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But leave the Wise 1o wrangle, and with me
The Quarrel of the Universe let be:
And, in some corner of the Hubbub coucht,

Make Game of thar which makes ay much of Thee.



Abstract

This thesis describes theoretical and experimental work concerning radiation forces on
atoms, with particular reference to rubidium atoms confined in a magneto-optical trap.

After a short history of the hield of laser cooling, a review of the semiclassical theory
of mechanical interactions between two-level atoms and electromagnetic radiation is
given. Different formuiations of the semiclassical theory are discussed, including a new
tormulation in terms of momentum transfer amongst the plane wave modes of the
clectromagnetic tield. Two important applications of light forces on atoms, namely 'optical
molasses” and the 'magneto-optical trap’, are then described with emphasis on experimental
paramecters.

Three sub-Doppler cooling mechanisms. 'sisvphus cooling’. 'motion-induced
orientation cooling” and the ‘magnetically-assisted sisyphus cftect’, are described and their
role in optical molasses and the magneto-optical trap s discussed. A new study of the
polarisation gradients which occur in 3-D monochromatic light fields is presented and
quantifies their relative presence in different light field configurations. Polarisation
eradient parameters are developed and shown to be directly related to the relativistic spin
tensor of the light field. Implications of this polarisation gradient study for laser cooling
work are discussed.

The design. construction from scratch, operation and testing of a magneto-optical
trap for rubidium are described. including novel designs for two vacuum cells. Preliminary
cxperiments to characterise the trap are described and results arc presented: they primarily
concern the number and distribution of atoms in the trap.

Finally. the theory of time domain spectroscopy is reviewed. The construction and
testing of a pulsed dyve laser for study of coherent trunsients in samples of laser-cooled
atoms and a proposed experiment to measure the temperature of cold atoms using coherent
transients are described. Factors expected to influence the shape of coherent transients in

cold atoms are discussed.
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Chapter 1
Introduction

This thesis describes both theoretical and experimental work related to the cooling and
trapping of rubidium atoms by resonant laser light. Laser cooling and laser trapping are two
distinct but related manitestations of the mechanical interaction between atoms and light, i.e.
the exertion of 'light forces’ upon atoms, Laser cooling refers to the deceleration of neutral
atoms (or 1ons) in a gas by a velocity-dependent light force and laser trapping refers to the
confinement of gascous atoms within a small region by a spatially-dependent light force.
Studies of the mechanical interaction of light and matter are traditionally classified within the
tield of atomic spectroscopy. a field which was given dramatic new impetus by the invention
of the laser in 1960. Lasers opened the door to a large range of new experiments exploiting
the high spectral brightness and monochromaticity of therr radration. This was certainly true
as regards studies of light forces on atoms. an area of spectroscopy which developed
steadily from 1970 onwards. Significant developments came during the period 1985 to
1986, which saw the construction ot the first 'optical molasses'[1], a fully three-dimensional
arrangement for cooling sodium atoms to sub-millikelvin temperatures. and the first
observation of optically trapped atoms]2] in a dipole trap, which confined ~500 sodium
atoms in a volume ~10° um. These two breakthroughs might reasonably be said to mark
the start of the modern age of 'laser cooling and trapping’. Since then, the field of laser
cooling and trapping has continued to grow. as demonstrated by the steady increase in the
number of research groups entering this area, and great progress has been made in the
understanding and control of the motion of the cold atoms. The field is important for the
following two reasons. Firstly, the new, high level of control of atomic motion is opening

up many new areas of potential applications and secondly. the ficld of atomic physics



continues to provide some of the most precise tests of basic theories of physics, e.g.
quantum electrodynamics and quantum mechanics.

The remainder of this introduction is in three sections. The first section is a brief history
of studies ot the mechanical interaction of atoms and light. The second section aims to give a
non-specialist overview of the field as it has developed since 1985 with particular emphasis
on existing or potential applications of cold atoms. The third section outlines the structure of

this thesis and identifies those components which constitute ‘original’ research.

1.1 A short history of the physics of mechanical interactions
between atoms and light

1.1.1 Mechanical interactions of atoms and light before 1985

Detailed reviews of studies of the mechanical interaction of atoms and light up to around
1985 may be found in [3-5]. This subscction is confined to describing the key
developments. The idea that light might excert pressure on bodies existed as far back as
Kepler's time. He postulated[6] that a comet's tail pointed away from the sun as a result of
bombardment by a light flux emanating from the sun. This idea was only partially correct.
nevertheless stellar radiation pressure 1s known teday to be an important mechanism in the
particle dynamics of the interstellar medium|[7]. The quantitative study of mechanical
interactions between atoms and light probably began when Maxwell postulated a radiation
pressure| 8] on any body in the path of a light wave. We now know that what Maxwell had
derived was not the radiation pressure. but the momentum flux density due to the light wave.
The actual light pressure then depends on the proportions of the radiations’ momentum
absorbed and reflected by the body[9]. The numerical value of the light pressure duc to
sunticht on the Earth's surfuce is about 103 Nm~, The very small values of light pressure
due to either the sun or laboratory thermal sources made it difficult to study. The first
experimental proof of the existence of radiation pressure was obtained by Lebedev([10] in
1901 and Nichols and Hull[ 1 1} in 1903: both observed the deflection by a light beam of
metal vanes suspended in a vacuum. In [910 Lebedev[12] also proved experimentally that
gases were subject to radiation pressure,

The next important contribution] 13] to the ficld was made by Einstein in 1917 in a paper
devoted to the theory of guantum radiation. Firstly, he showed that radiation was absorbed
and emitted by atoms not as spherical waves, but in discrete bundles (later called photons)
which carried {directional) momenium of magnitude equal to fiv/c. Secondly he established
that the Maxwellian velocity distribution of atomns in thermodynamic equilibrium with black-
hody radiation was due to atomic momentum fluctuations caused by discrete radiation
emission and absorption processes. The quantised nature of the momentum of light was

confirmed in the celebrated experiments of A.H.Compton[31] between 1919 and 1923.
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In the period 1900 to 1970, further laboratory studies of radiation pressure were few
owing to the absence of suitable light sources. In 1933, O.Frisch[14] observed a 0.01 mum
detlection of a sodium atomic beam by resonant light from a sodum lamp. In 1936 R.A
Beth[15], using a sensitive torsion pendulum, was able to observe the angular momentum of
light. Nevertheless, during this 1900 to 1970 period, radiation pressure had been recognised
by astrophysicists to play a vital part in the evolution and structure of stars.

Following its invention in 1960, the laser began to make an impact in research
laboratories. The tirst studies of radiation pressure due to laser light were performed by
Ashkin et al[ 16] in experiments on laser light control of the motion of small macroscopic
particles. The force on such a particle depends on the particle's properties of absorption,
reflection and refractive index. and on the laser field configuration. In their first experiments,
small spheres (~1 gm) made of transparent plastic and suspended in water were pushed and
manipulated by 10 mW of argon-ion laser light. In [ 16]. Ashkin also describes how his
group were able to {evitate small glass spheres (20 gm) in air by using an upwards
propagating laser beam (250 mW). As discussed tater in chapter 2, the total light force can
be conveniently divided into a ‘scattering force’, which for a single beam acts along the
propagation direction of the laser beam. and a 'dipole force'. which acts along the gradient
of the intensity of the light field. In this levitating’ experiment, the laser beam was in its
TEM(yy mode with 4 gaussian intensity profile, so the dipole force acted radially towards the
central beam axis. whilst the scattering force acted upwards along the beam and
counterbalanced gravity.

Around the time of such experiments, interest naturally tumed to investigations of faser
light forces on individual atoms as opposed to macroscopic particles. If laser light resonant
with an atomic transition could be made sufticiently intense, it would saturate the transition,
i.c. produce an absorption rate close to the spontaneous emission rate. Strong light forces
were predicted to oceur for such high-intensity, resonant laser light, and theory appropriate
to this new regime developed from the 1960's onwards. For a while. experiment lagged
behind theory owing o the fack of laser sources of sufficient power and tunability.
However, rapid strides were being made in the development of tunable dye lasers and during
the 1970's experimental results began to flow. For instance, in 1972, Frisch's 1933 atomic
beam detlection experiment was repeated twice using both spectral line lamps[17] and a dye
laser] 18,191, As expected. the aser experiments showed beam deflections at least ten times
ereater than those obtained by the spectral line lamps,

In 1974 and 1975 respectively, Héinsch and Schawlow{21] and Wineland and
Dehmelt[20] proposed a new idea, now known as 'Doppler cooling', to use resonant laser
light to cool ions[20] and atoms[21] to very low temperatures in the range 10-% to 10-3K.

The mechanism of Doppler cooling is described in detail in chapters two and three. The



possibility of such low temperatures encouraged research into the use of cold atoms in high-
resolution spectroscopy and frequency standards wotk where precision was usually limited
by the unavoidable Doppler line broadening and transit times. The first successful
demonstrations[22] of laser cooling were in 1978 on Ba* and Mg* ions in (respectively)
Paul and Penning ion traps. In the early 1980's, other significant experiments using Doppler
cooling involved the longitudinal slowing of atomic beams[23] to a 1-D temperature of 70
mK and the transverse cooling of an atomic beam[24] 1o a 2-D temperature of 3.5 mK. Also
around this time, another theoretically predicted effect of light forces, the diffraction of an
atomic beam by a standing wave of light, was observed|25-27].

1.1.2 Laser cooling and trapping from 1985 onwards

In 1985, the construction of the first ‘'optical molasses'[1], in which sodium atoms were
cooled to sub-muilikelvin temperatures. began the 'modern age’ of laser cooling. 1986 saw
the first observation of optically trapped atoms in a dipole trap formed at the focal point of an
intense red-detuned laser beamn[2]. This was the analogue for neutral atoms of the earlier
experiments of Ashkin on small plastic and glass spheres. In 1988 came the important
mvention of the magneto-optical trap[28]. in which the addition of a quadrupole magnetic
field to the apparatus of optical molasses brings about a spatially dependent light force on the
atoms. Optical molasses and the magneto-optical trap (MOT) are currently the most
commonly used arrangements for laser cooling; they are discussed in detail in subsequent
chapters. When first constructed. both molasses and the MOT were loaded with atoms from
an atomic beam. In 1990 however. it was found that an MOT could be loaded directly from a
room temperature vapour in a small vacuum cell[29]. thus avoiding the elaborate vacuum
chambers required for atomic beams.

Magneto-optical traps are to be distinguished from the entirely different ‘magnetic
traps’. e.g.129.30.32.33}. which arc also used to trap neutral atoms. Magnetic traps rely on
the attraction of the maginetic dipole moment towards potential energy minima in a suitably
configured magnetic field. They do not involve light forces and typically require much larger
magnetic felds than the magneto-optical trap. A magnetic trap| 30] was first achieved in
1985, and they have recently become important with regard to ‘evaporative cooling'[32.33]
and the observation of Bose-Einstein condensation[34].

As progress was made with techniques for trapping and cooling neutral atoms, paratlel
developments were taking place in the cooling of atomic ions: see review|5]. The Paul and
Penning traps are both designs of ion trap where the trapping is achieved by exploiting the
force on the fonic charge in an AC electromagnctic field. The thermal velocities of trapped
1ions may be damped by laser cooling techniques similar to those employed for neutral
atoms, and again the low temperatures attainable allow an increase in spectroscopic

precision. Other interesting ion experiments are those in which a single ion is trapped and



cooled[35]. allowing the detailed study of fundamental aspects of the interaction of light and
atoms such as quantum jumps and photon anti-bunching.

Up until 1988, laser cooling and trapping had been understood in terms of so-called
‘Doppler cooling’ theory (chapter 3} which is based on an idealised atom with only two non-
generate energy levels. However, experiments around that time measured temperatures an
order of magnitude lower than the predicted 'Doppler cooling limit'[36,37,38]. This
discrepancy led to the development in 1989 of 'sub-Doppler cooling' theories (chapter 4),
which also take into account the Zeeman degeneracy of the energy levels{39.40]. Initially
just three different sub-Doppler mechanisms were proposed. From 1989 up to the present
day, the field has been evolving rapidly with discoveries and developments occurring on
both theoretical and experimental fronts. For instance, on the theory side, several more
cooling mechanisms, such as velocity selective coherent population trapping[41.42], Raman
cooling[43.44,59], and magnetically assisted sisyphus cooling[40} have been discovered.
On the experimental side. many new techniques such as ‘'moving molasses'[45,46].
‘evaporative cooling't33.47.48] and 'dark-state’ trapping[49-51] have been developed.
Reviews of recent developments may be found in [52-56].

After the Doppler cooling limit had been breached tn 1989, a lower theoretical
temperature limit known as the ‘photon recoil’ limit became the next target for experiments.
The photon recoil limit exists because most cooling mechanisms rely on the continual
exchange of guanta of energy between the atoms and the fight field. which implies that even
the slowest atoms will have a residual momentum of around %4, the momentum of one
photon. As & numerical example. the photon recoil temperature of rubidium. cooled on the
780 nm transition, is ~ 180 nK. One-dimensional temperatures below the recoil limit were
achicved[42] in 1988 and two dimensional temperatures[58] corresponding to a sixteenth of
the recoil limit in 1994, using the technique of velocity-selective coherent population
trapping. To the hest of my knowledge at the time of writing, 3-D cooling below the recoil
Jimit has not yet been achieved in an optical trap using light forces, although Raman cooling
has reached a 3-D temperature of just twice the recoil limit[43]. However 3-D cooling below
the photon recoil limit was recently achieved in a magnetic trap|34], when temperatures as
low as 20 nK were reported for a Bose-Einstein condensate of a gas of rubidium atoms (see

section 4.7.11).

1.2 Practical applications of laser cooling and trapping

In what follows, I have somewhat arbitrarily divided the existing and potential applications
of laser cooling and trapping into two subdivisions: firstly, technological applications and
applications pertaining to other related areas of physics. and secondly, laser cooling and

trapping as an application in its own right.



1.2.1 Laser cooling: technological applications and applications in related
areas of physics

Considerable rescarch is taking place into the development of higher precision caesium
clocks for time standards using cold atoms[60.61]. A caesium clock measures the frequency
of a hyperfine ground state transition when a caesium atomic beam passes through a
microwave interaction region. The precision of the best conventional caesium clock is limited
by the short interaction time of the atoms and the microwaves. The use of cold, slow atoms
to observe Ramsey fringes[62] in a tfountain arrangement[61] firstly allows an increase in the
interaction time, and can also lead to a reduction in some other systematic errors such as the
sccond order Doppler shift. A 102 increasc in precision has been predicted{61], which
would bring the clock resolution to around 10-16 seconds. Potential uses for such clocks
include higher resolution timing for particle physics experiments, refined tests of general
relativity using clocks in satellites and/or planes. and the development of highly accurate
geopositioning methods using time data broadeast {rom satellites. Should the radio signals
from pulsars eventually become the most precise time standard, high precision caesium
clocks will be needed as a Ik in the frequency standards chain.

The reduced Doppler broadening and long interaction tinmes associated with laser-cooled
atoms or ions allow improved accuracy in the measurements of transition frequencies and
hence in the determination of some universal constants. An eventual precision of | part in
1018 has been predicted[3]. As an cxample, cold atoms are being used[63] as part of a
frequency chain linking measurements of hydrogen spectral frequencies to standard clock
frequencies in order to cnable more accurate determination of the Rydberg constant.

Laser cooling techniques were proposed as a method of isotope separation[64] as carly
as 1970, and demonstrated for barium 1n 1974[65]. More recently, laser trapping has been
proposed as a method of storing and handling radioactive materials such as 2'Na[66], 7"Rb
and Fr[67] and even antihyvdrogen, and also as a means of providing & sensitive target for
clectron scattering experiments{68]. Laser cooling is also used to damp the transverse
motion of particles in accelerator storage rings{69].

Light forces have also found a use in biology as ‘optical tweezers'[70], whereby live
bacteria and objects within individual living cells can be manipulated under a microscope by
a laser beam focused to a point. Related techniques were used|[53] to manipulate and
measure properties of a single molecule of DNA.

Another example of the precise manipulation of atoms allowed by laser cooling is in the
proposed use (sce review{71]} of laser cooling in nano-fabrication. The transverse velocities
in atomic beams used to deposit atoms on a semiconductor surface may be controlled to
allow the creation of structures of widths around 10 nm. Such techniques may ultimately

lead to further miniaturisation of integrated chip circuitry.



Cold atoms may be used in investigations of aspects of quantum mechanics such as
measurement theory, non-locality, Bell's inequalities, quantum non demolition and
‘Schrodinger cats’. For instance. new tests of quantum non-locality have been proposed and
are being constructed|72]: these experiments require highly collimated, mono-velocity
atomic beams which are created using laser cooling techniques.

A project at Sussex University, continuing work described in [73}, proposes to use cold
atoms in fundamental research in particle physics; one possibility is to measure the electric
dipole moment of the electron (if it is other than zero), or at least to reduce the uncertainty in
the best current mecasurements. The use of cold atoms should reduce the systematic errors
associated with the relevant spectroscopic measurements. Other applications in this 'low
energy particle physics' field include the measurement[74] of parity non-conservation in
atomic caesium, and an iniproved test[75] of the charge neutrality of atoms.

1.2.2 Laser cooling and the developing field of atomic optics

The study of laser cooled atoms Is a worthy subject in its own right. as the low temperature
and fow density (the atoms remain in the gas phase) represent a new physical regime. One
study arca of considerable interest is the Jocalisation of atoms in ‘optical lattices'| 76-
86,49,50} which are formed by the intersecting laser beams used in optical molasses. Optical
lattices are discussed in section 4.6, Another area of active rescarch is that of 'cold
collisions [87-102]. discussed 1n section 3.5.2. This is the study of interatomic collisions in
the new low temperature regime of laser cooling, where the de Broglie wavelengths of the
atoms hecome farge (~ 1 pim) and where the interaction time is long enough to allow the
atoms 1o change mternal state during the collision. The large de Broglie wavelength of coid
atoms afso allows the realisation of atomic interterometry. Beams of atoms have been
divided coherently by diffraction gratings made either from light [103.104] or from a
nanofabricated thin wire grating[ 105.106] and recombined after the atoms have traversed
different paths. The resulting interference pattern allows the measurement of the phase
difference between the two atomic paths; as examples, this has been used to measure the
Sagnac phase shilt] 133} of a rotating interferometer. and the index of refraction of various
gases for sodium matter waves| 106].

Considerable research has been directed towards the improvement of cooling and
trapping arrangements. where 'better’ might mean. {as examples only) a colder trap{107], a
fulter trap[108], a simpler trap[109] or a cheaper trap[110]. Experimentally. a large variety
of cooling and trapping arrangements have been studied. exploiting the known cooling
mechanisms in one. two and three dimensions. Most of the observed phenomena are
understood in principle, but the three dimensional experimental arrangements represent a
complex theoretical problem as far as exact quantitative calculations are concerned.

Quantitative predictions of trap parameters such as temperature and number density for 3-D
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arrangenents are often made via numerical simulations and the development of numerical
techniques such as the "Monte Carlo wave function method'[111-117], discussed in section
2.5.2, is an area of ongoing research.

Cooling and trapping techniques allow a new level of manipulation of neutral atoms. As
well as the storage of cold atoms in traps. and the production of collimated atomic beams
with slow velocities and narrow velocity distributions, one might include the published
reports of atomic funnels[45], atomic fountainsf46], atomic trampolines [118] and atomic
mirrors[119-121]. Atomic beams may be coherently split, reflected and diftracted by atomic
analogues of the corresponding optical devices for light. These beamsplitters, gratings and
mirrors for atoms are often made purely from resonant light. Thus there is an ironic
inversion of conventional optics. and this new field of study has become known as "atomic
optics'. One of its cxciting goals 18 the construction of a ‘boser’ or "atom-taser’, the atomic
analogue of a laser. in which a beam of coherent atoms is produced in a resonant cavity
made of atom-mirrors. Such research has been greatly encouraged by the recent (July and
September 1995) observations of Bosc-Einstein condensation (B.E.C.) of rubidium
atoms|34] and lithium atoms[122]. in which the atoms condense into the ground state of the
atomic centre-of-mass wavefunction in the trapping potential. B.E.C. had previously been
dubbed the 'holy grail’ of laser-cooling. as it had always been a major goal of the field, c.g.
see[123]. These recent observations have opened a door to new studies in laser

spectroscopy, supertluidity and quantum mechanics.

1.3 The specific work of the O.U. research group

The Open University laser spectroscopy group entered the ficld of faser cooling in October
19971 with the intention of building a magneto-optical trap for rabidium atoms. Successtul
trapping was achieved around two vears fater in August 1993, Meanwhile the group had
received an EPSRC grant to study coherent transients induced in cold atoms by short (~ns)
laser pulses. Particular arcas 10 be studied include the possibility of Bragg diffraction of
pulses from atoms localised in an optical lattice, and the possibility of superradiance in cold
atoms. The shape of the coherent transient signals should also yield information on line-
broadening mechanisms within the cold sample. We set about the construction of the
necessary ancillary apparatus. including two new vacuum cells suitable for these purposes
and the construction of a dye laser to generate the light pulses. The vacuum cell for our first
cxperiments came into operation in August 1994, and at the time of writing 1s used daily for
magneto-optical trapping. Parameters such as beam intensity, detuning, number of atoms
trapped. cloud size etc can all be measured quickly to reasonable accuracy (chapter 6). We
are presently installing equipment to perform time of flight temperature measurements and
equipment to allow computer control of aspects of the experiment. Operation of the dye laser

at the appropriate frequency, resonant with the 5S> to 6P3/2 transition in rubidium was



achieved in February 1995, and its performance is presently being optimised. The next
phase of our work will be to undertake a series of proposed experiments on coherent
transients in cold atoms. which have not been undertaken elsewhere so far. These
experiments arc discussed in chapter 7.

1.3.1 The layout of the thesis

In organising the material of chapters 2, 3 and 4, T chose to follow approximately the actual
chronological development of the field of laser cooling itself. Hence sub-Doppler
mechanisms are not described until chapter 4.

Chapter 2 gives an account of the semiclassical theory of the mechanical interaction of
two-level atoms and electromagnetic radiation, commonly known as 'light forces'. Various
differing formulations of the semiclassical theory, including a recent formulation by our
group. are compared. The theory 1s developed in the first place for stationary atoms, then
secondly for moving atoms and then finally the effects of momentum diffusion due to the
gquantum nature of the atom-light interaction are discussed. The implications of all these
results for laser cooling and trapping are discussed. Finally, the semiclassical approach to
light forces is compared with fully quantised approaches.

Chapter 3 is concerned with the two most important practical applications of light
forces. namely optical molasses and the magneto-optical trap. The experimental
arrangements and theory of operation for these two applications are described and examples
of typical experimental parameters (e.e. number and temperature ete of trapped atoms) are
given, The relationships between and constraints upon the important experimental
parameters are discussed from both theoretical and experimental points of view.

Chapter 4 1s concerned with the extension of laser cooling and trapping theory to
multilevel atoms. Tt begins by deseribing three important components of sub-Doppler
theories: optical pumping. polarisation gradients and light shifts. It then explains three
specitic sub-Doppler cooling mechanisms in detail: these are sisyphus cooling, the
magneticallyv-assisted sisyphus effect and motion-induced oricntation cooling. The
discussion then turns 1o the role of sub-Doppler mechanisms in molasses and the magneto-
optical trap. and in particular the phenomenon of atomic localisation in optical lattices. The
chapter ends with briet descriptions of several recently developed new cooling/trapping
arrangcments.

Chapter 5 consists of theoretical studies which I have made of polarisation gradients
in 3-D electromagnetic standing waves. The first part is concerned with ways of describing
and comparing the various clectric ficlds which may oceur in the common laser cooling
arrangement at the intersection of three orthogonal 1-D standing waves. The second part 1s
concerncd with wayvs of quantifying the extent to which an arbitrary 3-D electromagnetic

standing wave contains the polarisation gradients associated with the sisyphus and



corkscrew cooling mechanisms. The third part is a mathematical demonstration that the
sisyphus and corkscrew polarisation gradients are each related to the density and flux
respectively of intrinsic spin in the electromagnetic field.

Chapter 6 describes the experimental apparatus used in the construction of our
magneto-optical trap for rubidium atoms, which includes lasers and their controls. optical
equipment. magnetic field equipment, vacuum equipment and diagnostic instruments. The
chapter ends with the results of preliminary experiments performed with the trap, primarily
concerning the distribution and number of atoms in the trap.

Chapter 7 is concerned with our group's current and future work, which is the study
of coherent transients induced in cold atoms by scquences of short laser pulses. The chapter
begins with a basic review of the relevant theoretical concepts. The construction and testing
of a pulsed dye laser to be used in this work is described, followed by a detailed discussion
of a4 proposed experiment to measure the temperature of cold atoms by coherent transients.
Finally, factors which may influence the shape of the coherent transients are discusscd.

1.3.2 Original work in this thesis

Theory

t) In chapter 2, I compare various published approaches to the semictassical theory of light
forces on two-level atoms: this includes discussion of a treatment recently published by our
group and to which I contributed.

ii) In chapter 5, T make an extensive study of the nature of polarisation gradients in 3-D
standing waves. This chapter is entirely original work and contains new results.

iii) In chapter 7. new experiments involving the interaction of coherent transients and cold
atoms as proposed by our research group are described. T have contributed to the theory
hehind these cxperiments.

Experimental

ivi In chapter 6. T describe the apparatus used for our magneto-optical trap. Though the
MOT is now a standard’. many of the design aspects of our particular set-up are original,
and the product of considerabie thought. I mention in particular the design of the two
vacuum cells for our specific experimental purposes. I also designed and built many other
parts of our apparatus, and am responsible for the current working arrangement for the
apparatus, which was arrived at after much trial and error experimentation. Chapter 6 also
include results of some preliminary quantitative experiments made with the MOT, which
allow comparison of the performance of our trap with those of other groups.

v) In chapter 7, T describe work which I have carried out regarding the construction, testing

and optimisation of the pulsed dye laser to be used in our work.

10



Chapter 2
Semiclassical theory of light forces for two-level
atoms

The main objective of this chapter is to mmtroduce the semiclassical theory of light forces, i.e.
the mechanical interaction of atoms and clectromagnetic radiation. The scope of the chapter is
deliberately restricted entirely to two-level atoms: the theory of light forces in multilevel
atoms is discussed in chapter 4. Section 2.1 describes the principles and assumptions behind
the semiclassical approach. The next three sections derive various expressions for the light
forces with new complexities being added section by section. Thus section 2.2 gives the
semiclassical derivation of the mean force experienced by a stationary atom in a general
monochromatic light field. Scction 2.3 then discusses the extension of that derivation to
moving atoms and section 2.4 deals with the 'diffusion’ of atomic momentum due to
quantum tuctwations of the light force. Finally. for completeness. section 2.5 gives an
overview of fully quantised approaches to light forces and compares them with the
semiclassical approach.

2.1 Theoretical approaches to light forces

Since the advent of the laser around 1960 the subject of atomic motion in laser light has been
studied intensively. both theoretically and experimentally. Real atoms can have many
degenerate cnergy levels. are usually moving and mutually colliding, and are subject to
spontancous emission. Electromagnetic fields can be polychromatic and contain many
different plane wave modes. To take all these factors into account for even the simplest
atom/ficld interaction results in great theoretical complexity. It is necessary to make various

simplifving assumptions and to scparate several distinct physical regimes.

It



Theoretical treatments may be categorised, for instance. into thosc dealing with short
interaction times, where spontaneous emission may be neglected because the interaction time
is shorter than the spontaneous lifetime, and those dealing with long interaction times where
spontaneous emission must be included and transients may be neglected. Short interactions
(pulses} arc discussed further in chapter 7. A second categorisation is into either
semiclassical’ or Tully quantised' theoretical treatments. In principle, a rigorous treatment
will take into account the coupling of the atom with all the quantised modes of the
electromagnetic field and will also quantise both the internal and external (centre of mass)
degrees of freedom of the atom. Such fully quantised treatments have the disadvantage of
resulting in complicated calculations. In the simpler semiclassical approaches the internal
state of the atom 1s quantised, but the centre of mass of the atom is assumed to be a small
wavepacket which can be treated classically. A second use of the term 'semi-classical’
distinguishes approaches where the light field is treated classically (as an osciflating ficld} as
opposed to quantum mechanically (as photons occupying field modes). In such approaches,
spontancous emission is introduced phenomenologically into the equations of motion of the
internal state of the atom via dissipative constants.

Except at the very lowest temperatures, the 'doubly’ semiclassical theory (i.e. classical
light ficld and classical centre-of-mass motion) is adequate for most purposes, giving results
which have been confirmed by the more rigorous fully quantised approach. The
semiclassical theory also gives physical insight into the nature of 'light forces' which
remains uscful even where the semiclassical model is no longer valid.

2.1.1 Underlying assumptions of semiclassical theory

The semiclassical approach used in this chapter depends on two underlying fundamental
assumptions[41.124.125]. The first assumption is that the centre of mass of the atom is
described by a small wavepacket. in quantitative terms: Av<<A where Ax is the uncertainty
in position of the atom and A is the light wavelength. This ensures that the electric tield is
well defined over the atomic wavepacket. This is normally easily satisfied, a typical atomic
wavepacket being ~ [ A, and a typical optical wavelength being ~ | um. The second
assumption is that the speed of the atom should be well defined so that the uncertainty in the
atomic Doppler shift should be fess than the atomic transition linewidth. Quantitatively, this
is kAv<< [, where & is the light wavenumber, Ay is the uncertainty in atomic velocity and I
is the natural linewidth of the atomic transition, These two restrictions may be combined
with a further condition, namely Heisenberg's uncertainty principle mAxAv =7/ 2, to give

the requirement
Ep << hlI
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. Er is the change in kinetic energy of an

where Eg is the recoil energy given by £y =

atom caused by absorption of one photon, and m is the mass of the atom. This condition is
well satisfied for most usable transitions e.g. Al /Eg = 10.000 for rubidium atoms on the

D- transition, which is the subject of the work described herein.

2.2 The semiclassical mean light force on a stationary two-level
atom

2.2.1 Overview of the derivation of the mean light force

This section contains the semiclasstcal derivation of the mean force expericnced by a
stationary two-level atom in 4 general monochromatic light ficld. The two-level model is
ofien appropriate because the phenomena of interest occur only when the light field is near
resonance with an atomic transition. thus the two levels involved in the transition are singled
out by the faser frequency and polarisation. The derivation paratlels that used in
references[124-127], and hopetully clarifies the relationships between the diverse, though
equivalent, formulae therein. A number of basic tools of laser spectroscopy are employed in
the dertvation, namely: the density matrix representation of the atomic state{128,129], the
Rabi frequency[130.131]. the rotating wave approximation and the optical Bloch

equations[ 128-131]. A brief introduction to these topics is included n appendix A-1.

The derivation method has two parts. The first part is a standard calculation[ 128-131]
of the steady state of the laser-driven atom. The equation of motion of the atomic density
mairx 1s writfen down with a Hamiltonian containing only the internal energy of the atom
and the tnteraction energy due to the atomic dipole in the laser light ficld. At this stage
spontancous decay 1s not included. The eguation of motion is simplified by the rotating wave
approximation and then rearranged in terms of the Bloch vector. The effect of spontaneous
decay on the atomic state s incorporated by the addition of appropriate relaxation terms,
giving the well known "optical Bioch equations” lor the atomic inversion and dipole
moment. The steudy state solution of these Bloch equations is then found. The second part
of the calculation consists of an application of Ehrenfest's theorem (appendix A-2) to find an
expression for the mean light force on the atom in terms of the driving field and the atoric
dipole moment. In order to facilitate quantitative calculations, and also to gain greater
physical insight. the force expression obtained is then recast in three different ways,
following different authors: firstly in terms of the Bloch vector components (as per
[126,127]), secondly in terms of a complex atomic polarisability (as per [125.132]) and
thirdly in terms of momentum loss and exchange amongst the plane wave modes of the ficld

(as per [133]).



2.2.2 Calculation of the atomic density matrix and Bloch vector without
relaxation terms

The calculation is given here in outline only, so as to retain the tlow of the arguments, and to
set up definitions of terms and symbols for later use. Some further details are given in

Appendix A-1.

energy state
amplitude
excited state |e) ——=—=-rmmm—m oo ho, b(t)e !
M
hog
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Figure 2-1 Svmbols used 10 describe a nvo-level atom

Consider the stationary atom as a closed system with non-degenerate ground and

excited levels g) and j¢) coupled by an electric dipole transition as depicted in figure 2-1.

i 1 :
" and cnergies hw, and hey,as

. —itn -
The two states have amplitudes a(f)e " and b(1)e
shown. The transition freguency is @, = @, — @,. The system can be described at time 7 by

the state vector

1) = atne ) g)+ birye | e) (2-1)
interacting with a general monochromatic light field described by

K :%a(r)f:“(r)e”"“‘ﬂ +c.c. (2-2)
where g(r) is the polarisation unit vector at the position r of the atomic centre of mass.
Ey(r) the field amplitude and ey the light field angular frequency. From hereon the
r-dependence of quantitics like £ (r) etc will be omitted except where a need tor clarity
dictates otherwise. The atomic density matrix pis

ERN 1),
p=iny=| ¢ Paee” (2-3)
a'be " b'b
where Poq. Poer ele are the individual matrix elements.
The density matrix equation of motion{!) without relaxation terms is

Wate that, by the chain rude, the total time derivative in equation 2-4 is Lo AL +v-V wihere v is the

dr dt
ctenitic velocity, I thiy section dealing with stationary atoms v is cero, but in the next section (2.3), this
distinetion between the total and partial derivatives is important.
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where H, the Humiltonian matrix is comprised of two parts H g,y + Hpipe representing
the internal energy of the atom and the atom-field interaction energy respectively. Hpipore 18
equtvalent to the operator —d - E where d is the electric dipole operator. In the rotating wave
approximation. £ is then given by

_!26 'e“ﬂl,’

(Uq e —
H=n C _—i ! 2 (2_5)
_Qoe L
B
. . Eyleld-glg) . .
where the on-resonance Rabi frequency £2; = M is necessarily complex for a
1

general monochromatic light field. From hereon, €2 will be written as Qoem where {2 and

6 are both real and both functions of r. Using the above expression for H in equation 2-4
dp
dt

leads to a set of four coupled equations giving the clements of the matrix as linear

combinations of the elements of p. [t 1s standard practice to rewrite these equations in terms
of the ‘Bloch vector’, giving a new set of coupled equations. which arc associated with a

physically intuitive picture[ 1 34-136]. The Bloch vector is defined by (see Appendix A-1)

er‘(w[!~9)

I Pog + e

. (e 1—0)
v|= zp(,gef( - +c.c and Pee + Py =1 (2-0)
W Poe — pgg

where the second equation is just the normalisation condition of a closed two level system.

After sumplification, the resulting set of coupled equations is:

1= Av
v —Au+ L (2-7)
W= —QO"‘

where A is the laser 'detuning’ from the atomic resonance given by A = @, - w, and
£2(r) s the magnitude of the Rabi trequency at the location of the atom.

The above equations 2-7 describe the evolution of the atomic density matrix without
relaxation terms. The population inversion is given by the component w and the in-phase
and phase quadrature componentis of the atomic dipole moment are proportional to the
components 1 and v respectively. (It 1s noteworthy that the expectation value of any atomic
observable can be expressed as a linear combination of w, v and w [136].)

2.2.3 Calculation of the steady state atomic density matrix with relaxation
terms

[t is possible to add decay terms phenomenologically to the above equations, as the density
matrix represents the state of an ensemble of atoms. The components of the Bloch vector
may decay in different ways dependent on the experimental situation. These and other
relaxation processes arc discussed in [128-135]. In the case of the light force derivation for a

closed two level atom. we assume there are no collisions with other atoms and that the only
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physical process causing decity is spontancous emission from the excited to the ground state.

The effect of spontaneous emission is easily incorporated into the equation for the population

mMvera . . : : . dp(’c’ - and dpa%"»’ _ :
inversion w, by using the equations | — =—Ip, and | —= =+Ip,,. which
spont dt spont

describe spontancous decay for an ensemble of atoms. I'is the spontancous decay rate. The
cffect of spontaneous decay on the other Bloch vector components i and v can be found for

a two-level atom by a calculation which fully guantises the radiation field[128-130]. The

it | r dv r
— i =-—u, — =——v.
dt spont - di spont

result 1s

These relaxation rates are inserted into equations 2-7 to yield a 'master’ equation][137] for the
system, known as the 'optical Bloch equations’ (in this case for a closed two-level system
with spontaneous decay )

H=Av——u
9

i

. r
V= —AU+QOW—~7—V (2-8)

i

w=—-ur—=(l+w)
The steady state solution of equations 2-8 is found by setting # = v =1 =0 and

solving the resultant simuftaneous cquations with the result[135] that

. —4 AL,
I +20Q,° +44°
=S = F{QU 2 (2‘9)
= +20)° +44°
‘ STy
1= ) bl l
= +20, +44°
The above equations may be written more concisely as
i 2As
-1
= -\ T (2-10
Q() (J + .S')
H 0
where the 'saturation parameter s 1s defined by
702
f= 2-11)
I~ +44a°

The saturation parameter s is a uscful measure of the strength of the atom-field
interaction because the atomic inversion w depends only on 5. A particular steady state
population of the excited state corresponding to a particular value of s may be obtained by

either a resonant field or by a more intense field at a targe detuning. The steady state

, which saturates at 1/2 when s = o and
s+ 1)

population of the excited state is given by
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has a value 1/4 when v = 1. Also. when s = 1, the ground state absorption rate is equal to
half the spontaneous decay rate.
2.2.4 Ehrenfest's theorem for the mean light force.
Having found the steady state atomic density matrix, the expectation values of atomic
observables such as the atomic dipole moment may be calculated. This in turn allows the
calculation of light forces as follows. As described in appendix A-2, Ehrenfest's theorem
gives a quantum mechanical expression for the force experienced by a particle in a spatially
dependent potential energy. The potential energy of the atom in a classical light field E is
given by —d- E and in such a case Ehrenfest's theorem gives the mean hight force F:
F=(V(d-LE)) (2-12)
where the outer triangular brackets indicate the expectation value. F is the 'mean’ force in the
sense that it does not contain the fluctuations caused by the quantum nature of the light field.
Equation 2-12 simplifics {see Appendix A-2) to the 'light force equation’

F— iy O

2-13
; N (2-13)

where the subscripts i indicate the three cartesian components. This important equation
gives the mean light force on an atom in a light field in terms of the expectation value of the
atomic dipole operator and the spatial gradients of the clectric field at the centre of mass of
the atom. Various authors have developed this equation in different ways tor the purposes of
performing practical calculations or in order to gain new physical insight. One of the
objectives of this chapter is to gather together the various expressions given for the light
force and to show their interrelationship. Three such developments are now considered tn
turn: the first in terms of the Bloch vector components, the sccond in terms of a complex
atomic polarisability and the third in terms of momentum loss and exchange amongst the
planc wave modes of the hield.
2.2.5 Development of the light force equation in terms of Bloch vector
components
Following the approaches of R.Cook[126] and A.Ashkin and J.Gordon[ {27}, an explicit
expression for the expectation value {d} of the atomic dipole moment can be substituted into
the light force equation 2-13 1o give. after some algebra. the following equivalent results
[124.126,127]. (Calculation details are given in appendix A-3).

F= —g(HVQ[) —1£2,V )

; time dependent solutions (2-14a)
F - 51!2(](11\7 ]Ogt’ Q() - \"VQ)

If the steady state solutions of the Bloch equations (equation 2-9) are used in equation 2-14a,

one obtains the steady state force
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his

2( s —————(-2AVlog, 2, +TV8) }steady state solution (2-14b)
h)

Here €2, and € are the magnitude and phasc of the complex Rabi frequency. Note that the

force F consists of two terms: the first. depending on « is called the 'dipole’ force, and the
second, depending on v is called the 'scattering’ force. This categorisation into two types of
light force is discussed later in section 2.2.8.

The dipole force term of equation 2-14b is also sometimes expressed [138] as

hA
Fripole = ——:—Z—Vlog(,(l +3) (2-15)

Equations 2-14 give a concise expression for the force in terms of the Bloch vector
components representing the in phase (i) and phase quadrature (v) parts of the atomic
dipole. This formulation has the advantage, therefore, of allowing a view of light forces
using the Bloch vector picture. A disadvantage is that in practice they require a preliminary
calculation of the complex Rabi frequency in the form !2()6’9

2.2.6 Development of the light force equation in terms of atomic
polarisability

Following the approaches of A.Hemmench and T.Hinsch[132] and S.Stenholm[125], it s
sometimes convenient to express the light force equation 2-13 in terms of the atomic
polarisability. Such an approach[132] introduces a complex, scalar{?) atomic polarisability o
defined by {(d) = oE + ¢.c. where o has rcal and imaginary parts & = g, +i0ty,,. To use
this approach the field E is first expressed in an equivalent form

i'
E= Zeql e Yo e'm] +¢.c. where the e, are the three cartesian unit vectors of the chosen

coordmulc system. Writing the field in this form constitutes a definition of the 7, and /.
Suhstituting these cxpressions for ¢, E and {(d} into the force equation 2-13 yields. in the

rotating wave approximation. the mean force F (details in appendix A-4):
F=apVI+200, 3 IV, (2-16)
g

I= ziq_ is the "intensity’ of the field and corresponds to 5 \E| where the bar denotes a

cycle average. The polarisability 1s given by (see appendix A-5}
_ h=24+iD)
2T +20,7 +44%)

(2-17)

A final simplification[ 24,126,139} occurs in cases where the light field polarisation 1s
independent of spatial position. In such cases the ficld may be expressed as

E =gl @V 4 ¢ ¢ and the mean light force equation 2-16 simplifies to

INore that the atom is not necessarily isotropic, in which case this theory mav be extended by the adoption
of u tensor, us opposed to sealar. atoniic polarisabilivf 132 ],
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F=oarVI+20,IVy (2-18)

The formulation of the light force as equation 2-16 has the advantage that the light
force is expressed in terms of the easily calculated atomic polarisability and in terms of the
I, and vy, which are directly caleulable parameters of the light field. Note again the
presence of two distinet terms: the dipole force term associated with the real, reactive part of
the polarisability and the scattering force associated with the imaginary, dissipative part.
2.2.7 Development of the light force equation in terms of momentum loss
and exchange amongst the plane wave modes of the field
Following the approach of Durrant et alf133], the light force equation 2-13 can be described
in terms of momentum loss and exchange amongst the plane wave modes of the light field.
This viewpoint is developed in [133], of which a brief outline now follows. Conservation of
momentum requires that the sam of momentum of the atom and the momentum of the

radiation field remains constant. Hence the force F on the atom is
F= 691)a10n1 — __CQI)IEe]d - _ J' ﬁJﬂvf?gi
at ot 2

space
where Pog 15 the momentum of the atony, Py 1s the momentum of the total radiation tield
and S is the Poynting vector of the total radiation field i.e. the driving laser field and the

-

dipole field ot the atom. j —— 15 calculated by summing over a complete set of plane

!
space

wave modes and is then cvele-averaged to give the mean force F, This approach leads 1o a

third expression for the mean light force. which for a stationary two-level isotropic atom is:

F=-20y Y (k,—k M Ae e sinfo, — o, +(k —k,)r]
{ (2-19)
=2ay, {! zk_‘.lw; + 2‘(1(S +ko e -e_‘.;)cc)s[@\.f ~ ¢, +(k, - k_s.,)-r]
' ;’<s

where the driving field has been expressed as a4 sum over a complete set s of plane wave
- itw -k ort .
modes such that E = Ze_\.l;‘e’ PRCTRO0 L el and I =FEFE. . 00=0ge+ 04y is the

s
complex scalar polarisability of the atom.

Equation 2-14b_ equation 2-16 and equation 2-19 are all exactly equivalent expressions
for the mean light force. Although the latter (2-19) appears superficially to be the most
complicated of the alternatives, in practice it can be easy to use, particutarly when there are
several non-parallel laser beams intersecting as is typical in laser cooling work. It can once
again be seen that the expression divides into two parts. the dipole and scattering forces

associated with o, and o, respectvely.
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2.2.8 Categorisation of light forces into the dipole and scattering force

Each of the three preceding 'developments’ gives the light force as the sum of two distinet
terms, thus motivating the important categorisation of light forces into the ‘dipole’ or
‘gradient’ force, corresponding to the first term of equations 2-14. 2-16, 2-19 and the
'scattering’, ‘resonance’ or ‘spontaneous’ force corresponding to the second term. As can be
seen from an examination of the real and imaginary parts of the atomic polarisability
(equation 2-17), both forces share the same resonant denominator. The dipole force has a
dispersive frequency dependence because its sign depends on the detuning which occurs in
the numerator of the real part of the polarisability. The scattering force shows a (power-

broadened Lorentzian) resonant frequency dependence with a FEW HM. = T

.75 - 0.3
['Dipo]c

[
Scatt

(73 0
4 0 AT g 4 0 AT 1

Figure 2-2 The frequency dependence of the dipole and seattering forces. The force is
plotted in units of RkT.

The dipole force

The dipole force is proportional to the gradient of the magnitude of the Rabi trequency
squared (s seen in equation 2-14a) and is thus a conservative force(3). Note that the
gradient 1s non-zero only if the field consists of a superposition of more than onc occupied
plane wave mode. The dipole force i< sometimes pictured as the a.c. corollary of the
resultant foree on an induced dipole in an inhomogencous electrostatic field{139]. In a
phasor picture, figure 2-3, the oscillating electric dipole has « component proportional to u.
i.c. in phase with the driving electric field. The alignment (parallel or anti-parallel} of this
component with the efectric field depends on the detuning. For instance, if the detuning is
negative. the dipole moment has a component parallel to and in the same direction as the
clectric field. The potential energy due to this interaction is negative (= —E-d) and becomes
more negative if the magnitude of E increases. Thus the force acts towards regions of greater
E. It follows that the dipole force is strong-field seeking for negative (red) detunings and

weak-tfield seeking tor positive (blue) detunings,

I or isorropic atoms, the magnitude of the Rabi frequency squared is proportional 1o the electric field

intensity {E - E), where the brackets denate a cyele average.
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Figure 2-3 Phasor diagram: the phase
‘\ i relationship of the atomic dipole relative to
the driving electric field for different
detunings. The dashed line shows thar for

negative detuning, the dipole has a

dangimd s component aligned parallel to the field.

The third development of the light force (equation 2-19) shows that the dipole force is
associated with redistribution of photon momenta between different plane wave modes of the
field, i.e. by absorption from one mode followed by stimulated emission into another. The
presence of the factor k, — K. in the dipole force term corresponds to the exchange of
momentum between modes via absorption/stimulated emission cycles.

One practical example of the dipole force occurs for a stationary atom in a one-
dimensional standing wave composed of two counterpropagating linearly polarised plane
waves, with resultant clectric field E = 2e£, coskzcos@r. In this situation, the scattering
force for a stationary atom is zero. but the dipole force 1s, by equation 2-15,

. 4Rk Asin2ks .
e T P 0 4l

(2-20n

where €2, 1s the magnitude of the Rabi frequency due to just one of the plane waves, thus
Q) (r) = 407 cos” kz. This shows that the magnitude and direction of F,... varies
sinusoidally with 7, pushing atoms from the nodes towards the antinodes of the standing
wave for negative detuning and towards the nodes for positive detuning.

The dipole trap

Another practical example of the dipole force is provided by the optical 'dipole trap’, first

proposed by Ashkin[138] in 1978 and first demonstrated by Chu et al[2} in 1986.

Gaussian > [ |
profile e = i .
Laser heame , > Ay
Focusing Atoms trapped
lens arintensity
maximum

Figure 2-4 A focused Gaussian beam dipole trap
Neutral atoms in a near resonant laser beam with a gaussian intensity profile experience a
radial dipole force transverse to the beam. This is because the beam intensity increases (0 a
maximum at the centre. For negative detunings the force is towards the centre of the beam
whilst for positive detunings atoms are expelled from the beam. Trapping in the third

dimension is achieved by tightly focusing the beam so that the mtensity also diminishes



longitudinally away from the tocal plane. See figure 2-4. Dipole traps are important within
the broad field of laser coolingfe.g. 2,47,138.141,142] but are not studied further in this
thesis.

The scattering force

The sccond of the two light force terms, the scattering force, s associated with the phase
quadrature component v of the Bloch vector and with the gradient of the phase y of the
driving ficld. In the case of a single plane wave, the gradient of the phase is just the
propagation wavevector K. In more complicated fields, however, the physical meaning of
the phase-gradient is not so simple to interpret (except, tautologically, it must give the
direction of the scattering force!). Nevertheless, the scattering force can be easily understood

in terms of absorption and emission of photons.

B

NS\

photon -
stationary atom

. ) o ahe Cthe , ;
in ground state 2) the atom absorbs the photon and s

memenium
maomentim
M

3) the atom emits a spuntaneous photon in a
random direction and recoils

photon f\:’

initial momentum

excited atom

) after one absorption/emission
cycle the atom has acquired a
resuftant momentum

recoil

Figure 2-5 The scattering force
Figure 2-5 shows an atom in the path of a plane wave. If the frequency of the light is near an
atomic resonance, the utom will absorb a photon, receiving 2 momentum kick #k. The
momentuin kick from the subsequent spontaneous emission of a photon has a random
direction. Over many cycles the emission kicks cancel out on average, but the absorption
kicks are always in the same direction and consequently add. As a result, the atom is subject

to a net time-averaged force:

. photon spontaneous cxcited state
Foo = X X

nmomentum cmission rate population

= ok ox o () x|y
I +20, +4A

N nkI62,”
ST P 1200, + 447
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where the expression tor the excited state population follows from equation 2-9¢. This
equation shows that for low intensity fields (£2, < I'') the scattering force is proportional to
the field intensity. but has an upper limit for high intensity fields of

) hkrl”
PSLLl[[(\1dK) = —2—_ When Q{) >> F.A (2‘22)

The above discussion, for a simple plane wave, conveys the idea that the scattering force is
associated with a process involving absorption followed by incoherent spontaneous
emission. This same association carries over to more complex light fields. The third
development of the light force (equation 2-19) allows some insight into this idea. The
scattering force part of this equation , involving o, consists of two terms acting in the
directions opposite 1o k, and k, + k. respectively. For both of these terms, the plus signs
immediately in front of the K, indicate that the terms correspond to absorptions (of
momentum 7z k) followed by spontaneous emissions. (A negative sign before a k, is the
indtcator of a stimulated emission). The first of these terms, containing K, corresponds to
the simple plane wave scattering force of figure 2-4 and is seen to be additive over the
modes. The second term. containing K + k- 15 an interference tcrm which can either add to
or subtract from the first term, depending on the atom's position in the light fretd. This
interterence gives rise to patterns of light forces such as lines of acceleration and vortex
forces[132] which are of particular interest in some laser cooling and trapping schemes.
2.3 Light forces on moving atoms
This section will show how the semiciassical theory ot light forees, developed so far for
stationary atoms, is extended to include moving atoms. The first subsection 2.3.1 considers
the simplest possible case: an atom moving in a plane wave. Then, in subsection 2.3.2 a
simple model leads to an approximate expression for the light force on an atom moving in a
one dimensional standing wave. Subsection 2.3.3 addresses the same one-dimensional
standing wave problem more rigorously and. finally, 2.3.4 and 2.3.5 discuss specific
solutions ot the same problem in the two regimes of weak and strong fields respectively.
Though the action of the light forces will eventually alter the velocity of the atom, 1t 18
assumed that the velocity v is constant in the derivation below. This is justified because, in
most situations, the photon momentum %K is much smaller than the atomic momentum v,
thus many absorption/emission cycles are required (o change v significantly.
2.3.1 The light force on a moving atom in a single plane wave
Consider an atom moving with velocity v in a plane wave propagating in the z direction.
This simple case is easily understood by considering the situation in the reference frame of
the moving atom. where the atom is stationary and the plane wave has a Doppler-shifted
frequency @i . To first order in v-/c,

wl’dsz(l-%):wI‘_k-v
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The light field is monochromatic in the atomic reference frame, so the result (equation 2-21}
for stationary aloms may be used with the new detuning A" = A —k.v. giving a force
N V. oy’
FScuil:hk b= 2 2 2
I +20, +4(A-k-v)

c

The Lorentz transform of this force[143] back to the original frame in which the atom was
moving does not change the above expression for Fg,, . For speeds v << ¢, however, the
predominant velocity dependence is caused by the k.v term in the denominator, hence we
can write

oy’
4207 +4(A-k-v)

Foom =k (2-23)

Examination of equation 2-23 shows that Fg... will only be significant for the narrow range
of velocities with k.v close to A. In fact. for a fixed detuning and 02 << I'2, the force
dependence on k.v is Lorentzian with a FWHM equal to I, For the D3 line of Rb, this
FWHM corresponds to & velocity width of 4.4 ms~ L

2.3.2 A simple model of a moving atom in a 1-D standing wave

Progressing one step to consideration of the light forces on a moving atom in a one
dimensional standing wave causes a suprising degree of Complexitym. A one dimensionaf
standing wave consists of two plane waves of cqual frequency and intensity,
counterpropagating along the z-axis. In the atomic reference frame, the light field now
appears bichromatic with frequencies at @, k- v. As a result. slow beats of frequency kv
appear in the driving field amplitude. which in turn cause corresponding slow oscillations in
the atomic dipole moment. These slow oscillations in the driving field and the dipole moment
are combined multipiicatively in the master expression for the mean light force (equation 2-
13). Calculations to various orders which incorporate such effects are described in the next
section 2.3.3. For the moment. however. a useful approximate result can be obtained by
simply adding the scattering forces due to each of the two counterpropagating planc waves.
This approximation gives F7. the z-component of the mean light force averaged over a
wavelength and in the limit of weak fields { £2, << 7). i.e. it neglects interference and

saturation effects. The prime on F? is to indicate that this an approximate result.

Photons with momenta 7ig Photons with momenta -fik
- e !
— @ > -
- e}

atom with velocily v

Figure 2-6 A moving atom in a 1-D standing wave

+The theary of light forees on moving atoms is still a subject of ongoing interest for contemporary theorists
ey reference [ 144].



Using equation 2-23 for the scattering force due to each plane wave,

o= (i = L5 N | L5 S (2-24a)
=202 +4(A—kv.) 202 +4(A+ kv )

where €2 is the magnitude of the Rabi frequency of each plane wave. This simplifies to
o 167k T2 Av.
L[l vaa -k M 207 +4A i, 7]

(2-24b)

which may be written as
, o {kv./T)

o 2 7 (2-24¢)
1+ Cg(kp: ;,r'F)‘ + 6‘3(:'(1': ‘,:’F)

where the constants ¢y, ¢, ¢a are algebraic combinations of T~ £2, and A . In the case when

kv- << Aand kv. << T, cquation 2-24b becomes
167k T2 A

(r?+207+ 4,_4.3)2

F!=pv. where b= (2-25)
which is generally the most usetul of the above expressions.

The sign of the 'friction coetficient’ f s the same as the sign of the detuning. therefore
the total force is a damping or 'cooling' force for red (negative) detuning and an accelcrating
or 'heating’ force for blue (positive) detuning. When A is negative, F_ is often referred to as
a friction force.

It is of interest to know the values of the two variable parameters A and £2 which

maximise the magnitude of the damping force. The answer, by differentiation of 2-25, 1s

iﬁmux’: E"i_: when A= —g and !25 = F(5) (2-26)

Note however that the answer £2, = I' is at this stage inconsistent with the original
assumption £2, << I used in deriving equation 2-25. It will be usetul later on in this chapter

to know the maximum value of fin the situation of a very weak field .e. when £, << T or

— . : ~I
equivalently s << 1. In such a casc || is still maximised by setting A = - but || then

takes the value

1B = 20k (weak ficlds) (2-27)
When the friction coefticient is maximised, this cooling force typically produces an atomic
deceleration around 10° ¢. Though this may seem large. it is only 10" of the force felt by a

singly-ionised atom in an everyday electrostatic field of 1 Vem L,

SThese valies correspond o« satiration parameter s = 1, and the value of light itensity corresponding o
0, = [is often referred to as the saturation intensity’, Strictly, the sameration intensity depends o the
detuning, for instance §2¢ = /2 gives the saturation intensity ar exact resonance. Note thatr £ is the
intensiny for each coniponent plane wave, nor the toral intensity of the standing wave.
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Velocity damping in three dimensions can be obtained by an arrangement of three
intersecting, mutually orthogonal pairs of counterpropagating laser beams. All three velocity
components of an atom in the intersection region are then damped. Such an arrangement is
known as ‘'optical molasses’, which is an important form of laser cooling, to be described in
detail in chapter 3. The reduction of alomic temperatures via the cooling force described
above is called 'Doppler cooling'.

2.3.3 Derivations of forces on an atom moving in a 1-D standing wave.

The previous section 2.3.2 gave an approximation for the light force on an atom moving in a
1-D standing wave. This section gives an overview of various semiclassical
approaches|124-127,145.146] to more precise, higher order calculations of this force. The
main sequence of the calculation proceeds in a similar fashion to that for a stationary atom. It
is necessary 1irst to solve the optical Bloch equations for the steady state density matrix, and

then to calculate the light force using Ehrenfest's theorem. For a moving atom, as mentioned

. . . . d d - C e .
earlier in subsection 2.2.2, the chain rule gives i = 5 +v.V or. for the simplificd picture
) !
. . . d d J
of an atom moving parallel to a standing wave aligned along the c-axis. — = —+v_ —
dt dr T dz
Hence the optical Bloch equations (2-8) take the form:
I J ] I
v = Av——
R/ 2
[ 2 J ] r
A v=-Au+ Qpw — (2-28)
Ldt T dz ] 2
- e
. ==y =(l+m)
Ldt  dz ]

. . d S o .
To find the steady state solution, we put the terms > = (. This solution 1s known from the
!

theory of gas lasers[147]. and is obtauned by expanding the elements of the density matrix in
a spatial Fourier scries: Le.
EDY e (2-29)
"

The coetticients p,’j nway be derermined to a chosen order of n by a continued fraction
method[ 146]. Once the density matrix is known, the atomic dipole moment 1s easily found
and again, as in the previous scction on stationary atoms, Ehrenfest's theorem gives the
mean light force. The final result for moving atoms is an expression for the mean light force
of the form

F.(r.,0) = Fyor)+ E[Ft_’(r: yeos 2nkz + F{v_)sin2nkz (2-30)

n=lI

where F,(v.) represents the spatial average force and the coefficients FI(VLFI(v))
determine the spatial oscillations. Note that this expression is correct for all hght field

intensities. Various authors[124.126,127,145] have used this or closely related approaches

26



to analytically calculate the coefficients Fy. F . F.' to asmall orderof n (n=1or2)in
specific regimes of light ficld intensity and atomic velocity. Reference [146], on the other
hand. uses a numerical method to calculate Fyy, FULF. to all significant orders.

2.3.4 Light forces on atoms moving in a weak intensity 1-D standing wave
General analytical solutions to the problem of determining the coefficients Fp, FL . F,' are

hard to obtain. As a consequenee, the existing solutions are confined to the specific regime

of weak light fields (€2, < [') and small velocities (kv- << A 1). For this regime, various

authors[124,126,127,133] have obtained cquivalent expressions tor the first three

coefticients F(),FJ,FJ. It turns out that Fi. = —Fy, so that to first order in 5,

F.=2F,sin”kz + F sin2kz (2-31)
where
2 2
F = q16.“‘1!'\ I'AQ), . (2-32a)
(I +207 +447)
() 2
F ARkE22 A (2-33h)

0 v an
Comparison of equation 2-32a with eguation 2-25 shows that the expression obtained for
Fyy isequal to fr. and confirms that the approximate calculation leading to 2-25 gave the
correct spatial average foree. but failed to predict the sin? k= variation. This spatial variation,
which also emerges from our approach to light forces i [133]. is interesting in that it shows
that the friction coefticient { o sin” kz) is greatest at points in the wave where the light
intensity { o< cos™ k2 ) is Jeast. The second term of equation 2-31. FJ sin 2z 1s independent
of velocity and, by comparison with equation 2-20, is seen to be exactly equal to the dipole
force previously calculated tor stationary atoms. Once again, the force expression 2-31 15
seen to constst of the sum of two terms. a dipole force Ff sin 2kz and a scattering force
2F, sin” kz.

A calculationf124] 10 the second order 7 = 2 produces corrections to the first order
force (cquation 2-31): these corrections are equivalent to introducing a more accurate power-
broadening facior into the denominators of the cocfficients £, FL]El The power-
broadening in equations 2-32 (2£2.2 in the denominator) corresponds to just one plane wave,
the second order corrections change this to 4627 which is the spatially averaged power-
broadening for two counterpropagating waves. For weak fields, it is unnecessary to
consider higher terms in the expansion of equation 2-30 as they rapidly tend to zero with n.
It remains to consider the effect on the atom of the net force resulting from the sum of the
two terms in equation 2-31. For positive detunings. the scattering component of the light
force is an accelerative force which leads to unbounded motion with increasing velocity.
though this velocity has a small oscillation superposed on it due to the dipole term. For

negative detunings, the atom is decclerated by the scattering force until its speed is less than
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acertain v, whereupon it becomes bound, oscillating in a region of size A/2 around one

P
of the wave antinodes. Hence the theory, as developed so far in this section, suggests that
atoms may be decclerated and then become trapped in wavelength-sized regions by a
standing wave. However, the effects of 'momentum diffusion’ processes act so as to

prevent damping of the atomic speed to much below v and so, such traps are 'leaky’.

Ldplure

Momentum diffusion i1s formally introduced and discussed in section 2.4.

2.3.5 Light forces on atoms moving in a strong intensity 1-D standing wave

In the strong field regime €2, 2 I', there are two semiclassical approaches found in the

literature to the calculation ot light forces on moving atoms. The first is a continuation of the
spatial Fourier series approach already described above and forms the main topic of this
subsection. The second approach is the 'dressed atom’ approach, which is discussed briefly
at the end of this subsection.

Though not all orders of coefficients F|, FL',, F_J in the expansion of equation 2-30 can
be obtained analytically other than as a convergent continued fraction, the numericat
solutions have been obtainedf 146] for a large range of saturation parameters (0 < s < 64) and
atomic speeds (kv < I'). The resulting mean force differs from the weak field force in the
following respects.

New resonant structures, which have been named ‘Dopplerons’ were
predicted] 146,147] and observed]148,149] to appear in the velocity dependence of the force
F_ of equation 2-30. These arc due to multiphoton processes which are more probable in
high intensity fields. As an example. consider the three-photon cvent pictured in figure 2-7.
In this example. conservation of energy requires that

Mo, - kv)—hlop +kv)+ k(o - kv) = hao, W, -y _ A

Le. Av=
absorption stim. emissione absorption spont. emission 3 3

Hence this three-photon process is most probable when kv = A/3, and the resonance at that

detuning gives rise to a corresponding resonance in the force versus velocity curve. Similar
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Figure 2-7 A doppleron event

forn=0,1,2,3........ , and the

resonances oceur at velocities determined by kv, = T
2n+

resulling shape of the force/velocity graph is complicated. Figure 2-8 shows, for
comparison, the velocity dependences of the spatial average force F|, in the weak and strong

ficld regimes. For both plots. A=-31"1na) £y =T inb) £ =257 F-is in units of hkI
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Figure 2-8 The velocity dependence of the spatially averaged force F for

a) lesy laser intensities and b) higher laser intensities. b) is a sketch of figure 2a of [ 146].
Of particular interest is the kink' near v = 0 (see figure 2-8b), which results in a reversal of
the direction of the torce for the slowest atoms. Thus the usual cooling force associated with
red detuning can become a heating force in a strong field and vice versa i.e. there is a cooling
force for very slow atoms in a high intensity blue-detuned standing wave®. This cooling
force is discussed further in section 4.7.1.
2.3.6 The dressed atom approach
The dressed atom approach[130,131.150] 1s a semiclassical model in the sense that the
centre of mass motion of the atom is treated classically. but the mternal atom and light field
are guantised. It is particularly useful in the case of high intensity fields £2, >> I or highly
detuned ficlds A >> I, Tt starts with a Hamiltonian of the form

Hy \=H

Aom T HLLL\CT + Hl nteraction

The Hamiltonian Hyy 4 is diagonalised so as to have cigenstates corresponding to the
possible energics of the combined atom-ltaser system. Because it starts from this alternative
viewpoint. this approach offers new physica insights. for instance in explaining the blue-
detuned cooling force mentioned above (see section 4.7.1). Results obtained with the
dressed atom approach are in quantitative agreement with the continued fraction approach of
previous sections and consequently T'do not discuss it further in this thesis, save to point out
the excellent discussions in [41,130,1501.

2.3.7 Summary of section 2.3

The discussion so far has shown that a rigorous calculation of light forces in all regimes for
a two-level atom moving in a one dimensional standing wave is complicated. For a fully
three dimensional standing wave comprising several plane waves, such as is used in many

cooling and trapping experiments, the situation becomes yet more complicated. Most authors

O The standing wave must contain intensity gradients for this force 1o ocenr for 2-level atoms, i.c. the

counterpropagating beans should heve parallel polarisations.
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have analysed the 1-D case and argued that similar qualitative features are to be expected in
the 3-D case. Rigorous elucidation of the 3-D case is still a subject of ongoing work. The
matter is not pursued turther here, because the extension of the theory of light forces from
two-level to multilevel atoms brings another set of more important complications to
consider. Multilevel atoms are discussed in chapter 4. In summary, there are two key
features which arise from the theory and which will be significant in the work of this thesis:
firstly, for red detuning. the light force on a moving atom in a standing wave is a damping
force for Jlow and moderate intensities, and secondly, in standing waves there can be a
localising force acting in regions of size ~ A/2.

2.4 Momentum diffusion

Quantum mechanics shows that the light force has its origins in many discrete momentum
transters of magnitude sk between the atoms and radiation field. Such transfers usually
occur at random. causing the light force to fluctuate about its mean value. These fluctuations
were neglected in the previous sections 2.2 and 2.3 which dertved the mean light force
acting on stationary and moving atoms in a light field. This section deals with the effects of
the fluctuations. which cause a spreading of the momentum distribution known as
‘momentum diffusion’. Momentum diffusion 1s important because it sets a limit on the
lowest temperatures achievable by the use of light forces as ‘cooling’ forces. Much of the
necessary theory was developed in connection with Brownian motion around 1900 by
Einstein. Plunck. Fokker and Langevin.

This section is organised as follows. Firstly. subsections 2.4.1 and 2.4.2 review the
basic theory of Brownian motion and the associated topic of Langevin equations. Subsection
2.4.3 then apphies this basic theory to the specific case of Doppler cooling and derives the
‘Doppler cooling limit'. Subsection 2.4.4 then gives an outline of the Fokker-Planck
equation which is a more general mathematical tool often used in the literature to describe the
more comphcated diffusion etfects found in experimental situations.

2.4.1 Review of the theoryv of Brownian motion
A small particle of mass m immersed in a fluid and initially moving with an average velocity
v experiences an average viscous damping force

F,=-8%v (2-33)
as a result of its many collisions with the smaller fluid molecules. §°(7) is a friction
coefticient. The mean velocity 1s damped until the particle kinetic energy is of the order of
the thermal encrgy, which by the equipartition law is (3/2)kgT for a 3-D motion, where kg is

Boltzmann's constant. On the other hand, if a particle starts with exactly zero velocity, it will

INote that here 37 is primied. as it refers to the generalised damping force of any Brovwnian motion and
should he distinguisied fron the specific friction coefficient B of laser cooling (equation 2-25).
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swiftly be perturbed by surrounding fluid molecules until its Kinetic energy is again of the
order of the thermal encrgy. The particle then undergoes Brownian motion - a random walk

in momentum space, where the mean particle momentum <p)(8} is zero. The variance of the

) . Ve . : C o
momentunt < p“> tends to increase, or 'diffuse’ with time and the rate at which it increases
(in the absence of any damping) is measured by the momentum diffusion coetticient D, ,

defined by

(")~ te)p) ” ar’)
QDP = " s or, if (p} =0 EDP = 7
However, the tendency of < ;)3> to increase indefinitely is counterbalanced by the damping

(2-34)

tforce Fy. This balance can be put on an approximate quantitative basis as follows. If £, 1s

the average Kinetic energy of a single particle, then in thermal equilibrium

lidEkiH} _i_{dEkin :l =0 (2_35)
dr damping dr - Iditrusion
dEkin : 7 ; n
But | —— is the average rate ol work done by ¥ . which = (I*d.v>.
dr damping

Hence. using F,; =-fv gives

I:(I'Ekmi| :—5I<12>
di damping

IE,; 1 dip7) D, .
Also [m} = — < > =—" by definition of D,
dt lginusion  2m dt I
. [)p 2 - 1 2 Dp
Thus equation 2-35 becomes —- - f3 <\"> = 0. which rearranges to —m<v‘“> =—=. Then,
m 2 2[5'
. i 3 . .
using the equipartition theorem -7—m<1'2> = ;kBT we obtain the desired result:
D,
kT = (2-364)
kYoM
. D[J\ - ~
orin 1-D¥) hpyl =——— {2-36h)

5
Equations 2-36. originally derived by Einsteinf151], are important as they determine the
lowest temperature achievable by any stochastic damping process. Laser cooling 1s such a
process, and in laser cooling experiments designed to aitain the lowest possible
temperatures. it is necessary to adopt a design which minimises the ratto D]}/ﬁ, whilst
bearing in mind that designs which attempt to maximise the friction coefficient § may also

have large diffusion coefficients as an unwelcome side-etfect.

8 () here means the average valite aver a thermodyviamic ensemble of particles.

9 D.” \p, 8 the [-D momentiin diffusion coefficient. For a Maxwell-Boltzmann distribution,

D =3D
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2.4.2 Langevin forces and equations

The above argument leading to equation 2-36 provides a simple pictare of how the two
opposing processes of diffusion and damping lead to a cooling limit. An alternative approach
to the problem of Brownian motion is obtained by the use of Langevin equations, which are
now described.

Equation 2-33 gives the average viscous damping force Fg as
. s dav = , A
l‘dz—ﬁ",or—‘:"—ﬁ v, (2-37)
dt m

which implies that v(ee) = 0. However, v(s) is known to be of order \Eﬁ and so
M

equation 2-37 must be modified. This is done by adding a fluctuating force per unit mass
F, (#). called a Langevin force. to give
dv  =ff

—=—v+F (1) (2-38)
i 11 ’

The properties of a Langevin force are only known statistically. They are:
(F()=0
(FL(OF (")) =g6(1 —1")

where the brackets { } indicate the average over many particle/fluid systems which are

(2-39

identical in the thermodynamic sense. The use of the delia function is an idealisation. It

represents the fact that the correlation time 7 of the Langevin force is very small compared

to the time between the collisions. The quantity ¢ gives a measure of the noise strength of the

Langevin force and can be determined by formally solving equations 2-38 and 2-39 and then

applying thermodynamic considerations such as the equipartition theorem. The result[152] is
2ufhgT

that ¢ = ———="—. where s is the mass of the particle undergoing the Browntan motion and
mo

2D
n is the number of degrees of freedom of the motion. A second equation g = —£= foflows
m-

D{)li:

np’ '

tront the definitions of ¢ and Iy and combining these two results gives kg7 =

which confirms equations 2-36.
A useful result which can be obtained[ 152] by the use of the Langevin equations is the
calculation of the diffusion coctficient D, of the position variable r of a particle subject to

m

dr

Brownian motion in a fluid. D, is defined by 20D, = if the mean of r s zero.

Although the particle 1s undergoing a damped random walk in momentum space, the motion
of ity position is not technically a random walk. as it is moving continuously. The result of
the calculation {for 3-D motion) 15

D = (2-40)

[
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This position diffusion coefficient D, has relevance to oplical molasses arrangements, as the
atoms, though cooled, are not confined and will eventually drift out of the active cooling

region at a rate determined by D,.

2.4.3 The Doppler cooling limit

. D
This subsection uses the general result 2-36a, kpT = 2 L

specific calculation of the lowest temperature attainable by Doppler laser cooling. Consider

of the previous section in a

the casc of the molasses configuration mentioned earlier consisting of three orthogonal pairs
of counterpropagating laser beams. Equation 2-36 reveals that. in order to obtain a low
atomic temperature, a high friction coefficient and a low diffusion coefficient are desirable,
However these two quantities are not independent and therefore it is the ratio D, /3B which
must be minimised. Initially. cach beam is assumed to be a low intensity (s<< 1) plane wave
which means that, in the steady state, the total absorption rate is equal to the total
o . Is I's , )

spontaneous emission rate and given by m = for small 5. For low intensity beams
there are two contributions to momentum diffusion: one contribution is due to random
Poissonian fluctuations in the absorption rates trom each of the six beams and the second
contribution 1s due to the random direction of the spontancous emissions. Both contributions
are incorporated in the following calculation.

For low intensity beams the individual absorption events are widely spaced in time and
can therefore be treated as independent events with equal likelihood of an absorption of a
photon from any of the six molasses beams. The rate of absorptions is therefore 6 x I's/2.
Each absorption is followed by a spontaneous emission in a random direction. The rate of
spontancous emissions is thercfore also 6 x 's/2. Each absorption or emission gives the
atom a random 3-D momentum kick of magnitude fik and the total rate of momentum kicks
is 615, Using a standard result{ 1537 for Brownian motion in either 1-ID or 3-D, we find that

. - . - . . . hl 2 -
the vanance of the atomic momentum after a time £1s given by <p“> = 6Is1(nk) . This is

Just the momentum step length squared multiplied by the number of steps taken in time 1. It
l_{](p“) . tha
2t

D, =3h"k"Ts (2-41)

then follows from the definition of the momentum diffusion coefficient. D, = t

It was shown earlier that the friction coefficient 8 is maximised with respect to the detuning
Awhen A =—I/2, which gives 8., = 2hk?s, (sec cquation 2-27). Consequently, using
this expression for 3, and the total diffusion coefficient from equation 2-41 in equation 2-
36, the lowest temperature achievable by this cooling process is found to be 7, where
_ D, 3T nr

P ORKEs 2

(2-42)



The temperature T is known as the Doppler cooling limit{216]: for rubidium cooled
on the D- line it 1s 136 uK. It may be viewed in the light of Heisenberg's uncertainty
principle: as there is an uncertainty of the order I~ in the spontancous emission time. the
energy of the atom must be at least as large as the corresponding uncertainty in the energy.

In experimental situations the diffusion and friction cocfficients D, and 8 depend on
the particular laser beam configuration, on the beam intensities and detunings and may also
be spatially dependent: thus the precise calculation of cooling limits even for a two-level
atom can be quite complex. e.g. see [127,150,154-156]. In the case of intense light fields.
s>1. diffusion due 1o spontaneous emission saturates because the excited state population
approaches 1/2 for s>1. Diffusion due to induced transitions, however, now contains
contributions due to both absorption and stimulated emission and does not saturate, It
increases monotonically with laser intensity, becoming significantly greater than the
diffusion due to spontaneous emission. This validates the assumption made at the start of
this subsection, namely that beams with a low saturation parameter would give the lowest
temperature.

2.4.4 The Fokker-Planck equation

The most general mathematical deseription of motion due to stochastic forces is achieved
with a 'TFokker-Planck” equation, so called becausc they were first separately derived by
Fokker and Planck as descriptions of Brownian motion, Consider « [arge statistical ensemble
of systems (e.g. particles in a fluid). each described by various macroscopic variables {x;}
which are subject to microscopic thermal fluctuations. As an cxample the {x;} might be three
position co-ordinates and three velocity components for a particle undergoing Brownian
madion. The ensemble can be described by a 'distribution function’ _f'(.\‘f..\"f, ...... v,.7) which
gives the probability of a system {or particle) being m the state (x;.x;,.....) at time ¢. The
Fokker-Planck cquation is just the equation of motion of the distribution function. and is

derived[152] essentially by performing a Taylor expansion of f{{x;}.1 + Ar). and taking the

Wbt + A0 — filv b : e .. df .
Sl A} ALRARY as Af —» 0 o obtain an infinite series for (a—f consisting
Af f

of all orders ot the derivutives of fwith respect to the {x;}. It is then shown that, if the

limit of

microscopic fluctuations give rise to Langevin forces with a Gaussian distribution, only the
first two terms in the expansion are non-zero. This gives the general Fokker-Planck
equation:
. >
P I e 9 o f (2-43)
ot dy, ' o ‘
where the drift coefficients D}” and diffusion coctficients Df}-z) may be functions of the {y;}

and 1.



The particular form of equation 2-43 in specific applications depends on the number of
macroscopic variables {x;} and the nature of the functions Df” and DI.(]-Zj. These functions
may be detepmined cither from consideration of the microscopic processes. or by finding the
equivalent Langevin equations and using a thermodynamic argument. Once the drift and
diffusion coetficients arc known. the Fokker-Planck equation is solved either analytically or

numerically to give the distribution function /. Usually the desired objective is the steady
df

=(}. A point worthy of
4

state distribution function found by solving equation 2-43 with

note 1s that the Fokker-Planck equation can be written as a continuity equation; as an

example in one dimension for simplicity:
& = »ﬁ, where S is a probability current given by § = {Dm _9
o dx dx

shown that for a stationary (steady-state) process, the probability current must be zero.

Dm}f. It can be

The preceding introduction is now clartfied with two examples related to laser cooling.
i) One dimensional Brownian motion without a space dependent force.

Consider a one dimensional Brownian motion without a space dependent force. The set {x,}

consists of just one variable, the speed v of the atom, obeying cquation 2-38:

d =
— =T+ F(t
ot 75 L)

where the Langevin force is defined by
(FL()=0

(FLINF (1)) = B b(r )

The dritt and diffusion coefticients in this cuse are D o ==pB%v/mand D" = [ Jr\BT/HI

and hence the equivalent Fokker-Planck equation for this system is
A B oD kT P2
g m| oy m o’

and the probability current 1s
- __ﬁ vf

i i ()1

For a stationary process the probability current must be zero, and putting § = 0 gives a

bl
Hiv o
H[

simple ditfercntial equauon for f. The solutionis f=Ce % | and normalisation gives

; =T
Ml _;\37

\ 2mkgT

dimension. The above example shows that the Maxwell-Boltzmann velocity distribution will

flvy= . which is the Maxwell-Boltzmann velocity distribution in one

be obtained in any situation where a damping force proportional to velocity is

counterbalanced by o momentum diffusion process. Doppler cooling is such a process.



i) One dimensional Brownian motion in an external potential.

Consider a particle undergoing one dimensional Brownian motion in an external position-
dependent potential which produces an external force F,,. The set {x;} consists of two
variables v and v. It is reasonable to assume that the thermal jitter of the molecules causing
the Langevin force is not affected by the potential, and so Fy is independent of x. Then the
Langevin equations are:

P

dt m m (2-44)
ot
It can be shown[152] that the drift coefficients of the equivalent Fokker-Planck equation are
D(‘“ =_£‘,__ ‘FC)([ D(:_’) — ﬁ’kBT
k " H " le
Dl =y D' =D =0
The Fokker-Planck equattion then takes the following form. also known as Kramer's
equation:
df(x.vh) J c7 ( } [)”RHT 8
RAAALAAEAPE BN e R X, (2-45)
at X ) Ny e il
or in three dimensions:
2/ 1 v F kT
df (r.v. { ~V.v+V [ﬁ_v+_\tJ ﬁ lef{rvr) {2-46)
ot m m m’

Equation 2-46 is the form generally applicable in laser cooling and trapping
experiments where ., may represent for example a large scale potential well. as in the
Zeeman optical trap (see chapter 3). or, as another exaniple. may represent a periodic
potential with a period ~ A72. (Sce chapter 4). When found. a steady state solution of
equation 2-46 gives the velocity distribution (temperature} and spatial distribution of cooled
or trapped atoms. Calculations to find such solutions are generally complicated and this
thesis will not deive deeper, other than (o point to relevant literature e.g. {41]. General
methods of solution for the Fokker-Planck equation are given in [152].

Summary of section 2.4

The problem of diffusion can be tackled with varying degrees of rigour by simple energy
arguments. Langevin equations or the Fokker-Planck equation. The key implication for
experimental work is that for the two-level atom, the stochastic nature of the cooling process
sets a limit of order #177/2 on the lowest achievable temperatures, which is known as the

Doppler cooling limit.

2.5 Fully quantised approaches to light forces.
In the interests of completeness, this section gives an overview of two approaches to the

caleulation of light forces for two level atoms in which the centre of mass motion of the atom
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is quantised. The first section discusses methods which use the Wigner transform of the
density matrix, the sccond section discusses numerical approaches using the "Monte Carlo
wave function method'. The approaches described in this section quantisc the internal state
of the atom, the centre of mass motion of the atom and the light field including the empty
vacuum modes. Such treatments may be found in references{157,158]. Because such
methods are fully quantum mechanical. they can be regarded as having more rigour than the
semiclassical treatments. Nevertheless, they have the disadvantage of leading to complicated
calculations and simplifying assumptions are still required to obtain a solution, e.g.
restriction to specific light intensity and atomic velocity regimes. These approaches serve
two purposes. Firstly they confirm the results of the simpler semiclassical theory in the
regime of its validity. Secondly they extend our understanding into regimes where
semiclassical theory may no longer be used. 1.e. when the quantum nature of the atomic
wave packet may no tonger be neglected. For instance. this occurs for atoms with small
kinetic encrgies of the order of a single photon energy, or when an atom is confined in a
potential well of very small dimensions.

2.5.1 The density matrix master equation and the Wigner function

The most convenient mathematical methods for dealing with the fully quantised problem
were devised by Wigner[ 159]. The subject of interest is the distribution of the atoms over
the possible position and momentum states and this is given by the "Wigner function’

[ (r,p) which is a 'quasi-distribution function’ for the atoms over position and momentum

space. If W(r) is the posttion-representation wavefunction. then

1 - 1 | L
' = e ——8)e " s 3.
_}‘“(r.p)-—(zj_l_m3 :!;'::[‘P(r+25)‘i’(r 25)( ds (2-47)
The Wigner function has the physically iniuitive propertics:
J‘f“ (r.p)d’r=P(p) the probability density of momentum (2-48a)
J [ (r.p)d p=P(r) the probability density of position (2-48Db)
_Hj'“ (r.p)d’rd’p=1  normalisation (2-48¢)

Though the integral of the Wigner function over the whole of its phase space is unity, it s a
quasi-probability density because it can take negative values at points in its space. Having
defined the Wigner function. calculations proceed in a manner that in some aspects parallels
that of semiclassical theory, for instance [157] proceeds by defining a generalised Bloch
vector, whose components (U(r.p}, Vir,p). W( r,p)) are distribution functions for the usual

Bloch vector (u, v e

= ” 83r33pU(r,p}. vo= ” 83r83pV(r,p). W= ”831‘53[)W(r,p),
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Note that just as the fourth' Bloch vector component is given simply by p.. TPy = lLas a
consequence of normalisation ( see equation 2-6), the Wigner function is normalised in
equation 2-48c¢ above. The equations for the generalised Bloch vector, after considerable
manipulation, result in a Kramers-Fokker-Planck equation for f (r,p), the distribution of
the atoms over position and momenturn space. This can then be solved in the steady state.
The emergence of such an equation demonstrates the close analogy between atomic motion
in near-resonant laser light and Brownian motion of a particle in a potential well. As with
semiclassical treatments, most fully quantised treatments are confined, for simplicity, to one
dimensional light fields; reference [160] is an exception.

One important conclusion{41] is that, for any stochastic cooling process, the lowest
temperature achicvable is inversely proportional to the correlation time 7y, of the Langevin
force. For the two level atom this is simply 7 = 1/I" and we have kgT = #il” as before.
Chapter 4 will discuss the case of multilevel atoms, where fonger internal decay times 1, are
possible. and lower temperatures given by kg7 = fi/ 7, are achievable.

2.5.2 The Monte Carlo wave function method

The 'Monte Carlo wave function’ method is an approach to calculating atomic
observables such as light forces which has been developed since 1990 [111-117]. It is an
iterative numerical method which is formally equivalent[112] to solving the master equation
for the density matrix. In one variant of the method. applied to spontaneous emission of a
single atom. one itcration proceeds as follows. The initial (excited) state of the atom is fully
described by a normalised wave function. which is then allowed to evolve for a small time
At under a Hamiltonian which is non-unitary. After A7 a '‘pseudo measurement’ is made with
either of two possible ourcomes whose probabilities are determined by a random number
gencrator programmed to simulate the spontaneous decay rate. Either a spontaneous
emission event is simulated, in which the wave function collapses into one of its possible
around states, or a null event {no spontaneous emission) is simulated, in which case the
wavefunction continues 1o evolve under the Hamiltonian. The new wave function after this
mucasurement’ will no longer be normalised, as there has been a 'loss of probability’ owing
to the non-unitary Hamiltonian. Thus it is renormalised after cach measurement to give a
new wave function, and the seccond ieration begins. Thus, considering one atom only, the
internal state and its associated observables follow a stochastic trajectory whose random
clement is due to the randomised times of the spontaneous emission events. The same
simulation is run many times, enabling the time evolution of the distribution tunction of any
observable to be obtained.

The advantage of this approach over the conventional master equation approach is that
it requires only a wave function defined by n probability amplitudes, if # is the number of
basis eigenstates, whereas the density matrix requires n” matrix elements. If the problem is
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defined for a4 multilevel atom using a quantum mechanical treatment of the atomic centre of
mass, then 12 can be large (>> 100}. The stochastic wavevector method allows a trade-off in
which a computer with a smaller memory may run a numerical simulation involving many
more iterations which theretore require a longer run-time. This method is becoming an
established technique for tackling the dynamics of laser cooling. It produces results which
agree with experiments| 1 14]. 1t allows numerical simulation of the difficult three
dimensional problem{115} and it provides new insight into laser cooling processes{116].
The master equation and stochastic wavevector approaches illustrate two equivalent
views of the density matrix. In the master equation approach, the full density matrix of a
large combined system is converted to a reduced density matrix’ describing a small system
interacting with a thermodynamic reservoir through decay terms. The reduced density matrix
is not a pure quantum state, but rather a description of an "average’ atom which evolves
smoothly under the master equation. In the stochastic wavevector method, each individual
atom in the ensemble 1s always in one of its pure quantum states, and evolves independently
according to given quantum mechanical probability laws by making discrete jumps’
between these states, and the average of all the outcomes 1s taken.
2.6 Summary of chapter 2
The semiclassical theory of light forces is simpler to implement than the fully quantised
description and provides an adequate framework for description of many aspects of cooling
and trapping. It shows that light forces can be separated into dipole and scattering forces.
The dipole force is position dependent. occurring where there 1s a light mtensity gradient,
and offers the possibiiity of trapping atoms. It ts associated with exchange of photon
momenta between plane waves, 1.e. with coherent absorption/stimulated emission cveles.
The scattering force is highly velocity dependent. offering the possibility of cooling atoms. It
is associated with incoherent absorption/spontaneous emission cycles. The stochastic nature
of light forces leads to momentum diffusion which sets a limit on the lowest temperatures
obtainable. The residual kinetic energy also enables atoms to escape from any sufficiently

shallow potential well.
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Chapter 3
Optical molasses and the magneto-optical trap

Introduction

The history of experiments on the mechanical interaction between atoms and light was
summarised in chapter 1. This chapter develops the story post 1985 and is devoted to two
important practical applications of light forces, namely ‘optical molasses’ (described in
section 3.2) and the 'magnetoe-optical trap’ or 'MOT' (section 3.3). These two experimental
arrangements, {irst built in 1985 and 1987 yespectively, mark the beginning of a surge of
growth in studies of the mechanical interaction between atoms and light. They are described
in this chapter in terms of the Doppler forces discussed in chapter 2. Before procceding. it
should be stressed that a complete understanding of the processes in molasses and the MOT
requires the introduction of further theoretical idcas. namely 'sub-Doppler’ cooling
miechanisms, which are discussed in chapter 4. The need for a sub-Doppler theory was not
apparent until 1989 and thus the development of ideas in this and the following chapter
tollows the chronology of cxperimental and theoretical discovery. This chapter contains
many simplifying assumptions made in order to estimate experimental parameters. For
instance, it is often assumed that light forces in 3-D cooling and trapping arrangements can
be modelled by the linear addition of the forces due to the three orthogonal 1-D standing
waves. Section 3.4 discusses methods of loading atoms into molasses and traps and sections
3.5. 3.6 and 3.7 deal in turn with the most important parameters of the MOT, namely
loading and loss rates. atomic number density and trap temperatures. Before discussing
molasses and the MOT, section 3.1 shows how the idealised two-level atom of theory is

achieved approximately with the real atoms of experiments.
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3.1 Real ‘two-level’ atoms

How is the theoretical idead of a two-level atom realised in practice? The alkali metals are
useful in that they possess strong transitions at wavelengths accessible by lasers and in that
they tairly easily form inonatomic vapours and atomic beams suitable for spectroscopy. The
D-lines of sodium, rubidium and caesium are commonly used, but they have hyperfine
structure. As an example, the Dz hine (582 — 5P37) at 780 nm of the isotope of rubidium

83Rb consists of six separate hyperfine transitions, between energy levels grouped as shown
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Figure 3-1 The Ivperfine strucure of the SIRD Ds line.
The selection rules for electric dipole transitions allow only AF =, =1, and so if an atom
is excited by a laser tuned to the F\y = 3 — F,. =4 hyperfine transition, it can only decay
back to F, = 3. Thus this is a two-level transition, with Zeeman degencracy. Achieving
such fine tuning 1s possible with a laboratory laser. whose linewidth can be orders of
magnitude less than the hyperfine natural linewidth. There is however a snag with this
scheme. In that the hyperfine hines are homogeneously broadened with a Lorentzian profiie
and so there is some small overlap between neighbouring hypertine cnergy levels. In the
specific example of %Rb. a laser tuned to the F, =3 — F, =4 ransition has a probability
around 0.2% of exciting the F, =3 — F, = 3 transition, and tfrom F, = 3. the atoms can
spontaneously decay into £, = 2. Eventually all the atoms will be transferred (optically-
pumped) into the F, = 2 level, and the original two-level system almost completely
depleted. To counteract this depletion, a second laser called the 'repumping’ laser is used.
tuned to the Fy =2 — F, =3 transition. By a similar process. this repumps a proportion
of the atoms back to the F,, = 3 level. The final result is a steady state population
distribution with a proportion of atoms in F, = 3; the proportion is to some extent
controfluble by varying the repumping laser intensity. The atoms in F, = 3 are coupled by
the main laser to the level £, = 4. crealing 10 a good approximation a 'real' two-level

system.
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3.2 Optical Molasses

'Optical molasses’ is the name given to an experimental arrangment in which intersecting
laser beams produce a spatial region where gaseous atoms experience a large velocity-
damping force, resulting in very low temperatures. The first builders of such an
arrangement, Steve Chu et al[1] at Bell Laboratories, New Jersey, coined the term "optical
molasses' because of the resemblance of the resulting viscous fluid of photons to real
molasses. The theoretical concept of 'optical molasses' was first suggested for neutral atoms
by Hinsch and Schawlow [21]in 1974, and independently in 1975 for ions by Wineland and
Dehmelt[20].

' \ laser

/ beams

‘optical molasscs’
atom cloud

Figure 3-2 Optical molasses
The molasses are formed at the intersection of six weak (s < 1} laser beams. arranged as
three counter-propagating pairs. and with each counter-propagating pair being orthogonal to
the other two pairs as shown in figure 3-2. The laser beams all have the same wavelength
which is detuned by about one natural linewidth to the red of a chosen atomic transition. The
intersection of the beams occurs in a vacuum chamber containing a source of the chosen
atomic species. In the first molasses apparatus] 1]. the sodium atoms 1o be cooled were
injected into the molasses region in the form of a pulsed atomic beam. This and other foading
methods are discussed in section 3-4.

The basic theory of opcration has already been provided in chapter 2: each
counterpropagating pair of beams gives rise to a mean damping force F; = v, (equation 2-
25), where f§B; is the (negative) friction coefficient and v; the atomic speed on the ith axis.
Bearing in mind that this result is the spatially averaged force and that it 1s strictly true only
for low intensities (£, < ') and low velocities (kv < A), we can add the forces due to cach

of three beam pairs 1o find that

F = v, where f§ = }6hk F,Q“AA — (3-1a)
(I +20-+4A")
A more accurate expression for 3, which takes account of power-broadening, is
160K2 Q2 A
p=—y (3-1b)

(T2 +120Q.° +44%)?



where the change to 12422 in the denominator is due to the average power-broadening due
to 6 laser beams[ 145.161]. The magnitude of the friction coefficient ff as given by equation
3-1b is maximised when 4 = 172 and £2.2 = [2/6.

To give some sensc of scale betore further developing the theory, table 3-1 lists some

typical parameters for optical molasses.

Table 3-T Typical optical molasses parameters for Rb (780nm)
Cloud and beam diameter 251010 mm
Temperawre 0 T f 20200uK
Numberofatomsincloud L N o jotwl0?7
Atom number density ” 1000010103 ()
Capture velocity 1 oo~ 8mgl
RMS. velocityincloud ~ + v 1 61020cms!
Absorption cycles to stop atom e 2 L
Stopping time 3 <1 ms

In the original experiment| 1], the beam radius i was 3.5mm. creating a spherical
motasses region with the same radius. Any atoms which enter this region {from the atomic
beam are subject to the damping foree, and if the initial velocity is less than a certain capture
velocity 1, they are 'stopped'’. They then undergo a diffusive motion (as discussed in
chapter 2) which will result in their eventually reaching. after a confinement time 7. the
houndaries of the molasses region and escaping. Other parameters of interest are N, the total
number of atoms in the molasses: i1, the number density in the molasses and T, the
temperature of ihe captured atoms.

The temperature of the atoms is predicted by the theory of chapter 2 to be &, 7 = D, / 3B
(equation 2-30) where D, is the momentum diffusion coefficient and 3 the friction
coefficient. It was shown in chapter 2 that because D, and 3 are interdependent, there is a
theoretical linnt, the Doppler cooling limit Tp, given by &, T,, = #l/2 {equation 2-42). For
sodium cooled on the Ds line, Tp, = 240 pK, which agreed with the result of 240720 uK
measured by the Bell lubs group.

The conflinement time (or tifetime) can be estimated by using the position diffusion
coefficient D, = (r>3/2¢. which is equal to 34,7/ (equation 2-40). Here r is the distance
moved by an atom undergoing ditfusive motion. Thus the atom will, on average, reach the

boundary of the molasses region (a distance ry, ) and escape in a time 7, given by

I High densities may be obtained rransiensly by louding the molasses from an MOT



T. =, 3/6kgT, which is of the order of 5 seconds? for sodium molasses with ry = 3.5
mm and 7 = 240 pK. This calculation assumes a minimum diffusion rate and no
superimposed drift velocity. If there is a small imbalance 1n the intensity of two
counterpropagating beams, a drift velocity appears which dramatically reduces the
confinement time, e.g. 7. = 0.1 s for an intensity imbalance of 2%}{1].

In the case of the Bell labs experiment where the loading atomic beam was pulsed, each
pulse loaded the mofasses with ~ 10Y atoms at a density of 109 atoms cm-3 and then the
number of captured atoms decayed exponentially as they diffused away. The measured
decay rates agreed well with the rates predicted by diffusion theory.

The capture velocity v may be estimated as follows. Assume that the friction coefficient
has been optimised by setting A =—T/2, €2, = I'. Then tor a 1-D counterpropagating pair
and an atom whose velocity component along that axis is v, we {ind that equation 2-24¢

simplities to

dv _ —hkl” v/ T (3-2)
dt 2ni l+(k\{/r)2 +(k1'fl_')4 o
Solving this with mitial condition v =1, when t = 0 we obtain
AL A ~hk
log,i — |+ V=gt |+ vt = 3-3)
é((r()} 2r2( o’) 4r4( ) m (

Initial insight into the damping process can be obtained analytically by integrating equation
3-3in the two velocity regimes kv << Iand kv >> I For instance it is casy to show that
rubidium atoms with kv, = I'/4. corresponding to vy = 1.1 ms™1, are stopped in 0.05 mm.
or that for atoms with kv, = 4T . corresponding to v, = 17.6 ms~1. the stopping distance is
44 mm, i.e. much larger than most practical laser beam diameters. Further insight into the
intermediate regime ( kv, = 1) may be obtained numerically by plotting the equation for
various values of the initial velocity vy as in figure 3-3. The distances required to stop atoms
with various imtial velocttics vy at £ = 0 arc given by the areas under the graphs. The graphs
are plotted for the case of rubidium atoms cooled on the 582 — 5P3/2 transition at 780 nm,
and with A = —I/2. €2 = I". For this transition I7k = 4.4 ms " and 2m/#ik? = 40 ps. In
practice. molasses laser beawm diamelers are usually in the range 5 to 10 mm. Figure 3-3

shows that such stopping distances correspond to atoms with initial speeds of 11 to 13 ms L.

2 Note that this estiniate is baved on Doppler theory onlyv. Longer confinement times are predicted in

molasses when sub-Doppler cooling is taken into account, owing ro larger 3 and smaller T.
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Figure 3-3 Theoretical plots of atomic velocity versus time for the molasses capiure process

of Rb

In a simple model of molasses. the capture region is spherical. and the maximum speed
which can be stopped corresponds to atoms which are incident normally at the spherical
boundary and just stopped as they reach the opposite boundary. For real molasses, the beamn
intensity profiles are Gaussian resulting in a smaller friction coefficient in the outer layers of
the cloud. Furthermore, many atoms will enter the spherical molasses region at angles other
than 90°. Different definitions of the term 'capture velocity' occur in the literature. Some
aroups. ¢.2. [291. have defined it as v, = 2177k, because this is the velocity range in which
the molasses cooling torce is greater than = 1/10th of its maximum value. Others, c.g.
[162], have defined it as v = {2ar,, )]’;2. which is the maximum speed which can be stopped
within a molasses beam radius r by a molasses deceleration of magnitude «. This latter
definition is more useful as it takes into account the actual stopping distance available.

The invention of molasses opened the door to new arcas of studies using these cold
atoms, but was still not always an ideal tool in that molasses (or even 'supermolasses'|163])
is not a trap for atoms. Because there is only a velocity damping force and no spatial
restoring force, the slowed atoms cventually diffuse out of the trap region, necessitating
reloading from an atomic beam. Theorists at that time had invoked what was known as the
Optical Earnshaw theorem[164] to prove that the scattering force could never be used to
produce a stable trap as the divergence of the Poynting vector is zero in charge-free space?.

3 The dipole force, us distinet from the scartering force, niay be used 10 forn a stable trap [2]
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This theory is correct for strictly two-state atoms. but as was tirst pointed out in 1986[165]
and demenstrated experimentally in 1987[28], stable trapping by the scattering force is
indced possible for two-level atoms when the excited level is Zeeman degenerate. Such

trapping forms the basis of the magneto-optical trap, discussed next.

3.3 The Magneto-optical Trap

The first magneto-optical trap (MOT) was built by Raab ct al in 1987[28], though the
seminal idea is credited in that paper to Jean Dalibard. The trap uses the same laser beam
configuration as optical molasses, i.e. six detuned lasers in three counterpropagating pairs.
Just as a velocity-dependent detuning (the Doppler shift) can lead to a damping force, so can
a spatially-dependent detuning lead to a restoring force. This is achieved in an MOT by the
addition of two additional features 1o a molasses arrangement: firstly the six beams are each
circularly polarised according to the scheme shown in figure 3-4, and secondly, a
quadrupole magnetic field is provided in the beam intersection region by a pair of "anti-
Helmholtz' cotls. again as shown in figure 3-4. The magnetic field gradient is usually of
order 5 to 13 gauss cm~! at the trap centre, although MOT's with higher gradients have been
investigated[166.167].

o_+

~ * : s

@ \ laser beams
laser trapped el / aligned along x,
polarisations o ‘ vand g axes

4

'8
: * ; anti-Helmholtz magnetic
Ca coils, showing current

cireulation

Figure 3-4 The magneto-optical trap (MOT)

The MOT has become a standard starting point for much of the ¢current experimental work on
cold atoms (roughly 50 groups worldwide). Once it is built, it is a convenient source of
dense, cold atoms which can be used for their Doppler-free spectroscopic properties, studied
for intcresting physics in their own right, and used as an ‘on-tap’ supply of cold atoms for
other experiments or types of trap. A comprehensive review of the physics of the MOT may
be found in [162]. A typical MOT has the parameters given in Table 3-2. Further details of

the specific MOT apparatus used in this work are to be found in chapter 6.
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Table 3-2 Typical parameters for a magneto-optical trap for Rb

Cloud diameter
Temperature

Atom number

Atom number density
Potential well depth
Capture velocity

Beam diameter

0.1 to 1 mm

10 to 200 pK
104 10 1010

108 to 101! ¢m-3
~0.5 K (x kp)
51025 ms]

31020 mm

3.3.1 The operating principle of the MOT

The operating principle of the MOT is most easily explained in 1-D, and for an atom excited

onalJ,=0->J,=1 transition. Firstly, note that the experimental set-up 1s still a

molasses arrangement. and so the molasses damping force is present. The magnetic field

produced by an anti-Helmholtz pair (the same geometry as a Helmholtz pair but with

opposed current circulations in the two coils) is zero at the centre of the molasses/trap

region. The field has a magnitude B. which increases linearly for small displacements from

the centre, but the field directions are opposite on either side of the trap. Thus the normally

degencrate Zeeman sublevels (m1, = 0.11) of the excited state are split, and the splitting

increases with the distance of the atom {rom the trap centre. Figure 3-5 shows the [-D spatial

variation of the Zecman sublevels fora J, =0 -5 J,

| transition.
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o— laser =4 m o+ laser
beam beam
— m=4 excited state
energlcs *
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/
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interacts with
excited state atoms
in this range of
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here

Figure 3-5 Atomic energy levels in a magneto-optical trap

At the centre of the trap the three excited state sublevels have equal energy. Away from the

trap centre, however, the encrgies of the ni, = —1 and m, = +1 states shift in opposite
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directions. Consider an atom to the left (-7) of the trap centre. Because the laser is detuned,
the probability of transition for such an atom from 'q i, = 0> to Ie,me = —l> is increased

and that of

gmy = ()> to 'e,m{, = +J> 1s diminished. The transition Jg,mg, = 0> 1o

e.m, = —1). however, is excited only by ¢~ light, where ¢~ indicates that the light carries

—hz of angular momentum per photon. Thus the atom preferentially absorbs the ¢~
photons gaining 7ikz of (lincar) momentum per event, and as in pure molasses, the
momentum kicks due to the subsequent spontaneous cnission events cancel out on average.
A similar situation exists on the right (+z) side of the trap centre, but involves an increased

gm, = 0> to

probability for the em, = +l> transition and ¢* photons. This particular

set-up ol two counter-propagating beams with equal intensities, but opposite angular
momenta is referred to as a ¢ 6 standing wave. It requires the counter-propagating beams
1o be circularty polarised with either both beams lett-handed (or both right -handed). This is
usually achieved in experiments by retroreflecting an incoming circulurly polarised beam at a
guarter-wave plate and mirror combination, 1.e. so that it passes through the waveplate
twice.

The result is that atoms in the trapping region experience a force towards z = 0 and this
effect 1s casily extended tn experiments to three dimensions. The quadrupole field for the
anti-Helmholtz coils produces a freld gradient on each of the three Cartesian axes and it is
simply a matter of arranging for the correct arrangement of & Tand ¢ beams on each axis
to produce a fully three-dimensional trap. Theoretical analysis of the MOT in 3-D is
complicated by the interference between the three standing waves and most theoretical papers
give estimates for the 3-D case, based on 1-D calculations. Reference [168] gives a 3-D
guantum-mechanical analysis of the MOT, using Doppler cooling mechanisms only.

3.3.2 The MOT as a damped harmonic oscillator

The restoring force of the MOT is now discussed quantitatively. The Zeeman detuning due
to the magnetic ficld is additionat to the Doppler detuning and laser detuning, and may be
incorporated in the denominator of the low-intensity equation of motion (2-24a) foraJ =0

toJ =1 atom in [-D optical molasses:
rof’ :
F.= frk( s e

5 5 R— 3 (3-4)
M +20Q7 +4(A~kv. = &7 T +20Q7 + A+ kv + {2

p dB. . .
where { = %&Lj—— ¢ 1~ the Lande factor for the excited state and g the Bohr magneton.
il (25w

This may be simplified to a form (compare with equation 2-24c}

Foe— 92 ghere p=REEEC (3-5)
) 1+ (,'zph + (13}:) r

where ¢}, ¢y and ¢3 depend only on £2,, A and T and the dimensionless variable p is the

sum of the Doppler and Zeeman detunings. Just as for pure molasses, the coefficient ¢ has
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its greatest magnitude when A =—77/2 and €2, = I'. and in that case

¢ =~-hkl'/2, ¢; =y =1. giving

—hakl”
F. :"3_1—*5)—‘7 (3-6)
+pl4p

As the variable p depends on both the atomic velocity and position, equation 3-6 is a non-
linear differential equation and difficult to solve, but its behaviour can be analysed as
follows. Firstly, the main regime of interest is defined by p << |, because this corresponds
to atoms which have been slowed and captured. In the limit p << 1, the denominator of
cquation 3-6 is approximately equal to one, and we have the equation of a damped harmonic
oscillator
Fo=—fv -z (3-7)

Here s the usual molasses friction coefficient. originally defined in equation 2-25 and x'is
&P _ spp dB; B.

k kh  dz

that, in experimental practice, the ratio of B to xis such that the motion is overdamped,

the spring constant of the MOT, which is related to Bby x = It turns out

though this is not necessarily predicted by the Doppler theory presented in this chapter. The
latter point is further discussed in chapter 4 which deals with sub-Doppler cooling.

As the variable p increases from small values towards 1. the effect of the denominator
in equation 3-5 becomes increasingly significant. When p = 1, the magnitude of the force
damping coeflicient in equation 3-6 is reduced to about 1/3 of its maximum value, and as p
increases above 1. the force rapidly tends towards zero. The MOT force is etfective roughly
in the range -2 < p < +2. Hence the other regime of interest is when [pf = [, as this
corresponds to the initial capiure process. The MOT parameter of interest here 1s the capture
vefocity ve. An important point is that because p = (kv. + {2)/T . there are situations in
which k1 and {7 have opposite signs and this allows higher velocities to be damped to zero
than in pure optical molasses. In fact atoms entering the trap region 'too slowly' may first be
accelerated inwards and then swiftly stopped close to the trap centre. The result is that atoms
with speeds up to ~ v, = 4I/k may be captured*. This is about twice the capture velocity for
pure molasses. As i numerical example, consider an MOT for rubidium with
A=-=I/2 and £ =T und a typical magnetic field gradient of 10 Genv'l. An atom at ;=4
mm from the trap centre. has ¢2/I" = +2, and hence experiences no force when kv. /"= -2
or v- =-8.8 ms!, because then p = 0.

A first approximation to the force field in a fully three-dimensional trap is obtained, as

was done previously for molasses, by simply adding the forces due to three orthogonal one-

+ The effect of this Zeeman-slowing on the capture velocity in the case of a fully three-dimensional model of
the MOT is much more complex|57]; the increase in the capture velocity is less than that in the [-13 model

described here,
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dimensional models. This approximation ignores cffects due to interference between the
various laser beams. The quadrupole field has the property, following from Maxwell, divB
= 0, that dB, / dx=dB, Jdv=- é dB./dz where the 7 axis runs along the common axis of
the anti-Helmholtz coils. As the spring coustant in each direction is proportional to the field
gradient in that direction. the cloud of trapped atoms is confined by a stronger force in the 2
direction leading to an ellipsoidal shape (see figure 6-22a on page 160, which is an image of
an MOT atom cloud). A complete mathematical treatment would therefore employ a tensor
spring constant e.g.| 1621, but for the simple discussion intended here, either the contraction
to the 1-D picture or a spherically symmetric model is sufficient.

The above model of the MOT may be extended (without considering sub-Doppler
cooling mechanisms) to atoms undergoing J to J +1 transitions where J > 0. The MOT
operating principle i1s the same. though there are more ground and excited substates to take
into account. An accurate calculation of the MOT spring constant then involves averaging
over all the possible transitions and it is necessary to take into account the different Landé
g-factors of the ground and cxcited states and the steady state population brought about by
optical pumpingf169]. Optical pumiping will occur into the ground states with the most
negative magnetic quantum number on the side of the trap resonant with ¢ light, and vice-
versa. However, further discussion of cooling of atoms with J, > 0 is deferred until chapter
4. where the sub-Doppler cooling mechanisms essential to a correct detailed understanding

of the MOT are introduced.

3.4 Loading the magneto-optical trap

There are two basic methods of {eading atoms into an MOT: loading {rom an atomic beam
and loading from a background vapour.

3.4.1 Loading from an atomic beam

The first groups to build and experiment with the MOT[28,87] loaded their traps from an
aromic beam. Because there 1s a maximum capture velocity and because the thermal
velocities in an atomic bean are usually greater than room temperature thermal velocities, it
is necessary to deceierate the atoms in the atomic beam. This is done with a single cooling
laser beam counterpropagating with respect to the atomic beam. As the atoms in the beam are
decelerated from several hundred ms! to a capture velocity around 10 ms-!. the optimum
laser detuning for efficient slowing alse decreases, and it is necessary to sweep this detuning
to stay in resonance with the decelerating atoms. There arc two techniques for doing this.
The first technique shifts the laser frequency in step with the Doppler shift of the slowing
atoms and is known as ‘chirp-cooling’. For instance in slowing a beam of caesium atoms
from a caesium oven, the laser frequency would be scanned over ~ 500 MHz in 5
ms|169,170]. The second technique shifts the atomic transition frequency via a magnetic
field which varies along the atomic beam path in such a way as to matntain the optimum
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detuning. This is known as "Zeeman-slowing'[23,171]. In [23], Na atoms were slowed
from 900 ms™! in 90 cm, over which distance the magnetic field dropped from 0.16 T to
0.05T.

Loading from an atomic beam offers some advantages over the method of loading from
a vapour. Firstly. the vacuum surrounding the trap can be as good as technology can
achieve. which minimises collisions from background atoms and results in a long lifetime
(around a few seconds) for atoms in the trap. (Trap loss processes are discussed further in
section 3.5.2). A second advantage of atomic becam loading is that the source of atoms can
be switched on and off.
3.4.2 Loading an MOT from a background vapour
The alternative loading method, first used in 1990[29]. is to load directly from a surrounding
vapour of the atomic species to be trapped. Here, atoms Irom the low speed end of the
Maxwell speed distribution. with speeds less than the capture velocity v, may be captured.

. . . ‘ 3 -
From the kinetic theory of gases, such slow atoms constitute only (VL. /vp) ~107* of all

atoms. where vy, is the most probable velocity in the Maxwell-Boltzmann distribution. One
advantage of this method ts the simplicity of construction of the apparatus compared to a
method requiring an atomic beam. A second advantage is that the trapped cloud will exist in
a steady state. facilitating certain types of experiments ¢.g, measurements of cloud diameter
and number density.

3.4.3 Loading molasses from an MOT

Molasses was first loaded directly from an atomic beam, and cannot be usefully loaded
directly from a vapour as the continuous outward diffusion prevents a high number density?.
However. the invention of the MOT allowed loading of molasses from a MOT in a vapour.
Once the MOT is loaded from the background vapour, the magnetic field may be switched
off. teaving pure molasses with a high number density. The initially small molasses cloud
then expands diffusively and also decays as a result of background collisions e.g.[205]. Tt is
also worth mentioning that some groups (e.g. EN.S. [119]} are now using one MOT to
load a second MOT! The first MOT 1s in a region of high background pressure and is
therefore quickly loaded: its contents are then literally dropped into a region of fow
background pressure where a second MOT awaits to retrap the atoms. Thus the second MOT

can also be efficiently loaded but without the disadvantage of a high local vapour pressure.

3.5 MOT loading and loss rates
This chapter now confines itself to discussion of the arrangement used in this work, namely

an MOT for rubidium loaded from a vapour, This section reviews simple models and

5 But see section 4.7, 10 (the NOT trap), which appears 1o be a recently discovered exception.
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calculations for the parameters: number of atoms, number density, cloud size and

tcmperature.

3.5.1 Loading rate

The MOT trapping region can be modelled as a spherical region which swallows any atoms

entering with speeds less than ve. Consider a small region dA on the surface of this sphere.

It can be shown from the kinetic theory of gases that the rate of flow of atoms with v < v,
MpVpdA |y, ?

into the sphere through this aperture is given to good approximation by v per
b Y
P

second; herc ny, 1s the number density of the background vapour. Integrating over the whole

spherical surface gives the rate R of atoms captured per second by the MOT as

4
12 2l Ye )
R=m " mvpry,” :5"— (3-8)

where ry, is the radius of the laser beams forming the trap. R = 2 x 108 s-! for rubidium
Joaded from a room temperature vapour into a trap with 5 mm diameter laser beams.
Equation 3-8 is in good agreement with the result quoted in [29], bearing in mind the simple
assumptions made. The result derived here for instance, assumes that all atoms entering the
sphere through dA are trapped, whereas in reality the capture velocity v, will depend on the
angle between the normal to the sphere and the atom trajectory. This is because obliquely
incident atoms take shorter paths through the trapping region and because the intensity
profile of the laser beams is usually gaussian, resulting in reduced damping in the outer
trapping layers. If one instead assumes that only those atoms are captured which cross the
equatorial plane of the trapping sphere (i.c. enter with angle of incidence < 45°). then the
estimate of the capture rate R given by equation 3-8 is reduced by a factor of exactly 1/2.
3.5.2 Trap losses and collisions
The loading from the background vapour is limited by loss mechanisms which divide into
two categories. Firstly there are collisions with the atoms of the background gases in the
vapour cell, including the sume species as the trapped atoms and other foreign gases. The
rate of collisions of this type ts directly proportional to N. the number of trapped atoms.
Secondly. there are collisions between trapped atoms themselves; in a simple model the rate
of these collisions is proportional to N2, Thus the number of atoms in the trap is governed
by a rate equation

dN N

?=R—_T—uﬁCN2 (3-9)
where Tis the lifctime for atoms to remain in the trap against background atom collisions and
B, is a parameter determining the rate of intra-trap (i.e.cold-cold) collisions. Though this

equation is exactly soluble. sulficient physical insight is gained by studying the approximate

solutions for particular parameter regimes.
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Trap losses due to collisions with background vapour atoms

Firstly consider the case when intra-trap collisions may be ignored (ﬁCN2 << N/1)and all

the collisions are due to the background gas. Then the solution is
Nt =(N(0)—RT)e T+ Rt
Np=N(1=e)=RT

(3-10)

representing an exponential loading/decay rate with a steady state number of atoms My equal
to RT.
The room temperature background atoms arc travelling with thermal energies of ~
295 ky and the trap is a potential well with a depth of < 1 &g. so it is casy for such
collisions to result in ejection of the cold atom from the trap. The rate at which this occurs
may be estimated from kinetic theory to be N/t = Non, ¥, where ¢ is the cross-section for
such 'trap-loss’ collisions, my, the number density of background atoms and v the mean
velocity of background atoms. Thus 7=1/on,v, and using ny, = P/kgT and
V= \,-‘WBTTﬁ;:L we find
T= M (3-1h)

2~ 20P
This may be combined with the previous results for R (equation 3-8) and Ny (equation 3-1()
1o give

bid 3

N = Hm_ | Y (3-12)
F 20 Y

Equation 3-12 shows that the number of trapped atoms depends critically upon both the
capture velocity and the laser beam radii. but as was iltustrated in figure 3-3. the capture
velocity also depends on the Taser beam radii. Substituting the expression for the capture
velocity v, = (2 (zrm)l"c into equation 3-12 yields the approximate relationship N e rot tin
the reginie where intra-trap collisions are neghgible). An important conclusion theretore is
that the way to capture large numbers of atoms is to use the largest diameter trapping beams
possible. the largest number recorded[ 108] being 3.6 x 1019 Cs atoms when using beams 4
cm in diameter. Various ether methods of increasing the niumber of trapped atoms have been
published[174]. Tt 15 also worth noting that N does not depend on the pressure of the
background vapour.

The trap-loss cross-section due to collisions with background atoms ts made up of two
elements: hard-sphere’ collisions involving the van der Waals 1/ interaction when the
colliding atoms are both in the ground state and 'long range' collisions involving the dipole-
dipole 1/r interaction when one of the colliding atoms is in the excited state. Trapped atoms
spend a signilicant proportion of the time in the excited state and fast background atoms
passing through the trap regton can become excited once they cnter the molasses beams. The

cross-section for long-range collisions can be one or two orders of magnitude greater than
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that for hard-sphere collisions[169]. As the trapping beam intensity increases, the occupation
of the excited state by trapped atoms increases, increasing the rate of long-range collisions,
and thus acting to increase the trap-loss cross-section. One might therefore expect a
decreased trap lifetime: however, a higher intensity also implies a higher escape velocity,
which acts to decrease the trap-loss cross-section and could lead to an increased trap lifetime.
Hence an exact value of the trap-loss cross-section is difficult to calculate theoretically.
Experimental measurements, however, of the lifetime of the MOT have been used to estimate
the trap-loss cross-section ¢ for Na and Cs [29,88,162] and the variation of the trap-loss
cross-scction with intensity[91].

Trap losses due to intra-trap (cold-cold) collisions

The sccond category of collision which can eject cold atoms from the trap is that of "intra-
trap’ or ‘cold-cold' collisions (i.e. which occur between pairs of trapped atoms). They are
represented in cquation 3-9 (for the number of rapped atoms V) by the parameter .. As the
number of atoms in the trap increases, the effect of intra-trap collisions becomes significant
(when B.N2 = N/7). In this casc. rather than write the complicated general solution to
equation 3-9. 1 give the solutions for two specific situations. Firstly. when the trap is loaded
from a background vapour with the initial condition Nt = 0) = (. the steady state solution is

l N1
N(r:m)zz—((lJrélﬁCRr“)l”‘Hl) (3-13)

B.t

In the second situation. when the trap is initially loaded with Ny atoms from an atomic beam

and the loading beam then switched off, the number of atoms decays as
IV(](’;” r

-7 (3-14
[+ B TNyl —e™"7)

N =

The non-exponential decay mmplied by equation 3-14 formed the basis of an experimental
method to determine f3, {88].

The tra-trap collisions fall into three types: 'fine structure changing' collisions,
radiative redistribution’ collisions and 'hyperfine changing’ collisions. These collisions are
an mmportant new arca for study[87-102} which is currently highly active. Only a very brief
review is possibic here. For cold atoms, the collision interaction time can be longer than the
spontaneous lifctime, allowing the excitation and de-excitation of the atom to occur during a
collision: this is a new regime for collisional studies. Intra-trap collisions are also important
because they are a major ohstacle to attempts to reach high densities of ultracold atoms in
optical and other types of trap.

In fine structure changing collisions, a rubidium atom excited to a 5Py state is
transferred to a 5Py, state by collision with another atom of the same species. The energy
difference is shared as kinetic energy of the two atoms and corresponds to a post-collision

speed of ~ 180 ms-! per rubidium atom.
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Radiative redistribution occurs when one of two nearby atoms becomes excited. This
changes the atom interaction from a negligible 1/7% Van der Waals interaction to a strong 1/r?
dipole-dipole interaction which pulls the atoms towards each other, resulting in a lower
mutual potential cnergy before the spontaneous emission occurs. The emitted photon has
less energy than that absorbed and the balance appears as atomic kinetic energy.

In hyperfine changing collisions one of the colliding atoms transfers between ground
state hyperfine levels and so this type of intra-trap collision 1s present even for low laser
intensities. Again the energy difference appears as kinetic energy corresponding to a post-
collision speed of ~ 4 ms™! per (Rb) atom which, for a typical MOT, is slightly less than the
escape speed.

Both fine structure changing and radiative redistribution collisions involve excited atoms
and so are expected to oceur at a rate which increases with intensity, whereas hyperfine
changing collisions involve only ground state atoms and so are expected to be the
predominant loss mechanism at low intensities. These predictions have been confirmed

experimentally [87.91].

3.6 Number density distribution and collective effects

The total number of atoms trapped in an MOT loaded from a vapour can vary in the range
~103 to ~101Y_ depending on the parameters: beam radius, intensity and detuning. For a
typical experimental set-up with a beam diameter around 8 mm and normal tntensity and
detuning, the number range is observed[57] to be ~100 to ~5 x 107, This section 3.6
discusses the spatial distribution of the atoms in the cloud. The type of spatial distribution
obtained depends upon whether the atoms are interacting weakly or strongly with each other
through long range forces. and this in turn depends on the total number of atoms in the
cloud. When the interaction ts weak, the atom cloud may be modelled as an 1deal gas. The
tdeal gas regime', corresponding to numbers of atoms less than ~ 107, is discussed betow.
3.6.1 Cloud size and spatial distribution of atoms in the ideal gas regime
The Fokker-Planck equation for Brownian motion in an external potential (cquations 2-45
and 2-40) may be solved[152] for either a 1-D harmonic well or a spherically symmetric 3-D
harmonic well with spring constants k- and K respectively. The sofutions give the phase

space distributions of the atoms
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The marginal distributions of ; and » are obtained by integrating over the speeds v- and v
respectively, and the results are the Gaussian number density® distributions

1-D n(z)=n.qexp(—x.2* [2kyT) (3-15a)
3D n(r)=ny exp(— KrZ/EkBT) (3-15b)
3/2

/2
L and ny = N, _r are the (1-D and 3-D) number
2k T 2k T

where s, = N(,{
densities at the trap centre and N is the total number of atoms in the trap. The r.n.s. values
of z, v-, r and v may be obtained directly by integration of the marginal distributions
(equations 3-15a, b) or alternatively by use of the Equipartition theorem. The results are

I-Dr ;nr<\‘:2>=;}(‘:<:2>:%kﬂT 3-D: 2im<v2>=;K<r2>=§kBT (3-16)

A typical value for 5y ¢ in an MOT is ~0.4 mm, though it can vary from ~0.05 mm to ~6
mm, depending on the experimental set-up.

The above solutions of the Fokker-Planck equation are based on a classical model of the
harmonic well, L.e. a harmonic well with a continuum of allowed cnergies. In a quantum
mechanical treatment of the harmonic well. the expression for the average energy (&) of an
ideal gas of bosons in a 1-D harmonic well with oscillation frequency @ is

ho ho

= io 317
© exp(h(z?,f’kBT)—!+ 2 17

One must consider equation 3-17 in the two regimes: Ag? >> i@ and &g7T < 51 ¢g. In the
limit when &gT >> 1i @, equation 3-17 becomes (&) = kg7, and one simply obtains again
the classical result, equation 3-16, in accordance with the Equipartition thcorem and the
correspondence principle. In the case when kg7 < 71 @, equation 3-17 becomes (&) = him/2,
corresponding to the energy of the ground state of the oscillator. Thus it follows that in 1-D

%h@zéh}(:‘l)—k;m(v::) kpT<h@ (3-18)
In most experimental cases. kg7 >> /1@ and equation 3-16 will apply. However. equation
3-18 applies to the recently observed Bose-Einstein condensate[34], where all the atoms are
in the ground state of the (rapping potential well (if it is assumed to be harmonic).

Consider a typical MOT. As atoms are steadily loaded into the trap, the spatial
distribution given by equation 3-15 is maintained. whilst the number density throughout the
cloud increases in time, i.e. the atoms are independently occupying the same space. At some
number (around 103 atoms for Cs[1751), the density at the centre will reach a point where
repulsive forces between the atoms due to ‘radiation pressure’ become significant,
preventing any further increase in density and the number density distribution enters a new

'static’ regime, discussed next.

O Note this is a number dewxity distribution, not a number distribution.



3.6.2 Radiation pressure and collective behaviour

As the number density of atoms increases, the probability of reabsorption of a spontaneous
emission photon by another trapped atom increases. Such a process involves momentum

recoils on both atoms which move the atoms apart{176]. Quantitatively there is a repulsive
. - : hkl's o ,
radiation pressure’ force Fr between the atoms given by fg = il a R, where r is the
5+ e

separation of the two atoms and og the cross-section for reabsorption of a photon. Also, as
the cloud density increases, the trapping laser beams are themselves attenuated as they pass
through the cloud, resulting in an intensity imbalance which is larger in the outer regions of

the cloud. and which acts so as to push the atoms towards the centre[177]. Quantitatively
2

: . o lo . . :
this 'attenuating’ force F is given by F, = —=— where 7 is the intcnsity of one beam and

A4marc

0. the cross-section for absorption of faser light. The cross-sections o and o are different
(or >01) because the spectrum of the re-radiated light contains Mollow triplet
componentsf180] associated with the AC-Stark shifts induced by the trapping beams. As the
trapping lasers are detuned. the blue-shifted Mollow component is closer to the atomic
resonance than the laser light and hence more likely to be absorbed. The interplay of the two
forces Fr and Fa resulls in a variety of collective effects, first studied systematically in [175-
179].

Using an MOT loaded from an atomtc beam, the authors of [178] idenufied three
regimes of dramatically different behaviour, demarcated by the total number of atoms in the
trap: an 'ideal gas' regime. a 'static’ regime and an ‘orbital’ regime. In the ideal gas regune.
corresponding to numbers up 1o ~ 102 Cs atoms, the atom cloud formed an ellipsoidal shape
with a fixed diameter ~ 0.2 mm and with a Gaussian number density distribution on each
axis. Increasing the number of atoms above ~5 x 104 one enters the static regime, where the
cloud diameter increases smoothly with the number of atoms up to a total number around
3x10% in a cloud about 2 mm in diameter. In the static regime the cloud shows a fairly
uniform number density distribution around 10'% cm-3 provided the faser beams are well
aligned. The increasing size of the cloud and the constant density show that the repulsive
torce between atoms is significant in this regime. In the orbital regime. the cloud behaviour
is similar to the static regime provided the laser beams are pertectly aligned. But for small
misalignments of the beams, i.e. a small angle between the two beams in a counter-
propagating pair, the cloud takes up one of a variety of possible distributions: rings with
specific radii, rings with a central clump and orbiting clumips of atoms. These phenomena
have been studied further in [181.182]. Another phenomenon caused by the misalignment of
the laser beams is that of 'interference fringes'[ 179], which are bright bands of fluorescing
atoms alternating with dark empty bands within the cloud. These are discussed in section

4.5.



For the purpose of this work, the key points are that the collective behaviour is a result
of Jong range {orces between the atoms due to absorption and reabsorption effects. These
rings and interference fringes have been observed with our apparatus (see figure 6-21), but
we have not undertaken any quantitative studies. An interesting point to note is that Raab et
al. the first bullders of the MOT, found they obtained the maximum number of trapped
atoms when they limited the density by misaligning their laser beams and using low laser
intensities.

3.7 Temperature and its measurement

A number of ways of measuring the temperature of atoms in molasses and/or the MOT have
been used. The most common method employed is the time of flight’ method, which is
discussed below. Other methods include the 'spring constant’ method (also discussed
below), methods using low-frequency oscillations of the trapping force[29.183] and a
method using velocity dependent Raman transitions| 184.185]. A new technigue using
coherent transients, proposed by our own group[ 186] is discussed in chapter 7.

3.7.1 Measurement of MOT temperature by the 'spring constant' method

In the 'spring constant’ method of temperature measurement. the temperature of trapped

: : . 1 oy | .
atoms in an MOT is calculated from eguation 3-16. 5 K. <:“> = ;A’BT, using measured

vadues of the ¢loud romus radius and the trap spring constant x-. The cloud radius can be
measured directly from a CCD camera image of the cloud fTuorescence. The spring constant
may be obtained{28.162,169.187] by measuring the displacement of the cloud from the map
centre when an intensity imbalance is introduced between the two beams i a
counterpropagating pair’. The torce produced by this imbalance is variable and can be
calculated theoretically. Use of the measured displacement with the calculated value of the
imbatance torce then allows the spring constant to be determined.

The tnverse’ of the above experiment was performed in [[88], where the cloud radius
and temperature (by time of flight) were measured in order to caleulate the spring constant
tor Rb in an MOT. This cuabled the variation of spring constant with intensity to be studied.
3.7.2 Time of flight temperature measurement
Time of flight' temperature measurements 1,36.188-191] are performed in essence by
quickly (< 100 ps) turning off the trapping beams. leaving the cloud of atoms to {all whilst it
simultaneously expands owing to its thermal velocity distribution. The expanding cloud of
atoms falls through a narcow resonant probe beam and the time-varying fluorescence signal
is detected with a photodiode or photomultiplier. Bearing in mind the geometry of the probe

beam, the probe intensity profile and the distance of the probe region from the trap site, a

7 Aliernativety. a displacement of the cloud may be produced by an extra, seventh ‘pushing’ beam.



calculation can then be performed to give the cloud temperature. Variations on the geometries
include using the original trapping beams as a probe in the 'release and recapture’ method,
i.e. seeing how many atoms are left after the beams have been switched off for small
variable times[1.28]. The paper |36} describes use of the release and recapture method and
three other time of flight variations: a method with the probe directly beneath the molasses
cloud. a method with the probe below and displaced to one side of the molasses, and a
method with the probe above the molasscs. In some recent experiments e.g.[189], the atoms
themselves have been detected as they fell onto a micro-channel plate directly below the trap.
This technique gives a time-resolved spatial distribution of the falling cloud and allows
determination of the (non-Gaussian) velocity distribution and calculation of an effective
temperature.

The first measurements of molasses temperatures made in 1985 by time of flight[1]
were published with experimental error bars which embraced the Doppler cooling limit. 1.¢.
the results appeared to contirm the then current theory. However, two years after molasses
were first observed, a rescarch group[36] reported that precise measurement of molasses
lemperature by time of tlight gave molasses temperatures much lower than the Doppler limit.
These low temperaturcs were measured when any stray magnetic ficlds in the molasses
region were nulled. It was also observed that the longest molasses lifetime was obtained
when the laser detuning was much greater than the optimal detuning predicted by Doppler
theory. These contradictions were no doubt a major reason for the group [36] to use four
different variations on the time of flight technique in order to be confident of their
unexpected results. Other groups later confirmed the low temperature results [37.38].
Temperatures below the Doppler limit were also measured in an MOT[187] using the spring
constant method. A revision of the theory of laser cooling was clearly called for and the new

theories are the subject of the following chapter.



Chapter 4
Sub-Doppler cooling

Chapter 3 ended by pointing out that experimental results published in 1989/90 showed
measured temperaturcs in molasses which were one or two orders of magnitude lower than
those predicted by the extant Doppler-cooling theory. Clearly some undiscovered mechanism
was involved, and new theories were required. These were swittly supplied, by groups at
the Ecole Normale Supénieurc in Paris|39] and Stanford University in Californiaf40]. The
new mechanisms are known collectively as 'sub-Doppler cooling” mechanisms. Three new
and differing mechanisms appeared in those papers and are known as 'sisyphus cooling'.
‘motion-induced orientation” and ‘magnetically-induced orientation’. Although the three
mcchanisms are different in detail. they each depend on one common factor. The cooled
atoms must be multifevel atoms: specifically. the ground state must be Zeeman degenerate.
which allows ‘aptical pumping ' to occur. An important factor in two of these mechanisms 1s
that the cooling light ficld exhibits spatial polarisation gradients. hence they are sometimes
referred to as 'polarisation gradient cooling'. Section 4.1 of this chapter explains the terms
‘optical pumping’ and 'polarisation gradients' and also introduces the idea of 'light shifts’.
Sections 4.2 to 4.4 discuss each of the three mechanisms in turn. The explanations of the
sisyphus and motion-induced orientation mechanisms are given in more detail because of
their connection with optical molasses and the MOT, and this connection is made in scction
4.5. Section 4.6 discusses the important idea of localisation of atoms in optical potential
wells.

Since 1988. the ficld of laser cooling has seen continued development, and several new
mechanisms such as 'velocity selective coherent population trapping' (VSCPT), 'Raman

cooling’ and others (bearing even more imaginative acronyms) have appeared which are also
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capable of yielding temperatures below the Doppler limit. The last section, 4.7, is a briet

overview of such developments, intended to give a picture of the current ‘state of the art’.
4.1 Optical pumping, polarisation gradients and light shifts

4.1.1 Optical pumping

Before proceeding to the detailed descriptions, it is worth pointing out that there are no new
'forces' involved in these new mechanisms; the dipole force and the scattering force as
described in chapter 2 are alll. Rather, it is the way that these forces operate in multilevel
atoms which undergo 'optical pumping’ that gives rise to a new cooling effect. Optical
pumping is the name given to the mechanism by which the distribution of a ground state
atomic population over its Zeeman substates is determined by the polarisation of a local
resonant light field. As a simple cxample, consider the J, = 1 to /, = 2 transition depicted in

figure 4-1.
i -2 -1 0 +1 +2
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Figure 4-1 The Zeeman structure of a J = 1 — J = 2 ransition (with Clebsch-Gordan
coefficients squared)
In the absence of a light field. the atomic population will be equally distributed over the
Zeeman-degenerate ground states. If a resonant light field with ¢ polarisation is then
switched on, the population will undergo absorption and emission cycles as atlowed by the
selection rules. For au atom in ¢ ¥ polarised light. absorption events always increase the
angular momentum of the atom by + 71, and subsequent spontaneous emissions can change
the angular momentum by —#. 0 or +7%. On average each absorption-emission cycle
increases the angufar mwomentum of the atom and so eventually after several cycles all the
population will be in the m,= +1 ground state (apart from those which are temporarily in the
excited mi, = 42 state). The average time for reaching this final steady state 1s known as the
‘optical pumping time' 7, and 15 an important parameter for all sub-Doppler mechanisms.
Generally. 7, depends inversely on the mean scattering rate I, 7, = 1/T, where
oy 2
ro=sho Sl (4-0)
2 I +4a
and 7, is conscquently large for large detunings and low intensities of the driving light field.
The steady state population distribution of the atoms over the Zeeman substates 1s

determined by the Clebsch-Gordan coefficients belonging to the particular J, — J, transition

V Further categorisarion, however. is possible for mudtilevel atoms, e.g. the vedistriburion force’ in {140].
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concerned and by the local light polarisation. The Clebsch-Gordan coefficients are sets of
numbers whose squares determine the relative coupling strengths of the various m, — m,
transitions, and have their origins in the laws governing addition of angular momenta. They
may be cither calculated or obtained from the tabulations in standard spectroscopic texts.

It was pointed out in chapter 2 that a simple way of understanding the lowest
temperature achievable by a cooling mechanism is to apply Heisenberg's uncertainty
principle to the slowest imescale appearing in the cooling process. For Doppler cooling. this
was T=1/T the natural hifetime of the transition, For sub-Doppler cooling processes, the
longest relevant time is the optical pumping time 7, = 1/, which can be up to two orders of
magnitude longer than 7. Applying the uncertainty principle, AFAt >k / 2, gives the
condition kg7 > fil" /2 for sub-Doppler cooling, which allows considerably lower
temperatures than the corresponding condition for Doppler cooling.

4.1.2 Polarisation gradients

For a single plane wave of monochromatic light. the polarisation vector € is the same
everywhere in the wave. If. however, two or more plane waves with differing wave vectors
interetere, the polarisation vector of the resultant standing wave may vary spatially. Thus
there are ‘polarisation gradients’ in the light ficld, and they play a vital role in some sub-
Doppler cooling mechanisms. A first classification of polarisation gradients may be made by
considering only those 1-D standing waves which are formed by two plane waves of equal
amplitude and wavelength counterpropagating along the z-axis. There are then four basic

patterns. with the following designations and prototype formulae:

1) "Parallel linear or ‘lin #/ fin’ or T3~
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52) ‘Orthogonal Iinear” or ‘sisyphus’ or lin-perp-lin” or Vet
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‘which simplifies to E = i;‘()((f( +¥)coskzcos @f — (X — ¥ )sinkzsin (DI‘)

i
i

|
E B JBEETECEEERREERETEE = . = Linear polarisation

o* o ot o

4>

Lo+x L -y L-x L +y I, +x L.y L-x L +y
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It can be seen from the diagrams and equations ot figure 4-2a to 4-2d that in the sisyphus
and corkscrew configurations the polarisation vector changes on a spatial scale of ~ A/4,
whilst the wave amplitude is constant in space. In the case of the paralle! linear and circularly
polarised configurations, the polarisation vector is constant in space, whilst the amplitude of
the standing wave varies as cos?kz. The theory of sub-Doppler cooling. including
calculation of friction and diffusion cocfticients, was first worked out for a hypothetical
atom travelling atong the axis of a one-dimensional standing wave. Extension of the theory
to three dimensional light fields is difticult; a first approximation may be obtained by
assuming that the 1-D results for the x, 3 and z axes may be added vectorially. This is
discussed further in section 4.5. One of the reasons why the development of a 3-D theory is
difficult is due to the need to account for the many possible polarisation gradient
configurations which can exist when the six orthogonal plane waves of molasses and MOTs
interfere. Some theoretical studics which I carried out on polarisation gradients in 3-D
standing waves form the subject matter of chapter 5.

4.1.3 Light shifts

Consider for the moment a two level atom. The ground and excited states are. strictly
speaking, cigenstates of the unperturbed atomic Hamiltontan only. When the atom is subject
to a weak static external ficld, by usual perturbation theory. the new Hamiltonian has new
eigenstates whose energy levels may be shifted. These new eigenstates are mixtures of the
unperturbed cigenstates. Examples are the Zeeman shift in a constant magnetic field and the
Stark shift in a constant electric field. Analogously, in the case of perturbation by time-
varying electromagnetic fields which are close to resonance. the resulting energy level shifts
are known as A.C. Stark shitts. They can be calculated by diagonalising the Hamiltontan
matrix of the whole system (atom + light field). as in the 'dresscd state” approach
[41.130.150]. For the case of a two level atom in a light field of detuning A (=ay — ay) and

h :

Rabi frequency . the light shifts Sare 6 = i; (.(2[_)3 + Az)-i — A |. For large detunings

when A >> £, the square root may be expanded in a Taylor series to give a good
approximation:

52, = i—{g{)— . e = —h —Q(]h
4A 4A

The light shift 9, of the ground state is important in sub-Doppler cooling. and two potnts

A =>> .f)() (4— 1)

should be noted. Firstly. it is a negative shift when the laser detuning is negative. Secondly,

the magnitude of the shift is proportional to the coupling strength £2y? of the transition.

which may vary spatially, allowing potential energy gradients (i.e. dipole forces) to exist.
Returning to the case of & multilevel atom, the selection rules allow three possible

transitions starting from each of the Zeeman ground states. The relative coupling strengths of
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these transitions are given by the squares of the corresponding Clebsch-Gordan coefficients
and are generally different. Consequently, at each point in a light field of given polarisation.
the light shifts of the individual Zeeman ground states are also generalty different.

4.2 Sisyphus cooling

4.2.1 The sisyphus mechanism

This section examines sisyphus cooling in more detail. The important elements are shown
schematically in figure 4-3. The simplest transition scheme which has the ground state
degencracy necessary for sisyphus cooling 1s a J, = 1/2 — J, = 3/2 trunsition, shown with
its relative coupling strengths (Clebsch-Gordan coefficients squared) in figure 4-3a. The
light field consists of two plane waves counterpropagating along the z-axis, with orthogonal
lingar (') polarisations. The spatial variation of the polarisation over a wavelength of the
resultant standing wave is shown in figure 4-3b. The spatially varying polarisation produces
a spatial variation of the light shifts of the two ground states with magnitudes determined by

the Clebsch-Gordan coefficients.
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Figure 4-3 The essentials of sisvphus cooling



Figure 4-3c¢ shows the spatial variation? £sin2kz of both the light shifts and the steady-state
populations for stutionary atoms of the g, and g. /2 states, 1.e. the populations after
optical pumping. It can be seen that the spatial variation of the light shifts gives rise to two
intertwined series of hills and valleys of potential energy for the two ground states.

Consider an atom tn the g, ), state at z = A/8 and moving in the +z direction. As the
atom moves towards z = 3A/8. it climbs the potential energy hill at the expense of its own
kinetic energy. This can also be thought of as deceleration due to the dipole force. Atz =
3A/8, the atom 1s likely to be optically pumiped by the o polarisation into the g_y» state,
which at that point has a lower potential energy. The excess potential energy 1s lost to the
light field. A new cycle then begins, in which the atom climbs the potential hill towards z =
5A/8, only on arrival to be optically pumped back to g,/ and the bottom of the hill..."Thus,
like Sisvphus, the atom 1s forever doomed to be climbing hills".

For this mechantsm to be effective, the atom must be moving slowly enough to allow it
to be optically pumped whilst near the top of a potential hill. 1.e. 1t should not travel more
than ~A/4 in the optical pumping time 7,. A critical velocity v is defined by v = 112k,
such that v must be < v, for efficient sisyphus cooling. This condition is met by the coldest
atoms in an optical molasses velocity distribution. Hence. in an optical molasses which also
exhibits sisyphus cooling. i.c. which uses linear orthogonal beams and atoms with J, = 1/2,
the initial cooling of a fast atom is due to Doppler cooling and then, when v = v, sisyphus
cooling takes over. It is predominantly this mechanism which was responsible for the low
temperatures measured by the groups mentioned at the end of the previous chapter. The fact
that the sisvphus mechanism was found to be effective only in a magnetic tield free region
may now be explained. Any stray magnetic fields cause Zeeman shifts which may swamp
the Light shifts and disrupt the sisyphus mechanism. An estimate of the maximum tolerable
magnetic field is given by the condition Zeeman shift = light shift, or g;up8 = h.('z(ﬁ/am.
which implics for typical values of {hp= 1 and A = 51 that By, = 0.4 gauss, t.e. of the
same order as the Earth's magnetic field.

4.2.2 Friction and diffusion coefficients for sisyphus cooling
Sub-Doppler cooling, like Doppler cooling, is a stochastic process and the steady-state 1-D

D
temperature 1s determined by equation 2-36, kg7 = —Bfi where D, and f are the sisyphus

momentum ditfusion and sisyphus friction coetficients respectively. These coefticients are
calculated in[39.41.150] using a semiclassical theory in the low intensity regime (2, << I”
and flor small velocities kv. << [ The calculations proceed much as for Doppler cooling

(chapter 2) but with the added complication of a multilevel atom. Firsl, the steady-state

= This spatial variation appears as sin-kZ and cos?kz in a coord. systeny with different space £ energy origin.
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solutions of the Bloch equations for the multilevel atom in the spatially varying light field are
found. The resulting steady state ground state populations and optical coherences can then be
subslituted into the gradient of the atom-field interaction energy. which gives the force on the
atom. The two most important results are[39,41]:

~Bv.
————=——, where
T+ /v 2)

Q0T
27 84’

1) The force. spatially averaged over a wavelength is f =

and kv, = (4-2)

r
Thus the friction coefficient §1s independent of the laser intensity. whereas the capture
velocity v 1s directly proportional to the intensity. This situation is the reverse of that in
Doppler cooling. where the friction coefficient 1s proportional to the laser intensity and the
capture velocity is independent of laser intensity. The maximum sisyphus friction coefficient
is bigger than the maximum Doppler friction coefficient (eq. 2-26) by a factor = 6 A/ T
2) The momentum diffusion coefTicient D, is calculated to have a spatial average
o7 b

kL2

D, =
f 81

are three contributions to the diffusion coefficient: fluctuations of the momenta of

when the detuning is large (A >> I, which is the regime of interest. There

spontancously emitted photons, Poissonian fluctuations in the absorption rate and
fluctuations of the instantaneous dipole force. The first two contributions account for most
of the diffusion in the case of Doppler cooling. In sisyphus cooling. however, the third
contribution can be far larger than the first two, and when A >> I'it accounts for most of the
diffusion[41}. These tluctuations in the dipole force are due to the atom being pumped at
random times between the g,,» and ¢ » states, which have differing potential energy
curves. Such wransters are most likely at points where the g. > and g_1/2 energies cross. 1.e.
arz =0, A/4, A/2. .. etc on tigure 4-3c.

Putting the above expressions for the friction and diffusion coetfictents into equation 2-

36 gives, for the temperature of sisyphus-cooled atoms.

€2y
kT = — (4-3)
8A
: . laser intensit
Note that this has the form temperature o< faset Intensiy

laser detuning
The thermal energy kg7 is of the order of the light shift (hQ()2/4A }and 1s predicted by
equation 4-3 to be proportional to the laser intensity, and inversely proportional 1o the laser
detuning. This prediction has been beautifully confirmed by experiments[29,161,191]. This
confirmation is somewhat surprising. because the experiments were on a fully 3- D molasses
with Cs atoms on a J =4 — /= 3 transition, whereas the theory leading to equation 4-3 was
for a 1-D molasses with a /= 1/2 — J = 3/2 transition. This agreement of results may be
used as justification for the simple additive method of extension from the 1-D theory to 3-D

and from low J—valuc to high J -value transitions. The temperature of a sisyphus-cooled
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sample depends on the two variable parameters. the intensity and detuning of the light field,
so the question arises: what is the fundamental limit on the lowest achievable temperature?
Each absorption and emission event involves exchange of one photon's momentum #ik with
the light field, and so on average an atom will have at least a kinetic energy Fg, known as the
'photon recot! energy’, where Eg = hk* /Qm. Theoretically therefore, the lowest achievable
temperature 1s the ‘photon recoil temperature’ Tg given by kgTr = Er. The lowest
temperature achicved for Cs in {191] was 2.5 uK. which may be compared with the Doppler
himit temperature of Cs, 127 UK, and the photon recoil temperature of Cs, 0.1 uK.

When an atom has a kinetic energy equal to Iy, its de Broglie wavelength is exactly
equal to the wavelength of the light field. Thus, as the kinetic energy and temperature of the
atoms approaches the photon recotl limit, the assumption of a small classical atom which
underlies semiclassical theory is no longer valid. A fully quantum mechanical
approachf41.192.193] 1s required to study these very cold atoms. and reveals the existence
of important new phenomena including localisation of atoms’, 'optical potential wells” and '
atomic energy bands'. which are discussed in section 4-6 of this chapter.

4.3 The magnetically assisted sisyphus effect (MASE)

The magnetically assisted sisyphus effect. or MASE as it is now known. was first predicted
in the literature in 198940} under the name ‘'magnctically-induced orientation’. This
mechanism has much in common with ordinary sisyphus cooling in that it relics on the
existence of optical potential wells which give rise to dipole forces. Unlike sisyphus cooling.
however, the mixing of atomic ground states is accomplished by Larmor precession of the
atomic magnetic dipoles in a transverse magnetic field. rather than by optical pumping,
MASE was first observed experimentally in 1990] 194]. A brief description is as follows.
The 1-D version takes place in a circularly-polarised standing wave (o *o ¥ and can be
understood for atoms on a J, = {/2 — J,. = 3/2 transition. as with sisyphus cooling. The
spatial variation? of the light field is shown in figure 4-2¢. Such a standing wave is produced
simply by reflecting a circularly polarised Jaser beam in a high reflectivity mirror. A constant
magnetic field is applied transverse to the beams' propagation direction. At the antinodes of
the wave. atoms will be optically pumped into the g, » state, which has a greater negative
light shift there than the g_y/ state. The light shifts of both g, 2 and g.y/> are zero at the
nodes of the standing wave. s0 as the atom moves towards a node. it climbs a potential hill.
i.e. is slowed by the dipole force. At the nodes, there is no optical pumping, but there is

Larmor precession @y, of the g.y,o state towards the g_j/; state, owing to the transverse

3 As the polarisation does not change, this mechanisn is not ‘polarisation gradient cooling', though it
certainly is sub-Doppler cooling.
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magnetic field. Consider an atom which has optimally precessed into the g s state in the
time it takes to travel A/2 from one antinode to the next. There it is optically pumped from the
g1/ state back into the gy state, which has a greater negative light shift and the excess
energy is lost 1o the light field. The cycle then repeats itself, so once again the atom is
"forever chimbing hills”. The transverse magnetic field is of course also present at the
antinodes, so it is important that the average optical pumping rate at the antinodes 1s greater
than the Larmor precession rate 1/7, > @y ,, which gives a condition on the magnetic field
magnitude. A typical value is of order 200 milligauss.

In 1990, a new and closely related sub-Doppler cooling scheme called 'velocity-
selective magnetic resonance cooling' (VSMRC) was reported in [195,196]. VSMRC can
oceur in both T and ¢ *o ¥ standing waves with a transverse magnetic field of larger
magnitude than that of MASE (typically in the range 200 milligauss to a few gauss). In this

regime the Larmor precession rate @y is greater than the optical pumping rate 1/7p. In
VSMRC atoms are cooled to either of two small but non-zero velocities & v, which have
sub-Doppler velocity distributions. The combination of atomic motion in a standing wave
with Larmor precession i a constant magnetic field results in velocity-selective magnetic
resonances at £v, =+ @, /2k where @y s the Larmor frequency and & the wavenumber of
the light. The resonances may be understood in terms of stimulated Raman transitions
between Zeeman ground states, which are resonant when the difference in energy of the two
Doppler-shifted Raman photons (counter-propagating) is equal to difference in Zeeman
encrgies of the ground states. The damping force then arises from the spatial dependence of
the light shifis of the Ruaman-induced Zeeman coherences. The friction coefficients and
capture range of MASE and VSMRC are ol the same order as those of sisyphus

cooling| 195] and sub-Doppler temperatures were measured tfor both mechanisms in
[195.196]. It was also shown[ 196] both theoretically and experimentally that VSMRC
occurs inu ¢ o (corkscrew) standing wave with a longitudinal magnetic field.

4.4 Motion-induced orientation {corkscrew cooling)

4.4.1 The motion-induced orientation mechanism

This section discusses « third sub-Doppler cooling mechanism. ‘motion-induced orientalton
cooling’ or ‘corkscrew cooling'[39-41]. Tt differs from the two previously discussed sub-
Doppler imechanisms in that it depends on the scattering rather than the dipole force. The
discussion here is based on [391 and 1s confined to the regime of low intensity (£2) << )
and low velocity (kv << I'} in a 1-D standing wave. The light ficld is the ‘corkscrew’

(o T ) configuration depicted in figure 4-2d. It consists of a pair of counterpropagating (z-
axis) laser beams of the same handedness, which means that the photons in each beam have
opposite angular momenta. The resultant polarisation is linear at each point, but the direction

of the polarisation vector rotates in the x-y plane, its tip tracing out a helix with pitch A . The
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amplitude of the standing wave is constant in space. We consideraJ, =1 —=J,=2
transition, which is the simplest transition scheme which exhibits this type of cooling; such a

transition 1s shown with its Clebsch-Gordan coefticients (squared) in figure 4-4.

n ., -2 —1 0 +1 +2
J=2
1/6 16
1 2] 12 2/3 2 |12 1
J=1
- +1
Hi g | {)

Figure 4-4 Clebsch-Gordun coefficients (squared) for a J, =1 —J, = 2 transition
Consider first a stationary atom at a point in the standing wave where the polarisation is
lincar along the y-axis. The field amplitude is spatially constant, so there are no light shift
gradients and no forces on the stationary atom, At the same time, however, the populations
of the ground state are optically pumped into a configuration known as an ‘alignment’ with
respect to 4 v quantisation axis. This term applies 1o any configuration in which the
population is distributed both unequally over the ground states and symmetrically about the

centre of the ground states. See figure 4-53a. which shows examples of alignment.

alignment: npo= o =32 172 +1/2 +32
=1 N ~
© > o
i, = -1 0 +1
b) J=32 e —0 fan )
oricntation: i S L/
me= =312 -1/2 +1/2 +3/2
S T
me=  —32 -1/2 +1/2 +3/2

Figure 4-5 Examples of ) alignment b} orientation. The sizes of the circles indicate the
relative popularion of each Zeeman ground state.

Consider now an atom moving slowly in the +; direction with speed v-. In the frame of the
atom, the polarisation vector appears to rotate with angular speed —kv.. Thus it is useful 1o
transform to a reference frame rotating with this angular speed so that the polarisation of the
light ficld is fixed (along the y-axis, say). This transformation 1o a rotating frame results in
the appearance of an extra inertial term in the Hamiltonian equal to kv. j where :’ 15 the
operator for the z-component of angular momentum. This extra term is formally equivalent
to one describing a constant magnetic field aligned along the z-axis and with a Larmor

frequency equal to kv-. It is shown in [39] that, to first order in kv/6, this extra term does
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not change the alignment of the ground states with respect to a v quantisation axis.

However, this extra term does change the populations of the ground states (calculated to the
same order) with respect to a 2 quantisation axis. so as to produce an ‘orientation’ of the
ground states?. The term “orientation’ means that the relative populations of the ground
states are disirnibuted unequally but antisymmetrically over the ground states, i.e. they either
increase or decrease as one goes from the state m, = - }'L to the state m, = +J, {(examples are
shown in figure 4-5b). In the specific case of the J, = | — J, =2 transition, and for A >> I
the 'motion induced orientation’ is calculated to be[39]

12
My, -1, = ﬁg—ﬂgk\': (4-4)
0

where I'l; are the populations of the (1m,). = =1 ground states. Equation 4-4 shows that
motion along the +: axis in a negatively detuned corkscrew standing wave leads to an
increase in the population of the (m,). = ~1 ground state. Looking at the Clebsch-Gordan
coefficients in figure 4-4, one sees that there is & s1x times greater probability that an atom in
‘g,, > will ahsorb 1 ¢~ photon (propagating towards 7 < 0) than that it will absorba o
photon (propagating towards = > 0}. Thus an atom moving in the +Z direction is more likely
to absorb photons propagating in the -z direction. A sinufar argument applied to an atom
moving in the —7 direction shows that it 18 more likely to absorb photons propagating in the
+z direction. To summarise, the radiation pressures due to the two ¢ and 6~ waves are
unbalanced by the atom’'s motion, leading to the motion-induced ortentation cooling force,

4.4.2 Friction and diffusion coefficients for corkscrew cooling

, . 30, - T _
Referencef39] obtains [ = ~[5v: where ff = T_;?zk' 3 and A>> T (4-5a)

A more detailed caleulation{39] for the regime of low intensity and low velocity but for any
detuning gives

3= l_%g__ﬁ_:ﬂr _hk? (4-5b)

17 5 +44°
As with sisvphus cooling. the corkscrew friction coefficient is independent of the laser
intensity. and a corkscrew capture velocity can be found which is proportional to the [aser
intensity. There is however a difference in that for sisyphus cooling the capture velocity 1s
proportional to the optical pumping rate Ay = 1/1,, whereas tor corkscrew cooling, the
capture velocity is proportional to the light shift kv = 2,2/4A.
The momentum diffusion in the ¢ "o~ configuration receives two contributions:

fluctuations of the fluorescence photon momenta and fluctuations in the absorption rate. For

lurge detunings, the two contributions are of the same order, though for small detunings, the

second contribution becomes much larger owing to the likelthood of consecutive steps in

FSadly there does nor appear to be any siniple, physically intuitive picture to illustrate this effect.

71



momentum space being in the same direction. Limiting this discussion, for simplicity, to the
2,2
20m° k102,
b
17047

{equations 5.16 and 5.17 of [39}). Putting this expression for 1, and the expression 4-5a

case of large detunings, the momentum diffusion coefficient is D, =

for the friction coefficient into the Einstein equation 2-36, gives the result for the equilibrium

temperature

LT = F:‘.Q()z _laser inlg:l}gi_t_)ij AsT (4-6)
B oA laser detuning

The dependence of the corkscrew cooling temperature on the ratio of laser intensity to laser
detuning predicted by equation 4-6 has been confirmed experimentally[ 162,183,188,197].
Comparison of sisyphus and corkscrew cooling

For low infensities and large detunings. both the sisyphus and corkscrew cooling
mechanisms lead to temperatures below the Doppler limit and are hence referred to as sub-
Doppler mechanisms. Equations 4-3 and 4-6 for the sisyphus and corkscrew equilibrium
temperatures respectively are very similar. Both the friction and diffusion coefficients of
sisyphus cooling are larger than the corresponding coefficients of corkscrew cooling by a
factor of ~ A%, As the equilibrium temperature depends on the ratio of these two
coefficients (equation 2-36}, both mechanisms result in temperatures of the same order. In
particular the equilibrium temperature is predicted to be proportional to the light intensity.
inversely proportional to the detuning and of the order of the light shift. Although the
sisyphus and corkscrew mechanisms have this feature in common and both involve a form
of optical pumping. a fundamental difference is that the sisyphus mechanism involves the
dipole force, or coherent redistribution of photons between the counterpropagating waves,
whereas the corkscrew mechanism relies on the scattering force. or an imbalance in the
radiation pressure due to cach wave. For detunings [A| > I the corkscrew capture velocity
is larger than the sisyphus capture velocity by a factor ~ VI Finally. comparing sisyphus
and corkscrew forces with Doppler cooling forces, one finds that in the regime of detunings
|A| > "and small velocities. the sub-Doppler friction coefticients are greater than the
Doppler {riction coefticient. However, as the capture range for the Doppler force is greater
than that of the sub-Doppler forces, the maximum magnitude of the sub-Doppler forces is

less than the maximum Doppler force.

4.5 Sub-Doppler cooling in 3-D optical molasses and the MOT
The explanations of the three sub-Doppler cooling mechanisms given above in sections 4.2,
4.3 and 4.4 followed the original papers in establishing the mechanisms in 1-D and for the
simplest transitions (J =1/2 — J=3/2 and J =1 — J =2}. Though there have been some [-D
experiments on atomic beams and using traps. most contemporary experimental work has

been in the 3-D situations of optical molasses and the MOT. also on the alkali atoms sodiun.
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rubidium and caesium which have hyperfine structures with J or F values different from J
=1/2 = J=3/2and /=1 — J =2, These experimental arrangements therefore present
difficulties to theorists aiming for accurate quantitative predictions. This section discusses
such problems and possible solutions. A more detailed review of this area is in [56].

Extending the first 1-D calculations which were carried out for the simplest transitions
(J=1/2 = J=3/2and /=1 — J=2) to |-D calculations for the actual hyperfine transitions
employed in experiments {(e.g. £ =3 — F =4 for 835Rb and F =4 —» F =5 for Cs) is a first
step towards a completely general theory. This has been carried out for the o Fo ™~
configuration in [197], which studies / — J, J+ | for any J and gives quantitative results
for the {riction coefficient and capture velocity for J — J 41,

The extension of calculations to 3-D light fields brings a host of difficulties, mainly
because the possible combinations of three orthogonal 1-D standing waves produce a large
variety of "3-D standing waves’ containing complicated polarisation gradients. It is, for
instance, possible for both the sisyphus and corkscrew polarisation gradients to be present
along different directions within the same 3-D molasses standing wave, thus allowing both
forms of sub-Doppler cooling to be present simultaneously with the ordinary Doppler
cooling. Another theoretical complication in real traps is due to the the long range forces
e.g.[175,1901 which occur as a result of absorption. radiation and reabsorption of light
within the cfoud (see section 3.6.2). These forces are important when the trap contains more
than ~10% atoms, a condition satisfied by typical traps containing ~107 atoms. A method of
numerical calculation] 199] of friction and diffusion coefficients for any J — J' transition in
a 3-D standing wave has been described and used to study the J =1 =5 J = 2 transition in
tfour differcnt 3-D laser configurations. The results show that there is a marked position
dependence ol the coefficients, but when they are spatially averaged. they lead to cquilibrium
temperatures which scale with intensity divided by the detuning®, in agreement with
cxperiments, For low intenstties and large detunings, most of the [riction coefficients and
temperatures obtained in the 3-D caleulations in [ 199] can be obtained to within 5% by
mulbtiplying the 1-D resuits for the corresponding light field by a scaling factor
[115,140,169]. Paper [140] is a gencral treatment of light forces in a 3-D light field.

A particularly important experimental situation s the MOT, studied by Steanc,
Chowdhury and Foot[162]. They show that both sisyphus and corkscrew polarisation
gradients are usually present in the 3-D ¢ o~ light field configuration used in the MOT, and
thus that sisyphus cooling and motion-induced orientation cooling can occur. Also, because

there is an inhomogencous magnetic field in an MOT, there are regions where velocity-

8] Excepi in sone special tight field configurarions where the relative phases’ of the waves results in a big
reduction in the friction coefficient] 1991, The siibject of the relative phases is discussed in chapter 5.
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selective magnetic resonance (VSMRC) cooling can occur. The latter is likely in the outer
regions of the trap where the magnetic ficld magnitude is of the right order (» > ~0.2 mm for
a magnetic field gradient of 10 G cm~1). On the other hand, at the centre of the trap (r < ~0.1
mm}, the magnetic field is small. and so both sisyphus and motion-induced orientation
cooling are expected there. Steane ¢t al{ 162] determined by 'intensity imbalance'
experiments that, at the centre of the MOT, motion induced orientation provides the restoring
tforce and sisyphus cooling provides the velocity-damping force. This explained the
overdamping of the atomic motion in the trap which is found experimentally, as the sisyphus
friction coefficient is greater than both the Doppler friction coefticient and corkscrew friction
cocfficient. Finally they suggest that it is sisyphus cooling which is responsible for the large
scale interference fringes[179] seen in an MOT with misaligned beams. The misalignment of
the beams gives risc to farge scale (~ .05 to .5 mm) alternating zones of varied
'sisyphusness’ (level of sisyphus polarisation gradients). In the zones where sisyphus
cooling does occur. the friction coefficient is higher (the molasses is 'stickier') and this leads
to the observed higher concentrations of atoms in those zones.

That the spring constant at the centre of the MOT 1s due to motion induced orientation
can be understood in terms of the fictitious magnetic field (discussed in section 4.3) which
appears in the frame rotating with an atom as it travels along a corkscrew polarisation
gradient. The cooling force 1s proportional to this fictittous field which is in turn proportional
to the velocity. It follows that if one introduces a real magnetic ficld parallel to the o ¥o ™
light field and which is proportional to the distance from the trap centre. a restoring force due
to mation-induced orientation will appear. This force is the subject of {200].

One conclusion to be drawn from this subsection is that the internal dynamics of the
MOT are in redlity considerably more complicated than those which appeared in its
introductory description (section 3.3)! Atoms are captured by Doppler slowing and restoring
forces in the outer regions of the trap. and also possibly experience velocity-selective
magnelic resonance forces as they are Zeeman-slowed' (section 3.4.1) towards the trap
centre. As the atom nears the trap centre, its velocity falls below the sisyphus and corkscrew
capture velocities and consequently both the velocity damping and the restoring force
become larger, as the sub-Doppler mechanisms take over. The equilibrium distribution of the
atoms is determined by the damping and restoring forces and also by momentum diffusion,
collisions and long range forces due to absorption and reabsorption of light.

4.6 Localisation of atoms and optical [attices

Atoms cooled in a 1-D sisyphus standing wave attain an equilibrium temperature given by
equation 4-3. This temperature corresponds to a mean kinetic energy which is only a fraction
of the depth of the ‘optical potential wells' formed by the spatially varying light shifts.

Therefore. in a simple classical picture, some atoms in the cold thermal distribution will have
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insufficient energy to ¢climb out of the wells and will, under the action of the dipole force,
collect near the bottom of the wells. This phenomenon is known as ‘localisation of atoms in
optical potential wells’. The first evidence for this phenomenon was obtained in 1987 when
cacsium atoms in an atomic beam were channeled into the nodes or antinodes of a transverse
1-D standing wave of light[201]. Localisation of atoms has since been observed in 1-D, 2-D
and 3-D light fields and is the subject of much study{49,50.76-86,192,193,201-210].

The kinetic energy of atoms slow enough to be trapped in the optical potential wells s
only a few photon recoil energies and the de Broglie wavelength of the atoms is a significant
fraction of an optical wavelength. Thus the atoms can no longer be regarded as points of
matter in the standing wave, and a full quantum mechanical treatment of the atom as an
extended wave packet is required. Such treatments[41,192,210] have been carried out for a
1-D light field and result in a new picture in which the atoms can exist in energy bands
within the optical potential wells (figure 4-6). Near the bottom of the wells the potential
profile 1s approximately that of a simple harmonic well. Thus the energy levels are given by
(n+1/2ynA, where n = 0.1,2.... and the oscillation frequency A of the harmonic well is
given by|192]

2.2
2

34

In a theoretical analysis[41] Cohen-Tannoudji finds that the quantum mechanical treatment is

(4-7)

necessary when A >> 1/7,, where T, is the optical pumping time (equation 4-0). If this
inequality is satislied. it implies that the atomic centre of mass is able Lo oscillate many times
in the well between excitations. Conversely., when A << /1, the atom makes several
absorption and emission cveles during one well oscillation period: in such circumstances.
semiclassical theory 1s appropriate. Both regimes (A >> 1/, and A << 1/1,) are possible in
faser couling and trapping experiments, depending on the detuning and intensity of the light
tield. The quantum mechanical regime corresponds to large detunings and/or weak

mtensities.

Raman transittons
Ravleigh

transition

nr=—1/2 ni=+1/2 m==1/2
Figure 4-6 Optical potential wells
The encrgy levels are broadened into bands owing to the periodic structure of the many

potential wells comprising the standing wave, but the lowest bands are very narrow owing
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to the long relaxation times out of the bands. For example, for caesium with A= 20T, £, =
1.5 I, one finds that the well depth is about 100 Er which allows six bound bands spaced -
40 kHz apart, and the width of the lowest band is 10-0ER[192]. The theory of this 1-D
standing wave predicts that more than 509 of the atoms are trapped in the two lowest levels
of the wells. A similar calculation{ 193] for a 2-D standing wave predicts a strongly
modulated spatial distribution.

4.6.1 Continuous wave (CW) spectroscopy of localised atoms

Localisation of atoms has been studied experimentally mainly by the use of CW (continuous
wave) probe spectroscopy, in which one obtains either the probe transmission spectrum or
the probe reflection spectrum from a four wave mixing process. The first significant CW
probe experiments{211-213] were performed in 1991 on cold atoms trapped in an MOT and
both revealed Raman resonances at probe-pump detunings of several tens of MHz. These
resonances are due Lo Raman transitions between Zeeman ground states with differing light
shifts, and the observed spectral regions of probe amplification and attenuation reflect the
differing populations of the ground states. A narrower central resonance with a dispersive
line shape and a sub-natural linewidth (~ 400 kHz) was also observed: this was only
properly understood in the light of later experiments. Another early experiment in 1990
involved the indirect observation of tocalisation of atoms by a different method[202]. Here.
the fluorescence spectrum of optical molasses was obtained by a heterodyne technique and
revealed the juxtaposition of two velocity distributions believed to be due respectively to free
(but slow) atoms and those bound in optical wells.

Later CW probe experiments have been carricd out with a higher frequency resolution,
mainly by two groups: the group of Hemmerich and Hiinsch{77-82] in Munich and the
group of Grynberg|76,83-86.214] at the Ecole Normale Supéricure in Paris. These
experiments showed that 1the narrow central dispersive resonance of the carlier experiments

had a fine substructure. a typical example is shown in figure 4-7.
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Fig 4-7 A nvpical CW. probe transmission spectrum
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With the higher frequency resolution, the probe transmission (or reflection) spectram in the
region defined by pump-probe detunings < =500 kHz 1s seen to consist of regions of probe
amplification when @y, < @y und attenuation when @, > @y, corresponding to Raman
transitions (sec figures 4-6 and 4-7) between adjacent energy bands of atoms bound within
the optical potential wells. The high resolution experiments also revealed the presence of an
extremely narrow (< 10 kHz} dispersive 'Rayleigh’ resonance when oy, = @y which
corresponds to transitions to and from the same bound levels. This resonance 1s discussed
later. For the Raman resonances. the correspondence of probe amplification and attenuation
with negative and positive probe detunings is due to there being a greater alomic population
in the lower bound states. The width of the observed Raman resonances is less than that
expected from the ground state decay rate (the inverse of the optical pumping time} alone.
This is due to Lamb-Dicke narrowing[(215], an effect in which the linewidth of atomic
fluorescence becomes narrowed when the atoms are localised in a region smaller than the
optical wavelength. Atoms in the Jlowest quantum vibrational state of a well are localised to
around 1/25 of an optical wavelength and thus subject to strong Lamb-Dicke narrowing of

their fluorescence. Lamb-Dicke narrowing in optical potential wells may be quantified in
I
terms ot the Lamb-Dicke parameter gp = (ﬁA [2ER )5, where LR is the recoil energy;

Lamb-Dicke narrowing occurs when g1 -p 1s > 1. This formulation vields a picture in which
Lamb-Dicke narrowing occurs when the change in atomic energy due to one absorption-
emission cvele is much smaller than the spacing of the bound energy levels in the potential
wells. Thus many absorption-emission cycles are required for the atom to change between
cneray levels. resulting in a longer pumping time and consequent narrower linewidth.

The first experimental observation[203] of these stimulated Raman resonances due to
guantised atomic motion was obtained in 1992 using probe transmission spectroscopy for
cold caesium atoms in a 1Y {sisyphus) 1-D standing wave. Almost simultaneously, an
experiment[204] was reported which used resonance fluorescence spectroscopy of rubidium
atoms in a sisyphus [-D standing wave to observe well resolved sidebands due to
spontancaus Raman transitions between quantised vibrational levels. Further experiments
using probe transmission/reflection speciroscopy have observed the same pattern of Raman
and Rayleigh resonances for cold atoms localised in various 1-D, 2-D and 3-D standing
waves. In 1-D, localisation of atoms has been observed in the ¢ "o MASE
arrangement[76]. but docs not occur in the 1-D oo arrangement{203,204]. In 2-D,
however, Jocalisation is observed for the ¢ 7o~ arrangement used in the MOT[77].
Localisation also occurs for various special 2-D and 3-D arrangements of laser beams which
cither generalise T 1-D standing waves to more dimensions[86,205] or represent new
hybrid 2-D and 3-D light fields[78 — 82]. The exact shape of the probe transmission

spectrum is strongly dependent on both the probe polarisation and on the angle between the
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probe and pump beams. Studies of the variation of the spectra with respect to the above two
parameters have been useful in understanding the nature of the resonances.

4.6.2 Optical lattices

When several non-collinear monochromatic laser beams intersect, the resulting 2-D or 3-D
light field is known as an 'optical lattice’ — a crystal-like light field with a periedic structure
(topography) determined by the laser wavelength and the angles between the beams. Chapter
5 is concerned with the nature of these three-dimensional light fields. Two properties of 3-D
light frelds are relevant here. Frestly the light field topography generally contain periodic
regions of high and low light intensity, and periodic regions of specific polarisation. If the
lattice contains regions of strong circular polarisation alternating with regions of weak (low
intensity or linear polarised) or differently-oriented circular polarisation, then it is a 3-D
analogue of the 1-D sisyphus arrangement and localisation of the atoms in all three
dimensions 1s expected and indeed observed. A second property of 3-D optical lattices made
trom three orthogonal 1-D standing waves is that their topography depends on two
parameters, the 'relative time phases’ of the three individual 1-I standing waves. The
origins of relative time phases and their influence on experimental design are fully described
in chapter 5. Here it is suffictent to point out that they may be either controlled, as in the
experiments of the Hemmerich and Hinsch group. or eliminated from the experiment by
using non-orthogonal beam arrangements as in the experiments conducted at EIN.S.

Optical lattices have been the object of considerable study[76-86]. Various beam
geometries and beam polarisation schemes, designed to produce different optical lattices,
have been proposed and tested. For instance there are lattices in which the localised atoms
have differing pertodicitios i difTerent spatial directions[83]. or in which they exhibit
ferromagnetic[81]. antiferromagnetic| 79] order and paramagnetic behaviour{84].

Much thought has been given to the origin of the extremely narrow linewidth of the
dispersive Rayleigh resenance observed in the C.W. probe experiments, which cannot be
explained by Lamb-Dicke narrowing alone{85]. Linewidths as small as 300 Hz FWHM have
been observed{82. Various explunutions of the origin of this narrow resonance have been
put torward in the period 1991 to 1994, including the following: the formation of a
'holographic' population grating by pump/probe interference[79], interference between the
probe and a back-scattercd pump beam (Bragg-diffracted from planes of atomic
magnelisation)[203]. a collective (Mossbauer-like) recoil of the whole atomic crystal when
absorbing or emitting light[216] and recoil-induced’ resonances{85.209]. This narrow
resonance s still not totally understood, nevertheless all the above theories share the idea that
ithe extreme narrowness of the resonance 1s related to the long range spatial order of the
localised atoms. The long range order is relevant in directions parallel to the probe

(backwards Bragg diffraction) and transverse to the probe (recoil-induced resonance). Some
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connections between the various given explanations are clarified in [85] and in a recent
paper|[210] which calculates the four-wave mixing signal for a 1-D molasses. In [210] the
magnitudes of both the Rayleigh resonances between the discrete motional bound states and
the recoil-induced resonances between the transverse motional continuum states are
determined. The results obtained agree with recent experiments}82] and suggest that both
types of resonance contribuie 1o the observed signal. but that in 3-D light fields the recoil-
induced resonances may be the dominant factor.

Another recent development of likely future importance is that of so-called 'dark
lattices'|49.50,217]. These are optical lattices in which cold atoms are optically pumped (on
a spatial grid) into 'dark’ (non-absorbing or nearly non-absorbing) ground states. Dark
lattices have been recently observed{50] in both 2-D and 3-D. Because atoms trapped in dark
states do not interact with the light field, there is no heating ctfect upon them and they do not
interact with each other via dipole-dipole forces. Furthermore they are not subject to the long
range repulsive forces due 1o reabsorption of flunorescence which occur in bright lattices,
They may therefore enable the attainment of Jower temperatures and higher atomic densities.

An interesting consequence of atoms being arraved in a crystalline structure 1s that one
could observe Bragg diffraction of light from the ‘crystals’. This was suggested as a direct
means of observing the localisation of the atoms. but it has been pointed out[205] that a
similar divectional signal would be given from 4 homogeneous (unlocalised) sample of atoms
owing to four-wave mixing[206]. Subsequently, it was pointed out[207] that this ambiguity
could be circumvented by performing the Bragg scattering after the molasses beams are
turned off but before the atoms have moved significantly. However. even with the beams
swilched off, there remains an ambiguity which is due to the formation of a ‘spin-grating'. A
spin-grating 1s a residual spatial lattice of alternating magnetisation of the ground state atoms
and can also give rise to Bragg scattering{218]. It is imprinted upon a uniform gas due 10
optical pumping assoctated with the local electric field polarisation prior to switching off the
beams. Nevertheless. beam geometries are in theory possible| 207] which allow
unambiguous attribution of o Bragg retlected signal to atomic localisation rather than to a
spin-grating. One such experimental result was very recently reported[172]. Bragg
diffraction of light from atoms trapped in optical potential wells remains an appealing arca of
study, actively pursued by several groups[219] including our own (see chapter 7).

4.7 Review of recent trapping and cooling mechanisms

Since 1985 there has been continued growth of the laser cooling research area, bringing
better understanding of Doppler and sub-Doppler cooling schemes and the invention of
several new schemes which are capable of producing yet lower temperatures. This section
gives brief descriptions of some of the other schemes. It is included to both show the current

state of the art and to demonstrate that the field of laser cooling is still rapidly evolving.
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4.7.1 Blue detuned stimulated molasses

The cooling mechanism of bluc-detuned stimulated molasses[220} was touched upon carlier
in the context of light forces on two-level atoms in strong light fields (section 2.3.5). In facl,
it 1s another example of the sisyphus effect, and occurs for slowly moving atoms in a blue
detuned standing wave. It has been described in terms of the stationary states of the atom-
plus-radiation field (i.e. dressed stites), perturbed by spontancous decay. The dressed states
of a two-level atom in a blue-detuned standing wave vary sinusoidally in energy and
composition along the axis in such a way that the highest energy of each dressed state is
when it has the largest admixture of the excited atomic state and the lowest energy is when it
has the largest admixture of atomic ground state. Spontaneous decay is therefore most
probable at positions where the dressed state encrgies are the highest. This is tllustrated in

figure 4-8.
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Figure 4-8 Dressed states for blue detuned stimudated molasses
Thus a slowly moving atom (represented by the thicker solid lines) which is initially in a
dressed state at a position where its energy is lowest, expertences a deceleration phase as it
moves towards a position of highest energy. Here it has a larger probability of undergoing
spontancous decay to another dressed state which is near its Jowest energy at that position.
and another cooling cycle begins. The effect was first observed in 1986[220], where a 1-D
temperature of the same order as the Poppler limit was measured.
4.7.2 Velocity selective coherent population trapping
Much attention has been paid[41,42,221,222] to the cooling method called velocity selective
coherent population trapping (VSCPT), which is capable of overcoming the photon recoil

temperature limit. at lcast in one and two dimensions. So long as atoms are undergoing
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absorption and emission cyeles during a cooling process, the photon recoil limit remains the
fundamental temperature limit. If however the atoms are optically pumped into a non-
absorbing or 'dark’ state. their momentum is no longer subject to diffusion and lower
temperatures are theoretically possible. It is possible to create dark states which are pertectly
non-absorbing for atoms with zero velocity along the axis of a counterpropagating pair of
laser beams. Such dark states are superpositions of energy eigenstates. For instance, in the

case of aJ, = 1 = J. =1 transition in a o "o~ 1-D standing wave, the symmetric

superposition of ground states |g_; )+ g, } is a non-absorbing state for zero velocity atoms.

This follows rom the Clebsch-Gordan coefficients of the transition (figure 4-9).
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Figure 4-9 Clebsch-Gordan coefficients for a J=1 — J=1 trunsition
Thus if the atoms are cooled by some preliminary mechanism into a fairly narrow velocity
distribution around zero, any atoms that fall "accidentally’ into the zero velocity dark state as
a result of random momentum diffusion will then remain there. The very narrow velocity
distribution thus obtained has a width Ap, in this case determined simply by the interaction
time 6 of the atoms with the light field so that Ap e 1/3/0. Thus for long interaction times,
Ap can become small enough that the atomic wavepacket is, by Heisenberg, of the order of
the light wavelength and a full quantum treatment of the centre of mass motion of the atom is
then required. In such a treatment, the dark state 1s not an eigenstate of the momentum
operator, but a 50/50 superposttion ol two states with momenta 2/k . Thus the theory
predicts that an experiment on VSCPT should reveal a momentum distribution with a peak
on either side of zero. cach with a width Ap. This has been clearly confirmed in both
onc[42] and two[58] dimensions. In the latter case. temperatures as low as 250 nK were
obtained. Extensions of such experiments to 3-D have been proposed[222-225].
4.7.3 Raman cooling
Raman cooling]43.44.59] is a new (1992) mechanism which is also capable of producing
atoms cooled below the photon recoil limit. The mechanism can be applied to any atoms
having two long-lived ground states. for instance the alkali metals, which have two
hyperfine ground stales separated in energy by 7 @y It relies on two-photon Raman
transitions between the ground states via a third excited state (sec figure 4-10). A series of
short pulses (~200 us) of laser light are applied to the atoms; each pulse consisting of two
counterpropagating beams with frequencics @; and @» such that the 'Raman deruning’ Ag

given by Ap = @) — @, — Wy 1$ approximately equal to 2kv. This is the condition for an
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atom with velocity v to be Doppler shifted into resonance with the Raman transition. Such
atoms receive a decelerative momentum kick of 2/k on being transferred from g to gp,.1.
They arc then optically pumped back into the state gp by a third Jaser tuned to @3 and a
spontaneous emission. This scquence may be repeated many times, with alternating
directions for the beams with frequencics @, and an, and the Raman detuning A being
gradually reduced to stay in step with the average atomic velocity as it decreases. The
velocity distribution (temperature) can become arbitrarily narrow(small) so long as the
pumping rate into the non-absorbing v = () state is larger than the loss rate due to non-
resonant excitation. This requires that the pulse shapes should be specially tailored e.g.
Blackman pulses and that the pulse widths should be decreased in step with the decreasing
temperature. Experiments[43,44] using this or similar techniques have reached temperatures
one order of magnitude less than the photon recoil Hmit in 1-D (23 nK for caesium) and

around one to four times the photon recoil limit in 2-D and 3-D.
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Figure 4-10 Ruman cooling encrgy levels
4.7.4 'The 'trap relying on optical pumping’ (TROOP)
An interesting and very recent development is the 'trap relying on optical pumping’ or
TROOP' [226]. This is a 3-D radiation pressure trup which does not require any magnetic
ficid. Thus it offers advantages in applications such as cold-atom frequency standards or
sub-recoil cooling where small residual magnetic fields cause limitations. It employs six
circularly polarised beams as in an MOT, but the beams are made divergent (£227) by
focusing each one at 3.5 cm from the tap centre with objective lenses. The divergence of the
beams results, for atoms displaced from the trap centre, in an intensity imbalance between
the counterpropagating beams of opposed circular polarisation. Thus a displaced atom 'sees’
more of one polarisation than the other and is optically pumped into an orientation. Then the
differing Clebsch-Gordan coefficients for 6+ and ¢~ transitions result in preferential
absorption of photons from the two beams so that the atom is pushed back to the trap centre.
This trap has a trapping cfficiency about onc order of magnitude lower than a conventional
MOT: 3 x 107 atoms have been trapped with a temperature of ~40 pK. The TROOP is very
sensitive to intensity imbalances between the opposed beams. The easy way to set up and
load a TROOP is to start trom an MOT and gradually reduce the magnetic field whilst
tweaking the beam alignments and intensities.
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4.7.5 The 45" trapping force (1992)

Somewhat confusingly called by its authors[227-229] the 'magneto-optical radiation
force’ or the rectified dipole force' the mechanism of the '45” trap’ involves (in 1-D) two
lincarly polanised counterpropagating beams with the polarisation directions rotated 45° from
each other. A static magnetic field is applied parallel to the beam propagation direction. This
mechanism was used to construct a 3-D trap for caesium atoms[229]. trapping ~108 atoms
at & temperature around half the Doppler limit. As it depends on stimuated emission for its
effect it may be possiblc to build traps with very large spring constants using this technique.
by using very intense beams and large magnetic fields.

4.7.6 The spin-polarised spontaneous force trap and vortex-force atom
trap (1992)

The spin-polarised spontaneous force trap[230.231] 1s a variation on the MOT in which
trapping in two spartial dimensions is achieved exactly as in the MOT, but in the third
dimension by a ‘'macroscopic vortex' force which is insensitive to light polarisations and
magnetic fields. It has the advantage that if the light along this third direction is circularly
polarised and a parallel magnetic field applied, the sample of cold atoms becomes spin
polarised. which may be useful for certain experiments,

4.7.7 The far off resonance trap (FORT) (1993)

The 'far off resonance trap’ [142] is basically a dipole trap made with a single focused tascr
beam of very high intensity (s ~ 10%) and large detuning (4 to 60 nm). It offers long
continement times, low scattering rates and may be useful for obtaining high densities of
trapped atoms. Typical parameters are 1300 atoms at a temperature of 400 pK and density of
8 x 101 em3.

4.7.8 Bichromatic cooling (1993)

Bichromatic cooling was first reported[232] tn 1993, and the 1-D sct up involves a three-
level atom in two collincar 1-D standing waves of the same linear polarisation but differcnt
trequencies. Each of the ~tanding waves 1s blue detuned with respect o a transition from a
ditfcrent hyperfine ground state to the same excited state. The mechanism is another example
of the sisyphus effect and similarly cools atoms into the sub-Doppler temperature range.
4.7.9 The 'dark SPOT’ trap (1993)

The dark spontancous force optical trap|233], or 'dark SPOT' trap, is an adaptation of an
MOT in which the intensity of the repumping light in the centre most region of the trap is
much lower (~1/100) than that in outer regions where the repumping intensity is at the level
normally required to maintain a sufficient trapping population. The result is that atoms are
magneto-optically trapped normally in the outer regions, but then fall into the inner region

where they are pumped into a 'dark” hyperfine ground state. Because these dark atoms are

83



no longer interacting with the wapping light, they may be trapped within this central dark
region at densitics around two orders of magnitude higher than would be achievable in a
normal MOT.

4.7.10 The 'NOT' or 'not-a-trap' (1994)

It was recently reported in a paper[234] entitled 'Optical trapping with linearly polarised hight
at zero magnetic field' that ¢ Yo~ standing waves are not the only configuration for which
an MOT will operate. In fact there 1s a continuous family of different linear polarisation
geometries which also give rise to a trapping force in a quadrupole magnetic field. The
configuration which is most stable and has the largest spring constant is that with orthogonal
linear polarisations in cach standing wave, but with the 'incoming' polarisations along each
axis tilted at 45° {see figure | of [234]). Furthermore. this latter configuration can also trap
atoms when there is no magnetic field. The number and number density of atoms in such
traps arc comparable with a conventional MOT and the temperature can be lower. An
explanation for these results has not yet been published.

4.7.11 Evaporative cooling and the "TOP' trap

Evaporative cooling{32-34,47.48,122,235] 15 a cooling method which has recently become
important as it was the method employed to achieve the tirst Bose-Einstein condensation of a
gas of 87Rbi34]. Tt was also used shortly afterwards in the second observation of BEC in
7Li[122]. The method involves a gradual lowering of the well depth of a potential well
containing trapped atoms, so that the most energetic atoms in the thermal distribution are able
o escape. The lowering must be performed slowly enough to allow the remaining atoms 1o
rethermalise by elastic collisions. Evaporative cooling 1s possible in both magnetic and
optical traps.

The "TOP {timc-averaged orbiting potential) trap used to achieve B.E.C.1s an
adaptation of a quadrupole magnetostatic trap. In a conventional quadrupole trap using two
anti-Helmholtz coils. atoms with @ magnetic moment expericnce an axially symmetric
potential which drops to zero at the centre of symmetry of the coil pair. The atoms collect
near this zero-field pomt. but unfortunately this ts exactly where the probability of making a
spin-flip transition to another atomic state with opposite magnetic moment is most high.
Such spin-flipped atoms are then repelied from the trap. In order to prevent this effect. in the
TOP trap a small oscillating magnetic field is superimposed upon the quadrupole field so that
the zero-tield point rotates in a small circle. The rotation rate is set so that the atom's position
always lags behind the position of the zero-field point. Then the atom's motion 1§ cftectively
governed by the time average of the potential. which is an ellipsoidal harmonic whose
minimum corresponds to a non-zero field. Thus the spin-flipping 1s greatly reduced and

stable trapping of very cold atoms (<1 uK} is achievable.
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To achieve B.E.C. a technique known as rf-driven evaporative cooling was used, in
which a radiofrequency signal is tuncd so as to cxcite only the most energetic atoms at the
outermost edge of the trap, flipping their spins and ¢jecting them from the trap. The
frequency is gradually ramped downwards, thus driving the evaporation process whilst
maintaining a deep trap. This technique results in a denser sample of cold atoms and proved
to be sufficient to reach the phase transition where B.E.C. begins. The condition for the
phase transition is given[236] by ndgp’ >2.612, where n is the atomic number density and
Agg 1$ the atomic de Broglie wavelength. In the reported experiment, the critical condition
was reached at a temperature of 200 nK, corresponding to a de Broglic wavelength of 620

nm and a density of 1013 ¢m—3.

4.8 Summary of chapter 4

Chapter 4 described several sub-Doppler cooling mechanisms, concentrating on sisyphus
cooling, the magnetically assisted sisyphus effect and motion induced orientation because
they are all present in the magneto-optical trap. Important features of these three mechanisms
are the independence of the friction coefticient from the laser intensity. the dependence of the
capture velocity on the laser intensity and the dependence of the equilibrium temperature on
the laser intensity divided by the detuning. 1t was shown that localisation of atoms in optical
potential wells is possible and that in real 3-D cooling and trapping experiments, a

combination of these mechanisms may be operating simultaneously.
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Chapter 5
Polarisation gradients and three-dimensional
standing waves of light

This chapter is devoted to original theoretical studies which I have made of the structure of
three-dimensional (3-D) standing waves of monochromatic heht. in particular of their electric
field polarisation gradients. The work aims to give insight into the electromagnetic ficlds
produced by the typical Jaser becam arrangements of molasses and trapping experiments. The
work is restricted mainly 1o the arrangement of six plane-wave laser beams propagating
parallel to each of the six cartesian axial directions. | refer to such an arrangement as a '6-
beam standing wave' Other types of arrangement are also discussed where relevant and
some senerally appheable results obtained.

Chapter four described several sub-Doppler cooling mechanisms which required the
presence ol specilic types of polarisation gradients in the electric field: sisyphus cooling.
corkscrew cooling (motion-induced orientation). the magnetically-assisted sisyphus effect
and velocity-selective magnetic resonance cooling. The basic theoretical explanations of all
of these cooling mechanisms have been given in the literature using a simple model of an
atom moving in & one-dimensional (1-D) standing wave formed by two counterpropagating
laser beams. Such [-D models involve only one 'type' (see figure 4-2) of polarisation
gradient und therefore allow a clear understanding of the mechanisms. Many actual cooling
and trapping experiments, however, are carried out in three dimensions where the structure
of the tield polarisation becomes complicaled and can simultaneously contain the polarisation
gradients corresponding to different sub-Doppler mechanisms. Consequently the fully three-
dimensional 'cooling and trapping problem’, i.e. solving the equation of motion of the atom

in a 3-D resonant light field is extremely difficult. This chapter docs not attempt to study the
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interaction of the atoms with the light field, but is confined to the interesting sub-problem of
the structure of the light field itself, with the intention of gaining insight which may be useful
as regards the larger dynamical problem.

The structure of this chapter is as follows. Section 5.1 sets out the mathematical
notation and conventions which I have used to define different 3-D standing waves. Then.
using specific examples, it discusses some salient physical features of '6-becam standing
waves' and ways of categorising them. Section 5.2 describes work carried out with the
objective of quantifying the degrees to which 3-D standing waves contain sisyphus or
corkscrew polarisation gradients. Section 5.3 describes an attempt to make a connection
between sisyphus and corkserew polarisation gradients and fundamental field angular
momentum properties. Finally section 5.4 is a ‘compendium’ of calculated field quantities

for some common ficld configurations.

5.1 The physical and mathematical description of 3-D standing

wWaves

5.1.1 Conventions and assumptions

For clarity. I fist the conventions and assumptions behind the mathematical descriptions
c¢mployed in this chapter.

1) Real. as opposed to complex. functions will be used to define the electric field. For
example. a plane wave lincarly polarised in X. and propagating along z is written as
E = £y xXcos(hkz — o1 + w). where £y is the electric field amplitude and y is a phase factor
dependent on the chosen origin of the co-ordinate system. Plane waves propagating in the z
direction will always have argument (kz—of) !, and not (ar—kz).

i) Each of the component plane waves used to construct a 3-D standing wave will have
the same wavenumber £, angular frequency @ and intensity /) (= %EQL'E()Q}.

1) Following traditional optics convention, the two varieties of circularly polarised light
arc described ax follows. When an observer looks towards a source of circularly polarised
light. the electric tield vector appears to rotate anti-clockwise for left-handed hght, and is

written as
[LU

E=

| Kcos(kz ~ wr + ) - ysin(kz — ox + y)] (5-1a)

-
IJ

For right handed light, it appears to rotate clockwise and is written as

E:E—L)—[icos(kz—mf%— W)+ §sin(k: - w1 + )] (5-1b)

N
iv) In spectroscopy. the terms o™ light and 6~ light refer to circularly polarised light carrying

+1 and -7 of angular momenturn per photon respectively, referred to the z quantisation axis

Y This facilitates consistent use of the formulae for right- and lefi-handed circular polarisation.
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used 1o describe atomic states. The relationship of 67 and ¢~ light to the left-handed and

right-handed description is shown in table 5-1.

left-handed right-handed
Light propagating in + Z Ml o
Light propagating in —z G o*

Tuble 5-1 Relationship between &* (67) and lefi~(right—jhanded designations of circuarly
polarised light

v) The theory developed in this chapter is for 3-D standing waves constructed from
planc waves with a constant intensity profile transverse to the propagation direction. The
motivating laser cooling experiments generally use laser beams in the TEMgy mode which
have a Gaussian radial intensity protile. At a transverse radius which is 25% of the 1/¢2
beam waist. the electric field amplitude has fallen to ~949% of its peak on-axis value.
Regarding such a 6% variation in amplitude as an acceptable approximation to a uniform
plane wave. the following theory is directly applicable to the innermost part of the
intersection volume of unapodised laser beams, and to all of an apodised beam.

vi) The phase factors (e.g. ¥ tn cquation 5-1 above) are assumed to be constant. In any
experiment, the total path length of a laser beam from its source to its action point is likely to
be subject to small fluctuations due to acoustic vibrations of mirror mounts etc, leading to
large fluctuations in the phase factors. The theoretical ideal of constant phase factor can be
approximated by using mirrars mounted on piezo-driven translation mounts controlled by a
servolock system, as in the experiments of A.Hemmerich and T.Hinsch, e.g.[78].

vil) It is asswmed in this work that the two beams in cach counter-propagating pair arc
perfectly aligned. te. parallel. Small misalignments can have important effects on the field
structure, as was mentioned in chapter 4 and in [162].

viiny [tis well established, e g [237]. that for any arbitrary field which is exactly
monochromatic the ficld must be fully polarised everywhere. The polarisation at each point
must be elliptical, though the orientation and eccentricity of the ellipse may vary from point
to point. The two extreme cascs are when the eccentricity equals 1, in which case the Light is
linearly polarised. and when the eccentricity equals 0, in which case the light is circularly
polarised.

5.1.2 Phase factors and the interference of several 1-D standing waves.

Four basic types of 1-D standing waves were introduced earlier in chapter four: 'paraliel
linear' Ty, 'sisyphus’ m¥nY, ‘circular standing-wave' 676" and ‘corkscrew' ot
Lustrations and formulac for these standing waves may be found in section 4.1.2. Each of

the four types manifests a distinct ' polarisation structure’ (e.g. a helix for oto7) which

38



repeats with periodicity A along the axis of the standing wave. A first approach to the 3-D
problem is to study the various ways in which these basic 1-D standing waves might be
combined to construct 3-D standing waves. Qualitatively. one expects to find various distinct
types of 3-D standing waves, each with a distinguishing polarisation structure or
‘topography’ repcated on a 'crystalline’ cubic lattice with periodicity A. Visualising these 3-
D fields. however, 1s difficult and a mathematical analysis is needed. Then it becomes clear
that it is important to consider the effect of the phase factors of the beams when they are
added. This is conveniently explained with a specific example. Consider a 1-D m*rnt* (parallel
lincar) standing wave whose components propagate along the z-axis:

E= E(]fc[cos(k:’ -+ l,l/_)+ cos(k:’ + ot + w*)] {5-2)
This can be partially simplified by a shift of the origin of the co-ordinate system along the z-

aX18.

which gives
E = EgR|cos(kz = (o1 + y)) + cos(kz + (ax + )]
+ _ -
where = LTW_ 15 a phase factor clearly related to the choice of the time origin of the

(space-lime) co-ordinate system. One can add to this standing wave two standing waves of
the same amplitude ‘propagating’ along the x and v axes. having first performed similar
shifts of the co-ordinate system origin aong the v and v axes. The resultant ficld where these
waves overlap is
E = Egy[cos(kx — (@f + 8)) + cos{hx + (@1 + 6))]

+ Egi[cos(ky — (o + 0)) + cos(ky + (ax + ¢))] (5-3)

+ E(,i[cos(k: — (ot + )+ cos{ks + (ar + 1,1/))]
Here. 8. ¢ and yr are three time phases'. associated with the 1-D standing waves
propagating on the v, v and © axes respectively and determining their relative
synchronisation. This association { v < 8, v &5 0, 7 <> ) is retained throughout this
chapter. By shifting the time origin of the co-ordinate system, onc might eliminate one of the
three time phases leaving just two ‘relative time phases’. All four degrees of freedom relating
to the choice ot the co-ordinate system origin have then been ‘used up’, leaving the two
relative time phases as necessary parameters determining aspects of the polarisation
topography of the resuftant 3-D standing wave. For most of the following discussion., it
turns out to be more convenient to retain all three time phases, thus preserving the clear
cyclical symmetry of equations such as 5-3. As an example of this, consider the next step in
the stmplification of equation 5-3:

E = 2E[ycoskycos(wt + 8) + Zcoskycos(wt + @) + Xcoskzcos( @t + )| (5-4)
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This may conveniently be written as

E=2F,Vcoskycos(ewr +8) + cycle (5-4)
where '+ cyele' indicates that two more terms are to be added, identical to the first apart from
thechanges x>y —z—=vand -9 - y— 6.

The importance of these time phases when calculating the 3-D field duc to three
orthogonal 1-D standing waves was first recognised by Molmer{199], and has been
subsequently studied by several groups[78,162.199,205]. To my knowledge the only
workers who actively control the ttme phases in their experiments are A.Hemmerich and
T.Hiinsch[77-82,238.239]. They have shown theoretically, and confirmed in 2-D
experiments[238.239], that the different field structures due to different time phases lead to
different light forces on cold atoms. A recent Monte-Carlo simulation[115] of a 3-D
molasses experiment also demonstrated the dramatic effect of different relative time phases in
a 6-beam arrangement. The refative time phases might be deemed a 'problem’ in that cither
experimentalists must control them, or, if they are lett to fluctuate in experiments, then the
theoretical analysis must use an average over all possible values.

An ingenious alternative approach to the 'time phase problem’ was proposed by a group
at L'Ecole Normale Supérieure|205]. Tt is based on a degrees of freedom argument,
Consider the common example of the ficld due to the intersection of six plane waves. Before
any simplifying co-ordinate shifts are made. each plane wave contributes one phase factor to
the expression for the resultant 3-D field. giving six phase factors in all. The space-time
origin of the co-ordinate system 1s arbitrary and may be chosen to eliminate four of the phase
factors. as there are four degrees of freedom in this choice (three spatial and one temporal).
Two phase factors cunnot be eliminated: their values determine the structure of the tield. If
one applies the same argument to the intersection of only four plane waves (non co-planar).
all four phase factors can be eliminated by a suitahle choice of origin?. The physical meaning
of this is that there is enly one possible polarisation structure for the field: phase fluctuations
merely cause a spatial translation of this structure. An example of such a field is that created
at the intersection of four travelling waves aligned in the tetrahedral beam’ arrangement,
where cach beam enters an imaginary tetrahedron normal to one of its faces. Tetrahedral
beam arrangentents have been successfully used in experiments]205.83.84,240]. [t is not
strictly necessary for the beams to be aligned with an exact tetrahedral symmetry, and in fact
departures from such exact symmetry have been usefully exploited in experiments, e.g.[83],
as they allow the creation of field structures with different spatial periodicities along different
axes. As well as allowing this extra degree of freedom as regards the pertodicities, the

tetrahedral 4-beam field arrangment has the advantage of eliminating the need for phase

bl . . X
= Similar argwnents can be wade for -1 and 2-D heam arrangements.
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control in experiments. Nevertheless, many groups use the orthogonat 6-beam arrangement
as studied in this chapter. Orthogonal beam arrangements allow optical lattices to be
‘customised’ to provide desirable experimental properties ¢.g.[77-82,238,239].
5.1.3 Describing '6-beam’ standing waves
In general, 3-D standing waves may be constructed in many ways, using any number of
monochromatic planc waves with arbitrary propagation directions, polarisations and relative
time phases. This subsection 5.1.3 is now restricted to the 6-beam fields generated by the
usual arrangement of six intersecting orthogonal beams. I now introduce a concise notation
for 6-beam standing waves which indicates how they are constructed from component 1-D
standing waves. It consists of a series of six standard polarisation symbols, giving the
polarisation of cach of the component travelling waves, always in the order: propagation in
+X, propagution in — X, propagation in + ¥, propagation in ~ y. propagation in +Z,
propagation in —z. Thus as examples. the standing wave given by equation 5-3 is designated
'ttt and a 3-D standing wave with all beams having left-handed circular
polarisation 1s designated 076070 66 . The work in this subsection is also restricted, as
18 the case in many experiments. to those 6-beam standing waves whose three component 1-
D standing waves are each of the same ‘standard’ tvpe (e.g. 6 "6 0to 6 ¢ * as used in
the MOT). Thus there are four basic families of 6-beam standing waves to consider,
corresponding to the four prototype |-D standing waves from which they are constructed. Tt
should be pointed out that some experiments involve interesting exceptions, e.g.[82], using
a mixture of types of 1-D standing wave i n¥n¥e Yo ¥, or [229] which uses 1-D
standing waves whose plane wave components are linearly polarised at 45° to cach other.
Rotational and reflective symmetry and 'similarity’ of fields

6-beam standing waves all have a periodic structure with a cubic unit cell of side A. the
wavelength of the laser light. The polarisation topography within the unit cell depends on the
nature of the six constituent piane waves. The guestion arises as to whether two 6-bcam
stunding waves formed from ditfering arrangements of beam polarisations and/or time
phases have a 'similw’ polarisation topography. For instance, is one related to the other by a
spatial translation or change of handedness? ‘Similar’ in this context is taken to mean that
test’ atoms travelling randomly in the two fields traverse on average the same intensity and
polarisation gradients and thus experience identical cooling and trapping forces. The laws of
physics relating to the interaction of light and atoms are invariant with respect to the
following types of coordinate transformations: space transfations, time translations, rotations
and parity inversion. Hence [ define two standing waves to be technically similar if there 1s
such a legitimate co-ordinate transformation between them.

A 6-beam standing wave may be 'self-similar'. i.e. have a polarisation topography
which is similar whether viewed along the +x, v or 2z-axes. Mathematically. symmetry
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with respect to rotation by 90° requires that the expression for the total field is unchanged by
the cyclic substitutions x — v — 2~ x and 8 — ¢ — ¥ — 6 and reflective symmetry
allows any one of x = —v. v — —v and 7 — —z. Consider the following two 3-D standing

waves, cach built with three parallel Jinear 1-D standing waves.

Standing wave A et Standing wave B m' ' nin*n'm"
e 5 R o :
: . - . . . . H ; . . H . . . :
. Propagation axis  Polarisation axis | - Propagation axis  : Polarisation axis
X " z i~ X ¥
: ! : ;
v z ; ¥ s z
SRR S S — - J

It can be seen from the above table that for standing wave A, two of the component 1-D
standing waves contribute o polarisation, and there 1s no v polarisation. Its 3-D polarisation
structure 1s not rotationally symmetric. Standing wave B, on the other hand, receives
balanced contributions to x,y and 2 polarisation and corresponds to the ticld described by
equation 5-3. It is 90" rotationally symmetric, fulfilling the required cyclic condition.

Whether 90 rotational symmetry is desirable may depend on experimental objectives. It
could be desirable in experiments requiring nearly isotropic distributions of field properties
or atomic properties like velocity or magnetisation, On the other hand. deliberate introduction
of asymmetry in the freld/atom interaction might be useful in elucidating teatures of the
iteraction. The ficld used in the magneto-optical trap is not rotationally symmetric, the two
beams aligned along the magnetic ticld cotls having opposite handed circular polarisation to
the other four beams. 1n order that the hght tield structure ‘match’ the quadrupole magnetic
ficld. TFour specific examples of 6-beam standing waves are now selected and examined in
order to illustrate a number of key points. The four examples are cach a 3-D extension of the
{our prototype |-D standing waves (T, G+0‘*, oo™, Y.

5.1.4 Parallel Linear 6-beam standing waves

As a tirst example. consider 90 rotationally symmetric, parallel linear. 6-beam standing
waves. Such a tield was used in one of the earliest optical molasses experiments[36].
Firstly. there are only two possibilities: T/’ and tonn' n'n'n'; they are related
by a parity inversion and a 90° rotation. (There are also six asymmetric possibilities, also
inter-related by rotations ctc). As both arrangements are similar, I may use ' 't
as the prototype for further discussion, Its six components are described by equation 5-3,
which was simplified to equation 5-4:

E =2E |ycoskxcos(of + 6) + Zeoskycos(mr + ¢) + X coskzcos(ar + ) (5-4)
One now considers the effect of various values of the time phases on the standing wave. An
obvious place to start is with = ¢ = y = 0, which I call the 'synchronised configuration'.

The equation becotnes
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L= 2L, cos wr{y coskx + Zcosky + X coskz) (
which can be casily interpreted. It represents a 6-beam standing wave which
« is lincarly polarised and in phase everywhere.
«  has eight field nodes and eight antinodes (amplitude 2¥3Eg) per unit cell. At each
antinode. the ficld is lincarly polarised parallel 1o one of the unit cell diagonals
«  contains polarisation gradients with corkscrew-like properties, i.c. linear polarisation
which rotates in space.
Thus in the synchronised configuration, motion induced ortentation is possible, but sisyphus
cooling 1s not. owing to there being no regions of circular polarisation.

An important question is: what is the effect of different values of the time phases on this
polarisation topography? A first approach to this question is simply to try substitution of
various values for 6. ¢ and ¥ in equation 5-4. For instance, stasting from the synchronised
configuration. putting any one of 8, ¢ or i equal to 7t radians gives a similar standing
wave: in fact it is just the original synchronised configuration translated spatially by A/2.
Contrastingly. putting any onc of 6, ¢ or yequal to 7/2 radians produces a standing wave
with different topography and which cannot be converted to the synchronised configuration
by any co-ordinate transtormation. 1 turns out that the most dramatic change in polarisation
topography from the synchronised configuration is obtained with time phases such as 8= 0,
¢ =1/3, w=-m/3, or a similar permutation, which [ call the ‘three-phase configuration’.
This assertion is backed by a mathematica! areument which is given later in subsection
5.1.8. Meanwhile it mav be visualised as in figure 5-1. Note that a change of any of the time

phases by 1t merely reproduces the same topography, spatially shifted by A2.

svnchronised 8. ¢, w=0or three-phase 8=0orn
0.2x 021

h.

j: W= -3 ¢ =m/3or

or 23 213

N d
v

Figure 5-1 Time phase diagram for the synchronised and three-phase configurations

In changing trom the synchronised to the three-phase configuration, the most significant
change in the polansation topography is that the polarisation at almost every point in the cell
changes from linear to clliptical. Thus in the three-phase configuration, sisyphus polarisation

gradients involving circular polarisation may be present.



5.1.5 Corkscrew 6-beam standing waves

As a second example. there are two basic polarisation structures for 6-beam corkscrew
standing waves built from three ¢ "¢~ 1-D standing waves. Forac Yo~ (676 ™) 1-D
standing wave, both beams must be left (right) ~handed. Using L(R) to denote a [eft (right)-
handed [-D standing wave, there are cight possible ways to make a 3-D standing wave,
which divide into two groups. each group having a distinct polarisation structure. The first
group contains the 90° rotationally symmetric combinations LLL (o f6 "o *o "o 6 7) and
RRR (6 6o o o o), which have a similar polarisation structure related by a parity
inversion, and the second group consists of LLR, LRL, RLL, RRL. RLR, LRR which have
a similar polarisation structure related by parity inversion and/or a 90° rotation. The field
used in a magneto-optical trap belongs to the second group (not rotationatly symmetric). [
use LLR (0 F0 0 0 676" as an example. The field is given as the sum of six plane
waves by

. . Ey oo ..
E= E%—[y'C()s(k,xA ot — 0) = Zsin(ky — wt - 6)]+ “%[ycos(k_r + Wt + 0)— zsin(kx + wr + 0)]
V2 w‘

+ %%[fcos(ky —or = @)= Xsin{ky - or - ¢)|+ %[icos(k_v + o + ¢)— Xsin{ky + @1 + 0]
V2 V2

+ %[x cos(kz — 1 ~ )+ ysin{kz - o - y)|+ %[icos(k; + ot + W)+ ¥sin(kz + ax + y)
which simplifics to the column vector
coskzcos{@r + ) —sinkvcos(ar + ¢)
E = \2E,| coskxcos(wr + 6) +sinkzcos{ar + ) (5-6)
coskvecos{wr + ¢)~ sinkxcos(wt + )
In the synchronised configuration this becomes
coskz —smky
E = 2E, cos o coskx +sinkz (5-7)
COsky —sinkxy
The properties of the synchroniscd configuration inciude
* Itis hinearly polarised everywhere with a polarisation axis which varies throughout the
unit cell.
» It has eight nodes per unit ccll, e.g. at [A/8, /8. -A/8]. Note that the component ¢ T~
1-D standing waves do not have nodes themselves.
¢ It has eight antinodes of amplitude 2V3E per unit cell, e.g.at [~A/8, ~A/8. /8],
Once again, motion induced orientation 1s possible in the synchronised configuration, but
stsyphus ceoling 15 not.
The field in the three-phase configuration (6= 0, ¢ = 2n/3, = -21/3) may be caiculated,
and has the following propertics

*  There are no longer any nodes

94



*  The polarisation is elliptical almost everywhere, and in particular is exactly circular at
the positions which were nodes and antinodes for the synchronised configuration.

The field amplitude is now greater (=3£¢/Y2) at the original nodal positions than at the
original antinodal positions (=N"3En/\‘"2).

The key points to be made are firstly that the change of relative time phases from the
synchronised to the three-phase configuration has again entirely changed the polarisation
topography of the field. Secondly, the change has produced elliptical and circular
polarisation, thus allowing the possibility of sisyphus polarisation gradients which are not
present in the synchronised configuration.

I have carried out similar examinations of two other types of 6-bcam standing wave. |
briefly summarise the most important results below.

5.1.6 Circularly polarised 6-beam standing waves

There arc eight ways to construct circularly polarised 6-beam standing waves,

cto o o6 o und 6 o o o o 0 are two examples. The light in each of the
three 1-D standing waves has a definite angular momentum, parallel or anti-parailel with its
propagation axis. The three angular momentum vectors (spatially averaged) will add to give
a resultant vector pointing along one of the cight unit cell diagonals, depending on the
individual 1-D standing waves. The polarisation topographies of all eight arrangements are
similar in the technical sense. Once again, there are eight nodes and cight antinodes per unit
cell. Two of the eight antinodes are linearly polarised, the other six are eltiptically polarised
with various orientations. The polarisation structure is dramatically changed in the three-
phase contiguration.

5.1.7 Sisyphus 6-beam standing waves

FFor stsyphus 6-beam standing waves there appear to be eight basic ways to combine three
1-D sisyphus standing waves, examples are TR~ ARy and T8 ey, Again these
are all techmically similar. 1.e. related by rotations and parity inversions. Interestingly. in
the synchronised configuration. there are only two nodes and two antinodes per unit celf. as
opposed to the eight of each found for the three beam arrangements described previously.
The antinodes arc lincarly polarised, but the polarisation is elliptical with spatially varying
orientation at most points in the unit cell. The topography is self-similar with a periodicity of
A4, rather than the A2 found in the three previous arrangements. Correspondingly, time
phase changes of /2 in any of 6,¢ or y change the polarisation topography to one which 1s
similar. This is not surprising. in view of the A/4 variation evident in the 1-D sisyphus
standing wave. Once again, the polarisation structure is dramatically changed in the three-

phase configuration.
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5.1.8 Electromagnetic field properties of 6-beam standing waves

My first approach to studyving 6-beam fields was, as illustrated by subsections 5.1.3 to 5.1.7
above, to calculate the resultant electric vector field (polarisation) and study its mathematical
form. My second approach consisted of calculating general algebrate expressions for
electromagnetic flield quantities of potential interest in order to examine their spatial variation
and dependence on time phases. Interesting properties, for instance, are the electric field
energy density and its gradient as. in a simple two-level theory, these determine the dipole
forces on atoms. Another interesting quantity is the Poynting vector, which is sometimes
associated with the scattering force?, for instance in the radiation pressure vortices reported
in [238], or in simple atomic beam deceleration by a plane wave. The set of field properties
which T calculated and examined is Listed in table 5-7. Some resuits of these calculations are
tabulated i scction 3.5 of this chapter. The algebraic expressions for electromagnetic
properties ol these 1-D and 3-D standing waves possess fascinating mathematical
symmetries.

In parallel with these calculations. a computer programme was used to display the
spatial variation of the field guantities. Such computer pictures are of some use in
understanding the structure of the fields. Their usefulness however is limited owing to the
complexity of the fields, combined with the difficulty of reducing a 3-D field to an
informative 2-D or {-D image. For the record. an example of such a plot 1s included as
figure 5-2. overleat.

The idea that the 'three-phase configuration’ of time phases represents a kind of polar
opposite to the synchronised configuration” was depicted i figure 5-1. This idea gains
weight from the resudts of calculations of field quantities. For instance, consider the example
of the time-averaged Povnting vector. (8} , for a T mend mint standing wave:

coskysinAzsingg ~ )
(8)=2FE,H,| coskzsinkxsin(y — 9) {5-8)
coskysinhvsin(g - o)
The minimum value of {8} is zero when 8 = ¢ = w = 0, 1.e. in the synchronised
configuration. The maximum possible value for (S} may be found by study of the symmetry
of equation 5-8. which leads to the conclusion that the maximum will occur when each of the
three components 1s equal in magnitude. This requires that

SI(Q — ) =sin( W —~ &) =sin( 0 — ) {5-9)

30ur paper on light forces{133] showed that the scattering force and the Poynting vector are not necessarily
alwavy collinear, even for 2-level atons.
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Figure 5-2 The electric field vector E in a unit cell of a 6-beam 6 "6 6 "6 O *o “standing

wave in the synchronised configuration, visualised as colour-coded 2-D slices through the
field. The magnitude (intensity) is colour coded, red for high and blue for low. The E-field

polarisation in the x-y plane is indicated by the arrows. White arrows have a z-component
out of the page, and black arrows into the page. Each small square represents a slice in the x-
y plane of size A by A. Reading left to right and then down as usual, each square is displaced

by M16 in the z-direction to build up a picture of the complete unit cell.




We are free to choose 8 = 0, which is equivalent to fixing the time origin of the co-ordinate
system, and then the threc solutions in the range —T to +x are

8=0, ¢o=0. =0

6=0,¢ i /3, v i /3 ¢-10)
Thus for this particular case (ficld type and tield quantity), the three-phase configuration is
shown to be special. It turns out that similar calculations of the ficld quantities listed in table
5-7 for the four types of 6-beam standing waves considered in this chapter always result in
mathematical expressions whose stationary points are determined by equations either of the
form
sin{@ — y) = Esin{ y — 8) = tsin( @ — ), which is equivalent to (5-11)
cos(@ — ) =Fcos(y - 0)=xcos(60 - )
or of the form
cos(¢ — ) =tsin(y — ) =+sin( 6 — ¢}, which is equivalent to (5-12)
sin(¢@ — Y =xcos(y — 0)=xcos(8 - ¢)

The solutions to equations 5-11 are permutations of
8=0.0=0 y=0 )
(5-13)
B=0,¢=m/3, y=—-n/3
which correspond to the synchronised and three-phase configurations. One solution gives
the minimum of the particular field quantity under consideration and the other its maximumn.

The solutions o equation 5-12 are
0=0.¢0=n/2, yw=-m/2

{5-14)
O=0,0=nm/6, y=-n/6
Again. the two solutions correspond to the minimum and maximum values of the particular
field quantity under consideration.

The overall conclusions are as follows. All the field quantities listed in table 5-7 have
their stationary points determined by either equation 5-11 or 5-12, Whichever equation
applies. if one starts from a time phase configuration such that the field quantity has its
minimum (maximum) value, then the maximum (minimum) will be produced by shifting any
two of the ime phases by +7t/3 and -7/3 respectively. Although I am not aware of any
formal publication of the above result, the three-phase configuration was used as one choice
of time phases for a recent numerical simulation of 3-D laser cooling{ 115]. Figure 5-1 is the
time pbase diagram for those fields quantities whose stationary points are given by equations
5-11 and 5-13. To complete the diagrammatic picture. another time phase diagram is
necessary. Figure 5-3 1s theretore the time phase diagram for thosc tield quantities whose

stationary points are given by equations 5-12 and 5-14.
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alternite 8 =0 or alternate three-phase 8 =0 or

(0, 2m 0, 2n
K i = —T/6
or +51/6

¢ =ni6
or =516

¢ = -2 Y =+n/2
or -+ 2 or —m/2

Figure 5-3 Time phase dicgram for field gquaniities with stationary points detevimined by

alternate equations 5-12 and 5-14

5.2 Measuring sisyphus and corkscrew polarisation gradients
Doppler cooling occurs in all 6-beam standing waves with red detuning and saturation
parameter s < . The interesting question therefore ts as to which 6-beam standing waves
give rise to sub-Doppler cooling. in particular to sisyphus and corkscrew cooling as those
mechanisms do not require the presence of a magnetic field. It is a reasonable assumption
that if a particular sub-Doppler polarisation gradient 1s present in a 3-D field then the
corresponding cooling mechanism is also present. Hence by measuring the amount of
‘ellipticity’ (degree of circular polarisation) or 'helicity’(corkscrewness) in a given standing
wave one obtains a measure of the corresponding cooling mechanism. Following on from
work published by Steane and Foot| 162], T developed two parameters which measure the
propertics of ellipticity and helicity. These parameters were then used in a numerical
simulation to measure the amoeunts and variation of ellipticity and helicity tn various 6-beam
standing wave arrangements with variable time phase settings. This work is described in
sections 5.2.2 and 5.2.3. It is preceded by a review of established descriptions of
polarisation in ficlds.

5.2.1 Established descriptions of light polarisation

There are several weil established systems for describing light polarisation. including the
Stokes parameters and associated Mueller matrices, the Jones vectors and Jones matrices and
the coherency matrix. Full descriptions may be found in references[237,241,242]). These
systems share the limitation of describing the polarisation state of only a single travelling
wave. as opposed to a general field containing different wave vectors. For that reason they
are not very useful for this work. As background information only. 1 briefly describe these
systems below, and then consider ways in which they might be extended to arbitrary

monochromatic 3-D fields.
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The four Stokes parameters were originally defined in 1852 in terms of four field
observables obtained by mcasuring the intensity of a travelling wave after it passed through
each of a set of four polarisation filters. In general they are defined for both light which is
quasi-monochromatic, (i.e. narrow bandwidth), and light which is exactly monochromatic.
For the purposes of this chapter, the case of an exactly monochromatic plane wave is
sufficient. Then, for a wave travelling in the z direction with field E given by

E = RE,, cos| ks = on + v, |+ §E cos|thz - wn) + | (5-15)
the Stokes parameters arc
so=Ene + B,

e 2
s = Eg," = El]y

(5-16)
5y = 2Eg, Ly cos(y, — )
$3= 2Eg, By sy, —y )
which are related by
s(]z = .S']z + 522 + 532 (5-17)

s 18 proportional to the intensity of the wave, and s;. s> and sz specify the polarisation state:
s measures lincar polarisation in the X and ¥ directions, s> measures linear polarisation in
the directions at £ 45" 1o the x direction and sz measures the degree of circular polarisation
(or cllipticity). It is usetul to normalise the Stokes parameters by dividing each one by s,
and to write the four parameters as a vector. As examples, a right-handed circular polarised
beam is then [1.0.0,1], a left-handed beam [1,0,0.-1], an X lincarly polarised beam
[1.1.0.0] etc. The Stokes parameters offer two advantages. Firstly, they may be added like
preudovectors. but only for beams that are incoherent. Secondly, they may be combined
with the 4 x 4 "Mueller matrices’. which represent the effect of various optical components
like wave-plates on the beams.

The coherency matrix 1s closely related to the Stokes parameters. As a matter of passing
interest ondy. the relationship is mathematically analogous to that between the elements of a
two-level atom density matrix and the Bloch vector. However, the Stokes parameters and
cohercncy maltrix are not very useful for this work, because they can only be added for
incoherent beams. Nevertheless the parameter s is of some interest here, because it
measures the ellipticity of a plane wave.

The Jones vectors, invented by R.Clark Jones in 1941, are another representation of
polarised plane waves. For the plane wave described by equation 5-15 above, the Jones

vector 1s simply
Akory
EO o

E=| " - (5-18)
EU}.EM‘A\* W)

which is the complex representation of the field with implicit time dependence ¢~@. Such

vectors can be added for coherent monochromatic beams. It 1s also possible to normalise the
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Jones vectors to obtain prototype expressions for polarisation states. For instance, X linearly
. . ! P . . 0 . .
polarised light becomes [0], ¥ linearly polarised light becomes []} and left and right

circularly polarised light become J—;[l] %[ ! J respectively. When a polarised beam
NI N

L
passes through a particular optical element. its Jones vector 1s transformed. The
transformation may be described by the corresponding 2 x 2 'Jones matrix'. The Jones
vector notation may be easily extended to include arbitrary 3-D monochromatic fields simply
by adding a third component giving the Z electric field component to each plane wave. Then
the Jones’ vectors of each of the plane waves comprising the 3-D field may be added to give
J. a spanally varying ‘generalised Jones vector'.
5.2.2 Parameters for ellipticity and helicity
This subsection starts by considering methaods of calculating the magnitude and orientation
of circular polarisation (elliptictty) at any point in an arbitrary monochromatic light field. I
find four cquivalent formulations. including a new and efficient 'vector' method. Then 1
proceed to develop complimentary methods for calculating the magnitude and orientation of
corkscrewness or ‘helicity” in the field.
Ellipticity

Formulation i) In their paper [162] on the magneto-optical trap, Steane, Chowdhury
and Foot develop a parameter p,which measures the degree of circular polarisation in the x-v
planc at each point of an arbitrary monochromatic field. It the real field s E(r.1) =
Re{EC(r.I)}. their prescription is

p={E7) =) (5-19)

) Ee.

J__

Lt

(iii

Can

where éi ="

Formulation ii) It can be shown that, for a monochromatic plane wave propagating
along the z-axis, pr, 18 equal 1o the Stokes parameter s3, which can be calculated with
cquations 5-15 and 5-16. The Stokes parameter sz 1s only defined for planc waves and 1s
equal to +1 (1) tor a left (right)-handed beam. The parameter p, applies to arbitrary fields
including standing waves. where right-handed and lett-handed are no longer appropriate
terms as the propagation direction is not defined. The o™ and ¢~ designation referred to the
7 axis is well defined, and thus p, = +1 for o ¥ light, p, = -1 for o~ light and p, = 0 for
linearly polarised light.

Formulation iii} Two alternative but equivalent ways of writing the field E(r,r) are

E = Re{Je—iwr}

E=E, coswr+ E; sinwr
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Here J is the ‘generalised Jones vector' extended to include arbitrary 3-D fields. J, E;, and
E> are related by J = E; + /E>. It can be shown that an alternative method of calculating the
parameter p, 1s

p, =27-(E xE,) (5-21)

Formulation iv} This ts a new 'veclor method' which 1 have developed as follows.

Consider the arbitrary monochromatic field E(r,7) at any point. The polarisation must be
clliptical, and so one can imagine the tip of the electric field vector tracing out the ellipse with
period 21/, as illustrated in tfigure 5-4. The 'velocity' of the tip is aa—l:: and this is parallel to

E in the case of linear polarisation and orthogonal to E in the case of circular polarisation.
- . JE _ o . :
Defining a vector M = Ex o M points in the direction normal to the plane of rotation and
ol
has a magnitude which gives a measure of the degrec of circularity. Note that M = 0 for
linearly polarised light. The ellipticity with respect to an arbitrary axis defined by unit

vector n is then defined by

pziﬁ-Mzzﬁ-(ExaE} (5-22)
0] w ot

where the factors of 2 and @ are introduced to make this parameter consistent with the three

previous measures of ellipticity. For instance when n = z, then p = p,. A useful feature of

the parameter p is its simple formulation as the product of two distinet factors: a property

dependent only on the electric field (2M/w), and an arbitrary direction of interest n.

Figure 5-4 The vector" method of calculating ellipticity

Helicity

1 found that it is possible to develop four helicity* parameters, which measure the
‘corkscrewness' of a light field, corresponding respectively to the four formulations i to iv
of the ellipticity parameter. In the formulations i, ii and iii. their mathematical constructions
are somewhat artificial and they are only defined for 3-D fields built from 1-D standing
waves with mutually orthogonal propagation directions, as 1% the case for 6-beam standing

waves. Consequently I do not discuss them turther. Corresponding to formulation iv,

4 Note that helicity here does not have the same meaning as that used by particle plivsicists.



however, I found a helicity parameter r which is defined as follows for arbitrary
monochromatic fields. Consider the arbitrary monochromatic field E(r.1) at any point. If one
imagines that time is frozen, one can ask how E changes for a small displacement in an

arbitrary direction n. The answer is 5— where the differentiation with respect to a vector is
n

an intuitive shorthand for (fi-V)E. See figure 5-5. The direction of g_ may be parallel to
n

K, as it would be for instance in a linearly polarised 1-D standing wave, or it may be
orthogonal to K. as in a corkscrew 1-D standing wave along the z-axis when n = Z, or it

JE
may be between those extremes. The vector N = Ex = then defines the rotation direction

dn
of the field with respect to small displacements in the n direction. The helicityr with
respect 1o the arbitrary direction n is then defined by

2 Z
r= ﬁ-NziA-(Exa—E) (5-23)

where the £ is introduced so as to give r the same dimensions as p. namely |E2), and the '2'

18 infroduced to maintain mathematical symmetry with the ellipticity p.

Figure 5-5 The vector method of calculating helicity
It one rewrites cquation 5-23 using tensor notation, it is seen to be a product of a tensor
depending only on the electric lield, a tensor depending only on n. and the Levi-Civita

alternating tensor[ 143] ¢ ;.
2 o

r= = EE ) (5-24)

Written ot in full vector component notation, equation 5-23 (5-24) is
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Note that in a simple case such as n = z, this simplifies to
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The values of the parameters p and r for some simple fields. namely travelling waves and

the four basic 1-D standing waves propagating along the z-axis are shown in table 5-2.

Light field p r
Lmearly polarised plane wave [ 0 o 0
R. H circ. polallsed plane wave -1 - u s
L.H.circ. polarised plane wave | " +1 -1
Tt‘ﬂ:‘ 1 D slandmtT wave |0 _ “ 0
o 1D s o Asin2ks 2sinZax
o O’ 1-D stdnd:ng wave 1 -dcos? oy
o O'+ 1- D standing wave | +cos’ ks 0
"Hybrid' 1 — D standingwave N2 sin2kz N2 sin2er - 242 cos” wt

Tuble 5-2 Values of the un-normalised paramerers ellipticity p and heliciry r tabulated for
several basic light fields. Each plane wwave has an electric field amplitude equal to 1,

wavenimber k and propagates in the +2 or -7 divection

The parameters p and » are clearly complementary in some ways, which is not surprising in

view of the complementary nature of their derivation: one involves the derivative of E with

respect to time. the other with respect to space. Interesting features of the parameters for [-D

standing waves are:

-

In a Rt sisyphus standing wave, the ellipticity oscillates with a spatial frequency 2k,
whilst the helicity oscillates with a temporal tfrequency 2o,

Ina oto " standing wave. the (un-normalised) ellipticity varies as cos2kz. and the
helicity is zero. Its 'complement’ isa ¢ Yo ™ standing wave, where the (un-normalised)
helicity varics as cos”ar. and the ellipticity is zero.

In a wrn hin-parallel-lin standing wave. the ellipticity and helicity are both zero.

For amusement, | calculated a hybrid' 1-D standing wave which has equal degrees of
the sisyphus and corkscerew polarisation gradients. This is done by simply
superimposing sisyphus and corkscrew [-D standing waves along the z axis, but it is
important to usc the correct relative time phase. The electric field may be visualised as
two counterpropagating elliptically polarised plane waves, with opposite handed
polarisations and with orthogonal major axes. The resultant "hybrid' electric field is
given by

En

. { Xcos(kz ~ @ty +Vcos(kz — ot + 1/ 4) }
L, = —
N2

+Xcos{kz + @)+ yeos(kz+wt + 3w/ 4)
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5.2.3 Computer searches for field configurations

[ bave made use of the cllipticity p and helicity r to search 6-beamn standing waves for
sisyphus and corkscrew polarisation gradients. The method consists of a numerical
simulation in which a test utom travels along many straight line trajectories of length A
through the light field. The starting point and direction of each trajectory are both
randomised. The normalised values of the ellipticity and helicity scen by the atom as it
travels each trajectory are used to generate two further parameters EZ(p) and E(r). which
arc good indicators of the average 'sisyphusness' and ‘corkscrewness' of the light field
respectively, and defined as follows.

First, cycle-averaged? and normalised versions of p and » are defined:

(P w

Py = # (5-272)
(r) \
=\ 5-27b
N 57 { )

where the { ) denote a ¢vele average. and I = (E- E) is the local tield 'intensity’. Then for
cach of the straight line trajectories, =(p) ts defined as V2 times the standard deviation of p
along the trajectory

Z(p)=N206(py)

and Z(ry is detfined as the root mean square value of ry along the trajectory

-_(rJ_( )w

To help demonstrate why the parameters pn. i, Z(p) and Z(r) are uscful, their values
calculated along lines paratlel to each of the four prototype 1-D standing waves are listed in

table 5-3.

Light field N ~ =5 =0
Y 1-D standing wave 0 ( 0
| Rt - D \ldﬂdlﬂ" wave | sk 0o I 0
oo tDsundingwave | O f - 0 )
+] 0

o’ (7+ l D \mndnw wive

Hybrid 1-D standing wave | GIn2)sindks [ SN2 1 TR iA2

Tuble 3-3 Values of px.orx. S(p) and Z(r) for the fowr protorvpe 1-D standing waves

Out of the set of the four basic 1-D standing waves, only the sisyphus standing wave has a
non-zero standard deviation of the parameter py along its axis. Hence 1 calculate the
parameter =(p) for each of many random trajectories through the 6-beam standing wave

under study and then average Z(p) over all the trajectories to obtain an indicator Z(p) of

Sa fact it is nnnecessary o excle-average p. p is always independent of time for a monochromatic light field.
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the sisyphusness of the field. Similarly, of the set of four basic standing waves, only the
corkscrew standing wave has a non-zero value of the parameter Z(r). Hence [ calculate
Z(r) along each random trajectory through the 6-beam standing wave, and then average the
result over all the trajectories to obtain an indicator Z(r) of corkscrewness. 1 use the root
mean square of ry because [ wish to include the possibility of cooling by corkscrews which
change handedness along a trajectory. Opposite-handed helices generate positive and
negative values of ry, which would otherwise cancel. Squaring also avoids the mutual

cancellation of positive and negative corkscrews on different trajectories. The values of

Z(p) and E(r) are then plotted as a function of the (relative) time phases 8 and ¢. (y is
assumed to be zero for simplicity).

To cover the tull range of possibilities, € and ¢ must each range from 0 to . To put a
reasonable constraint on computation time. @ and ¢ were increased in steps of /12, Along

cach trajectory, py and r were calculated at 13 points spaced by A/12 in order to gencrate

Z(p) and Z(r). 1 found that 100,000 trajectories per 6, ¢ pair were sufticient to reduce run-
to-run fluctuations in the values of Z(p) and Z(r) to < 1%. The validity of each of these
time-saving steps was carefully checked by comparing the programme output with that of
adapted programmes using for instance, a finer mesh of 6, ¢ points, smaller steps ot A/24
along cach trajectory and repeated runs of 100,000 trajectories at sclected data points. The
programme used to generate the final results, written in C, is reproduced in Appendix A7.
The simulation takes about 36 hours to run on a "Digital” DEC 3000 workstation.

Results of the computer search for polarisation gradients

The simulations were carried out for four types of 6-beam standing wave and are now
displaved as surtace plots in figures 5-6A to 5-6D. Note that the vertical scales are
‘mormalised’ in the sense that. for an atom travelling along the 7 axis of a ¥ 1-D standing
wave. =(p) has a value of 1. and. for an atom travelling along the z axis of a 6 Yo7 1-D
standing wave, Z(r) also has a value of 1. However, in simulations in which the test atoms
travel on random 3-D trajectories in a [-D standing wave. the corresponding values are
S =049 for vy and () = 0.33 for o To .

A point of interest is that I also produced a second sct of plots, not reproduced here,
which used the same method as outlined above, except that un-normalised versions of the
parameters p and r were used at cach point on each trajectory. This was primarily to check
whether normalisation had a large influence on the results. After scaling the un-normalised
results (by dividing by the spatially averaged intensity 6/, where 7 is the intensity of each
planc wave}, the shapes and absolute values of the plots produced by the two aliernate

versions of the programme were virtually indistinguishable in all cases.
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E(r)

Figure 5-6A Surfuce plots showing variation of Z(p) and Z(r) with 8 and ¢ for a

T LRk standing wave (3D lin-parallel-lin)
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E(p)

Z0)

Figure 5-6B Surface plots showing variation of Z(p) and Z(r) with 6 and ¢ for a

oo oto o o standing wave (3D 6 Yo " as in an MOT)
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Z(r)

Figure 5-6C Surface plots showing variation of Z(p) and Z(r) with 6 and ¢ for a

AT IS ERY 7TX standing wave (3D sisyphus or lin-perp-lin)
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Z(p)

Z(r)

Figure 5-6D Surfuce plots showing variation of Z(p) and Z(r) with O and ¢ for a

c*c o ts o Yo T standing wave (3D 6 T6 )
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Discussion of results of the computer search for polarisation gradients

The numerical simulation provides quantitative measures Z(p) (sisyphusness) and =(r)
{corkscrewness) of the degrees to which sisyphus and corkscrew polarisation gradients are
present in cach light ficld studied. For convenience I refer 1o each of the four light fields
studied and their corresponding plots by the letters A, B. C and D used to label figures 5-6A
to 5-6D. The surface plots for each of the above four 6-beam standing waves show that
stsyphus gradients can occur, for most time phase settings, in all four of the light fields, and
corkscrew gradicnts occur {or all time phases. There are only two arrangements which are
sisyphus-free, these are fields A and B in the synchronised configuration of time phases; this
result is similar to results found in a study of 2-D light fields[199]. There is evidence in the
plots, particularly for field A, that the synchronised and three-phase configurations of time
phases are associated with the minima and maxima of Z(p) and =(r). However this is
gencrally a weak eftect except for fields A and B in the synchronised configuration, where
there are no sisyphus gradients. The sisyphus plots of fields A and B shows a marked
dependence on the time phases, whereas the sisyphus plots for fields C and D and the
corkscrew plots for all four fields are suprisingly flat.

In order to aid comparison of the four field configurations, table 5-4 gives the maximum
and minimum values of Z(p) and Z(r) for each field (obtained for specific time phases). Tt
also gives the values of Z(p) and Z(r) averaged over the entire @by ¢ grid of time phases.
These average values give a measure of the presence of sub-Doppler polarisation gradients

when the time phases tluctuate randomly. as expected in many experimental arrangements.

~ Light Field _EZF‘) mux E_(]—:—) min | S(p) ave. | E(r) max | Z(r)min Z(r} ave.
BDg'o" | 053 . 0 044 | 040 | 020 | 024
Cabmm | 050 045 047 | 021 016 | 019
D:3D o o (.47 2 0.41 % 0.43 0.27 | 0.20 0.24

Table 5-4 Values of E:{Tﬁ and Z(r) for four 6-beam standing wave arrangements
Some qualitative deductions may be made from the data in table 5-4. The values of Z(p)
and Z(r) are always less than 0.6 in the 3-D light fields studied. Comparing these values
with the maximum possible value of 1 (obtained for atoms moving parallel to either T'"¥ or
oo~ 1-D standing waves) shows that these 3-D standing waves contain lower levels of
polarisation gradients. Furthermore, the phase-averaged values of Z(r) are generally lower
than the phase-averaged values of Z(p). The (time-phase) averaged values of Z(p) and
Z(r) show that all four light field arrangements contain roughly similar degrees of sisyphus

and corkscrew polarisation gradients when the time phases are fluctuating (uncontrolled).
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The time phasc averaged values for the 3-D field A show that it contains a high degree
of both helicity and ellipticity, despite the fact that it is built from 1-D standing waves with
zero helicity and ellipticity. In fact. the maximum variance of cllipticity (0.57) over all the
fields studied here 1s found in field A in the synchronised configuration, and not in field C
(3-D sisyphus) as might be expected. This demonstrates that the polarisation gradient
properties of 6-beam standing waves can be entirely different from the polarisation
properties of their constituent 1-D standing waves.

Connection of the simulation with sub-Doppler cooling

The following comments describe some possible implications of the simulation for laser

cooling. The parameters Z(p) and Z(r) measure only the average polarisation gradients
seen by an atom. and the actual atom-light dynamical problem has not been addressed.
However the parameters may i future prove useful in the development of scaling
tactors{115,169] which relate 3-D results (for friction cocfficients and temperatures) to the
1-D results for the corresponding light field.

Examination of the polansation topography of the 6-beam standing waves studied
showed (actually by building some 3-D models) that they can all contain helices which
swilch handedness along a trajectory with a spatial period of ~A22. These alternating helices
occur along many different trajectories in the hight fields studied and contribute most® of the
value of Z(r) (helices which do not change handedness along a trajectory are rare in 3-D
tields). Along a typical ‘alternating helix' trajectory, the linear polarisation rotates through
90° in A/2 and then reverses direction back 1o its original orientation from A/2 to A. One
would expect motion-induced orientation cooling (0 be present in alternating helices for
atoms which move less than A2 in the optical pumping time (kv < 1/7, = £4,2174A2). This
condition on the velocity can be of the same order as the capture velocity condition (kv <
£2)2/4A) for the corkscrew coohing mechanism. and when A = I, does not represent a new
constraint. Speculatively, there is also the possibility of a localisation effect on a A/2 lattice
due to moton-induced orientation. This 1s because the helicity varies regularly in space rom
zero to some maximum value with & period ~A/2 along many alternating-helix trajectories:
this may lead to regions of zero damping alternating with high corkscrew damping.

A final comment is that Z(p) is also a good qualitative measure of the existence of
optical potential wells in a light field. It measures the average standard deviation of ellipticity
over all possible straight lines in the unit cell of the light field. It will be maximal in light
fields which have a distribution throughout the unit cell of regions with differently orientated
circular polarisation, t.e. containing optical potential wells. The results in table 5-4 thus
S This was ascertained by ousing the computer progranume to alvo calenlate the variance of r along many

trajectories through the {ight fields.
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imply that optical potential wells are present in each of the above four types of 6-beam
standing waves for appropriate time phases’, and that for fluctuating time phases, the wells
also fluctuate. It follows that temporary localisation of atoms will occur in all the fields A to
D for fluctuating time phases. provided that the time phase fluctuations are much slower than
the optical pumping rate.

5.3 The physical significance of the parameters p and r

There s a pleasing symmetry between the two parameters p and » which measure ellipticity
and helicity respectively. The definitions of p and r are the same apart from the fact that
involves the electric field derivative with respect to time, whereas » involves the derivatives
with respect 1o spatiat directions. This fact and the fact that p and r are cach connected with a
sub-Doppler cooling mechanism led me to search for a relationship between the two
parameters. | found that there is a fundamental physical relationship between p and r, in that
they are related respectively to the density and flux of intrinsic angular momentum (or spin)
of the electromagnetic field. This relationship is explained in detail in the rest of this section
5.3. As well as being interesting in its own right, this relationship may provide new insight
into sub-Doppler cooling mechanisms in general. At present however, that is a speculation
which will require further work.

5.3.1 Special relativity electrodynamics

This section 5.3 makes use of the Minkowski four-dimensional representation of the
clectromagnetic field, as 1s standard in many texthooks[ 143, 243]. For convenience, table 5-
5 here summarises the definitions used in this work. The indices 4, 7 ete scan the four
dimensions x, v, 7 and for and follow the usual Einstein sammation rules. A comma in the
indices row indicates differentiation with respect to the following index.

Table 5-5 Symbols used for the 4-D representation of the electromagnetic field

Symbol Physical quantity Component form
X; Spacctime coordinates fx, v, z, ict ]
£ Electromagnetic potential [Av A AL i@/ )
J; +-D Current density [ don fon dcp )
0 WoH . | —poH, | —iE /e
Fy The electromagnetic field —UoH- 0 WoH . | —E/e
tensor WoH, | Lot 0 ik /e
iE /¢ iI/c iF./c 0

. . . . + -+ - . ,
7 Localisation of atoms ina 2-106 76 "o T light field has been experimentally demonstrated[77],



Sij U - ~ Uof A, — Wofl H- - SJic
Mol 2 —eoE? | ~eELE, — €0l E-
The electromagnetic Symmetric U - - HoH JH - S\/ic
energy-momenturn LoH 2 —epE2 — el E-
tensor Symmetric Symmetric U - - S-/ic
Uoll 2 — eoE 2
Synmumetric Symmetric Symimetric U

5.3.2 Intrinsic angular momentum in the electromagnetic field

Many textbooks on classical electrodynamics. e.g.[143], include a section on special
relativity electrodynamics. and usually develop the theory as far as deriving the 4-D
electromagnetic encrgy momentum tensor §;; for fields in @ vacuum (Table 5-4). The dual
interpretation of the Poynting vector 8§ (=E x H). as both the tlow of tield energy and the
density of electromagnetic momentum is usually included and the continuity cquations for

energy and momentum are usually given. These are

V.S + W _,
al’ » (5-27)
VT, == =t=0

where U is the field energy density ( = %E(]El + %,u()Hz). S, the Poynting vector and T; is
Maxwell's stress tensor.

A further result] 243 concerns the angular momentum of the field. For localised fields
in a charge free region the density of intrinsic angular momentuny Ly, or spin density. of the
field 1s ziven by the classical expression

L, =¢,ExA (5-28)
Here A is the vector potential of the field and the symbols Ly and L will be used to
distinguish the intrinsic and orbital aspects of the total angular momentum. An outline proot
of equation 5-28 1s given m Appendix A6.
5.3.3 Relationship bhetween spin density and ellipticity p

To find a relationship between the spin density and the cllipticity p, consider an arbitrary

monochromatic field tor which A = A()(r)ef"[w. Then it follows that
2
J ‘? =—w°A (5-29)
dt~
2
For fields in charge-free space E = —%é and hence a}—E = _E)) ‘? . Substitution into cquation
t o di”

dE

5 and substitution of A in equation 5-28 gives
- af
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L =2 Exa—E) (5-30)
" dt
Finally, comparison of equations 5-30 and 5-22 (page 102) shows that
2
p:;q)—ﬁle (5-31)
£y

Thus the ellipticity parameter p is. apart from a constant factor, measuring the projection of
the field's spin density onto the chosen axis n. Though this is not entirely surprising, it is
nevertheless gratifying to know that a geometric feature of the field, namely a sisyphus
polarisation gradient, is directly related to a physical feature, namely the spin density of the
clectromagnetic field.
5.3.4 Physical meaning of the helicity parameter r
Having been successful in attributing physical significance to the ellipticity parameter p in
equation 5-3 1. and mindtul of the space-time symmetry of p with r, the helicity parameter, it
seemed reasonable to examine the physical significance, if any, attached to r. Examination of
the values of r which T had calculated for travelling waves and for the four basic 1-D
standing waves suggested that » was associated with a tlow of intrinsic angular momentum.
The time average of » 1s non-zero in two of these cases: for a circularly polarised travelling
wave, and fora 1-D oo~ standing wave. and the signs and magnitudes are consistent with
the interpretation that » measures the flux of spin (per unit arca per unit time) in the field.
Hence I carefully investigated the hypothesis that r as defined by equation 5-23 is
proportional to the flux of spin in an arbitrary direction it. I found that the hypothesis is
almost the whole truth. In fact the cvcle average of r s proportional to the cycle averaged
spin flux. but ris /2 out of phase with the spin {flux®. The detuiled method leading 1o proofl
ol this assertion is now described below.
The 4-D generalisation of angular itnomentum tor the electromagnetic tield[243] is a

rank 3 tensor M. given by

M = S5Xp — SuX; (5-32)
where §;; is the Belintante-Rosenfeld{246] symmetric energy momentum tensor given in
table 5-5. The tensor M;; has 24 independent terms of which three (Myz2, Myjp2, Myzy )
are the conventional 3-D angular momentum (multiplied by /¢ ), nine are the tensor
components of angular momentum flow, and the other twelve are related to the centre of
mass motion of the tield. There are six independent continuity equations derivable from the
tensor My and each is associated with a conserved quantity. They are

M =0 for jk = 32,13.21,14,24 34,

Thus in the case jk = 21. we have

8 The resolution of this siightiv annoying phase shift is described in section 5, poini v) on page 119,
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which is the continuity equation for the Z component of angular momentum [.. My> /ic is the
z component of angular momentum density and M2, M1, Masy are the flow of L in the
x, y and z directions respectively.

In Appendix 6. as part of the derivation of equation 5-28, it is shown that the total
(linear) momentum density g of an electromagnetic field can be divided into two parts g; and
2> (where g = g + 8~) such that r x g; and r x g, correspond to the density of orbital and
intrinsic angular momentum respectively. Here g =S8/ ¢, where § is the Poynting vector.
In the light of the fact that g is just three of the components of the tensor S, it seems
desirable to generalise this splitting to all the ten independent components of S;;. That
gencralised splitting might then lead. via equation 5-32. to a splitting of Mj;. into orbital and
intrinsic parts, Such problems belong to the physics arca of genceral relativistic field theories
and there 1s a systematic technigue for making soch a splitting. involving the varational
principle applicd to an appropriate field Lagrangianf244). The non-trivial question of finding
the appropriate Lagrangian is addressed in [243] and leads into deeper theory than is
nccessary for this work (1 required the solution only for the particolar case of a
monochromatic clectromagnetic ficld). The important point is that in order to be a meaningtul
splitting. it must be covariant. i.e. a splitting agreed by all inertial observers. The physical
test of a covariant splitting is that the two resulting parts, the intrinsic energy-momentum and
the orbital energy-momentum, must be separately conserved. In mathematical terms,
therefore. the two parts must each obey a continuity equation. Guided by these principles
and by references [244.245], T devised my own splitting method, described as follows.
Splitting the energy-momentum tensor into intrinsic and orbital parts

The energy-momentum tensor Sy, can be sphit into mirisic and orbital parts as follows. We

require
i} the definition of the cnergy-momentum tepsor
- |
oSy = FyFy —50;FFy (5-33)
1) Maxwell's equations for a charge free region
Q=0 (5-34)
it1) The Lorentz gauge condition
2, ;=0 (5-35)

Here, £2; is the 4-D field potential. £ = (A, ic@), where A is the vector potential and ¢ 1s
the electric potential. which is zero in a charge free region. Substitution of 5-34 into 5-33
gives

oSy = (2 - 42, )('Qk.j - -Q;.k) — 18, ( Q-2 ) (2 - -Qu)
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Expanding the brackets, nsing £2; €2, = €2 ,£2, , and grouping the remaining terms as

follows gives

HoS; = [-Qk.iQL_,i - %551'!2I.A-(2i.k]+ [Q.i.kgj.k =L 82 -8+ %@jﬂugu] (5-36)

Orbital Intrinsic

Denoting the two parts byS; = SO + 5,]],

has zero divergence: S,? =0 and 9” ; = 0. This means that the orbital and intrinsic 4-D

it may be shown that each of these parts separately

momenta are separately conserved qunlIUCS and therefore equation 5-36 is a covariant
splitting. Note that both 5,-? and 5,/- are Symmetric lensors.

This splitting established. equation 5-32 muy be used to split M into two rank 3
angular momentum tensors, corresponding to orbital angular momentum M2 ik and intrinsic
spin M| iji - as will be proved shortly.

0 _ ,0 O
: (5-37)
S - Su X

It follows from the fact that 50 and ?l are symmetric tensors that both the tensors M ji and

rﬂ\ -

ij;; have zero divergence with respect to X, and thus orbital angular momentum and spin

are separately conserved guantities (for fields in a charge free region). Hence this splitting of
M 15 also covariant. The proof is as follows. Taking Mi'}-,\. as an example. its divergence is

obtained directly from its detinition in equation 5-37.

I 4

qu 31, X + 9&; SiiX;— 34
But the divergence of S s Zero: b,lj ;= S' =0, and as S,-[,- 1s symmetric, S,{,j = S;,\. Hence
Mf,\ , =0 (5-38)

Equation 5-38 15 the differential form of the continuity equation for the intrinsic angular
momentum of an clectromagnetic field in a charge free region. Applying the 4-D version of

Gauss's theorem to 5-38 gives the integral form of the continuity equation jJJM]A(fG 0
where the do; are 3-D hypersurfaces orthogonal to v, v. 2 and 7, and which enclose a closed

region of 4-D space-time. The continuity equation also takes the more familiar form

j [J M advaz+ ”M\H\dxd + ] M-ded\+—— m ”’*drdu (5-39)

surlaee RTINS s face yajme

It remains to prove that M} i does in fact correspond to the 4-D intrinsic angular momentum
of the field, by showing that it can be recast in a form which is independent of the origin of
the coordinate system. An outline of the proot is as follows, Each component of M;I-,‘ can be
rewritien in terms of the vector potential £2;, and then integrated by parts over a closed region
of 4-D spacetime. The ficld is assumed to be localised, 1.¢. falls rapidly to zero at the

houndaries of the closed 4-D region. For cach of the components, one finds that after the
integration by parts, most of the resulting terms either cancel cach other via £2; ; =0 and

€2; ; =0, or are zcro because they are evaluated on the boundaries where the field 1s zero.
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The remaining uncancelled terms form the components of a tensor M{;}‘. whose elements are

not dependent on r. i.e. are independent of the choice of origin.

1
Mp, = Z —(2,62,, - ,Q;,) with €, =0 (charge-free region) (5-40)
¢ '
Furthermore, the clements of M 4 satisty the continuity equations
OMP oMYy oMLy oMYy
MY, =0 or LR TR TR TTAR g (5-41)

or
fiki ax ay 0z icot
thus confirming that the components correspond to conserved quantities. The facts that the
tensor has been shown to represent an angular momentum which is both independent of the

coordinate ortgin and conserved prove that it corres‘pond% to the infrinsic angular momentum

of the ficld. The elements of this 'spin tensor’ MM (multiplied by p) are given in full in

table 5-6 below. The components of the spin density. which were given earlier as
L, = g,ExA (cquation 5-28) appear in the layer Mj\jk ol Mi,-\,\.. Thus that carlier result,

proved within a 3-D formalism in appendix 6. is incorporated within this 4-D result.

a . . A o . B
Table 5-6 The componenis of the spin tensor g Mgy (a-s signifies anti-symmeiric)

dA, JA. dA, OA.
Ay A : 41 o 3 Ax . A -
0 SO o 0 o | » o 0
0A, A i‘}_l, dA, _A DA,
i C oy Yy * oy
=t A, oA 2 A\_B_AL
0 o 0 -5 0 oy 0
a-s a-s ,
-4 iA_‘ aA\
© ox dv
i a-s 0 0 a-s a-5 0 0
O O O 0 0 0 )] 0
oA, A A 0A, | A, 0A
ol AL A"T 410 _\_a_ _)—‘:
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The first three large squares correspond to the spin flux parallel to the x, v and z directions
respectively, and the fourth square contains the components of the spin density. The specitic
components of the spin are addressed by the last two indices according to the following
cyclhic rute: *21—z #3205y, *13-y #1237, *23——x, *31—>—y. Thus as examples,
M_f‘zl gives the flux of the z component of spin in the 7 direction, M{A{ 3 gives the flux of the
v component of spin in the v direction and M;@: gives the density of the x component of the
Spir.
I have calculated some of the terms of <Mrk> for travelling waves, 1-D standing

waves, and four types of 6-beam standing waves, and tabulated them in section 5.5,
The relationship between spin flux and helicity r
The spin tensor M jir and the helicity parameter » (equation 5-23) are very closely related as
is now explained. The flux of the spin component paralle] 1o an arbitrary vector a through a
surface normal to n may be calculated from M 4 and is given by the scalar /¢

fo= %nl-n,M{?kC i (5-42)
where ¢, 1s the alternating tensor. When written out in component form, this is almost
identical to the helicity parameter r in its expanded form (equation 5-23). One trivial
difference is that of a constant multiplier (2 gc); the main difference is that the spin flux f;
involves the vector potential A. whereas the helicity parameter » involves the clectric field E.

. . . dA . : .
However. by using the relation E = 3 it can be shown that. in the case of
t

monochromatic fields, the spin flux f; 1s related to » by a constant factor and a time phase
shift of /2. The time averaged « > versions are identical apart from the constant factor.

1 =22 ¢ 1+ 1/ 20) 1 =22(r) (5-43)
E‘“( E“(

Thus the ‘corkscrewness' of a field along an arbitrary axis has been shown to be physicaltly
meaningful: the helicity parameter with respect to an arbitrary axis measures. to a
muttiplicative constant. the tlow of the component of spin parallel to that axis along that
sdne axis.

5.4 Conclusion to chapter 5

This chapter has discussed the polarisation properties of monochromatic standing waves.
particularly 6-beam standing waves, and developed some techniques for studying those
properties. There are many other possible 3-D standing waves which were not considered.,
for instance those using beams intersecting at angles other than 90°, or those using different
polarisation schemes. It is likely that as the field of atomic optics develops further, other
schemes will be invented. possibly with asymmetric properties which are experimentally
useful. The techniques developed in this chapter may be useful in understanding the

polarisation structure of such ficlds. The main results of this work are
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1) Of the many possible topographies created by changing the relative time phases of a
6-beam standing wave. two are of particular importance because they produce ‘polar-
opposite’ topographics. 1 called them the 'svnchronised' and 'three-phase’ time phase
configurations, and their mathematical basis was demonstrated.

i1) Two parameters p and r were developed which measure elliptieity and helicity,
which are geometric aspects of an electromagnetic field and which uare associated with the
polansation gradients corresponding to sisyphus and corkscrew cooling. The parameters can
be applied to polychromatic fields.

i1i) The parameters p and r were used in a numerical simulation to quantify polarisation
gradients in various 6-beam standing waves with variable time phases, allowing quantitative
comparison of different field contigurations. The simulations can provide qualitative insight
into the etfects of time phases on sub-Doppler cooling, and may lead to 3-D light field
configurations of particular interest. such as the 'hybrid' 1-D field of section 5.2.1. The
simulations can easily be extended to study other light fields used in experiments, such as
tetrahedral arrangements|{83.84]. special fields[82] or ficlds due to misaligned beams[162].

iv) For monochromatic fields, the parameters for ellipticity p and helicity r were shown
to be proportional to the density and flux of intrinsic electromagnetic field angular
momentum respectively, thus showing that the gcometric aspects of the field polarisation
have fundamental significance.

v) An explicit expression for the 4-D spin tensor of a localised electromagnetic field was
obtained. which is valid for polychromatic light fields. With hindsight, the spin tensor could
he used as a superior. mare aeneral basis for studving polarisation gradients. Adapted
versions of the ellipticity and helicity parameters may be constructed. based on the gradients
of the ¢clectromagnetic vector potential A rather than the electric ficld E, such that the adapted
versions are directly proportional to the density and flux ol spin for polychromatic light
fields (as opposed to being /2 oul of phase).

vi) Further work is necessary to determine whether the parameters Z(p) and Z(r) are
uscetul as regards calculations of scaling factors{ 115.169] relating 3-D cooling parameters
such as temperature and friction and diffusion coefficients to their corresponding 1-D values.
5.5 Results of electromagnetic field calculations
This section is a compendium containing various electromagnetic field quantities calculated
for a few important field configurations. The quantities calculated are listed in table 5-7
below. Subsection 5.5.1 covers travelling waves, and therefore includes a linearly polarised
wave and a circularly polarised wave. Subsection 5.5.2 covers the four basic 1-D standing
waves. Subsection 5.5.3 gives calculations for four 6-beam standing waves including the

two common experimental arrangements of the MOT and 3-D sisyphus molasses. Each of



these 6-beam standing waves is based on one of the "archetypal’ 1-D standing waves {(n¥n*,

mny, oto", o7 o).

Symbol Quantity

E  Jclecricfield

H | magnetic field

A |vectorpotential

- Ugand (Ug) | electric ficld energy density and its time-average

 Umand (Uyy) | magnetic field energy density and its time average

U and (U) | total field encrgy density (or ‘intensity') and its time average

S and (Q)

Poynting’s vector and its time-average

Ly ]electromagnetic spindensity N
A _ .
(M jA> electromagnetic spin flux (cycle-averaged)

Table 5-7 A list of the electromagnetic field quantities caleulated for light fields in section 5.5

Notes

i) There are 9 independent spin flux elements in the spin tensor Mfﬁ . however cycle-
averages of only the three terms Mjf};\ (i.c. with 7 = 7 ) are calculated, as the remaining six
are cyclic. The given terms arc (M%; Y. the flux of the ; component of spin in the z
direction: (M33.). the flux of the x component of spin in the z direction: and (M{}3) . the

flux of the ¥ component of spin in the z direction. As an example of 'cyching’, o find {say)

the flux of the v component of spin in the % direction, onc must cycle (MB35 — (MDY,

Thus onc looks up (A/If\;:) in section .53 and cyclesy —= v oo xand 86— ¢ — Yy —

fin the given trignometric cxpression 1o obtain (Mﬁﬁ.
ii) The ellipticity parameter p along n. can be obtained from the spin density Ly by
using
[):‘—2—(2!“1’14 (5-31)
£y

iii) The helicity parameter » along n, can be obtained from the spin flux tensor Mﬁ.
by using cquations 5-43. The cycle averaged version is
2w, .
{ry=—{fs) (5-43)
Epc

where f; is given by equation 5-42. In the case when n = Z. this simplifies to

2@
<":>:¢<M3Az|> (5-44)
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5.5.1 Electromagnetic properties of travelling waves

Linearly polarised travelling wave

R.H. Circularly polarised standing wave

E = xF; cos(hz — ax}

E = -L Ej[xcos(kz — o) + ¥sin(kz — ar)]
N o

H= )rH(;COS(kz — or) H = o= Hy[-&sin(kz — ax) + ¥ cos(kz - wrt)]
A = —x~Lsin(kz — wr ‘

0] ( ) A= ‘EO [x sin(kz — ar) — ycos(kz — a)r)]
S = 2eycky” cos (kz — ) Ve B

S) = i % 80(7[5()2

i

UE = %S()Eoz COSz(k: - (UI)
(UF>=“L g0y’
UV[ -1 8(][4) COSs (lt\: - a)f)

(Uy)=+e,Ey’

] 2
U =ge,FEy" cos™ (ko — wr) _ 2
nEo ( , U=1eE,
(L‘f> = %EO 13‘(}2 - 2
2 . EqE
L, =250
;=0 2o
7
M, =0 M, = = Soka”
5 i 2k

5.5.2 Electromagnetic properties of 1-D standing waves

i) prototype n¥n* 1-D standing wave
E = XE[cos(kz — wi) + cos(kz + )] = X2E, coskzcosar
H = vH,[cos(kz — wt) — cos(kz + wr )= "H(, sin kzsin f
A—x%‘)’—[xin(k" wt) ~sin(kz + wt)| = —x—cosf\ sin @r
S = zgycky,” sin 2kzsin 2er

<0 > 2
Uy = 2¢yL,7 cos™ kzcos™ ar

a7 .0
Uy = 24y Hy™sin™ kzsin™ ot

[j = f:(]!,” (l +L(3\j;\ \,O\_(UI) U> = SOE()E
Ll :0

ii) prototype n¥n* 1-D standing wave
E = [ ¥ cos(kz — wr) + Xcos(kz + wt)]
H= H“[—f( cos(kz — ot) — ¥ cos(kz + ot )]
A= [y sin{kz — ot) — Xsin{kz + or)]

0]

S= i&‘(-,ch’(]g sin 2kzsin 2 of ($)y=0



UE =%‘g(}E()z(]+C052k:COS?_CO[) (UE>:%“80E02

UM = %‘UOH[;(I + COSszCOS 2(1”) (L‘TKM> = %‘UOH{]Z
U = g,Ey (14 cos 2kzcos2ax) (UY = gyEy°

)
- f‘(}[_‘,()_ .
Ly =z-——sin2k;
w

N
A L .

iii) oo * 1-D standing wave

E= m% Eo[&cos{kz — o) — ysin(kz — wr) + X cos(kz + ot) + ¥ sin(kz + wr)]|
=~2E, coskz(Xcos ot + ¥sin cr )
H= —% Hy|Xsin(kz — wr) + Fcos(kz — wr)+ Ksin(kz + wr) — ycos(kz + or)]
V2 H sinkz (xcosa)l‘ + ¥sin @r)
T wr )+ Yeos(ks — ax) — Ksin(ks + o)+ ¥ cos(kz + ax)]
_V2E0 kz(—X sin @r + ¥ cos an )
@
S5=0

Al - 2
l/F, = EU[:‘“: COs8™ ?f\:

- .0
L"T_!\‘I = g()]_.u_ S~ Jl\:

U =g,Ey”

RLTIY FC
L= e cos™ kz
o

M_i"‘:; =0

ivi 6 Yo~ 1-D standing wave
E= 1‘—5 Ey[xcos(kz — wn) = §sin(kz — o) + Xcos(kz + wt) — §sin(kz + or)
= \2F, cos wr{Xcoskz — ¥sinkz)

~

H= —l-; Hy[Xsinlks — on )+ ¥ cos(kz — wr) = xsin(kz + wr) — ¥ eos(kz + ot

=2 H, sin wr(—X coskz + ¥sink:)
A= __%(; E(,[i’ sin(kz — wr ) + Y cos(kz — ) — Xsin(kz + wr) + ycos(kz + wr)]
o 2

V2E, . .
=——" coskz(-xsin @t + ycos @r)
)
S=0
.2 2 l
Up = &yky” cos™ o1 (Ug)=tegEy”
202 _ 2
Unm = gpky™sin™ o (Un)=780E
ol
U=eyk,
Ll =0
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2e0kn . -
ML, =200 Gin< or
321 X

5.5.3 Electromagnetic properties of selected 6-beam standing waves
i} Parallel linear m¥m'ninin¥nX 6-beam standing wave
E = Ey¥[costhkx — e — 0) + cos(ky + o + 6)] + cycle
=2Eyycoskycos(@f + 8) + cycle
H = Hyz[cos(kx — @ — ) — cos(hx + @1 + 8)] + cycle
= 2H,Zsinkxsin(wr + 0) + cycle
Ey .. .
A= —O—y[sm(kx —@r—0)—sin(kx + @r + 8)] + cycle
0
2E, .
=———vcoskysin(wr + &) + cycle
0
(S)=2E Hyxcoskysinkzsin(g — y) + cycle

(Up)= g()E()z(c()sz kx4 cos” kv + cos® A:)

Af .0 .0 ]
(U»,) = goEp~{sin” kx +sin” Ay +sin” k:)

S
13—

Ie [l
<Mq\31> = —%}Lcoskrsin kzcos(y —8)

<M{§3> ={ +cycle

2e0F"
<M“~l?j —g-%\ 0 COSAVSINAZCOS(Q — W)

ii) Perpendicular Linear mig¥r¥mimym¥ 6-beam standing wave
5 = E(,[i" cos(kz — f — )+ Xcos(hz + o + y)| + cycle

E
H-= H(][—icos(k:.' @it — yi— yeos(hz + wr + wy| + cvele
A=

[Vsm(k — o — y)— Xsintkz+ @t + y)] + eycle

()]
(S) !,()H[,x[sm(h—l—h}sm(ﬂ @) —sin(ky = kz)sin(@ — y) —sin(kz + kx)sin( y - 9)]
+ cycle
(Ug) = LegEy"[1 +costhy + kz— ¢+ y)] + cycle
(UN‘[)=%€()E(}2[1+C0.\'(nl(_\‘+f\':.+¢“ l}])] + CyC]e

(UY = gy Ey*[1+ cos(hv + kz)cos( ¢ — w)] + cycle
g()]f()z Fsin2kx +sintkx ~kv+ 8 — @) —sin(kz —kx — w+8)
¥ —cos(hy—kz)sin(@ — w)—sin(ky + kz)cos(¢ — v)

+ cycle

L[ =
()]



<M_f‘21>: g”i” [sin(kz — kv + y — 8) +sin(ky - kz + y — 9)]

-

eoEy’
<M3"‘_}3>: 07]‘“ [sm(kw—k + ¢ - y) +sincks —hkx -y + 6)]

: Ey’
(M\a) = —L’?; [sintky — ks + 0 — y) —sin(ky + kz + ¥ — 6)]

iii) MOT corkscrew 070 0 0 0 6" 6-beam standing wave

Note that this field is not rotationally symmetric, and therefore cannot be written using the "+
cycle” abbreviation. The field E is

E, xcosthz — ot — )+ ysin(kz — @or — y)

k= 2 +X COS(kz + @f + W) + ¥sin(kz + wr + )

E, [Fcosthy —an — 0)—2sin(ky —wr — 6) |
_\—2 _+§’ costhy + o + 0)— zsin{ky + ot + 9) 1
E, [Zeosthy — wf — @) — Xsin{ky — wr — ¢) ]

N2 [ Hzcosthy + of + @) — Xsin(ky + @r + @) |

which simplifies to
X(coskzcostmr + y)—sinkycos(wr + ¢))
E= \-‘Ek}, +¥(coskxcos(wr + 8)+sinkzcos(axn + l//})
+z{coskycos(mr + 0) —sinkycos(wr + 0))
Stmilarly, H and A are. after simplification
X(sinkysin(wr + 0} + coskzsin(wr + y))
H=1\2H, +¥(sinkzsincar + ) — coshxsint @t + 0))
7+5}.{sin kysingar + 8)— coskvsin(or + (f)})

[ &(=coskzsin(or + w) + sinkysin(wr + ¢))
V2E,
(2]

A= +¥{—coskvsin(ay + 0) ~ sinkzsin(wf + )

+Z(—coskysin(r + ¢) +sinkxsini @r + 6))

(8) = 2, Hyysin( 8 — )| X coskrcoshy + ¥ sinkvsinky + Zcoskxsinky]
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3
(Ul:)—é(,E(} [E—CO\]\ sinkyvcos(¢ — )+ coskxsinkzcos(y — 8)— coskysinkxcos(8 — qﬁ)}

5| 3 . . ‘
<UM> = E()E”'[? + coskssinkycos(@ — W) —coskxsinkzcos(y — 0) — coskysinkxcos(d — (D)J

(U = e4E"|3 - 2coskysinkycos(6 — )]
X{coskycoskysin(0 — ¢) — coskysinkzsin(@ — y) —sinkzsin kv sin{ yr — 0))

~ 2
L, = 2eoky” +y(coskycoskzsin(p — y) + coskzsinkxsin(y — ) + sin kxsinkysin(8 — ¢))
+2({coskzcoskxsin{y — )+ coskxsinkysin(@ — ¢) — sinkysinkzsin(¢ — l,u))
. 2
<M§\2]>: g()i{) [1-sinkycoskzcos(¢ — y) + coskxsinkzcos(y — 0)]

<M3p§2> = 50?) [coskycoskzcos(@ — y) — coskzsinkxcos(y — 6)]

<Mf‘|3>— E()fﬂ [gmk coskycos(@ — y) —sinkxsinkzcos(y — 9)]

iv) circular polarised 6 "o "o Yo fo*6* 6-beam standing wave
E, [i costhkz — r — w)—¥sinths — wt — W) }

E-=
+X cos(hz + @f + W)+ Vsindkz + wr + )

+ cycle
which simplifies 10
— x(coskzcos(wr + ) + coskysin(wt + @)
+ cyele

Similarly H and A are, atter simplification

= x{sinkzcos(@r + )+ sinkvsin{wr + @)
HI\"EH(][ ( v : 9))
|_ + cyele
A= V2f V2E, | R(=coskzsintar + yr) +coskycos(ar + 6)
o + cvele
(8§)= [;‘01105:]Sin(,(:\- ~kzycos{y — @)+ sin(hz — Av)sin(@ — ) + sin(ky — Av)cos(8 — @)]

+ cvcle
<U}:‘> = EUEU:[COS“ v+ coskveoskzsin(¢ — l;/)] + cvcle

(Upy) = £y [sin kx4 sin kvsin kz sin(o - y)|+ cycle

(UY = eyEy*[1 + costky — k2)sin(¢ ~ y)| + cycle



_2g)E) % cos” kv + coskycoskysin(6 — @)
w —coskycoskzcos(@ — y)+ coskzcoskasin{y — @)

+ cycle
)

; A e
<M_i§11 > === [sm kzcoskycos(¢ — w) —sinkzcoskvcos( iy — 9)]
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Chapter 6
Experimental apparatus for a magneto-optical trap
for rubidium atoms

Introduction

This chapter describes the construction of a magneto-optical trap (MOT) for rubidium atoms
at the Open University physics departmient spectroscopy laboratory at Walton Hall, Milton
Keynes. Work on laser cooling began in October 1991, requiring that the necessary
apparatus be designed and built up from nothing during the years leading up to this thesis.
From an experimental point of view. the MOT is composed of four clements: a set of
resonant laser beams (described in section 6.1}, a magnetic field gradient (section 6.2), a
sample of rubidium atoms in i vacuum chamber (section 6.3} and finally a set of diagnostic
tools (section 6.4). Relevant spectroscopic data for the rubidium atom may be found in
Appendix AB.

6.1 Laser beams and optics

The cooling and trapping ol atoms requires a stable source of narrow bandwidth laser light
with a frequency which is detuned trom an atomic transition. Good control is required of
many properties of the laser beams: frequency. linewidth, power. diameter, spatial quality
(mode structure). direction and polarisation. This scction starts with an overview of the
complete optical system before discussing each of the above laser beam properties in detail.

Figure 6-1 is a schematic diagram of the necessary laser and optical components.
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Figure 6-1 The optical bencl configuration
The essential optical components are shown in the above figure. Laser light of the desired
frequency and linewtdth is produced in the 'external cavity laser ' (section 6.1.1), whose
output is monitored and controlled by a saturated absorption cell and electronic servotock
system. The output of this laser 1s amplified by 'injection-locking’ {section 6.1.3) a second
more powertul ‘injected” diode laser, whose output retains the spectral qualities of the
external cavity laser. Optical isolators are necessary to prevent unwanted feedback effects
duc to retro-reflected light (section 6.1.2). and ar acousto-optic modulator (section 6.1.5) 1s
used for precise scanning and/or switching of the laser frequency. The beam from the
injected faser is then spatially Gltered. adjusted to have a circular profile of the desired
diameter, split into three equal parts. circularly polarised and finally directed into the vacuum
cell where atom trapping takes place. A second similar system consisting of external cavity
laser 2. a saturated absorption cell. an optical isolator and an acousto-optical modulator
(AOM) 1s used te create a repumping’ beam with a different frequency. The purpose of the
repumping beam was explained in section 3.1. The repumping beam may either be sent
directly into the vacuum cell as shown above or may be combined with the trapping bcams
prior to the three-way splitting stage. An advantage of the latter arrangement is that it allows

both trapping and repumping beams to be blocked simultaneously with a single shutter.



The external laser cavities are highly sensitive to acoustic vibrations and the
performance of most of the above components is sensitive to small beam misalignments. To
help overcome these problems. the experiment 1s mounted on a 1.2 x 3.0 m laminated steel
Tloating’ optical table {Ealing Optics) which provides a high degree of vibration isolation
and long term positional stability for the optical components.

6.1.1 Laser frequency and linewidth.

The laser Light for any cooling or trapping experiment must fulfil two important conditions.
Firstly, it must have a linewidth narrower than the natura! linewidth of the hyperfine atomic
transitions used for cooling. Secondly, for stable trap operation, the frequency drift must be
less than some fraction of that same natural linewidth during the time of the experiment. For
rubidium cooled on the hyperfine transition 581,2(F = 3) to 5P32(F = 4) (see figure 6-2) the
natural linewidth is /721 = 5.68 MHz. Hence a suitablc laser design should have a central
frequency drift less than say | MHz in 5 minutes and a linewidth less than 1 MHz.
Furthermore, it a part of the laser beam is to be used as a precise probe of narrow
resonances e.g. the Rayleigh and Raman resonances described in chapter 4, an even smaller
linewidth between 1 and 10 kHz is desirable. The repumping [aser must also have a similarly
small frequency drift of less than | MHz in 5 minutes. though it is not so important that it
have a narrow linewidth. The above-mentioned conditions on linewidth and frequency drift
are achieved in this work by using a technique[247] that has become common amongst laser-
cooling rescarch groups, namely that of an ‘external cavity laser’. This consists of a laser
diode in an external cavity with a diffraction grating. frequency-locked to an atomic
transiion by a saturated absorption technique. A description of our external cavity lasers is

given shortly, following o briet description of laser diodes themselves.

28 ns

5Py
20 ns SP”‘)

Dy
795 nm

780 nm

580

Figure 6-2 The Dy and Dy laser cooling transition(s) of rubidiun
The gross structure of the electronic energy levels for rubidium may be found in Appendix 8
and the refevant hyperfine structure is shown in figure 6-6a. The D) and Dy lines are at
794.76 and 780.027 nm respectively. These wavelengths are not normally considered
visible, being at the extreme cdge of the visible spectrum. Nevertheless one milliwatt of 780
nm laser light incident on a while card is sutficiently intense to produce a clearly visible red

spot.
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Laser diodes

The use of laser diodes in this work is possible because of the convenient coincidence of the
wavelength of the rubidium D lines at 780 nm (and caesium lines at 852 nm) with the
wavelength of commercially available laser diodes. Laser diodes have the advantage of being
considerably cheaper than alternatives such as a titantum-sapphire laser or a continuous-
wave dye laser. They were tfirst used for laser cooling in 1986 10 slow a caesium atomic
beam|248] and tater for 3-D cooling of caesium[249], The tluctuations in the power output
of laser diodes are smallf249]. typically ~1 in 103, and their wavelength is controllable via
temperature or injection current. The frequency of diode laser light may be modulated via the
injection current at rates[250] from zero up to 15 GHz per us. These features enable
relatively casy tuning, frequency locking and scanning.

An introduction to diode lasers per sc can be found in Ohtsu[251] and to the use of
diode lasers in atomic physics in Camparo[252]. Light is generated in a semiconductor chip
when a direct current injected at a p-n junction in the chip produces electrons and holes
which recombine 10 produce photons. The semiconductor material GaAlAs can be used to
construct laser diodes with a wavelength in the range 750 to 830 nm. The energy of the
photon corresponds to the band gap which in turn depends on the ratio of gallium to
aluminium in the chip. The laser cavity 1s a Fabry-Perot resonator formed between (wo
cleaved ends of the active (electron/hole recombination) region of the semiconductor crystal.
The cleaved ends have a higher reflectivity (~0.3) than any adjacent semiconductor matcrial
and act as the cavity mirrors. This resonator may support several longitudinal and transverse
miodes and laser oscillation oceurs at the mode(s} at the peak of the semiconductor gain
curve. In the 'indes-guided' tvpe of laser diode used in these experiments, unwanted
transverse modes are suppressed by confining the light to a long thin rectangular strip
(waveguide) of dimensions around 300 x 2 x 0.1 um. The waveguide is formed by
surrounding the aciive region with cladding layers of different refractive index. Sce figure 6-
3. The faser diode then operates on a single transverse mode. Furthermore, when the drive
current is sufficiently above the lasing threshold. only one (temperature-sclected)

longitudinal mode is active.
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Figure 6-3 The simplified structure of a laser diode

The frequency of laser diode light may be controlled by altering their temperature and/or
injection current. Changing the temperature changes both the peak of the gain curve and the
frequency of the cavity modes, the latter through changes in the refractive index (which is
around 3.5 for GaAlAs). Laser diodes can casily be damaged by spikes in the injection
current and precautions for handling electrostatically sensitive devices must be observed!.
The external cavity laser
The diodes used in our work are Sharp LTO24MDO and LTO25MDO, with nominal light
output powers of 30 and 40 mW, and room temperature wavelengths in the range 781 - 789
nm. When running free. i.e. without any form of cavity feedback, thetr linewidth was
measured with a spectrum analyser to be ot the order of 80 MHz. This width could be
randomliy narrowed in the range 30 to 80 MHz by feedback trom a glass plate in the path or
from the entrance facet of the spectrum analyser itself. The wavelength may be controlled
lincarly over small ranges (a few nanometres) by changing the temperature (sensitivity 30
GHz K-11 or by changing the driving current (sensitivity 7 GHz mA-1). The lincar response
is interrupted by 'mode-hops', which are laser frequency jumps between preterred internal
longitudinal cavity modes. The internal cavity modes of the Sharp lasers were measured to
be ~0.26 nm (or 30 GHz} apart. by measuring the diffraction angles of different modes
from a 600 lines per mm grating.

Our external cavity lasers were designed by Dr Eric Usadi, and are a variation on a
design by Dr Andrew Steanc[169]. They were built by the Open University machine shop

and full technical specifications including technical drawings may be found in [253]. The

VAs T learnt after 'killing several diodes myself! An earthed wristband showld be worn when handling them
divectly, and all elecrrical connections must be secure. especially where the diode pins are held by friction.
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sensttivities of the frequency to temperature and current (given above for the bare diode)
imply that for an ultimarte frequency stability of < 0.5 MHz, the temperature and current
variations must be <+ 20 uK and < + 70 nA respectively. This degrec of current stability is
achievable with a well designed current driver. Such precise control of the temperature,
however, would be very ditficult to achieve in practice and fortunately the requirement is not
so severe when the external cavity Jaser is employed. This is because the output frequency of
the external cavity laser is strongly dominated by the external cavity length, which is less
sensitive 1o temperature fluctuations than the laser diode itself. A simple calculation of cavity
length variation with temperature shows that, for frequency stability of < 20.5 MHz, the
temperature must be stable to around & 1 mK., which is an achievable, though exacting
requirement. Thus temperature and current control are key factors in the design of the

external cavity faser and its contro] electronics.
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Figure 6-4 The external cavity laser

Figure 6-4 shows the main parts of the external cavity laser. The external cavity is formed by
the rear facet of the laser diode and the tace of a diffraction grating, which has 1200 lines
mm~!. is blazed for 780nm in first order and mounted in Littrow configuration (first order
diffraction beam is retro-reflected). The mode spacing of the external cavity is 2.5 GHz. The
front tace of the laser diode 1s anti-reflection coated as supplied, an important feature as it
allows enough of the retlected light from the grating to re-enter the laser-diode and produce a
strong feedback loop. A collimating lens is placed close (4 mm) to the output facet of the
laser diode and the collimated beam passes through a beamsplitter which results in two
output beams. The diffraction grating is held by a mount rotatable about all three axes, to

allow alignment and coarse wavelength tuning. This mount is itself attached to an Invar bar
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via a piezo-electric crystal which allows small, smooth alterations in the external cavity
length to be made under voltage control. Invar was used for the mounting base in order o
mininuse fluctuations of cavity length with temperature. The Invar bar is kept in thermal
contact with a copper heat sink which is temperature stabilised by a negative feedback loop
imvolving a thermistor (Fenwal standard bead 100 k) buried in the copper and an |8W
Pelticr heat pump (Melcor CP-1.4-71-10L.). The high-stability electronic controller for the
temperature feedback loop was built by the Open University electronics workshop,
following designs in [254]. The feedback is the sum of three contributions: one proportional
to the difference between the actual and set temperatures (linear), one proportional to the rate
of change of that ditference (differential) and one proportional to the recent history of the
difference (integral). The use of these three functions allows fast cooling when required but
prevents large overshoot or oscillations about the set point. The system design is
claimed] 2547 to be able to maintain a steady temperature to within = 0.3 mK per hour, but
we have measured the typical drift of our system to be ~+10 mK per hour, by monitoring the
thermistor resistance. This corresponds to a laser frequency drift of £0.5 MHz per 5
minutes. which meets the required specification. A second outer tier of temperature control,
mvolving a simitar feedback loop connected to the metal box surrounding the cavity was
tried. 1t offered a small improvement in stability. but did not justify the extra complexity
invoived.
External cavity laser tuning

The external cavity laser is tuned to the desired frequency in stages as follows. First. the
temperature 1s adjusted until the bare diode 1s lasing within < 2 nin of the target wavelength.
An initial alignment of the grating is then made. which establishes operation of the laser
diode with optical tfeedback. Then, by finc adjustment of the angle of the grating with respect
to the laser diode bean via three fine pitched screws and some juggling of the temperature.
the diode may be induced to lasc on the desired mode of its internal cavity, which implies
that the frequency is within £70 GHz of the atomic transition frequency. The jumps between
modes are monitored with a wavemeter. The temperature of the cavity may then be adjusted.
tvpically within the range 10 to 20°C. o translate that mode frequency to within ~20 GHz of
the desired point, this being the avatlable resolution of our wavemeter. Finer adjustment is
then obtained by altering the current to the laser diode, whilst watching tor the fluorescence
from a rubidium absorption cell to identify the transition frequencies. This visual monitoring
of a rubidium absorption cell allows one to place the laser frequency within the Doppler
width (400 MHz) of any of the four lines distinguished: two lines due to each of the two
isotopes of natural rubidium (sec figure 6-6b). The current driver was butlt by the O.U.
electronics workshop. again following a design in [254]. For optimum stability the current

drivers are powcred by lead acid batteries (12 'V, 9.5 A hr storage) and achieve a stability of
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* 1 WA per hour, corresponding to a change of less than 7 MHz per hour. An important
feature of the driver is that the current is ramped whenever switched on or off so as to avoid
current transients which mighe damage the laser.

The fine tuning is achieved via small alterations to the length of the external cavity. The
diffraction grating is mounted upon a piezo-clectric crystal, enabling voltage controlled
changes in the cavity length (46 nm per volt) with a resolution better than 1 nm. This allows
the frequency to be scanned over a total range of 4 GHz corresponding to the 15 volt linear
range of the ptezo crystal. An absolute reference for the fine tuning of the laser is provided
by a rubidium saturated absorption spectrum, described in the next section. A servolock
system (negative feedback loop), in which the voltage to the piczo is controlled electronically
by the saturation absorption signal strength, allows the taser to be locked anywhere on the
slopes of the absorption profile due to the hyperfine lines (see figure 6-6¢). The servolock
circuit. based on a design in reference[247] was built by the O.U. electronics department. It
can operate in either of two modes: a locked mode which eliminates any remaining slow
frequency drift due to temperature drift of the laser cavity. or in a ramp mode which allows a
chosen range of the saturated absorption signal to be viewed and identified on a Tektronix
2445 oscilloscope (150 MHz). In the ramp mode. the viewed frequency range may be varied
from <IMHz to 4 GHz. In the focked mode, the Yjitter’ noise in the laser frequency caused
by environmental noise such as acoustic vibration is reduced 1o less than | MHz.
Saturated absorption spectroscopy
A sawrated absorption spectroscopy arrangement is attached permanently as a frequency
monitor to each of the external cavity lasers. This standard spectroscopic technique[255] 1s
Doppler-tree’, and thus allows the hyperfine structure of the rubidium D lines to be
resolved. Each external cavity laser provides two output beams, allowing one of the beams
to be conveniently deployed as the saturated absorption pump. The optical arrangement for
saturated spectroscopy is shown i figure 6-5. A commercial glass-blower pre-fabricated our
saturated absorption cefls to a design which incorporated a small tapered-neck entrance so
that I could later load them with rubidium. The final sealing was then easily carried out by an

O.U. technician. Mr G. Jet?s,
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Figure 6-5 Optical arrangement for satrated absorption spectroscopy



The principle of suturated absorption is as follows. There is a certain velocity group of atoms
in the vapour whose Doppler shift is equal and opposite to the pump laser detuning and this
velocity group is therefore resonant with the high intensity pump beam. These resonant
atoms are saturated, in other words only approximately half of them are in their ground state.
The counterpropagating weak probe beam generaltly interacts with a different velocity group
of atoms in the vapour. The exception is when the beam is exactly tuned to an atomic
transition, in which case both pump and probe interact with the zero velocity group of
atoms. In this case. the probe beam 'sees’ fewer atoms as the number available for
absorption has been depleted by the pump beam. This results in features appearing within
the Doppler broadened absorption profile which are known as 'Lamb dips', and which have
widths cqual to the natural linewidths of the hyperfine transitions.

Saturated absorption profile of rubidium

Figure 6-6a shows the hyperfine transitions which make up the D line for the two isotopes
ol natural rubidiun. Figure 6-6b shows a plot of (unsaturated) absorption against frequency
for a laser beam passing once through a rubidium vapour cell. Four broad peaks are
resolved. each peak containing three hyperfine components which are not well resolved
owing to Doppler broadening. The four peaks in the plot (figure 6-6b) are aligned below
their corresponding {ransitions 1 figure 6-6a. Figure 6-6¢ shows the saturated absorption
curve of three of the six hyperfine transition lines comprising the rubidium 85 D> line. Three
‘crossover lines are also obtained when vsing saturated absorption methods. They occur
midway between the pairs of hyperfine lines and are often larger than the actual hypertine
lines. An analysis by Nakayamal256] shows that the shape of the saturaled absorption
spectrum s determined by a combination of optical pumping. laser polarisation and
saturation eftfects, The line centres of the F =3 - F' =2 and F=3 — F' = 3 lines are,

respectively, 186 and 122 MHz below the F=3 — F' = 4 linef257].
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External cavity laser linewidth

The linewidth of a laser diode can be narrowed by controlled optical feedback, designated
either 'weak' feedback (<0.01% of the laser power) in the case of feedback from a high Q
Fabry-Perot etalon [249,258.259] or 'strong’ feedback (>19% of the laser power) as is
required in the case of feedback from a diffraction grating[169,260}. Reference[169]
contains a theoretical argument showing that linewidth narrowing to widths less than 1/300
of the bare diode linewidth (i.e. < 100kHz in our case) is to be expected with the external
cavity laser design. The linewidth of our lasers was found to be less than the 20 MHz
resolution of our spectrum analyser. An exict measurement of the linewidth has not been
made, but an upper limit may be deduced from the fact that our saturated absorption scans
show hyperfine lines of known FWHM 6 MHz to be sharply resolved at the peak. although
broadened to -~ 7.5 MHz. This implies that the linewidth is less than 1MHz. Later
experiments to observe Raman and Rayleigh resonances which are ~100 kHz apart should
give further information on this upper limit. Other workers[260,261] who have used
external cavities with grating feedback have measured linewidths less than 100kHz. thus
increasing our confidence that the linewidth of our external cavity laser is sufficiently
MArrOw.

6.1.2 Optical isolators

Diode lasers arc extremely sensitive to feedback of retro-retlected light, a feature which is
used to advantage in the external cavity. However, retro-reflections from downline optical
components lead to unwanted amplitude and frequency fluctuations (jitter) of the laser
output. Laser diode feedback of as lttle as 1 in 10° of the output has been shown 1o affect
their frequency and amplitude stability[262}. These retro-reflections must therefore be
prevented from returning to the faser diode by the use of optical isolators.

An optical isolator is simply a one-way light valve. allowing transmission in a forward
direction, but high attenuation in the reverse direction. The attenuation is usually expressed
in decibels and is typically in the range 30 1o 50 db, with forward transmission better than
05% . The most effective isolators are magneto-optical isolators. which depend for their
operation on 'Faraday rotation’, the rotation of the plane of polarisation of a polarised fight
heam as il passes through a transparent solid in a magnetic field (see figure 6-7). In the
forward mode, input light is first vertically polarised at A, then rotated through 45° by the
Faraday rotator. The light then passes through the second polariser B, whose transmission
axis s at 45 1o the vertical. In the reverse mode, returning light is linearly polarised at 45° to
the vertical as it passes through B. It is then rotated through 45° by the Faraday rotator and
becomes horizontally polarised. Thus it is stopped by polariser A. The essential property of
a Faraday rotator is that it rotates the plane of polarisation in the same sense regardiess of the

propagation direction ot the light. The amount of rotation is given by
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8=VB-1l
where §1s the rotation angle. B a uniform magnetic field. I the path of the light through the

rotator and V' is a constant for a given material known as the Verdet constant.

0 |\45° 45°
|
/ /
|
Y I
INPUT EARADAY OUTPUT
POLARISER ROTATOR POLARISER
o0 I 25°
2
s
V4
- A e -~ B e loop

Fienre 6-7 The operating principle of a magneto-optical isolator
The design of the Newport isolators used in the experiment is sketched in figure 6-8. The
crystal material is YIG {yttrium iron garnet) in the shape of a cylindrical rod of 5 mm
diameter and 20 mm length. housed along the drilled out axis of a cylindrical permanent
magnet. The magnets are ncodymiwm-iron-boron and produce a field of ~5000 gauss along
the crystal axis. This field may be 'tuned' to give the optimum rotation of 45 and hence the
optimum atlenuation at a given wavelength by altering the distance between the inner (1) and
outer (O) magnets. which are magnetised in the opposite sense. The polarisers are high

quality (50 db attenuationt Rochon cube polarisers.
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Figure 6-8 A practical magneto-optical isolator
6.1.3 Laser power and injection locking
The theory of chapters 2 and 3 (equation 3-1b) predicts that optimal Doppler cooling is
obtained for a Rabi frequency 2= I7N6 in each of the six beams. therefore it is desirable to
have at least enough laser power to achieve this. For the Rb D line this is equal to 1.3
mWem= for each beam. The beam intensity can be adjusted, given a fixed available total
power, by adjusting the diameter of the beam with a system of beam expanding lenses.

However. other trap properties, such as loading-time. capture velocity and densities also
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depend on the diameter and diameters (1/e2) of at least 5 mm are gencrally preferable. It
follows that it is necessary to have a total of at least 2 mW available after all frequency
tocking, line-narrowing and spatial filtering.

The light power output of a free-running diode laser nominally 30 mW may vary
between 15 and 30 mW depending on the driving current. This is much reduced when the
laser is subject to optical feedback in the external cavity and was measured to be 2.5 mW
maximum. Passage through the subsequent optics results in a further reduction to less than
the required 2 mW, hence 1t is necessary to amplify the beam by 'injection-locking’ a
second, more powerful laser diode (Sharp LT025MDQ). The first external cavity laser (the
'Injecting’ laser) thus acts as a source of specific spectral qualities (frequency and linewidth)
which are copied onto the more powerful ‘injected’ diode laser{263]. Injection locking has
been satistactorily achicved with the injection of as little as 0.19% of the total output
power[169]. The maximum power of our injected laser when locked is 12 mW. The
temperature and drive current of the injected laser are controlled by similar systems to those

used for the external cavity lascer.
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Figure 6-9 Injection locking scheme

For injection-locking. two optical isolators are necessary as shown to protect both lasers
from retro-retlections. The external cavity output is ijected into the the second laser by
taking advamage of « ‘backwards' light path through the 1solator. The 'backwards' path is
just the reverse of the path taken by that part of the injected Jaser light which is rejected by
the output polariser of the isolator. The A/2 waveplate is necessary to match the polarisations
of the injecting beam and injected output beam at the diode output facet.

With our apparatus, injection-locking takes place when the injected laser has a free-
running wavelength approximately 1.5 nm shorter than the injecting light wavelength. This
is about five internal cavity modes away from the free-running wavelength. The procedure to
obrain good injection-locking is as follows. A faint rejected’ beam from the injected laser

always marks out the backwards path, owing to the less than perfect performance of the
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isolator. Precise aligniment of the injecting beam with this ‘rejected’ beam is ensured by
passing both beams through two small apertures (1 mm) separated by at least a metre, With
the injecting laser temporarily blocked, the temperature of the injected laser is adjusted until
the injected laser is free-running on the correct internal cavity mode (~788.65 + 0.05nm in
our case). The injecting laser is unblocked and the injected laser drive current adjusted until
locking is obtained, as evidenced by the wavemeter jumping from ~788.65 to ~780.03 nm,
The three ‘parameters’ of beam alignment, polarisation matching and drive current are then
optimised by observing a saturated absorption spectrum obtained with the injection-locked
output, and adjusting the parameters until the signal is as noise-free as possible. We have
also observed the output of the injected laser with a spectrum analvser of resolution 20 MHz.
This revealed that, at the edges of the 'good-locking' range of these parameters, locking was
maintained, but strong sidebands? appeared in the output spectrum with a spacing + ~1
GHz. An interesting observation is that we were able to trap atoms without a separate
repumping laser when these sidebands were present in the trapping light. The hyperfine
ground state splitting of #°Rb is 3.04 GHz and I deduce that the higher frequency sidebands
are able to provide sufficient repumping light. However, in normal operation. we use a
separate repumping laser and an optimised injection-locking system.

6.1.4 Polarisation, spatial quality and other optics

Generally, the basic optics (mirrors, beamsplitters etc) are made to high specifications in
order to preserve desirable beam characteristics such as spatial coherence. circularity of
polarisation and to minimise power losses etc. Many of the optical surfaces are either
reflection or anti-reflection coated at 780 nni. and meel exacting flatness and surface polish
stundards (better than A710 and 60/40 scratch/dig respectively). Many beam-processing
operations require linearly polarised light, which is achieved by the use of various Glan-
Thompson polarising cubes and polarising beamsplitter cubes (e.g. Meadowlark BP 0.5-
785). The linear polarisatton can be rotated into any angle by the use of half-wave plates or
mirror pairs. Combiming a half-wave plate with a polarising beamsplitter allows a variable
ratio beamsplitter to be constructed. Circular polarisation is achieved where necessary by the
use of quartz multi-mode quarter-wave plates. Three particular beam-processing operations
arc beam expansion. beam shaping and spatial fillering, described below.

Beam expansion and shaping

The laser diode output is naturally highly divergent, the divergence being around 10° and 30"
in the two directions (sce figure 6-3). The ellipticity 1s duc to the shape of the gain medium

which is that of a rectangular strip. The output light is collimated by a small lens with a high

i - . . . . . .
= [ have not investigated the reason for the formation of these sidebands, but note that sidebands have been
predicted and observed for light produced by injection-locking under cerrain circumstancesf{263].
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numerical aperture (0.47) placed one focal length (~4 mm) trom the front facet of the diode
itself. This collimation is not perfect, as the output is also slightly astigmatic, the focal points
tor light collimated in the two transverse directions being different by ~ 50 um{264]. The
collimated light has an elliptical profile and is strongly linearly polarised paraliel to the short
axis. The beam profile may be made circular either by use of of a pair of "anamorphic
prisms’, figure 6-104. or by use of two cylindrical lenses to make a one-dimensional beam
expander. figure 6-10b. Both systems are used in our experimental set-up. The final size of
the beam diameter is variable, but usually set within the range 5 to 10 mm by a normal beam

expander consisting of two plano-convex circular fenses of different focal lengths.
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Figure 6-10a Beam shaping with anamorphic prisms
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Figure 6-10b Beam expansion in one or tiwo dimensions

Spatial filtering
Laser light diffracted from optical apertures (e.g. the collimating lens). small dust particles or
slight imperfections in the optics may produce irregularities in the otherwise smooth
irradiance distribution. The scattered light travels in different directions from the parallel
laser beam, and is thus spatially separate at a lens focal plane. By the use of a spatial filter,
consisting of two lenses /= 100mm and a pinhole of ~ 100 pm diameter centred around the
tocal spot of the direct bean. it is possible to block the scattered beams, whilst allowing the
direct beam (TEM ) mode) to pass. The result is a collimated beam of light with a gaussian

intensity distribution.

L

Figure 6-10c Spatial filtering
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The exact profile of the trapping laser beams is not important for all MOT experiments,
nevertheless we employ a spatial filter. One advantage of this is that it enables easy
identification of problems due to slightly misaligned optical components, as deviations from
a circular Gaussian profile are readily spotted. A disadvantage is that there is an associated
power loss of ~15%, which is partly due to the difterent focal planes caused by the
astigmatism of laser diode light.

6.1.5 Acousto-optic modulators (AOMs)

Acousto-optic modulators are devices which allow the shifting of the frequency of

monochromatic light which passes through them by relatively small amounts, typically

between 60 and 100 MHz.
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Figure 6-11 The acousto-optic modulator
The operating principle of an AOM is as follows. An acoustic travelling wave of typically 80
MHz and wavelength ~45 pm is set up in a crystalline material; in the case of our AOMs it is
lead molybdate (PbMbOy). The ucoustic wave propagates in a direction transverse to the
propagation direction of the laser light through the crystal. The acoustic wave is produced by
a piezo-electric crystal driven by a radio-frequency source and the wave is efficiently
absorbed after passing once through the crystal. The acoustic wave transforms the crystal
into a1 Bragg diffraction grating (see figure 6-11) owing to the variation of the material's
mdex of refraction between the planes of compression and rarefaction. The grating,
however, 1$ moving at the speed of the acoustic wave. Conscqguently, light beams incident at
the Bragg angle are diffracted and the frequency of the diffracted beam is shifted up or down
by the frequency of the acoustic wave. The Bragg angle is typically a few mrad. Up to 90%
of the output energy is in the frequency-shifted Bragg reflection. the balance of the energy
being in the straight-through (zeroth) order. The intensity of the diffracted beam increases
with the intensity of the acoustic wave and this relationship can be exploited to make a fast
fight switch. If the acoustic wave is switched off, the first order Bragg reflection disappears
and the light is transmitted in the zeroth order. This takes place in < 200 ns (depending on

beam diameter}. which is much faster than any mechanical shutters, which typically take ~1
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ms o operate. As the zeroth order is at an angular separation of about 1, it is easily blocked.
The frequency of the acoustic wave may be scanned over a range from 60 to 100 MHz,
allowing corresponding scanning of the output light frequency. This allows very precise
voltage-controlled shifting of the luser frequency, with a resolution of ~ 4 kHz,

The spatial quality of a beam passing through an AOM may suffer owing to a lensing
effect caused by a tempcerature gradient which appears in the crystal. Where necessary, we
minimise this effect by contracting the beam diameter before it passes through the AOM.
Because a single AOM cannot produce light frequency shifts less than 60 MHz. two AOMs
are necded to produce smalk shifts. The first gives a fixed detuning of, for instance, ~80
MH?z and the second gives a variable 'retuning' of +80 + 20 MHz. The nett result is a muning

range of * 20 MHz aboul zero. The effective frequency shift of an AOM may be increased

by using it in a 'double-pass’ arrangement. as shown in figure 6-12.
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Fieure 6-12 An AOM double -puss arrangement
In the double-pass wrrungement, the light passes twice ihrough the AOM and its frequency is
down{upi-shificd twice. thus allowing shifts in the range {20 - 200 MHz, The two passes
through the quarter-wave plate give a total rotation of the mput lincar polarisation through
90", so that the light follows a different path on its return to the beamsplitter.
T he makes and specifications of the AOMs used in our set-up are:
Crystals: Isomet [205C-2-804
Drivers: Isomet 232A 2 (fixed frequency)
Isomet D322B-805  (variable frequency)
They have three main uses in the experiment, as follows. Firstly, they may be used as a fast
on-off switch for the laser beams using either the technique described above, or alternatively
by rapidly shifting the trapping frequency by 200 MHz. Secondly, they may be used to scan
the frequency of spectroscopic probe heams with a high resolution < 10 kHz, and at variable
rates. Thirdly. they are usetul when servo-locking the external cavity laser frequency to the
atomic absorption lines, The external cavity laser gives the best frequency stability (both
long and short term) when locked at a frequency corresponding to an extensive section of

steep slope on the saturated absorption versus frequency curve. However, such locking
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points do not usually coincide with the desired trapping frequency range, so we use an AOM
to shift the well-locked frequency to the desired trapping frequency. In our specific case, for
85Rb at 780 nm. we lock at a point ~140 MHz higher than the F = 3 to F' = 4 hyperfine
transition. and usc a double pass AOM to downshift by 160 + 40 MHz, resulting in a range

of detunings from —107 1o +37

6.2 Magnetic fields in the experiment

6.2.1 Anti-Helmholtz coils

The magneto-optical trap (MOT) requires a uniform magnetic field gradient along each of
three orthogonal axes, with a zcero field at the centre. Such a field is the quadrupole field
provided by an 'anti Helmholtz' coil pair (sce figure 6-13), which have the same geometry

as a Helmholtz pair but with opposed current circulation in each coil.
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Figure 6-13 Anti-Helmholtz coils, as fitted to the ‘metal’ vacuum cell

For a given radius r, the maximum gradient at the centre of the axis is obtained when the
separation = r, and 1s given by JB./d: = 0-86y(]N1/f'2 . where N is the number of furns
on cach coil and 7 is the current. The gradient at the centre along the other two axes has halt
this value, which tollows from div B = 0. The most uniform gradient is obtained when d =
v3r, but has only 75% of the magnitude obtained for coils of the same radius r and d = r. If
required. ficld gradients at positions off the central axis may be calculated numerically by a
computer programme. Because the wire diameter itself occupies a significant proportion of
the coil separation. a more accurate value for the gradient is obtained by calculating the field
due to each individual turn and summing the results. When designing the MOT anti-
Helmholtz coils, the exact ratio of d to r adopted 1s not a critical factor and is likely to be
determined by other considerations such as the available space.

Typical values for field gradients in an MOT vary in the range 9B. /dz = 2 - 15 Gauss
em-1, which can be achieved in practice either by using a smali coil (radius ~2 cm) with
around N = 4 turns and currents between 5 -10 A, or by using targer coils with more turns
(N scales as »= for a given field gradient). In the latter case. resistive heating may necessitate

the use of water-cooled coils. Furthermore, large radius coils nced many turns to achieve the
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required field strengths, and as coil inductance is proportional to N2, the consequence is a
larger time constant when the magnetic field is switched on or off. In order to allow fast
switching of the magnetic field, the small coil option has been adopted in this work in all
three designs of MOT vacuum cell. The O.U. electronics workshop designed and built a
computer controtled current driver for our anti-Helmbholtz coils which switches the current

from 10 A to zero with a time constant of 5 ps. The specifications of the coils in the two

cells used in our experimental set-up are given in table 6-1.

Coils in the glass cell Coils in the metal cell
Radius 10.5 mm 19 mm
Separation From 23 to 31 mm From 26 to 30 mm
Numberofturns [ 4 4
Wire 0.8 mm- c.s.a enamel-coated 0.6 mm- c.s.a Kapton insulated
copper wire, outside cell copper wire. inside cell
Axial magnetic 1.75 GA~lem! 1.32 GA-lem!
field gradient over current range 0 — 10A over current range 0 — 10A

Tuble 6-1 Anti-Helmholtz coil specifications

6.2.2 Nulling coils

Stray magnetic fields in the laboratory may be due to instruments, magnetised metal and
plastic and of course the Earth's field. Though a small stray field (< [gauss) will not
interfere significantly with the operation of a MOT as a tool for collecting a sample of cold
atoms, there are other cxpertmental arrangements where stray fields must be eliminated in the
trapping region. This is vital, for instance, to observe sub-Doppler cooling in molasses,
where a simall Zeeman shift in the transition energy can swamp the light shifts which give
rise to sub-Doppler cooling. In such a case, a typical requirement is for a spherical zone of
radius at least 3 mm in which the tield is less than 10 mG. Such a zone of near zero magnetic
field is achicved by the use of three Helmholtz pairs, one to cancel each of the three
components of the stray field. For a circular Helmholtz coil patr, the ratio of the cojl
separation to the coil diameter is 0.5: for a square Helmholtz coil pair, the ratio of the
separation to the side of the square is 0.54.

The sizes of the coils and currents used in this work are shown in figure 6-14. The coils
are wound onto a sturdy aluminium frame designed to double as a mount for other apparatus
such as optical components. Precautions are also taken to avoid stray magnetic fields due to
parts of the apparatus, by using nen-magnetic material wherever possible, by keeping
magnetised material at a suitable distance and by demagnetising objects such as the steel top

of the optical table. With these precautions, the only significant stray field to be nulled is the
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Earth's magnetic field (=0.4 G) and this was measured to vary by less than 5SmG cm~! over
the volume cnclosed by the nulling coils. For a square Helmholtz pair of coil side 2r, the
fractional magnetic field variation for small displacements : from the centre of symmetry is
of the order of (z/ r)*. It follows that the magnetic tield at the centre of our nulling coils is
uniform to within < 0.1% of the Earth's field over a sphere of ~ 2 cm radius, when the coil

currents are optimal.
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Figure 6-14 Helmholiz coils to null the Earth's magnetic field
The current settings giving a central zero-field were initially obtained to within £ 3 mgauss
bv use of a Hall probe. Another method is possible when the MOT is fully operational. For
well-balanced beam intensities, the MOT atom cloud always forms at the magnetic field zero.
which has a position determined by the anti-Helmbholtz coils plus any residual. uncancelled
ficld due to the Earth. When the anti-Helmholtz gradient is high, any shift in the field zero
position due to the (relatively smally residual field 1s also small. As the anti-Helmbholtz
gradient is reduced. the shift in the zero field position due to the residual ficld becomes
relatively larger, resulting in a visible movement of the cloud position. When the residual
ficld is itself zero, however, the cloud position docs not move as the anti-Helmholtz gradient
is changed. and thus the correct setting for the nulling cotls may be identified. We are not
presently able to use this method. as our current set-up with the 'glass’ cell has a beam
intensity imbalance due to the surfaces of our glass cell not being anti-reflection coated at
780 nm. This results in the retro-reflected beam in each counter-propagating pair having an
intensity estimated o be 78% (at the trap position) of the ingoing beam.
6.3 Vacuum cell design and operation for an MOT
Several factors influence the design of a vacuum cell for laser cooling and trapping of
rubidium. and arc discussed in the following subsections. Important factors include the need
for: an ultra-high vacuum in the cell, control of the rubidium vapour pressure in the cell,

space for magnetic ticld coils and good optical access to the cell.
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6.3.1 Vacuum cell design

Ultra-high vacuum and the MOT

An ideal vacuum cell for an MOT would contain only a 'background’ vapour of alkali metal
atoms at a saturated vapour pressure that can be varied between ~1079 and ~1077 torr (see
figure 6-15). Lower pressures than 1072 torr result in a loading rate into the trap which is
very slow. Greater pressures than 1077 torr result in a background number density (of hot
atoms) greater than ~ 100 atoms em?, which is a typical number density for cold atoms in
the trap, and the trap 1s 'swamped'. Ideally, the number of ‘foreign' atoms such as water
and hydrogen in the cell would be zero, but in practice, even with the best vacuum
technology. a partial pressure due 10 foreign gases is inevitable. The foreign gases are
acceplable provided their partial pressure is less than the desired rubidium background
vapour pressure. Thus the vacuum system should be capable of achieving a vacuum of ~10-%
torr or better. This pressure region is known as the ultra-high vacuum region (UHV) and its
praduction entails the use of specialised vacuum hardware. Good sources of information

about vacuum scienee and system design are listed in [265].
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Figure 6-17 Satrated vapour pressure of rubidium, 1aken from [266]
The UHV region is characterised by molecular flow rather than viscous flow, meaning that
the molecules rarely interact with each other, cach molecule bouncing around inside the
vacuum chamber at random until 1t enters the pump inlet and is removed. Once the bulk of
the atmospheric gases have been pumped out of a systent and the residual gases adsorbed on
the walls have become 'unstuck’ and pumped away, the main obstacle to achieving UHV
pressures is 'outgassing’. whereby gas molecules absorbed within the material of the
vacuum system walls diffuse into the chamber. The choice of suitable construction materials
for UHV systems is limited to those with sufficiently low outgassing rates and there are just

three in common use: glass, ceramics or stainless steel. Very small areas of oxygen-free
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copper and some special materials, e.g. Kapton, are also usable inside the vacuum system.
Stainless steel 1s a commonly used material for the body of UHV systems because most
shapes are casily fabricated. but it outgasses hydrogen at a rate which must be taken into
account in vacuutn system design. (The outgassing rate for a stainless steel after a 4 hour
bake-out at 200 C” is of order 5 x 10~11 torr Is~! em™2). In stainless steel UHV systems, the
residual pressure is due almost entirely to H> molecules outgassed from the surfaces of the
system walls, valves and connectors. There may also be permeation of helium through any
glass walls or windows. but the helium inflow (per second per unit area) via such routes is
usually one or two orders of magnttude less than that the inflow of hydrogen due to stainless
steel outgassing[265]. Because of their low outgassing and permeation rates. glass and
cerantcs are ideal vacuum materials, but present difticulties in the fabrication of exact
shapes. For instance, perfectly flat glass windows are not possible owing to the thermal
stresses introduced when the windows are fused to the structure at temperatures around

800 C. Such high temperatures would also damage any optical coatings previously applied
to the windows and thus optical coating of only the outer window surfaces (after fabrication)
1s possible. Wieman et al [267] have experimented with all-glass arrangements including
glass valves and non-stick coatings on the internal surfaces in relation to the trapping of rare
1solopes.

Thus the first design choice to be made 15 whether to build the cell body from glass or
stainless steel, each of which has advantages and disadvantages. In our case. two cells were
designed and built. one from glass and the other from stainless steel. These are described
shortly. Owing to outgassing from the internal surfaces. an ubira-high vacuum system must
be pumped on continuously. and a second cheice to be made is which type of vacuum pump
to use, the options being: o1l diffusion pumps, turbo pumps or ion pumps. Both diffusion
and ion pumps are used in our vacuum system designs and described in sections 6.3.3 and
6.3.4,

A final necessity 1s some means of loading the cell with rubidium vapour and then
controlling its partial pressure. Loading is accomplished by attaching a small reservoir (~ 1
em} of rubidium to the cell via an UHV valve. The trap is loaded by gentle heating of the
reservoir whilst the valve is open. resulting in flow of rubidium atoms into the cell where
they immediately condensc onto the ultra-clean surfaces inside the cell. As the vacuum cell
must be continuously pumped, the background alkali metal atoms are also continuously
pumped away. In theory. a steady state background pressure may be obtained by judicious
balancing of the input rate from the reservoir against the pump extraction rate, achievable by
adjusting the reservoir or 'cold finger' temperature. In practice, we initially load the cell with
enough rubidium to enable resonance fluorescence to be observed and then shut off the

reservoir, The rubidium partial pressure in the cell then gradually falls as the atoms are
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pumped away: this happens sufficienty slowly for the pressure to be regarded as steady
state for most experimental purposes.
Optical access to a vacuum cell

Another design requirement is that there should be good optical access to the cell interior
for the trapping beams, usually in an orthogonal arrangement, but possibly also for beams in
a tetrahedral arrangement[205]. Access is also required for probe beams at various angles
and other diagnostic instruments, for instance 4 CCD camera to view the cloud. The cell
windows must be strong enough to withstand the pressure of the atmosphere across their
surface and must have good transmission properties at all wavelengths of interest. Also,
depending on the experiment, the cell windows may be required to be optically flat, anti-
reflection coated or made of special material ete. For normal MOT trapping, optical flatness
is not important[29]. However, the optical flatness of windows is important in any studies
of locahisation of atoms in optical potential wells, because distortion of the laser beam
wavetronts changes the rclative optical phases of the beams and may distort the structure of
the 3-D interference pattern which gives rise to the atomic lattice. Such distortions may be
caused by either small scale pits and scratches. or by large scale deviations from a perfectly
flat surface. For such experiments. the acceptable degree of distortion may be calcufated for
pits and scratches by diffraction considerations and for large scale irregularities by
calculating the wavefroni deviations produced by the lensing effect of non-planar window
surfaces. | carried out such calculations with the following conclusions. For distortions due
to scratches and digs. ['used the criterion that no more than 1% of the incident beam energy
may be subject to diffraction by smalif scale surfuce imperfections. The result of my
calculation was that spot sizes up to (1.3 mm are then acceptable, so long as they are rare.
This corresponds to a standard Melles-Griot scrateh/dig specification[268] of "50/30". For
distortion due to farge scale deviations from tlatness, I used the criterion that across a 5 mm
cross-section of the laser: chosen to correspond to the size of a typical molasses cloud,
wavefront distortion should be less than A/E0. Thus to satisty the criterion, a typical window

of clear diameter 25 mum must be {lat to better than A/2 across its surface.

Vacuum cell design and anti-Helmholtz magnetic field coils

There must be space for the anti-Helmholtz coils either inside or outside the vacuum system.
The shape and size of the vacuum cell are constrained if the coils are to be kept both small
and on the outside of the vacuum cell. On the other hand, the positioning of the coils inside
the cell necessitates the use of specialised UHV compatible materials. In either case, all the
materials near the trapping region should be non-magnetic, so as to avoid remanent fields
induced by the coil fields when the coils are switched off.

Combining all the considerations described in the previous subsection (6.3.1) into a

practical vacuum cell design presents a tricky problem and inevitably involves some

150



compromise. We have three vacuum cells, representing different solutions to the design

problem; they are now described below.

6.3.2 The preliminary vacuum cell

Figure 6-16 Photograph of the preliniinary vacuum cell

Our first vacuum cell, in which we obtained our first MOT. was a small and simple cell
consisting ol a three-way cross of ghiss wbing (tigure 6-16) with optical windows on cach
tube end. This cross was attached permanently and without valves to a rubidium cold finger
and a 2 1s7! dlitres per second) ion pump. Anti-Helmholtz coils were attached on the outside
of the glass cross. The glass-blowing was carried out by Mr S. Giles of the Clarendon
laboratory, Oxlord. The rubidiuim background vapour pressure was controlled by immersing
the cold finger in either a waler—ice mixture (0°C). or a methanol—dry ice mixture (-72°C).
The preliminary cell fulfiiled its purpose, which was simply to allow magneto-optical
trapping to be observed as a confirmation that all the laser controls and optics were operating
according to their design. This was achieved twenty-two months after the inception of the
project. This cell was not ideal for quantitative measurements for two reasons. Firstly,
undistorted optical access was limited to zones of 15 mm diameter at the centres of the
windows. and this space was used by the trapping beams. Pictures of the cloud had to be
obtained through the curved contours of the tubes and were badly distorted. Secondly, after
two months usage, the ion pump current gauge began to give erratic readings, causing us to
doubt its pumping ctficacy. As this was a sealed system, the only remedy would have been

to start again with a new ion pump. However, we were meanwhile designing two new
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vacuum cells with specific experiments in mind. These two designs, referred to as the

‘glass’ cell and the 'metal’ cell, are now described.

6.3.3 The glass vacuum cell

The "glass’ vacuum cell, which we have been using for magneto-optical trapping in the
laboratory since September 1994, consists mainly of a custom-made piece of 'Duran’
glassware, in which two of the windows are mounted on the ends of glass tubes which
intrude into central volume of the cell (figures 6-17, 6-18). The design has one large pair of
windows to provide good optical access, whilst the small intruding windows allow small
radius anti-Helmholtz coils to be fitted close to the trapping region, but outside the vacuum
system. The third pair of windows are on the ends of two extruding glass tubes. The large
windows facilitate viewing and probing of the trapped atom cloud over a wide range of
angles (from 0" 1o 457 relative to the trapping beams) and also allow probe beams and
detectors for time of tlight measurcments fo be directed into the region directly below the
trap.
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Figure 6-17 The shape of the glass cell
I tested the flatness of the windows of the glass cell after cell construction, using a
luboratory-built Mach-Zender interferometer. The peripheral regions of the windows were
strongly distorted owing 1o the glass-blowing process when they were sealed onto their
tubes. | found that the central regions of all the windows were flat to better than 2A (780 nm)
for a 1 em lateral translation across the window surface. (By central regions I mean within a
diameter of 60 mm for the large windows and 15 mm for the small windows.) As the
windows had been flat to within A/12 per em prior to the glass-blowing, this indicates that

permanent distortions arc produced within glass structures fabricated in this way, despite the



best efforts of the glass-blower. The measured flatness of < 24 per cm does not meet the
criterion defined earlier for optical tattice experiments requiring wavefront preservation
across a S mm molasses cloud. However, the measured flatness is sufficient to preserve a

wavelront to within A/10 over 2 0.5 mm MOT cloud. I also measured the scratches and digs.

and found that the cell fusing process had not changed them from their original

manufacturer’s specification of 40/20.

Figure 6-18 Photograph of the glass cell

Vacuum in the glass cell

The glass cefl and pumping system were carefully designed with the object of attaining a
vacuuim of 10-? torr or better. Though the imernal surface area of the cell 1s large, as it 1s
mainly glass (Duran). the outgassing is low and the helium permeation is negligible. The
pressure is limited by the hydrogen outgassing from the steel in the valves and connecting
pipes. The surtace area of stainless steel was therefore kept o & minimum, although some
steel has to be used. as the necessary UHV valves are only available in this material. The
vacuum system is shown schematically in figure 6-19.

The pumping system for the glass cell consists of a water-cooled Edwards EO2 oil
diffusion pump, with pumping speed 150 1s~L. Tt uses Santovac 5 oil (room temperature
S.V.P.of 5 x 10-10 torr) and a backing pressure of 0.1 torr is provided by an Edwards
rotary pump, model ES50. The critical backing pressure is 0.4 torr. The diffusion pump
incorporates a liquid nitrogen trap, whose use is optional.
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Figure 6-19 The vacuum prmping svstem

The cell 1s connected to the pump via a 63 mm diameter glass tube and bakeable all-metal
UHYV valve, sealed 1o the diffusion pump with a gold wire seal. Other system joints on the
UHYV side of the diffusion pump are of the Conflat variety, sealed with a copper gasket. The
diffusion pump is fixed on the floating optical table via rubber mounts and the connection to
the backing pump is made by a coiled rubber tube in order to minimise the transfer of pump
vibrations (o the faser cavities. Pressure measurements can be made at four points in the
system. Two points on the backing line are monitored with Pirani pressure gauges (range 1
atmospherc - 10-3 torr). These gauges are used in roughing down the system pressure and as
monitors of the health of the vital rotary backing pump. Two ion gauge heads (Edwards
IGS5G plus control unit Edwards [on 7} are connected, one to the diffusion pump head and
the other to the vacuum cell itself. These gauges measure pressure in the range 10-+to 10-10
torr, Both gauges are connected to the system via valves to protect them from exposure to
high (> 100 torr) rubidium pressures. as it was found that such exposure made them highty
unrelinble. However. they could be repaired” after such exposure by thorough baking out.
To prepare the vacuum cell for UHV operation, it was 'baked out' at 200°C for two
wecks. The 'bake out' procedure consists of raising the temperature of the entire cell to
around 200°C whilst pumping continuously with the diffusion pump, so as to remove a
large part of the absorbed hydrogen and hence reduce the subsequent outgassing. An even
temperature was achieved by wrapping the cell with electric heating tapes and insulating the
whole with Jarge glassfibre blankets. After baking out, the background pressure was
measured to be 7 x 10-7 torr without liquid nitrogen and 4 x 10-Y torr when the nitrogen trap
was filled. The pressure continued to drop slowly with subsequent pumping and after a

further threec months was 2 x 1077 torr without liquid nitrogen.



Rubidium is stored in a reservoir attached via a valve to the vacuum cell. It can be
distilled into the cell by opening the valve and heating the rubidium to ~45 C. The cell is
deemed (o be 'charged' with rubidium as soon as the resonance fluorescence of a laser beam
directed through the cell is bright. The reservoir valve 1s then shut and the system pumped
on with the result that the rubidium pressure drops siowly. One such "charge’ of rubidium
atoms allows trapping for about 8 hours before refilling i1s necessary. On the first occasion
that rubidium was loaded into the cell. measurements of the absorption of a resonant lascr
beam in the ccll showed that the number of atoms in the cell had a halt-life of about ten
minutes. However, after several cyeles of charging the cell and pumping away the rubidium.
the half-life settled to a value around seventy-five minutes. I do not know the explanation for
this difference, but suspect that an important factor is whether the rubidium forms a
monolayer with a large surface area or a compact multilayer when it condenses in the cell.
6.3.4 The 'metal’ vacuum cell
A second vacuum cell. the 'metal’ celi has atso been constructed, but as yet has not been
used. The prime considerations leading to this design, shown schematically in figure 6-20.
were to produce a cell which enables: trapping and cooling with both 6-beam orthogonal and
tetrahedral faser beam arrangements, the attachment and removal of very flat windows, a
lurge range of probing angies and the attainment of an ultra-high vacuum. A secondary

consideration was to keep the anti-Helmholtz coils as small as possible.
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Figure 6-20 The shape of the metal cell
The metal cell was machined {rom a single piece of type-304 (non-magneltic) stainless stecl.

It is thercfore compact in order to minimisc the internal surface arca of stainless steel, this



being the main source of outgassing. Outgassing rates for stainless steel depend on its
bakcout condition, and are in the range ~10-8 to ~10-1! torr Is-lem2[265]. The internal steel
surface area. including the short pump connecting tube. is 330 cm2. which gives a total
throughput of 3.3 x 1073 torr I assuming a reasonable outgassing rate of 10-19 torr
Islem 2. A large CF70 port connects the cell to an ion pump (PerkinElmer 20 litre sec-!
model 2032000) via a 15 cm stainless steel tube of diameter 11/5 inches. Dividing the
throughput by the pump speed of 20 Is7! gives an expected final pressure of ~2 x 10-9 (orr,
which is acceptable. As this estimate 1s based on a low outgassing rate, the cell will need to
be thoroughly baked out. Two other ports allow connections to a vacuum roughing line and
to a rubidium reservoir, both via bakeable all-metal UHV valves.

The cell windows are removeable, hence they can be matched to current experimental
requirements, for instance anti-reflection coated for a specific wavelength, or polished to a
high degree of flatness. Currently we have a set made of uncoated Spectrosil B, flat to A/5
and scratch/dig 40/20, which mecet my earlier criterion for low wavefront distortion and are
thus surtable for experimental studies of large scale optical lattices (c.g.molasses clouds of 5
mim diameter). We also have one circular window made of sapphire. which is intended for
studies on the 6P3;> — 65> Rb transition at a wavelength of 2.7 um, for which sapphire
has a good transmission of 82% . Sapphire also has good transmission properties throughout
the visible and near infra-red spectrum. The windows are scaled to the polished (0.5 pm
fintsh) stainless steel by a ring of indium wire, though nickel wire will be used whilst baking
out the cell. as it has a higher melting point. My proposed procedure involves a swift
changeover to indium wire after the bakeout, thus temporarily exposing the inside of the cell
to the atmosphere. folowed by rapid pumping down again. Provided this is done quickly,
the outgassed material should not have time to rediffuse into the metal. The windows are
shaped and positioned so as to allow the use of either six orthogonal or four tetrahedral
cooling beams. They are also positioned so that the beams exit as well as enter through
windows after passing through the trap. thus avoiding large amounts of unwanted stray light
which would otherwise be reflected trom the inner cell walls. Probing angles of up to 49°
relative to the trapping beams arc possible.

The anti-Helmhboltz coils are positioned inside the vacuum chamber. They are wound
with oxygen-free copper wire insulated by a Kapton (polyimide) coating and connected via
bervllium/copper connectors to a UHV feedthrough in the vacuum cell wall. The proposed
ion pump produces a very high local magnetic field of 600 Gauss at a distancc of 1 cm,
which falls off rapidly to a value less than that of the Earth (0.4 G) at a distance of 25 cm. It
is desirable to position the pump close (~15 e¢m) to the cell in order to maximise the available

pumping speed. hence it will be necessary to enclose the pump within a mu-metal cylinder.



This will shield the MOT zone from both the magnetic field and field gradient produced by

the ion pump.

6.4 Diagnostic instruments

This short section describes the more important of the laboratory instruments used in our
experimental work.

6.4.1 The CCD camera (charge-coupled device camera)

The cloud of trapped atoms may be viewed on a monochrome television monitor via an
infra-red sensitive CCD camera (Cohu 4710), which has a peak sensitivity at 900 nm. The
sensitive area is a rectangle 6.4 x 4.8 mm with 699 x 576 pixels. The fluorescence from the
cloud is collected via a system of mirrors and a lens of numerical aperture 0.27 and focal
length 145 mm (see figure 6-21). The system magntfication is variable between x 0.5 and x
4. The solid angle of light collected varies with the magnification but is typically only /1000
of the total fluorcscence emitted by the cloud. By imaging sharply defined test objects, 1
measured the depth of field of the imaging system to be better than £ 1 mm and the lateral
resolution in the focal plane to be better than 50 um at x1 magnification. These system
details were measured by imaging test objects. A variable neutral density filter is included in

the beam path, in order to avoid saturating the CCD chip when recording images.
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Figure 6-21 The trap imaging system

The video output {rom the CCD cumera is also sent to a Macintosh LC computer where a
frame-grabber software package called 'Mr Shot' from manufacturer 'Display Research
Laboratories’ allows the image to be digitised in a standard format (TIFF) und displayed on
the computer screen. We also load the digitised pictures into another software (freeware)
package 'NIH Image 1.49". which allows relative intensities at different points of the image
to be determined. The CCD camera electronics are configured so as to give a digital output
which s directly proportional to the input light intensity.

6.4.2 Light intensity measurement

Lascr beam intensities are measured with a variety of silicon photodiodes. Thorlabs model
FDS 010 and RS model BPX65 both have fast rise times of 0.9 ns and 3 ns respectively,
and are suitable for examining the pulse shape of the N laser used in this work(chapter 7).
Thorlabs model FDS 100 is a general purpose high sensitivity, low-noise photodiode and is
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used m the saturated absorption locking system. RS model 308-067 is also a useful general
purpose photodiode as it contains an integral amplifier which results in a sensitivity of 4.5V
HW-IU A fraction of the fluorescence directed into the CCD is split off and an image of the
cloud is focused on the active surface arca of a photodiode (see figure 6-21). The photodiode
signal can be used to calculate the total number of atoms in the cloud. Initially we used RS
photodiode type RS308-067 for this purpose, however its active surface area is small (2.2 x
2.2 mm), and good alignment of the optics was critical. With a larger photediode, RS 846-
806, with arca 6 x 6 mm, alignment is Jess critical and there is no danger that small
movements in the position of the atom cloud will shift the cloud image too near the edge of
the active area.

The absolute power of various laser beams is measured with a photodiode in a spherical
integrator (Graseby model 2575) with a measurement range of 10-12 to 103 Watts and a
sensitivity of 0.84VmW-1 ut 780 nm.

6.4.3 Miscellaneous diagnostic tools

The Burleigh WA-2000S wavemeter is a particularly useful instrument. giving quick
readouts of the wavelength of sufficiently powerful laser beam (> ~0.1 mW) to within
+0.2A. It can be used 1o monitor cither the feedback conditions in the external cavity laser or
the injection-locking conditions in the injected lascr via a diagnostic output, which appears as
a trace on an oscilloscope. This trace has a clear symmetry for a laser beam in a stable,
narrow linewidth, monochromatic condition, but becomes disordered for other conditions,
e.o.when sidebands are present, or mode-hopping is occurring. Occasional use is made of a
Burlcigh RC-46 spectrum analyser, with free spectral range 2 GHz and finesse 200, to
determine laser hnewidths, @iving a resolution of [0 MHz. A handheld. battery-operated
infra-red viewer (Electrophysics Electroviewer 7215) is a vitally useful tool in laser
alignment procedures,

6.4.4 Computer control and data acquisition

We are able to control aspects of the experiment and acquire data with software (National
Instruments 'NEDAQ' version 4.6) run on two Macintosh LCII computers in the laboratory.
The computers are fitted with digital to analogue circuit boards {National Instruments Lab-
LO). A total of 16 analogue inputs and 4 outputs (=5 (o +10V) are available. 24 lines of
digital input/output and 6 counter/iimer channels are also available. Possible functions
include TTL switching, wavetorm and trigger generation, and data acquisition at rates up o
62.500 samples per second. At present we use the computer to switch the anti-Helmholtz
coils and the acousto-optic modulator which controls the trapping frequency. and to record

voltage data from any photodiode in our set-up.
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6.5 Preliminary experiments

After a thorough bake-out, the glass cell was first used for magneto-optical trapping in
August 1994, Since then various preliminary experiments have been performed as part of the
process of testing and becoming familiar with the newly constructed system. These include
experiments on the distribution of the atoms in the trap, and experiments aumed at
maximising the number of trapped atoms. These experiments do not break any new ground,
but thev do constitute a prudent initial series of tests of our MOT apparatus, as our results
may be compared with both theory and with the published results of other laser cooling
groups.

6.5.1 Experiments on the distribution of trapped atoms

Studies of the distribution of atoms which we have made include the duplication of the
collective effects reported i [175]. Figure 6-22 includes CCD images of our MOT with
atoms in a gaussian '1deal gas’ mode (6-22a), in an ‘orbital’ mode (6-22b) and in an
interesting 'helical’ mode (6-22¢), which, as far as I know. has not been previously
reported. The final image (6-22d) shows evidence of large scale channeling of atoms[179] in
a transient molasses obtaned immediately after switching off the quadrupole magnetic tield.
The orbital mode picture was obtained by introducing large misalignments of ~20 mrad into
twa pairs of counterpropagating beams. The helical mode picture was produced by inserting
a beamsplitter into the path of the trapping laser before it had been divided into three, and
then adjusting its orientation until the helix was obtained. Presumably, the helix is cansed by
a combination of an orbital motion with a pushing force in the third dimension. The ideal gas
mode picture was obtained by reducing the number of atoms in the trap. This can be done
either by increasing the detuning or by decreasing the diameter of the trapping beams.

The spatial distribution of atoms in the cloud may be studied using the digitised CCD
camera images. after loading them into the image analysis program 'NTH Image'. For the
ideal gay mode. this enables measurement of the r.n.s radii of the cloud and confirmation of
the expected gaussian distribution, as the intensity of the image is proportional to the
(marginal) number density. As an example, I include results obtained for the ideal gas cloud
imaged in higure 6-22a. The CCD camera views the cloud along a line perpendicular to the
central axis through the two anu-Helmholtz coils (z axis) and figure 6-22a shows the
expected ellipsoidal shape owing to the larger spring constant in the z direction. Figure 6-23
shows the fluorescence intensity profile plotted along a line passing through the cloud centre
and parallel to the long axis. The intensity profile is well-matched by a gaussian curve,
drawn by a computer curve-fitiing program. After taking into account the CCD imaging
system magnification of x1.5 to obtain the absolute horizontal scale, the r.m.s radii of the

long and short ¢cloud profiles were found to be .26 and 0.13 mm (£10%). The ratio of 2 to
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I is in accordance with MOT theory. whereby the spring constant along the x and v axes is

half that along the 7 axis, i.c. proportional to the corresponding magnetic field gradients.

T

orientation of
anti-Helmholtz coil
axis w.r.t this image:

Figure 6-22a CCD camera image of the trapped cloud in the ideal gas mode with (inset) the

(inverted) intensity profile averaged along the shaded bar.

Figure 6-22b CCD camera image of the trapped cloud in the orbital mode
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Figure 6-22¢ CCD camera image of the trapped cloud in the ‘helical” mode

Figure 6-22d CCD camera image of transient molasses , showing large scale channelling of

altoms
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Figure 6-23 The intensity profite of MOT cloud fluorescence in the ideal gas mode
(measured over the x-axis (long axis) of the cloud shown in figure 6-22a ). The crosses are

the measured data, the solid line is a fitted gaussian curme

6.5.2 Experiments on the number of atoms in the MOT

We have been particularly interested in the total number of atoms tn our MOT. because
preliminary calculations suggest that our proposed coherent transient experiments (chapter 7)
will require 2 107 trapped atoms. We determine the number of atoms in the MOT from a
measurement of the intensity of the cloud fluorescence. The method is as follows. A
bheamsplitter in the imaging optics line diverts a part of the cloud fluorescence into a
calibrated photodiode tsee figure 6-21). The transmission factor for 780 nm light from the
trap region through the various optics to the photodiode was measured to be (.38 £ 5%, the
remainder being diverted to the CCD camera or lost in retlections. The solid angle of
fluorescence colblected. which is determined by the distance ot the vartable aperture (figuge 6-
21) trom the trap, 15 6.77 10-3 4+ 5 % teradians. Thus the total cloud fluorescence may be
calculated. (It is equal to 4880 times the power detected by the photodiode), Note that for
cach reading. it is necessary to subtract the small background fluorescence signal (~10%)
due to the trapping beams alone, which is measured by turning off the magnetic field and
thus losing the trapped atoms. In the final step, the number of trapped atoms is equal to the
total fluorescence divided by the power scattered by one atom. The average power scattered
by just one atom is calculated {rom the measured detuning and intensity of the trapping
beams. as follows.

The {luorescence signal from the trupped atoms is almost entirely due to the 58 2(F =

3) to SPay(F = 4) hypertinc component of the Rb D, line. This is because the laser



linewidth is less than the natural linewidth I"of the transition, and any line-broadening (c.g.
Zeeman or power broadening) present in the trap is of order 1. Hence laser excitation of the
nearby hyperfine transitions is negligibly small. The line strength of the 58,7 to SP3y» fine
structure transition 1s obtained from tabulated results[269] and the electric dipole matrix
element of the F = 3 1o F = 4 hyperfine component? is then obtained via standard
spectroscopic formulaef206.284). The F = 3 to F = 4 hyperfine transition is a manifold of
Zeeman transitions whose relative contributions to the fluorescence signal depend on the
relative populations of the Zeeman sublevels and the local light field polarisation (via the
Clebsch-Gordan coefficients). Although our MOT has uncontrolled time phases, the
consequent fluctuations in the polarisation gradients are stow on the timescale for optical
pumping. and so the average trapped atom is likely to be to some extent optically pumped.
This matter has been studied in detail by Townsend et al[ 198}, who point out that the
etfective (average) Clehsch-Gordan coefficient for the trap can lie between the limits of ~
0.4. for a trap full of unpolarised atoms. to | for a trap full of polarised atoms cycling on the
most stretched Zeeman transition. They measured the average Clebsch-Gordan coefficient
for several cacsium traps and found it to be 0.7 £ 0.2, i.e. that the average atom 18 partially
polarised. 1 have assumed that the same value of 0.7 (and error of £309%) applies to our
rubidium trap when calculating the average power radiated by one atom.

This above method of determining the number of atoms is subject to several sources of
Crror.
i} The photodiode is calibrated to £ 3%, and with the two 3% errors given for the optics
transmission and solid angle above, this yields a combined error 1n the measurement of the
total cloud fluorescence of & 89,
ii) The measured intensity of cach trapping beam is subject to an error of * 3%, primarily
due to errors in measuring the beam waist. The absolute calibration of the detuning is subject
to a large systematic error of 174, ..~ 0% to 20%, but rclative measurements of detuning
are precise 1o < 1%, Fortunately. the effect of the Jatter large systematic error on the
calculation of the average scattering rate Is small owing to the way the detuning appears in
the calculation, and total errors in the average scattering rate arc + 3%.
1i1) A third source of error is due to assumptions made in calculating the average scattering
ratc of one atom. The assumption that the trapped atoms scatter photons at an average rate
given by 6 times the scattering rate of a single trapping beam will not be exactly correct, as it
neglects the spatial variation of power-broadening due to gaussian beam profiles and to

wavelength scale variations. The assumption that the atoms are partially polarised with an

X The eleciric dipole mairix elenent is the same for each hyperfine transition, as opposed to the differing
Ivperfine line strengths given in appendix 8,
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average Clebsch-Gordan coefficient of 0.7 has its own error of £30%, but this is diminished
10 <10% by the calculation when the atoms are strongly saturated, as in our case. After a
carctul analysis of these possible errors, I arrive at a conservative estimate of £20%.
Combining the various errors listed above yields a total error of £ 25%.

With the optical arrangement used when we first began trapping in the glass cell, we
measured ~35 x 106 (+25%) rapped atoms for a detuning of ~ ~1.51, a power in each beam
of 0.96 mW and a beam 1/c= diameter of 5.5 mm. As one of our objectives was to trap more
than 107 atoms, we decided to increase the diameter of the trapping beams which
necessitated an increase in total trapping laser power in order to maintain the beam intensity.
The necessary power was found by experimenting with different arrangements for the
optical elements. particularly the AOM's, so as to minimise losses, and by increasing the
injected laser drive current, The final arrangement is shown schematically in figure 6-1. We
then expanded the 1/e2 beam diameter in stages from 5.5 mm 10 9.2 mm and observed an
increase in the maximum number of trapped atoms at each stage. We stopped at a diameter of
9.2 mun because this is the largest beam transmissible by our beamsplitters, waveplates and
windows and also because it gives us a profile-averaged intensity slightly greater than the
saturation intensity. The 1/¢- beam diameter is mecasured by scanning a 0.2 mm pinhole
across the beam profile and recording the transmission as a function of the pinhole position.

Currently we have 10.6 mW available for trapping. to be divided between the three 1-D
standing waves. Using the large diameter trapping beams, we have been able to trap as many
as 5 x 107 atoms. The shape of the MOT cloud tends to be unstable for this number of
atoms: it hecomes very sensitive to laser frequency jitter. probably because of the intensity
imbalance between counter-propagating beams. The number of atoms 1n the trap is also
strongly dependent on the frequency of the repumping laser and the alignment of all the
beams. All the measurements presented here were taken with the repumping laser tuned so
as 1o give the maximum number of trapped atoms. but the alighment was not optintised (o
give a maximum number.

We have measurcd the variation of the number of trapped atoms with detuning and
magnetic field gradient: the results are shown in figurcs 6-24a and 6-24b. Figure 6-244
shows that, with an intensity in each trapping beam close to the saturation intensity and for a
fixed magnetic ficld gradient. magneto-optical trapping is possible for a range of detunings
of width ~ 1.5T. The detuning which gives the maximum number of trapped atoms increases
with the magnetic ficld gradient. Figure 6-24b shows that. for a fixed detuning and intensity,
there is a value of the magnetic field gradient which maximises the number of atoms, and

that Jarger gradients than this actually diminish the number of trapped atoms.
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The results plotted in figures 6-24a and 6-24b are consistent with the theory of the MOT
capture velocity described in sections 3.2 and 3.3.2, and in good agreement with results
published in {57}, which is a theoretical and experimental study of factors influencing the

number of trapped atoms in an MOT. Increasing the detuning initially has the effect of



increasing the effective capture velocity and hence the number of atoms trapped {eqguation 3-
12). However, as the detuning increases beyond the value corresponding to the maximum
possible capture velocity (determined by the diameter of the cooling beams and the optimal
deceleration) the number of trapped atoms diminishes. This behaviour is seen in figure 6-
24a. Higher magnetic ficld gradients lead to a greater Zeeman shift for atoms in the outer
capturc regions of the trap. This can lead to a greater capture velocity, and hence to a greater
number of trapped atoms, as discussed for a [-I model of the trap in section 3.3.2. A 3-D
analysis[57] of the MOT capture process with multitevel atoms is more complex, but can
accurately predict the number of trapped atoms for all conditions. The results shown in
figure 6-24b are in good agreement with those obtained in [57].

6.5.3 Conclusion of chapter 6

We have obtained results similar to those alrcady observed by other groups, as a way of
testing the design and construction of our upparatus and characterising our trap. In the light
of the experience gained. possible improvements to our magneto-optical trap include the
tollowing:

Adaptation of the servo-lock electronics to include a small AC dither on the external
cavity laser drive current. This should allow more precise location of the atomic resonance
which 1s important, as detunings are measured relative to this reference. At present. our
detuning measurements are only absolutely accurate to £174 ~ 1.4 MHz. though our relative
detunings are known very precisely (< 10 kHz) as they are generated by an AOM.

Adaptation of the beam-routing so as to have six beams of equal intensity directed into
the trap rather than three with subsequent retroreflection. This s because there 1s presently a
large intensity imbalance of 78% hetween counterpropagating heams owing to retlective
losses at our uncoated cell windows, which may be reducing the number of trapped atoms.

Normalisation of the saturated absorption signal used to lock the external cavity faser by
referring it to the mstantaneous itensity of the laser, This should eliminate the residual drift
in the frequency of the laser, which is due to small fluctuations in the laser intensity affecting
the frequency servolock stability. It may also be beneficial to stabilise the temperature of the
saturated absorption cells against room temperature drifts,

Al present, we are constructing and testing apparatus to make time-of flight temperature
measurements. and expect? to have our first temperature measurements within weeks. As
part of a programme to completely characterise our trap, other preliminary experiments
currently in progress include a study of trap loading rates versus background pressure and a
study of the number density of trapped atoms with intensity, detuning and magnetic field

gradient.

 The main defay is in fuct due o waiting for parts to areive!
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Chapter 7 Coherent optical transients and cold
atoms

-

This chapter discusses the current and future work programme of our research group. Much
of what is known about cold samples has come from experiments in which the sample is
probed by continuous wave laser beams tuned around the cooling transition frequency. We
intend to probe cold samples using pulsed laser beams tuned to resonance with transitions
accessible from etther the ground state or the excited state of the cooling transition {figure 7-
1). The transient response of the system is expected to yield information on localisation,

Jong-range order. light shifts and spectroscopic structure.

6P,

pulsed probe
@ 42 nm

/Ming or L@ 780
a
pulsed probe nm

Figure 7-1 Rubidium pulsed probe transition

=RTA

The use of resonant pulse sequences to probe spectroscopic samples has a long history.
Various coherent optical transicnts have been used in Doppler-free studies of hot (room
temperature) vapours 1o give information on level structures and collision processes. Some
of these transient phenomena are discussed briefly in section 7.1. This is followed in section
7.2 by a description of a nitrogen-pumped dye laser that we have built to provide pulse
sequences to probe laser-cooled rubidium. A proposal for a particular transient experiment
for measuring velocity distribution (temperature measurements) in cold samples is described
in section 7.3. Finally. in section 7.4, [ discuss some of the factors that are likely to

influence the time spectrum ( pulse shape) of optical transients in cold samples.
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7.1 Coherent optical transients and time domain spectroscopy
Time domain spectroscopy is a method of studying the interaction of light and matter using
short laser pulses and is complementary to frequency domain, or continuous wave
spectroscopy. Reviews are given by Berman et al[270]. Shoemaker|7271]. Mossberg et
al[272] and Allen and Eberly[135}. The term ‘coherent optical transicnt’ refers to the
coherent forward-scattered response of the probed sample to the pulse. In the domain of
frequency spectroscopy. interest is often focused on the broadening of transition lines due to
effects such as the natural lifetime, thermal motion or interatomic collisions. In time domain
spectroscopy these effects result in different decay rates of optical transients following
pulsed excitation. Coherent transients have been particularly useful as Doppler-free
techniques for studying collisional decay processes in Doppler-broadened gases. There are
the three main coherent optical transient effects, which are optical analogues of transient
phenomena secn in pulsed nuclear magnetic resonance experiments on spin systems: ‘optical
nutation’. "free induction decay’ and the ‘photon echo'.

Optical nutation This is an alternating absorption and stimulated emission of
radiation due to the Rabi oscillations which occurs transiently when an atom s first irradiated
by continuous wave resonant light. For an isolated single atom, the oscillations are damped
on a timescale of T, the natural lifetime of the transition. Nutation may be observed in an
atomic sumple at the beginning of trradiation and before the steady state population inversion
is achieved, but the nutation damping rate is then also dependent on all the homogencous line
broadening mechanisms[271].

Free induction decay This is the rapid decay of the intensity of light emitted by a gas
ol atoms tollowing pulsed excitation and is due to inhomogeneous broadening of the atomic
rransition, For instance immediately alter the pulsed excitation of a room temperature gas,
the radiation emitted in the forward direction by all the atoms is coherent and therefore has an
intensity proportional 1o 27, where 1 is the number density of the atoms. However the
thermal motion of the atoms gives rise to Doppler shifts. and the spread of radiated
frequencies causes a rapid dephasing of the radiation, which destroys the initial pulse-
induced coherence. The time scale for free induction decay is approximately Ay~! where 4
is the frequency range cxcited by the laser pulse. If the whole Doppler profile of a room
temperature gas is excited, the free induction decay ume constant 1s of order | ns.

The photon (or optical) echo A photon echo is a delayed coherent emission of
light from an inhomogeneousty-broadened ensemble of atoms following a scquence of
excitation pulses. due to a rephasing of the individual atomic dipoles. Photon cchoes were
first observed in solids (ruby) in 1964§274] and in gases in 1968[275]. The photon echo is
the optical equivalent of the magnetic spin echo encountered in nuclear magnetic resonance

experiments[276]. The simplest example is that of a two-pulse photon echo, which is

168



produced in an inhomogeneously-broadened sample of two-level atoms as follows. An
atomic ensemble, initially in the ground state, is subjected to a short pulse of resonant light
with pulse arca! 7/2, which puts all the atoms into a 50/50 superposition of the ground and
excited states. This is depicted using Bloch vector diagrams in figures 7-2a and 7-2b. The
Bloch vectors of the individual atoms then precess (in the rotating frame) at different rates
owing to their different detunings. leading to a rapid dephasing of the macroscopic electric
dipole moment (figure 7-2c). This is observed as a free induction decay. After a time 7, a
second pulse with pulse area 1 is applied, which results in a 180 rotation of the Bloch
vectors about the Taxis (figure 7-2d). The individual Bloch vectors continue to precess, but
now the dephasing process has been reversed, so that after a further time 7the Bloch vectors
of all the atoms are 'rephased’ on the H axis (figure 7-2¢). At this point there is a
macroscopic electric dipole moment. giving rise to coherent emission in the forward
direction which is observed as a 'photon echo'. provided that 27< 1/T, i.¢c. the atoms have
not had time to decay spontaneously. However, the individual dipole moments continue to
precess, 50 the echo is only a transient effect. Other diagrammatic treatments of photon
cchoes (in addition to the above Bloch vector picture) may be found in [272,277.278].
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Figure 7-2 The formation of a tyo-pulse photon echo

7.2 A nitrogen-pumped dye laser for coherent transient studies
of cold rubidium

The studies of coherent transients in cold rubidium atoms will be carried out using pulses
from dye lasers on either the 55 to 6P lines at 420.2 and 421.5 nm or on the 58S to 5P lincs

at 780.0 and 794.8 nm. and this section describes some preliminary work involving the

I .
" Pulse area is defined by J-() !2(](1)81*. where ty is the durarion of a pulse which starts at 1 = 0 and (1) is

the Rabi frequency which varies in time as the electric field amplitude in the pulse varies.
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production and testing of a dve [aser operating at 420 nm. We were able to adapt a dye laser

originally constructed to study the caesium line{279] at 457 nm.
7.4.1 The dye laser

The dye laser 1s pumped by a nitrogen laser (model LN 300 from Edinburgh Instruments)
which produces pulses of duration 5 ns at 337 nm with a maximum repetition rate of 40 Hz.
The bandwidth 15 about 150 GHz and the energy per pulse around 250 nJ, which 1s
sufficient, when focused, to provide the high intensity (>104 W cm™2) needed to pump a
dye laser[280]. To operate the dye laser at 420 nm we use the dye 'Stillbene 420" from
Exciton Ltd, which can lase in the range 400 to 450 nm. It ts dissolved in methanol at a
concentration of 2.0 x 10-3 molar (1.1 gm per litre) and contained in a cuvette with a
magnetic stirrer. In order to obtain sufficient tuning precision and a sufficiently narrow
linewidth, a 'grazing-incidence grating’ arrangement[281,282] is employed, as shown in
figure 7-3. The laser cavity is formed between two mirrors, of which one has a high
reflectivity (999 ) and acts as a tuning mirror. whilst the other has a partial reflectivity
around 859 and acts as the output mirror. The pump laser output 1s focused at a region just
inside the dye cuvette by an elliptical lens which produces a cylindrical shaped region of high
intensity pump light. Light in one or several of the dye laser cavity modes is amplified in the
pumped dye region, and gains of up to 150 dB are possible after several passes[283]. The
amplified light is incident at a large angle (88" to 907) upon the diffraction grating and the
first order of diffracted light is retro-reflected at the tuning mirror. The output wavelength of
the dye laser is controlled by varying the angle of the tuning mirror relative to the blazed
diffraction grating with 1200 lines mm, thus retro-reflecting only a narrow band of
wavelengths cenued on the desired wavelength. The tuning mirror 1s a high quality etalon
plate. tlat to better than A/30. The high angle of incidence results in a high intra-cavity
dispersion. d8/dA =< l/cos 8, where 8 1s the angle of incidence[280].

An additional laser amplification arrangement is available as shown, but preliminary

measurements of power output suggest that it will not be required for our first experiments.
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Figure 7-3 The dve laser and amplifier

Dye laser tuning

Coarse tuning of the dye laser is obtained by means of a fine-pitched screw (80 turns per
inch) on the edge of the mirror mount and tunes at a rate 8.9 GHz per 1° of screw rotation.
Fine tuning is obtained by a piezo-electric translator which pushes the edge of the mirror
against the resistance of a flexed sheet of metal incorporated in the mirror mount. This
allows tuning and scanning with a rate of 0.5 GHz per Volt over a 30 V range. Tuning is
monitored in the first place by a monochromator which I calibrated using a rubidium spectral
line lamp. The resolution of the monochromator is £ 0.1 nm, or = 170 GHz. Tuning to
within the rubidium transition is done by looking for fluorescence as the pulses pass through
a rubidium vapour cell. To achieve this, 1t was necessary to heat the cell to > 200°C, whilst
working in a completely dark laboratory. The acuity of the eye is considerably reduced at
420 nm. as it 1s close 1o the edge of the visible spectrum. Using a rubidium cell mounted so
it may be heated with a hot-air gun and observed with a minimum of scattered light, tuning
the laser close to the resonance 1s now relatively straightforward. The dye laser is first tuned
close o the transttton with the fine-pitched screw and may then be scanned by the piezo-
clectric control through the Doppler-broadened group of hyperfine lines which comprise the
35S to 6P transition. The Doppler width of each hyperfine component is 1.4 GHz FWHM at
this temperature, and the total width of the group of lines about 4 GHz.

Dye laser mode structure and linewidth

The mode structure of the dye laser is monitored using a Fabry-Perot etalon with a free
spectral range of 5 GHz. which produces a pattern of interference rings which are imaged by
a Panasonic video camera. The etalon allows the output linewidth to be measured (as a
fraction of the free spectral range) and adjusted by varying the angle of incidence of intra-
cavity light at the diffracuon grating. The high intra-cavity dispersion of the grazing-
incidence design allows narrow output linewidths 1o be obtained, and I have measured

linewidths in the range from a few GHz down to 250 MHz. When operating with lower
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angles of incidence, i.e. with broader linewidths. several longitudinal modes of the luser
cavity {mode spacing ~1.2 GHz) may be simultaneously active. With higher angles of
incidence {(narrower linewidths) we can achieve stable lasing where most of the output
energy is in one cavity mode for > 80% of the pulse shots. When the angle of incidence is ~
90" and intra-cavity dispersion at its highest, [ found that the laser intensity fluctuates
dramatically when the tuning is scanned. There are several possible explanations. one is that
the narrow bund of output wavelengths sclected by the grating can fall between the mirror
cavity modes, resulting in poor lasing action. Alternatively, at such a high angle of
incidence. the effective reflectivity of the grating may be highly sensitive to small
adjustments of the tuning angle: the blaze angle and the small area of grating which is normal
to the beam may be relevant factors.

Our first proposed experiments (see section 7.3) require: the ability to tune the dye laser
with an absolute resolution of ~200 MHz. a linewidth of £ 500 MHz and a frequency drift of
< 200 MHz for periods of several minutes. Tests conducted by observing how long the
tfrequency remains within the 4 GHz Doppler width of the 420 nm transition show that the
drift 1s fess than 200 MHz per minute. Thus the {requency stability and linewidth are easily
obtained with the current arrangement, however the absolute reselution, i.e. relative to the
atomic transition. presents the following (temporary) difficulty.

The absolute calibration of the frequency relies at present on the identification of two
distinct Doppler broadened peaks in the absorption profile, due to excitation of #Rb from
the F =2 and F = 3 hyperfine ground states respectively, separated by 3.04 GHz. Although
we observe these peuks as the dve laser tuning mirror is scanned. to use them as a frequency
reference. we must be sure that the scanning is continuous., 1.2. that the laser docs not mode-
hop during the scanning process. From observations of the changes in the Fabry-Perot ring
pattern when scanning. I estimate the winng range achievable without cavity mode-hopping
to be ~ !GHz for high intra-cavity dispersion. With lower dispersion, a group of several
adjacent modes are simultancously active in different proportions from shot to shot. The
trequencics of the laser modes are determined by the cavity length and the dominant mode(s)
by the tuning mirror angle. At present the cavity length and tuning angle are coupled, as the
pivoting action of the mirror affects the cavity length. This complicates systematic study of
the scanning and mode-hopping. Several solutions are possible. Firstly, a sccond piezo may
be added to the tuning mirror so that it pivots about its centre, i.e. with a piezo at each edge.
Laser tuning may then be made cither by rotating the tuning mirror with equal and opposite
piezo movements or by altering the cavity length with equal and parallel piezo movements. A
second solution is to rebuild the grating and mirror mounts with a gcometry which results in
the peak gain frequency of the grating scanning at the same rate as the frequency of the

sclected cavity mode. A third solution is to enclose the laser cavity in a pressure-controlled
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box. in order to control the effective cavity length via the refractive index of the air. A fourth
solution 1s to introduce a flat glass plate into the cavity, such that its rotation may produce
small changes in the ctfective cavity length. Whichever solution is eventually adopted, the
ensuing independent control of the two tuning factors should facilitate tuning of the laser to
an absolute standard. This work will begin after submission of this thesis.

The output of the dye laser bas been monitored with a fast rise-time photodiode (1 ns)
fed into an oscilloscope and is seen to be roughly triangular shaped (rounded top!) with a
FWHM of 5 ns.
Dye laser pulse energy

The output of our dye laser, when tuned to 420.2 nm, is measured with a silicon based
pulse energy meter (Laser Precision model RJP 765) to be between 200 and 500 nJ per
pulse depending on the linewidth in use. Narrower linewidths correspond to the lower pulse
cnergies. The shot to shot pulse energies have a standard deviatton of 7% when measured
over 100 shots.  have calculated the energy Py required for a pulse of arca w on the Rb
transition at 420 nm from first principles and with the aid of standard spectroscopic
formulae[284]. [ find that

3 2,2
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where # is the radius of the laser beam (assumed circular with constant intensity profile), fis
the oscillator strength (for absorption) of the transition, g is the (fine structure) Zeeman
degeneracy of the ground state, 7is the pulse length and A the wavelength of the transition.
Using a reasonable experimental value of 2 mm for the diameter of the dye laser beam gives
Pr= 100l for 5S20(F=3mp=3) 10 6P3(F=4.np=4) and o7 light. Comparing this with
the typical output pulse energies of a few hundred nJ confirms that there is plenty of power
in hand for diagnostics etc.

7.3 Proposed experiments on laser-cooled rubidium using
coherent optical transients

7.3.1 Bragg diffraction from localised atoms

The direction and strength of transient response signals may provide information about the
spatial distribution of cold atoms. The possibility of Bragg diffraction of light from the
‘crystal’ of atoms localised in opiical potential wells was discussed in section 4.6.2. Short
laser pulses with pulse area ~ 7 may be a usetul tool to probe this spatial structure as each
probe pulse involves only one photon recoil per atom, and the heating effect is thus minimal.
Probe transitions other than the cooling laser transition may be used, allowing diffraction
and detection at a variety of angles with respect to the cooling and probe beams. Thus, with
a suitable choice of geometry and polarisation scheme for the cooling beams, it may be

possible to unambiguously attribute Bragg reflection to atomic localisation[ 172,207].



7.3.2 Temperature measurement of laser-cooled atoms using coherent
transients
Our first major experiment involving both coherent transients and cold atoms will be to
measure the velocity distribution and temperature of laser-cooled atoms. as we proposed in
[186]. The experiment has two steps. In the first step, two non-collinear laser 'pump’ pulses
arc employed 1o imprint a spatial grating on the population of a chosen hyperfine ground
state of rubidium atoms in either an MOT or molasses. Immediately after the two pulses, this
grating will begin to disperse as a result of the atoms' thermal motion and collisional effects.
In the second step. after a variable delay of order 1 to 10 us, a laser "probe’ pulse is Bragg-
reflected from this grating and the reflection detected. The intensity of the reflected signal
will decrcase as the variable delay is increased, because of the progressive dispersal of the
population grating. The sequence of three pulses can be repeated many times at a rate of
order 20 Hz to build up a curve showing the decay of the reflection intensity against the time
delay of the probe pulse. This curve can be analysed to obtain the velocity distribution of the
cold atoms. The above steps are now described in more detail.

Pulse sequence fo write a ground state population grating
Figure 7-4 shows one of several possible pulse sequences to be employed in the proposed
experiment. The three pulses may be derived from the same dye laser pulse by the use of
beam splitters and optical delay lines, or by the use of two complete dye taser set-ups. The
first two pulses. each of duration 5 ns. occur at times 74 and r, and have wavevectors ky and
k> at arelative angle or. They are applied immediatety after the cooling/trapping beams are
wirned off, with 73 — > of the order of zero to 10 ns. The pulses, ideally both /2 pulses,
excite the 85Rb transitions 3S1(F=3) to 6P3,2(F=2,3.4) at a wavelength 4 = 420.2 nm.
The pulse hinewidths are of order 200 MHz, which is sufficiently broad to excite all three
hyperfine levels (spacings ~30 MHz) of the excited state, whilst narrow enough to leave

atoms in the F=2 hyperfinc ground level (3 GHz away) unexcited.

Cold atoms

3 ns pulses

Figure 7-4 The pulse sequence to write and probe a population grating
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Figure 7-5 The interference of the first two pulses

Figure 7-5 shows the relative phases of the two pulses at selected points in space. At points
labelled with a circle (O). the pulses arrive with the same phase. at points labelled with a
cross (X, they arrive in antiphase. The relative phase A¢ at a point r is given by

A¢ = (ks -k} ol -n)
The important point is that the pulses have the same phase on parallel planes, forming a

arating with a spacing TT»—F For an angle o= 107, this gives a grating spacing of 2.4
2simfoc/2)

tum.

For atoms positioned along the lines (O) where the pulses are in phase, the effect of two
almost conseeutive /2 pulses is the same as that of a single 7 pulse, and the atoms arc
raised to the excited stale. Along the alternate lines (X) where the pulses arc in antiphase, the
etfect of the first /2 pulse. which is to put the atom into a superposition of the ground and
excited state. is cancelled by the second /2 pulse, which takes the atom back to the ground
state (F=3). The excited atoms along the lines (O) then decay spontaneously into either of the
F=3 or F=2 hyperfinc ground states with a lifetime of 110 ns, and in a number ratio
dependent on the line strengths and branching ratios.

Consider the effect of such a pulse sequence on the number of cold atoms in each of the
two hyperfine ground states along lines (X} and (O), using approximate numbers to
establish the principle. The relative populations before the two pulses depend on the intensity
of the repumping beam: typically one might have steady state populations of (say) 95% and
5% in the F=3 and F=2 ground states respectively. Assume further for simplicity that in
spontaneous decay approximately half the atoms decay to each of £ =3 and £ =2. The result
after the spontaneous decay is cssentially complete (~200ns) is then as follows. Along lines
(X) the populations of F =3 and F = 2 are in the ratio 95 : 5 (as before), but along the lines

(O) the the ratio is ~ 50 : 50, Thus population gratings are created for both the hyperfine
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ground states. In particular, comparing the populations of the F=2 state along the lines (O)
and (X). we see that the ratio is approximately 10 to 1. This constitules a 'ground state
population grating” with high contrast. A more detailed version of the above areument must
take account ol the line strengths and branching ratios for each ot the possible decay routes
to the ground state, but results of the same order can be expected.
Transient reflection of a third pulse
A third pulse of 5 ns duration, ideally of pulse area 7/2, and resonant with any transition
starting from 58 will scatter coherently (be reflected) from the ground state population
grating provided phase matching is respected (see figure 7-6). In our experiment, it will be
convenient o use the 551,2(F=2) to 6P3,2(F=1.2,3) transitions accessible with our dye laser
arrangement. Figure 7-7 illustrates the dispersal of the grating at a rate determined by the
velocity distribution of the atoms. The energy ol any retlected pulses will depend on the
degree of contrast of the grating, and will diminish as the grating disperses. An estimate of
the grating dispersal time 7 is given by the typical time taken for an atom travelling normal
to the graning plancs to travel quarter of a grating spacing
SR A— (7-2)
= 8wysin(a/2)
where 1y 1s the most probable velocity of the velocity distribution. Ty 1s of order 3 s when
the angle o betwen the first two pulse K-vectors ts 107, Note that in the ~200 ns required for
the excited state population to decay to 1/c2 of its initial value, an atom with a velocity of 20
cm s~ corresponding to the Doppler cooling limit will have travelled only ~40 nm, which is

only 1/60 of the grating spacing.

k> ks

Phasc-matching:
kBmgg = k’: - k] +k‘;

Plancs of 7

¢! atio
around \\"X I ()[’)l.J]dll( n

grating
state 54 gratng
atoms 0 ot “’lw

X—0 6o 06  msgq

Figure 7-6 Bragyg reflection of probe pulse and the phase-matclung condition
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Figure 7-7 Probing the population grating and grating dispersal

We have calculated the reflected pulse energy P as a function ot the time delay #3 — ty, where

13 1s the time at which the third 'probe’ pulse occurs, and find that

Y

P o [ |ty expl=2iv,kiry = 1)sinca / 2)iov, ] (7-3)
where p{v,;) 1s the distribution of the velocity component v, normal to the grating plancs and
k is the wavenumber of the probe pulse. Equation 7-3 shows that the reflected pulse energy
as a function of 13 — 77 1s the square of the Fourier transform of the velocity distribution
normal to the grating. The velocity component v, and the distribution constant sin{/2) can
be chosen and adjusted by the experimenter through the k-vectors of the first two pulses. If
p0vy,) is Maxwell-Boltzmann, then carrving out the integral yields the gaussian

Poccxp(—?.vfk%h —1) sinz(a/Z)) (7-4)

where v i1s the most probable atomic speed. Figure 7-8 is a plot of equation 7-4.
i

Tg R

Figure 7-8 Predicted decay of reflected prlse energy for aroms with Maxwell-Boltzmann

speed distribution

The strength of the reflected signal may be estimated as follows. The optical thickness of a
sample of cold rubidium atoms in an MOT, for the pulsed transition at 420 nm, is < I, l.e. 1t
is an optically thin sample. Hence one may assume that there are no cooperative
{(superradiant) effects (section 7.4) involved on this transition. and the Bragg reflection is
essentially a free induction decay in a specular direction. The intensity of a free induction

decay from an optically thin cylindrical sample of length L and consisting of a gas of two
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level atoms is given by, for example, equation 3-127 of [2711. Applying this equation to a
laser-cooled hemogeneously broadened sample, we obtain
TR
1y = O LN (- T) (7-5)
8egc
where p1 1s the electric dipole moment matrix clement of the transition, ) the angular
frequency of the radiation and n; is the number density of atoms in the excited state
immediately after the probe puise. For a laser pulse of pulse area /2, we have ne = n/2,
where # is the number density of atoms in the F=2 ground state just before the probe pulse.

Integrating equation 7-5 over  and and expressing # in terms of /" we obtain the total

number of photons i1eeh in the free induction decay signal,

3 N2A° _
Neoh = 5 (7-6)
coh (usr ] 2

In obtaining equation 7-0, L has been replaced” by 4+/3 to give an estimate appropriate to a
sample in a spherical volume of radius ¥ and N is the total number of ground state atoms in
the sample prior o the probe pulse. With typical experimental parameters A =420 nm, N =
2.5 x 107 and r = 0.5 mun. this gives n.,y, = 10 cquivalent to a pulse encrgy ot 0.5 pl,
emitted over ~110 ns. Such a signal 1s casily detectable with either a photomultiplier tube or
feasibly a fast photodiode and box-car integrator. The pulse-excited sample also emits
incoherently 1. photons where nmipe = N/2 = 107, This radiation is over all directions
(dipole pattern) and occurs on a timescale of 1/17 Although most of the energy absorbed
from the laser probe pulse is emitted incoherently in this way, only a fraction of order A2/r?
= 100 is directed into the diffraction cone of the Bragg reflected pulse. Hence this noise
source should not be a problem.

Fxperimental method

The experimental inethod will consist of varying the delay 13 - 1y of the probe pulse and
recording the corresponding reflected pulse energy in order o plot curves similar to tigure 7-
4. but corresponding to the actual velocity distribution, which may be other than Maxweli-
Boltzmann. Once sequence of three pulses has a negligible heating effect on the cold sample
and requires less than 10 s, during which time the average atom has moved about 2 pm.
Thus the atoms may be swiftly re-trapped and re-cooled in around & further 10 ps and the
next sequence of three pulses applied. This allows the sequence to be repeated many times at
each data point and the signal accumulated with a boxcar integrator. Discrimination against

stray probe Hght may be achieved by a combination of spatial filtering and polarisation of

- . - - . . . . .
2 Equarion 7-3 was for a evlindrical sample of length L and radius v, the factor of 4/3 preserves the volime

and hence the total nuniber of atons.
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pulses. We hope by this method to obtain curves with good signal to noise ratio, allowing
the velocity distribution p(v,;) to be determined by the Fourier transform of equation 7-1.

This technique offers an alternative to the usual time of flight' method of temperature
meusurement. and 1t will be interesting to compare the results of the two methods. Being a
Fourier transform. the targest signal is from the slowest atoms and the weakest contribution
from the fust atoms. theretore systematic cirors are different and complementary to those of
time-of flight. This technique can be used to examine the distributions of velocity
components in specific directions within the cold sample.

7.4 Factors influencing transient pulse shapes in cold samples

In order to interpret transicnt signals it is necessary to understand the factors that influence
the time spectrum. In hot gases the dominant factor is the Doppler broadening which
salisfies Ap >> I'and leads 1o the rapid dephasing in free induction decay and the formation
of distinet narrow echo pulses when sequences of excitation pulscs arc applied. In laser-
cooled samples the Doppler broadening is essentially absent and the transient signals are
cxpected to be determined by the natural decay time of the excited level and quantun beats
due 1o hypertine structure. In addition there may be various inhomogeneous broadening
mechanisms and cooperative (superradiant) effects, which are now discussed. Possible
inhomogeneous broadening mechanisms in an MOT or molasses include:

i) Zeeman broadening duc (o trap fields. This is of order Amye ~ gzupB /fand is
significant only in regions of the trap where 8 2 2 gauss. giving Apge 2 I

ity AC Stark shifts (light shifts) produced by the cooling and trapping beams. These
vary from zero at the nodes of the light field 1o values of order 101" at antinodes depending
on trapping beam intensity and detuning and the relative time phases of the beams.

iil) Broadening due to cold collisions. The frequency shift due to 1/+* dipole—dipole
interactions|90] between ground and excited state Rb atoms is of the order of T, when r =
A/5. For typical trap number densities of ~5 x 1019 ¢m=3, the average atomic spacing is ~44.

The Zeeman and AC Stark broadening mechanisms are expected to produce a dephasing
ot the transient response ot the sample feading to free induction decay and. if large enough,
echo effects.

Additionally, we need to consider the possibility of cooperative radiation effects or
superradiance[285.286]. Superradiant emission from N atoms has an intensity proportional
to N2, is highly directional for certain geometries of the atomic sample and is characterised
by a time delay and duration both less than /™= A condition for superradiant emission is
that the optical thickness is greater than one, ol >> 1, where (¢ is the absorption coetficient
and L a dimension of the sample; this condition ensures that coherent cooperative decay
processes dominate over incoherent decay. An interesting possibility is that coherent

transicnts on the 6P to 58 » (&l << 1) transition may be dramatically affected and possibly
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quenched by superradiant emission at 2.7 fim on the 6P to 6S /7 branching transition (see

figure 7-9) which has an optical thickness o, ~ 10 for a typical MOT sample.

superradiance?

-

@ 2.7 um \ i 6P,
651/

5Py

pulsed probe
@ 420 nm
cooling @ 780 nm

5515

Figure 7-9 A transition scheme for possible superradiant emission

Superradiance has been observed for hot atoms on the infrared transitions of several
molecules and the alkali metals, e.g. sodium{287] and caesium[288]. To ensure that we may
observe superradiant emission (if it occurs) at 2.7 pum from cold Rb atoms, we have
incorporated u sapphire window, transparent at 2.7 pm. in one of our vacuum cells and are
currently designing a detection system for weak, short infrared pulses based on an InAs
photodiode.

In the light of the above discussion. I conclude that our proposed work programme

should open up a fertile new field of time domain spectroscopy of lascr-cooled atoms.

TAMAM SHUD
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Appendices

Al The Rabi frequency, the density matrix and the Bloch vector.

This appendix serves to establish some of the notation used in chapter 2.

The Rabi frequency

The optical Rabi frequency has its origins as follows (in the Schrédinger representation).

Consider the two state atom depicted below

i i ener state
An arbitrary monochromatic _ gy -
: excited amplitude
laser field "
— sate ¢} - ho, bl
i)
co 1 . "
h::;ﬁ(r)l:{,(‘r}e e, h(l)(]
- ground U
—im f
state | g) ——-=" ho, a(r)e

The system can be described at time ¢ by an atom with state vector

|I} = al? )c_[w"'r|g> + b(_t).gffm'r e) (Al-1)
The Schrédinger equation for the interaction is
ol
(H.-\mm - E'd)tf> = lﬁg“) (Al-2)

where d is the atomic dipole operator.

Substituting equation Al-1 into equation Al-2, using the orthonormality of
\g) und Je). the odd parity of d and the fact that H |2} = ho,ig) et leads to two
coupled equations

/
—it ! \ﬂ?,’!d : Ei*’)
7

i € Ed E g)

fi

Introducing rhe time dependence of K into equations A1-3 and making the 'rotating wave

i = ibe
(A1-3)

b =1qe

approximation’ which neglects the fast-oscillating terms in @, + @, we obtain

)0
(= E—Q(%ube'm {Al-4a}
: Hr'B
b= i‘(igf—ae"ﬁf (Al-4b)
g Eoled-glg) . ,
where A = @, — @, is the 'dctuning’, and .Qoe’e = —”ifr—gb’l is the 'complex Rabi
i

frequency' expressed in exponential form ( £2;,, 8 are both real).
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The coupled equations A1-4 are easily solved, and assuming initial conditions

a(0)=1, h(0) =0, which correspond to the atom starting in its ground state, the solution

15:

141

_ - Qr iAo

d=¢ - COST“‘ES]D;’)“

3 - - (A1-5)

p— r .
= iQue? . Qr

h=¢ - —— S —

where 2= 1/Q,2+ A is called the ‘generalised Rabi frequency’. The probability of the

atom being in the excited state 1s therefore

1807 L Qy
(b" - ()ﬁ smz—z O, (1—C0$f2f) {A1-6)
{2 2 24
which shows that |b|” oscillates between values 0 and e at arate £2, the generalised

Rabi frequency. When the lascr is resonant with the atomic transition. £2 = €2, and the
cxcited state probability oscillates between 0 and | at a rate €2, the on-resonance Rabi
frequency. Note that the rate of Rabi oscillations is determined by the modulus only of the
‘complex Rabi frequency’ and 1s not affected by the phase 8. This phase is nevertheless
important in derivations of light forces.

The Density matrix

The density matrix p is an operator defined by |1){¢|, where the bar denotes the average

over an ensemble of indistinguishable particles. Hence, in matrix form. for the two state

atom of chapter 2 it is

ARION]
a b ae

a be™t b'h

It has several usetul properties:

1) If A is an operator corresponding to an observable, then the expectation value

(Ay= Tracc(pA).

i) It | ) is a possible state of the system |¢). then the probability of finding the state in |x)
is (xlplx).

iit) Becauase it is an ensemble average. it is possible to incorporate phenomenological
decay terms into its equation of motion.

iv) Schrédinger's equation can be written in terms of the density matrix and the system
Hamiltonian as lollows:

dp i
el (AL-7)
dt fr[ ,,O]

where the square brackets indicate the commutator,



The Bloch vector

The Bloch vector is a mathematical tool originally devised in connection with nuclear
magnetic resonance experiments which has also proved very useful in studying optical
excitation of two-level atoms. The density matrix equation of motion {A1-7) for a two state
atom yiclds four coupled equations, one for each of the clements of p. These four
cquations are partially decoupled by rewriting them in terms of three new variables «, v
and w, which are specific lincar combinations of the density matrix elements and defined

by

- I

w=p e +ee. =eeVab+c.c.

y=ip, e e =ie e ah+cc (A1-8)
> 2

w=p, =P =[b[" —|d

The three new variables are the three components of the so-called Bloch vector. The

resulting ‘optical Bloch equations’ (without decay terms) are

= Av
p=—An+ Quw (Al-9)
1':' = ‘—Qol'

If the vartables «, v and w are regarded as the components of a vector B = [u,v,w],
cquation A1-9 takes the form

B _wxn (A1-10)

dt
where W is the vector W = [—-£2,.0.-A]. Equation A1-10 describes the precession of B
around W in the mathematical space of these two vectors and therefore allows a
corresponding pictorial visualisation. Such a model often aids understanding of

complicated atom-laser interactions, e.g. figure 7-2 on page 169.



A2 Ehrenfest's theorem
Ehrenfest's theorem consists of two equations which apply to any quantum mechanical
particle of mass m. The equations, which follow from Schrodinger's equation and the

definition of an cxpectation value, are quanturn-mechanically exact. They are

d{E) {p)

dt m
d(p) .
—_— V

dt < V>

(A2-1)

where T and p are the position and momentum operators for the particle and V is the
potential energy operator, which may be time dependent. The triangular brackets denote
expectation values.

They are often referred to as the quantum mechanical cquivalent of Newton's laws,
in that the classical position and momentum of Newtonian dynamics have been replaced
by their corresponding quantum-mechanical expectation values. Furthermore. the quantum
mechanical force operator is defined as the rate of change of the expectation vatue of
nmomentum.

Ehrenfest's theorem and light forces
In the specific case considered in chapter 2, where a quantum mechanical two state atom
interacts with a classical light field, the potential energy operator is given by —E-d, wherc

E is the electric field and d is the atomic dipole operator. Hence the mean force ¥ is
F=(V(E-d))

=(Vid,E, +d,E, +d.E.))

= {V(d E )+ {V(d E}+ (V(d.E.))
=(dVE ) +{d,VE)+(d.VE)

(d 15 not a function of the atomic centre of mass position)
=VEd, )+ VE(d)+ VE{d)

{for a small classical atom, E varies little over the atomic wavepacket)

Thus. ¢onsidering just one component of F

dE JE, JE.
! f!.\:l' <( ‘l> dxf <( 3 > dxi <( ~>
JdE . ] ' - .
== {d) which is the 'light force equation’ 2-13
dx;
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A3 The Ehrenfest theorem expression for the light force in terms of the

Bloch vector components, equation 2-14a

Starting from the light force equation 2-13

and using
{d) = Trace{pd) or

{d)y={(r|dir) = a*be_m’“’(g‘d

! —
E= :’-E’e Wl ce

gives

!
iy dE

F = (tz:::f')edim“r(g|d

- i

g
€1>+C.L.)L;€ . I"‘

e)+c.c.

Neglecting the two fast oscillating terms gives the time dependent force in the R W.A

r

F = %a“bew@[d

dE
+c.c.
A

ey

= lu*!)e""” —(L(g\E’ dle) +c.c.
2 d,\‘r—

P i d o, e
= —u b (—(hﬁﬁ )—l— c.c.
2 (x

- A

:EMmﬂhi{Qw*ﬂ+ac
) /

2 dx;

_ E u:(;:f)f dQU — i, — do J+c.c.

a be
dx:

B -
2 Cdy;

_ hdd2y (c:*bem{t’_f tec )_ _Q” 6 (m be
2 dy; 2 dx;
h UISJ(] - _-(2( ﬂ\
2 dy; 27 dx;

and hence in three dimu]siom

(At 18y c.c,)

F= (HVQD QvV8) which is equation 2-14a
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A4 The Ehrenfest theorem expression for the light force in terms of the
atomic polarisability, equation 2-16

We start from the light force equation 2-13

dE
Fi={d)- (A4-1)
dx;
and write the light field in the form
E=Ye L +cc=Yele" e +ec (A4-2)
¢ q

where the e, are the three Cartesian unit vectors and the E, are complex. In this
derivation, an isotropic atom is assumed, which means that the atomic polarisability is a
complex scalar a = o, +idy,,. This treatment can be extended to the anisotropic case, in
which case a tensor polarisability is required, but this 1s not done here. Thus

{d)=aE+c.c. (A4-3)
Putting cquations A4-2 and A4-3 into A4-1, we obtain

F = (Z ae b e+ c.c.}{z‘eq, Ei%e“‘" "+ c.c.]
N 4 e

Expanding the brackets and making the rotating wave approximation yields

dE;
F o= Z(XE'{ —L +c.c.

y dx,

. [
But £, =1,¢'"". hence

dx, " dy

F‘ = z(a& + ialm)(lqg (H‘i? —il d_WiJ“Q‘C.C_

o
di d
= Z( ('ER;‘ — + ?'ahn]z,l L]
. dx, dx,

Finally. in three dimensions
F = ZaRcvlq + 2alm Z ]gfvwf;

o q

or
F=0, Vi+ Eamz}qV ¥, which is equation 2-16
g
where = qu
q



AS Scalar polarisability for a two-level atom

] . -
Let the general monochromatic light field be E = Ea(r)ﬁ(,(r)e “*" +¢.c. and the

expectation value of the dipole moment be {d}. Then the complex polarisability ¢ is

defined by the equation {dy=aE+c.c.
Ey —ia
ie.  {d)y= aeTOe U g ce. (A5-1)

To calculate ¢, we proceed as follows. First, note that (d) = {r|d|s) and as
|6) = a(z‘)eﬂw*’r g} + b(t)e_i(uf" e)

equation A5-1 becomes

a“be N gldie) + ab'e' ™ (eld|g) = aa%e“iw“ +a'e %em"f

Multiplying by ¢"”'" and neglecting the fast-oscillating terms (RWA) gives
a*bem’<g[d

e)= asﬁ
2

Eqlele-d|g)

ojives
o
i

Scalar multiplication by £"E;, and usc of the definition €2 =
- [y o [::()2
a be”'h€) = o=

“~

2a'be™ s e
X —

-2
£y
This may be re-expressed in terms of the Bloch vector components « and v:
L he2
o = (1 —iv) 9
E =

0
The above result is still time dependent via 1 and v. If the steady state value is required. we

substitute the steady state values of i and 1
. 20027 2440 W&yt =2A+ID
Ey TP+207 +44% 21 I 20,7 +44°

where /= SE-E={ £, This is equation 2-17 of chapter 2.
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A6 The spin density of an electromagnetic field: Outline proof of
equation 5-28, L, = ¢, ExA

The momentum density g of an electromagnetic field is well known to be given by

]
g= i, =—ExH. Using H= »1—(VxA) gives g = £4{Ex(VxA)}. One can split g into
¢ Lo

(wo parts g = g1 + g2, or in tensor hotation g; = g1; + g2; . After multiplying out

0A;
Ex(VxA), the splitting can be done such that g, = E(,zE and 8 =—€0, E, _g_A_t
/

Here i and j scanx, y and z.
[t can then be shown, using integration by parts and V- A = 0 that the volume
integral of g2 is zero for either of two types of boundary condition. The first possible

boundary condition. corresponding to a localised field, requires that the field strength goes

1o zero at a rate faster than 1/|r] as Irt goes to infinity. The second possible boundary
condition is that the field is periodic in a (usually) cubic volume of any size. The volume
integral of the term g is not necessarily equal to zero and corresponds to the 'centre of
mass’ momentum of the ficld. The term g» corresponds to momentum circulating within
the ficld with a net volume integral of zero. The analogy with the two types of (linear)
momientum possessed by a moving spinning ball ts useful within its limitations.

The density of angular momentum with respect to an arbitrary origin 1s given by

L=rxg=rxg, +rxg-,

The part L; = rxg; corresponds to the density of orbital angular momentum and its
volume integral can be made zero by a suitable choice of origin. The interesting part is

L, = rxg, which corresponds to the density of intrimic angular momentum or spin. To

show this, one makes the substitution g5; = E()Z E into L; =rxg-, and then

calculates the volume integral of Ly using integration by parts and V-E = 0. With the
tocalised field’ boundary condition'. requiring that the field strength goes to zero at

infinity at a raic taster than /|r]. one finds that

[[TL 0% =[[eoExad’r (A6-1)

space space
The quantity on the righthand side is independent of r. i.e. independent of the choice of
coordinate system origin, thus reflecting the fact that it is the intrinsic angular momentum
of the field. One can then deduce that, as equation A6-1 1s an integral over an arbitrary
volume, that the density of intrinsic angular momentum L is given by

L, = gExA (5-28)

VI ds interesting 1o note that the alternative ‘periodic boundary condition’ is no longer sufficient, although it
can be used with the additional assuniption of transversality, i.e. 8A/8x; =0
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Appendix A7 Computer programme in C: Calculation of
polarisation gradients in 6-beam standing waves(chapter 5)

The programme is written in three files: 6-header.c, 6-beams.c and 6-cases.c, which are
reproduced below. The programme was compiled and run using "Think C" on a Macintosh

LCII computer, and on a "Digital” DEC 3000 Workstation for long runs.
File 1) 6-header.c
/* This file contuins the libraries and definitions common to all

functions and some function prototypes, */

#include <stdio.h>
#include <time.h>

#include <stdlib h>
#include <math.h>

#define SAFEZERO 0.001 * prevents division by zero #/

#detine PHASESTEPS 12 /% number ol divisions of phases 0 to m */
#define RELPH (.5660254

#define P1 3.14159265

—~

#define K 0.28318530 fF=2n *

#define EM_MIN I £ number ol different light fields */
#define EM_MAX 4 /# to be done set with MIN and MAX */
#detine TOPO v 2p for ellipaicity, v’ for helicity */

#dcline TRAISTEPS 12 /# number ol steps on each tajectory */

double varf_pr(int s.double th.double ph.im t.char o;

double calet_ptdouble pos|]. double unitvec|[.double th.double ph.int [:
double calet_ridouble pos|]. double unitvee| J.double th.double phant £,
File 2} 6-beams.c
#include "6-header ™ £ set most programme parameters in 6-hieader.c #/
maini ) |
char ¢.Tyname| ="M nof 2 Lvpel 2): /= file-naming variables */
int s.fthevegpheye: ## theye. pheye will count ime-phase steps */
7~ = number of steps per trajectory */
= number of light field name */
unsigned long int count.t: /#t = number ol iryjectorics run #/
double sum_pr=var_prahophs /= var_pr is resulc ol one trajectory */
FEsum_pr is running total of var_pr ¥/
/* th = theta, ph = phi in radians */
clock_t start, [inish; o record run-time ¥/
FiLE *ofp:
print(" 4 s\nSesin .
"Busy! Calculating functions of eflipticity 'p'" or helicity 1" of ",
"TE M. fields (previously loaded) over a grid of relative time phases." s
printtC\nHow many atom trajectories? ")
scanl( "% iu".&t):
printfi"n™;
s=TRAJSTEPS:
e=TOPO:
if{ct=p'&&e!="")
print{"wnBad value tor TOPOW"):
exit{(h:
}
for(f=EM_MIN:f<=EM_MAX:4++1}{ 7 caleulates for each ficld in turn */
sprintf{ne."% c".F+48)
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sprinttsvpe. "% e o),

strepy (flyname+2.type): 7* labels filename with p or r #/

strepy dllyname+3." new™y: #* new files tagged new' for safety */
strepy(fiyname+7.n0); £ ereates nest filename in Sequcn‘ce #/

ofp= fopen(flyname,"w"); /7 opens current file for weiting */

start=clock(): /% starts run-time clock */
sranditime(NULL)): * sceds rundom number gen. trom time #/
toritheye=0:theye<=PHASESTEPS ++theye) % cycles theta values */

th = theye*PYPHASESTEPS:

for(pheye=0;pheyc<=PHASESTEPS ++pheve)| f# eyeles phi values */

ph = pheye*P/PHASESTEPS:

sum_pr=(k,

tor{count=1count<=t:++count }{ J¥ cycles trajectories #/

var_pr = varf_pr(s.th.ph.f,e): /* caleulates E(p}2 or Z(r) for | tray. */
Sunm_pr += sqri(var_pri: M runnming total of Z(p) or =(r) over trajectories */
1 /* end of trajectory loop */

fprintfiofp."%d % d % if\n" theye.pheve.sum_pr/(double)t);
/% puts result of one phase pair to file */

J

iprintfstderr."%d “gheve), /# screen marker of run progress */

[printttofp.n"y;

}

telosetotpi: /*closes active file #/
fnish=clock(); /% stups run-time clock */
printfi\n% s%.d% % Ju sceondsin”,

“Tield EM" (" done! in ".(1inish-start ) /CLOCKS _PER_SEC):

1 7 end of [ield-number loop */

} /AEnd of main #/

/# FUNCTION: vart’_pri) caleulates either E(p)2 or E[’r)2
along one trajectory */

Jdouble varl_prfint s.double th.double phuint [char ¢} {
double stf3Ldie[3Imagdic.unitvec]3.pos| 3.cale_pr.
pstep={hopstep=0.var_pr.orestep={}:

int countd;

for(i=0ti<3:++iY /i scans x.v and 7 components ¥/
st[1]=rand(y/(double) RAND _MAX: /* random start point */

Jdir[ij=trund (- RAND _MAX/Z /idouble) RAND_MAX;

% random direction for trajectory #/
}
magdir=sqre(dirf*dirfO[+dis [ Li=dic] T +-dir 215010 2]0;

/5 magnitude of direction vector */
for(=(hi<3:++i)

unitvec|1]=dir{1)/magdir+SAFEZERO: /* makes unit vector for direction */
for{count=0;count<s++count) | /% cycles through s steps on trajectory #/
for(i=0:1<3:++1}

poslil=sti]+unitvec|ifFcount/s;

/% pos[i] is the coordinate of current step */
ifle==p" /* cither calculates Z(p)2*/
cale_pr = calet _ptpos.uniivec.th,ph.f):

/% cale_pr is the local value of pN

as returned by calet_p() */
pstep += cale_pr:

7 patep = running total of pN along the trajeclory #/
ppstep += cale_prrcale_pr:
/% ppstep = running total of pNy squared along the rajectory */
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} fAend ol il p loop #/
ifre=="r")] 7% or caleulates Z(ry?#/
cale_pr = calet_vipos.untivec, th.ph.t;
rrstep += cale_prcale_pr;

Jrstep = running totul of ry squared along the trajectory */
! /% end of ' 1 loop */
H/Eend ol s steps Toap %/
if{e=="p"}
var_pr = 2¥(ppstep/s - psiepFpstep/s¥s)):

/¥ Here var_pr = 2 x variance of pN along the trajectory ¥/

He=="")
VAR PE = Tslepdss

/# Here var_pr = rN squared and summed along the trajectory */
return vur_pr;
' /* end of function varl_pr */
File 3) 6-cases.c
/% This {ile contains the source trignometric functions for various

light fields so that pund £ may be caleulated #/

#include "6-header.c”

/A FUNCTION: calet_puy caleulates piy at a point pos| |
and with respect to unit vecter unitvec|} for a ficld number 1 and
with phases th and ph. */

double calel_p(double pos|j.double unitvect | double th.doubte ph.int 1 |

double spin[3]scalur=0.magh=h
mii;
switch (1)

case 1; /* Field EMI spin density components and magnitude */
spinft}] = -8*Fcox(K*pos{ O *cost K¥*pox| 1) *sin(th-ph) :
spin] 11 = -8%cos(K*pos] [N *cos(K#pos[2])*sin(ph} :
spin{2] = -8Fcos(K*posi 2]Fcos K¥pos| 0])*sin(-th)

magl: = 25 costKFpos{O]y cos K p()\i”] +eos{KFpos| T cost K pos| N+
cos{ K7 pos| 21 costK pos| 2] 1.
## magE is independent ol phases for this field */
break:

case 2

£ Field EM2 spin density components and magnitude */

spin{H = -4 cos K¥pos|Oh#costK#pos|§ [1#sintth-phi-
costKpos LY sind K ¥ pos[21)*siniph}-
sin(KFpos{ 2] 1Hsing K pos|O]Fsin{-th)):

spin| 1] = -4#cos(K#pos| L1FeostK*pos| 2|1 #sin{phi+
cos{KFpos| 2Dy sin(K*pos[O ) *sin(-th )+
sint K#pos{OD*sin(K*pos| 1]y*sin(th-ph)i )

spin| 21 = -4 cos KEpos| 2 PiFcost K *pos| O 1#sin(-th )+
cos(KEpos| O *sindK*post L *sin(th-ph)-
sin(K*posi 1 PFsin{K#pos| 21#sin(ph) ),

magh = 2¥(1.5-cos(K*posIZ*sin(K*pos| | ) ¥cos(ph)+
cos{ K pos[0]y¥Fsm(K*pos| 2 [y*cos(th)-
cos(K*pos| 1y*sin(K*pos| O]y *cos(th-phiy
break:
case 3
/# Ficld EM3 spin density components and magnitude */

spinf0} = -2%(sIn(2*KFpos{ O +sin(KFpos[0]-K*pos[ 1 ]+th-ph)-
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sin(K*pos| 2]-K#pos[0]+th)-sin{ K*pos{ 1 [+K#pos[21+ph));
spin[1] = -2*(sin(2*K*pos| 1 ) +sin{ K*pos| | }-K*pos[2]+ph)-

sin(K#pos|0]-K*pos[ | |+ph-th)-sin(K*pos[2]+K*pos[0]-th));
spin[2] = -2%(sin(2*K*pos{ 2| H+sin{K*pos| 2 |-K*pos[(]-th)-

sin(K#pos| 11-K*pos| 21-ph)-sin{ K*pos[ 0] +K*pos| | |+th-ph)):

magE = 3+cost K pos| 11+K*pos|2]-phi+cos(K*pos[ 2]+ K*pos[0]+th )+
cos(K*pos[0]+K*post1]-th+ph):
break:

case 4
/# Field EM4 spin density components and magnitude */
spin{0] = -4 cos(K*pos|Q])¥cos(K*pos[0])+
cost K*pos| 0] rreos(K*pos[ 1]y *stn{th-ph)-
cos(K*pos| 1) *cas(K*pos[2] ¥ cos(ph)+
cos(K*pos[2])¥*cos{ K*pos[0])*sin(-th)):
spin| 1 = -4+F(costK*pos| 1 1 Fcos{K¥*pos[1])+
cos(K¥pos| 1 *cos(K¥pos| 2]1*sin(ph)-
cos(K*posi2])*cos(K*pos{Oh)*Fcos{-th}+
cos{ KF*pos{O ) *cos{K*pos{1])*sin(th-ph));
spin 2| = -FFcos(K¥pos| 2] Veos(K*pos| 2]+
cos{K*#pos[ 2] y*cos(K*pos[O]y#sin(-th)-
con{KFpos{0]y#costK*pos[ 111*cos{th-ph)+
cos(K#pos] 1 [y¥cos{ K*pos[2])¥sin(ph}):

magl = 2 cos K¥pos|0] rreos(K pos] O+cos(KFpos| L D *cos(K*posf ] )+
cos( K pos[ 2] FcostKFposf 2] 1cos(Kopos] ) *cos(K¥pos| 21 sin(ph)+
cos(K¥pos| 2|1 cont K*pos{0])*sin(-th)+
cos(K*pos[0])¥cos(K*posi 1]*sin(th-ph)):

break:

case 5:
A Field EMS is a 1-D sisyphus standing wave ¥/
/* Usc PHASESTEPS = | #/
spin[0] =0
<pin] 1] =0:
spin| 2] = -2%in{2FK *pos| 21);
magk = 1;

break:

detault:

return O:

} #end of switch #/

for(=:i<3:++1)
scalar += spinfi]¥unitvecti]:
7 weatar s the projection ol the spin density onto unitvec */
return scalar/( 2FmugE+SAFEZERO): /% returns pN.
Note the 2 1s necessary for correct normalisation */
1 /% Lind of function calel_pt) */

/# FUNCTION: calef_r(s caleulates ry at a point pos[] and with respect to unit vector unitvee[| for a field

number { and with phases th and ph.*/
double calet_ridouble pos||.double unitvec| [.double th.double phuint 3 {

double flux|3][3].scalar=0.magE=0.ps=(k
int i,): /%1 and J scan the tensor components Xx. Xy etc */

switch (1) {



case 1:
% Field EM1 spin flux components and magnitude */

flux[0][0] = -F*cos(K#pos| 1 DFsin(K*pos|0])*cos(th-ph} :
Tux[Oif1]=0:

flux[0]12] = 4¥costK*pos| 2] #sinf K*pos[0] ¥ cos(ps-th) :

Mux[1][0] = #Fcost KFpos| 0D Fs i K*pos[ 1 ¥*cos({th-ph) ;

lux[ 117 = -4*costK*posi 2 ¥ sin(K*pos[ 1 )*cos(ph-ps) :

lux[11[21=10:

flux[21[0] =0
Nux| 211 1] = FEcost KA pos| L FsintK¥pos| 2] eos(ph-ps) :
flux[2]12] = -4=castK*pos[01Fsin(K*pos{2 |1 *cos(ps-th) ;

magkE = 2*{cos(K*pos| 0D Fcos(K*pos{ 0D +cos(K¥pos| ) #cost K¥pos[ 1+

cos(K¥pos| 2D ¥cos{K*pos|2])):
/& magk is independent of phases lor this field */

break:
case 2:
£ Field EM2 spin {fux components and magnitude */
Mux[O}0] = 2% T+sint KFpos[ 2] cos(K#pos[0]) Feos( ps-h}-
cost KFpos| L Pan(K*pos[0] ycosith-ph))
Tux {0 1] = 2% -cos(K¥*posf 2 *cosi K*pos| O Fcos(th-ps)+
cos{K#pos[0]y¥sin(K*pos{ 1 y*cos(ph-th)) &
Tux [0][2] = 2% (> intK#pos [0y cos{ K¥pos| 2] Freos{th-ps)+
sint K pos[OD*sin(K*pos| ] *cos(ph-th))
Tux[ F1[0] = 2= esin(K¥post L Feost K¥pos O] ¥coscph-th)+
sint K*pos{ 1])*sin(K*pos[2])*cos(ps-ph))
flux| L} 1] = 2% 1-sintK*=pos| T hFcos(K*pos| 2D *cos(ph-ps)-
cos{(KFpos| 7 Fsin(K*pos[0]*cos(th-ph)) :
Tux[1]]12] = -2¥(costK#pas] O Fcos(KFpos| T]yFcos(th-ph)+
cos{K#pos| 1 [y sin(K*pos[2]y*cos(ps-ph;
Mux[2][0] = 2¥(cosi KFpos| | ¥cos{ K¥pos| 2] ¥eos{ph-ps)-
cos{ K#pos[ 2Dy #<in(K*pos[ 0] Fcosips-th)) -
flux| 2] 1] = 2#sin{ K*pos| 2| ¥eostK*pos] | *cos(ph-ps)-
sint K pos 211#sin{ K¥pos [0 ¥cos(ps-th)) .
M 212] = =25 sinfK#pos] H¥Feos K¥pos| 2V cost ph-psi+
cos{ K#pos [0 sint K#pos(21)*cosips-th)
magk = 21 5-costKFpos 2 [Fsini K#pos| ) *cos(phy+
cost KA pos| O Esint K¥pos[ 21 ¥cos(th)-
cost K¥pos] LesintK A pos{O)*cos(th-phi):
break:
case X

## Field EM2 spin [Tux components and magnitude */
HunfO)]0] = -sine KepostO- Ko pas [+ th-phioasin(K A pos| 21-K¥pos| 0| +th-ps)):

Cux O 11 = -t KEpos| 21+ K pos| 4 +ps-thsin{K#pos| (- K #pos| | }-th+ph):

TuxjOl]2] = ~(sing KJ pos|2|-K#pos[0]+ps-th)-sin(K*pos| 1 [+ K*pos[(]+th-ph)):

fuxf1]0] = -(sing K#posfO]-K#*pos [ 1]+th-ph)-sin{ K*pos| 2 |+K*pos[ 1]+ph-ps) )k
flun[11[1] = ~(sind K pos| T]-K¥pos[ 2 J+ph-ps)+sind K¥Fpos|-K*pos| | {+ph-th)}:
flux| 11]2] = -{sint K*pos[O]+K*pos| I |+th-phi+sin(K*#pos| 1]-K*pos[2]-ph+ps)):
Aux]2]10] = -6sin(K#pos| 1 +K¥pos[2]+ph-ps)+sin{ K*pos| 2}-K*pos| 0] -ps+th)):

Hux|2][ 1] = -(sin(K=pos[ 1]-K*pos| 2 [+ph-ps-sin{K*pos [+ K #pos| 2 [+ps-th):
tux]2112] = -(sin(K*pos 2]-K#pos [ +ps-th+sin{ K#pos [ 1 [-K*pos[ 2 [+ps-ph));

magE = J+costKopos[ T1+K*pos[2]-phi+cos( K*pos| 21+K*pos{0]+th)+

cos(KFpos[0]+K*pos{1]-th+ph):
break:

cuse 4
/* Field EM4 spin ilux components and magnitude */



fuxfO]0] = 2*(sing K*posiOD*cos(K*pos[2])*cos(ps-th)-
sin(K*pos[(])y*cos(K*pos[ 1 ])*cos(th-ph)) ;

lux{0][ 1] = 2#sin{K*pos[0] *(cos(K*pos(2])*sin(ps-th)-
cos(K*pos{1y*cos(th-ph)) -

Mux|[0][2] = 2*sin K¥pos 0] ¥ (cosi K *posi 1)) *sin(th-ph)-
cos(K*pos]2]y*cos(ps-th)) ;

flux{ T]HG] = 2#sind K*pos| 11 (cos{ K*pos| 2])#sin(ph-ps)-
cos(K*pos|0]y*cos(th-ph}) ;

[ux{1{{1] = 2#in(K*pos| 1] 1*cost K*pos[0]y*cos{th-ph)-
sin{K*pos| 1 Feos(K*pos[ 2]y cos(ph-psi) .

Tux{1]12] = Z%sin{K*pos| 1 Y*{cos( K*pos| O] y*sin(th-ph)-
cos(K*pos[2])y*cos(ph-ps)) ;

flux[2][0] = 2%int K*pos[2[1*{cos(K*pos| 1 ])*sin(ph-ps)-
cos{K#pos[0f)*cosips-th)}

flux[ 2] 1] = 2#%sin{K*pos| 21y (costK¥posi{O])y*sin(ps-th)-
cos{K*posi1y*cas(ph-ps)) -

ux[23[2] = 2*(sin(K*posi2h*cos(K*pos{1])*cos(ph-ps)-
sin{K*pos|2])*cos(K*pos|0]1*cos(ps-th)} :

migE = 2% cos{ K¥pos[0])F cos{ K¥pas [0 +cas(K*pos[1 ¥ cos(K¥pos| 1]+
cos(K#pos| 2] eost KA pos| 2 +cos(K*pos[ 1 *cos{K*pos[2 [y *sin{ph)+
cos{ K pos[ 2h*costK*pos[ O Fsin(-th)+
cast K#pos[0])* cos(K*pos| 1 )*sin(th-ph)):

break:
case b
/% Field EM6 1s a 1-D corkscrew standing wave #/
/¥ Use PHASESTEPS = 1 #/
fluxi)[0) =G :
fluxjO][ 17 =0
Juxid)]2] =0
Mux|1[01=0:
fux[1]{t}=0:
flux[1]{21 =0
Mux[2]{ =0
|21 =0:
Mux[2[i2}=2.
magls = 1:
hregk:
default:
return :
! end of switeh *#/

for(i=thi<3d ++1)

lorg=0:j<3++))

scalar += Tux (]| umivecfif umtvee|j]:

7% seudar is the projection of the spin {Tux tenser onlo unitvec tensor */

return scalar/{2*¥magE+SAFEZERO);

/* returns IN.

Note that the 2 is necessary for correct normalisation */
} /7 End of tunction calef_r{) */
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Appendix A8 Spectroscopic data for rubidium
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Table A8-1 Useful formulae and data for rubidium

a) for D3 line (5812 -5P3/2) @ 780.027 nm

: . 3geghA'T -
Line strength S = T S= —{"Z# =2.44 x 1057 C2m?, where g5 is the
=
Zeeman degeneracy of the excited state (=4).
2kl

Saturation intensity { = :T/IT__ = 1.59 mW cny2 (At resonance)
Spontaneous decay rate I'=2m x 5.76 MHz (D7 line): natural lifetime = 28 ns

=2nx 549 MHz (D) line); " " =29ns

1
A 2| 2kgTlog,2 ]2
Doppler width Ap= = | 281980 < 1= _ 516 MHz ar 300 K.
j. Hiph

b) for (58,2 —6P3;2) @ 420.18 nm

3
e

Line strength § = Xp 2 S 82 x 10759 C2m2, where g is the
81
Zeeman degeneracy of the excited state (=4).
Spontancous decay rate "= 2.67 MHz (two-level onlv}: natural lifetime = 107 ns

Note that the naturaj lifetime includes decays to all levels

General formulac and quantities

ejf'

deym

Absorption coetticient ey = Stw)d@w where [0 S(w¥dwm=1,nisthe

number density and f the oscillator strength.

;5
. . l dmm, ol . .
Oscillator strength I = wﬁl— g1 1s the Zeeman degeneracy of state |.
& reth

glfw; = mgl.f:—n

Doppler cooling limit 7p (780 nm) =136 uK
! " speed =163 cms™!
Photon recoil limit TR (780 nm) =0.184 uK
"’ " speed = 6.0 mm s~/
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