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Abstract 

The nine-dot problem is often used to demonstrate and explain mental impasse, creativity, and 

out of the box thinking. The present study investigated the interplay of a restricted initial 

search space, the likelihood of invoking a representational change, and the subsequent 

constraining of an unrestricted search space. In three experimental conditions, participants 

worked on different versions of the nine-dot problem that hinted at removing particular 

sources of difficulty from the standard problem. The hints were incremental such that the first 

suggested a possible route for a solution attempt; the second additionally indicated the dot at 

which lines meet on the solution path; and the final condition also provided non-dot locations 

that appear in the solution path. The results showed that in the experimental conditions, 

representational change is encountered more quickly and problems are solved more often than 

for the control group. We propose a cognitive model that focuses on general problem solving 

heuristics and representational change to explain problem difficulty.  

 

Keywords: Nine-Dot Problem, Insight, Heuristics, Search, Representational Change
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There is growing evidence that an insight to the solution of a problem can be characterized by 

a representational change (Knoblich, Ohlsson, Haider, & Rhenius, 1999; Ohlsson, 1984a, 

1992; Öllinger, Jones, & Knoblich, 2008; Thevenot & Oakhill, 2008). This evidence makes it 

difficult to explain insight problem solving within the classical information-processing 

account (Newell & Simon, 1972), where problem solving is understood as search within a 

well-defined problem space (problem representation). The problem space account has no 

mechanism to implement a representational change for instances when the current search gets 

stuck, is insufficient, or does not reduce the distance to the desired goal.  

There are a few accounts that attempt to remedy this omission. One suggestion is to 

claim that insight problems are nothing special and therefore representational change plays 

only a marginal role. For such explanations, problem difficulty relates either to the size of the 

problem space being overly large and preventing exhaustive search (Kaplan & Simon, 1990), 

or that problem solvers apply inappropriate heuristics when searching the problem space 

(MacGregor, Ormerod, & Chronicle, 2001; Ormerod, MacGregor, & Chronicle, 2002). Both 

accounts miss a cognitive process that addresses the change of the search space. In the first, 

an additional process is necessary that re-focuses on particular areas of the search space by 

changing the problem representation; in the second an additional cognitive process is required 

that changes the search space after repeated failures of the problem solving process.  

Ohlsson (Knoblich et al., 1999; Ohlsson, 1984a, 1984b, 1992) provided a detailed 

framework that stressed the importance of a representational change for insight problem 

solving, and identified impasse as a crucial pre-condition. Moreover, Ohlsson (1992) 

identified at least three different processes that drive a representational change and thereby 

break an impasse: elaboration, re-encoding, and constraint relaxation. Although Ohlsson’s 

model (1992, p. 20) incorporates search as a necessary process before an impasse is met, the 

framework mainly focuses on what processes occur to release the problem solver from 

impasse, without a great deal of elaboration on the particular nature of search processes before 
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and after an impasse. Jones (2003) provided a model that elaborated Ohlsson’s notion that 

insight problem solving can be understood as a sequential process of different phases (search 

– impasse – insight – search, see also Ash & Wiley, 2006). This model suggests that there 

might be a concerted interplay of search and impasse, with each affecting the other. The goal 

of the present study is to apply an extension of this model (see Figure 1) to the famous nine-

dot problem.  

Our general proposal is that insight problem solving is a dynamic search process that 

proceeds in consecutive stages. In line with Ohlsson (1992) we assume that perceptual 

processes and prior knowledge define what is and is not represented in the initial problem 

representation. This representation is searched and constrained by heuristics (e.g., MacGregor 

et al., 2001; Newell & Simon, 1972). The search could be either successful, at which point the 

search terminates and a solution is found, or the search can lead to repeated failures and an 

impasse is reached (Ohlsson, 1992). The smaller the search space is, the faster the realization 

that no further progress is possible (Kaplan & Simon, 1990; Ormerod et al., 2002). If impasse 

was caused by the problem representation being inadequate, then it must be overcome by a 

representational change. The likelihood of achieving representational change is largely 

governed by the difficulty in relaxing self-imposed prior knowledge constraints that have 

been placed on the problem or in decomposing problem elements into their constituent parts 

(see Knoblich et al., 1999 for more information). Should representational change be 

achieved1, a new problem representation is established that subsequently changes the problem 

space (to be smaller or larger, ordinarily). Once again, heuristics are necessary that efficiently 

search of the modified problem space.  

 

                                                 
1 It does not follow that reaching impasse on a problem automatically produces a representational change (i.e. 

insight), since this is not always the case (Jones, 2003). Equally, whether insight is achieved and if so how 

quickly it is achieved depends on multiple factors, such as the difficulty of a change to the problem 

representation and how large the problem space is (Knoblich et al., 1999; Kershaw et al., 2013).   
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---Please insert Figure 1 about here --- 

 

 

The model is an elaboration of Ohlsson’s representational change theory and has similar 

implication: First, insight is caused by a representational change. Second, there is no 

particular class of insight problems that necessarily requires a representational change; each 

problem can be solved without insight if the initial problem representation is adequate and the 

appropriate heuristics are available. Third, the difficulty related to attaining insight can have 

different causes (Kershaw, Flynn, & Gordon, 2013; Kershaw & Ohlsson, 2004). Whereas 

previous models have highlighted the role of perception, memory, and heuristics, the present 

model tries to capture the interplay between these factors. Doing so it acknowledges that for 

each problem there can be different combinations of causes of problem difficulty that have to 

be considered. For instance, Jones (2003) demonstrated for the car park problem that 

heuristics play an important role before an impasse, but breaking the impasse required a 

representational change. Recently, Öllinger and colleagues (2012) demonstrated that for 

different versions of the eight-coin problem (Ormerod et al., 2002) the main source of 

problem difficulty is determined by the required representational change. Nevertheless, 

although heuristics had no overall impact on solution rates, they still predicted the selection of 

coins. 

In the present study we applied the above model to the nine-dot problem (Maier, 1930) 

that has kept problem solving researchers busy over the last decades (Burnham & Davis, 

1969; Chronicle, Ormerod, & MacGregor, 2001; Kershaw & Ohlsson, 2004; Lung & 

Dominowski, 1985; MacGregor et al., 2001; Maier, 1930; Scheerer, 1963; Weisberg & Alba, 
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1981). There is clear evidence for multiple causes of problem difficulty in this problem 

(Kershaw & Ohlsson, 2004) and it thus provides an opportunity to better understand the 

interplay of search and representational change. In the nine-dot problem, solvers need to 

connect nine dots that are arranged in a 3 x 3 square with four straight lines without lifting the 

pen off the paper (see Figure 2a and 2b). It has consistently been shown that giving only a few 

minutes of time, the problem is extremely difficult to solve (see Kershaw and Ohlsson, 2004).  

 

 

--- Please insert Figure 2 about here --- 

 

Explaining the difficulty of the nine-dot problem 

According to the model depicted in Figure 1, one source of difficulty in the nine-dot problem 

is that problem solvers initially only consider moves that remain within the 3 x 3 grid (due to 

a perceptually driven boundary constraint that keeps lines within the perceived 3 x 3 square). 

That is, the problem solver is working within a problem space that is overly constrained, but 

still too large to be exhaustively searched (Burnham & Davis, 1969; MacGregor et al., 2001). 

After repeated failure within the overly constrained problem space, the task for the problem 

solver is to accomplish a representational change – thus overcoming the boundary constraint 

(Ohlsson, 1992; Kershaw & Ohlsson, 2004). However, relaxing the boundary constraint now 

leads to a problem space that is much too large, because if lines can begin and/or end, or turn 

at non-dot locations then there are a potentially infinite number of lines that can be drawn (see 

also Kaplan & Simon, 1990). We believe that this is why previous research has found that 

even when the boundary constraint is relaxed (Weisberg & Alba, 1981), participants still find 

that solution to the nine-dot problem is evasive unless they are given further information that 

may constrain the problem space (e.g. specification of non-dot locations or specification of 

the configuration of the solution path).  
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Consequently, we investigated the extent to which perceptual hints that relate to the 

solution path in the nine-dot problem facilitate its solution. In particular, we examined the 

effects of perceptual information both pre-impasse and post-impasse – first, the amount of 

(perceptual) solution path information that is needed to restrict the initial search space to 

facilitate the problem solver reaching impasse and to overcome the boundary constraint; and 

second, how much information is needed to constrain the subsequent post-insight problem 

space in order to solve the nine-dot problem. Hitherto perceptual hints have provided minimal 

benefit in increasing the solution rate of the nine-dot problem (Weisberg & Alba, 1981; Lung 

& Dominowski, 1985; Chronicle, Ormerod & MacGregor, 2001; Kershaw & Ohlsson, 2004). 

For example, providing explicit hints to draw lines beyond the virtual nine-dot square 

(Burnham & Davis, 1969; Weisberg & Alba, 1981) and providing explicit perceptual hints 

that indicate that lines go beyond the virtual square (Chronicle, et al., 2001) had limited 

influence on solution rates. Even when two additional dots in different colours were provided 

at the non-dot locations, there was little effect (Ormerod et al.,1997, see Figure 2c). 

Apparently, the different colour of the dots made it difficult to integrate the dots into the 

solution, and more importantly, as Kershaw and Ohlsson (2004) showed, it is still difficult to 

realize that a change in the direction of a line (i.e., a non-dot turn) is necessary at non-dot 

locations. That is, there are two aspects that have to be taken into account. First, achieving a 

representational change to overcome the boundary constraint and thereby drawing lines to 

non-dot locations, resulting in a relaxed search space; and second, using efficient heuristics 

that guide the search process in making non-dot turns within the relaxed search space. 

Our model suggests that – in line with Kershaw and Ohlsson (2004) – the nine-dot 

problem has multiple sources of difficulty. The key reason that perceptual hints have thus far 

proved ineffective in the nine-dot problem is because the post-impasse search space is too 

large to navigate successfully within a limited time period. By using appropriate perceptual 

information to guide the problem solver, we hope to demonstrate how and why perceptual 
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hints can direct attention and increase solution rates dramatically. For instance, guiding 

attention to the crucial problem elements significantly increases the solution rates of insight 

problems like Duncker's (1945) tumour problem (Grant & Spivey, 2003; Litchfield & Ball, 

2011; Thomas & Lleras, 2007).  

In three different conditions we systematically increased the salience of perceptual 

features of the nine-dot problem. The first two experimental conditions were in line with the 

work of Kaplan and Simon (1990) who showed that increasing the perceptual salience of 

crucial features can facilitate the solution of insight problems, because it helps in applying the 

appropriate heuristics that restrict the given problem space. The intention was to induce an 

impasse more quickly by (a) constraining the initial problem space by illustrating a possible 

solution path by presenting arrows that point to locations outside of the 3 x 3 grid (thus 

suggesting that the boundary constraint needs to be relaxed); and (b) after relaxing the 

constraint the arrows restrict the larger search space and indicate potential non-dot turns. In 

the first condition, which we label the P condition (P = path), within each dot we embedded 

an arrow that indicated the direction of one of the possible solutions (see Figure 3). In the 

second condition we added the particular spatial pattern of the solution (Kershaw & Ohlsson, 

2004). The solution looks like an isosceles triangle (see Figure 2b) where three lines meet at 

the apex. We increased the salience of a particular apex dot by indicating three arrows that 

meet in this dot. This condition was termed the Path-Apex condition (PA, see Figure 3b). Our 

main predictions were that solution rates would be higher (PA>P>Control Group) and that 

participants would more quickly overcome the boundary constraint when more perceptual 

hints are available (PA>P>Control Group). 

A further aim was to explicitly test Kershaw and Ohlsson’s (2004; Ohlsson, 1992) 

assumption of the necessity of a representational change. Highlighting non-dot positions in 

the PAN (path/apex/non-dot turn, see Figure 3c) condition should further increase the 

likelihood to overcome the boundary constraint. The non-dot positions explicitly draw 
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attention to visual-spatial positions outside the imposed virtual square of the nine-dots (Grant 

& Spivey, 2003), and should help to generate a representational change. Specifying the non-

dot points should also facilitate the solution of the nine-dot problem by constraining the post-

insight problem space, because by combining the arrow information with the non-dot 

information, the location of the non-dot turns is given. Accordingly, we predicted the 

participants in the PAN condition should have the best chance to quickly overcome the 

boundary constraint and to quickly solve the problem.  

 A further prediction was that for participants overcoming the boundary constraint in 

the control and experimental conditions, solution rates should be higher for the experimental 

conditions than the control group because the perceptual hints in the P, PA, and PAN 

condition should restrict the search space after the representational change. 

Method 

Participants. The 136 paid participants (32 males, mean age 25, range 18-34) were recruited 

by advertising at the University of Munich and in local newspapers and were randomly 

assigned to one of the four groups (34 per group). Nineteen additional participants were 

excluded beforehand because they reported to be familiar with the nine-dot problem. The data 

of one participant in the PAN condition was not analyzable and was therefore discarded. 

Material and Procedure. Participants received a booklet that contained written instructions 

and five pages displaying copies of the problem (so that they could start over after failed 

solution attempts). Each dot in the problem statement was printed in gray with a surrounding 

black circle. Each participant was tested individually in a quiet room after reading the 

following instruction (in German): “Connect the nine dots drawing four connected straight 

lines. It is not allowed to lift the pencil from the paper and it is not allowed to retrace lines. 

Feel free to start over as often as you like. You have 10 min for the solution. Please indicate 
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the sequence of lines drawn using the numbers 1 to 4 – 1 for the first line, 2 for the second 

etc.” 

For all experimental conditions, the dots contained arrows as displayed in Figure 3a-c. In 

addition, the PAN condition consisted of two additional dots (“non-dots”), printed in a 

brighter gray and without a surrounding circle to distinguish them from those of the nine-dot 

problem (see Figure 3c). 

 

--- Please insert Figure 3 about here --- 

 

Data Analyses  

The following definitions and classifications were used for analysing the data: 

o Move: A move was defined as one straight line that connected dots and/or non-dots.  

o Dot moves and non-dot moves: Moves were classified as dot-moves (a line starting and 

ending on one of the nine dots) or as non-dot moves (a line starting and/or ending at a non-

dot point).  

o Solution: A solution was defined as a sequence of four moves that cancelled out all nine 

dots.  

 

Results 

The results are divided into three sets of analyses. As a manipulation check, we first analyzed 

whether the perceptual hints indicating the solution path affected the move selections of 

participants. Second, we examined solution rates in order to assess whether and how 

perceptual hints facilitated the problem solution. Third, we determined how the perceptual 

hints influenced insight. This was achieved by (a) examining the pre-insight influence of the 

hints (i.e., before realizing that the boundary constraint needs to be overcome) as the number 
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of moves required before the first move was made that went outside of the virtual square 

formed by the dots; and (b) examining the post-insight influence of the hints (i.e., after 

overcoming the boundary constraint) by analyzing the solution rates for participants who 

achieved insight.  

Manipulation Check: We tested whether participants in the experimental conditions preferred 

moves that followed the direction of the arrows compared to the control group where the 

problem statement did not contain any directional information. To do so we examined for 

each individual the percentage of moves that followed the arrowed pattern depicted in the 

experimental conditions (for the control group, we analyzed moves that involved the same 

dots in the arrowed pattern as a baseline comparison). Additionally, we assessed whether the 

pattern of solvers and non-solvers differed across the groups.  

 As Figure 4 illustrates, participants in all experimental conditions preferred moves that 

followed the direction of the arrows in the problem statement. Additionally, the figure 

demonstrates that solvers showed an even stronger preference for such moves than non-solvers. 

 

--- Please insert Figure 4 about here --- 

 

An ANOVA with the between factors Condition (CG, P, PA, PAN) and Solver (non-solver, 

solver) and the dependent variable mean number of moves following arrows revealed a highly 

significant effect for the factor Condition, F(3, 126) = 18.35, p < .01, p
2 = .30. Post hoc 

comparisons (Scheffé) showed that all experimental conditions differed significantly from the 

CG condition (p < .01), and that the PAN condition differed from the P and the PA conditions 

(p < .05). There was no difference between the PA and P conditions. There was also a highly 

significant main effect for the factor Solver, F(1, 126) = 10.52, p < .01, p
2 = .08, with 

solvers’ relying more strongly on arrow direction. There was no significant interaction (p = 

.08).  
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Solution rate: Table 1 provides an overview of the solution rate for each of the study 

conditions. The data showed that all experimental conditions showed a higher solution rate 

than the CG.  

 

--- Please insert Table 1 about here --- 

 

We analyzed the influence of each additional piece of information (e.g., providing the path 

plus apex rather than just the path) on solution rates across the conditions using a binary 

logistic regression (BLR) (Hosmer & Lemeshow, 2000). BLR provides a method of analysing 

the influence of dichotomous, discrete, or continuous predictors on a binary outcome variable, 

and has already been successfully applied to the analysis of insight problem solving 

experiments (e.g. Kershaw et al., 2013; Öllinger et al., 2012). BLR produces B-values, and 

odds ratios. B-values indicate the direction of the relationship; odds ratios indicate the 

likelihood that a participant in a particular group can be categorized as a solver e.g., an odds-

ratio of 2 for a participant in a particular condition illustrates that the participant is 2 times 

more likely to solve the problem than for the baseline (CG) condition (see Kershaw et al., 

2013).  

Entering the three experimental conditions and the CG as baseline resulted in a significant 

model, 2(3, 135) = 40.61 that classified 74.8% of solvers correctly. Table 2 shows the BLR 

coefficient B, the Wald 2, and the odds ratio for each of the three conditions. The PA and 

PAN conditions differed significantly from the CG, the P condition did not. The regression 

coefficients were positive and increased with the amount of perceptual information provided. 

The odds ratio showed that a person in the PA group is 5.92 times more likely to solve the 

problem than a person in the CG. For the PAN group the odds ratio increases dramatically, to 

a value of 33.75. 
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--- Please insert Table 2 about here --- 

 

Impact of perceptual constraints, pre-insight: We determined whether providing different 

degrees of perceptual information resulted in a faster realization of non-dot moves. We 

calculated the median number of moves until a non-dot move appeared across all solvers 

(Mdn = 4). Accordingly, we split the solvers into participants that had a fast or slow 

realization. Table 1 (column 3) illustrates that as expected, the number of participants that had 

a fast realization increased monotonically with the amount of perceptual information 

provided. We applied a BLR, using the CG as the reference category. The model was 

significant, 2(3, 135) = 16.82, and classified 78.5% of participants correctly. Table 3 shows 

the BLR coefficient B, the Wald 2, and the odds ratio for each of the three conditions. The 

data demonstrated that only the PAN condition differed significantly from the CG. The odds 

ratio indicates that participants in the PAN condition are 13.33 times more likely to overcome 

the boundary constraint within the first four moves than for the CG. For the P and PA 

conditions that do not provide non-dot locations, there were no statistical differences. This 

shows how strong the boundary constraint is in the nine-dot problem – participants will often 

fail to make use of arrows that point to locations outside of the perceived 3 x 3 square unless 

they are also accompanied by non-dot locations.  

 

--- Please insert Table 3 about here --- 

 

Impact of perceptual constraints, post-insight: We analyzed whether the post-insight problem 

spaces were sufficiently constrained by the experimental conditions such that insight and 

problem solution were facilitated. In doing so, we determined how the experimental 

conditions facilitated problem solution once the boundary constraint was relaxed. Table 1 
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summarizes the data and shows that once insight has been achieved, the arrows play a major 

role in constraining the subsequent problem space. Almost all participants in the experimental 

conditions who made non-dot moves eventually solved the problem, whereas in the CG only 

half of the participants that drew at least one line to a non-dot position were able to solve the 

problem. We tested whether the number of participants that made non-dot moves and solved 

the problem, and those who made non-dot moves and failed to solve the problem, varied 

between the conditions. With pairwise 2-tests we found that the PA condition differed from 

the CG, 2(1, 23) = 9.08, p < .01, λ = .50 and the PAN differed from the CG, 2(1, 36) = 

11.22, p < .01, λ = .38. The P condition only marginally differed from the CG, 2(1, 18) = 

3.55, p = .06, λ = .38. There were no significant differences between the experimental 

conditions (ps > .20). 

Discussion 

The current study aimed to determine the role of problem space, search, impasse, and 

representational change on solution rates to the nine-dot problem. Our cognitive model 

hypothesised that insight problems are influenced by the size of the pre-insight search space, 

the difficulty of overcoming the impasse itself, and the size of the post-insight search space. 

We tested key components of our hypothesis by examining how the size of the search space 

influenced insight problem solving using the nine-dot problem. The pre-insight search space 

was constrained using arrows and additional perceptual information (see also Kaplan & 

Simon, 1990; MacGregor et al., 2001; Ormerod et al., 2002) to increase the likelihood of 

realizing that the applied solution strategies failed. Our cognitive model suggests that this in 

turn should facilitate impasse with the consequence that the likelihood of representational 

change increases (Ohlsson, 1992). Following the representational change, the size of the nine-

dot problem space increases dramatically. The perceptual information provided therefore 
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constrains this problem space, thus making problem solution more tractable. The results 

supported the predictions of the cognitive model, as we now discuss in detail.  

 

Achieving insight 

The only condition to benefit from perceptual information – in terms of overcoming the 

boundary constraint – was the PAN condition. The combination of arrows that indicate the 

solution path/apex and the additional information of a strong explicit perceptual hint to apply 

moves to non-dot locations clearly helps to overcome the boundary constraint more 

effectively than in all other conditions. 28 of 33 participants (85%) overcame the constraint in 

the PAN condition, almost twice as many participants than in any other condition. The odds 

ratio indicates that in the PAN condition it was 13.33 more likely to overcome the boundary 

constraint than in the control group. This finding is important because as Chronicle et al. 

(2001) clearly showed, the nine-dot problem is resistant to additional perceptual information 

concerning non-dot locations, and supports Kershaw and Ohlsson`s (2004) assumption that 

realizing the necessity of non-dot turns is a main source of problem difficulty. The provided 

arrows help to easily realize that a change of direction is necessary at the highlighted non-dot 

location. This is further supported by the number of participants whose first four moves 

include one that is outside of the perceived 3 x 3 square: 45% of participants achieve this for 

the PAN, more than twice as many as any other condition. The P and PA conditions showed 

no significant facilitation. Thus without an explicit indication that the solution requires moves 

to non-dot locations, the given path information is not helpful in overcoming the boundary 

constraint. 

 

Representational change and solving the nine-dot problem 

For the solution rate data we found that the PAN and the PA conditions differed from the 

control group. The PA condition provides an indication of the solution path (as per the P 
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condition) but also additional path information related to the particular spatial pattern of the 

solution trajectory by providing the apex point where three lines meet. The additional apex 

information increases the odds ratio for a participant to be in the solver category from 2.7 in 

the P condition to 5.9 in the PA condition. Given the fact that there were no differences 

between the P and PA groups in overcoming the boundary constraint, it seems likely that 

group differences arise from the additional apex information in PA influencing the post-

insight problem space.   

However, the critical data that illustrates the problem of navigating the post-insight 

search space concerns the solution rates of the participants who overcame the boundary 

constraint. These ‘conversion rate’ data are quite remarkable (final column of Table 1). Once 

insight has been achieved, more than 90% of participants are able to ‘convert’ their insight 

into a solution for the nine-dot problem in all of the perceptual hint conditions (P, PA, PAN), 

compared to 50% in the control group. After a representational change, successful problem 

solvers still need to restrict the overly large problem space and this is what the perceptual 

hints help them to do. This finding can explain why previous studies found only small effects 

of hints that provided the information that participants have to draw lines outside the virtual 

boundaries either by verbal instruction or by visual cues (Burnham & Davis, 1969; Chronicle 

et al., 2001; Weisberg & Alba, 1981). That is, enabling participants to overcome the boundary 

constraint may not be beneficial to many participants who now have to navigate an even 

larger search space. As we have seen this is a complicated task that requires drawing lines to 

non-dot points, making turns in different directions, and configuring the remaining lines in an 

appropriate way (MacGregor et al, 2001). 

 

Achieving 100% success in the nine-dot problem 

Even though we believe that the experimental conditions provided all of the necessary 

information to solve the nine-dot problem, approximately 20% of the participants in the PAN 
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condition were still unable to do so. A remaining challenge for participants in the PAN 

condition was to combine (according to Kershaw & Ohlsson, 2004) the solution path hints 

given by the arrows with the hints given by the non-dot locations. Clearly integrating the two 

different hints is an additional source of difficulty that some participants were unable to 

master.  

A closer inspection of the non-dot data of the PAN condition showed that one non-

solver made a total of 19 non-dot moves but was not able to combine the four lines in a way 

to find the solution (i.e., the participant was unable to combine the information given by the 

arrows to that given by the non-dot locations). The remaining four non-solvers in the PAN 

condition did not perform a single non-dot move (i.e., they were unable to use the arrow and 

non-dot information to relax the boundary constraint). Apparently, these participants suffered 

from a strong self-imposed constraint not to move outside the given nine dots. This again 

speaks for the power of a perceptually induced constraint. It also raises an important problem 

of our manipulation. The additional information given naturally changes the nature of the 

nine-dot problem (see Chronicle, 2001). The arrows can facilitate but also distract the 

problem solving process, when participants have no idea how the provided perceptual 

information interplays with the task requirements.  

There are a few aspects of our study that extend the knowledge about the nine-dot 

problem, and about insight problem solving in general. Important is the insight that a 

representational change is necessary but not necessarily sufficient for solving the problem; 

furthermore, while restricting the search space in an appropriate way is important to facilitate 

impasse, it is even more important after a representational change than prior. Combining our 

findings with those of relevant previous research, the model in Figure 5 summarizes the 

cognitive processes we think are required to solve the nine-dot problem.  

 

--- Please, insert Figure 5 about here --- 
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The model 

The new aspect of our model is that we bring existing frameworks together and explicitly test 

the search dynamics before and after an impasse. The model merges theories of search 

(Kaplan & Simon, 1990; MacGregor et al., 2001) and of representational change (Ohlsson, 

1992); Ohlsson (1992, see also Ohlsson, 1984b) had already presented the different stages, 

but provided no experimental work that tested his assumption before and after an impasse. 

Moreover, a new aspect is the focus on the constraining of the search space, relaxing 

constraints, and again constraining dynamics (see Figure 1). That is, a circular restriction and 

expansion dynamic that provides the search space to be explored.  

For the nine-dot problem, our model provides clarity to the varied and sometimes 

inconsistent results encountered in the literature. Of most importance here are two key points: 

first, an explicit instruction to draw lines that go beyond the perceived 3 x 3 grid (e.g., 

Burnham & Davis, 1969) will fail to dramatically increase solution rates because the resulting 

unconstrained search space is too large to be navigated effectively without any further hints; 

second, explicitly providing non-dot locations that are not part of the problem (i.e., as per 

Ormerod et al., 1997, see Figure 2c) will not dramatically increase solution rates because non-

dots alone are insufficient in generating a significant increase in relaxation of the “stubborn” 

boundary constraint. By providing arrows that restrict the direction, position and number of 

turns, the solution rates increase dramatically. 

Our study adds to previous evidence demonstrating that a representational change is 

necessary for the solution to the nine-dot problem (Kershaw & Ohlsson, 2004). It adds to 

previous findings that a solution to the nine-dot problem can be effectively cued through 

providing solution path information together with cues that encourage people to cross the 

virtual boundary of the square formed by the dots. Importantly the findings demonstrate that, 

while navigation of the problem space is important before a representational change, it is 
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crucial after a representational change. Although heuristics play an important role before 

impasse, it is also necessary to adequately focus the search space after insight has occurred.  

We assume that the model can be also applied to other problems, and it should allow 

clear predictions as to how the search space before and after a potential impasse can be 

constrained in order to increase 1) the number of participants who encounter impasse, and 2) 

the number of participants who subsequently achieve insight and find the solution. For many 

insight problems, such as the eight coin problem (Öllinger, Jones, Faber & Knoblich, 2012; 

Ormerod, MacGregor & Chronicle, 2002), problem solution becomes trivial once the insight 

has been realised and therefore key to such problems are the pre-impasse search heuristics and 

how quickly they enable impasse to be encountered. These have already been shown to 

influence impasse and subsequent solution rates for different initial configurations of the eight 

coin problem (Ormerod, MacGregor & Chronicle, 2002). Of more interest are insight 

problems where solution to the problem is not so trivial once insight is realised. One such 

example is the four-tree problem outlined by Kershaw et al. (2013). The task is to arrange 

four trees such that each tree is located equidistant from each other. The model would predict 

that the problem is difficult because the initial search space is relatively unconstrained 

because there are unlimited configurations of four objects. That is, it is unlikely, or time 

consuming, for a problem solver to encounter impasse. A first restriction of the initial search 

space as Kershaw and colleagues showed is to provide conceptual information e.g., the 

diagonal of a square is longer than the sides of the square. As a consequence, square solutions 

can be removed from the search space, increasing the likelihood that a problem solver 

encounters impasse. Additionally, the 3D constraint has to be relaxed (i.e., that problem 

solvers can consider three dimensions rather than two). After relaxing the 3D constraint a vast 

search space results. Thus, again, conceptual knowledge will be required to restrict the search 

space (e.g., a tetrahedron). As in the nine-dot problem, both conceptual and 3D information 

both have to be taken into account in order to successfully solve the problem.  
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Limitations 

There are some limitations of our current study. First, the stimuli and arrow information used 

may imply confounding information2. The arrows indicate not only the direction of the 

solution sequence, but also that there are diagonal lines and the position of the turns. 

Providing diagonal lines can facilitate the solution as Lung and Dominowski (1985) 

demonstrated. However, all experimental conditions provided the diagonal information, and 

the perceptual conditions showed only a marginal increase of the solution rate. Second, the 

arrows also provide information that turns (particularly non-dot turns) are necessary for a 

solution. Our findings point out that the arrow information was particularly sufficient when 

the position of the non-dot points was given (PAN). That is, we provided in this condition at 

the same time the information of non-dot turns and non-dot points, and that two non-dot turns 

are necessary, a factor that plays, according to Kershaw and Ohlsson (2004), an important 

role. Further work will be necessary to disentangle these aspects.  

 

In summary, our data provide strong evidence for multiple sources of problem difficulty 

supporting the findings of Kershaw and Ohlsson (2004), illustrating that the two key sources 

of difficulty in the nine-dot problem are the problem space (the pre-insight space is too 

restricted, the post-insight space becomes too large) and the required representational change.  
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Table Captions 

 

Table 1: Solution rates and non-dot moves classified according to different selection criteria.   

 

Table 2: Binary logistic regression model for the solution rates comparing all experimental 

conditions against the control group. 

 

Table 3: Binary logistic regression model for the fast realization data comparing all 

experimental conditions against the control group.   
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Figure Caption 

 

Figure 1: Flow-chart of insight problem solving. Starting in the top left corner, a problem 

representation is established by prior knowledge and perceptual aspects e.g., Gestalt laws, 

grouping, chunking. The problem representation is searched by heuristics. This can be 

successful: a solution is attained; or unsuccessful: an impasse is encountered. To overcome an 

impasse, a change of the problem representation is likely to be necessary. A new search will 

then be applied to the changed problem representation. 

 

Figure 2: The nine-dot problem a) and its solution b), and the 11-dot variant introduced by 

Ormerod, Chronicle, & MacGregor, 1997 c). 

 

Figure 3: a) P condition where a solution path is indicated by arrows. b) PA condition with 

additional information regarding the location where lines meet. c) PAN condition where 

additional non-dot points were provided.  

 

Figure 4: Mean number of biased moves across groups and separated for solvers and non-

solvers in comparison with the move pattern of the CG. Standard errors are plotted. 

 

Figure 5: The different cognitive processes that are needed to solve the nine-dot problem. 

Before an impasse, participants apply strategies such as hill-climbing in their attempts at 

solving the nine-dot problem (MacGregor et al., 2001); that is they attempt to connect as 

many dots as possible with each move. After repeatedly failing to solve the problem using 

standard problem solving heuristics the problem solvers reach impasse, because the heuristics 

do not help to change the problem representation per se as our data clearly demonstrated. 

After an impasse it is crucial to have the appropriate heuristic to restrict the now even larger 
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search space. One has to consider that heuristics help to navigate through a problem 

representation, but if the representation is not appropriate for attaining the goal then the 

heuristic is useless.  
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Figure 2 
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Figure 3 
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Figure 4 

 

 


