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Abstract 

The feasibility of low temperature fabrication of transparent electrode elements from thin 

films of Antimony doped Tin Oxide (SnO2:Sb, ATO) has been investigated via inkjet 

printing, rf magnetron sputtering and post deposition excimer laser processing.   Laser 

processing of thin films on both glass and plastic substrates was performed using a 

Lambda Physik 305i excimer laser, with fluences in the range 20mJcm
-2
 – 100mJcm

-2 

reducing sheet resistance from as-deposited values by up to 3 orders of magnitude.  This 

is consistent with TEM analysis of the films that shows a densification of the upper 200 

nm of laser processed regions.  
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1. Introduction 

In the field of plastic electronics and displays, there is a need to develop materials and 

processes that are compatible with large scale, low cost, production techniques. For 

plastic electronics, and particularly flexible displays, one of the major challenges that this 

presents is the need to produce optimised transparent electrodes and light emitting layers 

on low temperature substrates.    In terms of available transparent electrode materials, 
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indium doped tin oxide (ITO) remains the material of choice for most display and 

lighting applications, due to its excellent optical transparency and conductivity.   

However, while the deposition of ITO by sputtering is a well developed process, it is one 

that poses several  problems in the current and future requirements for this sector.  A 

critical issue with commercial ITO deposition is the materials waste generated by 

conventional sputtering - where up to 65% of a target is unused.   With indium demand 

outstripping supply, the need for a viable alternative material is consequently highlighted, 

and ideally one that can address the materials wastage issues associated with 

conventional deposition and subtractive patterning techniques. 

 

The work presented here is the result of a collaborative investigation into the use of an 

alternative to indium tin oxide for a study of inkjet printing and laser processing.  

Antimony doped tin oxide, ATO (SnO2:Sb) has been selected for the study, due to the 

feasibility of fabricating nanoparticulate source material suitable for both suspension in 

an aqueous solution for inkjet printing, and pressing into solid sputtering targets suitable 

for use in sputter deposition.   The investigation has been specifically concerned with the 

study of low temperature deposition and patterning techniques for the production of 

transparent conducting layers of ATO.  The processes investigated are inkjet printing and 

low temperature rf magnetron sputter deposition followed by excimer laser processing to 

enhance conductivity using processes that are compatible with flexible substrates. 

2. Experimental Details 

The ATO source material was supplied by Keeling & Walker Ltd as a nano-particulate 

aqueous dispersion with an agglomerate size of less than 100nm, which is sufficient to 

impart transparency. The aqueous solution was formulated for inkjet printing by 

Patterning Technologies Ltd. The formulation has been designed to provide stable jetting 

with good wetting characteristics on a variety of substrates and with minimal Marangoni 
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effect. In all cases, unless otherwise stated, the ATO film was created with two wet 

passes in the inkjet printer, creating a single 90mm x 70mm layer. 

For comparison with sputter deposition, the ATO powder was pressed into a 5mm thick 

70mm diameter circular target, using a hydraulic target press operating at room 

temperature.  Sputter deposition was performed in a custom built rf-magnetron sputtering 

system described previously [1] with the substrate facing down, and with no substrate 

heating.  During the deposition process, the maximum temperature attained by the 

substrate is 80ºC.   A range of printed and sputtered layers were deposited for the 

investigation onto substrates consisting of borosilicate glass and polyester flexible 

substrates (Cronar).  

 

The effect of thermal and excimer laser annealing of the deposited films was investigated 

using atmospheric thermal annealing in a furnace, and excimer laser via krF 248nm 

irradiation. The resultant films were analysed for thickness, sheet resistance, 

transparency, crystallinity and microstructure.   Sheet resistance (Rs) measurements were 

carried out using a linear four-point probe. The transmission spectrum of the sample from 

400 – 1000nm was measured using a Filmetrics F20 thin film analyser and thickness 

measurements were taken using a Veeco optical profilometer (NT1100). Laser 

processing  was carried out with a LPX305i KrF Excimer laser at fluences < 100mJcm-2.  

 

The laser processing system used for both ablation and post print processing is shown in 

Figure 1.  This is a configuration also used for laser processing work on thin film 

phosphors for displays [2, 3] and has been demonstrated to facilitate large area 

processing of display substrates via a sample step and repeat process [4].  Lower fluences 

(appropriate for this work) are obtained by attenuation of the raw beam prior to 

homogenation using the Fresnel reflections from fused silica plates (Hoya Plates) as 
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shown in Fig 1.  Beam energy during irradiation is monitored with an in-situ energy 

meter, as shown in Fig. 1. 

 

The short pulse width of the laser beam (20ns) coupled with the high absorption 

coefficient of ATO at 248nm (1.5 x 10
5
cm

-1
) is expected to confine the energy 

dissipation due to the incident beam to the upper 150-200nm of the film [5],with minimal 

effect on the substrate.   

 

3. Results and Discussion 

Initial results from a study of the effect of laser processing on inkjet printed films of 

ATO on glass were presented previously [6].  A variety of laser irradiation parameters 

were investigated to study the effect of varying fluence and number of pulses incident on 

the samples. Irradiation was at a repetition rate of 4Hz to avoid cumulative thermal 

effects [7]. The samples were processed in air at atmospheric pressure. 

 

In all cases, laser processing of these printed ATO films resulted in reductions in sheet 

resistance from the as deposited figure of 4-5MOhm/sq, with optimum values obtained at 

100 pulses of 40 – 70mJcm-2 .  For example, values of Rs = 300kOhm/sq were obtained 

with 100pulses at 70mJcm-2 .  The corresponding optical transmission of these samples 

decreased from 94% to 90% at 550nm following laser processing.  Higher fluences, or a 

higher number of pulses resulted in an increase in Rs and an decrease in optical 

transmission, concomitant with the observation of ablation and roughening of the film.   

 

In order to provide reference samples for comparison with the low temperature laser 

processing, thermal annealing of printed ATO on glass substrates was carried out in a 

Carbolite CWF 12/5 furnace ramping the sample from room temperature to 440ºC over 

30mins and then slowly cooling back to room temperature over 90 minutes, resulting in a 
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decrease in sheet resistance to typical values of 1-3kOhm/sq.  Optical transparency of the 

printed films was very good with 94% transmission at 550nm, dropping to 92% after 

thermal annealing, which is in agreement with results reported for sol gel films [8,9].  

 

For the new work presented here, further batches of samples were prepared to investigate 

the effect of combining thermal and laser processing, and to examine the feasibility of 

fabricating transparent conductive films on low temperature substrates.  Laser processing 

was then undertaken on films that had previously been thermally annealed to 400ºC for 1 

hour.  The results, presented in Fig 2, show further reduction in Rs from the post thermal 

anneal value of 3.6kOhm/sq to a final figure of 1kOhm/sq.  These films were more 

mechanically stable than films that had not been thermally annealed prior to laser 

processing – indicating an enhanced bonding with the substrate.  This combined process 

also produced the most conductive films to-date from the inkjet printed films.   A single 

sample was irradiated across the full sample area and Rs was measured before and after 

processing at 25 locations across the printed area.  Uniformity of Rs was very good both 

before and after laser processing with average Rs = 831 Ohm/sq, σ (standard deviation) = 

183 Ohm/Sq, after thermal annealing, and average Rs = 489 Ohm/sq, σ = 42Ohm/Sq 

after subsequent laser processing with 100 pulses at 70mJcm-2.    

 

Samples that were thermally annealed following laser processing did not exhibit such an 

overall improvement, but attained values comparable to the results produced by thermal 

annealing alone, following initial reductions due to laser processing consistent with the 

results of the initial study reported in reference 5.   

 

From XRD and scanning electron microscopy studies of these films, it is evident that 

there is no significant increases in crystallinity, or grain size, observed for either the 

thermally annealed or the majority of the laser processed films,  There is, however,  some 
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limited evidence that higher fluence and/or pulse number of laser irradiations leads to 

enhanced crystalline ordering as indicated by a slight increase in XRD peak height, but 

this is inconclusive and will be the subject of a separate study using glancing XRD 

analysis.   

 

Surface roughness measurements give a more direct indication of a sintering, or 

densification effect that correlates to improved conductivity.  Ra values determined by 

optical profilometry and stylus profilometry show the as-deposited surface roughness 

varying between 20-35nm across the samples, with typical post-processed Ra values 

(both thermal and laser processed) at between 3-10nm.    This indicates that the increase 

in conductivity is probably linked to the reduction of energy barriers at grain boundaries, 

possibly in combination with the modification of charge carrier densities due to the 

formation of enhanced donor sites via thermal processes.  The low surface roughness 

measurements are also of interest for device fabrication – particularly display devices.  

Indeed, ATO deposited by sol-gel processes has recently been used to improve the 

surface roughness of ITO films for use in display applications, since with ITO films, 

localised spikes are an issue [10]. 

 

The ultimate aim of this work is to identify processes that could be used to fabricate 

transparent conductive layers by inkjet printing onto flexible substrates, rather than glass.  

This consequently requires a low temperature process that is compatible with the 

substrates used.  Polyester substrates are of interest for use in flexible display and 

electronics manufacture, but require processing temperatures to be maintained at 

temperatures typically less than 150ºC - 200ºC.  The potential for excimer laser 

processing of inkjet printed ATO on polyester is thus of interest for the feasibility of 

transparent conductive layers being patterned via an additive rather than subtractive 

process, and also for the benefit of low temperature processing.  For this phase of the 
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investigation, a range of ATO layers and patterns were printed onto polyester (Cronar) 

substrates at room temperature, with no post deposition thermal processing.  Printing was 

undertaken using the same two pass process as performed previously on the glass 

substrates. Measured sheet resistance values across printed 3cm x 3cm samples give an 

average Rs of  2.7MOhm/sq with σ = 0.324MOhm/sq. 

 

Laser processing of these films was performed at 20mJ/cm-2 and 100mJcm-2 for a range 

of total pulse number irradiations, with the results showing good reduction of Rs as a 

function of processing parameters, as shown in Fig 3, with optimum conditions resulting 

in printed films with an optical transparency of 89% at 550nm, and Rs = 200kOhm/sq..  

In all cases, irradiation at 20mJcm-2 did not produce any visible damage to the substrates 

or film. At 100mJcm-2, some roughening of the film surface was observed, but there was 

no damage to the substrate.  Hence, while further investigation and refinement is 

necessary to reduce Rs further, these results clearly demonstrate the feasibility of using 

excimer laser processing, or an equivalent flash annealing process, combined with inkjet 

printing for the fabrication of transparent conducting electrodes onto flexible substrates. 

 

Fig 4  shows the result of high resolution transmission electron microscope analysis of 

inkjet printed ATO films on polyester substrates before and after laser processing.  The 

nanoparticulate structure of the ATO film is clearly visible in the micrographs, 

confirming the primary particle size to be ~ 10nm.  Following laser processing at 

70mJcm-2  1000 pulses, Fig. 4b shows a clear region of densification at the surface of the 

film that is consistent with the expected penetration depth of the 248nm irradiation – to ~ 

200nm.  This physical transformation of the upper surface correlates to the improvement 

in conductivity observed, and indicates that there is a probable reduction in electron 

barrier height between grains as a result of defect and void removal via this densification.   

Similar results were observed by SEM analysis of samples on glass substrates – 
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indicating a densification at the film surface following laser processing, but the results 

shown in Fig 4 are more conclusive, due to the ease of preparing TEM samples from the 

films on polyester.  Further analysis is underway, and there is evidently an opportunity to 

examine the use of longer wavelength irradiation in combination with the 248nm process, 

in an attempt to increase the conductivity by a more thorough in-depth densification of 

the ATO. 

 

Finally, as a comparison to the inkjet printed thin films, a series of samples were 

deposited onto borosilicate glass substrates using a custom built rf-magnetron thin film 

deposition system [1].  Films were deposited using the following parameters: Ar:O2. 

10% O2  sputtering gas maintained at 5mTorr pressure, with 100W rf power applied to 

the 70mm diameter pressed powder sputtering target, mounted onto a Kurt Lesker Torus 

electrode.  The substrate was mounted onto a heated rotating substrate holder facing 

down, with the electrode head 15 cm from the substrate at an angle 30° to the normal.  

For this work, the heater was not used, but monitoring of the substrate temperature 

during deposition indicates that the maximum temperature attained due to the plasma 

heating effect is 80°C.   Films were deposited to a thickness of 350 – 400nm. The 

resultant films were conductive with sheet resistances of the order of  3–10kOhm/sq, and 

optical transparency at 550nm of 88%.  Hence, in comparison to the printed films, the as-

deposited conductivity is enhanced, but transparency is reduced. SEM observation 

reveals the expected columnar polycrystalline structure of sputtered films.  

Post deposition laser processing was performed as with the printed films.  In all cases, the 

use of 248nm irradiation resulted in an improvement in conductivity, with the best 

improvements at fluences and pulse number similar to the optimum demonstrated for the 

printed films.  A typical result is shown in Figure 5  where the initial sheet resistance of 

10.7kOhm/sq ± 0.2kOhm/sq  is reduced to 1.7kOhm/sq ± 0.02kOhm/sq following 100 

pulses at 50mJcm-2.   Unlike with the printed films, initial electron microscopy analysis 
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does not indicate a dramatic change in the film density at the upper surface, but it is 

suspected that a similar process of defect removal is occurring to reduce energy barriers 

at grain boundaries, and this is currently being investigated further. 

4. Conclusions 

A study of potential low temperature techniques for use in the fabrication of transparent 

conducting oxides on flexible substrates has been undertaken.  Inkjet printing of ATO 

films has been demonstrated as a viable technique for the additive patterning of 

transparent conducting layers onto glass and polyester substrates.  Thermal annealing of 

these films at 400ºC  results in useful conductivities in the range of ≤ 1KOhm/Sq, which 

is applicable to device work on glass substrates, and which indeed has been used as a 

basis for the fabrication of inorganic electroluminescent display demonstrators [11].  The 

use of thermal annealing, however, precludes use of low temperature substrates, but laser 

processing with 248nm KrF irradiation has been demonstrated to be a viable method for 

reducing the as-printed sheet resistance by an order of magnitude.  This improvement is 

consistent with an observed densification of the upper 200nm of the ATO films following 

the irradiation treatment.  The reduced Rs values are due to a low resistance upper layer 

in parallel with the higher resistance lower section of the film.  It is thus expected that 

this effect can be exploited by the use of variable wavelength irradiation in an attempt to 

process the full depth of the film for higher conductivities.  In addition, the fluence levels 

that have been demonstrated to be optimum for this work are < 100mJcm-2, which 

implies that alternative UV based pulsed annealing techniques could be suitable for this 

application.  Finally, the use of Excimer laser processing to realise conductive 

transparent films deposited by low temperature rf-magnetron sputter deposition has been 

demonstrated, based on sputter deposition of the ATO nanoparticulate powder that has 

been used for the inkjet printing trials.  Optimum laser processing parameters are similar 

to those appropriate for the printed films. 
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Figure Captions 

 

Fig.1. Schematic diagram to show the optical system used for excimer laser processing of 

ATO thin films. 

 

Fig. 2. Sheet resistance, Rs, as a function of laser processing irradiation pulse number, for 

printed ATO thin films on glass substrates that have been laser processed at 60mJcm
-2
 

following a thermal anneal to 400ºC for 1 hour.  The data point at 0 pulses represents the 

film following thermal annealing. 

 

Fig 3. Sheet resistance, Rs, as a function of laser processing irradiation pulse number, for 

printed ATO thin films on polyester substrates following laser processing at 20mJcm
-2
.  

The data point at 0 pulses represents the as-deposited film. 

 

Fig 4. Transmission electron micrographs showing cross sectional images of 1 µm thick 

ATO thin films inkjet printed onto polyester sunstrates: (a) as-deposited film illustrating 

primary nanoparticulate structure of the film, (b) identical sample following laser 

processing at 70mJcm
-2
, 1000 pulses, indicating enhanced densification of upper 200nm. 

 

Fig 5. Sheet resistance, Rs, as a function of laser processing irradiation pulse number, for 

rf-sputtered ATO thin films on glass substrates, following laser processing at 80mJcm
-2
.  

The data point at 0 pulses represents the as-deposited film. 
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