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Abstract 

This paper describes an independent handwriting style classifier that has been designed to select 

the best recognizer for a given style of writing. For this purpose a definition of handwriting 

legibility has been defined and a method has been implemented that can predict this legibility. 

The technique consists of two phases. In the feature extraction phase, a set of 36 features is 

extracted from the image contour. In the classification phase: Two non-parametric classification 

techniques are applied to the extracted features in order to compare their effectiveness in 

classifying words into legible, illegible and middle classes. In the first method a Multiple-linear 

Discriminant Analysis (MDA) is used to transform the space of extracted features (36 

dimensions) into an optimal discriminant space for a nearest mean based classifier. In the second 

method, a Probabilistic Neural Network (PNN) based on the Bayes strategy and non-parametric 

estimation of probability density function is used. The experimental results show that the PNN 

method gives superior classification results when compared to the MDA method. For the legible, 

illegible and middle (between legible and illegible) handwriting provides 86.5% 

(legible/illegible), 65.5% (legible/middle) and 90.5% (middle/illegible) correct classification for 

two classes. For the three-classes legibility classification the rate of correct classification is 

67.33% using PNN classifier.  

Keywords: Style definition, Style classification, Handwriting legibility, Discriminant analysis, 

Probabilistic Neural Network.  
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1. Introduction 

Nowadays very high recognition rates are possible for Optical Character Recognition (OCR); 

particularly for text printed in clear, easy to read fonts [20,26,37]. However, even here there are 

problems. The difficulties of style characterisation are even worse when handwriting is to be 

handled [18,30,33]. The problem of handwriting recognition is far from being solved due to the 

vast variability in human handwriting both between different writer (inter-writers) and within the 

same writer (intra-writer) [4,22,25].  

Previous research has shown that writing style can vary significantly with geographical location, 

cultural background, age, sex, etc. [5,29]. Indeed people often completely redefine their style of 

writing as they age. The characteristic of cursive handwriting such as height of ascenders or 

descenders, word length, letter concavities etc. make the different style of writing. In cursive 

handwriting, letters can be connected in a variety of ways and the letter standards can differ 

greatly; sometimes to the point where they can be totally illegible. Cursive handwriting 

variability is not only due to writer’s style but also to geometric factors determined by the writing 

conditions. There is little or no control in most off-line scenarios on the type and instrument 

used. The artefacts of the complex interactions between, instrument and subsequent operations 

such as scanning and binerization present additional challenge to algorithms for off-line 

handwriting recognition. Low-quality images, which lead to poor image quality such as broken 

lines, due to the machine printers or fax machines, pose serious challenge to current pattern 

recognition techniques.  

Experience with analysis of word recognition systems shows that it is unlikely that a system 

based on a single pattern recognition approach would be capable of handling the large variability 

in human handwriting. The ‘correction’ of this variability, prior to recognition, can be helpful in 

reducing the variability and can lead to an important improvement in recognition performance. 

Hence, in current handwriting recognition systems, a pre-processing stage is normally included. 

The aim is to remove unwanted variation and present, to the recogniser, characters that are close 

  



as possible to the model templates. The main functions of such pre-processing steps are usually 

the correction of slant [7], the deskewing of hand-written words [3], normalisation [27] etc. The 

use of these pre-processing steps has been shown to improve the image quality and correct the 

character string recognition.  However, as part of this process, some of the original information 

may be lost.  

Many attempts have been reported to deal directly with poorly written text [15,17,38]. 

Unfortunately, these improvements tend to result in a decrease in the system’s ability to 

recognise clearly written characters. Also in segmentation-free recognition systems using holistic 

(high-level) features will perform better with lower-case or mixed case lexicons than with an 

uppercase word lexicon due to the fact that upper case words have less features (no ascender or 

descender) than lower and mixed case words. Currently, ambiguity of handwriting is considered 

by taking the context into consideration by using natural language processing to select words 

from the recognition list to improve recognition performance. For instance, post processing ways 

of helping cursive script recognition aim to overcome style variation. These approaches do give 

limited success for improving the recognition performance but do eventually fail when the 

handwriting becomes highly illegible as far as the recogniser is concerned. Consequently, the 

recognition algorithm must deal with a variety of author-specific idiosyncrasies. 

Coates, Baird and Fateman [1] have shown that there are a variety of images, which although 

legible to human readers, are illegible to several of the best, present day, OCR systems. It has 

therefore been hypothesised that one way of helping cursive script recognition systems would be 

to detect writing style prior to the recognition stage in order to choose the best recogniser for the 

given writing style. In this work the concept of style classification is introduced and the various 

aspects of its definition in quantitative terms are discussed. To provide a starting point, style has 

been defined in terms of recogniser specific legibility. In this way the best recogniser could be 

selected for a given style of writing using a prediction of legibility based on a given recogniser’s 

previous performance. This research therefore focuses on the problem of classifying word images 

  



as legible, illegible or middling prior to the recognition stage. An independent handwriting style 

classifier has been designed that, in principle, can be used to select the best recognizer for a 

given style of writing. For this purpose a definition of recogniser specific handwriting legibility 

has been defined and a method has been implemented that can predict this legibility.  Multiple 

Discriminant Analysis (MDA) and Probabilistic Neural Network (PNN), based on the Bayes 

strategy and non-parametric estimation of probability density function, techniques are proposed.  

Both methods are applied to the task of classifying words into legible, illegible or middling prior 

to the recognition stage. A comparison between the two classification techniques is thus given. 

2. Definition of legibility 

Up until now handwriting legibility has been defined purely in human terms. However, since the 

ability of a machine-based recogniser differs significantly from that of a human being [1], any 

definition of legibility should be based on the recognition system. Of course, similar to that of a 

human being, the definition of legibility is a debatable issue. However, at the time of writing no 

reference to a machine based definition of legibility has been found in the literature, which is 

probably not surprising considering the novelty of this concept.   

Our definition of handwritten legibility has therefore been based on our existing recogniser’s 

performance [34]. This recogniser is a holistic word level recogniser (HVBC) that uses three 

features namely, Holes, Vertical bars and Cups. This definition of legibility can be extended to 

any available recogniser. Fig. 1 shows that almost all correct words are located within the top10 

positions. Thus legible words could be further defined as those that are likely to be placed the in 

the top 10 of the correct word list with a score of 75 or greater. Illegible words could be those 

that would produce a list containing the correct word anywhere in the word list with a score of 

less than 45. Middle words (those between legible and illegible) are then defined as those that 

would produce a list containing the correct word with a score of 45 to 75.  

These thresholds have been arrived at experimentally and merely provide a starting point.  They 

can be changed depending on the application in which they are to be used. The following 

  



experiments serve to assess the validity of this approach by conducting a binary followed by 

triple style classification. 

3. Feature extraction  

During the design process of this classification system, thirty-six features from the contour of a 

reasonably large number of hand-written word images were extracted. The data set is provided 

by eighteen different writers (150 words each) [34]. The reasoning behind the choice for data sets 

and features is provided below and in further detail in [6,10,19,24]. Some sample images are 

available from http://www.doc.ntu.ac.uk/ns/c_sample.html.  

3.1 Contour-based features  

As a starting point, based on human perception of style, it was assumed that the word contour, as 

defined by tracing around the outside of the whole word, could contain information about the 

relationship of the underlying characters used in constructing the word [6]. We extend this to the 

hypothesis that the ‘synergy’ within the word resulting from the way in which the neighbouring 

characters follow/influence each other is encapsulated in the word shape. A number of features 

were therefore introduced which are based on the contour of the handwritten word images. 

A handwritten word can be described as a sequence of disjointed loop contours 

}{ NjjiCCCWI jii ,,2,1,,| K=≠=∩= φ .                                                                                 (1) 

Each loop contour C  is a sequence of consecutive points on the x-y plane:  i

{ }
iMiji ppMjpC === 1,,,2,1| K ,                                                                                             (2) 

where  and are the end points of loop contour. 1p
iMp thi

The contour-based features used in our system are mainly based on:  

(a) The chain coding from the eight primitive directions given by Freeman encoding [12]. 

Fig. 2 refers to the eight primitive directions and represents the writing direction from a start 

point to an end point by following the upper contour of the word. Each loop contour  can 

be represented by a chain code sequence 

iC
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      { }1,...,2,1 | −== iji MjdD ,                                                                                                    (3) 
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(b) Consecutive exterior angles and contour angles formed by pairs of vectors along the   word 

images. Fig. 3 shows the exterior angle al  at point pl  formed by a pair of vectors ld  and 

1−ld , and are located on the left-hand side of the vectors. The value of la  can be obtained 

easily using lookup Table 1. The sequences of exterior angles in a loop contour, iC , is 

calculated as: 

     { }1,...,3,2 | −== iji MjaA                                                                                                       (5) 

( ) mod dl l− −1 8d  0 1 2 3 5 6 7 

a  180 135 90 45 315 270 225 
l

             
  

 
Table 1: a  as a function of l )( 1 ll dd −− . 

    (c) Dominant points. 

      Dominant points re er to points of the following types: f  
  

 (1) End points of the segmented regions of each individual loop contour. 

      (2) Points corresponding to local extreme of curvatures of each individual loop contour. 

 (3) Midpoints between two consecutive points of type (1) or (2).  

Using the above concepts, the following subsections define the selected features in detail. 

3.2 Global Features 

Madhvanath in 2001 [25] shows how word shape contains sufficient information to classify 

words in certain lexicons.  These characteristics of handwriting are different from one writer to 

another. A number of features based on the overall shape of a given word have been nominated. 

Assuming is number of loop contours. N

(1) An estimate of number of sharp angles in the whole word: Ratio of number of original sharp 

angles to the total number of angles (ROSP):  
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and stands for the number of members in a set and sharp angles are the angle less than or 

equal to 90 degree. 

card

(2) Average of the component length (disjoint loop contours) or averaged component length 

(ACOL):  

                ACOL= 
N

Pcard )(                                                                                                        (10) 

(3) Ratio of Vertical direction  (2 and 6 directions given by Freeman code) to the total original 

chain code (RVO):  
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(4) Ratio of Horizontal directions (any 0 and 4 directions given by Freeman code) to the total 

original chain code (RHO):  
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(5) Ratio of diagonal directions (any 1,3,5 and 7 directions given by Freeman code) to the total 

original chain code (RDO):  
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3.3 Region- based Features  

The region-based features were proposed in order to measure the plain, concave and convex 

regions and this variability of writing could be used for style or legibility of handwriting [23].   

The region-based features used are the dominant points in the contours and direction primitives 

between dominant points. Prior to the process of finding dominant points, a Gaussian Average 

Filter is used to reduce the influence of digitisation noise. The filtered version of  is denoted 

as: 

iA

 { 1,...,3,2 | −== iii MiaA }.                                                                                            (23) 

  



After performing Gaussian Average Filter on A i, each contour  can be partitioned into a 

sequence of convex, concave and plain regions.  

iC

                                                                                                                                  (24) U
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                Where  

                 is the number of disjointed regions of         iT iC

               , are series of consecutive points on contours , in such   { 3,2,1, ∈kRk
ij } iC

               a way that : 

               { }180 , points econsecutiv are |1 =∈= llilij apCpR            (Plain region)                 (25) 

               { }180, points econsecutiv are |2 <∈= llilij apCpR          (Concave region)           (26) 

               { }180,points econsecutiv  are |3 >∈= llilij apCpR          (Convex regions)           (27) 

Figs. 4,5,6 and 7 show an example of a typical word with its concave, convex and plain regions 

consecutivly.   

 The contour angle  at  is defined within a support region and its value estimated by 

averaging angles , where  and  is formed by the pair of vectors  

and . Denoting the sequence of contour angles in the region as; 

lv lp

lka Kk ,....,3,2,1= lka kld −

1−+kld

V = , one can easily obtain the maximum within a convex region and the minimum 

in a concave region. All such maxima and minima constitute the local extremes of the curvature 

(corner points) along a word. More details of the above technique can be found in [23]. Fig. 8 

shows the corner points, which are detected on words after using Average Gaussian Filtering, 

with 2 iterations while  is considered. It should be noted that the experiments show that as 

the number of iteration is increased the filtering process will remove some of the dominant points 

as well as the noise. On the other hand if the number of iterations is not enough the system will 

detect some of the noise as dominant points. 

132 .... −iMvvv

3=K

  



Denoting as the dominant or critical points of the  contour and 

as the direction primitives between dominant points, the region-

based features are defined as follows: 
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(2) Average Plain Region Length (APRL): 
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(3) Average Concave Region Length (ACAL): 
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(4) Average Convex Region Length (ACVL): 
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(5) Ratio of Sharp Angle of critical points to the total number of critical points (RSCR) is: 
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Where 
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(6) Ratio of filtered Sharp Angle to the total number of Points (RFSP): 
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(7) Ratio of critical vertical code to the total critical chain code (RVF): 
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(8) Ratio of critical horizontal code to the total critical chain code (RHF): 
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(9) Ratio of critical diagonal to the total critical chain code (RDF): 
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3.4 Windows-based Features 

Fig. 10 shows how handwriting from one person to another person could be different in each 

window. As this figure shows the number of pixels and the value of slope in each window should 

be different. Therefore the following features were introduced to investigate this style 

characteristic.  

Four values of slope corresponding to the angle of a direction with the horizontal are extracted 

from the 8 directions given by the Freeman code. The 4 values correspond to angles of 0, 45, 90 

and 135 degrees respectively to the horizontal (Fig. 11). 

For a given window i  and a given slope , the  is computed as follows:  k )|(int kiszonepo
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Where  

)|( kicard  is  the number of  contour points with a given slope k 

The total number of local features extracted for a given window position is a made up of 3 slope 

features for each of the 3 zones. These are defined as follows:  

  



(1) Ratio of vertical directions in lower window (RVLZ): 

     RVLZ =                                                                                                    (52) )2|0(int szonepo

(2) Ratio of horizontal directions in lower window (RHLZ): 

       RHLZ =                                                                                                  (53) )0|0(int szonepo

(3) Ratio of diagonal directions in lower window (RDLZ): 

     RDLZ =                                                                      (54)  )3|0(int)1|0(int szoneposzonepo +

(4) Ratio of vertical directions in middle window (RVZM): 

     RVZM =                                                                                                    (55) )2|1(int szonepo

(5) Ratio of horizontal directions in middle window (RHZM): 

       RHZM =                                                                    (56) )4,1(int)0|1(int szoneposzonepo +

(6) Ratio of diagonal directions in middle window (RDZM): 

       RDZM =                                                                    (57) 

(7) Ratio of vertical directions in upper window (RVZU): 

)3|1(int)1|1(int szoneposzonepo +

        RVZU =                                                                                               (58) 

(8) Ratio of horizontal directions in upper window (RHZU): 

)2|2(int szonepo

       RHZU =                                                                                               (59) 

(9) Ratio of diagonal directions in upper window (RDZU): 

)0|2(int szonepo

       RDZU =                                                                   (60) )3|2(int)1|2(int szoneposzonepo +

In addition to the above features the following feature is also defined: 

(10) Ratio of number of points in middle area to total number of points (RPCE):  

          RPCE  = 
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          Where  

            is the number of points in the middle zone. )(PcardMid

 
 

  



3.5 Feature-Based Moments 

In addition to the slope features described above, an additional feature, NOM1, based on the first 

moment is also extracted. The moment features capture the global information of word images, 

which could help for legibility classification of handwriting [24]. 

2
11
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Where the co-ordinates of a contour pixel is given by the 2D binary image of the cursive word 

and the central moment is given by: 
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and N is the total number of points in the contour word image. 

3.6 Zero-Crossing Feature 

As Fig. 12 shows the number of intersections of a horizontal line passing through the midline of 

a word are different. The following features were therefore introduced to make use of this 

characteristic. A horizontal line is drawn through the centre of the word.  
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Where S  is the total number of points in the contour word images.  

The number of intersections of this line with the contoured word gives the number of zero 

crossing (NCRS) (Fig. 12).   

In addition to above features group-based features and horizontal-based histogram features are 

used in this research, for more details of these features refer to [8,9,10]. 

Features, which are used in this research, are listed in table 2 for subsequent references. 

  



1 Average Region Length 
2 Average Plain Region Length 
3 Average Concave Region Length 
4 Average Convex Region Length 
5 Average number of sharp angle in each region 
6 Average number of filtered sharp angle whole word  
7 Ratio of critical vertical code to the total critical chain code 
8 Ratio of critical horizontal code to the total critical chain code 
9 Ratio of critical diagonal to the total critical chain code 

10 An estimate of number of sharp angles in the whole 
11 An estimate of the component length (disjoint contours) or averaged 

component  length ( )Ci

12 Ratio of critical vertical code to the total critical chain code  
13 Ratio of critical horizontal code to the total critical chain code  
14 Ratio of critical diagonal to the total critical chain code  
15 Ratio of vertical directions in lower window 
16 Ratio of horizontal directions in lower window 
17 Ratio of diagonal directions in lower window 
18 Ratio of vertical directions in middle window 
19 Ratio of horizontal directions in middle window 
20 Ratio of diagonal directions in middle window 
21 Ratio of vertical directions in upper window 
22 Ratio of horizontal directions in upper window 
23 Ratio of diagonal directions in upper window 
24 Ratio of number of points in middle area to total number of points 
25 Zero crossing 
26 First moment feature 
27 Ratio of number of points in middle area to total number of points  
28 Ratio of number of black pixels in the upper zone to number of black pixels in 

all three zone of a word. 
29 Spread or first moment of the histograms 
30 Average number of groups in each word 
31 Ratios of distance between upper bounding box and upper zone to distance 

between lower and upper zone for the first three groups of the word 
32 Ratios of distance between upper bounding box and upper zone to distance 

between lower and upper zone for the second three groups of the word 
33 Ratios of distance between upper bounding box and upper zone to distance 

between lower and upper zone for the third three groups of the word 
34 Ratios of distance between lower bounding box and lower zone to distance 

between lower and upper zone for the first groups of the word 
35 Ratios of distance between lower bounding box and lower zone to distance 

between lower and upper zone for the second groups of the word 
36 Ratios of distance between lower bounding box and lower zone to distance 

between lower and upper zone for the third groups of the word 
 

Table 2. 36 extracted features 
 

 

 

 

 

  



4. Classification techniques 

4.1 Linear discriminant transformation (MDA)  

A Multiple Discriminant Analysis (MDA) is used to transform the feature space of 36 dimensions 

into an optimal discriminant space for a nearest mean classifier. A brief summary of the technique is 

given here for clarity, but for more detail see [39]. The aim of MDA is to maximise the ratio of 

between-class variance and within-class variance: 
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                                                                                                                                  (66)  

In this equation,  is the between-class scatter matrix,  is the within-class scatter matrix and bW wW φ  

is the transformation we are searching for in order to form the optimal discrminant space. We can 

define the following, with ( )ji
p

jiji fff ,,
1

, ,,K=  being the p  extracted features of word image i  in 

class and  being the number of word images in class :  thj jn thj
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Both the within-class scatters  and the between-class scatter  are analogous to their respective 

covariance matrices.  

wW bW

In looking for φ  we can define  
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Taking the determinant of a scatter matrix is equivalent to finding the product of the eigenvalues, 

which, in turn, corresponds to the product of the variance. As may be seen with reference to Eq. 

(66) by maximising this ratio, we are looking for a transform φ that maximizes the between-class 

variance with respect to the within-class variance. The solution of Eq. (66) can be shown to 

correspond to the generalised eigenvectors of the following equation [31,39]: 

jwjjb WW φλφ =                                                                                                                         (79) 

 where the vectors 
j

φ  then form the columns of the matrix φ.  

In addition, the individual dimensions of the discriminant space created by each eigenvector 
j

φ  are 

now ordered. The between-class variance in dimension j  is proportional to the eigenvalue jλ . 

Assuming a constant within-class variance, the higher the between-class variance of a dimension, the 

better the discriminant capacity of that dimension.  

  



One additional step that can be taken to scale all of the within-class variances to uniform size in the 

discriminant space. The variance in dimension j can be computed as 
jw

t
j
W φφ  and each dimension 

can be scaled by replacing 
j

φ  with 

jw
t
j

j
j W φφ

φ
φ =ˆ                                                                                                                                (80)                   

giving each new dimension uniform variance.  

The decision as to whether the particular word image is allocated to one class or another is then 

based on measuring the Euclidean distance between its transform scores (created by the MDA) and 

the centroids of all the classes in the discriminant space (nearest mean classifier). The nearest mean 

classifier is very simple and robust. Each pattern class is represented by a single prototype, which is 

the mean vector of all training samples in that class. Further, this classifier does not require any user 

specific parameters.  

4.2 Non-linear Classification PNN Method  

 A statistical classification method based on a Bayesian [14] decision can also be used to classify the 

style of an unseen word. The basic idea behind the Bayesian decision rule is to calculate the 

probability density functions of the features of the word images in each of the classes iω  ( = L 

(leible), I (illegible) and M (middle)). The probability that a particular set of features from word 

image 

i

( 361 ,, fff K= )  comes from class iω  is denoted as: 

)|( fp iω                                                                                                                                      (81) 
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and is number of classes. This equation requires knowledge of the class-conditional density. This 

is described in the next section. 

C

4.2.1 Parzen Method   

The accuracy of the Baysian decision in Eq. (82) depends on the accuracy with which the 

underlying class-conditional density is estimated. A Parzen model [28] is a class of smooth and 

continuous Probability Density Function (PDF) estimators, which become progressively more 

representative of the true class-conditional density as the number of samples increases. The Parzen 

model uses weight functions  which has a maximum value at ( )dW 0=d  and which decreases as 

the absolute value of  increases. A general formulation of the Parzen model is described by:   d
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where ( )i
p

ii fff ,,1 K=  and p are the sample points (extracted features)  and number of features in 

the training set, kσ  is the variance of  features (thk ),2,1 pk K= of points that surround each 

sample in the training set,  is the number of samples in class jn jω , W is the weight function and 

 is the  feature  which is extracted from  word image belonging to the i
kf thk thi jω  class.   

In general each Parzen method should have multiple iσ  values. However to simplify the model a 

special case can be assumed where pσσσσ ==== ...21  for all of the weights of function W . A 

more general density estimator, which assumes a Guassian kernel distribution, is used in this study, 

which is well behaved and easily computed. Thus Eq. (83) becomes: 

( ) ∑
=

−−

=
j

i
n

i

ff

p
i

e
n

fg
1

2 2

2
1 σ

πσ
                                                                                                       (84) 

As we don’t know in advance which features are important and which are not therefore the presence 

of features whose variation is meaningless has dilutive effect the useful features. We want the 

  



variation of unimportant features to be small so that they exert minimal influence on the distance 

measure computed between an unknown point (test word) and each member of the training case. 

The solution to this problem is to use a separate σ  weight for each feature. Eq. (84) then changes 
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In this experiment both approaches were tested in order to evaluate the effectiveness of each 

method. In characterising the function represented by Eq. (84) the estimation of iσ  is critical [28]. 

A good criterion for selecting appropriate values of iσ  is the number of correctly classified cases 

that each value produces. 

4.2.2 Optimising the σ  

For each particular σ a set of Parzen density estimators based on the training data set is estimated. 

The number of correctly classified words produced by each value is then used to judge the efficiency 

of a particular value of σ . To estimate an unbiased correct classification rate for each σ , a leave–

one-out method was used. In this method, all of the training data set belonging to each class except 

one is used to train the system and the remaining datum is used for testing. This training and testing 

using the leave-one-out method was repeated until every datum element in the two or three different 

classes had been independently tested. The leave-one-out method thus gives class bounds of the true 

performance of the classifier [13]. 

The numbers of misclassified words for each σ are then counted as an error function. A final 

value of σ is then chosen that minimises the error function (number of misclassifications). The 

minimisation technique involves two stages. First a global search over a reasonable range is used 

to find a rough minimum. The range can be determined iteratively such that the error rate is 

  



minimised. Then a golden section method [31] is used to refine the estimate. Details were 

extensively reported by [32,36] and therefore are not reported here.  

4.3 Probabilistic Neural Network 

 The non-parametric classifier described in the previous section can be implemented as a 

Probabilistic Neural Network structure. Fig. 13 shows a neural network organization for 

classification of input pattern ( )pfff ,,1 L=  ( p indicates the number of features) into three 

classes. The input unit is simultaneously distributed to all neurons in the pattern layer. 

The network is trained by setting the  weight vector in one of the pattern units equal to each pW

( )pfff ,,1 L=  pattern in the training set. The dot product of the input pattern vector f  with a 

weight vector  is calculated, which performs a non-linear operation on pW pp WfY .=  [35].   The 

summation units simply sum the inputs from the pattern units that correspond to the class from 

which the training pattern was selected and then apply a Bayes decision rule is used to calculate the 

probability density functions for each class.    

Compared to traditional multi-layer perceptron (MLP) networks, our kernel-based method has a 

simple architecture consisting of two layers of weights, in which the first layer contains the 

parameters of the kernel functions and the second layer forms linear combinations of the 

activations of the kernel functions to generate the outputs. A MLP network often has many layers 

of weights and a complex pattern of connectivity.  All the parameters in a MLP network are 

usually determined at the same time as part of a single global training strategy involving 

supervised training. Our kernel-based method, however, is typically trained in two stages, with 

the kernel functions being determined first using unsupervised techniques on the input data alone 

and then the second layer weights subsequently being found by fast linear supervised methods.  

4.4 Comparison of Appropriate Classification Methods 

Most of the standard statistical classification algorithms assume some knowledge of the 

distribution of the random variables used to classify.  Specifically, a multivariate normal 

  



distribution is frequently assumed, and the training set is used only to estimate the mean vectors 

and covariance matrix of the populations.  This means that large deviations from normalities 

usually cause a classifier to fail.  Multimodal distributions cause even the most nonparametric 

methods to fail.  An advantage of neural networks is that they can typically handle even the most 

complex distributions.  Multiple layer feed forward networks (MLFNs) have been shown to be 

robust classifiers. On the other hand, there are two main problems with MLFN:  1. there is little 

knowledge about how they operate and 2. what behaviour is theoretically expected of them.  

Another major problem with MLFN is that their training speed can be very slow.  The PNN, 

however, usually trains orders of magnitude faster than MLFNs, and classifies as well as or 

better than they do.  Its main drawback is that it is slow to classify.  However, most important of 

all for many applications is that the PNN method can provide mathematically sound confidence 

levels for its decisions.  This fact alone has made the PNN a favourite for our investigations. 

Another major advantage of using a PNN is the way it handles outliers; points that are very 

different from the majority.  In fact, outliers will have no real impact on decisions regarding the 

more frequent cases, yet they will be properly handled if the data is valid.  Existence of outliers is 

an important issue for other neural network models or traditional statistical techniques since they 

can totally devastate the outcome. 

As mentioned earlier, it should be emphasised that the outputs of our classifier also have a 

precise interpretation as the posterior probabilities of class membership. The ability to interpret 

outputs in this way is of central importance in the effective application of classifiers, as it may be 

used for rejecting a test pattern in case of doubt. Thus it would have some performance gains 

over other methods like k-nearest neighbour or support vector machine. Finally, the PNN 

technique is strongly based on Bayes’s method of classification. This means that provided the 

true probability density function is known, there is a Bayes optimal decision rule that will 

minimise the expected cost of misclassification. 

 

  



5. Experimental result and analysis 

Previous work [19] had indicated the need for a careful choice of sample words to allow a good 

representation of a much larger vocabulary without becoming hopelessly unwieldy. Kassel [18] 

has discussed the design aspects of such data sets and sample words used in this research were 

chosen based on that work in a free space (no guidelines) and no baseline correction techniques 

have been applied.  

The style classification technique was applied on our existing data set, which consist of scanned 

images obtained from eighteen writers each containing 150 words at 200 100-dpi resolution. 

Initially the system is trained on the LegTRn (legible training words), ILegTRn (illegible training 

words) and MiddleTRn (middle training words) sets containing all 2456 words in training set. 

The classification system was then tested with: 1) the same data set: LegTRn, ILegTRn and 

MiddleTRn and; 2) a different data set, LegTEn (legible test words), ILegTEn (illegible test 

words) and MiddleTEn (middle test words). This latter set containing 518 words, Note that the n 

in name of the datasets (LegTRn, ILegTRn, MiddleTRn, LegTEn, ILegTEn and MiddleTEn) 

shows the number of features and TR and TE indicate the training and test sets respectively. Also 

note that the x, y and z-axes in Figs. 3 to 5 indicate the number of segmented sigma’s range, 

sigma’s range and the estimated error in each region respectively. Sigma’s range and error 

function are shown in on the tables under each figure.   

×

5.1 PNN classifier using a common σ  for Binary Classification  

Tables 3 to 5 show the two class (binary) classification results obtained when using a non-linear 

classification (PNN) techniques based on the selected values of common σ . The first column in 

these tables shows the samples that were used as the training data set whist the second column 

shows the samples that were used as a test set. The third column shows the correct classification 

results obtained when using a non-linear classification (PNN) technique with common σ  using 

all of the 36 features. The fourth column shows the average of correct classification results when 

  



the system was tested with seen or unseen data and the average classification result for all with 

common σ is given in the last row. Figs. 14 to 16 indicate the estimated error based on sigma’s 

range then the best value of σ  is chosen.  

 
Training set Test set % Correct Classification 

result (common σ ) 
%Correct 
Average 

LEGTR36, ILLEGTR36 LEGTR36 99.00% 
LEGTR36, ILLEGTR36 ILLEGTR36 100.00% 

99.50% 

LEGTR36, ILLEGTR36 LEGTE36 69.00% 
LEGTR36, ILLEGTR36 ILLEGTE36 90.00% 

79.50% 

Overall 89.50% 

 
Table 3: Classification results using 36 extracted features to discriminant between legible and illegible handwriting 

using common σ (σ =5.47436) 
 

Training set Test set % Correct Classification 
result (common σ ) 

%Correct 
Average 

LEGTR36, MiddleTR36 LEGTR36 100.00% 
LEGTR36, MiddleTR36 MiddleTR36 99.00% 

99.50% 

LEGTR36, MiddleTR36 LEGTE36 81.00% 
LEGTR36, MiddleTR36 MiddleTE36 50.00% 

65.50% 

Overall 82.50% 

 
Table 4: Classification results using 36 extracted features to discriminant between legible and middle handwriting 

using commonσ (σ =7.11064). 
 

Training set Test set % Correct Classification 
result (common σ ) 

%Correct 
Average 

MiddleTR36, ILLEGTR36 MiddleTR36 99.00% 
MiddleTR36, ILLEGTR36 ILLEGTR36 100.00% 

99.50% 

MiddleTR36, ILLEGTR36 MiddleTE36 52.00% 
MiddleTR36, ILLEGTR36 ILLEGTE36 100.00% 

76.00% 

Overall 87.75% 

 
Table 5: Classification result using 36 extracted features to discriminant between middle and illegible handwriting 

using common σ (σ =0.01386). 
 

Tables 3 to 5  show that the average classification result is 89.50% , 82.50% and 87.75% when 

classifying between legible/illegible, legible/Middle and illegible/Middle word images 

respectively using 36 extracted features with common σ . The system can also achiev 99.50%, 

99.50% and 99.50% correct classification when the test set is the same as the training set and 

79.50%, 65.50% and 76.00% correct classification when the test set is different to the training 

set. 

  



5.2  PNN classifier using different iσ  for Binary Classification  

Tables 6 to 8 show the classification results obtained when using a non-linear classification 

(PNN) technique with the different values of iσ ( )36,,2,1 L=i . The first column in these tables 

shows the samples that were used as the training data set whilst the second column shows the 

correct classification results obtained when using a non-linear classification (PNN) technique 

with different iσ  using   all 36 features. 

Training set Test set % Correct Classification 

(different ) iσ
% Correct 

Average 

LEGTR36, ILLEGTR36 LEGTR36 99.00% 
LEGTR36, ILLEGTR36 ILLEGTR36 100.00% 

99.50% 

LEGTR36, ILLEGTR36 LEGTE36 90.00% 
LEGTR36, ILLEGTR36 ILLEGTE36 83% 

86.50% 

Overall 93.00% 

 
Table 6: Classification result using 36 extracted features to discriminant between illegible and legible handwriting 

using different iσ . 

 
Training set Test set % Correct Classification  

(different )  iσ
% Correct 

Average 

LEGTR36, MiddleTR36 LEGTR36 100.00% 
LEGTR36, MiddleTR36 MiddleTR36 99.00% 

99.50% 

LEGTR36, MiddleTR36 LEGTE36 81.00% 
LEGTR36, MiddleTR36 MiddleTE36 50.00% 

65.50% 

Overall 82.50% 

 
Table 7: Classification result using 36 extracted features to discriminant between  middle and legible handwriting 

using different iσ . 

 
Training set Test set % Correct Classification  

(different )  iσ
% Correct 

Average 

MiddleTR36, ILLEGTR36 MiddleTR36 99.00% 
MiddleTR36, ILLEGTR36 ILLEGTR36 100.00% 

99.50% 

MiddleTR36, ILLEGTR36 MiddleTE36 98.00% 
MiddleTR36, ILLEGTR36 ILLEGTE36 83.00% 

90.50% 

Overall 95.00% 

 
Table 8: Classification results using 36 extracted features to discriminant between  middle and illegible handwriting 

using different iσ . 
Tables 6 to 8 show that the overall classification results are 93.00%, 82.50% and 95.00% correct 

classification when classifying legible/middle, illegible/middle and legible/illegible handwriting 

  



word images respectively. These can be broken down into 99.50%, 99.50% and 99.50% correct 

classification when the test set is the same as the training set and 86.00%, 65.50% and 90.50% 

correct classification when the test set is different to the training set.  

5.3 Multiple Linear Classification (MDA) for binary classification 

Tables 9 to 11 show the experimental results obtained using all 36 extracted features to classify 

between legible/illegible, legible/middle and illegible/middle word images when using the multi-

linear discriminant analysis technique. The first column shows the samples that were used as the 

training data set whilst the second column shows the samples that were used as a test set. The 

third column shows the correct classification result. The fourth column shows average of correct 

classification result when the system was tested with seen or unseen data. The last row then 

shows the average classification results for all data. The training samples and test samples are the 

same as those used in the non-linear classification experiment.  

 
Training set Test set % Correct Classification  

MDA 
% Correct 

Average 
LEGTR36, ILLEGTR36 LEGTR36 78.00% 
LEGTR36, ILLEGTR36 ILLEGTR36 63.00% 

70.50% 

LEGTR36, ILLEGTR36 LEGTE36 67.00% 
LEGTR36, ILLEGTR36 ILLEGTE36 54.00% 

60.50% 

Overall 65.50% 

 
Table 9: Classification result using 36 features to discriminate between legible and illegible. 

 

Training set Test set % Correct Classification  
MDA 

% Correct 
Average 

LEGTR36, MiddleTR36 LEGTR36 70.00% 
LEGTR36, MiddleTR36 MiddleTR36 58.00% 

64.00% 

LEGTR36, MiddleTR36 LEGTE36 57.00% 
LEGTR36, MiddleTR36 MiddleTE36 70.00% 

63.50% 

Overall 63.75% 

 
Table 10: Classification result using 36 features to discriminate between legible and middle. 

 
 
 
 

 
 

  



Training set Test set % Correct Classification  
MDA 

% Correct 
Average 

MiddleTR36,ILLEGTR36 MiddleTR36 66.00% 
MiddleTR36,ILLEGTR36 ILLEGTR36 63.00% 

64.50% 

MiddleTR36,ILLEGTR36 MiddleTR36 56.00% 
MiddleTR36,ILLEGTR36 ILLEGTR36 59.00% 

57.50% 

Overall 61.00% 

 
Table 11: Classification result using 36 features to discriminate between middle and illegible. 

 
The overall binary classification using 36 features in the MDA technique is 65.50%, 63.75%, and 

61.00% for classification between legible/illegible, legible/middle and illegible/middle words. 

This can be broken down into 70.50%, 64.00% and 64.50% correct classification when the test 

set is the same as training set and 60.5%, 63.50% and 57.50% correct classification when 

training set is different to the test set.   

5.4 Comparison Between Using the Linear and Non-linear Method for Binary 

Classification 

Tables 12 and 13 summarise the experimental result obtained when using all 36 extracted 

features using the PNN technique with common σ , different iσ  and MDA technique.   

 
 

Training se is 
the same as 

test set 

 Legible/Illegible 
         Dif iσ                
Comσ        MDA 

 Illegible/Middle 
  Dif iσ  

Comσ        MDA

 Middle/Legible 
 Dif iσ  

Comσ        MDA 
 

Overall 
Dif iσ  

Comσ        MDA  

 
 

36 extracted 
features 

 

 
99.50% 

   
99.50%        70.50% 
 

 
99.50% 

 
 99.50%        64.50%

 
99.50% 

 
99.50%          64.00%

 
99.5% 

 
99.50%           66.33%   

 
Table 12: Comparison between the classification results when (i) PNN using different iσ , (ii) PNN using common 

σ and (iii) MDA techniques when the training set is the same as the test. 
 

 
 
 
 
 
 
 
 
 
 
 
 

  



 
Training se is 
different with 

the test set 

 Legible/Illegible 
         Dif iσ                
Comσ        MDA 

 Illegible/Middle 
  Dif iσ  

Comσ        MDA

 Middle/Legible 
 Dif iσ  

Comσ        MDA 
 

Overall 
Dif iσ  

Comσ        MDA  

 
 

36 extracted 
features 

 

 
86.50% 

  
79.50%     60.50% 
 

 
90.5% 

 
76.00%          57.50%

 
65.50% 

  
65.50%        63.50%

 
80.83% 

 
73.67%      60.50%   

 
Table 13:  Comparison between the classification results when (i) PNN using different iσ , (ii) PNN using common 

σ and (iii) MDA techniques when the training set is different with the test set 
 
The experimental results given in tables 12 and 13 show that the PNN technique achieved an 

improvement of 26.00%, 2.00% and 33% using different iσ  and an improvement of 19.00%, 

2.00% and 18.50% using common σ  when compared to the MDA technique for classification 

between legible/illegible, legible/middle and illegible/middle words respectively where the test 

set is different to the training set. In the case where training set is the same as the test set the 

PNN technique achieved an improvement of 29.00%, 35.50% and 35.00% using different iσ  and 

an improvement of 29.00%, 35.50% and 35.00% using common σ  compared to the MDA 

technique for classification between legible/illegible, legible/middle and illegible/middle words 

respectively. 

The results given in table 12 show that when the training set is the same as the test set there is no 

difference in classification rate between using different iσ  values and common σ  value. 

However, table 13 shows that whilst using different iσ  rather than common σ  has no effect on 

the classification between legible/middle, it does give an improvement of 7.00% and 14.50% for 

classification between legible/illegible, illegible/middle when the test set is different to the 

training set.  

5.5 Triple Classification using common σ  

Table 14 gives the results for the 3 class data sets. The first column shows the samples that were 

used as the training data set whist the second column shows the samples that were used as the 

test set. The third column shows the correct classification results obtained when using the non-

  



linear classification technique with common σ using all 36 features. The fourth, fifth, sixth and 

seventh columns show the misclassification results in each category and the average 

classification results for seen and unseen data. The last row shows the overall classification 

results for all with common σ . For the three-class style classification the best common σ  value 

is 0.001. The details are shown in fig. 17.  

 
                                                                __   %Misclassification words    __      

Training files Test 
files 

%Correct 
non-linear 

(PNN) 

 As 
legible 

As illegible As Middle %Correct  
Average 

 
LEGTR36, 

ILLEGTR36,
MiddleTR36 

LEGT
R36 

100.00% - 0 0 

LEGTR36, 
ILLEGTR36,
MiddleTR36 

ILLEG
TR36 

100.00% 0 - - 

LEGTR36, 
ILLEGTR20,
MiddleTR36 

Middle
TR36 

99.00% 1.00% 0 - 

 
 
 
 

99.67% 

LEGTR36, 
ILLEGTR36,
MiddleTR36 

LEGT
E36 

72.00% - 10.00% 18.00% 

LEGTR36, 
ILLEGTR36,
MiddleTR36 

ILLEG
TE36 

83.00% 17.00% - 0 

LEGTR36, 
ILLEGTR36,
MiddleTR36 

Middle
TE36 

47.00% 51.00% 2.00% - 

 
 
 
 

67.33% 

Overall 83.50% 

 
Table 14: Classification results using 36 features to discriminate between legible, illegible and middle handwriting 

word images using common σ (σ =0.001). 

 
The experimental results given in table 14 show that a classifier based on the PNN using a 

common σ  value of 0.001 can achieve an overall correct style classification of 67.33% when the 

test set is different to the training set. The system can also be seen to achieve a 99.67% correct 

classification when the test set is the same as the training set. This gives an overall correct 

classification of 83.50% for the three classes. 

 

 

  



5.6 Triple Classification using different iσ  

The best values of different iσ  obtained for each legible, illegible and middle classification with 

an error rate of 0.21840 calculates as 0,000889, 0.000931 and 0.001260 in legible, illegible and 

middle class respectively. Experimental results using these different iσ  are given in following 

table. 

                                                               __    %Misclassification words     __ 
   

 
Training files 

 
Test 
files 

%Correct 
non-linear 

(PNN) 

  
AS legible 

 
 As illegible 

 
As Middle 

 
%Correct 
Average 

 
LEGTR36, 

ILLEGTR36,
MiddleTR36 

LEGT
R36 

100.00% - 0 0 

LEGTR36, 
ILLEGTR36,
MiddleTR36 

ILLEG
TR36 

99.00% 2.00% - 0 

LEGTR36, 
ILLEGTR20,
MiddleTR36 

Middle
TR36 

99.00% 0.60% 0.40% - 

 
 
 
 

 99.33% 

LEGTR36, 
ILLEGTR36,
MiddleTR36 

LEGT
E36 

72.00% - 10.00% 18.00% 

LEGTR36, 
ILLEGTR36,
MiddleTR36 

ILLEG
TE36 

83.00% 17.00% - 0 

LEGTR36, 
ILLEGTR36,
MiddleTR36 

Middle
TE36 

47.00% 51.00% 2.00% - 

 
 
 
 

67.33%  

Overall  83.33% 

 
Table 15: Classification result using 36 extracted features to discriminate between legible, illegible and middle 

handwriting word images using different iσ . 

 
Table 15 shows that the PNN classifier using different iσ  values achieves 67.33% correct 

classification when the test set is different to the training set and 99.33% correct classification 

when the test set is the same as the training set. This gives an overall 83.33% correct    

classification. 

6. Conclusion and future work 

This paper has introduced a novel handwriting legibility classification system that can be used to 

predict the recognition performance of a recogniser for a given handwriting style in order to 

  



choose the best recogniser. Thirty-six features are extracted and two methods for style 

classification of the word images are described (MDA and PNN) and a comparison between 

these two methods are presented. 

Experimental results show that some of the features have a more significant influence on 

classification results than the others. However experiments also show all the features used in this 

research play some role and are deemed necessary for successful classification. Indeed a 

significant reduction of feature vectors leads to a much less effective classification [11] . 

As the size and quality of writing is important in these experiments, some of the features are not 

extracted correctly resulting in misscalssification. It is therefore suggested that further 

examination of the selected fetures should be considered. One possible candidate is fractals. 

Fractal features may provide useful information for discriminate between legible/illegible/middle 

handwriting word images. These features have been useful for classifying the regularity in 

handwriting as well as size of writing [2].  

Experimental results using MDA and PNN techniques (using different iσ  and common σ ) show 

that in the case of legible/illegible and illegible/middle the PNN technique using different iσ  

gives the superior result as compared to using the PNN with common σ  and the MDA 

technique. However, in the case of middle/legible classification the PNN techniques using 

common σ  and different iσ  values give the same classification result. Therefore the PNN 

technique using different iσ  is the best classifier. As the PNN in classification between two 

classes gives superior results in comparison to the MDA, for the time being we use PNN for 

triple classification and no experiments were carried out for the triple classification with the 

MDA technique. Experimental results show that those words, which were correctly classified 

using the MDA technique, were equally correctly classified by using PNN. However, those 

words, which were misclassified or closely classified by PNN, were correctly classified using 

MDA.  

  



The Parzen model, used for density estimation in the PNN system, has the same number of 

kernels as the number of data points. This leads to models that can be slow to evaluate for new 

input vectors especially when the number of training data points is very large. One way to tackle 

this problem is to use a clustering technique such as fuzzy clustering to reduce the number of 

data points prior to PNN. The centre of each cluster can be used as a centre for each kernel thus 

greatly increasing the classification speed. 

Faced with significant style variation of handwriting it is more likely that style-specific 

classifiers yield higher classification accuracy than the generalised classifiers. Therefore, the next 

stage of our work would be to use the pre-classifier to route a given data sample to a recogniser 

which is deemed more suitable to the style of the sample. The work so far has concentrated on a 

small subset of style classification. The result of our initial experiments in applying the described 

techniques to determine a writer style has been encouraging.   

Further investigation to determine how effectively we can identify a writer will be needed. It is a 

fact that intra-writer style variation is also a problem [19], which leads to significant user 

frustration affecting success of today’s on-line applications such as PDAs. It would be interesting 

to see whether there is any scope in treating intra-writer style variation in a similar way. 

These classification methods can also be applied for identifying the symbol types such as digit, 

punctuation and lower, upper letters for further work [16]. For example separation of digits and 

uppercase, lowercase characters or words is an important task in document layout.  

This method could be very useful in the field of writer and signature identification. Using the 

methods presented here it may be possible to determine the characteristics of each writer using 

the most efficient features in each writer’s handwriting. 
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 Fig 1: All correct words regardless of rank using HVBC recogniser. 
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Fig 2: Eight primitive directions. 
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Fig 4: A typical word. 

  
 



 
 
 
 
 
 
 
 

Fig 5: Concave regions. 
 



 
 
 
 
 

 
Fig 6: Convex regions. 

 



 
 
 
 
 
 
 

Fig 7:  Plain regions. 
 



 

  

 

 

 

 

 

 

 

 

 
Fig 8: The detected dominant points on words. 

 



 

   

  
 

 
Fig 9: Three regions of interest within a window for some different word case samples. 

 



 

  

 

  
 

 

 
 

 
Fig 10: three region of interest within a window for some different style of handwriting (one specific 

word). 
 



 
 

 

 

 

 
Fig 11: Representation of the four directions (slopes). 
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Fig 12: Horizontal lines are drawn from the centre of each word. 
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Fig 13. Organization of a probabilistic neural network for classification of patterns into categories. 
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Fig 16: Error estimation of common σ  for a classification between middle and legible handwriting using 

36 extracted features (σ =7.11064). 
 

 



 

Fig 17: Error estimation of common 
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