology

Plecoptera Trichoptera	Nemoura cambrica Brachyptera risi Limnephilus lunatus (I)		√ √ √		
Tricladida	Micropterna lateralis (I) Micropterna sequax (I) Phagocata vitta Polycelis spp.	√ √	\checkmark	√ √	✓

Table S2 Invertebrate taxa recorded the upper reaches of the River Lathkill by Stubbington (R. Stubbington, unpublished b). FR = flowing river samples; RS = rehydrated sediment samples; a = adult; l = larvae; p = pupae. Sample numbers (*n*) are detailed in the text.

		Sit	e 1	Sit	e 2
		FR	RS	FR	RS
Acarina	Hydracarina		✓	✓	
Coleoptera	Oreodytes sanmarkii (a)	\checkmark			
	Elmis aenea (I)	\checkmark	\checkmark	\checkmark	\checkmark
	Elmis aenea (a)	\checkmark	\checkmark	\checkmark	
	Limnius volckmari (a)			\checkmark	
	Oulimnius spp. (a)	\checkmark			
	Riolus spp. (I)	\checkmark	\checkmark	\checkmark	
	Riolus subviolaceus (a)	\checkmark	\checkmark	\checkmark	
	Helophorus spp. (I)		\checkmark		
	Helophorus brevipalpis (a)	\checkmark	\checkmark	\checkmark	\checkmark
	Hvdraena spp. (I)	\checkmark	\checkmark		\checkmark
	Hydraena spp. (a)	\checkmark		\checkmark	
	Anacaena globulus (a)		✓		
Crustacea	Copepoda				\checkmark
oraciacióa	Asellus meridianus			✓	
	Gammarus puley	\checkmark		~	
	Ostracoda		\checkmark		\checkmark
Dintera				~	·
Diptera	Chironomidae (I)	1		· •	1
	Chironomidae (n)		·		·
	Diptora (unidentified) (n)	v		•	
	Empididae (I)	1	1	•	
	Dieronete en (I)	Ť	v	•	
	Dicranola Spp. (I)			v	
		· ·	/		/
		v	v	/	v
	Simulidae (I)	Ň		v	
			v		
Ephemeroptera	Baetis spp.	× /		•	
	Serratella ignita	•		~	
Gastropoda	Ancylus fluviatilis	✓		,	
	Lymnaea peregra			√	,
	Sphaeriidae		,	√	√
Nematoda		✓	✓	✓	✓
Oligochaeta		\checkmark	\checkmark	\checkmark	\checkmark
Plecoptera	<i>Leuctra</i> spp.	\checkmark	\checkmark	\checkmark	
	<i>Nemoura</i> sp.			\checkmark	
Trichoptera	Dinocras cephalotes (I)	\checkmark	\checkmark	\checkmark	
	Agapetus fuscipes (I)	\checkmark			\checkmark
	Chaetopteryx villosa (I)			\checkmark	
	Drusus annulatus (I)			\checkmark	
	<i>Drusus annulatus</i> (p)	\checkmark	\checkmark	\checkmark	
	Micropterna-Stenophylax group (I)	\checkmark			
	Limnephilus lunatus (I)			\checkmark	
	Tinoides dives (I)	\checkmark	\checkmark		

 \checkmark

Rhyacopi

Rhyacophila obliterata (I)

Table S3 Invertebrate taxa recorded in two chalk streams by Wood (P. J. Wood,unpublished). FR = flowing river samples; RS = rehydrated sediment samples.Sample numbers (*n*) are detailed in the text.

			Chitter	(River Till		
		Sit	te 1	S	ite 2		
		FR	RS	FR	RS	FR	RS
Coleoptera	Agabus biguttatus					\checkmark	
	<i>Hydroporus</i> sp.				\checkmark		
	Dytiscidae sp.	\checkmark		\checkmark		\checkmark	
	Helophorus sp.		\checkmark				
	Hydrophilidae	\checkmark					
Crustacea	Niphargus aquilex	\checkmark		\checkmark		\checkmark	
	Copepoda		\checkmark		\checkmark		\checkmark
	Asellus aquaticus					\checkmark	
	Ostracoda				\checkmark	\checkmark	\checkmark
Diptera	Chironomidae	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
	Simulium angustitarse	\checkmark					
	Simulium latipes	\checkmark					
	Tipulidae						\checkmark
Ephemeroptera	Baetis rhodani					\checkmark	
	Paraleptophlebia werneri	\checkmark					
Gastropoda	Lymnaea stagnalis 🛛 🗸						\checkmark
	Lymnaea truncatula		\checkmark		\checkmark		\checkmark
	Anisus leucostoma		~	\checkmark	\checkmark		\checkmark
Hirudinea	Glossiphoniidae					\checkmark	
Oligochaeta	·	~	\checkmark	✓	\checkmark	\checkmark	\checkmark

Table S4 Moisture content (%) recorded in sediments extracted from the karsticheadwaters of the River Lathkill by Stubbington (R. Stubbington, unpublished a). SD= standard deviation; d = days (duration of dry phase).

		(% moistu	ure	
Site	34 d	63 d	91 d	126 d	Mean
1	17.5	15.8	16.0	19.8	17.3
2	14.5	17.9	8.9	17.4	14.7
3	-	16.9	12.1	18.7	15.9
4	-	16.7	17.4	15.7	16.6
5	-	19.7	14.7	17.4	17.2
6	-	17.1	13.1	21.8	17.3
7	-	47.9	39.6	45.3	44.3
Mean	16.0	21.7	17.4	22.3	
SD	2.1	11.6	10.2	10.3	

Table S5 Grain size distribution of sediments extracted from the karstic headwaters of the River Lathkill by Stubbington (R. Stubbington, unpublished a). Numbers indicate the mean % of grains in a size fraction; SD = standard deviation.

		Size fraction (mm)										
		>8	>4	>2	>1	>0.5	>0.25	>0.125	<0.125			
Site 1	Mean	29.2	20.0	17.3	15.2	8.9	5.8	3.3	0.3			
	SD	1.7	1.4	0.4	3.0	0.2	1.8	1.1	0.2			
Site 2	Mean	47.0	17.1	7.0	8.4	8.6	6.7	4.8	0.5			
	SD	20.1	1.8	3.6	6.0	5.7	4.0	2.5	0.2			
Site 3	Mean	34.2	16.8	7.3	13.5	14.6	8.5	4.8	0.3			
	SD	11.3	1.8	0.6	3.3	5.2	3.1	2.1	0.1			
Site 4	Mean	45.0	20.4	8.8	7.3	7.5	5.6	4.5	0.4			
	SD	5.3	1.7	1.4	1.4	1.8	2.3	2.2	0.3			
Site 5	Mean	29.4	18.5	10.0	13.7	12.1	9.9	6.2	0.3			
	SD	8.4	1.9	2.4	1.5	1.4	1.8	1.3	0.1			
Site 6	Mean	34.5	19.7	16.8	15.0	8.5	3.6	1.6	0.3			
	SD	6.0	2.0	2.2	2.0	1.4	0.4	0.1	0.1			
Site 7	Mean	19.3	2.0	5.0	12.2	22.7	16.1	17.9	4.8			
	SD	33.4	3.2	5.3	10.5	8.1	6.4	16.5	4.0			

Table S7 Grain size distribution of sediments extracted from the upper reaches of the River Lathkill by Stubbington (R. Stubbington, unpublished b). Numbers indicate the mean % of grains in a size fraction; SD = standard deviation.

		Size fraction (mm)											
		>8	>4	>2	>1	>0.5	>0.25	>0.125	<0.125				
Site 1	Mean	52.3	12.2	11.1	10.7	7.4	3.1	1.5	1.7				
	SD	6.4	1.4	0.1	2.4	2.8	1.5	0.8	0.5				
Site 2	Mean	25.7	23.5	13.7	10.2	10.4	9.4	4.2	3.1				
	SD	1.1	2.3	1.9	1.8	0.6	2.3	2.0	1.2				

References

Berrie A.D. (1992) The chalk-stream environment. Hydrobiologia, 248, 3-9.

Bunte K. & Abt S.R. (2001) Sampling surface and subsurface particle-size distributions in wadable gravel- and cobble-bed streams for analyses in sediment transport, hydraulics, and streambed monitoring. United States Department of Agriculture (USDA) General Technical Report RMRS-GTR-74. USDA, Washington.

Stubbington R., Greenwood A.M., Wood P.J., Armitage P.D., Gunn J. & Robertson A.L. (2009) The response of perennial and temporary headwater stream invertebrate communities to hydrological extremes. *Hydrobiologia*, **630**, 299-312.

Stubbington R., Wood P.J., Reid I. & Gunn J. (2011) Benthic and hyporheic invertebrate community responses to seasonal flow recession in a groundwater-dominated stream. *Ecohydrology*, **4**, 500-511.

Wright J.F., Hiley P.D., Cooling D.A., Cameron A.C., Wigham M.E. & Berrie A.D. (1984) The invertebrate fauna of a small chalk stream in Berkshire, England, and the effect of intermittent flow. *Archiv für Hydrobiologie*, **99**, 176-199.