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The SWAP gate has become an integral component of quantum circuit architecture

where its primary role is given to permuting the states of two qubits. We consider the

question of whether a two-qudit quantum circuit composed entirely from instances of
the generalized controlled-NOT gate can be constructed to permute the states of two

qudits. Arguing via the signature of a permutation, we demonstrate the impossibility of

such circuits for dimensions d ≡ 3 (mod 4).
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1. Introduction

A prerequisite for quantum computation is the successful implementation of

multiple-qubit quantum gates. The most elementary of all multiple-qubit quantum

gates are those premised by two-qubit controlled unitary operators, and a classic

example is the controlled-NOT (CNOT) gate. The CNOT gate has been shown to

provide a basis for the construction of syndrome tables as used in error correction. 1

It is the quantum mechanical analogue of the classical connective XOR gate and as-

sumes a central role in the theory of quantum computation. In particular, Barenco

et al. have shown that any multiple-qubit quantum operation may be restricted to

compositions of single-qubit gates and instances of the CNOT gate. 2 It is for this

reason that we say the quantum gate library consisting of single-qubit gates and

the CNOT gate is universal. As a consequence, the CNOT gate has acquired the

special status as the hallmark of multi-qubit control. 3

In recent years, researchers in universal quantum computation have done con-

siderable work in optimizing quantum circuit constructions. Vatan and Williams

constructed a quantum circuit for general two-qubit operations which requires fif-

teen single-qubit gates and at most three CNOT gates. 4 A crucial aspect of this

result is the demand that the SWAP gate requires at least three CNOT gates. The

SWAP gate describes the cyclical permutation of two qubits and has become an

integral feature of circuitry design for many quantum operators. It is a fundamen-

tal element in the circuit implementation of Shor’s algorithm 5 and, importantly,
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Liang and Li 6 maintain that experimentally realizing the SWAP gate is a necessary

condition for the networkability of quantum computation.

In this paper, we examine the possibility of constructing a two-qudit quantum

circuit to permute the states of two qudits using only instances of the generalized

CNOT gate. Section 2 introduces preliminary material from the theory of permu-

tations which will serve as a basis for our study. Section 3 considers the particular

problem of whether a two-qutrit quantum circuit composed entirely from instances

of the two-qutrit CNOT gate can be constructed to permute the states of two qutrits.

Finally, section 4 generalizes the results of section 3 to two-qudit quantum systems

before demonstrating the impossibility of a two-qudit SWAP gate composed entirely

from instances of the generalized CNOT gate for dimensions d ≡ 3 (mod 4).

2. Preliminaries

2.1. Elementary quantum gates

Let H denote the d-dimensional complex Hilbert space Cd. Fix each orthonormal

basis state of the d-dimensional Hilbert space to correspond to an element of Zd; as

such the basis {|0〉 , |1〉 , . . . , |d− 1〉} ⊂ Cd whose elements correspond to the column

vectors of the identity matrix Id is called the computational basis. A qudit is a d-

dimensional quantum state |ψ〉 ∈ H written as |ψ〉 =
∑d−1
i=0 αi |i〉 where αi ∈ C and∑d−1

i=0 |αi|2 = 1. Given d-dimensional Hilbert spaces HA and HB, consider the set

of d2 × d2 unitary transformations U ∈ U(d
2
) that act on the two-qudit quantum

system HA ⊗ HB. Let UCNOT1 ∈ U(d2) represent the generalized CNOT gate that

has control qudit |ψ〉 ∈ HA and target qudit |φ〉 ∈ HB. The action of UCNOT1 on

the set of basis states |m〉 ⊗ |n〉 of HA ⊗HB is given by

UCNOT1 |m〉 ⊗ |n〉 = |m〉 ⊗ |n⊕m〉 , m, n ∈ Zd, (1)

with ⊕ denoting addition modulo d. Similarly, let U CNOT2 ∈ U(d2) denote the

generalized CNOT gate having control qudit |φ〉 ∈ HB and target qudit |ψ〉 ∈ HA.

The action of UCNOT2 on the set of basis states |m〉 ⊗ |n〉 of HA ⊗HB is written

UCNOT2 |m〉 ⊗ |n〉 = |m⊕ n〉 ⊗ |n〉 , m, n ∈ Zd. (2)

Fig. 1 provides the quantum gate circuitry representation for the respective CNOT

types while Fig. 2 illustrates the well-known SWAP gate that permutes the states

of two qubits.

2.2. Permutation groups

Consider the set N = {1, 2, . . . , n} and let σ : N 7→ N be a bijection. Let σ =[
1 2 . . . n

i1 i2 . . . in

]
be a permutation of the set N with ik ∈ N denoting the image of

k ∈ N under σ. Let σ and τ be two permutations of N. Define the product σ · τ by

(σ · τ)(i) = σ(τ(i)), i ∈ N, to be the composition of the mapping τ followed by σ.
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Fig. 1. Circuit descriptions for the CNOT gate types. (a) The CNOT1 gate; the control system
|m〉 ∈ HA remains unchanged after application whereas the state of the target system |n〉 ∈ HB
is transformed under modular arithmetic to the state |n⊕m〉 with m,n ∈ Zd. (b) The CNOT2

gate in which the roles of systems HA and HB are reversed.
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Fig. 2. The SWAP gate illustrating the cyclical permutation of two qubits. System A begins in

the state |ψ〉 and ends in the state |φ〉 while system B begins in the state |φ〉 and ends in the state
|ψ〉.

These permutations taken with (·) form the group Sn called the symmetric group

of degree n.

Given the permutation σ ∈ Sn and for each i ∈ N, let us consider the sequence

i, σ(i), σ2(i), . . . . Since σ is a bijection and N is finite there exist a smallest positive

integer ` = `(i) depending on i such that σ`(i) = i. The orbit of i under σ then

consists of the elements i, σ(i), . . . , σ`−1(i). By a cycle of σ, we mean the ordered set

(i, σ(i), . . . , σ`−1(i)) which sends i into σ(i), σ(i) into σ2(i),. . . , σ`−2(i) into σ`−1(i),

and σ`−1(i) into i and leaves all other elements of N fixed. Such a cycle is called an

`-cycle. We refer to 2-cycles as transpositions and note that any permutation can be

written as a product of transpositions. A pair of elements {σ(i), σ(j)} is an inversion

in a permutation σ if i < j and σ(i) > σ(j). The number of transpositions in any

such product is even if and only if the number of inversions is even. Consequently,

we say such a permutation is even. A similar case holds for odd permutations.

Lemma 1. 7 Every permutation can be uniquely expressed as a product of disjoint

cycles.

Proof. Let σ be a permutation. Then the cycles of the permutation are of the form

i, σ(i), . . . , σ`−1(i). Since the cycles are disjoint and by the multiplication of cycles,

we have it that the image of i ∈ N under σ is the same as the image under the

product, ς, of all the disjoint cycles of σ. Then σ and ς have the same effect on
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every element in N , hence, σ = ς. �
Every permutation σ ∈ Sn has a cycle decomposition that is unique up to the

ordering of the cycles and up to a cyclic permutation of the elements within each

cycle. Further, if σ ∈ Sn and σ is written as the product of disjoint cycles of length

n1, . . . , nk, with ni ≤ ni+1, we say (n1, . . . , nk) is the cycle type of σ. As a result of

Lemma 1, every permutation can be written as a product of transpositions. Since

the number of transpositions needed to represent a given permutation is either even

or odd, we define the signature of a permutation as

sgn(σ) =

{
+1 if σ is even

−1 if σ is odd.
(3)

To each permutation σ ∈ Sn, let us consider the corresponding permutation matrix

Aσ whereby

Aσ(j, i) =

{
1 if σ(i) = j

0 otherwise.
(4)

The mapping f : Sn 7→ det(Aσ) where

det(Aσ) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

Aσ(i),i (5)

is a group homomorphism. The kernel of this homomorphism, kerf , is the set of

even permutations. Consequently, we have it that σ ∈ Sn is even if and only if

det(Aσ) equals +1.

3. On swapping the states of two qutrits

Let d = 3 and consider the following problem. Given a pair of qutrit quantum

systems, system A in the state |ψ〉 and system B in the state |φ〉 and using only

instances of the two-qutrit CNOT gate, determine if it is possible permute the states

of the corresponding systems so that system A ends in the state |φ〉 while system

B ends in the state |ψ〉.

Problem 1. Given qutrits |ψ〉 ∈ HA and |φ〉 ∈ HB and using only instances of

the two-qutrit CNOT gate, determine if it is possible to construct a two-qutrit

quantum circuit that permutes the states of the quantum systems HA and HB such

that |ψ〉 ⊗ |φ〉 ∈ HA ⊗HB is mapped to |φ〉 ⊗ |ψ〉 ∈ HA ⊗HB.

We now show that for a pair of qutrits, it is not possible to permute the state

|ψ〉 ⊗ |φ〉 ∈ HA ⊗HB using only instances of the two-qutrit CNOT gate.

Any two-qutrit quantum circuit composed entirely from instances of the two-

qutrit CNOT gate can be written in terms of the two-qutrit CNOT1 and CNOT2

gates. The action of the two-qutrit CNOT1 gate on the basis states |m〉 ⊗ |n〉 ∈
HA ⊗ HB,m, n ∈ Z3, is described by the unitary transformation UCNOT1 ∈ U(9)

given by

UCNOT1 |m〉 ⊗ |n〉 = |m〉 ⊗ |n⊕m〉 , m, n ∈ Z3, (6)
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(a)



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0



(b)



1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 0


Fig. 3. Matrix representations for the two-qutrit CNOT types in terms of the qutrit computa-

tional basis {|m〉 , m ∈ Z3}. (a) The matrix representation for the two-qutrit CNOT1 gate. (b)
The matrix description for the two-qutrit CNOT2 gate.

where ⊕ denotes addition modulo 3. Fig. 3 (a) provides the matrix description

for the two-qutrit CNOT1 gate. A similar description for the two-qutrit CNOT2

gate holds, and Fig. 3 (b) provides the corresponding matrix description. Note also

that the two-qutrit CNOT1 and CNOT2 gates can be described in the following

way. The permutation matrix corresponding to the two-qutrit CNOT1 gate takes

the value 1 in row 3m + n and column 3m + (n 	 m), m, n ∈ Z3. Similarly, the

matrix corresponding to the two-qutrit CNOT2 gate takes the value 1 in row 3m+n

column 3(m	n)+n, m,n ∈ Z3. Importantly, both of these matrix descriptions have

determinant +1 as the permutations corresponding to their the respective matrices

are even.

Let us now assume there exists a two-qutrit quantum circuit composed entirely

from instances of the two-qutrit CNOT gate types which permutes the states of two

qutrits. By assumption such a circuit will then be a composition of the two-qutrit

CNOT1 and CNOT2 gates. It follows that any composition of the two-qutrit CNOT1

and CNOT2 gates will be equivalent to some product of their respective unitary ma-

trix descriptions. Such a matrix product will necessarily have determinant +1 as

both constituent elements have determinant +1. However, the unitary transforma-

tion U∗ ∈ U(9) required to swap the states of two qutrits is represented in Fig. 4.
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1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1


Fig. 4. The matrix U∗ ∈ U(9) described in terms of the qutrit computational basis which per-
mutes the states of two qutrits.

The swap matrix U∗ ∈ U(9) takes the value 1 in row 3m+ n column 3n+m, and

has determinant −1. Therefore, no composition of the two-qutrit CNOT gate can

yield the required swap matrix, and the result follows. �

4. On swapping the states of two qudits

We generalize problem 1 to higher dimensional quantum systems and ask if it is

possible to construct a two-qudit quantum circuit to permute the states of two

qudits using only instances of the generalized CNOT gate.

Problem 2. Given a pair of qudits |ψ〉 ∈ HA and |φ〉 ∈ HB and using only

instances of the generalized CNOT gate, determine if it is possible to construct a

two-qudit quantum circuit to permute the state |ψ〉 ⊗ |φ〉 ∈ HA ⊗HB.

We have shown in section 3 that the unitary matrices corresponding to the

two-qutrit CNOT1 and CNOT2 gate types both have determinant +1, and this

contrasted significantly with the determinant of the unitary matrix required to

permute the states of a pair of qutrits. Consequently, no composition of the former

could yield the latter and the result followed. There is, however, another way to look

the problem of permuting the states of two quantum systems using only instances

of the generalized CNOT gate, and it is the following. Firstly, in examining the

qutrit case, we note that the permutations corresponding to the two-qutrit CNOT1

matrix and the swap matrix U∗ ∈ U(9) are

σCNOT1 =

[
0 1 2 3 4 5 6 7 8

0 1 2 5 3 4 7 8 6

]
(7)

σU∗ =

[
0 1 2 3 4 5 6 7 8

0 5 6 7 4 1 2 3 8

]
(8)

respectively. These permutations describe, respectively, the action of both the two-

qutrit CNOT1 gate and the swap matrix U∗ ∈ U(9) on the set of basis states |m〉⊗
|n〉 ∈ HA⊗HB, m, n ∈ Z3. The cycle type for two-qutrit CNOT gate is (1, 1, 1, 3, 3)
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while the cycle type for the swap matrix U∗ ∈ U(9) is (1, 1, 1, 2, 2, 2). Hence, the

two-qutrit CNOT gate fixes three basis states and permutes the remaining states

in two cycles of length 3. Each such cycle may be written as a product of two

transpositions. Whence, the signature of the two-qutrit CNOT permutation is +1.

On the other hand, the permutation describing swap of a pair of qutrit states

contains three fixed elements and a set of three transpositions and therefore the

signature of this permutation is −1. Consequently, it follows that within a two-

qutrit quantum circuit architecture, no composition of the two-qutrit CNOT gate

types alone can permute the states of two qutrits.

More generally, the two-qudit CNOT gate acting on a pair of d-dimensional

quantum systems corresponds to a permutation of the d2 basis states. For prime

dimensions d = p, the permutation associated with the generalized CNOT1 gate fixes

d basis states and induces (d− 1) cycles of length d, each of which may be written

as a product of (d− 1) transpositions. The generalized CNOT1 gate permutation is

then a composition of (d − 1)2 basis state transpositions. A similar case holds for

the generalized CNOT2 gate in that corresponding mapping fixes d basis elements

induces (d− 1) cycles where each is a product of (d− 1) transpositions. Therefore,

the signature of the generalized CNOT permutation is −1 for dimension d = 2 and

+1 for odd prime dimensions.

Now, let us consider the unitary matrix U∗ ∈ U(d2) that swaps the states of

two qudits. This matrix permutes the basis states of two qudits thereby mapping

the two-qudit state |ψ〉 ⊗ |φ〉 ∈ HA ⊗HB to the state |φ〉 ⊗ |ψ〉 ∈ HA ⊗HB. Such

a transformation corresponds to a permutation of the d2 basis states |m〉 ⊗ |n〉 ∈
HA ⊗ HB, m,n ∈ Zd. Under this mapping, there are d fixed basis elements and

d(d− 1)/2 transpositions on all remaining basis states. Consequently, the signature

of the permutation describing the two-qudit SWAP gate is −1 for dimensions d ≡ 2

or 3 (mod 4) and +1 for dimensions d ≡ 0 or 1 (mod 4). It then follows that two-

qudit quantum circuits composed entirely from instances of the generalized CNOT

gate can not permute the states of two qudits when d ≡ 3 (mod 4). �

Remark 1. Using the results of Ref. 8, we note that it is possible to swap the

states of two qudits using only generalized CNOT gates if one also permits the use

ancilla qudits in conjunction with the application of two cyclic permutations of d

qudits.

5. Conclusion

We considered the problem of constructing a two-qudit SWAP gate using only in-

stances of the generalized CNOT gate. We discussed the idea of signature for a

permutation and identified, via this signature, when it is possible to permute the

states of two qudits using only instances of the generalized CNOT gate. Based on

this argument, we demonstrated the impossibility of such a two-qudit SWAP gate

that uses only instances of the generalized CNOT gate for dimensions d ≡ 3 (mod

4). This may be of interest for the more general task of constructing a k-qudit
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SWAP gate. Furthermore, our understanding of the symmetric group and its de-

compositions may well be enhanced by considering how to design quantum circuits

to realize certain subgroups of this group.
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