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Abstract: Following on from our work concerning travellers’ preferences in public transportation networks (Wu 
and Hartley, 2004), we introduce the concept of stochasticity to our algorithms.  Stochasticity greatly increases 
the complexity of the route finding problem, so greater algorithmic efficiency becomes imperative. 
Public transportation networks (buses, trains) have two important features: edges can only be traversed at certain 
points in time and the weights of these edges change in a day and have an uncertainty associated with them. 
These features determine that a public transportation network is a stochastic and time-dependent network. 
Finding multiple shortest paths in a both stochastic and time-dependent network is currently regarded as the most 
difficult task in the route finding problems (Loui, 1983). This paper discusses the use of k-shortest-paths (KSP) 
algorithms to find optimal route(s) through a network in which the edge weights are defined by probability 
distributions. A comprehensive review of shortest path(s) algorithms with probabilistic graphs was conducted.   
 
 
Keywords: Stochastic, Time-dependent, K-shortest paths algorithms, Probabilistic distribution 
 
 
1. INTRODUCTION 

In shortest path(s) problems, different networks 
require different algorithms to find one or several 
paths optimising special cost functions in the most 
efficient manner. 

The simplest networks are those whose edge 
weights are static and deterministic. If the edge 
weights in a network are not static but change at 
different times, the network is then time-dependent. 
The time-dependent networks are useful in 
transportation applications.  For instance, scheduled 
buses and trains networks’ edges can only be 
traversed at certain times.  There are networks in 
which the edge weights are not a single 
deterministic value.  Instead, each edge is assigned 
a random variable with a probability. This type of 
network is regarded as a stochastic network and is 
often used in transportation where there is some 
uncertainty regarding the travel times of traffic 
involved.  

Standard shortest path(s) algorithms are capable of 
finding the shortest path(s) in a network when the 
cost of a path is additive and deterministic. 
However, travel times in real world transportation 
networks, especially when congestion is concerned, 
are unpredictable. In fact real-world transportation 
networks are both stochastic and time-dependent.  

The purpose of this paper is to investigate solutions 
for finding optimal path(s) in a stochastic time-
dependent network, in particular for a scheduled 
public transportation network.  
 
 
2. NETWORK REPRESENTATION 
 
Compared with a road network, a public 
transportation network is very time sensitive. 
Because of the stochastic and time-dependent 
properties of public transportation network, it is 
necessary to investigate how it can be best 
represented. 

 
2.1 Notation and Definitions 
 
The shortest path problem can be modelled as 
finding the shortest path between two nodes in a 
weighted and directed network. In some cases, it is 
of interest to compute not only the shortest path, 
but an ordered set of alternatives with the aim of 
finding the shortest one that satisfies user 
preferences for instance – K-shortest paths (KSP) 
problems.                 
                                 
Let (N,A) denote a given network, where N = {v1, 
…, vn} is a finite set whose elements are called 
nodes and A ={a1,…, am} is a finite set whose 
elements are called arcs. Each arc ak is a pair (vi,vj) 
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of nodes. In the context of the bus network, nodes 
in the graph are bus stops and arcs are links 
between two bus stops. The input data to the 
algorithm consists of a description of the bus 
transportation network (timetables, description of 
links between bus stops), the bus stop where the 
journey begins (the source node) and the bus stop at 
which the journey ends (the destination node). The 
objective is to find the shortest path(s) between the 
two specified nodes.  

Bus stops are point events in a transit network. A 
bus stop can be identified by a street name, a street 
intersection with a corner name or even a street 
address with a house number. A bus stop is linked 
to a bus service through the stop sequence. A stop 
sequence is a many-to-many relation between the 
bus service and bus stops. To represent the network 
which contains many bus stops, a very important 
approach is to use bus-stop codes instead of bus-
stop names. The unique bus stop codes are 
indicated on all bus stops and are widely advertised 
in the public information literature issued by the 
Nottingham City Transport (NCT). For example, in 
the timetable indicated in Figure 1, AR05 and 
subsequent stops AR08 AR09 AR10 are assigned to 
indicate the bus stops on the Front Street of Arnold 
through the bus route 25.  

A simple approach to represent the links is to 
ascribe a cost to every link. The cost can be defined 
arbitrarily such as time taken, money spend or fuel 
used. In this paper, cost is defined as time taken.  
However, the time taken to travel from one bus stop 
to another is not always that shown on the 
timetable.  This may be due to congestion, 
roadworks or non-availability of bus drivers.  So 
the time taken, although related to the discrete 
values given in the timetable, has some uncertainty 
attached to it. 
 
 
2.2 Modelling the Bi-modal Travel Network 
  
By adding walking links into the transportation 
network, a new problem arises. Route finding for 
travelling on buses is timetable-based which means 
the length between any pair of nodes is not given 
directly, the information must be retrieved from the 
bus timetables. Route finding for travelling on foot 
requires the distance between any pair of nodes to 
be calculated according to their location (Table 1). 
It is essential to model the two types of arc 
information consistently.  Again, the time taken to 
walk from one location to another will involve an 
amount of uncertainty due to the different walking 
speeds of travellers. 
 
 
 

IDSTOP  LOCATION  ADDRESS  X_CD         Y_CD 
Aa            CITY         ANGELRD   457050.58    339922.27 
Ab           CITY         ANGELRD    457036.02    339928.82 
Ac           CITY         ANGELRD    457005.98    339943.61 
Ad           CITY         ANGELRD    456986.82    339951.85 

 
Table 1 Format of Bus Locations Information 

 
 
2.2.1 Modelling of Bus Timetables 
 
To represent a bus transportation network, bus 
timetables need to be modelled. Figure 1 is an 
example of a bus timetable. 
 

 

Figure 1 Timetable of Bus 25 and Bus26 
(http://www.nctx.co.uk/) 

To measure the expected time it takes to travel 
between two bus stops, a link is put into the 
directed graph to represent a connection between 
two bus stops. A bus departure time and the arrival 
time to the next bus stop are also needed. This 
departure time represents one entry in a timetable 
and the arrival time to the next bus stop can be 
taken from the same bus timetable at the next node. 
Each entry in a timetable is associated with the 
links. 
 
    
2.2.2 Modelling of Walking Links 
 
The walking links must be modelled consistently to 
the bus links, so that the information for both travel 
on buses or on foot can be used by the algorithms. 
This can be done by translating bus location 
information (Table 1) into usable time data. The 
physical distances between two bus stops can be 
translated into expected walking time information. 
For example, the physical distance between node i 
and j can be calculated by the equation: 
 
distance(i,j)=sqrt((x(i)-x(j))**2+(y(i)-y(j))**2)   (1) 
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Then by assuming average walking speed as 
5km/hour, the expected walking time between i and 
j is: 
 
walktime(i,j)=distance(i,j)/(5000/60)                   (2) 
  
Now the two types of information – travelling on 
buses and travelling on foot – are consistent.  
Dependant on the stochastic algorithm used and the 
available information, a probabilistic distribution 
will be used to represent the stochasticity of this 
information. 
 
 
2.3 Bi-modal Network Representation 
 
With the above definitions and modelling, the 
public transportation network can be represented as 
follows. The network for the route finding problem 
in a bus system is represented as a graph G = (N, A) 
where N is a finite set of n nodes and A is a finite 
set of m arcs. Each arc (i,j) Є A also has a length 
(or weight) lij ≥ 0. In the route finding context, the 
network is the transportation network. Nodes are 
bus-stops and arcs represent the time taken to travel 
between each pair of nodes either by bus or on foot. 
The task is to find one or a series of ranked shortest 
paths between two nodes in this transportation 
network. A graph representation of such a network 
is shown in Figure 2, where the nodes are shown as 
numbered circles and the arcs are represented by 
lines and arrows linking the nodes. 

1
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                                               7:00am       
                 4 mins                          3 mins        
                                                                                                                        

             

                                                       

By taking the Tram, the passenger is guaranteed to 
arrive at the Train Station at 10:30am, and by 
taking Bus 79, the passenger arrives between 
10:20am and 10:40am. If the Train leaves the 
station at 10:35am, the Tram is obviously the better 
choice because there is 50% chance of missing the 
train when taking the bus. However, if the train 
leaves the station at 10:25am, the tram is 
guaranteed to miss the train and the bus has an 
opportunity to catch the train with 50% chance. In 
this example, we can see that the best route from 
Nottingham to London depends on the schedule 
from the Train Station to London. 

                         7:02am                    7:03am  
                                  5 mins 
                                                      
      4 mins                   5 mins                 3 mins                       
                                              5 mins 
                                                                                                  
                     7:04am                      7:05am 
                                     6 mins 
 
             2 mins                                 3 mins 
                             
                          
                 7:06am          7:07am 

 
                          Busline           ------  Walking   
 

Figure 2 Representation of a Transportation 
Network 

 
However, as discussed above, the network 
representation and subsequent route finding 
problem becomes much more complex when taking 
into consideration the stochasticity of the links. 

3.  STOCHASTIC SHORTEST PATH(S) 
 
The following scenario illustrates the problems 
encountered when finding the shortest path under 
stochastic time uncertainty. 
 
Suppose a passenger wants to travel from 
Nottingham to London by train. The transportation 
network for this case is shown in Figure 3. At 
10am, there are two options for the trip from City to 
Train Station: Taking the new Tram service or 
taking Bus 79 to the Train Station. The Tram is 
reliable and is guaranteed to arrive at the Train 
Station at 10:30am. However, there is uncertainty 
associated with Bus 79 which means that the 
second choice has the potential of arriving at the 
Train Station earlier but also has the risk of being 
late. The travel time of Bus 79 is uniformly 
distributed between 20 and 40 minutes, which 
means the bus will arrive at the Train Station 
between 10:20am and 10:40am.  
 
                         (Tram: arrives at 10:30am) 
 
City                                                     Train Station   
 London 
(10:00am) 

             (Bus79: arrives at 10:20-10:40am) 
 

       (Train: leaves at 10:25am or 10:35am)                            
                            
Figure 3 A transportation network with stochastic 

time uncertainty 
 

 
The scenario above reveals the difficulties of 
route(s) finding under time-dependent uncertainty. 
First of all, the concept of shortest paths in a 
stochastic time-dependent network is not well 
defined. It is possible that there is a single path 
from an origin to destination that is shorter than all 
other possible paths. However, it is also likely that 
there are several paths having the possibility of 
being the shortest one. In this case, the choice of 
the shortest path depends on the departure and 
arrival time of buses (trains).  The technique for 
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determining a set of pareto optimal paths (Miller-
Hooks et al., 1994) will be discussed in Section 4.  
 
Secondly, the Optimality Principle that is required 
by traditional shortest path(s) algorithms is violated 
in this example. In the deterministic case, the best 
path from a to c through b must consist of the best 
paths from a to b and b to c. The example in Figure 
1 shows that if the train departs at 10:35am, Tram is 
indeed the better choice. However, if the train is 
scheduled to depart at 10:25am, taking Tram is 
guaranteed to miss the train while taking Bus 79 
has the potential to catch the train with a 50% 
possibility. So, the shortest path from City to the 
Train Station depends on the schedule of the Train 
to London. Hence the Optimality Principle is 
violated. For this problem, Wellman et al. (1990) 
proposed the concept of ‘stochastic consistency’ as 
an alternative to the deterministic network’s 
Optimality Principle. 
 
Furthermore, computing the shortest travel time in 
a stochastic but time-independent network is 
already extremely complex. Generating the set of 
pareto optimal paths (Miller et al., 1994) associated 
with probability distributions will further 
significantly increase the computational 
complexity. Techniques of eliminating some paths 
or pruning some dominant paths need to be 
investigated. 
 
With the purpose of investigating potential 
solutions for finding the shortest path(s) in the 
scenario network, the author conducted the 
literature review on route finding algorithms for 
different networks.  
 
 
4. LITERATURE REVIEW OF SHORTEST 
PATH(S) ALGORITHMS IN STOCHASTIC 
TIME-DEPENDENT NETWORKS 
 
Different algorithms have been developed for 
finding various shortest path(s) in various networks. 
Bellman (1958) and Dijkstra (1959) first made 
efforts on efficient shortest path algorithm for 
networks with static and deterministic links. 
Significant work has been done on shortest path(s) 
problems for time-dependent networks. Efforts 
have also been made to create shortest path(s) 
algorithms for time-dependent stochastic non-
scheduled transportation networks. 
 
 
4.1 Algorithms for Time-dependent Networks 
 
A class of algorithms has been developed for 
networks whose edge weights are not static but 
change with time. Time-dependent shortest path(s) 
algorithms are often used in transportation 

networks when, for example, travel time is different 
on a motorway during peak-time and off-peak time; 
or travel links are only available at certain time 
points (e.g. buses, trains).  
 
Cooke and Halsey (1966) modified Bellman’s 
(1958) ‘single-source with possibly negative 
weights’ algorithm to find the shortest path between 
any two vertices in a time-dependent network. 
Dreyfus (1969) made a modification to the standard 
Dijkstra algorithm to cope with the time-dependent 
shortest path problem. Orda and Rom (1990) 
discussed how to convert the cost of discrete and 
continuous time networks into a simpler model and 
still used traditional shortest path algorithms for the 
time-dependent networks. Chabini (1998) presented 
an algorithm for the problem that time is discrete 
and edge weights are time-dependent. Other 
algorithms deal with finding the minimum cost path 
in the continuous time model. Sung et al. (2000) 
gave a similar result using a different version of 
cost and improved the algorithm’s efficiency. 
Ahuja (2001) proved that finding the general 
minimum cost path in a time-dependent network is 
NP-complete. 
 
 
4.2 Algorithms for Stochastic Networks 
 
Another class of algorithms finds the shortest path 
in networks where edge weights are associated with 
random variables with a probability function 
representing the possible travel costs. This class of 
algorithms is also useful for transportation 
networks where there is some uncertainty involved 
in the traffic so that the travel time can only be 
estimated.  
 
Some research has been carried out in finding the 
path with the least expected travel time in a 
stochastic network. The very first approach in this 
area was done by Frank (1969) who tried to replace 
all the edge weights with their expected values and 
then solve the problem using a standard shortest 
path algorithm. Loui (1983) pointed out this 
strategy could not always be useful and would 
generate a sub-optimal path. He suggested using a 
‘utility function’ to represent how relatively 
advantageous it would be to arrive at a certain time. 
After that ‘maximize the expected value of a utility 
function’ became the most common criterion to 
determine the optimal path. Eiger et al. (1985) 
showed that whenever the given utility function is 
linear or exponential, a Dijkstra-like algorithm 
could be used. Bard and Bennett (1991) approached 
a more complicated version of this problem and 
presented a heuristic for reducing the uncertainty in 
a stochastic network.  
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More recent research involves algorithms for the 
linear and quadratic utility function, which have 
first been presented by Mirchandini and Soroush 
(1985). Murthy and Sarkar (1996, 1997, 1998) 
made continuous efforts in this research area by 
presenting algorithms for the stochastic shortest 
path problem with a decreasing deadline function. 
 
 
4.3 Algorithms for Stochastic Time-dependent 
Networks 
 
Finally, there are algorithms for networks with edge 
weights that are both stochastic and time-
dependent. These algorithms can be best 
implemented into the real-world public 
transportation networks. 
 
Shortest path(s) algorithms for stochastic time-
dependent networks cannot necessarily be reduced 
to a Dijkstra-like algorithm due to the weights 
changing. The algorithms require the networks to 
follow an Optimality Principle. Wellman et al., 
(1990) suggested the ‘Stochastic Consistency’ as an 
alternative to the Optimality Principle in the 
deterministic networks. ‘Stochastic Consistency’ 
means that the probability of arriving by a given 
time cannot be improved by leaving later. There is 
more detailed explanation of ‘Stochastic 
Consistency’ in section 5.2. 
 
Hall (1986) first presented a solution to the problem 
of finding optimal route(s) in a stochastic time-
dependent network by giving a high level 
description of an algorithm for the path with the 
earliest expected arrival time. Wellman et al. (1990) 
followed up this algorithm with an optimisation of 
reducing the number of paths considered on a 
network that obeys the principle of stochastic 
consistency. The implementation of Wellman et 
al.’s (1990) optimisation significantly reduces the 
running time of Hall’s algorithm. Kaufman and 
Smith (1993) also proposed an optimisation on 
Hall’s algorithm by using a heuristic to find upper 
and lower bounds on the travel time of the final 
path, so that many paths need not be considered. 
Furthermore, Wellman et al. (1995) proposed an 
approximation algorithm in which stochastic 
consistency and stochastic dominance were used to 
find approximate shortest paths within continuously 
tightening upper and lower bounds.  
 
Not all shortest path algorithms for time-dependent 
stochastic graphs aim to minimize the expected 
arrival time. There are different desired objectives. 
Miller-Hooks and Mahmassani (1994) designed an 
algorithm focused on finding the “least possible 
time path”, or the path with the possibility of taking 
the least time. This algorithm gave both the least 
possible time path and the probability of achieving 

this travel time, thus providing an alternative to the 
least expected time path. 
 
 
 5. TECHNIQUES OF FINDING SHORTEST 
PATH(S) FOR A STOCHASTIC TIME-
DEPENDENT NETWORK 
 
This section summaries the techniques of finding 
shortest path(s) for a stochastic time-dependent 
network from the literature review. The techniques 
are regarded as potential solutions and will be 
implemented into a scheduled transportation 
network.  
 
 
5.1 Technique for Determining the Set of Pareto 
Optimal Paths Associating Probability 
Distributions  
 
When there are multiple paths in a network which 
have the possibility of being the shortest path, 
Miller-Hooks et al. (1994) suggested generating a 
set of pareto optimal paths and then select a single 
shortest path by applying context dependent rules. 
 
Miller-Hooks et al. (1994) used a specialized label 
correcting algorithm, in which a label or a set of 
labels at any node is regarded as an upper bound on 
the final label or set of labels until the algorithm 
terminates. During the node label updating, all the 
departure times at that node need to be stored and 
compared in order to maintain path information 
(Miller-Hooks et al., 1994). Once the pareto 
optimal solution set has been determined, several 
rules are then applied to select a single path from 
the set. Since there is no path among the set that is 
always better than the other paths, Miller-Hooks et 
al.’s (1994) strategy of decision-making is to 
choose the optimal path according to the context-
dependent considerations. She listed the following 
possible considerations: 
 
1) Least expected value 
2) Least varience 
3) Combined expected value and variance 
4) A time threshold for which to find the path that 

maximum the probability of arriving the 
destination before the threshold 

5) Label with largest probability of being shortest 
6) Label with smallest probability of being 

longest 
 
 
5.2 Stochastic Consistency  
 
Kaufman and Smith (1993) proved that standard 
shortest path(s) algorithms work well for 
deterministic (both time-dependent and time-
independent) networks as long as the Non-Passing 
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Principle (NPP) is held. The network holds the NPP 
when it satisfies the following consistency 
condition (Wellman et al., 1990): assume d1 and d2 
are two departure times that d1 ≤ d2, cij (x) denotes 
the travel time from node i to node j at time x. The 
network is consistent if for all i and j: 
 
                      d1 + cij (d1) ≤ d2 + cij (d2)                  (3) 
 
It was proved  that time-dependent transportation 
networks hold the consistency condition because 
“…although leaving later can perhaps reduce the 
duration of traversing an edge, it cannot decrease 
the ultimate arrival time…” (Kaufman and Smith , 
1993). 
 
However, stochastic networks do not hold the NPP. 
As shown by the example in Figure 3, the Tram has 
an earlier expected arrival time at the Train Station, 
but depending on the train schedule it may not be a 
part of the final shortest path from City to London.   
 
As an alternative to the deterministic network NPP, 
Wellman et al. (1990) proposed the following 
condition. Let cij (x) denotes the travel time from 
node i to node j at time x, the network is 
stochastically consistent if for all i, j, d1 ≤ d2, and z, 
 

Pr (d1 + cij (d1) ≤ z ) ≥Pr (d2 + cij (d2) ≤ z )    (4) 
 

Formula (4) means the probability of arriving by 
any given time z cannot be increased by leaving 
later. The example in Figure 3 satisfies this 
condition: if the train leaves at 10:25am, the 
shortest path from City to London is by taking 
Tram to the Train Station and then taking the train 
to London because Tram has the probability of 
100% to catch the train while Bus 79 only has a 
50% probability; if the train leaves at 10:35am, the 
shortest path is by taking bus 79 to the Train 
Station and then taking the train to London, because 
Bus 79 has a 50% probability to catch the train 
while Tram has no opportunity. 
 
Wellman et al.’s (1990) proposal is based on the 
Stochastic Dominance concept (Whitmore and 
Findlay, 1978) which means “…one arrival 
distribution dominantes another if its accumulative 
probability function is uniformly greater than or 
equal to that of the other…”. Wellman et al.’s 
(1990) condition gives a modified version of the 
shortest path algorithm. As long as the Stochastic 
Consistency is held, the principles of traditional 
shortest path(s) algorithms can be used with the 
stochastic networks. 
 
 
 
 
 

5.3 Heuristics On Routes Elimination and 
Finding Bounds on Probability Distrobutions 
 
More research concerning different algorithms for 
solving the KSP problem have been found but not 
many real world applications  
(http://liinwww.ira.uka.de/bibliography/Theory/k-
path.html).  The reason is the inefficiency of KSP 
algorithms. When addressing the ‘pickup and 
delivery problem’, Desrosiers and Soumis (1991) 
said, “Compared with the KSP solutions, dynamic 
programming takes advantages of the additional 
constraints and its efficiency increases with the 
number of constraints.”  
 
Miller-Hooks et al.’s (1994) approach for 
determing the set of pareto optimal paths is a 
specialized label correcting algorithm which 
requires storage of all the departure times 
information to a node at a certain time. A label 
correcting algorithm does not return a shortest path 
until the whole network is searched. Miller-Hooks 
et al. (1994) realized this inefficiency problem and 
in her paper she suggested some heuristic 
procedures for eliminating some paths from 
consideration. For example, paths that are 
stochastically dominated by an alternative path can 
be eliminated.  
 
Some efforts have been made to simplify 
distributions over edge cost, so that traditional 
shortest path(s) algorithms can still be used. 
However, this only works for limited classes of 
utility functions (Kamburowski, 1985).  
 
Loui (1983) used dominance to solve multi-
attributes deterministic shortest path problems. 
Mirchandani and Soroush (1985) used 
mean/variance dominance to solve the problem 
when the cost distribution of arcs can be uniquely 
described by the mean and variance. Bard and 
Bennet (1991) used a stochastic dominance to 
reduce the search in stochastic networks but did not 
exploit the stochastic consistency condition.  
 
Finally, Wellman et al.’s (1990) idea of using a 
consistency condition was inspired by Hall (1986) 
who noted the difficulty of the time-dependent 
stochastic shortest path(s) problem and proposed an 
algorithm that generated all paths in order of 
earliest possible arrival, terminating when this 
earliest-possible time exceeded the expected time 
of a path already found. 
 
There is also research dealing with overlap ratio 
problem of KSP algorithms. Chen and Feng (1999) 
applied a Lagrangian Relaxation (Fisher, 1985) 
formula to calculate the overlap ratio for a 
stochastic road network. 
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3.4 Discussion about the Techniques 
 
In a real-world public transportation network, links 
can only be traversed at certain points in time and 
the weights of the links change in a day and have an 
uncertainty associated with them. So that, finding 
optimal paths in such a network requires shortest 
path(s) algorithms that work for networks both 
stochastic and time-dependent. Due to the difficulty 
of defining the shortest path, Miller-Hooks et al.’s 
(1994) KSP techniques for determining a set ot 
pareto optimal paths is introduced as a good 
solution. For the Optimality Principle problem to 
the shortest path(s) algorithm, Wellman et al.’s 
(1990) ‘Stochastic Consistency’ is used as an 
alternative to the deterministic case. Finally the 
algorithmic efficiency problem is discussed and 
several heuristics are mentioned for eliminating 
some paths from networks. 
 
 
6. CONCLUSION AND FUTURE WORK  
 
This paper investigated some of the approaches to 
solving the shortest path(s) problem in a stochastic 
time-dependent scheduled transportation network. 
A comprehensive review of shortest path(s) 
algorithms with probabilistic graphs has been 
conducted.  
 
Several potential solutions have been summarized 
in this paper at the start of solving the problem. At 
the moment, the author is focusing on the 
techniques for approximating the bus arrival times 
distributions and associating them with the KSP 
algorithm.  
 
The next step of the research will be investigating 
the probability distributions of bus arrival times and 
associating them with the KSP algorithm. The 
algorithm will finally be implemented for a 
scheduled transportation network with uncertain 
bus arrival times.  
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