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Abstract 

This paper provides an extensive experimental and analytical evaluation of a 

previously presented approach to the systematic design of condition monitoring 

systems for machining operations [1].  The methodology termed Automated Sensor 

and Signal Processing Selection (ASPS), is based on Taguchi's orthogonal arrays in 

order to provide cost effective and speedy selection of sensors and signal processing 

methods that are ultimately used for monitoring process conditions.  The evaluation 

using tool damage in end milling operations shows that ASPS methodology can 

successfully achieve its objectives without significantly affecting the system's 

capability for fault detection.  The experiments investigate two new types of cutting 

tools each with three distinct conditions which are processed by four different and 

independent neural network paradigms - two supervised and two unsupervised.  Thus, 

the results confirm the feasibility and efficiency of the proposed ASPS methodology 

and show that it can be applied to condition monitoring systems without the need for 

implementing pattern recognition tools during the design phase. 
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1. Introduction 

The ultimate objective of automated condition monitoring systems for machining 

operations is to enhance the quality of manufactured products via detection of process 

and machine faults.  During any machining operation a multitude of various signals 

are emitted from the machine tool and the process. Although these signals can provide 

useful inputs to a machine and process condition monitoring and diagnostic system, 

they usually include a significant amount of noise.  Consequently, the ‘raw’ 

unprocessed signals are unsuitable for monitoring purposes.  In order to extract useful 

information from machine condition monitoring data, several stages of signal 

processing and data analysis are normally needed. The ultimate goal of signal 

processing and data analysis is to search for the machining signals for abnormal 

patterns, i.e., Sensory Characteristic Features (SCFs), which can be related to physical 

phenomena or fault conditions. 

 

The capability of a condition monitoring system relies on two basic elements: firstly, 

the number and type of sensors used and secondly, the associated signal processing 

and simplification methods utilised to extract important information from signals.  

Several successful industrial monitoring systems have been reported for monitoring 

continuous manufacturing processes such as those of paper mills [2], and chemical 

and metal production lines [3]. Other systems are designed for maintenance of 

machinery components such as compressors [4], bearings [5], gears [6], shafts [7], 

machine tool spindles [8], pumping systems [9] and fluid systems [10].  Nevertheless, 

a real industrial monitoring system design methodology for complex machining 

processes, such as end milling, is still needed.  

 

The problem with machining processes is that they are complex and sophisticated, 

creating a unique design problem in every case. The main obstacles facing the 

designers of monitoring systems for machining operations are: 

1.  Selection of the number and type of sensors. 



 3

2.  Selection of the effective signal processing methods associated with the 

selected sensors. 

3.  Design of an effective fusion model (i.e., the combination of sensors and 

signal processing methods which give an improved performance). 

4.  Reduction in cost of machine and process monitoring systems without 

affecting the system's performance. 

5.  Automation of the design process. 

 

A novel approach, known as Automated Sensor and Signal Processing Selection 

(ASPS), to solve these problems using an automated approach for the selection of 

sensor and signal processing methods for milling operations was recently reported [1]. 

The above technique resulted in reduced experimental work for rapid and cost 

effective design of condition monitoring systems for milling operations.  The ASPS 

builds on the available knowledge in condition monitoring in order to advance the 

state of the art and provide a more generalised, simple and systematic approach to the 

design of condition monitoring systems for milling operations. Efficient design of 

condition monitoring systems is thus accomplished within a shorter development 

time, and more economically by minimising the number of sensors used.  The main 

issue addressed in this paper is to provide an extensive evaluation and mathematical 

description of the ASPS methodology. In reference [1] only one type of cutting tool 

was examined using three conditions which were then processed by one neural 

network architecture, namely the Back-propagation network using supervised 

learning.  The experiments reported here investigate an additional two types of cutting 

tools each with three distinct conditions which are in turn processed by four different 

and independent neural networks - two using supervised and the other two 

unsupervised learning. The paper then compares the results of the two papers and 

discusses the capability of the ASPS approach. 

 

2. A Brief Description of the ASPS Approach and Taguchi’s Method 

2.1 –The ASPS Approach 

The ASPS approach helps to design a condition monitoring system for a machine tool 

or a process using an automated simple procedure to detect the Sensory Characteristic 

Features (SCFs) which are most sensitive (i.e., dependent) to machine or process 
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faults but less sensitive to other machining variables and parameters. The SCFs 

provide key information for classification or detection of machining faults. A SCF can 

be defined as an extracted sensory value from a sensory signal using a specific signal 

processing method, e.g., the average value of a force signal, or the standard deviations 

of an acceleration signal.  The presented approach uses the "black box" concept where 

the monitoring system is designed based on the inputs and outputs of the process 

rather than its mechanics and the faults' mechanism. This "black box" approach gives 

the designer the ability to use the same approach of condition monitoring for other 

systems or processes.  In this way, it is only required to relate some information in the 

machining signals (i.e., SCFs) to the identified faults or conditions. Figure (1) 

presents the main idea of "black box" concept and its applications in machining 

process.  The "black box" should have the potential to move the design of condition 

monitoring problem from being a particular problem for a specific process to a more 

general problem that can be described in generic terms and the solution might be 

provided for different groups of processes that have specific criteria in common. 

 

In order to reduce the experimental work needed to relate the sensitive sensory signals 

to process faults for many of the machining parameters,  Taguchi's Orthogonal Arrays 

(OAs) were utilised in designing a short test, either on-line or off-line,  to find out the 

most sensitive SCFs to the faults under investigation.  The dependency values of 

Taguchi's OAs are taken as the measure of sensitivity of the SCFs to detect machining 

faults. 

 

Based on a number of SCFs, a condition monitoring system can be designed by 

selecting the most sensitive group of SCFs, which show high dependency on the 

monitored faults. For example, a research study has shown that due to cutter wear 

there is a steady increase in the Root Mean Square (RMS) values of Acoustic 

Emission (AE) voltages of the work-piece [11].  It is therefore possible to use the 

increase in this sensory characteristic feature (average RMS level of AE voltage) as 

the basis for designing a condition monitoring system (i.e., the increase in the average 

RMS of AE signal indicates the development of cutter wear).  
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Figure (2) shows a simplified flow diagram of the ASPS approach using Taguchi’s 

method. The ASPS approach is performed by installing a variety of sensors on the 

machine tool. The obtained sensory signals are then processed using a wide range of 

signal processing methods. An automated procedure, using Taguchi’s method, is then 

performed to choose a group of sensitive SCFs to build the required condition 

monitoring system. The least useful sensors and signal processing methods are 

eliminated from the designed condition monitoring system and only sensors and the 

associated signal processing methods which are found effective are kept in the 

monitoring system. Cost reduction stage is then performed for an attempt to eliminate 

the least utilised sensors in order to reduce the cost of the monitoring system while 

keeping the system's performance within its acceptable range.  For further details 

please see reference [1]. 

 

2.2 Taguchi's Orthogonal Arrays 

Taguchi's Orthogonal Arrays (OAs) are normally used to minimise the number of 

experiments required to characterise a process or optimise a process quality [12]. 

Taguchi's method uses less number of experiments than the full factorial to predict the 

influence of each experimental factor (i.e., independent variable) and calculate the 

dependency of the results on the experimental factors. The dependency values of 

Taguchi's method is basically the percentage contribution obtained from the analysis 

of variance. The dependency value of a result on a factor reflects the portion of the 

total variation observed in an experiment attributed to that factor.  Based on Taguchi’s 

method, the ASPS approach uses the SCFs obtained from the machining signals to 

calculate their dependencies (sensitivities) on the investigated machining faults.  

SCFs which show high dependency on the machining faults, rather than the 

machining parameters, are potential candidates for use in a monitoring system.  The 

percentage contribution (P) of a factor (F) can be expressed as follows [13]: 
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Ve  is the variance due to the error and is given by 
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where: 

y : observation  (i.e. sensory characteristic feature (SCF) value), 

T: sum of all observations (i.e. sum of all sensory characteristic feature (SCF) values), 

F:  factor  (i.e. cutter conditions, depth of cut, spindle speed, feed rate), 

KF : number of levels for factor F (i.e. KF =3 in this research), 

M : total number of observations (i.e.  M=27 in this research), 

vF : is number of degrees of freedom associated with factor F; vF = KF –1, 

Fi : sum of observations under the ith level of factor F, and 

nFi : number of observations y under level I of factor F. 

 

In order for the approach to be useful, two main assumptions need to be tested, i.e., 

1.  Partial number of runs using Taguchi's method is sufficient to design the 

monitoring system for full factorial runs; and 

2.  SCFs with high dependency values to a fault have high sensitivity to that fault. 

 

3. The Experimental Details 

3.1 The Experimental Set-up 

The experimental work involves an end mill processing of aluminium parts using two 

additional different types of cutting tools for two independent experimental tests and 

design procedures. The cutters are 16 mm slot drill cutter and 16 mm four flutes 

screwed shank end mill cutter. The results of these two experiments are compared 

with those of the 16 mm four flutes end mill cutter described in reference [1].  The 

physical phenomena monitored in this research is teeth breakage of cutting tools.  

Every cutter is tested for three conditions: normal, one tooth broken, and two teeth 

broken. 

Six accelerometers (Kistler 8704B500) are used to monitor the vibration of the 

spindle and the work-piece connected to two 4-channel-couplers (Kistler 5134). The 
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acoustic emission signal is monitored using AE sensor (Kistler 8152A) which is 

connected to the AE-Piezotron coupler type (Kistler 5125).  The latter produces the 

AE signal and the RMS of the AE signal. The force signals are monitored using 3-

component Dynamometer (Kistler 9257A). The force dynamometer is connected to a 

3-channel charge Amplifier (Kistler 5001). The signals are monitored using a data 

acquisition card (National Instruments AT-MIO-64E-3). The experimental set-up is 

shown in Figure (3).  Matlab software is used for the complete analysis of this work. 

 

3.2 The Experimental Methodology and Conditions 

The experimental program involves three values of depth of cut (5, 7 and 9 mm), 

spindle speed (2000, 2500 and 3000 rpm) and feed rate (350, 550 and 750 mm/min) 

for every condition of the tested cutting tools. Figure (4) summarises the implemented 

experimental work. 

 

A full factorial test of the parameters requires 81 runs for every cutting tool. 

However, the proposed application of Taguchi's method can reduce the number of 

runs to 27 runs using the L27 Table. For the three cutting tools, the experimental 

programme involved 27 runs based on OAs (L27) and a further 81 full factorial runs. 

The experimental 27 test is used for the design process as well as training the neural 

networks. The full factorial test is used to test the capability of four neural networks 

to recognise cutter faults. Figure (5) presents the test program. 

 

4. Sensory Signals and Signal Processing Methods  

In addition to the eleven sensory signals shown in Figure (3), the design procedure 

includes another four sensory signals derived from the original signals. These signals 

are: the resultant acceleration of the spindle structure (UR); the resultant acceleration 

of the work-piece (LR); the resultant cutting force (FR); and the net relative resultant 

acceleration between the spindle and the work-piece (UL).  The four signals are 

calculated based on the following equations: 

 

FR = ( ) ( ) ( )Fx Fy Fz2 2 2+ +  .     (5)   

UR = ( ) ( ) ( )XU YU ZU2 2 2+ + .     (6) 
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LR = ( ) ( ) ( )XL YL ZL2 2 2+ + .     (7) 

UL  =  ( ) ( ) ( )XU XL YU YL ZU ZL− + − + −2 2 2 .   (8) 

 

where 

XU, YU and ZU: The spindle acceleration signals for the x, y and z directions 

respectively. 

XL, YL and ZL: The work-piece acceleration signals for the x, y and z directions 

respectively.    

Fx, Fy and Fz: Cutting force for the x, y and z directions receptively. 

 

In order to extract the SCFs, the fifteen signals are processed using several time and 

frequency domain signal processing methods to extract 23 SCFs from every sensory 

signal. The SCFs should be real numbers in order to use Taguchi's method to calculate 

the dependency values. The signal processing methods are chosen arbitrarily and any 

other type of signal processing methods might be used as long as they produce real 

numbers. The main objective is to produce simplified forms of the complex signal for 

later analysis. The signal processing methods used in the time domain are: the average 

(µ); standard deviations (std); power [14];  kurtosis value (Kr) [15]; and skew value 

[16]. In frequency domain two methods are used: the average values of different 

frequency ranges of Fast Fourier Transformation (FFT) [17]; and the standard 

deviations of Daubechie - D4 wavelet levels [18, 19]. The description of the previous 

signal processing methods is given below: 

1.  average: µ = =
∑ x

N

i
i

N
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2.  standard deviations: σ
µ

=
−

−
=
∑ ( )x

N

i
i

N
2

1
1

     (10) 

3.  power
x

N

i
i

N

≈ =
∑ 2

1         (11) 

4.  Kurtosis value Kr
N

xi

i

N
=

−

=
∑1 4

4
1

( )µ
σ

     (12) 

 



 9
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4.1 Fast Fourier Transformation Analysis 

The Fast Fourier Transformation (FFT) [17] algorithm is used to convert a digital 

signal (x) with length (N) from the time domain into a signal in the frequency domain 

(X).  

X h x i N
ih

i

N

W[ ] [ ]=
=

−

∑  
0

1
      Where    

N
J NW e= − 2π / .     (14) 

for    h N= −0 1 2 1, , , ...,    and where  J = −1  

 

In order to automate the selection process of the sensitive frequencies to the fault 

under investigation, the frequency spectrum vector is divided into seven ranges of 

frequencies. The average value of each range is then taken as a sensory feature for the 

system. The values of the frequency spectrum are normalised with respect to the 

amplitude. The width of every range and the number of ranges are selected so that the 

average of the ranges can represent the actual frequency spectrum.  These features 

calculated as the average of the frequency spectrum values in specific range of 

frequencies. For example, in this particular case, FFT1 is the average value of the 

frequencies from 0.09 kHz to 1.09 kHz. In general: 

FFT i(fr1,fr2) = Mean value of the Fast Fourier Transformation between frequencies 

fr1 and fr2;         (15) 

Where: 

i ={1,2,3,4,5,6,7} 

fr1= 0.09 + (1.01 × (i -1)) kHz  

fr2= 1.09 + (1.01 × (i -1)) kHz  

Every feature has a range of  frequency width of 1 kHz. The number of ranges and the 

width of each range are, in general, dependent on the type of signal and its 

application. The narrower the range, however, the more accurate the analysis will be 

while requiring more calculations and longer time to accomplish. 
 

4.2 Wavelet Analysis 
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In this work, the standard deviations of 11 wavelet levels are used as SCFs for the 

condition monitoring system. Wavelet analysis provides an alternative method of 

breaking a signal down into sub-signals or levels with different frequencies that carry 

the time information [18, 19]. Wavelet analysis breaks up the signal into sub-signals 

where each one is generated by a shifted and scaled of several wavelet signals.  For 

every level, the number of wavelet signals used to construct the signal equals 2i where 

i is the level number. The dilation equation is used to define the basic scaling function 

φ(x) from which the D4 discrete wavelet original signal is calculated according to the 

following equation: 

Φ Φ( ) ( ) ( )x c i x i
i

= −
=
∑  2

0

3
       (16) 

where c(i) is the wavelet coefficient and i is the index. 

The Primary wavelet signal is calculated from the scaling function according to the 

equation shown below: 

Ψ Φ( ) ( ) ( ) ( )x c i x ii

i
= − + −

=
∑ 1 1 2

0

3
        (17) 

The four coefficients for D4 wavelet are as follows: 

c( ) ( ) /0 1 3 4= +         ;     c( ) ( ) /1 3 3 4= +    (18) 

 

c( ) ( ) /2 3 3 4= −  ;       c( ) ( ) /3 3 1 4= − −  

 

For discrete D4 wavelet transformation, the original function can be reconstructed 

from the following equation: 

f x c x l c x ll
l

n h l
h

h
( ) ( ) ( ), ,= − −

=−∞

∞

=−∞

∞∞

∑ ∑∑Φ Φ Ψ   +  
i=0

2    (19) 

The standard deviations (σ) of the wavelet levels are used as sensory characteristic 

features for the condition monitoring system. In general, the eleven wavelet SCFs 

used is denoted as (stdLi) where stdLi is the standard deviations of the ith level of the 

D4 wavelet. 

 

 

5. The Experimental Results 
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5.1 The ASPS analysis of the experimental work. 

The calculated Sensory Feature Matrix (SFM) for this test, see reference [1], has 

dimensions of  (15 × 23 × 27) thus presenting 15 sensory signals, signal processing 

methods and 27 runs of is the L27 Orthogonal Array. For every feature located in the 

SFM matrix, the dependency on the cutter conditions is calculated and placed in the 

Association Matrix (ASM).  Consequently, the ASM matrix for the cutter conditions 

has a size of 15×23, making a total of 345 SCFs. The dependency coefficients of the 

ASM are used as an indicator of the sensitivity of the features to cutter conditions. 

The 345 SCFs are divided into 17 different groups/systems where each system 

contains 20 features. The features are arranged in a descending order so that system 

number 1 contains the features of maximum dependencies while system number 17 

contains the features of minimum dependency. The suggested number of 20 features 

in every system is based empirically on the author's previous experience with 

condition monitoring and neural networks. Normally, such a range of inputs provides 

good identification and relatively fast training time. However, other values might also 

be used depending on the application and the neural networks topology. The 

monitoring systems with each consisting of 20 SCFs, includes SCFs from different 

sensors using different signal processing methods.  

 

5.2 Neural Networks Classification 

As previously mentioned, four neural networks are used to verify whether that SCFs 

with higher dependency can indeed provide a greater sensitivity that should 

consequently result in better identification of abnormal patterns (see Figure 5). The 

neural networks are two supervised and two unsupervised neural networks 

implemented using Matlab. The neural network architectures included: back 

propagation (BP); radial basis (RB); Competitive Neural Network (CN); and Learning 

Vector Quantisation (LVQ) , see Figure (6). 

 

Since the 17 proposed systems have 20 SCFs each, the neural networks implemented 

here are designed to have 23 inputs, where the extra three inputs are for the 

normalised cutting conditions (i.e. feed rate, depth of cut and spindle speed).  
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A normalising process is performed using equation (20) below so that every sensory 

characteristic feature will have a value between 0.1 and 0.9 thus making it possible to 

fuse and compare all the calculated sensory features relative to each others.  

 $ .
.

( )f fij ij= +
−

× −01
08

max min
min       ( 20) 

where 

max: is the maximum value of the feature fij. 

min: is the minimum value of the feature fij. 

$f ij : normalised values of the feature fij 

The neural network parameters are chosen from experience in order to give a 

reasonable response, however, it is important to point out that neural networks are not 

optimised for this application since the objective here is to compare systems in order 

to select the most appropriate sensors and signal processing methods. The L27 runs are 

used to train the neural networks while the full factorial tests are used to test them, 

(i.e. using new 81 runs). Although the 81 new runs contain 54 runs which have 

different machining parameters, this should not pose a problem for the neural 

networks since the sensory characteristic features which show high dependency on 

the cutter conditions should show low dependency (sensitivity) to the other machining 

parameters. A total of 40 independent training and testing processes are performed for 

each tested system. The average classification errors of the BP, RB, CN and LVQ 

neural networks  for the three cutting tools, end mill [1], slot drill, and screwed shank 

cutters are shown in Figure (7), Figure (8) and Figure (9) respectively. As shown in 

the previous figures, there is a clear trend that systems with high average dependency 

values produces less classification error (i.e. better identification). Moreover, for 

systems with dependency greater than 45%, the results are more steady and have 

lower average variation relative to each others. Therefore, it can be concluded that the 

higher the average dependency of the system, the better and more stable the 

classification of the pattern recognition system.  The computer calculation of the 

dependency values for each system only takes a fraction of a second. On the other 

hand, training and testing the neural networks to plot Figure (7), for example, has 

required about 250 hours calculations using a Pentium 266 computer with 120MB of 

memory and using Matlab software.  
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The ASPS approach is found to be very useful in predicting the behaviour of 

condition monitoring systems without the need to use any iterative methods. The 

average classification errors of the four neural networks have proved that high 

dependency means better information for the neural networks, see Figure (5).  

 

In comparison with other neural networks, the competitive neural network (CN) is 

found to be divergent when applied to the slot drill cutter. It also displays higher 

errors when used with the screwed shank cutter. The general behaviour of neural 

networks, however, has shown the same results for the three cutters. The back 

propagation neural network is chosen for further analysis regarding the performance 

of the systems since it shows a stable and average performance relative to other neural 

networks. 

 

6. Sensors Utilisation and Cost Reduction 

In order to maintain the cost of the monitoring system as low as possible, the 

utilisation of sensors in the system should be kept as high as possible (i.e. getting as 

much information as possible from each sensor). The utilisation factor (SU) of a 

sensor is defined in equation (21) below.  

SU = 
v 

q x  w
x 100       (21) 

where: 

v:  number of sensory characteristic features used from the sensor 

q:  total number of features in the system (20 is chosen in this case) 

w:  maximum number of signals that can be produced by the sensor 

 

The overall Average Sensor Utilisation factor for a system (SUA) is defined as the 

average value of the SU of all the sensors used in a system. The SU factor can be 

useful in reducing the cost of the system by eliminating the least utilised sensors in a 

monitoring system. The variable nominal cost of each system is calculated and 

compared in an attempt to optimise the performance of the system relative to its cost. 

The cost analysis is based on using the same equipment described in section 3.1. The 

cost values presented in this paper are only examples of the relative costs involved, 

which help to explain the methodology. These values are used for comparison 
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purposes and should not be considered as real market values of the sensors. The cost 

analysis is done using the variable cost of the system, i.e. the cost of the sensors. 

Fixed costs such as the PC, data acquisition card, and the software cost should be 

added to the nominal variable cost in order to get the total cost of the system. In this 

research, the term "cost" refers to the nominal variable cost of the monitoring system 

as the objective is only to compare systems. 

 

6.1 Cost reduction for the monitoring system of the slot drill cutter. 

Figure (10) shows the 17 proposed systems for the slot drill cutting tool condition 

monitoring. Figure (11) presents the utilisation of (system 1) in order to reduce 

system's cost. The new optimised system is found to have a cost of £809 and an 

average dependency of  45.1%. The new value is not significantly different from the 

original value of  47.54% for the first system. However, the new system is £15,200 

cheaper than system number 1. The performance of the optimised system relative to 

the first systems is also shown in Figure (11). 

 

6.2 Cost reduction for the monitoring system of the screwed shank cutter. 

Figure (12) shows the 17 proposed systems for the screwed shank cutting tool 

condition monitoring. It can bee seen that system 1 has the lowest cost and the lowest 

neural networks classification error.  However, an optimisation of the cost is 

performed, see Figure (11), to reduce the cost by £1952 using the force dynamometer 

and removing all other sensors from the system. The performance of the optimised 

system with comparison to the average dependency value and cost is also shown in 

Figure (11). 

 

7. Conclusion 

Further experimental work and analysis to confirm the applicability of the ASPS 

approach was presented.  Reference [1] used an end mill cutter to provide the 

scientific basis for the methodology.  In this paper, two new sets of additional 

experimental work are performed using a slot drill and a screwed shank cutter, and 

four types of neural networks. 
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For every test, the most suitable sensor is found to be different. As shown in Figure 

(11), some sensors are more useful than others in monitoring a specific type of cutter. 

For example, the force dynamometer is significant for monitoring the screwed shank 

cutter, but not for the other two cutters. The acoustic emission sensor is useful for the 

end and slot mills and not significant for the screwed shank cutter.  As for the end 

mill cutter [1], the accelerometers mounted on the machine table have a higher 

utilisation and significance compared to those on the spindle housing. This 

observation can be explained by the fact that the SCFs that are sensitive to cutter 

faults are different for every cutter.  Each cutter has its own specific nature and the 

generated faults produce different types of signals and frequencies. Therefore, every 

sensor extracts different information about the fault. The sensor which extracts more 

information is more likely to provide the sensitive SCFs for the monitoring system. 

The mechanism of the end milling process and the relationship between the generated 

faults and the produced signals are beyond the scope of this paper and can be 

investigated by future research. 

 

The results confirm that only a partial number of the experimental tests are required in 

order to predict the machining condition for the full combinations of machining 

parameters and machining faults. 

 

The approach is proved to benefit the design process by : 

• Investigating the most appropriate sensors and signal processing method to 

detect machining faults, 

• The reduction in cost of machine and process monitoring systems without 

affecting the system's performance using a suitable fusion model, 

• Reducing the development time, and 

• The automation of the design process. 
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Figure 1: The "black box" concept and the way it can be applied for cutter breakage of end milling 

operation. 
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Figure 2: A simplified flow diagram of the ASPS approach using Taguchi’s method. 
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Figure 3: A schematic diagram of the experimental set-up of the data acquisition system. 
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Figure 4: Summary of the complete experimental work. 



 21

Neural Networks

Taguchi’s Method

Identification
Error

Dependency
%

Average dependency of SCFs

N
eu

ra
l n

et
w

or
ks

 e
rr

or
s

(used to calculate the dependency using 
Taguchi’s method)

Does high Sensitivity (Dependency )
Produces Lower Identification  Error ? 

?

Full Factorial Test

Se
ns

or
s

Signal Processing methods

f f f .. f
f f f .. f
f f f .. f
f f f .. f
.. .. .. .. ..
f f f .. f

m

m

m

m

n n n n

11 12 13 1

21 22 23 2

31 32 33 3

41 42 43 4

1 2 3 4
f f f .. f
f f f .. f
f f f .. f
f f f .. f
.. .. .. .. ..
f f f .. f

m

m

m

m

n n n n

11 12 13 1

21 22 23 2

31 32 33 3

41 42 43 4

1 2 3 4

SFM

1

J

81
 ru

ns
 (f

ull
 fa

cto
ria

l))

Se
ns

or
s

Signal Processing methods

f f f .. f
f f f .. f
f f f .. f
f f f .. f
.. .. .. .. ..
f f f .. f

m

m

m

m

n n n n

11 12 13 1

21 22 23 2

31 32 33 3

41 42 43 4

1 2 3 4
f f f .. f
f f f .. f
f f f .. f
f f f .. f
.. .. .. .. ..
f f f .. f

m

m

m

m

n n n n

11 12 13 1

21 22 23 2

31 32 33 3

41 42 43 4

1 2 3 4

1

K

27
 ru

ns
 (L

27
)

Taguchi’s SFM

From every run, 
a specific number 
of  sensitive SCFs
is used to train the 
neural networks for 
cutter conditions of 
OA’s runs.

From every run,
the same type 
and number of  
sensitive SCFs are 
used to test the
neural networks
to recognise the 
cutter conditions of 
every run.

normalisation

normalisation

Neural Networks

Taguchi’s Method

Identification
Error

Dependency
%

Average dependency of SCFs

N
eu

ra
l n

et
w

or
ks

 e
rr

or
s

(used to calculate the dependency using 
Taguchi’s method)

Does high Sensitivity (Dependency )
Produces Lower Identification  Error ? 

?

Full Factorial Test

Se
ns

or
s

Signal Processing methods

f f f .. f
f f f .. f
f f f .. f
f f f .. f
.. .. .. .. ..
f f f .. f

m

m

m

m

n n n n

11 12 13 1

21 22 23 2

31 32 33 3

41 42 43 4

1 2 3 4
f f f .. f
f f f .. f
f f f .. f
f f f .. f
.. .. .. .. ..
f f f .. f

m

m

m

m

n n n n

11 12 13 1

21 22 23 2

31 32 33 3

41 42 43 4

1 2 3 4

SFM

1

J

81
 ru

ns
 (f

ull
 fa

cto
ria

l))

Se
ns

or
s

Signal Processing methods

f f f .. f
f f f .. f
f f f .. f
f f f .. f
.. .. .. .. ..
f f f .. f

m

m

m

m

n n n n

11 12 13 1

21 22 23 2

31 32 33 3

41 42 43 4

1 2 3 4
f f f .. f
f f f .. f
f f f .. f
f f f .. f
.. .. .. .. ..
f f f .. f

m

m

m

m

n n n n

11 12 13 1

21 22 23 2

31 32 33 3

41 42 43 4

1 2 3 4

1

K

27
 ru

ns
 (L

27
)

Taguchi’s SFM

From every run, 
a specific number 
of  sensitive SCFs
is used to train the 
neural networks for 
cutter conditions of 
OA’s runs.

From every run,
the same type 
and number of  
sensitive SCFs are 
used to test the
neural networks
to recognise the 
cutter conditions of 
every run.

normalisation

normalisation

Neural Networks

Taguchi’s Method

Identification
Error

Dependency
%

Dependency
%

Average dependency of SCFs

N
eu

ra
l n

et
w

or
ks

 e
rr

or
s

(used to calculate the dependency using 
Taguchi’s method)

Does high Sensitivity (Dependency )
Produces Lower Identification  Error ? 

?

Full Factorial Test

Se
ns

or
s

Signal Processing methods

f f f .. f
f f f .. f
f f f .. f
f f f .. f
.. .. .. .. ..
f f f .. f

m

m

m

m

n n n n

11 12 13 1

21 22 23 2

31 32 33 3

41 42 43 4

1 2 3 4
f f f .. f
f f f .. f
f f f .. f
f f f .. f
.. .. .. .. ..
f f f .. f

m

m

m

m

n n n n

11 12 13 1

21 22 23 2

31 32 33 3

41 42 43 4

1 2 3 4

SFM

1

J

81
 ru

ns
 (f

ull
 fa

cto
ria

l))

Se
ns

or
s

Signal Processing methods

f f f .. f
f f f .. f
f f f .. f
f f f .. f
.. .. .. .. ..
f f f .. f

m

m

m

m

n n n n

11 12 13 1

21 22 23 2

31 32 33 3

41 42 43 4

1 2 3 4

f f f .. f
f f f .. f
f f f .. f
f f f .. f
.. .. .. .. ..
f f f .. f

m

m

m

m

n n n n

11 12 13 1

21 22 23 2

31 32 33 3

41 42 43 4

1 2 3 4
f f f .. f
f f f .. f
f f f .. f
f f f .. f
.. .. .. .. ..
f f f .. f

m

m

m

m

n n n n

11 12 13 1

21 22 23 2

31 32 33 3

41 42 43 4

1 2 3 4

f f f .. f
f f f .. f
f f f .. f
f f f .. f
.. .. .. .. ..
f f f .. f

m

m

m

m

n n n n

11 12 13 1

21 22 23 2

31 32 33 3

41 42 43 4

1 2 3 4

SFM

1

J

81
 ru

ns
 (f

ull
 fa

cto
ria

l))

Se
ns

or
s

Signal Processing methods

f f f .. f
f f f .. f
f f f .. f
f f f .. f
.. .. .. .. ..
f f f .. f

m

m

m

m

n n n n

11 12 13 1

21 22 23 2

31 32 33 3

41 42 43 4

1 2 3 4

f f f .. f
f f f .. f
f f f .. f
f f f .. f
.. .. .. .. ..
f f f .. f

m

m

m

m

n n n n

11 12 13 1

21 22 23 2

31 32 33 3

41 42 43 4

1 2 3 4
f f f .. f
f f f .. f
f f f .. f
f f f .. f
.. .. .. .. ..
f f f .. f

m

m

m

m

n n n n

11 12 13 1

21 22 23 2

31 32 33 3

41 42 43 4

1 2 3 4

f f f .. f
f f f .. f
f f f .. f
f f f .. f
.. .. .. .. ..
f f f .. f

m

m

m

m

n n n n

11 12 13 1

21 22 23 2

31 32 33 3

41 42 43 4

1 2 3 4

1

K

27
 ru

ns
 (L

27
)

Taguchi’s SFM

From every run, 
a specific number 
of  sensitive SCFs
is used to train the 
neural networks for 
cutter conditions of 
OA’s runs.

From every run, 
a specific number 
of  sensitive SCFs
is used to train the 
neural networks for 
cutter conditions of 
OA’s runs.

From every run,
the same type 
and number of  
sensitive SCFs are 
used to test the
neural networks
to recognise the 
cutter conditions of 
every run.

From every run,
the same type 
and number of  
sensitive SCFs are 
used to test the
neural networks
to recognise the 
cutter conditions of 
every run.

normalisationnormalisation

normalisationnormalisation

Train

 
 

Figure 5: The relationship between the dependency values of the SCFs and the classification error of 
the neural networks can determine how successful the suggested approach is. 
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Neural networks Type Key Parameters 
Back-propagation neural networks (BP) supervised learning rate = 0.001; momentum 

=0.9; target error =0.01; transfer 
functions: sigmoid (hidden layer) 
and  linear (output layer). 

Radial Basis (RB) supervised target error =0.01; maximum 
number of neurones = 1000; spread 
of radial basis function =10. 

Competitive Neural Networks (CN) unsupervised learning rate =0.1; hidden layer size 
=50;  training iterations =500; bias 
time constant =0.99. 

Learning Vector Quantisation (LVQ) unsupervised learning rate =0.05,  hidden layer 
size =50; training iterations =500; 
bias time constant =0.99. 

 

 

Figure 6: The four implemented neural networks. 
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Figure 7: The classification error of neural networks for the end mill cutter. 
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Figure 8: The classification error of neural networks for the  Slot Drill cutter. 
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Figure 9: The classification error of neural networks for the  screwed shank cutter. 
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Condition Monitoring Systems Cost and Performance (slot drill cutter)
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Figure 10: Comparison between the performance of the systems and the associated costs (slot drill 

cutter). 

 
 

 Slot Drill Cutter Screwed Shank Cutter 

Monitoring Systems System 1 Optimised 
System 

(from systems 1 
and 2) 

System 1 Optimised System (from 
systems 1 and 2) 

Sensors SU (%) SU (%) SU (%) SU (%) 

Dynamometer 10 % -- 36.67 % 46.67 % 
XL -- -- -- -- 
YL -- -- 5 % -- 
ZL -- -- -- -- 
XU -- -- 5 % -- 
YU -- -- --  
ZU -- -- 10 % -- 
AE 80 % 100 % -- -- 

(SUA) 
Overall Average Utilisation 

45% 100% 14.17% 46.67 % 

Average Dependency (%) 47.54 % 45.1 % 74.5 % 74 % 
Classification Error (%) 32.5 % 37 % 11 % 11.5 % 

Cost (£) £16,009 £809 £17,152 £ 15,200 
 

Figure 11: The utilisation of sensors (slot drill and screwed shank cutters) 
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Cost and Performance of the Proposed Condition Monitoring Systems (screwed shank cutter)
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Figure 12: A comparison between the performance of the systems and their associated cost (screwed 

shank cutter). 

 

 


