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Abstract. The Fibonacci sequence is a famously well-known integer sequence from the
thirteenth century which has transcended its original motivation. It possesses many interested
and varied applications within architecture, engineering and science. Less well known is the
Narayana sequence which itself has interesting and wide-ranging Fibonacci-type connections. In
this paper, we shall recall Narayana’s original motivation that gives rise to the sequence bearing
his name. We also provide an interesting application of this sequence to the construction to
quantum gate circuitry used in quantum computation.

1. Introduction
A celebrated feature of mathematics is the way in which it perpetually demonstrates good
bridge-building capabilities between seemingly unrelated topics of study. An example of this
extraordinary feature relates to the class of sequences called integer sequences which derives its
name from the property that its sequence terms are integers. The terms of an integer sequence
may be specified explicitly with respect to a formula, or implicitly through a recurrence relation
(Sloane 1973). Integer sequences can be analyzed by a variety of techniques, some of which
include the application of a data compression algorithm (Bell et al 1990), computation of the
discrete Fourier transform (Loxton 1989), and evaluation of its generating function (Wilf 2005).
Additionally, there are also a large number of transformation methods which can be applied to
integer sequences, including the Euler transform, exponential transform and Möbius transform.

The Fibonacci sequence is an integer sequence that itself displays good bridge-building
capabilities. Each term in this sequence is produced by adding together the two previous
terms and the sequence takes its name from the famous thirteenth century mathematician
Fibonacci, whose use he explained in his 1202 Liber abaci (Sigler 2002). The Fibonacci sequence
is a sequence that is well-understood. The famous astronomer Johannes Kepler observed that
the ratio of consecutive Fibonacci terms approached the famous golden ratio. It is through
this connection that the Fibonacci sequence is widely recognized in art and architecture.
Interestingly, and equally well-known is that the Fibonacci sequence also helps explain patterns
that arise within biological contexts. The applications and important consequences that
arise from the Fibonacci sequence demonstrate the this sequence has transcended it original
motivation (Liber abaci). We now ask whether there exist other Fibonacci-like sequences
possessing important applications which transcend the original motivations of the sequence in
question.
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Figure 1. Circuit descriptions for the CNOT gate types. (a) The CNOT1 gate; the control
system |m〉 ∈ HA remains unchanged after application whereas the state of the target system
|n〉 ∈ HB is transformed under modular arithmetic to the state |n⊕m〉 with m,n ∈ Zd. (b)
The CNOT2 gate in which the roles of systems HA and HB are reversed.

2. Narayana’s Cows
Narayana was a fourteenth century Indian mathematician who gives name is given to a
Fibonacci-inspired problem based on an idealized population of cows. For the sake of
completeness, we shall state this problem (Waldschmidt 2009): A cow produces one calf every
year. Then, beginning in its fourth year, each calf produces one calf at the beginning of each year.
How many cows are there altogether after seventeen years? The Narayana sequence overlaps
closely with that of Fibonacci; indeed, its nth-term is defined as

a(n) = a(n− 1) + a(n− 3) (1)

with initial conditions a(0) = a(1) = a(2) = 1. For what follows, it will be useful to enumerate
initial values of the Narayana sequence:

1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, . . . (2)

The online encyclopedia of integer sequences records some interesting combinatorial connections
offered by the Narayana sequence (Sloane). However, we shall present an application of the
Narayana sequence which relates to the construction of optimal gate circuits that can be used
for quantum computation. We now present preliminary material which will serve as a basis for
our study.

3. Quantum Computation
Crucial for successful quantum computation is the requirement that engineers can build robust
multiple-qubit quantum gates. The most elementary of all multiple-qubit quantum gates are
given by two-qubit controlled unitary operators, and a classic example of these is the controlled-
NOT (CNOT) gate. In terms of a classical perspective, the CNOT gate is the quantum analogue
of the classical XOR gate. Barenco et al 1995 have shown that any multiple-qubit quantum
operation may be restricted to compositions of single-qubit gates and the CNOT gate. It is for
this reason that the CNOT gate has acquired the special status as the hallmark of multi-qubit
control. Now, researchers in quantum computation have done considerable work in optimizing
quantum circuitry networks. An important milestone in this direction related to general two-
qubit operations requiring at most three CNOT gates (Vatan and Williams 2004). A crucial
aspect of this result is the demand that the qubit SWAP gate requires at least three CNOT
gates. Consequently, the SWAP gate has taken a prominent position in many quantum circuitry
designs.

3.1. Elementary quantum gates
Let H represent the d-dimensional complex Hilbert space Cd, and let us fix each orthonormal
basis state of the d-dimensional Hilbert space to map to an element of the ring of integers
modulo d, Zd. This yields the basis {|0〉 , |1〉 , . . . , |d− 1〉} ⊂ Cd whose elements correspond to
the d column vectors of the identity matrix Id is called the computational basis. We say a qudit
is a d-dimensional quantum state |ψ〉 ∈ H which can be expressed as |ψ〉 =

∑d−1
i=0 αi |i〉 where



h
t

t
h

h
t|ψ〉

|φ〉

|φ〉

|ψ〉

Figure 2. The SWAP gate illustrating the cyclical permutation of two qubits. System A begins
in the state |ψ〉 and ends in the state |φ〉 while system B begins in the state |φ〉 and ends in the
state |ψ〉.
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Figure 3. A qutrit SWAP gate that cyclically permutes the states of three qutrits. This gate is
composed of eight two-qutrit CNOT gates

αi ∈ C and
∑d−1

i=0 |αi|2 = 1. Given d-dimensional Hilbert spaces HA and HB, consider the set of

d2×d2 unitary transformations U ∈ U(d2) that act on the two-qudit quantum system HA⊗HB.
Let UCNOT1 ∈ U(d2) represent the generalized CNOT gate that has control qudit |ψ〉 ∈ HA and
target qudit |φ〉 ∈ HB. The action of UCNOT1 on the set of basis states |m〉 ⊗ |n〉 of HA ⊗HB is
given by

UCNOT1 |m〉 ⊗ |n〉 = |m〉 ⊗ |n⊕m〉 , m, n ∈ Zd, (3)

with ⊕ denoting addition modulo d. Similarly, let U CNOT2 ∈ U(d2) denote the generalized
CNOT gate having control qudit |φ〉 ∈ HB and target qudit |ψ〉 ∈ HA. The action of UCNOT2 on
the set of basis states |m〉 ⊗ |n〉 of HA ⊗HB is written

UCNOT2 |m〉 ⊗ |n〉 = |m⊕ n〉 ⊗ |n〉 , m, n ∈ Zd. (4)

Fig. 1 provides the quantum gate circuitry representation for the respective CNOT types while
Fig. 2 illustrates the well-known SWAP gate that permutes the states of two qubits, for d = 2.

4. The Narayana sequence and a qutrit SWAP gate
Let d = 3 and consider the following problem. Given three qutrit quantum systems: system A
in the state |a〉; system B in the state |b〉; and system C in the state |c〉. Using only instances
of the two-qutrit CNOT gate, determine the gate that implements a SWAP of the input states
so that system A ends in the state |b〉, system B ends in the state |c〉, and system C ends in the
state |a〉. Our construction method is presented in Fig. 3.

Construction Method: Let k and l be positive integers. For non-negative integers j,
consider the function

f(j) =

(
j

k

)
mod l. (5)

Integer functions of this type are periodic and we will make special use of this fact in the
construction. In particular, we shall focus on the set of modular binomial coefficients given by

aj =

j/3∑
i=0

(
j − 2i

i

)
mod 3 (6)



aj (mod 3)︷ ︸︸ ︷
e1, e2, e0, e0 ⊕ e1, . . .
↑ ↓↑

0 0 1 1 1 2 3 4 6 9 13 19 28 . . .

1 0 0 1 1 1 2 3 4 6 9 13 19 . . .

0 1 0 0 1 1 1 2 3 4 6 9 13 19 . . .
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Figure 4. A quantum network composed entirely in terms of CNOT gates illustrating a cyclic
SWAP of three 3-dimensional states. The columns of the array above describe the state of the
system following the application of respective CNOT gates. In particular, system A1 is in the
state |e0 + e1〉1 following the application of the first CNOT gate. As the columns of array are
periodic (modulo 3), a repeated application of generalized CNOTs on successive pairs of quantum
systems induces a network design that eventually permutes the states of 3 qutrits

where we show how these coefficients, the terms of the Narayana sequence, can be used to
construction of a regular generalized SWAP gate for qudits.

Fig. 4 describes our circuit design for a generalized SWAP gate for three 3-dimensional
quantum states. The design is outlined in terms of a regular sequence of CNOT gates (modulo 3)
that act on successive pairs of quantum states. The columns of the array in Fig. 4 describe the
states of the target quantum systems after the corresponding CNOT gates have been applied.
The up-down arrow between the array and network indicates the correspondence between system
A1 being in the state |e0 + e1〉1, where e0 + e1 is calculated modulo 3, and the application of
the first CNOT gate. The sum e0 + e1 is represented as the dot product of the row vector
(e0, e1, e2) and the corresponding column vector (1, 1, 0)T. A similar case holds for subsequent
CNOT applications. As a result of taking the dot product between regularly repeating column
vectors representing three translations of the Narayana sequence modulo 3 and the row vector
(e0, e1, e2), we can trace the Narayana sequence to an ordering of eight qutrit CNOT gates which
induce the required cyclic SWAP of original qutrit input states.
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