# A Competition Between $\mathrm{N}--\mathrm{O}$ and $\mathrm{C}--\mathrm{O}$ Through Space 

## Interactions in the Crystal Structures of 3,3'-Dinitro-2,2'-bipyridine

## N -Oxides and $\mathrm{N}, \mathrm{N}$ '-Dioxides.

Jane O'Leary and John D. Wallis* ${ }^{*}$

School of Biomedical and Natural Sciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK, email: john.wallis@ntu.ac.uk.


#### Abstract

.

The crystal structures of a series of $3,3^{\prime}$-dinitro-2,2'-bipyridine N -oxides and $\mathrm{N}, \mathrm{N}^{\prime}$ dioxides consistently show 1,5 interactions between nitro oxygen atoms and aromatic carbon atoms ((ON)O---C: 2.623(2)-2.839(2) $\AA$ ) while there are also 1,6 interactions between N -oxide oxygen atoms and nitro nitrogen atoms in most cases $\left(\mathrm{O}---\mathrm{N}\left(\mathrm{O}_{2}\right)\right.$ : $2.737(2)-2.874(3) \AA)$. The O---C interactions appears to be a common feature in ortho-nitro-biphenyl systems, and there is some evidence that the effect is cooperative when there are ortho nitro groups on both rings. The O---N interactions are considerably longer than the corresponding $1,5 \mathrm{~N}---\mathrm{O}$ interaction measured here in 8-nitroquinoline-1-oxide ( $\mathrm{O}---\mathrm{N}\left(\mathrm{O}_{2}\right)$ : $2.5418(17) \AA$ ), which in turn is longer than the corresponding $\mathrm{N}---\mathrm{O}$ interaction in the corresponding 8-diazonium-1-oxide analogue.


## Introduction.

Interactions between an electron-rich and an electron-poor group have been studied by X-ray crystallography over a number of years, following the initial work of Bürgi and Dunitz on the interactions between amino groups and carbonyl compounds in compounds such as $1 .{ }^{1}$ Pairs of groups located at the peri positions of a naphthalene ring have provided an important system for studying the effects of two groups held in close proximity, ${ }^{2}$ and an order of reactivity for electrophilic $\mathrm{sp}^{2}$ carbon centres has been constructed ${ }^{3}$ from interaction distances with a dimethylamino group as in 2-5. ${ }^{2,4-}$ ${ }^{5}$ In the latter series a bond was almost completely formed between these groups in a few cases, e.g. in 6, ${ }^{3,6}$ and a related zwitterionic structure in the azaadamantane series has been reported. ${ }^{7}$ The reactivity of a methylthio group as a nucleophilic centre has also been studied, ${ }^{8}$ as have interactions with $s p \mathrm{C}$ centres in nitriles ${ }^{9}$ and alkynes. ${ }^{10}$ Anthracene systems have been used in a similar way for studying functional group interactions. ${ }^{11}$ Further insight into these peri-interactions is being gained by studies of the topology of the electron density in the region between the groups. ${ }^{12}$ A few 3,3'disubstituted 2, ${ }^{\prime}$-bipyridines have also been studied, since the ring nitrogen provides a nucleophilic centre. Thus, a pair of interactions was observed in the dinitrile 7 with (pyridine) $\mathrm{N}-\mathrm{C}=\mathrm{N}$ separations of 2.695(2) and 2.740(2) $\AA$, and bendings of the nitrile groups of $171.3(1)-171.6(1)^{0} .{ }^{13}$ However, extension of this approach to groups with $s p^{2}$ centres attached to the 3 and 3' positions, e.g. in compounds 8 and 9 containing nitro or carboxylic ester groups, did not reveal such interactions between the pyridine nitrogen and the electron deficient group, but rather an oxygen atom from each group made a contact with the 2-carbon atom of the opposite ring (8: 2.916(2) and 2.980(2)
Á;
9 :
2.849(3)
A). ${ }^{14,15}$
These

1

$2 \mathrm{R}=\mathrm{CH}_{3}$
$3 \mathrm{R}=\mathrm{H}$
$4 \mathrm{R}=\mathrm{NMe}_{2}$



10


5


8


11


6


9


12
peri-naphthalene and bipyridine frameworks provide 1,5 interactions between the functional groups. In contrast, positioning the substituents in the ortho positions of a biphenyl allows the groups to form 1,6 interactions in which they can approach each other without concomitent strain, but also there is sufficient freedom for the groups to rotate well out of interaction range too. Thus, dimethylamino groups form long contacts, more like intermolecular interactions, with $\mathrm{sp}^{2} \mathrm{C}$ centres in an aldehyde or a 2-nitroethene in 10 and 11, but form a bond with more reactive groups such as 2,2-
dicyanoethene as in $\mathbf{1 2} .{ }^{16}$ Here, we report structural studies on the N -oxides and $\mathrm{N}, \mathrm{N}$ 'dioxides of 3,3'-dinitro-2,2'-bipyridine and their 5-,5'-dimethyl derivatives, 13-16, to explore whether the oxide group acts as a nucleophilic centre and is involved in 1,6 contacts with the nitrogen atom of a nitro group, or whether the tendency for a nitro oxygen to make 1,5 interactions with the opposite ring system still prevails. The nitrogen atoms of nitro groups have been observed to make interactions with electron rich centres such as dimethylamino groups and nitro oxygen atoms before, as in the peri-naphthalenes $17^{17}(\mathrm{~N}--\mathrm{N}: 2.64-2.72 \AA)$ and 18 ( $\mathrm{O}----\mathrm{N}: 2.682-2.722 \AA$ ). ${ }^{18}$


13 R = H
$15 \mathrm{R}=\mathrm{CH}_{3}$


17


18

$14 \mathrm{R}=\mathrm{H}$ $16 \mathrm{R}=\mathrm{CH}_{3}$


19

## Results and Discussion

3,3'-Dinitro-2,2'-bipyridine and its 5,5'-dimethyl derivative were each oxidized with 3 -chloroperbenzoic acid in chloroform at $34-50^{\circ} \mathrm{C}$ to give mixtures of their N -oxide and $\mathrm{N}, \mathrm{N}$ '-dioxide, which were separated by chromatography on basic alumina to give 13-16. Crystals of each compound were prepared by slow evaporation. X-ray diffraction data were collected at $150 \mathrm{~K}(\mathbf{1 3}$ and $\mathbf{1 4})$ and 120 K
(15 and 16). The molecular structures are shown in Figures 1-4. Selected molecular geometric data are given in Table 1, along with data for the $\mathrm{N}, \mathrm{N}$ '-dioxide of biypridine-3,3'-dicarboxylic acid $19^{19}$ for which the structure has been reported on both its racemate and on a single enantiomer. There are no other structures measured for $3,3^{\prime}$ '-disubstituted $2,2^{\prime}$-bipyridine N -oxides or -dioxides.


Figure 1. Molecular structure of N -oxide 13; the $\mathrm{O}---\mathrm{N}$ separation between oxide oxygen and nitro nitrogen is more than $3 \AA$.


Figure 2. Molecular structure of dioxide 14.


Figure 3. Molecular structure of dimethyl substituted N-oxide 15.


Figure 4. Molecular structure of dimethyl-substituted N,N'-dioxide 16;
the two halves of the molecule are related by a crystallographic $2_{1}$ axis.

The two dioxides, 14 and 16, show similar molecular conformations with the pyridine rings lying at $52.8-55.8^{\circ}$ to each other, and the nitro groups lying at 33.3$36.9^{\circ}$ to their respective pyridine rings, so that each N -oxide oxygen atom lies at $2.737(3)-2.804(3) \AA$ from a nitro nitrogen atom of the opposite ring. Furthermore, an oxygen atom from each nitro group lies at 2.762(4)-2.789(3) $\AA$ from the carbon atom (C2) of the opposite ring at the end of the inter-ring bond. Compared to the unoxidized dinitrobipyridine 8, this corresponds to an increase in the inter-ring angle of $c a .10^{\circ}$ caused by presence of the two additional N -oxide oxygen atoms, while each nitro group's plane deviates less from their pyridine ring's plane to maintain and shorten the contact to the carbon atom of the opposite ring.

Table 1. Selected Geometric Data for Compounds 13-16 and Related Molecules ( $\AA,{ }^{\circ}$ )


|  | O2A--C2B <br> /A | O2B--C2A <br> / $\AA$ | O1A---N2B <br> /A | O1B--N2A <br> /Å | Angle <br> ring (A) / <br> ring (B) <br> from trans <br> coplanar $/^{0}$ | Angle <br> ring (A) / $\mathrm{NO}_{2}(\mathrm{~A})$ | Angle <br> ring (B) / $\mathrm{NO}_{2}(\mathrm{~B})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $8^{14}$ | $2.916(2)$ | $2.980(2)$ | * | * | 42.9(1) | 42.8(1) | 52.0(1) |
| 13 | $2.644(2)$ | 2.623(2) | $3.140(2)$ | * | 72.22(5) | 18.2(2) | 19.8(2) |
| 14 | 2.772(3) | $2.762(4)$ | 2.771(6) | 2.804(3) | 55.8(1) | 35.3(3) | 33.3(3) |
| $15^{\text {a }}$ | 2.839(2) | $2.726(2)$ | 2.874(3) | * | 55.9(1) | 40.9(1) | 22.8(2) |
| $16^{\text {b }}$ | 2.789(3) | * | 2.737(3) | * | 52.84(5) | 36.9(2) | * |
|  | O2A--C2B | O2B--C2A | $\begin{aligned} & \text { O1A-- } \\ & \mathrm{C}\left(\mathrm{O}_{2} \mathrm{H}\right) \end{aligned}$ | $\begin{aligned} & \text { O1B-- } \\ & \mathrm{C}\left(\mathrm{O}_{2} \mathrm{H}\right) \end{aligned}$ | $\begin{gathered} \text { Angle } \\ \text { ring (A) / } \\ \text { ring (B) } \end{gathered}$ | $\begin{gathered} \text { Angle } \\ \text { ring (A)/ } \\ \mathrm{CO}_{2} \mathrm{H}(\mathrm{~A}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { Angle } \\ \text { ring (B) / } \\ \mathrm{CO}_{2} \mathrm{H}(\mathrm{~B}) \\ \hline \end{gathered}$ |
| Rac-19 ${ }^{19}$ | 2.748(9) | * | $3.055(9)$ | * | 68.1(2) | $22.8(2)$ | * |
| Ent-19 ${ }^{19}$ | $2.757(5)$ | * | $3.159(5)$ | * | 71.4(2) | 23.0(2) | * |
|  | 2.749 (5) | * | $4.027(5)$ | * | 105.6(2) | 16.6(2) | * |

[^0]There is no such consistency in the structures of the unsymmetrical oxides, $\mathbf{1 3}$ and 15. Structure $\mathbf{1 5}$ is broadly similar to those of $\mathbf{1 4}$ and 16 . The pyridine rings lies at $55.9^{\circ}$ so that the $\mathrm{O}---\mathrm{N}$ separation between the adjacent N -oxide atom and nitro nitrogen atom remains close to those in $\mathbf{1 4 - 1 6}$ since the inter-ring rotation is the main factor controlling this separation. The two nitro groups lie at $41^{\circ}$ and $23^{\circ}$ to their respective ring planes, the latter being the nitro group near to the N -oxide group. Since the O---C separation between a nitro oxygen and the opposite ring's C 2 carbon atom is controlled primarily by the angle of rotation of the nitro group out of its plane, with lower angles of rotation corresponding to closer contacts, there are now two distinct O---C separations, one longer (2.839(2) $\AA$ ) and one shorter (2.726(2) $\AA$ ) than those observed in the dioxides. In contrast, in the structure of N -oxide $\mathbf{1 3}$ there is a much larger angle between the pyridine ring planes $\left(72.22(5)^{\circ}\right)$, so that the separation between the N -oxide oxygen atom and the nitro nitrogen atom is extended to 3.140(2) $\AA$ i.e. essentially out of van der Waals contact. However, the two nitro groups lie at only $18.2(2)$ and $19.8(2)^{0}$ out of their respective pyridine planes, leading to the closest 1,5 contacts between nitro oxygen atoms and ring C 2 carbon atoms in this series at 2.644(2) and $2.623(2) \AA$. Thus, the two sets of potential interactions have similar separations in each of compounds 14-16, but in the monoxide 13 the interaction between nitro oxygen and ring carbon is much shorter than between the N -oxide oxygen and nitro nitrogen atom. The analogous dicarboxylic acid N,N'-dioxide 19 has been measured in both its racemic and enantiopure form. ${ }^{19}$ Of the three crystallographically unique molecules, two have broadly similar conformations to the N -oxide 13, with contacts between a N -oxide oxygen atom and a carbonyl carbon of 3.055(9) $\AA$ And $3.159(5)$ Á. The third molecule has its pyridine rings at $74.4^{\circ}$ from the cis coplanar conformation, and thus a considerably longer separation between the N -
oxide oxygen atom and the carbonyl carbon of $4.027(5)$ Á. In all three molecules, there are short 1,5 interactions between the carbonyl oxygen atoms (2.748(9) $2.757(5) \AA$ ) and the carbon at the far end of the inter-ring bond. Thus, as for the dinitro oxides and dioxides 13-16 1,6 interactions of N -oxide oxygen atoms with the 3-substituents do not dominate the structures, but interactions between a nitro oxygen and a ring carbon are always present. In all four dinitro compounds 13-16, most oxygen atoms also make intermolecular interactions with ring hydrogen atoms, and in the diacid 19 hydrogen bonding necessarily plays an important role in determining the crystal packing.

Table 2. Orientations of Approach of the N-Oxide Oxygen Atom to the Nitro Group.

|  | $\mathrm{O} 1^{\prime}---\mathrm{N} 2-\mathrm{O} 2 /^{\circ}$ | $\mathrm{O} 1^{\prime}---\mathrm{N} 2-\mathrm{O} 3 /^{\circ}$ | $\mathrm{O} 1^{\prime}---\mathrm{N} 2-\mathrm{C} 3 /^{\circ}$ |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 3}$ | $77.20(9)$ | $119.04(11)$ | $73.86(8)$ |
| $\mathbf{1 4}$ | $86.7(2)$ | $103.6(2)$ | $80.23(19)$ |
|  | $89.7(2)$ | $104.2(3)$ | $77.9(2)$ |
| $\mathbf{1 5}$ | $82.68(12)$ | $112.08(14)$ | $75.73(11)$ |
| $\mathbf{1 6}$ | $87.35(12)$ | $102.40(12)$ | $81.66(11)$ |

Table 3. Orientations of Approach of the Nitro Oxygen Atom O2' to the Ring Carbon C2

|  | $\mathrm{O} 2^{\prime}---\mathrm{C} 2-\mathrm{N} 1 /^{\circ}$ | $\mathrm{O} 2^{\prime}---\mathrm{C} 2-\mathrm{C} 3 /^{\circ}$ | $\mathrm{O} 2^{\prime}---\mathrm{C} 2-\mathrm{C} 2 /^{\circ}$ |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 3}$ | $87.08(9)$ | $106.7(11)$ | $79.27(9)$ |
|  | $88.64(9)$ | $103.69(11)$ | $77.78(9)$ |
| $\mathbf{1 4}$ | $81.27(17)$ | $111.7(2)$ | $76.61(18)$ |
| $\mathbf{1 5}$ | $81.65(19)$ | $113.6(3)$ | $76.18(19)$ |
|  | $81.99(12)$ | $116.45(12)$ | $76.83(11)$ |
| $\mathbf{1 6}$ | $84.23(12)$ | $113.56(13)$ | $74.20(11)$ |

The orientations of the approach of (a) the N -oxide oxygen atom to the nitro group and (b) of the nitro oxygen atom to the pyridine carbon atom are controlled by both the angular displacements of the pyridine rings and their nitro groups. The geometries of these approaches is given in Tables 2 and 3. Thus, the $(\mathrm{N})-\mathrm{O}---\mathrm{N}\left(\mathrm{O}_{2}\right)$ vector lies in the range $73.86-81.66^{\circ}$ to the bond from the nitro group to carbon, and in the ranges $77.20-89.74^{\circ}$ and $102.40-119.04^{\circ}$ to the nitro $\mathrm{N}-\mathrm{O} 2$ and $\mathrm{N}-\mathrm{O} 3$ bonds respectively. The only intramolecular contacts between pyridine-N-oxide oxygen atoms and nitro nitrogen atoms recorded in the Cambridge Structural Database ${ }^{20}$ are in 20 and 21 where these $(1,5)$ separations are 2.864(2) and 2.872(2) $\AA,{ }^{21}$ though these nitramino groups will be more electron rich that standard nitro groups and thus not

Table 4. Details of Hydrogen Bonding Interactions Between Oxygen Atoms and Ring Hydrogen Atoms in 13, 15-16.

$$
\mathrm{H}---\mathrm{O} \quad \mathrm{H}---\mathrm{O} / \AA \quad \text { Angle } \mathrm{O}---\mathrm{H}-\mathrm{C} /^{\circ}
$$

## Molecule 13

| $\mathrm{H}(4 \mathrm{~A})$ | $\ldots . \mathrm{O}(2 \mathrm{~B})[1 / 2-\mathrm{X}, 1 / 2+\mathrm{Y}, 1-\mathrm{Z}]$ | $2.425(18)$ | $146.5(14)$ |
| ---: | :--- | :--- | :--- | :--- |
| $\mathrm{H}(4 \mathrm{~B})$ | $\ldots . \mathrm{O}(2 \mathrm{~A})[1 / 2-\mathrm{X}, \mathrm{Y}-1 / 2,-\mathrm{Z}]$ | $2.352(18)$ | $165.2(14)$ |
| $\mathrm{H}(5 \mathrm{~A})$ | $\ldots . \mathrm{O}(3 \mathrm{~B})[1 / 2-\mathrm{X}, 1 / 2+\mathrm{Y}, 1-\mathrm{Z}]$ | $2.65(2)$ | $143.9(16)$ |
| $\mathrm{H}(5 \mathrm{~B})$ | $\ldots . \mathrm{O}(1 \mathrm{~A})[-\mathrm{X},-\mathrm{Y},-\mathrm{Z}]$ | $2.527(18)$ | $132.3(13)$ |
| $\mathrm{H}(6 \mathrm{~A})$ | $\ldots . \mathrm{O}(1 \mathrm{~A})[-\mathrm{X},-\mathrm{Y}, 1-\mathrm{Z}]$ | $2.298(16)$ | $173.1(14)$ |
| $\mathrm{H}(6 \mathrm{~B})$ | $\ldots . \mathrm{O}(3 \mathrm{~A})[-\mathrm{X}, 1-\mathrm{Y},-\mathrm{Z}]$ | $2.605(16)$ | $131.7(13)$ |

## Molecule 15

| $\mathrm{H}(4 \mathrm{~A})$ | $\ldots . \mathrm{O}(1 \mathrm{~A})[1 / 2-\mathrm{X}, 1 / 2+\mathrm{Y}, 1-\mathrm{Z}]$ | $2.34(2)$ | $148.5(16)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{H}(4 \mathrm{~B})$ | $\ldots . \mathrm{O}(2 \mathrm{~A})[-\mathrm{X},-\mathrm{Y},-\mathrm{Z}]$ | $2.69(2)$ | $138.1(17)$ |
| $\mathrm{H}(6 \mathrm{~A})$ | $\ldots . \mathrm{N}(1 \mathrm{~B})[-\mathrm{X},-\mathrm{Y}, 1-\mathrm{Z}]$ | $2.89(2)$ | $116.8(17)$ |
| $\mathrm{H}(6 \mathrm{~B})$ | $\ldots . \mathrm{O}(2 \mathrm{~B})[-1+\mathrm{X}, \mathrm{Y}, \mathrm{Z}]$ | $2.66(2)$ | $138.3(15)$ |
| $\mathrm{H}(6 \mathrm{~B})$ | $\ldots . \mathrm{O}(3 \mathrm{~A})[+\mathrm{X} \mathrm{-1/2}, \mathrm{1/2-Y,Z]}$ | $2.54(2)$ | $128.2(16)$ |
| $\mathrm{H}(7 \mathrm{~A} 1) \ldots . \mathrm{O}(3 \mathrm{~B})[1 / 2-\mathrm{X}, 1 / 2+\mathrm{Y}, 1-\mathrm{Z}]$ | 2.75 | 145 |  |
| $\mathrm{H}(7 \mathrm{~A} 2) \ldots . \mathrm{O}(1 \mathrm{~A})[1 / 2-\mathrm{X}, 1 / 2+\mathrm{Y}, 1-\mathrm{Z}]$ | 2.38 | 142 |  |
| $\mathrm{H}(7 \mathrm{~A} 3)$ | $\ldots . \mathrm{O}(2 \mathrm{~B})[1-\mathrm{X},-\mathrm{Y}, 1-\mathrm{Z}]$ | 2.66 | 133 |
| $\mathrm{H}(7 \mathrm{~B} 2)$ | $\ldots . \mathrm{O}(3 \mathrm{~B})[-1 / 2+\mathrm{X},-1 / 2-\mathrm{Y}, \mathrm{Z}]$ | 2.42 | 151 |
| $\mathrm{H}(7 \mathrm{~B} 3)$ | $\ldots . \mathrm{O}(2 \mathrm{~A})[-\mathrm{X},-\mathrm{Y},-\mathrm{Z}]$ | 2.69 | 128 |
| $\mathrm{H}(7 \mathrm{~B} 3)$ | $\ldots . \mathrm{O}(2 \mathrm{~B})[[-\mathrm{X},-\mathrm{Y},-\mathrm{Z}]$ | 2.56 | 131 |

## Molecule 16

| H4A | $\ldots$. | O1A | $[-1 / 2+\mathrm{X},-1 / 2+\mathrm{Y}, \mathrm{Z}]$ | $2.27(3)$ | $150(2)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| H6A | $\ldots$. | O1A | $[-\mathrm{X},-\mathrm{Y}, 1-\mathrm{Z}]$ | $2.72(3)$ | $128(2)$ |
| H6A | $\ldots$. | O3A | $[\mathrm{X},-\mathrm{Y},-1 / 2+\mathrm{Z}]$ | $2.88(3)$ | $137(2)$ |
| H72 | $\ldots$. | O2A | $[-1 / 2+\mathrm{X},-1 / 2-\mathrm{Y},-1 / 2+\mathrm{Z}]$ | 2.45 | 128 |
| H73 | $\ldots$. | O3A | $[\mathrm{X},-\mathrm{Y},-1 / 2+\mathrm{Z}]$ | 2.42 | 145 |

as good at accepting electron density through space. The shortest twenty intermolecular contacts between N -oxide oxygen atoms and the nitrogen atoms of standard nitro groups reported lie in the higher range 2.918-3.089 $\AA .{ }^{20}$ Thus, most of
our N-O--- $\mathrm{NO}_{2}$ interactions are shorter than any of these, and $2.737(2) \AA$ in $\mathbf{1 6}$ is the shortest. Later we describe the structure of 8 -nitroquinoline-N-oxide 22, in which these two groups are forced to lie peri to one another, and show an even shorter $\mathrm{N}-\mathrm{-}-\mathrm{O}$ contact of $2.5418(17) \AA$. The shortest intramolecular $\mathrm{O}---\mathrm{N}=\mathrm{O}$ contacts between nitro groups recorded in the Cambridge Structural Database are considerably shorter than the intramolecular $(\mathrm{N}) \mathrm{O}---\mathrm{NO}_{2}$ contacts we observe in structures 13-16. Thus there are over 100 examples of such contacts in the range 2.525-2.699 $\AA(\mathrm{R}<0.06, \sigma(\mathrm{C}-\mathrm{C})$ $<0.01 \AA$ ). Although an oxide group is a much better nucleophile than a nitro group's oxygen atom, the electrons in the nitro group are drawn in more, so that the effective size of its oxygen atoms is reduced.

$20 \mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{CH}_{3}$
$21 \mathrm{R}=\mathrm{CH}_{3} ; \mathrm{R}_{2}=\mathbf{H}$


22


23

For comparison with the O---C contacts observed in 13-16, we have surveyed the role of ortho nitro or carboxyl groups on the conformations of biphenyls in the solid state, to see whether 1,5 contacts between oxygen atoms and carbon atoms of the opposite benzene ring are observed. ${ }^{20}$ There is not so much data published. The five biphenyls carrying an ortho nitro group on each ring and no other ortho substituents have inter-ring angles of $62-137^{\circ}$ including one perpendicular arrangement. ${ }^{22}$ In all cases there are $1,5 \mathrm{O}--$ - C contacts of the type observed in our pyridine series, in the range $2.701-2.875 \AA$, with the shorter contacts corresponding
to those cases where the nitro group lies less out of the benzene plane. Steric interaction of a nitro group with the opposite ortho substituent ( H or $\mathrm{NO}_{2}$ ) does not appear to be the controlling feature, since the minimum $\left(\mathrm{O}_{2}\right) \mathrm{N}---\mathrm{H}$ contacts are $c a .3 .0$ $\AA$ and the minimum $\left(\mathrm{O}_{2}\right) \mathrm{N}---\mathrm{O}(\mathrm{NO})$ contacts are ca. $2.87 \AA$. For 2, $2^{\prime}$ 'dinitrobiphenyl itself the rings lie at $62.5^{\circ}$, with nitro group planes at $56.5^{\circ}$ from their pyridine rings, $\mathrm{O}--\mathrm{C}$ contacts are $2.810(2) \AA$ and the $\left(\mathrm{O}_{2}\right) \mathrm{N}---\mathrm{H}$ contacts are $3.0 \AA$. There are twelve biphenyls carrying just one nitro group as the only ortho substituent which show inter-ring angles in the range $46-133^{\circ}$ and each shows a $(1,5) \mathrm{O}--\mathrm{C}$ contact between a nitro oxygen atom and the carbon at the end of the inter-ring bond in the range 2.839-3.108 $\AA .{ }^{23}$ The higher range for this contact distance over the dinitro cases, suggests that there may be an element of cooperativity in the disubstituted cases, i.e. both carbons at the end of the inter-ring bond are depleted of electron density by a through-bond interaction with the nearer nitro group, and thus make a more effective through-space interaction with the other nitro group. The one example of a biphenyl with four ortho nitro groups, 24, measured by Read et al., ${ }^{24}$ is a particularly instructive case. This molecule carries two (meta) amino groups and three nitro groups on each ring. The benzene rings lie at $83.8^{\circ}$, and the two ortho nitro groups whose planes lie closest to their benzene ring planes $\left(6.7^{\circ}\right.$ and $\left.39.3^{\circ}\right)$ make very short $(1,5)$ O---C contacts of $2.472(5)$ and $2.487(6) \AA$ respectively (Fig 5). Bond lengths suggest charge delocalisation from the amino groups into the nitro groups. Thus, these nitro groups are more electron rich, yet at the same time the ortho nitro groups also remove electron density from the ring carbon atom involved in the interaction, both factors which should make the interaction more significant than in the dinitro biphenyls. There are notable exocyclic distortions at the benzene rings at the inter- ring bond, such that the inter-ring bond is splayed away from each of the
two interacting nitro groups. These are the shortest intramolecular (ON)O---C(phenyl) contacts known.


Figure 5. Molecular structure of $\mathbf{2 4}$ measured by Read et al. ${ }^{24}$ showing the two short O---C interactions $<2.5 \AA$

Examination of the eight biphenyls ${ }^{25}$ carrying four ortho substituents from the set of nitro, carboxylic acid and carboxylic ester shows that they make four short 1,5 O...C contacts (range: 2.599-3.054 $\AA$ with a mean value of $2.766 \AA$ ) pinning the biphenyl into a conformation with roughly perpendicular phenyl rings $\left(78-90^{\circ}\right)$. This includes the structure of the $2,2^{\prime}$-dinitrobiphenyl-6, $6^{\prime}$-dicarboxylic acid $25^{26}$ and the tetracarboxylic acid 26. ${ }^{27}$ Biphenyl-2,2'-dicarboxylic acids also show 1,5 O---C interactions in the range 2.726-3.031 $\AA$ (mean $2.867 \AA$ ), ${ }^{28}$ and biphenyl-2,2'-




32


33
dicarbonyl chloride $27^{29}$ and the two dimethyl biphenyl-2, ${ }^{\prime}$ '-carboxylate derivatives 28-29 ${ }^{30}$ also show the corresponding $\mathrm{C}=\mathrm{O} \ldots \mathrm{C}$ contacts (27: $2.741 \AA, \mathbf{2 8 - 2 9}$ : 2.807$2.903 \AA$ ). Nitro groups also known to make short contacts with alkynes and dialkynes e.g. in 30 and $31(2.636(2)-2.642(2) \AA),{ }^{31}$ and to alkenes (2.617-2.791 $\AA$ for eight particularly short ones) ${ }^{32}$ such as 32 and 33.

## Crystal Structures of 13-16.

Oxide 13 contains the shortest $\mathrm{O}---\mathrm{C}$ contact due to the smallest displacements of the nitro groups from their pyridine planes. The two types of $\mathrm{N}, \mathrm{O}$ bond are well differentiated, with the N-O oxide bond length of $1.3023(16) \AA$ and the much shorter nitro N,O bond lengths in the range 1.2181(17)-1.2293(17) $\AA$. The geometry at the two ring nitrogens are distinctly different: the endocyclic angle at nitrogen is $120.87(13)^{\circ}$ at the oxidized nitrogen atom, but $117.62(12)^{\circ}$ at the unoxidized nitrogen atom, and the ring bond lengths to the oxidized N atom are longer by $0.02-0.03 \AA(\mathrm{~N} 1 \mathrm{~A}, \mathrm{C} 2 \mathrm{~A} 1.3677(19) \mathrm{cf} . \mathrm{N} 1 \mathrm{~B}, \mathrm{C} 2 \mathrm{~B} 1.3353(18) \AA$ and N1A,C6A 1.3592(19) cf. N1B,C6B 1.339(2) Å). In the crystal structure (Fig. 6) molecules are linked in pairs by two optimal hydrogen bonds (2.298(16) $\AA$ ) between N -oxide oxygen atoms and hydrogen atoms ortho to the ring nitrogen atom (Fig. 7). Each nitro oxygen atom make one intermolecular hydrogen bond (2.35-2.65 $\AA$ ) (Table 4), the shorter hydrogen bonds involving the more electron deficient H 4 (ortho to nitro) and H6 (ortho to the ring nitrogen atom).




Figure 6. Stereo crystal packing diagram for $\mathbf{1 3}$ viewed down the $b$ axis.


Figure 7: Linking of molecules of $\mathbf{1 3}$ in pairs with hydrogen bonds.

The low temperature structure of dioxide 14 could be refined to an R factor of $5.7 \%$ using a triclinic cell of dimensions $6.1226 \times 7.4847 \times 13.5200 \AA^{3}, \alpha=$ 102.8525, $\beta=90.226, \gamma=111.154^{\circ}$, but the ellipsoids were systematically, moderately elongated in one direction. However, some extra diffraction spots were observed in the diffraction pattern of $\mathbf{1 4}$ and they can be indexed to a very large cell of dimensions $20.3578 \times 22.7139 \times 22.7139 \AA^{3}, \alpha=89.5742, \beta=87.1617, \gamma=$ $74.5216^{\circ}$. We have not been able to make a full analysis of this superstructure. Thus, we note the geometry of the structure refined from the smaller cell, but it should not be interpreted too deeply. Nevertheless, the overall conformation of this structural solution is broadly similar to that of the dimethylated dioxide 16.


Figure 8. Stereo crystal packing diagram of $\mathbf{1 4}$ based on the triclinic cell.


Figure 9. Stereo crystal packing diagram of 15.

In the crystal structure of the dimethyl disubstituted oxide $\mathbf{1 5}$ there is a $92: 8$ disorder in the location of the N -oxide oxygen atom on the two possible pyridine ring sites. The crystal packing diagram (Fig. 9) is constructed with the major component only, but there is sufficient space around the unoxidized pyridine nitrogen atom to
accommodate the alternatively located oxygen atom with only a small disturbance to the lattice. The molecules are linked together by hydrogen bonding between N -oxide oxygen atoms and hydrogen atoms ortho to nitro groups (2.30(2) $\AA$ ) and the neighbouring methyl group.

The dimethylated dioxide $\mathbf{1 6}$ lies on a crystallographic twofold axis so that only one half of the molecule is crystallographically unique. The N -oxide $\mathrm{N}, \mathrm{O}$ bond length is $1.302(2) \AA$ and the nitro $\mathrm{N}, \mathrm{O}$ bond lengths $1.221(2)$ and $1.221(2) \AA$. The molecules are assembled into layers in the $a b$ plane by $\mathrm{O} 1---\mathrm{H} 4$ hydrogen bonds (2.27(3) Å). The methyl groups project from each face of the layer, and adjacent layers interlock with the methyl groups lying close to nitro groups of the next layer (O---H, 2.42-2.45 $\AA$ ) (Fig. 10). It is notable that molecules 13-16 all have high densities, $1.55-165 \mathrm{~g} \mathrm{~cm}^{-3}$, because of the efficiency possible in packing compact molecular structures.


Figure 10. Stereo crystal packing diagram for 16 viewed down the $b$ axis.

## Crystal Structure of 8-Nitroquinoline-N-oxide.

The O---N interactions between N -oxide oxygens and nitro nitrogen atoms in structures 13-16 are 1,6 interactions, but the groups are not forced to be near one another. In contrast, if the groups are oriented peri to each other on a polycyclic aromatic system, then the groups are forced to be near one another at a separation of ca. $2.5 \AA$ and the attractive or repulsive nature of the interaction between the groups
at this sort of separation can be estimated from the displacements of the groups towards or away from each other. To provide a comparison with this type of interaction in 13-16, we have determined the structure of 8 -nitroquinoline-N-oxide $22,{ }^{33}$ in which the two groups are located peri to each other. The molecule is shown in Fig. 11 and its crystal packing arrangement in Fig. 12. The nitro group lies almost perpendicular to the quinoline plane and the $\mathrm{N}-\mathrm{O} . . . \mathrm{NO}_{2}$ separation is $2.5418(17) \AA$, much shorter than observed in oxide and dioxides 13-16, though of course in this compound the groups have less opportunity to escape each other. Nevertheless, the nitro group is only displaced away from the oxide oxygen atom by about $3^{\circ}$ (the exocyclic angles at the quinoline ring differ by $6.3^{\circ}$ ), while the oxide oxygen atom is displaced slightly towards the nitro group (difference in exocyclic ring angles $1.7^{\circ}$ ). The O---N interaction vector makes angles of 95.41 and $95.96^{\circ}$ with the nitro $\mathrm{N}, \mathrm{O}$ bonds. The oxide oxygen atom and nitro nitrogen atoms lie very close to the quinoline plane from which they are very slightly displaced by $0.067(1)$ and $0.089(1)$ $\AA$ in opposite directions. The nitro group is slightly pyramidalised, and the nitrogen atom displaced by $0.036(1) \AA$ towards the oxide oxygen atom. This is a larger deviation from planarity than observed for any of the nitro groups in bipyridine derivatives $\mathbf{1 3 - 1 6}$. The molecules are packed in stacks along the $a$ axis with adjacent molecules related by a centre of symmetry, while the stacks are related by two fold screw axes. There is one particularly short intermolecular contact between the hydrogen atom ortho to the ring nitrogen, H 2 , and a nitro oxygen atom (O3) (2.30 $\AA$ ) from a molecule in a neighbouring stack. This hydrogen bond has an angle of $164.9(13)^{\circ}$ at the H atom and $117.7(4)^{\circ}$ at the oxygen atom. The only other structure of a 8 -substituted quinoline-N-oxide reported is for the diazonium analogue 23 in which the O---N distance is $2.443(2) ~ \AA .{ }^{34}$ This, at least, indicates that the diazonium
group is a better through space acceptor of electron density than the nitro group. Nucleophilic attack at the $\alpha$-nitrogen of a diazonium group leads only to a high energy 1,1-diazene intermediate, but this interaction only corresponds to a very early stage of such a process. Glaser ${ }^{35}$ has proposed that short contact of oxygen with the $\alpha$-nitrogen of a diazonium is better described as a 1,3 bridging interactions of the oxygen centre with the two atoms attached to the $\alpha$-nitrogen. The shortest $\mathrm{N}--\mathrm{N}$ contacts between dimethylamino and nitro groups in the corresponding peri-substituted naphthalene are longer (2.64-2.67 $\AA$ ) than the $\mathrm{N}---\mathrm{O}$ contact in this quinoline N -oxide. ${ }^{17}$


Figure 11. Molecular structure of 8-nitroquinoline-N-oxide 22.


Figure 12: Crystal packing of $\mathbf{2 2}$ viewed down the $a$ axis.

In summary, although peri-naphthalene 22 shows a short $1,5 \mathrm{O}---\mathrm{NO}_{2}$ contact, the corresponding 1,6 interactions in the bipyridine oxides and dioxides $\mathbf{1 3 - 1 6}$ face competition from 1,5 O---C interactions. In 13-16 none of the interactions are forced by the connectivity of the molecules. There is evidence from the Cambridge Structural Database, that the latter interaction may play a significant role in control of conformations of biphenyls carrying several nitro groups in ortho positions. While the $\mathrm{N}---\mathrm{O}$ interactions may involve a very small degree of covalent interaction, the $\mathrm{O}-$ --C interactions are likely to be electrostatic and enhanced by polarisation of the $\pi$ aromatic cloud by the nitro oxygen atoms. Future charge density measurements may provide a better understanding of these short contacts.

## Experimental

General. NMR spectra were measured on a JEOL JNM-EX270 spectrometer at 270 MHz for ${ }^{1} \mathrm{H}$ and at 67.8 MHz for ${ }^{13} \mathrm{C}$ and measured in p.p.m. downfield from TMS, unless otherwise stated. IR spectra were recorded on a PerkinElmer Spectrum RX 1 FT-IR spectrometer in $\mathrm{cm}^{-1}$. Mass spectra were recorded at the EPSRC National Mass Spectrometry Centre at Swansea University. X-Ray diffraction datasets were measured by the EPSRC National Crystallography Service at Southampton University.

Preparation of 3,3'-Dinitro-2,2'-bipyridine-1-oxide 13 and 3,3'-Dinitro-2,2'-bipyridine-1,1'-dioxide 14.

3-Chloroperbenzoic acid (5.98g, 58-84\% purity, Aldrich) dissolved in chloroform (60 $\mathrm{ml})$ was added to a solution of $3,3^{\prime}$-dinitro-2, ''-bipyridine $\mathbf{1}^{36}(2.0 \mathrm{~g}, 8.12 \mathrm{mmol})$ in chloroform ( 140 ml ) at $0^{\circ} \mathrm{C}$ and stirred for 3 h ., then stirred at $34^{\circ} \mathrm{C}$ overnight. Tlc $\left(\mathrm{CHCl}_{3}\right.$ with $\left.5 \% \mathrm{CH}_{3} \mathrm{OH}\right)$ indicated formation of the monoxide as the main product. More 3-chloroperbenzoic acid (1.70 g) in chloroform ( 25 ml ) was added and the mixture stirred at $50^{\circ} \mathrm{C}$ overnight. The mixture was poured on to a basic alumina column and subjected to gradient elution (chloroform/methanol, methanol 0-10\%) to give the monoxide $2(0.77 \mathrm{~g}, 36 \%)$ and the dioxide $3(1.23 \mathrm{~g}, 54 \%)$ as separate fractions.

3,3'-Dinitro-2,2'-bipyridine-1-oxide 13: m.p. 184-188 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$ ) $\delta$ : $9.03\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.7,1.2 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right), 8.81\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.4,1.2 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right), 8.76(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=6.4,0.7 \mathrm{~Hz}, 6-H), 8.28(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.6,0.7 \mathrm{~Hz}, 4-H), 7.97-7.85\left(2 \mathrm{H}, \mathrm{m}, 5,5^{\prime}-H\right)$; ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$ ) $\delta: 154.3$ ( $\left.6^{\prime}-C\right), 147.0 \& 145.5\left(3-, 3^{\prime}-C\right), 143.4 \& 142.7\left(2-, 2^{\prime}-\right.$ C), 142.0 (6-C), $133.2\left(4^{\prime}-C\right), 126.9 \& 126.4\left(5-, 5^{\prime}-C\right), 122.2(4-C) ; v_{\max } / \mathrm{cm}^{-1}: 1600$, 1526, 1262, 1028, 864, 824, 815, 766, $738 \mathrm{~cm}^{-1}$; HRMS (EI): Found: 262.0338, $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{5}$ requires: 262.0338.

3,3'-Dinitro-2,2'-bipyridine-1,1'-dioxide 14: m.p. 202-206 ${ }^{\circ}$ C $;{ }^{1} \mathrm{H}$ NMR ( $\mathrm{DMSO}^{\prime}-\mathrm{d}_{6}$ ) $\delta: 8.82\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.6,0.7 \mathrm{~Hz}, 6-, 6{ }^{\prime}-H\right), 8.32(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.5,0.7 \mathrm{~Hz}, 4-, 4 \mathrm{H}-H), 7.92$ (2H, dd, J = 8.5, 6.6 Hz, 5-, $\left.5^{\prime}-H\right) ;{ }^{13} \mathrm{C}$ NMR (67.8 MHz, (DMSO-d ${ }_{6}$ ) $\delta: 147.1$ (3-, $3^{\prime}-$ C), $144.0\left(6-, 6^{\prime}-C\right), 135.5\left(2-, 2^{\prime}-C\right), 127.6\left(5-, 5^{\prime}-C\right), 121.8\left(4-, 4^{\prime}-C\right) ; v_{\max } / \mathrm{cm}^{-1}$ (nujol): 1555, 1536, 1419, 1278, 1258, 1020, 804, 726; HRMS (EI): Found: 278.0287, $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{6}$ requires: 278.0287.

Preparation of 5,5'-Dimethyl-3,3'-dinitro-2,2'-bipyridine-1-oxide 15 and 5,5'-

## Dimethyl-3,3'-dinitro-2,2'-bipyridine-1,1'-dioxide 16

3-Chloroperbenzoic acid ( $1.75 \mathrm{~g}, 10 \mathrm{mmol}$ ) was slowly added to a solution of 5,5'-dimethyl-3, ${ }^{\prime}$ '-dinitro-2, ${ }^{\prime}$ '-bipyridine ${ }^{37}(0.84 \mathrm{~g}, 3 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(30 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. The mixture was allowed to warm to room temperature then heated to $50^{\circ} \mathrm{C}$ for 3 h . before being left to stir at room temperature for 48 h . The mixture was poured on to a basic alumina column and subjected to gradient elution (chloroform/methanol, methanol $0-10 \%)$ to give the monoxide $15(0.09 \mathrm{~g}, 10 \%)$ and the dioxide $16(0.16 \mathrm{~g}$, 17\%).

5,5’-Dimethyl-3,3'-dinitro-2,2'-bipyridine-1-oxide 15: m.p. 211-214 ${ }^{\circ} \mathrm{C}$ dec.; ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$ ) $\delta: 8.82\left(1 \mathrm{H}, \mathrm{s}, 6^{\prime}-H\right), 8.64\left(1 \mathrm{H}, \mathrm{s}, 4^{\prime}-H\right), 8.60(1 \mathrm{H}, \mathrm{s}, 6-H), 8.13(1 \mathrm{H}, \mathrm{s}, 4-$ H), $2.51\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$ ) $\delta: 154.3$ (6'-C), 146.6 \& 145.3 (3-, $\left.3^{\prime}-C\right), 142.7$ (6-C), $139.8 \& 139.4$ (2-, 2'-C), $137.9 \& 137.1$ (5-,5'-C), $132.9\left(4^{\prime}-C\right), 122.9(4-C), 17.6 \& 17.5\left(2 \times \mathrm{CH}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1}(\mathrm{KBr}): 3035,2925,1624$, 1542, 1458, 1354, 1289, 1219, 1153, 1027, 863, 780; HRMS (ES): Found: 291.0739 $(\mathrm{M}+\mathrm{H})^{+}, \mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{5}$ requires: $291.0729(\mathrm{M}+\mathrm{H})^{+}$.

5,5'-Dimethyl-3,3'-dinitro-2,2'-bipyridine-1,1'-dioxide 16: m.p. $211^{\circ} \mathrm{C}$ dec.; ${ }^{1} \mathrm{H}$ NMR
(DMSO-d ${ }_{6}$ ) $\delta: 8.72\left(2 \mathrm{H}, \mathrm{s}, 6-, 6\right.$ '-H), $8.23\left(2 \mathrm{H}, \mathrm{s}, 4-, 4^{\prime}-\mathrm{H}\right), 2.45\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d 6 ) $\delta: 147.3$ (3-,3'-C), 144.0 ( $\left.6-, 6^{\prime}-C\right), 139.5$ (5-,5’-C), 133.4 (2-,2’-C), $124.4(4-, 4 \mathrm{l}-\mathrm{C}), 18.2\left(2 \times \mathrm{xH}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1}(\mathrm{KBr}): 3051,1654,1617,1549,1442$, 1378, 1260, 1295, 1225, 1159, 1019, 911, 875, 782, 754; HRMS (ES): Found: $307.0682(\mathrm{M}+\mathrm{H})^{+}, \mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{6}$ requires: $307.0679(\mathrm{M}+\mathrm{H})^{+}$.

## Crystal Structure Determinations.

X-Ray diffraction data was measured at low temperature with MoK $\alpha$ radiation and solved and refined with the SHELXS and SHELXL computer programs. ${ }^{38}$ Hydrogen atom positions were located and refined without constraints, with the exception of the methyl groups in 15 and 16. Illustrations and geometry calculations with ORTEP ${ }^{39}$ and PLATON. ${ }^{40}$

Crystal data for 13: $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{5}, \mathrm{M}_{\mathrm{r}}=262.19$, monoclinic, $\mathrm{a}=9.873(2), \mathrm{b}=$
 $150 \mathrm{~K}, \mathrm{D}_{\mathrm{c}}=1.61 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{MoK} \alpha)=0.13 \mathrm{~mm}^{-1}, 8399$ measured reflections, theta limits $1.99-27.47^{\circ}, 2430$ unique reflections, 1820 with $\mathrm{F}_{\mathrm{o}}>4 \sigma\left(\mathrm{~F}_{\mathrm{o}}\right), \mathrm{R} 1=0.046$, wR2 $=0.114$, resid. electron density $0.28 \&-0.29 \mathrm{e} \AA^{-3}$. Crystals from methanol.

Crystal data for 14: $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{6}, \mathrm{M}_{\mathrm{r}}=278.19$, triclinic, $\mathrm{a}=6.1226$ (3), $\mathrm{b}=7.4847(4)$, $\mathrm{c}=13.5200(8) \AA \dot{A}, \alpha=102.8252(2) \beta=90.226(2), \gamma=111.154(3)^{\circ}, V=560.99 \AA^{3}, Z$ $=2, \mathrm{P} \overline{1}, \mathrm{~T}=150 \mathrm{~K}, \mathrm{D}_{\mathrm{c}}=1.65 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{MoK} \alpha)=0.14 \mathrm{~mm}^{-1}, 6412$ measured reflections, theta limits $1.55-24.97^{\circ}, 1916$ unique reflections, 1279 with $\mathrm{F}_{\mathrm{o}}>4 \sigma\left(\mathrm{~F}_{\mathrm{o}}\right)$, $\mathrm{R} 1=0.057, \mathrm{wR} 2=0.140$, resid. electron density $0.47 \&-0.42 \mathrm{e} \AA^{-3}$. However, extra diffraction spots are present in the diffraction pattern of $\mathbf{1 4}$ and a very large cell of
dimensions $20.3578 \times 22.7139 \times 22.7139 \AA^{3} \alpha=89.5742, \beta=87.1617, \gamma=74.5216$ can be used to index them. Crystals from methanol.

Crystal data for 15: $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{5}, \mathrm{M}_{\mathrm{r}}=290.24$, monoclinic, $\mathrm{a}=8.1670(3), \mathrm{b}=$ 13.4699(6), $\mathrm{c}=11.3597(6) \AA, \beta=94.750(2)^{\circ}, \mathrm{V}=1245.37 \AA^{3}, \mathrm{Z}=4, \mathrm{P} 2{ }_{1} / \mathrm{a}, \mathrm{T}=120$ $K, D_{c}=1.55 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{MoK} \alpha)=0.12 \mathrm{~mm}^{-1}, 9531$ measured reflections, theta limits 2.92-27.49 ${ }^{\circ}, 2826$ unique reflections, 1949 with $\mathrm{F}_{\mathrm{o}}>4 \sigma\left(\mathrm{~F}_{\mathrm{o}}\right), \mathrm{R} 1=0.055, \quad$ wR2 $=$ 0.145 , resid. electron density $0.38 \&-0.35 \mathrm{e} \AA^{-3}$. There is a small degree of disorder, in which about $8 \%$ of the molecules carry the oxide O atom on the second ring N atom. Only the alternative position of the O atom was included in the final model. Crystals from methanol.

Crystal data for 16: $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{6}, \mathrm{M}_{\mathrm{r}}=306.24$, monoclinic, $\mathrm{a}=12.044(4), \mathrm{b}=$ 7.544(3), $\mathrm{c}=15.093(5) \AA \dot{A}, \beta=108.480(3)^{\circ}, \mathrm{V}=1300.66 \AA^{3}, \mathrm{Z}=4, \mathrm{C} 2 / \mathrm{c}, \mathrm{T}=120 \mathrm{~K}$, $D_{c}=1.56 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{MoK} \alpha)=0.13 \mathrm{~mm}^{-1}, 6827$ measured reflections, $\theta$ limits 2.85$27.49^{\circ}, 1462$ unique reflections, 1272 with $\mathrm{F}_{\mathrm{o}}>4 \sigma\left(\mathrm{~F}_{\mathrm{o}}\right), \mathrm{R} 1=0.057$, wR2 $=0.150$, resid. electron density: $0.44 \&-0.31 \mathrm{e} \AA^{-3}$. Crystals from methanol.

Crystal data for 22: $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{3}, \mathrm{M}_{\mathrm{r}}=190.16$, monoclinic, $\mathrm{a}=7.8557(6), \mathrm{b}=$ $8.8130(6), \mathrm{c}=11.4793(10) \AA \AA, \beta=93.780(4)^{\circ}, \mathrm{V}=793.01 \AA^{3}, \mathrm{Z}=4, \mathrm{P} 2_{1} / \mathrm{n}, \mathrm{T}=120$ $\mathrm{K}, \mathrm{D}_{\mathrm{c}}=1.59 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{MoK} \alpha)=0.12 \mathrm{~mm}^{-1}, 8940$ measured reflections, $\theta$ limits $3.83-27.51^{\circ}, 1809$ unique reflections, 1465 with $\mathrm{F}_{\mathrm{o}}>4 \sigma\left(\mathrm{~F}_{\mathrm{o}}\right), \mathrm{R} 1=0.043$, wR2 $=$ 0.11 , resid. electron density $0.24 \&-0.30$ e $\AA^{-3}$. Crystals from methanol.

## Acknowledgements.

We thank the EPSRC for a studentship. We thank the EPSRC National Crystallography Service for X-ray datasets, the EPRSC Mass Spectrometry Service for data and the EPSRC Chemical Database Service for access to databases. ${ }^{41}$

## References.

1. H.B Bürgi, J.D. Dunitz, E. Schefter, J. Amer. Chem. Soc., 1973, 95, 5065; A.S. Cieplak, in "Structure Correlation" ed. H.B. Bürgi, J.D. Dunitz, VCH, Weinheim, 1994, pp 205.
2. W.B. Schweizer, G. Procter, M. Kaftory, J.D. Dunitz, Helv. Chim. Acta, 1978, 61, 2783.
3. P.C. Bell, J. O’Leary, J.D. Wallis, W.B. Schweizer, J. Chem. Soc. Perkin Trans 2, 2001, 133; P.C. Bell, J.D. Wallis, J. Chem. Soc., Chem. Commun., 1999, 257.
4. D.R.W. Hodgson, A.J. Kirby, N. Feeder, J. Chem. Soc. Perkin Trans 1, 1999, 949.
5. J. Clayden, C. McCarthy, M. Helliwell, Chem. Commun., 1999, 2059.
6. J. O’Leary, W. Skranc, X. Formosa, J.D. Wallis, J. Org. Biomol. Chem., 2005, 3, 3273.
7. A.J. Kirby, I.V. Komarov, V.A. Bilenko, J.E. Davies, J.M. Rawson, Chem. Commun., 2002, 2106.
8. J. O'Leary, J.D. Wallis, Chem. Eur. J., 2006, 12, 7724.
9. G. Procter, D. Britton, J.D. Dunitz, Helv. Chim Acta, 1981, 64, 471; M. Parvez, I.I. Schuster, Acta Crytallogr., 1990, C46, 947.
10. P.C. Bell, W. Skranc, X. Formosa, J. O’Leary, J.D. Wallis, J. Chem. Soc. Perkin Trans 2, 2002, 878.
11. K. Akiba, M. Yamashita, Y. Yamamoto, S. Nagase, J. Amer. Chem. Soc., 1999, 121, 10644; M. Yamashita, Y. Yamamoto, K. Akiba, D. Hashizume, F. Iwasaki, N. Takagi, S. Nagase, J. Amer. Chem. Soc., 2005, 127, 4354; M. Yamashita, K. Kamura, Y. Yamamoto, K. Akiba, Chem. Eur. J., 2002,

8, 2976.
12. K.A. Lyssenko, S.M. Aldoshin, M.Y. Antipin, Mendeleev Comm., 2004, 98; C.S. Frampton, H. Straver, J.D. Wallis, S.C. Coles, "Charge Density Characterisation of a Weak Through-Space Interaction in a PeriNaphthalene" Gordon Conference, South Hadley, MA, USA, 2004.
13. P.N.W. Baxter, J.A. Connor, D.C. Povey, J.D. Wallis, J. Chem. Soc. Chem. Commun., 1991, 1135.
14. C.R. Rice, J.D. Wallis, Acta Crystallogr., 1992, C48, 1988
15. C.R. Rice, K.J. Robinson, J.D. Wallis, Acta Crystallogr., 1993, C49, 1980.
16. J. O'Leary, J.D. Wallis, in preparation.
17. M. Egli, J.D. Wallis, J.D. Dunitz, Helv. Chem. Acta, 1986, 69, 255.
18. M. Ciechanowicz-Rutkowska, J. Sol. State. Chem., 1977, 22, 185.
19. P. Voytisek, I. Cisarova, J. Podlaha, Z. Zak, S. Bohm, M. Tichi, J. Zavada, Z. Krist., 1997, 212, 226.
20. F.H Allen, Acta Crystallogr., 2002, B58, 380.
21. A. Szemik-Hojniak, T. Glowiak, I. Deperasinska, A. Puszko, J. Mol. Struct., 2001, 597, 279; A. Szemik-Hojniak, T. Glowiak, I. Deperasinska, A. Puszko, Z. Talik, Nonlin. Opt., 2003, 30, 215.
22. R.Custelcean, M.D.Ward, Cryst. Growth Des., 2005, 5, 2277; L. Jaquinod, N. Kyritsakas, J. Fischer, R. Weiss, New. J. Chem., 1995, 19, 453; A. Sekine, Y. Ohashi, K. Yoshimura, M. Yagi, J. Higuchi, Acta Cryst., 1994, C50, 1101.
23. A. Uamusse, H. Dehne, H. Reinke, J. Dobbertin, C. Schick, S. Diele, J. Prakt. Chem. Chem. Zeitung, 1998, 340, 608; T. Zimmermann, M. Pink, Liebigs Ann., 1993, 1145; I.W. Davies, J.-F. Marcoux, J.T. Kuethe, M.D. Lankshear, J.D.O. Taylor, N. Tsou, P.G. Dormer, D.L. Hughes, K.N. Houk, V. Guner, J. Org. Chem., 2004, 69, 1298; A. Sekine, Y. Ohashi, K.Yoshimura, M.Yagi, J. Higuchi, Acta Crystallogr., 1994, C50, 1101; L. Fallon III, H.L. Ammon, J .Cryst. Mol. Struct., 1974, 4, 63; R. Anulewicz, B. Pniewska, P. Milart, Acta Crystallogr.,, 1994, C50, 1516; M. Sailer, M. Nonnenmacher, T. Oeser, T.J.J. Muller, Eur. J. Org. Chem., 2006, 423.
24. A.J. Bell, E. Eadie, R.W. Read, B.W. Skelton, A.H. White, Aus. J. Chem., 1987, 40, 175.
25. Refcodes: FINMEU, JOQKEF, KOWZEB, LUSWIF, MIHXIK

QUJGEH, QUJGIL, SAJJET, SEFYEH
26. E.G. Popova, L.A. Chetkina, A.N. Sobolev, V.K. Belk'skii, A.M. Andrievskii, A.N. Poplavskii, K.M. Dyumaev, Proc. Nat. Acad. Sci. USSR, 1989, 304, 127.
27. P. Holy, J. Zavada, I. Cisarova, J. Podlaha, Angew. Chem., Int .Ed. Engl., 1999, 38, 381; P. Holy, J. Zavada, J. Zezula, I. Cisarova, J. Podlaha Collect. Czech. Chem. Commun., 2001, 66, 820.
28. Refcodes: FEWSEG, FEWSIK, GACBES, LEBNEM, LUSWEB, OJENIA, SAZQEP, ZITNUL, ZZZUCY01-03.
29. J. Leser, D. Rabinovich, Acta Crystallogr. 1978, B34, 2260.
30. L. Benmenni, E.H. Alilou, M. Giorgi, M. Pierrot, M. Reglier, J. Chem. Cryst., 1994, 24, 345; A.M. Costero, C. Andreu, R. Martinez-Manez, J. Soto, L.E. Ochando, J.M. Amigo, Tetrahedron, 1998, 54, 8159.
31. C.R. Rice, J.D. Wallis, J.C.S. Chem. Commun., 1993, 572; H. S. Bengaard, S. Larsen, H.O. Sorensen, K.J. Robinson, J.D. Wallis, Acta Crystallogr., 1999, C55, 106.
32. M.P. Egorov, V.K. Bel'skii, E.S. Petrov, M.I. Terekhova, I.P. Beletskaya Russ. J. Org. Chem., 1984, 20, 2033; E.E. Knaus, H. Wynn, M.W. Wolowyk, R.G. Ball Acta Crystallogr., Sect.C: Cryst. Struct. Commun., 1987, 43, 1734, M. Fourmigue, K.Boubekeur, P.Batail, J.Renouard, G.Jacob, New. J.Chem., 1998, 22, 845; A.J. Bellamy, T.P. Price, M.F. Mahon, R. Drake, J. Mansell, J. Energ. Mater., 2005, 23, 33; Z. Halime, M. Lachkar, N. Matsouki, G. Charalambidis, M.di Vaira, A.G.Coutsolelos, B.Boitrel, Tetrahedron, 2006, 62, 3056; S. Parsons, G. Brown, G. Tennant, R. Johnstone, CSD, Private Comm, 2006.
33. E. Ochiai, T. Okamoto, J. Pharm. Chem. Jap., 1950, 70, 384.
34. J.D. Wallis, J.D. Dunitz, J.C.S. Chem. Commun., 1984, 671.
35. R. Glaser, C. Horan, Can. J. Chem., 1996, 74, 1200; C.J. Horan, C.L. Barnes, R. Glaser, Chem. Ber., 1993, 126, 243; C.J. Horan, C.L. Barnes, R. Glaser, Acta Crystallogr., 1993, C49, 507; C.J. Horan, P. E. Haney, C.L. Barnes, R. Glaser, Acta Crystallogr., 1993, C49, 1525; R. Glaser, C.J. Horan, E.D. Nelson, M.K. Hall, J. Org. Chem., 1992, 57, 215.
36. C.R. Rice, S. Onions, N. Vidal, J.D Wallis, M. Pilkington, M.-C. Senna, H. Stoeckli-Evans, J. Eur. Inorg. Chem., 2002, 1889.
37. L. Kaczmarek, B. Nowak, J. Zukowski, P. Borowicz, J Sepiol, A. Grabowska, J. Mol. Struct., 1991, 248, 189.
38. G.M. Sheldrick, SHELX97, Program for the solution and refinement of crystal structures, University of Gottingen, Germany, 1997.
39. ORTEP-3 for Windows: L. J. Farrugia, J. Appl. Cryst., 1997, 30, 565.
40. PLATON: A.L.Spek, J. Appl. Cryst., 2003, 36, 7.
41. The United Kingdom Chemical Database Service, D.A. Fletcher, R.F. McMeeking, D.J. Parkin, Chem. Inf. Comput. Sci., 1996, 36, 746.


[^0]:    a $\quad 8 \%$ Disorder in the location of the oxide oxygen atom.
    b Only half of $\mathbf{1 6}$ is crystallographically unique.

