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Abstract. Convex polytopes are convex hulls of point sets in the n-dimensional

space En that generalize 2-dimensional convex polygons and 3-dimensional convex

polyhedra. We concentrate on the class of n-dimensional polytopes in En called

sign permutation polytopes. We characterize sign permutation polytopes before

relating their construction to constructions over the space of quantum density matrices.

Finally, we consider the problem of state identification and show how sign permutation

polytopes may be useful in addressing issues of robustness.

PACS numbers: 02.40.Dr, 02.40.Ft

1. Introduction

From the Platonic solids to n-cubes, n-cross-polytopes and regular n-simplices, convex

polytopes as geometric objects have been a source of study since antiquity. Indeed, ‘the

Universe cannot be read until we have learned the language in which it is written.

It is written in mathematical language, and the letters are triangles, circles and

other geometrical figures’ - Galileo. A celebrated feature of these convex geometrical

figures has been the symmetry they possess. In micro-biology where objects use the

efficiency of symmetry to propagate themselves to the study of genetics where symmetry

communicates genetic information, symmetry has been a fundamental concept of science

and has provided an understanding for many of Nature’s phenomena. But perhaps the

most important class of symmetric polytopes is the class of regular convex polytopes in

Euclidean spaces.

In this paper, we concern ourselves with the class of n-dimensional convex polytopes

in En called sign permutation polytopes. We show that regular convex polytopes

in Euclidean space can be derived from such polytopes, and we show that their

characterization can be admitted by the partial order of weak majorization. The outline

of this paper is as follows. Section 2 provides an introduction to material from discrete

geometry which serves as a basis for our study. Section 3 introduces a theorem of

Rado (Rado (1952)) and motivates the issue of n-dimensional polytopes of degree n

in the n-dimensional space En of section 4. Section 5 relates the construction of sign

permutation polytopes to the space of density matrices in quantum mechanics, before
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finally illustrating how sign permutation polytopes may be useful in addressing the

problem of robustness of state identification.

2. Preliminaries

2.1. Convex sets & combinations

Let n ∈ N and denote by En the n-dimensional Euclidean space, with origin o, scalar

product 〈· , · 〉 and induced norm ‖·‖. Let a = (α1, α2, . . . , αn) ∈ En be an n-tuple of real

numbers. We say a ∈ En is a linear combination of a1, . . . , am ∈ En if a =
∑m

i=1 λiai for

suitable scalars λi ∈ R. If such scalars λi ∈ R, i = 1, . . . ,m, exist with
∑m

i=1 λi = 1 then

we say a is an affine combination of a1, . . . , am ∈ En. The set of points a1, . . . , am ∈ En

is said to be affinely independent if a linear combination
∑m

i=1 λiai with
∑m

i=1 λi = 0

can only have the value o when λi = 0 for i = 1, . . . ,m. For A ⊂ En, the set of

all affine combinations of points of A is called the affine hull of A and is denoted by

affA. If a =
∑m

i=1 λiai for non-negative scalars λi ∈ R and
∑m

i=1 λi = 1 then we say

a ∈ En is a convex combination of a1, . . . , am ∈ En. For A ⊂ En, the set of all convex

combinations of any finitely many points of A is called the convex hull of A and is

denoted by convA. By Ha,β, we mean the hyperplane given by the linear equation of

the form 〈a, x〉 = β. Consequently, the hyperplane Ha,β can be expressed as the set

{x ∈ En|〈a, x〉 = β} where a ∈ En\{o} and β ∈ R. A closed half-space of En is given

by the set {x ∈ En|〈a, x〉 ≥ β}, a ∈ En\{o} and β ∈ R, where its boundary is the

hyperplane {x ∈ En|〈a, x〉 = β}, a ∈ En\{o} and β ∈ R. For convex sets A,B ⊂ En

satisfying A∩B = ∅, the Hahn-Banach separation theorem (Bishop and Bridges (1985))

states that there exists a unit vector u ∈ En and a scalar β ∈ R such that for all a ∈ A
we have 〈u, a〉 ≥ β, while for all a ∈ B we have 〈u, a〉 ≤ β.

2.2. The symmetric group & majorization

Let Sn denote the symmetric group of degree n defined as the group of all permutations

of the integers 1, 2, . . . , n. Denote by π(a) = (απ(1) , . . . , απ(n)), the permutation of

a ∈ En by π ∈ Sn. Let a∗ = (α∗1, . . . , α
∗
n) ∈ En be the point whose components are those

of a arranged in non-increasing order of magnitude; α∗1 ≥ . . . ≥ α∗n and α∗k = απ(k), for

k = 1, . . . , n and π ∈ Sn. Let b∗ = (β∗1 , . . . , β
∗
n) ∈ En be defined analogously. If the

relations ∑
k≤l

α∗k ≤
∑
k≤l

β∗k (1)

hold, for 1 ≤ l ≤ n, with equality for l = n, we say a is majorized by b and write a ≺ b

(Marshall and Olkin (1979)). For a, b ∈ En, we have it that

a+ b ≺ a∗ + b∗ (2)

since there exists a permutation π ∈ Sn such that απ(1) + βπ(1) ≥ απ(2) + βπ(2) ≥ . . . ≥
απ(n) + βπ(n) and

∑
k≤l(απ(k) + βπ(k)) ≤

∑
k≤l(α

∗
k + β∗k), for 1 ≤ l ≤ n with equality
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for l = n. Consider the set of points a1, a2, . . . , am ∈ En; ai = (αi1, αi2, . . . , αin),

i = 1, 2, . . . ,m. Following from (2), we have it that a1+a2+ . . .+am ≺ a∗1+a∗2+ . . .+a∗m.

Finally, if ai ≺ b, i = 1, . . . ,m, then
∑

i≤m λiai ≺ b for non-negative scalars λi and∑
i≤m λi = 1.

2.3. Convex polytopes

Convex polytopes are non-empty compact convex subsets of Euclidean space described

by a finite point set. Although the concept of convexity is elementary, polytopes

possessing this property yield geometric bodies with rich structure. Two-dimensional

convex polytopes are called convex polygons. The equilateral triangle constructed by

Euclid in his first proposition is such an example. Three-dimensional convex polytopes

are called convex polyhedrons and examples include the Platonic solids (Coxeter (1969)).

Interestingly, while the polyhedron has eluded definition over the centuries, the theory

of convex polyhedrons and polytopes is well understood and contributes to practically

significant areas of combinatorial optimization and computational geometry. To see

this, consider the permutahedron defined by taking the convex hull of all vectors that

are obtained by permuting the coordinates of the vector (1, 2, . . . , n). A feature of

the permutahedron is that the vertices are identified with the permutations of the

symmetric group of degree n in such a way that two vertices are connected if and

only if the corresponding permutations differ by an adjacent transposition (Gaiha and

Gupta (1977)).

A convex polytope is the convex hull of a non-empty finite set A =

{a1, a2, . . . , am} ⊂ En. In particular, the V-polytope is the set of points describing

such a polytope in terms of its vertices and is given as{
m∑
i=1

λiai | λi ≥ 0,
m∑
i=1

λi = 1

}
. (3)

On the other hand, a convex polytope may be described as the bounded solutions set

of a finite system of half-spaces in En. In this instance, we say such a polytope is a

H-polytope and is described as

{x ∈ En | 〈ai, x〉 ≤ βi for 1 ≤ i ≤ m}, (4)

for ai ∈ En and βi ∈ R. A basic result of convex polytopes maintains that we may regard

a convex polytope as a bounded solution set of finitely many closed half-spaces in En or

as the convex hull of a non-empty finite set A ⊂ En. Remarkably, while the descriptions

of a convex polytope as that of a H-polytope or as a V-polytope are equivalent, the

computational complexity associated with describing each differs in the extreme. For

instance, the n-dimensional cross-polytope as a V-polytope is defined as the convex hull

of the set of 2n points

γn = conv{π(±1, 0, . . . , 0), π ∈ Sn}, (5)

whereas, as a H-polytope, the n-cross-polytope is described by 2n half-spaces

γn = {x ∈ En | 〈a,x〉 ≤ 1}, (6)
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where a runs through all vectors in {−1, 1}n. The surface of octahedron, a 3-cross-

polytope, consists of six 0-dimensional faces called vertices, twelve 1-dimensional faces

called edges and eight 2-dimensional faces called facets. Generally, the faces of an

n-dimensional convex polytope have dimensions −1, 0, 1, . . . , n with −1 denoting the

dimension of the empty set with the face of dimension j being called a j-face. Finally,

for A ⊂ En, a convex polytope is called a k-polytope if dim conv A = k. This implies

that some (k+1)-subset of A is affinely independent but no such (k+2)-subset is affinely

independent (Ziegler (1995)).

3. A note on Rado’s theorem

Rado (1952) characterized the convex hull of the set of all permutations of any real

n-tuple in terms of the Hardy-Littlewood-Pólya partial order relation (see Hardy et al

(1934), p.45) for real n-tuples. We now state Rado’s theorem and discuss the nature of

the convex set established by the theorem.

Theorem 3.1 (Rado (1952)) Let a ∈ En and Va be the convex hull of the set of

permutations of a. Then x ∈ Va if and only if x ≺ a.

The polytope of Rado (1952) is the (n−1)-dimensional permutahedron of degree n

embedded in the n-dimensional space En. Since the vertices are obtained by permuting

the integers (1, 2, . . . , n), this permutahedron of degree n lies entirely in an (n − 1)-

dimensional hyperplane consisting of all points whose coordinates sum to the integer

1 + 2 + . . . + n = n(n + 1)/2. For the application in quantum state identification, we

concern ourselves with the construction of n-dimensional polytopes of degree n in the

n-dimensional space En that exploit the key feature of Rado’s theorem. We now show

that a necessary and sufficient condition for such polytopes requires a set of (n − 1)-

dimensional bounding facets to contain points whose coordinate sums differ.

Proposition 3.2 Let a, b ∈ En. Let Va and Vb denote the convex hull of the set of

permutations of a and b, respectively. Then Va ∩ Vb = ∅ if and only if
∑

k≤n αk 6=∑
k≤n βk.

To establish proposition 3.2, we make use of the following results. Let A =

conv{a1, . . . , am} ⊂ En be a non-empty convex set. By the relative interior of A, relintA,

we mean those points a ∈ En for which a =
∑m

i=1 λiai with λi > 0, for i = 1, . . . , k, and∑m
i=1 λi = 1.

Lemma 3.3 (Grünbaum (2003)) Let A, B ⊂ En be nonempty convex sets. Then A and

B can be properly separated if and only if

relintA ∩ relintB = ∅. (7)

Lemma 3.4 If a, b ∈ En such that
∑

k≤n αk =
∑

k≤n βk, then Va and Vb can not be

properly separated by a hyperplane Hu,α,

Hu,α = {z ∈ En | 〈z, u〉 = α} , (8)
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Figure 1. Truncated octahedron: sign permutation polytope with basis vector

a = (0, 1, 2) centered at the origin. The truncated octahedron is an Archimedean

solid consisting of 8 regular hexagonal facets, 6 square facets, 36 edges and 24 vertices.

for u ∈ En \ {o}, and α ∈ R.

Proof. See Appendix A. Proof of proposition 3.2.

Let us suppose that
∑

k≤n αk =
∑

k≤n βk. By lemma 3.4, the convex hulls Va and

Vb can not be properly separated. Consequently, by lemma 3.3, we have Va∩Vb 6= ∅ and

the implication follows. On the other hand, suppose Va ∩ Vb 6= ∅. Hence there exists

x ∈ Va ∩ Vb, and therefore numbers λi ≥ 0, µi ≥ 0 satisfying
∑

i≤m λi =
∑

i≤m′ µi = 1

such that x =
∑

i≤m λiai and x =
∑

i≤m′ µibi. For l ≤ n and x = (x1, x2, . . . , xn) ∈ En,

we have it that∑
k≤l

xk =
∑
k≤l

∑
i≤m

λiαik =
∑
i≤m

λi
∑
k≤l

αik ≤
∑
i≤m

λi
∑
k≤l

α∗k =
∑
k≤l

α∗k, (9)

with equality for l = n. Similarly, for l ≤ n, we have it that∑
k≤l

xk =
∑
k≤l

∑
i≤m′

µiβik =
∑
i≤m′

µi
∑
k≤l

βik ≤
∑
i≤m′

µi
∑
k≤l

β∗k =
∑
k≤l

β∗k , (10)

with equality for l = n. The implication follows, and this completes the proof. �
While proposition 3.2 illustrates a necessary and sufficient criterion to construct

an n-dimensional polytope if given an initial (n − 1)-dimensional permutahedron, it

suggests a generalization of Rado’s theorem is not readily available since the inclusion

of an arbitrary point does not preserve the majorization criterion. For example, consider

a, b ∈ En and further consider the polytope described by taking the convex hull of Va
and Vb. Let us denote such a polytope by conv{Va,Vb}. For some x ∈ Va and y ∈ Vb,
the question of whether a point z ∈ En is contained in the polytope conv{Va,Vb} can

be verified by showing that there exists a suitable λ ∈ R, 0 ≤ λ ≤ 1, such that

z = λx + (1 − λ)y. Consequently, we can demonstrate that z ≺ λa + (1 − λ)b, and,

hence, z ∈ conv{Va,Vb} but only at the insistence of a suitably chosen scalar λ ∈ R.
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4. Sign permutation polytopes

Let us instead consider the task of constructing a polytope whose vertices are not

arbitrary n-tuples in En. We adapt the theorem of Rado (1952) to construct an n-

dimensional polytope of degree n in En with vertices given by sign permutation points

of En and an interior that admits a characterization with respect to the partial order of

weak majorization.

Consider the convex polytope whose vertices consist of the set of sign permutations

on the integers (1, 2, . . . , n) defined as the set of all permutations of (±1,±2, . . . ,±n).

We call such a polytope consisting of 2nn! vertices a sign permutation polytope, see

figure 1. The sign permutation polytope is n-dimensional convex polytope of degree n

in the n-dimensional space En. More generally, denote by V±π(a) the sign permutation

polytope given as the convex hull of componentwise sign permutation changes of a ∈ En;

V±π(a) = conv{(±απ(1),±απ(2), . . . ,±απ(n)), π ∈ Sn}. (11)

Let a∗ ∈ En denote again that vector whose components are those of a arranged in

non-increasing order of magnitude. Let b ∈ En be defined analogously. If the relations∑
k≤l

α∗k ≤
∑
k≤l

β∗k (12)

hold, for 1 ≤ l ≤ n− 1, and∑
k≤n

α∗k <
∑
k≤n

β∗k , (13)

we then say a is weakly majorized by b, and write a ≺w b. Let En+ denote the set

En+ = {(α1, . . . , αn) | αi ≥ 0, i = 1, . . . , n}.

Corollary 4.1 Let a, x ∈ En+. Then x ∈ V±π(a) if and only if x ≺w a.

Proof. If x ∈ V±π(a), then there are numbers λi and vectors ai, i = 1, 2, . . . ,m, for

m ≤ 2nn! such that ai ≺w a, λi ≥ 0,
∑

i≤m λi = 1 and x =
∑

i≤m λiai. Then since

ai ≺w a, we have it that x =
∑

i≤m λiai ≺w
∑

i≤m λia = a for λi ≥ 0, i = 1, 2, . . . ,m,

and
∑

i≤m λi = 1. On the other hand, suppose x ≺w a while x /∈ V±π(a). Using the

Hahn-Banach separation argument of Rado (1952), the reverse implication is readily

established, and the result follows. �
We make note of the following relationship between the convex hulls of V±π(a) and

V±π(x).
Corollary 4.2 Let a, x ∈ En+. Let V±π(a) and V±π(x) denote the convex hull of sign

permutations of a, x ∈ En+, respectively. Suppose x ≺w a. Then V±π(x) ⊆ V±π(a).
Proof. Given a, x ∈ En+ with x ≺w a, we have it that ±π(x) ≺w x for π ∈ Sn. Noting

that ≺w is a partial order then transitivity of ≺w establishes ±π(x) ≺w ±π(a), and the

result follows. �

Remark 4.3 We note that Mirsky (1959) has constructed a polytope similar to the

polytope of corollary 4.1 restricted to the positive orthant of n-dimensional Euclidean

space. Markus (1964) characterized the boundary of the sign permutation polytope.
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A regular polytope generalizes the Platonic solids to arbitrary dimensions. For

the n-dimensional spaces En with n ≥ 5, there are only three regular convex polytopes

(Coxeter (1948)). These are the n-dimensional regular simplex, the n-dimensional cross-

polytope and the n-dimensional cube. For a = (α, 0, . . . , 0) ∈ En, the sign permutation

polytope V±π(a) degenerates to the class of cross-polytopes βn. The cross-polytope βn
can be described in terms of the 2n vertex set {π(±α, 0, . . . , 0), π ∈ Sn}, or, equally,

in terms of the 2n half spaces γn = {x ∈ En | 〈a,x〉 ≤ 1}, where a runs through all

vectors in {−1, 1}n. For a = (α, α, . . . , α) ∈ En, the sign permutation polytope V±π(a)
coincides with the n-cube γn which can be evaluated either in terms of the 2n half-

spaces {x ∈ En | − α ≤ xk ≤ α, for 1 ≤ k ≤ n}, or, equivalently, with respect to

the 2n vertex set {(±α,±α, . . . ,±α)}. More generally, if we consider the n-tuple of real

coefficients a = (α1, . . . , αm, 01, . . . , 0n−m) ∈ En consisting of k ≤ n distinct coefficients

of multiplicity mi, 1 ≤ i ≤ k, then the number of distinct sign permutations, i.e.

vertices, in the set {π(±α1, . . . ,±αm, 01, . . . , 0n−m), π ∈ Sn} is

2nn!

2n−m m1! . . .mk−1!(n−m)!
. (14)

Consequently, we have it that the sign permutation polytope V±π(a) given by

conv{π(±α1, . . . ,±αm, 01, . . . , 0n−m), π ∈ Sn}, (15)

has a vertex set of order 2mn!/(m1! . . .mk−1!(n−m)!). We see again that for m = 1, the

sign permutation polytope V±π(a), a = (α1, . . . , αm, 01, . . . , 0n−m) ∈ En, m ≤ n, describes

the n-dimensional cross-polytope βn, and for m = n and k = n, the sign permutation

polytope coincides with the n-dimensional cube γn. For a = (α, 0, . . . , 0) ∈ En+1, we

note that the n-dimensional regular simplex αn is a permutation polytope of degree

n+ 1 defined as the convex hull of all permutations of the vector a ∈ En+1.

Finally, for what follows, we derive the volume and insphere radius for the n-cross-

polytope.

Lemma 4.4 Let α ≥ 0. The volume of the n-dimensional cross-polytope

conv{π(±α, 0, . . . , 0), π ∈ Sn} of edge length
√

2α is (2α)n/(n)!.

The cross-polytope βn is a composition of 2n convex regions with each region

corresponding to an orthant of βn. The convex region determined by the positive orthant

of βn is an n-dimensional cone of height α. In En, the volume of the cone of height h

over an (n − 1)-dimensional base of volume B is given as Bh/n. By induction, the

volume of the cone in the positive orthant of βn is αn/n!. Consequently, the volume of

βn is (2α)n/n!.

Next we consider the inscribed sphere of the cross-polytope.

Lemma 4.5 The insphere of the cross-polytope conv{π(±α, 0, . . . , 0), π ∈ Sn}, α ≥ 0,

of side length
√

2α has radius rin = α/
√
n.

Proof. We maximize the n-dimensional sphere
∑n

i=1 xi
2 = r2 subject to the constraint∑n

i=1 xi = α. The constraint
∑n

i=1 xi = α represents the coordinate sum of the points
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on the facet of the cross-polytope in the positive orthant of En. Let L(x1, x2, . . . , xn) =∑n
i=1 xi

2 − λ (
∑n

i=1 xi − α) . By the method of Lagrange multipliers, we have it that

∇L(x1, x2, . . . , xn) = {2xi − λ, i = 1, . . . , n} with
∑n

i=1 xi = α. Solving the system of

equations yields xi = α/n for i = 1, . . . , n, and the result follows. �

5. Quantum sign permutation polytopes

A fundamental topic of quantum information theory has been the characterization of

entanglement amongst states of a quantum system. A natural question concerns the

partitioning of the set of all states of some finite dimensional composite quantum system

according to entanglement type. It has been shown that all bipartite entangled pure

states are asymptotically equivalent, up to local operations and classical communication,

to the Einstein-Podolsky-Rosen state (Bennett et al (1996)). For systems of three or

more parties, there are several equivalence classes of different entanglement types (Vidal

(2000)). We note the particular instance of three qubit systems in which Dür et al

(2000) has shown that there are two equivalence classes possessing genuine tripartite

entanglement.

In this article, we focus on the construction of sign permutations polytopes

within the space of quantum states, paying attention to three-qubit systems. We

demonstrate the construction of quantum sign permutation polytopes for both pure and

mixed quantum states, and we utilize the weak majorization feature admitted by sign

permutation polytopes to classify a certain subset of quantum states. The construction

of sign permutation polytopes from section 4 can be translated to the quantum world

as follows.

Let d ∈ N and let H denote the d-dimensional complex Hilbert space. Let Md

denote the set of states that coincide with the set of d× d complex Hermitian matrices

with non-negative eigenvalues and unit trace which act on the Hilbert space H;

Md = {% | % = %†; % ≥ 0; Tr% = 1}. (16)

Md is a (d2−1)-real-dimensional convex set and the vertices of this set form a 2(d−1)-

dimensional subspace of the (d2 − 2)-dimensional boundary ∂Md. The set of density

matrices of Md consists of pure and mixed states and the pure states correspond to

the extreme points of this set. For % ∈ Md, % is a pure state if and only if %2 = %

with % written as a rank one projector onto H. Otherwise, % is a mixed state, and we

write % as a convex combination of pure states. Noting that any general n-dimensional

affine space A is isomorphic the n-dimensional affine space En (Brøndsted (1983)), we

put n = d2 − 1, and introduce a correspondence between a state %a ∈ Md and a point

a ∈ Ed2−1 by
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Md → Ed2−1 (17)

%a =

 α1 α2 + α3ι . . .

α2 − α3ι α4 . . .
. . .

 7→


α1

α2

α3

α4

...


= a. (18)

To ensure that n-dimensional polytopes have non-zero volume in En, we require that

the dimension of the corresponding affine hull be n+ 1. This fact may be demonstrated

by noting that affine independence of an (n+ 1)-family of points in En is established if

and only if there is linear independence amongst an augmentation of the (n+ 1)-family

of points in En+1.

Lemma 5.1 (Brøndsted (1983)) Let {ai} ∈ En, i = 0, . . . , n, and let τ(a) : En → En+1

be defined by τ(a) = (a, 1). The set {ai}, i = 0, . . . , n, is affinely independent in En if

and only if {(ai, 1)}, i = 0, . . . , n, is linearly independent in En+1.

Proof. Suppose that {ai}, i = 0, . . . , n, is affinely independent in En, i.e.,
∑n

i=0 λiai
vanishes in En and

∑n
i=0 λi vanishes in R only when λi = 0, i = 0, . . . , n. In particular,

we have (
∑n

i=0 λiai,
∑n

i=0 λi) =
∑n

i=0 λi(ai, 1) = (0En , 0R) = 0En+1 only when λi = 0,

i = 0, . . . , n. Consequently, {(ai, 1)}, i = 0, . . . , n, is linearly independent in En+1.

Conversely, suppose that {(ai, 1)}, i = 0, . . . , n, is linearly independent in En+1, i.e.,∑n
i=1 µi(ai, 1) = 0En+1 only when µi = 0, i = 0, . . . , n. Therefore,

∑n
i=0 µiai = 0En and∑n

i=0 µi = 0R occurs only when µi = 0, i = 0, . . . , n. Thus, {ai}, i = 0, . . . , n, is affinely

independent in En, and the result follows. �

5.1. Pure state polytopes

Definition 5.2 A pure state polytope is a polytope whose vertex description is given

by a set of pure states, i.e., conv{%i} where %i ∈Md such that Tr%2i = 1, %i = %†i , %i ≥ 0

and Tr%i = 1. A pure state sign permutation polytope is a polytope whose vertex set is

constructed by applying the set of sign permutations on a pure state and admitting only

those sign permutations that yield a valid pure quantum state.

Let % ∈M2 be a pure qubit state,

% = 1/2

(
1 + Pz Px − iPy
Px − iPy 1− Pz

)
with Px

2+Py
2+Pz

2 = 1 and Px, Py, Pz ∈ R. The parametrization of % ∈M2 is given by

(Px, Py, Pz) ∈ R3. Applying the set of sign permutations to the qubit parametrization

(1/
√

2, 0, 1/
√

2) and taking only those sign permutations that return valid pure quan-

tum states yields the cuboctahedron of Figure 2.
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Figure 2. Qubit Cuboctahedron: sign permutation polytope with basis vector

(1/
√

2, 0, 1/
√

2). The cuboctahedron consists of 8 triangular faces, six square faces, 24

edges and 12 vertices.

For the construction of a quantum sign permutation polytope from a pure state

|ψ〉 ∈ H, we enumerate the set of sign permutations on the Euclidean representative of

density matrix |ψ〉 〈ψ| ∈ Md and consider only those sign permutations ±πpure for which

±πpure(|ψ〉 〈ψ|) is again a pure state. For three-qubit systems, the general description

of a pure state |ψ〉 is given by

|ψ〉 = λ0 |000〉+ λ1e
ιθ |100〉+ λ2 |101〉+ λ3 |110〉+ λ4 |111〉 (19)

where λi ≥ 0, 0 ≤ θ ≤ π and
∑

i λ
2
i = 1 (Aćın et al (2001)). Dür et al (2000) have shown

that non-trivial tripartite entanglement of three qubit systems can be described in terms

of two equivalence classes. In particular, a state in the system of three qubits possessing

genuine tripartite entanglement may be a Greenberger-Horne-Zeilinger (GHZ) state for

which a typical representative state is given by

|GHZ〉 = 1/
√

2 (|000〉+ |111〉) . (20)

On the other hand, a three-qubit state may be in the W class of tripartite entangled

states. A quantum state is said to be W-type entangled if λ4 = θ = 0 in (19). A typical

representative state for those states possessing W-type entanglement is given by

|W 〉 = 1/
√

3 (|100〉+ |010〉+ |001〉) . (21)

As an example, we construct a quantum polytope of high dimensionality for

some fixed affine space that possesses W-type entanglement. For such a polytope, we

considered a random three-qubit pure W-state |W 〉 = 0.758ι |0〉 +(0.809 − 0.588ι) |2〉
+(0.809 + 0.588ι) |5〉 +0.242 |7〉. Taking the set of all possible sign permutations on

the parameterized vector, we construct the polytope vertex set by only including those

sign permutations that correspond that valid W-type entangled pure quantum states.

W-type entanglement is ensured by showing a vanishing 3-tangle on the set of valid

quantum states. The 3-tangle, τ3, is the measure most often utilized to distinguish

between the GHZ- and W- class of three-qubit states (Coffman et al (2000)). For

pure states, the 3-tangle is equivalent to the absolute value of a quantity known as

Cayley’s hyperdeterminant (Cayley (1845)), and is known to vanish for those states
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possessing W-type entanglement. In our example, there are 248!/4! = 26880 possible

sign permutations for a general three-qubit W-type entangled state of which a total of

5376 pure points are returned as possessing W-type entanglement.

5.2. Mixed state polytopes

Definition 5.3 A mixed state polytope is a polytope whose vertex description is given

by a set of mixed states, i.e., conv{%i} where %i ∈Md such that Tr%2i < 1, %i = %†i , %i ≥ 0

and Tr%i = 1. A mixed state sign permutation polytope is a polytope whose vertex set

is constructed by applying the set of sign permutations on a mixed state and admitting

only those sign permutations that yield a valid quantum state.

An open problem of multipartite entanglement is the identification of the

entanglement type for a given quantum state. Appealing to the theory of convex sets

may help resolve the issue of multipartite entanglement identification whereby a state

of unknown entanglement type is described as a convex combination of states of a

fixed entanglement type. As noise has always to be considered for an experiment, we

are interested in describing a volume (an ε-ball) around the given state which is still

of the same entanglement type. However, achieving a lower bound on the allowed ε-

environment requires knowledge about the facet set of a polytope of a fixed entanglement

type. For n-dimensional convex polytopes consisting of a vertex set of order m, the set

of hyperplanes can be of the order mbn/2c (Matousek (2002)). In this instance, an ε-ball

argument to identify multipartite entanglement is rendered inefficient.

Let us now suppose that there exists a convex decomposition of a given state

% ∈ Md in terms of states of a fixed entanglement type (Kampermann et al (2010)).

We consider the construction of quantum sign permutation polytopes whose vertex set

is now contained in the convex hull of the given convex decomposition. The volume

of the constructed sign permutation polytope allows conclusions about the robustness

of state identification. For efficiency in high dimensions, we consider the restriction

of a general sign permutation polytope to that of the n-cross-polytope. The quantum

polytope analysis proceeds in two parts. The initial part of the process is concerned

with the construction of the regular n-cross-polytope. In a second algorithm we address

the robustness of the identification process.

Algorithm 5.4 constructs a sign permutation polytope of edge length
√

2α, α ∈ R,

centered on a given state % ∈ Md. The resulting polytope describes a convex hull of

states of a certain entanglement type by ensuring that the vertices of the constructed

quantum polytope be written as a convex composition of points from the initial convex

set of states possessing a fixed entanglement type. We assume that the convex set input

of algorithm 5.4 has order m > d2 − 1. This is because we wish construct polytopes

with non-zero volume centered on a mixed state in Md.
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1.

%?

%1 Md

%2...

%m

2. Ed2−1

%̃?

%̃1
%̃2 ...

%̃m

3.
Ed2−1

?

T%̃(%̃1)

T%̃(%̃2)...

T%̃(%̃m)

4. Ed2−1

%̃?

%̃1

%̃2 ...

%̃m

5.

Md

%
?

%1

%2...

%m

Figure 3. Constructing a quantum (d2 − 1)-cross-polytope: V±π(a), π ∈ Sd2−1 with

basis vector a = (α, 0, . . . , 0). 1. illustrates the given state % as a convex combination of

states of a fixed entanglement type. 2. 3. and 4. illustrate the construction of V±π(a)
centered on %̃ while 5. shows a (d2− 1)-quantum-cross-polytope centered on the given

state % ∈Md.

Algorithm 5.4 Quantum polytope construction

Input:

(i) Given state % ∈Md

(ii) Convex set of states of a fixed entanglement type, %i ∈ Md for i = 1, . . . ,m and

m > d2 − 1, such that % =
∑m

i=1 λi%i, λi ≥ 0 and
∑m

i=1 λi = 1. (Kampermann et al

(2010))

Output: Quantum (d2 − 1)-cross-polytope of a fixed entanglement type with edge

length
√

2α centered at %, volume (2α)d
2−1/(d2 − 1)! and an inscribed sphere of radius

rin = α/
√
d2 − 1, see lemma 4.4 and lemma 4.5.

Procedure:

(i) Let %̃ ∈ Ed2−1 denote the Euclidean vector associated with % ∈ Md. Let %̃i ∈
Ed2−1, i = 1, . . . ,m, be analogously defined.

(ii) Let T%̃(a) : a − %̃, a ∈ Ed2−1, be an affine transformation on Ed2−1. Let

conv{T%̃(%̃i), i = 1, . . . ,m} be the translate of conv{%̃i, i = 1, . . . ,m} under T%̃.

(iii) For suitable α ∈ R, we ensure that the set of sign permutations of the vector

(α, 0, . . . , 0) ∈ Ed2−1+ is contained in the convex hull of T%̃(%̃i), i = 1, . . . ,m.

(iv) Maximise α ∈ R such that the set of 2(d2 − 1) points {π(±α, 0, . . . , 0), π ∈ Sd2−1}
are still contained in the convex hull of T%̃(%̃i), i = 1, . . . ,m.

(v) Let T−1%̃ (a) be an affine transformation on Ed2−1 given by T−1%̃ (a) : a+ %̃, a ∈ Ed2−1.

Then

conv{T−1%̃ ({π(±α, 0, . . . , 0), π ∈ Sd2−1})} (22)
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is the (d2 − 1)-dimensional cross-polytope with edge length
√

2α and volume

(2α)d
2−1/(d2 − 1)! centered at %̃ and contained in the convex hull conv{%̃i, i =

1, . . . ,m}.

Step (i) of algorithm 5.4 establishes a correspondence between the set of density

operators Md and vectors in Euclidean space Ed2−1, see figure 3 (1. and 2.). The

quantum states % and %i, for i = 1, . . . ,m, are mapped to their corresponding

representatives in Ed2−1. Step (ii) describes the translation transformation T%̃ that

acts on the set of classical vectors %̃ and %̃i, for i = 1, . . . ,m. Under T%̃, the vector

%̃ ∈ Ed2−1 is mapped to the o ∈ Ed2−1. Correspondingly, the set %̃i, for i = 1, . . . ,m,

is mapped to a surrounding neighbourhood of the origin. Step (iii) then constructs

a sign permutation polytope with edge length
√

2α centered at origin for the basis

vector a = (α, 0, . . . , 0) ∈ Ed2−1+ , see figure 3 (3.). Step (iv) utilizes a divide and

conquer algorithm (O’ Rourke (1998)) to ensure that the value α ∈ R in the basis

vector induces the polytope of maximum volume. By lemma 4.5, the constructed sign

permutation polytope has volume (2α)d
2−1/(d2 − 1)!. Since this polytope is defined by

taking the sign permutations of the vector (α, 0, . . . , 0) ∈ Ed2−1+ , the construction yields

the regular (d2 − 1)-dimensional cross-polytope. Step (v) implements the translation

transformation T−1%̃ on the set of vertices of the constructed cross-polytope. Since a

translate of a convex polytope is again a convex polytope, a consequence of result

x+ convM = conv(x+M) (Brøndsted (1983)), for x ∈ En and M ⊂ En, it follows that

conv{T−1%̃ ({π(±α, 0, . . . , 0), π ∈ Sd2−1})} is a regular cross-polytope centered at %̃ with

edge length
√

2α and volume (2α)d
2−1/(d2 − 1)!, see figure 3 (4.). Since any (d2 − 1)-

dimensional affine space is isomorphic to the Euclidean space Ed2−1, the constructed

polytope yields a desired quantum polytope inMd with respect to the Hilbert-Schmidt

norm, see figure 3 (5.). �
The next stage in the process addresses the question of robustness of multipartite

entanglement identification. Algorithm 5.6 makes use of the weak majorization criterion

to determine the points %′ ∈ Md in the convex hull of a constructed sign permutation

polytope. The set of points %′ ∈ Md can be represented as the state % ∈ Md plus

noise in the quantum system. We make use of the following result from Życzkowski and

Sommers (2003).

Theorem 5.5 (Życzkowski and Sommers (2003)) The volume of the (d2 − 1)-

dimensional set of states Md with respect to the Hilbert-Schmidt measure is given by

VolHS(Md) =
√
d
πd(d−1)/2

2(d−1)/2
Γ(1) . . .Γ(d)

Γ(d2)
(23)

where Γ(·) is the Euler gamma function.

Algorithm 5.6 On the robustness of state identification

Input:

(i) Cross polytope conv{π(±α, 0, . . . , 0), π ∈ Sd2−1} of edge length
√

2α and volume

(2α)d
2−1/d2 − 1! associated with a quantum polytope of a fixed entanglement type.
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Ed2−1

?

T%̃(%̃1)

T%̃(%̃2)...

T%̃(%̃m)

T%̃(%̃′ )∗

V±π(a)

Figure 4. Translate of an arbitrary state %′ , T%̃(%̃′), contained in the convex hull of

the (d2 − 1)-cross-polytope V±π(a), π ∈ Sd2−1 with basis vector a = (α, 0, . . . , 0).

(ii) Given state % ∈Md.

(iii) An arbitrary state %′ ∈Md.

Output: The fraction of the volume of Md describing the set of all states in the

constructed sign permutation polytope possessing an entanglement type comparable to

the state ρ ∈Md.

Procedure:

(i) Let %̃′ ∈ Ed2−1 denote the Euclidean vector associated with an arbitrary state

%′ ∈Md.

(ii) Let T%̃(%̃′) be the image of %̃′ under the mapping T%̃(a) : a− %̃, a ∈ Ed2−1.
(iii) Consider the positive cone Ed2−1+ := {(α1, . . . , αd2−1) ∈ Ed2−1|αi ≥ 0}. For suitable

sign changes, let T+%̃(%̃′) be the image of T%̃(%̃′) in the positive cone Ed2−1+ .

(iv) Implement corollary 4.1: Letting V±π(a) denote the cross-polytope conv{π(±α, 0, . . . , 0),

π ∈ Sd2−1} of edge length
√

2α. Then

T+%̃(%̃′) ∈ V±π(α) ⇔ T+%̃(%̃′) ≺w α. (24)

(v) If T+%̃(%̃′) ≺w α then T+%̃(%̃′) is contained in sign permutation polytope V±π(α).
Consequently, T+%̃(%̃′) represents a state in the

2(2d+3)(d−1)/2αd
2−1

√
dπd(d−1)/2Γ(1) . . .Γ(d)

(25)

fraction of all states contained in sign permutation polytope V±π(α) which possesses

an entanglement type comparable to state ρ ∈Md.

Step (i) of algorithm 5.6 considers a given arbitrary state %′ ∈ Md to describe the set

of states differing from % ∈ Md. By analyzing the classical representation of %′ ∈ Md,

a characterization of quantum states possessing an entanglement type comparable to

V±π(α) can be achieved. Step (i) begins by evaluating the classical representation

of %′; %̃′ ∈ Ed2−1. Step (ii) implements the translation transformation T%̃(a) on
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%̃′ ∈ Ed2−1 thus translating %̃′ ∈ Ed2−1 to a neighbourhood of the cross-polytope

V±π(α) = conv{π(±α, 0, . . . , 0), π ∈ Sd2−1}. Step (iii) prepares the point %̃′ ∈ Ed2−1

for the weak majorization criterion of corollary 4.1 by placing %̃′ ∈ Ed2−1 in the positive

cone Ed2−1+ for suitable sign changes. Step (iv) then implements the weak majorization

criterion for point inclusion in a sign permutation polytope. If T+%̃(%̃′) ≺w α then

noting T%̃(%̃′) ≺w T+%̃(%̃′), it follows by the transitive property of weak majorization

that T%̃(%̃′) ≺w α, see figure 4. Consequently, T%̃(%̃′) ∈ V±π(a). Finally, step (v) returns

the fraction of states of Md contained in the quantum cross-polytope V±π(α) centered

on the state % ∈ Md. This fraction is given as ratio of the volume of the quantum

cross-polytope V±π(α) to the volume of the set of all density matrices (Życzkowski and

Sommers (2003)). �
Algorithm 5.6 introduced the fraction of all states of Md contained in a

quantum sign permutation polytope possessing an entanglement type equivalent to the

entanglement type of the state centered at the given quantum polytope. This fraction

was established in terms of the ratio of Hilbert-Schmidt volumes. However, a Euclidean-

ε-ball argument describing the distance between a given state and a set of states of

comparable entanglement type may also be considered. By lemma 4.5, the insphere of

the constructed quantum polytope conv{π(±α, 0, . . . , 0), π ∈ Sd2−1} given in algorithm

5.4 is of radius α/
√
d2 − 1. Letting ε = α/

√
d2 − 1, the set of states %′ ∈Md contained

in ε-ball possessing an entanglement type comparable to that of the state % ∈ Md is

given by the Hilbert-Schmidt distance

‖%′ − %‖HS ≤ α/
√
d2 − 1. (26)

Now we note that the volume of an n-dimensional sphere of radius r is Vn = Sn−1r
n/n

with Sn−1 = 2πn/2/Γ(n
2
) denoting the hyper-surface area of an n-sphere of unit radius,

and Γ(·) denoting the Gamma function (Bengtsson and Życzkowski (2006)). For radius

rin = α/
√
d2 − 1, the (d2− 1)-dimensional insphere of the cross-polytope of edge length√

2α has volume

Vd2−1 =
2π(d2−1)/2αd

2−1

Γ(d
2−1
2

)(d2 − 1)d2+1
. (27)

On the other hand, the volume of the (d2 − 1)-dimensional cross-polytope of edge

length
√

2α is (2α)d
2−1/(d2 − 1)!. Comparing these volumes yields an estimate that the

(d2 − 1)-dimensional insphere of radius α/
√
d2 − 1 is approximately (π/4)(d

2−1)/2 that

of its respective cross-polytope. Consequently, while the characterization of arbitrary

states with respect to polytope construction herein which possess an entanglement type

comparable to the given state % ∈Md is readily obtainable by both weak majorization

and Euclidean norm calculations, arguing robustness of identification in terms of volume

ratios between quantum sign permutation polytopes and the space of density matrices

may be of some merit.

Finally, the lower bound on the fraction of states introduced in algorithm 5.6 may

be improved by considering the construction of the sign permutation polytope V±π(α)
with a = (α1, . . . , αm, 01, . . . , 0d2−1−m), m ≤ d2 − 1, denoting a multiset of k distinct
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elements of multiplicity mi (1 ≤ i ≤ k). This approach is more costly and requires that

2mn!/(m1! . . .mk−1!(n−m)!) vertices be evaluated as convex combinations of an initially

given convex set of density matrices with a fixed entanglement type. Furthermore,

the resulting polytope structure loses regularity exhibited by the n-cube and n-cross-

polytope thereby making volume calculation difficult.

6. Conclusion

We discussed the construction of n-dimensional polytopes of degree n in the n-

dimensional Euclidean space En called sign permutation polytopes, and presented a

necessary and sufficient condition that characterizes the points of these polytopes. We

related the construction of sign permutation polytopes in Euclidean space to the space

of density matrices. As an application of such quantum polytopes, we considered

the robustness of identifying those states of a fixed entanglement type. This process

proceeded in two stages, the first stage concerned the construction of a convex polytope

with a vertex set of a fixed type entanglement. The second stage characterized via

weak majorization the fraction of all quantum states contained in the convex hull of

a constructed convex polytope which possess an entanglement type comparable to the

polytope’s center state.
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Appendix A

Proof of lemma 3.4. Let us suppose otherwise. Then for x ∈ Va and y ∈ Vb there is

a hyperplane Hu,α such that

〈x, u〉 < α ≤ 〈y, u〉. (A.1)

Since
∑

k≤n yk =
∑

k≤n βk, we may take the hyperplane H1n,
∑

k≤n yk
, 1n = (1, . . . , 1) ∈

En, to be the representative for the set of hyperplanes Hu,α that place Vb in one of the

closed halfspaces of En, see Appendix B. In particular, Vb is in the halfspace H+
1n,

∑
k≤n yk

that satisfies
∑

k≤n yk ≤ 〈y, 1n〉. Now, 〈x, 1n〉 =
∑

k≤n xk. Consider the sum
∑

k≤n xk.

For x ∈ Va there are non-negative scalars λi, i = 1, . . . ,m with m ≤ n! such that∑
i≤m λi = 1 and x =

∑
i≤m λiai. Therefore, we have it that∑

k≤n

xk =
∑
k≤n

∑
i≤m

λiαik =
∑
i≤m

λi
∑
k≤n

αik =
∑
i≤m

λi
∑
k≤n

ak, (A.2)

since
∑

k≤n αik =
∑

k≤n αk for i = 1, . . . ,m. Furthermore, since
∑

k≤n αk =
∑

k≤n βk,

we have αj =
∑

l≤nβl −
∑

l≤n

l 6=j
αl for j ∈ {1, . . . , n}. It follows that equation (A.2) may
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Figure B1. Permutahedron: Va, a = (1, 2, 3)

be written as ∑
i≤m

λi

(∑
k≤n

k 6=j
αk +

∑
l≤n

βl −
∑

l≤n

l 6=j
αl

)
, (A.3)

for j ∈ {1, . . . , d}. Simplifying, we write equation (A.3) as
∑

i≤m λi
∑

l≤n βl. Since there

are numbers µi ≥ 0 satisfying
∑

i≤m′ µi = 1, we then have it that
∑

i≤m λi
∑

l≤n βl =∑
i≤m′ µi

∑
l≤n βl. Moreover, since

∑
k≤n βk =

∑
k≤n βik, for i = 1, . . . ,m′, it follows

that
∑

i≤m′ µi
∑

l≤n βl may be given by∑
i≤m′

µi
∑
l≤n

βl =
∑
l≤n

∑
i≤m′

µiβl =
∑
l≤n

∑
i≤m′

µiβil =
∑
l≤n

yl. (A.4)

Therefore, 〈x, 1n〉 = 〈y, 1n〉, and this contradicts the initial assumption that the convex

hulls Va and Vb can be properly separated. This completes the proof. �

Appendix B

We construct the hyperplane Hu,α with the property Hu,α ∩ Va 6= ∅.

Example 1: Constructing hyperplanes for the permutahedron Va with a = (1, 2, 3), see

figure B1.

Taking the points (2, 1, 3) and (2, 3, 1), we have it that the parametric equation of

hyperplane (line) containing these points is given by H1 : (0, 2,−2)s+(2, 3, 1), for s ∈ E.

For any z ∈ H1, we may write z componentwise as z1 = 2, z2 = 2s + 3, z3 = −2s + 1,

s ∈ E. Now since a hyperplane may be written in the form

Hu,α =
{
z ∈ Ed | 〈z, u〉 = α

}
(B.1)

for u ∈ Ed\{0}, and α ∈ Rd, we may rewrite H1 in terms of the Hu,α form. We put

α =
∑
ak = 6. Then 2u1+(2s+3)u2+(−2s+1)u3 = r. In particular, we have it thatHu,6

is constrained by 2u1 + 4u2 = 6 with u2 = u3. We determine the remaining hyperplanes

in a similar fashion. Proceeding anticlockwise, H2 = (1,−1, 0)s + (3, 2, 1), for s ∈ E.

Rewriting H2 in terms of an Hu,6 expression, the candidate vector u ∈ E3 is constrained
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by the equation 5u1 + u3 = 6 with u1 = u2. The hyperplane H3 = (0,−1, 1)s+ (3, 1, 2),

for s ∈ E, rewriting H3, the candidate vector u ∈ E3 is constrained by the equation

3u1 + 3u2 = 6 with u2 = u3. The hyperplane H4 = (−2, 2, 0)s + (1, 3, 2), for s ∈ E,

rewriting H4, the candidate vector u ∈ E3 is constrained by the equation 4u1 + 2u3 = 6

with u1 = u2. The hyperplane H5 = (0, 1,−1)s + (1, 3, 2), for s ∈ E, rewriting H5, the

candidate vector u ∈ E3 is constrained by the equation u1 + 5u2 = 6 with u2 = u3.

Finally, the hyperplane H6 = (−1, 1, 0)s + (1, 2, 3), for s ∈ E and rewriting H6 in the

form Hu,6, the candidate vector u ∈ E3 is constrained by the equation 3u1 + 3u3 = 6

with u1 = u2. Note that while each evaluated hyperplane has infinitely many solutions,

a candidate that satisfies each of the particular constraints is the vector with compo-

nents all equal to 1. Of course, since the direction vectors in each of the parametric

expressions are permutations of each other then a candidate vector u ∈ E3 which sat-

isfies all of the above constraints is precisely that vector which, under permutation of

indices corresponding to the direction vectors, generates a solution vector u′ ∈ E3 for

all hyperplane Hu′,6. The only such candidate is the vector u = (1, 1, 1).

Example 2: Constructing hyperplanes for Va, a = (1, 2, . . . , n).

Continuing in the manner of above, we seek a candidate hyperplane for the

set of all hyperplanes bounding Va entirely in a closed halfspace. We claim the

hyperplane given by H
1n,

n(n+1)
2

, 1n = (1, . . . , 1) ∈ En, is such a candidate. Taking

the vector a = (1, 2, . . . , n) ∈ En, the associated permutahedron Va is defined as

the convex hull of all vertices obtained by permuting the coordinates of the vector

a. Since the set of vertices connected by and edge to the vector a are exactly those

permutations of vector a that differ by an adjacent transposition, we have it that the

set of vertices connected by an edge to vertex a is the set {(1, 2, . . . , n − 2, n, n − 1),

(1, 2, . . . , n − 1, n − 2, n), . . . , (2, 1, . . . , n)}. Taking the vertex a ∈ En together with

any n − 2 vertices of the connecting set, of which there are n − 1 possible choices,

determine a (n − 2)-dimensional hyperplane. Fix the hyperplane H1 to contain the

set of vertices connected by an edge to the vector a ∈ En that exclude the last vertex

(2, 1, 3, . . . , n). The parametric equation for the hyperplane H1 is written in terms of

the directions vectors {(0, . . . , 0, 1,−1), (0, . . . , 0, 1,−1, 0), . . . , (0, 1,−1, 0 . . . , 0)}. Each

direction vector is represented as the difference between the vertex a and an element

of the set {(1, 2, . . . , n − 2, n, n − 1), (1, 2, . . . , n − 1, n − 2, n), . . . , (1, 3, 2, . . . , n)}.
Rewriting H1 in the Hu,α form with α = n(n+1)

2
, we have it that the candidate

vector u ∈ En is constrained by the equation u1 +
(
n(n+1)

2
− 1
)
u2 = n(n+1)

2
with

u2 = u3 = . . . = un. Next, the hyperplane H2 determined by the vertex a ∈ En

and its set of connecting vertices that excludes the vertex (1, 3, 2, 4, . . . , n) has its

parametric expression written as linear combination of the set of direction vectors

{(0, . . . , 0, 1,−1), (0, . . . , 0, 1,−1, 0), . . . , (0, 0, 1,−1, 0 . . . , 0), (1,−1, 0, . . . , 0)}. Writing

the parametric equation of the hyperplane H2 in terms of the H
u,

n(n+1)
2

form, we have the

candidate vector u ∈ En constrained by u1 +
(
n(n+1)

2
− 1
)
u3 = n(n+1)

2
with u1 = u2 and
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u3 = u4 = . . . = un. In a similar manner, the remaining n−3 hyperplanes containing the

vertex a can be formed. Solving for the vector u ∈ En that determines the hyperplane

H
u,

n(n+1)
2

associated with H1 and H2 yields the vector 1n = (1, . . . , 1) ∈ En. It follows

that H
1n,

n(n+1)
2

may be taken as the representative for the set of hyperplanes containing

vertex a ∈ En. Furthermore, since all vertices a′ ∈ En of the permutahedron Va ⊂ En

are permutations of the vertex a, for πa′ ∈ Sn, then the set of hyperplanes containing

the point a′ ∈ En can be rewritten in terms of a hyperplane H
u,

n(n+1)
2

for some candidate

vector u ∈ Ed. For such a candidate u ∈ En and permutation π−1a′ ∈ Sn, H
π−1
a′ (u),

n(n+1)
2

is a representative hyperplane for the set of hyperplane containing the vertex a ∈ En.

Consequently, H
π−1
a′ (u),

n(n+1)
2

= H
1n,

n(n+1)
2

. In particular, π−1a′ (u) = 1. Since the vector

with all components equal to 1 is invariant under permutations of the indices, it follows

that H
1,

n(n+1)
2

may be taken as a representative for the set of all hyperplanes bounding

Va entirely in a closed halfspace with the property that Hz,α ∩ Va 6= ∅.
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