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The relaxed and unrelaxed formation energies of neutral antisites and interstitial defects in InP are calculated
usingab initio density functional theory and simple cubic supercells of up to 512 atoms. The finite-size errors
in the formation energies of all the neutral defects arising from the supercell approximation are examined and
corrected for using finite-size scaling methods, which are shown to be a very promising approach to the
problem. Elastic errors scale linearly, while the errors arising from charge multipole interactions between the
defect and its images in the periodic boundary conditions have a linear plus a higher order term, for which a
cubic provides the best fit. These latter errors are shown to be significant even for neutral defects. Instances are
also presented where even the 512 atom supercell is not sufficiently converged. Instead, physically relevant
results can be obtained only by finite-size scaling the results of calculations in several supercells, up to and
including the 512 atom cell and in extreme cases possibly even including the 1000 atom supercell.
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[. INTRODUCTION the surface of the cell at their ideal lattice positions. The
electrostatic interactions, on the other hand, cannot be trun-
Over the past decade or so first principles density funceated or removed. They result in errors in the calculated
tional theory(DFT)! has become a powerful tool for study- formation, binding and migration energies, errors which can
ing the properties of defects in semiconductors. It is possibléde on the same order as the energies themselves. For practi-
to calculate formation energies, binding energies and migraeal supercell sizes they need not even be negligible for neu-
tion barriers, to predict local structure and, up to a certairtral defects, since dipolar and quadrupolar interactions can
point, defect levels and electrical activity. Problems and limi-remain significant. These latter can even result in errors in
tations remain, however, and one of the greatest is the verthe calculated structures, since they favor certain symmetries
limited size of the systems for which calculations are fea-and local relaxation modes over others. Hence indirect elas-
sible: 10s or 100s of atoms, even when we wish to describ8c errors cannot be avoided either. Finally, a third source of
physical problems involving 1000s or 10 000s. This leavedinite-size errors is also present: The defect state wave func-
the results heavily influenced by errors arising from thetions can overlap with their images in the PBCs leading to a
boundary conditions. These errors must therefore be carepurious dispersion of the defect levels which in turn can
fully studied so that their effects can be understood and acaffect the formation energies, especially if the defect level is
counted for when results are interpreted. There are two typesnly partially filled. The errors related to this dispersian
of boundary conditions commonly used: open and periodictunneling are expected to have only a fairly small and rather
Open boundary conditions are usually encountered in clusteshort rangedexponential effect.
calculations. The surface atoms are “terminated” with hydro- Recently, various correction schemes have been
gen to use up spare electrons, but are otherwise surroundsdggestet® to compensate for at least the leading terms in
by empty space. Periodic boundary conditio@®BCg, the errors arising from the electrostatic interactions. They are
meanwhile, are found in supercell calculations, in which ausually based upon fits to quasiclassical models and/or mul-
block of atoms is surrounded not by empty space but by atipole expansions of the electrostatic interactions. They have
infinite array of copies of itself. Both approaches havemet with varying levels of success but, so far at least, are
strengths and weaknesses. We present here a detailed stugBnerally considered insufficiently reliable. There are more
of the problems arising from the use of the supercell approxidirect approaches, however. Probert and Payeeently
mation and we propose a method to overcome them. presented a detailedb initio study of the neutral vacancy
Finite-size errors in supercell calculations come from twoin Si, considering all aspects of convergence, from basis
main sources. Elastic errors often arise because the superce#it andk-point sampling to size and symmetry of super-
is simply not large enough to contain all of the local relax-cells. They demonstrated that the use of “large” supercells
ation around the defect, leaving calculated formation ener200+atomgcan be essential for obtaining the correct physi-
gies too high. In addition, the defect interacts with an infinitecal results. Meanwhile, we recently preseftadtudy of the
array of spurious images of itself seen in the PBCs, via botmeutral vacancies in InP. We demonstrated the advantages of
elastic and electrostatic interactions. The direct elastic intemot only using large supercells but also finite-size scaling the
actions can easily be truncated by freezing all atoms lying omesults obtained. We evaluated both the relaxed and unre-
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laxed formation energies of the phospho(Ws) and indium  the[Zn,,—Vp] complex in INP using the same technique and
(V,n) vacancies in simple cubic supercells of 8, 64, 216, angotentials. Unfortunately, physical memory limitations in
512 atoms. We then showed that the variation in the formaeven the largest parallel computer facilities available to us
tion energy with supercell size follows rather closely the mean that we must treat thel 4lectrons of In as core, even
form though they are comparatively shalloghA calculation for
bulk InP in its fcc primitive cell places the Ind4states about
ES(L)=E;+aL ™t +agl 3, (1) 14.5 eV below the valence band edge at th@oint when
they are treated as valence—fairly deep but still close
WhereEdC(L) is the formation energy in supercelC* anda;  enough to potentially make some contributions to formation
anda; are fitting parameter€y is the finite-size scaled for- energies.It would be preferable to treat them as valence, but
mation energy corresponding to an infinitely large supercellthen properlyk-point converged calculations in the 512 atom
Equation(1) has, in fact, the same forth™* plusL™%) as the ~ cell—which our analysis requires—would be impossible.
corrections proposed by Makov and Payn&fe will return  The size of the resulting error will be examined in Sec. VIII.
to the issue of whether or not this is the correct form in Sec. The optimized LDA lattice constant using these pseudo-
IV. For the vacancies we showed that the error bars on thpotentials is 5.827 A and the band gap is 0.667 eV, com-
values obtained foE; are usually rather small: ©.1 eV) or ~ pared to 5.869 A and 1.344 eV in experiment. As stated
less, depending also upon the levekgioint convergence in  above, we will only use simple cubic supercells of 8, 64,
individual cells. Care must be taken, however, when scaling16, and 512 atoms, since it is important to keep to a single
relaxed formation energies of strongly Jahn-Télastive de- supercell symmetry since the scaling is different for different
fects, such as M In such cases rather wider error bars areSymmetries. No restrictions are placed upon the symmetry of
obtained if the symmetry of the relaxed structures varies witi€laxations, but we do not allow atoms located on the surface
supercell size. Numerically, we also found tliatr examplg of the cell to relax. The exception is interstitials at the quasi-
Ej for the unrelaxed Y is actually~0.2 eV above the value hexagonal sites in the 8 atom cell. Here, three of the nearest
obtained in the 512 atom supercell, suggesting that there afeeighbors lie on the surface. Initial tests showed that the
cases for which even the 512 atom cell is not large enough ttglaxation was not stable if all of these were allowed to relax
be converged, so that scaling becomes essential. at once so relaxations were done in stages: first, one group of
In the present paper we extend the study to that of théeighbors was relaxed while the others were kept fixed, then
other neutral native defects: the antisites and interstitials. I¥ice versa.
should be noted, however, that our primary purpose is not the The key quantity is the formation energy
study of the defects themselves but of the finite-size errors
whic>r/1 arise when calculating their formation energies. InP E] = Ef(defec) - Ef(bulk) +E_ i, (2)
has the zinc-blend structure, with two antisitgg &d Inp '
both with tetragona(Ty) symmetry when unrelaxed. For in- where E$(defec) and ES(bulk) are the total energy of the
terstitials there are three high symmetry sites: two tetragonakupercell with and without the defect, calculated using the
with four In or four P nearest neighbo(¥;, or X;p) and a  same values of plane-wave cutdétpoint grid, etc., to make
guasihexagonal siteX;hey) With six nearest neighborshree  use of the cancellation of errors. The defect is formed by
P and three Inand C, symmetry. Previous work for the adding/removingy atoms of chemical potential;. We use
isolated neutral cases has mostly been limited to the 64 atotp=3-485 €V andu,=6.243 eV;! corresponding to sto-
supercell. Here, formation energies were around 5-6 eV folchiometric conditions. A plane-wave cutoff energy of
the tetrahedral interstitidlsand around 3 eV for the 200 eV and a Monkhorst-Pack-d4x 4 k-point grid® was
antisites? In, displayed some Jahn-Teller behavior whilg p found sufficient! for converged nonrelaxed calculations in
did not. We will examine how these results change withth® 64 atom supercell with errors around0®1 eV). Hence
larger supercells and with scaling. In the next section wedfids of 8X8X8 in the 8 atom cell and 22x2 in the
describe the method to be used. In Sec. 1l we will describdarger cells should suffice. However, in this study we exam-
the basic scaling results for the various neutral defects anie specifically the errors arising from the supercell approxi-
will examine in Secs. IV and V the form of the scaling and mation itself. k-point convergence is different in different
when it does and does not work. In Sec. VI we considesupercells and we do not wish to include any significant
briefly other charge states of the defects. In Sec. VII weefrors due to this. Hence we need to ensure even higher
discuss the origin of the surprising linear scaling we find inlevels of convergence during this study—much higher than is
certain cases. In Sec. VIII we estimate the size of the othepormally required or practica{Examining the scaled prop-
nonfinite-size dependent errors for the purpose of Comparierties of the native InP defects themselves, over all relevant

son, before concluding in Sec. IX. charge states, is left to future work, however, as it will be
done with rather different levels of-point convergence,
Il. METHOD AND K-POINT CONVERGENCE pseudopotentials, etc., once we have in the present work es-

tablished the behavior of the finite-size errpr§Ve use
We use plane-wavab initio DFT! within the local den-  k-point grids of up to and including 2212x 12, 8x 8 X 8,
sity approximation (LDA) together with ultrasoft 4Xx4x4, and 4<4X4 inthe 8, 64, 216, and 512 atom cells,
pseudopotentialg US-PB using the ViennaAb initio Simu-  respectively(Exceptions are: R—only 2X 2 X 2 needed in
lation Packagevasp).!” We recently presentétia study of  the 512 atom cell, and jj, and Ine—6X 6 6 used in the
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FIG. 1. Convergence of formation ener&ﬁ(N) with evenN verse supercell _size. Theaxis scale is_ in units of 6.827 A), the
X N x N Monkhorst-Pack-point grids.x: calculated values of for- inverse of the eight atom supercell size. Hemeel.00, 0.50, 0.33,
mation energies. Dotted line: “converged” val(@lculated using and 0.25 correspond to the 8, 64, 216, and 512 atom cells,
30x30x30 k-point grid). Dot-dashed: running average over '€SPectively.
ES(N). Dashed line: running average weighted by the numbéx of
points in the irreducible Brillouin zone. Solid line: running average k-point grid thanEdC:R"(N) and EdC:'d(N) themselves. The re-
weighted by the total number &fpoints in the full Brillouin zone.  |axed formation energieEdC:RX are then approximated by

=CRx _ =Cild _ _Cid C:Rx, _rCid
216 atom cell to check convergencdo improve conver- By ~Eq erelalN) =Eq "+ Eq(N) ~Eg(N).
gence further we use weighted averages cﬁééwalues cal- (5)
culated using a series of grids. Figure 1 shows the adva

tages clearly: The unrelaxed formation enerd&¥(N) for 6% 6% 6 and 8¢ 8 x 8 Monkhorst-Pack-point grids in the
Pin In the 8 atom cell are shown, calculated USNEN g 10 coll 2¢ 2% 2 andi(if the convergence is uncertain
XN k-point grids and plotted against. (This case has the 4 4 4 grids in the 64 atom cell, and>22x 2 in the 216
most difficultk-point convergence in this papeflo get er- 554 512 atom supercells. For the latter two we usually re-
rors safely below @.005 eV ak-point grid of at least 18  gyjct thek-point grid to the irreducible Brillouin zone of the

"Fhe relaxation energies used will be weighted averages using

X 18x18 is needed. Taking the average over all Byeval-  yndisturbed bulk lattice. In other words, we use just the spe-
ues up to a particulal X NX N (dot-dashed lingis unhelp-  ¢ja| k point (0.25, 0.25, 0.2 This amounts to assuming that
ful, but taking a weighted average the distortion in the band structure due to the presence of the
S WESN) defect is_either_localizedhus important only very nga“r_) or
S N=d symmetric. It introduces a small error whose significance
Ef,:: (3) disappears in the large supercell limit.

EWN
N

helps dramatically, as it effectively increases khgoint den- lll. SCALING RESULTS

sity: The points in a &4 x4 grid are not contained ina 6  |n Figs. 2, 3, and 4 we show the formation energies for the
X 66 grid, for example. There are two obvious choices forantisites, phosphorus interstitials, and indium interstitials, re-
wy: The best iswy=N°, the number ok points in the full  spectively, both relaxedminimum energy configurations
Brillouin zone, but settingvy equal to the number in the and unrelaxed(atoms at ideal bulk lattice sitelotted
irreducible wedge is not bagolid and dashed lines, respec- against inverse supercell size. The solid lines are fits of the
tively). All subsequent results will be weighted averages usfour points to Eq(1). The y-axis intersect of each of these
ing wy=N°. (Incidentally, for the unrelaxed neutral vacanciesfits is the scaled formation enerdg/; corresponding to the
we finc® errors of 0.36 and 0.06 eV, respectively, fos ¥d  formation energy of a single isolated defect in an otherwise
Vi, in the 512 atom cell when comparidgpoint only cal-  perfect, infinite lattice. The inclusion of formation energies
culations to converged values, so thiepoint is never suffi-  from the 8 atom supercell could be questioned, since in itself

cient) _ it is so far from being converged. However, the results shown
In Ref. 11 we also showed that the relaxation energy  in the figures clearly support our expectation that the correct
: : form for the scaling ha&at leas} three parameters. We there-
eraimN) = ES(N) - ESU(N) @ g haat least three p

fore need results from at least four supercells of the same
[where ES®¥(N) and ES"Y(N) are ES(N) with atoms at re- symmetry. It would have been preferable to use the 1000
laxed and ideal positions, respectivetpnverges faster with atom simple cubic cell, but sufficiently convergatl initio
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[T T 5 TABLE |. Scaled relaxed and unrelaxéideal lattice sitesfor-

[ iHEX) | mation energiesE], plus the scaled percentage volume change
1 (%6V) upon relaxation for neutral native defects in InP, listed in

order of (relaxed stability in stoichiometric materialThe volume

is that of the polyhedron defined by the nearest neighpdiste

that the error bars are not actually symmetric: see Figs. 2—4.

Defect Ideal(eV) Relaxed(eV) %oV
Pin 2.49+0.02 2.28+0.03 -19+7
| +1deal 1 5 ) Vp 3.00+0.16 2.35+0.15 -35+%F
3.5F 4 H XRelaxed H | R BN Inp 3.37£0.09 2.69%0.06 17+3
1 | ORestricted { .
RTINS PP TP B Prerers s irwrwrwrn wrwrn [ R U PR PT 1 Ini(p) 4.15+£0.30 2.95+0.20 19+3
0 02505075 1 0 02505075 1 025 05075 1
1L (1/8 atom cell size) Pi(hex 4.90+0.14 3.69+0.08 12+38
Pip) 5.21+0.16 4.88+0.%5 -5+7
FIG. 3. Scaling the formation energy of neutral phosphorus in-p,,,, 5.49+0.06 4.96+0.02 9+14
terstitials. Those at the tetrahedral sitgg,Pand Rp) are not stable INi(n) 4.75+0.35 3.00+0.08 45+19
in the 216 and 512 atom supercells: If the symmetry is not restricte hex 6.95+0.01 3.8 3.8

then the interstitials relax towards the hexagonal site. Plotted points

are from relaxations in which the symmetry?was restricteﬂfotdnp Vin 4.95:0.10 4.20+0.05 —43:4

prevent this. aUnstable in some cells, value results from symmetry restricted re-

laxations, see text.

calculations for InP defects in this cell are not possible withPUnstable in some cells, value is rough extension with no error bar

current facilities. In addition, the results themselves justifyavailable, see text.

the use of the 8 atom cell: The scaling motgstly works very®Values taken from Ref. 5.

well, producing small_ error _bars and wit™ lying on or formation energies are listed in Table |, together with those

near the curves. Th|_s, mcujen_ta_lly, also tells us th_a; thest the vacancies taken from Ref. 5.

k-point convergence in th.e individual cells was sufficient.  pe scaling curves also have a more general and rather

The cases where the scaling does not work so well turn oyractical meaning: They are essentially predictions of the

to be due to other problems, see Sec. V. formation energies imll simple cubic supercells from 8 at-
To get an idea of the accuracy of the fitting and of theoms to infinity. For example, Table Il shows the predicted

derived E values (and the individualE]) four more fits  formation energies in the 1000 and 8000 atom supercells, as

(dotted lineg are added in each case. For each of these, onghey would arise fronk point and basis set converged LDA

of the four data points has been omitted. The spread in thealculations(The 64 000 atom cell would be just as easy, but

resulting y-axis intersects gives an error bar for the scaledthese predictions are more likely to be tested and—

formation energyEy. (It should be emphasized that the dot- hopefully—confirmed within our lifetimeyAs a more im-

ted lines—three parameters to three points—are not intendedediate test, Table Il also shows the formation energies in

to be meaningful in themselves but are merely indications othe 512 atom cell predicted by scaling the results from only

the scale of the error in the real solid line fjit¥he scaled the 8, 64, and 216 atom cells: following along that dotted

line which does not pass exactly through the 512 atom value

for each case in the figures. The error in this predictias

: 04, In;p, compared to the actual calculated valuissalso shown. The
6'55' F E errors are pleasantly small, especially considering only three
6F 1E 3 cells have been used, including the 8 atom one. The errors in
s —+Ideal _— .
S ssf X Relaxed the other predictions are expected to be much smaller still.
5.5F 1F 3 455 . :
C) ] ] All the relaxed structures turn out to be symmetric, with
o 1 e~ s just breathing mode relaxations. The exception js Which
i “d F~ Jas shows some moderate Jahn-Teller behayee Sec. V A
1, All the interstitials apart from f,) relax outward, as does
] ] Inp, while R, relaxes inward. This is all as expected, since P
S1F 3.5 is smaller than In. Figure 5 shows the scaling of the percent-
1L 15 age volume change upon relaxatigithe volume shown is

2 P

CEESREE T omtreE ceiesasef  [hatofthe poyhedron defined by the nearest neighbore
1/L (1/8 atom cell size) fits are described in Sec. IV and the scaled results are in
Table I. The error bars are derived in the same way as for the
FIG. 4. Scaling the formation energy of neutral indium intersti- formation energies, although the dotted lines are omitted
tials. Indium is not stable at the hexagonal sitg,i in the 216 and  here for clarity.
512 atom supercells and cannot be forced to stay put by restricting The most stable neutral native defect in stoichiometric InP
relaxation symmetry. turns out to be the phosphorus antisiig &osely followed
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TABLE IlI. Predictions for the unrelaxed and relaxed formation energies igtthéate uncalculated 8000
and 1000 atom simple cubic supercells. Also shown are predictions for the 512 atom supercell formation
energies obtained by scaling the values in the 8, 64, and 216 atom cells, together with the diffenemce
between the predicated and calculated val(@Esergies in electronvolts.

Ideal structures Relaxed structures
Defect 8000 1000 512 Error 8000 1000 512 Error
Pin 2.50 2.51 2.51 -0.01 2.31 2.33 2.35 0.00
Vp 2.99 2.98 3.00 0.04 2.40 2.46 246 —0.03
Inp 3.29 3.21 3.18 0.02 2.68 2.66 2.66 0.01
In;p) 4.30 4.44 455 0.07 3.13 3.31 3.43 0.05
Pi(hex 4.90 4.89 491 0.03 3.68 3.67 3.68 0.02
Pip) 5.13 5.05 5.05 0.06 4.81 4.74 4.75 0.06
Pian) 5.49 5.48 5.45 0.02 4,99 5.00 5.00 0.00
INi(1n) 4.87 4.97 5.08 0.08 3.15 3.31 3.40 0.02
INi(hex 6.98 7.01 7.02 0.00 — — — —
Vin 4.88 4.80 4.77 0.02 4.19 4.18 417 —0.02
by the vacancy ¥ and then the indium antisite gnThen There are complications with the stable interstitial sites as

come the interstitials, of which indium is the more stable.a function of supercell size. While both interstitials are stable
The least stable neutral defect ig,VThe most stable site for at all three locations in the two smallest cells they are not so
the phosphorus interstitial is the quasihexagonal siieP in the larger cells. For indium the quas.ihexagor)al site lies
For indium, the two tetrahedral sites are degenerate to withigbout~1 1/2 eV above the tetrahedral sites and is not stable

the error bars but numerically the phosphorus surroundelf thﬁ Irzljrgtler cells. An inldium' atomdplaced hﬁre rﬂigrates';[]o a
site I, is 0.05 eV lower—which is probably correct, since etranedral site upon relaxation, indicating that the quasihex-

th b HiSee Fi This i It agonal site is probably not even metastable for indium in the
E. ehrrpr a}rs are asymme i ?e ig. 4, 'S”'S aéeshu q real material. For the phosphorus interstitial, on the other
which is only apparent in very large supercells and the dep,ng it js the tetrahedral sites which are unstable. In this

generacy only appears at the 512 atom supercell. In smallet,se however, we can still obtainypothetical relaxed for-

cells Ing, seems more stable. What is more, scaling showsnation energies at the tetrahedral sites by only alloviigg

that simply taking the 512 atom result would give a relaxedpreathing mode relaxations. The tetrahedral sites are 1.2 eV
formation energy about 0.4 eV too high.8 eV too high if  hjgher than the quasihexagonal site. The reason for this dif-
we stopped at 64 atomwhich can be large enough to make ference in stabilities may h@artially) stearic: The unrelaxed

real differences in the predicted physics of InP. As with thenearest-neighbor distances are shorter at the hexagonal site,
formation energy of V, this emphasizes the value of finite- where the smaller phosphorus interstitials are stable and

size scaling the results of supercell calculations, since thgynger at the tetrahedral site where the larger indium inter-
largest cells for which we can actually do calculations carctitig| sits.

still be too small to be fully converged.
IV. CORRECT FORM FOR THE SCALING EQUATION

4 o 1 I I L
1F 1» A. Formation and relaxation energies

1E ER So far it has been assumed that the correct functional form
1F 335 for scaling is that of Eq(l). This need not be the case,
1E P, uEx) E [ however. Equation(1) is based upon approximations and
1¢ + ] predictions for the form of the errors arising from electro-
static charge multipole interactions between the defect and
its images in the PBCs and these could be incorrect. In ad-
dition, we include here relaxations within finite-sized super-
cells, so we have both elastic errors and, potentially, cross
terms between the elastic and electrostatic errors, so other

¢ possible scalings should be considered. There is clearly a
A PN L . linear term present, plus at least one higher order term, so we
0 025 05 075 1 0 025 0. } . .

1L (1/8 atom cell size.) consider scaling of the form

EG(L) =Ej+ajl ™ +a,L™ (6)

45
40
35
30
25
20

% volume change.

15

FIG. 5. Scaling of the volume change with supercell size: Per-
centage volume change upon relaxation is plotted against inversaith n=2, 3, and 4. The fit quality is assessed using t{® “
supercell size. R and R, relax inward, the others outward. test. This is not easy to do reliably with only four points, so
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2 s ssE oF T = s TABLE M. $ca|ed percentage volume changes upon relaxation,
1.8;— - = Cubic s \ o Inl 3 b i® 1o from scall_ng W|_th number of s_hells relaxed in the 216 atom cell and
16k 1 =k i B E + S from scaling with supercell size.

: 3 455 xIn, {E >V, ;45
°§ ‘3‘25 140 Defect Shells Supercells
i é 30f Pi ~15+1 -19+7

o = st Inp 2042 17+3

J: = 20f Ini e 17+1 19+3
) § 15§ 1" 1Ny 51+40 45+19

: 8 1(:: wx ] Pi(hex 23+2 12+38

bt O | (F ;;) Vp -39+3 -35+2

Lo j E Lol
005115 2 25 0() 051152 00511527

1/shell radius (1/8 atom cell size.)

using all 19 data setéFigs. 2—4 and Ref. )5 The result
btained is that the scaling does indeed fit best wit{B,
ith both Q, andQ,4 being four times larger tha@s. In fact,

FIG. 6. The relaxation energi¢reiay PlUs the percent volume
change as a function of the number of shells around a defect whic

are allowed to relax. For pthe percent Jahn-Teller distortion in the if we calculate thQ.} using only the unrelaxed formation
ADX and DAD structuregsee main tejtis also shown(Relax- n 9 y

ation energy and volume change are only shown for the DAD strucENergies we St'”. f|nd1_:3 fits best and '.f we use the relaxed
ture: those for the ADX structure are very simijafhe 216 atom formation ener_gles minus that of,Rve find the Sa_lme_ resuI'F.
supercell is used, giving -5 shells for vacancies and antisites, Unfortunately if we use all of the relaxed energies including
14 for interstitials. Thex axis is the inverse of the radius of the Pin We get a different resuln=2 provides a better fit. This
atom shell, in units of one over the eight atom cell size. VolumeSuggests thefaint) possibility of a cubic scaling for unre-
changes are outwards for all except.FFits are to Eq(6) with laxed formation energies but quadratic for relaxed energies,
(dashegi and without(solid) the L™ term. (n=2 for erea N=3 for  Which shifts the predictel; by 0.01— 0.2 eV depending on
the volumes. Results for \4 are taken from Ref. 5. the defect. A quadratic scaling would seem odd, since it
comes from neither the elastic nor the electrostatic errors but
we average over different defects. Simply summing or averit could possibly arise from the cross terms between them.
aging they? values would bias the conclusion towards theAn alternative and perhaps more likely explanation is that
worst data sets. Instead, for each data set weyffridr each  the uncertainty regarding is a result of the spurious disper-
value of n, select then giving the best fit(x.) and then sion of the defect levels mentioned above. This adds an ex-
calculate a quality facto®,=x2/ x2.« for eachn. We then  ponential term to the formation energies in the smallest su-
compare the averageg,. percells, blurring the picture slightly. It seems most likely
We first examine the scaling of the elastic errors. To dathat the scalingshouldbe cubic even for the relaxed forma-
this we have performed a series of relaxations in the 21@ion energies: even now it is only one defect which seems to
atom cell for each of six defects. In these relaxations, theparticularly disagree. This should be confirmed once reliable
number of shells of atoms permitted to relax around the decalculations involving the 1000 atom supercell become fea-
fect is varied from 1- 4 for interstitials or 15 for antisites ~ sible.
and vacancieg4 and 5 are the maximum numbers of com-
plete shells which fit inside the supercgelince the cell size
is kept constant the electrostatic interactions will(Akenosy
constant so any variation iy is due to elastic effects. Inthe ~ Figure 5 shows the scaling of the percentage volume
left panel of Fig. 6 we show the scaling of the relaxationchange(going from ideal to relaxed structupewith super-
energy with the inverse radius of the outermost relaxingcell size, whilst the right panel of Fig. 6 shows the volume
shell.(The units have been scaled to match those in previoushanges scaled with the number of shells relaxed in the 216
figures) The scaling is almost purely linegsolid lines in the ~ atom supercell. For the antisites angjina linear fit is again
figure) even—uwithin the bounds of error—for the Jahn- rather good, but for all of the other data sets a higher-order
Teller active defects like ihand Vp. Adding a higher order term is clearly present. We have again tried adding terms in
term, such as > (dashed linesclearly only improves the fit L™, n=2, 3, and 4. For both supercell and shell scaling4
very slightly: ¥ is reduced by about 30% on average. is best. For supercell scalinQ; is 42 times larger thaQ,
Having established that the scaling of the relaxation enandQ, is 124 times larger. The curves plotted in Fig. 5 are
ergy, and hence of the elastic errordf) is linear we turnto  thus quadratics, with thg-axis intercepts giving the volume
the scaling of the formation energies with supercell size. Un€hange expected for a lone defect in an infinite supercell.
fortunately there is too much scatter in several of the curve3hese scaled volumes are shown in Table | . For shell scaling
so that whilstn=3 is best in some cases, in others it comeqFig. 6) Qs is 1.4 times larger tha, and Q, is 2.7 times
an often close second to=2 or n=4. However, since the larger. The quadratic fittings are shown as dashed lines in the
elastic errors are now known to be linear in relaxation radiugight hand panels of Fig. 6. Thegaxis intercepts this time
and hence in supercell size, we can assume that it will simplgive the volume change expected if an infinite number of
add to the linear term in E@6) , so that we can calculat@,  shells were relaxed. They are shown in Table Ill, where the

B. Relaxed volumes
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T F iy 3 In the 8 atom cell the lowest lying structure has the Tyl
1E $ pavo fo o symmetry of the unrelaxed antisite. Indeed, this is the only
o _DbM . stable structure we find in this cell. In the larger cells relax-

3 _ _52.8 ation breaks th@y symmetry to givgprimarily) Cs,, Dy, or
F - ] C,, point groups at the defect sit€g, symmetry is reached
by the antisite atom moving either towards the midpoint of
1 three of its nearest neighbofaway from the fourthin a so
6F 1t called “DX"-like structure(DX in the figure or towards one
: 1t ! neighbor and away from the other three—an anti-Z¥X)
~F 1t N : structure C,, arises when the antisite moves toward one pair
: ] Min 1F of neighbors and away from the other pair, i.e., toward a
F ] %X X s bond center sit¢BCR). The degeneracy can also be lifted
ab X pappx | when the antisite stays still with the four antisite-neighbor
0T s ™ o 05 05T Tt e distances equal, but'the ang'les between the bonds change.
1/L (1/8 atom cell size) D,y structures occur if the neighbors rotate to form two op-
posing pairs of either shorter or longer neighbor-neighbor
FIG. 7. Scaling the formation energies for various Jah”'Te”erdistances{DDM—double dimer or DAD—double antidimer,
structures offy. In all panels the global minimum is showMin).  respectively. In the 64 and 512 atom cells the lowest lying
In addition we show the formation energy when only breathingsirycture is a DAD structure with two neighbor-neighbor dis-
mode relaxations are allowedly) and nonsymmetry restricted ances, respectively, 5% and 8% shorter than the others. The
relaxed formation energies for the BCR, DX, ADX, and DDM gt stable structure in the 216 cell is a 7% DAD-like struc-
structures, plus the DAD structure WitPAD-DX) and without e byt with an additional 4% DX-like distortion, although a
(DAD-EQ) an additional DX like distortion(See main text for 4% BCR structure and a 7% pure DAD structyeith no
descriptions. Fits to Eq.(1) are solid when the structure is stable in . .
four cells or dashed when it is only stable in three. Dotted lines areDX componeryt both come a close Secon@[he. distortion
. , : . quoted for the BCR, DX, and ADX structures is the percent
linear fits when the structure is stable in only two cells. L I . .
variation in antisite-neighbor distancem the 512 atom cell

) i ) the potential energy surface for smallp to ~2%) DX dis-
equivalent values for supercell size scaling are added fofytions from the DAD structure is also very flat. Overall,

comparison. The two sets of values agree very well, indicatihese results suggest that a long im an infinite supercell
ing that at least the breathlng modes in the infinite limit are,,51d have a DAD structure with a formation energy lying
unaffected by charge multipole interactions. about 0.4 eV below th&j structure found when only breath-
ing mode relaxations are allowed, and 0.1 eV below the for-
mation energy found by scaling the minimum formation en-
V. WHY SOME STATES SCALE BETTER THAN OTHERS ergy irrespective of Jahn-Teller structure.

The changes in relative stability of the different structures
are due to one or a combination of two things: stabilizing/

It is very clear from Table | that some formation energiesdestabilizing dipolar, quadrupolar, or higher interactions,
scale better than others. When considering the scaling for thehich can in certain cases lift the symmetry without distor-
neutral vacanciéswe noted that the scaling becomes moretion (in the 8 atom cell for exampjeor favor certain Jahn-
difficult to do reliably for strongly Jahn-Teller active defects Teller structures over others. These effects become weaker as
such as . For a Jahn-Teller active defect there is a partiallythe cells grow(b) The lack of shells of atoms in the smaller
filled degenerate state at the Fermi level, which the Jahnreells to absorb the elastic strain, which favors more symmet-
Teller theorerf says will be lifted by symmetry reducing ric structures. In the right hand panel of Fig. 6 the variation
relaxations(if no other effect achieves this fijstThis leads in the degree of Jahn-Teller distortion for the ADX and DAD
to poor scaling since the symmetry of the most stable relaxesdtructures was plotted versus the number of shells permitted
structure can vary with supercell size, so that data pointso relax within the 216 atom cell. For the ADX structure
from some cells scale differently to those from others. Inthere is virtually no variation at all and the same was
order to get good error bars for scaled formation energiegreviously found for Vp. For the DAD structure, on the
each possible reduced symmetry structure must be scaledher hand, a rather strong variation is found. This suggests
separately. Among the current defects there is a further exhat elastic effects are involved for some local distortion
ample of a Jahn-Teller active defectplifhe distortions here symmetries but not for others, thus further complicating the
are much weaker, so the error bar is £0.06 eV even whepossible variations in lowest symmetry structure with super-
symmetry differences are ignored, which is still reasonablecell size. At least for the ADX structure the charge multipolar
Nevertheless, we have done a search for the various stabileteractions act essentially in competition with the normal
and metastable structures in the four supercells. Their varidJahn-Teller mechanism, making it uncertain if the correct
ous formation energies are shown scaled in Fig. 7, togethestructure has been found at all for smaller supercells. It is
with (a) the scaling of the lowest lying formation energy sometimes pointed oRef. 14 and elsewhey¢hat one way
irrespective of symmetrglabeled Mir) and(b) the formation  around this problem would be to ugepoint integration at
energy when onlyTy symmetry breathing mode relaxations the I' point only, since this restores the degeneracy of the
are permittedlabeledT). degenerate levelgrior to relaxation. However, since for

A. Jahn-Teller active defects
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P P P P \Y2

In iIn) i(P) i(HEX) p FIG. 8. Defect levels in or near the band gap,
64 512 64 512 64 512 64 512 64 512 shown at thd” point for neutral native defects in
. €0 0o 8- -ee- o= the 64 and 512 atom supercells. Dotted horizontal
""""" T v s e s rurelrs GGG TS g lines mark the bulk LDA valence and conduction
O s s T g band edges0.6771 eV apayt Dashed lines indi-
- cate the shifted bulk and valence band edges in
the defect cells, solid lines indicate localized de-
In In. In In. AV fect levels. Black, gray, and white symbols are
P i(In) iE) IHEX) T (respectively filled, half filled, and empty states.
64 512 64 512 64 512 64 512 64 512 Circles indicate localized states, diamonds delo-
s = A —& - Cannot calized (bang states. Filled valence band and
“ﬁ ........... :g___._:g.__ ............. be ...... i e e empty Conduction band states are not marked
:.;.:..._._.._.....-..‘ ........... PN~ = < T ét'e{t;illi'z'e.d.“ﬁ“m with symbols.

InP (and doubtless many other materjalke I' point does dispersion(~0.6 eV in the 64 atom supercgland yet the
not give sufficiently converged formation energies even inscaling error bar for R is 0.02 eV while that for Iy, is
the 512 atom supercell this will simply result in unconverged0.35 eV.
results: Errors arising from the use of just Hgoint can be The main difference is actually that;lp also has a par-
tenths of electron volts, often the same size or larger than thgally filled defect levelinsidethe conduction band, resulting
splittings between various stable and metastable Jahn-Tellén an electron occupying a delocalized state at the conduction
distorted structures. Here we study the relative stability of alband edge. This occurs for all of the defects which have poor
the possible Jahn-Teller distorted structures with convergedcaling error bars. This is seen clearly in Fig. 8 where we
k-point grids and then scale them to predict which structurgoresent the level diagrams for all the neutral native defects,
will be most stable in the infinite supercell limit, where theseshown at thd” point in the 64 and 512 atom cells. While the
spurious degeneracy lifting interactions become zero. antisites have no delocalized states, the interstitials always
have at least one electron occupying a state at the conduction
band edge. For phosphorus at the tetragonal sites not one but
B. Defect level diSperSion and defect states outside the band gap three electrons ||e above the Conduct|0n band edge, WhICh
The scaling is also rather bad for the interstitials, everinay be why they are not stable at all in the larger supercells.
though no Jahn-Teller behavior is anticipated or detectedhe level diagrams for the vacancies seem at first glance to
whatsoever. One might have expected that the reason for thg®ntradict the rule: ¥ has one delocalized electron in the
was the defect level dispersion which was also identified irsmaller cells and ¥ has three delocalized holes in all four
Sec. IV as a possible source of the slight uncertainty in thé&ells, despite the fact that the scaling is rather good for these
correct form for the scaling equation. The dispersion can leadefects. This is itself a finite-size effect, however. For &/
to errors in the formation energies of individual defects andriply degenerate defect level lies just above the conduction
since it should decrease exponentially with cell size it couldPand edge. This level Jahn-Teller splits, with one state mov-
affect the error bars on the scaled infinite supercell formatiotnd downward. In the smaller cells it does not make it to the
energies_ In a fu||y occupied defect level the dispersiorpand gap so the metastable distorted structures found must
should have no direct effect as |ong as the defect level |ie§rise from hybridization between the localized Jahn-Teller
within the gap at alk points, since the average energy of thesplit levels and levels at the conduction band edge. For the
band should equa| the energy of the level in the absence dqargest Ce”S, however, the lower Jahn-Teller Sp'lt level drops
dispersion. On the other hand, the dispersion can lead ti#to the gap, so that the charge state becomes stable. In the
hybridization of the defect level with conduction band statescase of \f; we again see a triply degenerate localized defect
of the same symmetry, thus art|f|c|a||y |owering the mean|eve|, this time inside the valence band Ieaving three holes at
value of the defect level and hence of the defect formatiorihe valence band edge, and even in the 512 atom cell this is
energies in the smaller cell§The same holds for empty all we see. However, as the supercell size grows the defect
defect levels hybridizing with valence band states, allowing€vel moves rapidly toward the valence band edge. Clearly,
the latter to be lowered in energyor partially filled defect ~for an isolated defect in a real material we would expect this
levels the effect upon the formation energy is more direct/evel to lie inside the band gap, even though the 512 atom
since only the lower parts of the defect leyband will be  cell is not sufficiently large to show it. This again underlines
filled, again leading to too low a value for the formation the need for using comparison and scaling rather than just
energy. However, the connection between the amount of déarge supercells(Similar effects are visible for &, and
fect level dispersion and the size of the errors in the formaP; ), although they remain unstable.
tion energy in a particular supercell is not simple. Indeed,
checks on the bandwidth of the defect levels find no corre- VI POSSIBLE CHARGE STATES ACROSS THE BAND
lation at all between them and the scaling error bars: For GAP
example the unrelaxed structures for bothdhd In, have Although we only consider the neutral defects in this pa-
a defect level in the lower part of the gap with a rather largeper, the level diagrams in Fig. 8 also give a rough indication
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of which charge states are most likely in different parts of the
band gap. For the indium interstitials the +1 charge state
seems the most stable in the upper part of the band gap, bt
two transition levels will lie in the midgap, giving a +3
charge state fop-type material. For f,¢y We expect a +1 [
charge state across most of the gap. With increasing superce(a) ' ' (b)
size a second defect level approaches the band edge froi
below so there may be one or two transition levels near the
bottom of the gap. This is a result which is only apparent
when one compares or scales the results from different su
percell sizes: Even in the 216 or 512 atom cells it is not
apparent. R has a single, filled level in the upper half of the

gap, suggesting 0 fon-type material and +1 or +2 other- (C)W (d) ' '

wise. Ins has a threefold degenerate level containing four

electrons in the middle of the gap. A large number of transi- FIG. 9. Schematic diagrams for the electrostatic origin of linear
tion levels across the entire gap are thus expected, rangirfgrmation energy error scalinga) A positively charged defect, with
from -1 or -2 inn-type material to potentially even +4 for a positive core, localized electrons in a defect level and compensat-
strongly p-type material. \¢ should have two transition lev- ing jellium. (b) Subsystem leading to linear errors: weaker effective
els in the upper half of the band gap, +1 and —1 being th&ore charge plus jellium(c) The effective situation for k). core
most stable charge states in stronglyandn-type material, charge, two localized defect level electrons and one delocalized
respectively. For }, we expect the -3 charge state to be electron at the conduction band edgda).The effective situation for
stable from the midgap upward. However, the movement othe unrelaxet_j lgt core che}rge, four localized defect level electrons
the threefold degenerate defect level up into the band ga@d two(partially) delocalized defect level electrons.

(Sec. V B leads us to expect six transition levels all lying

near (above or below the valence band edge. The mostside the band gap for all or some supercell sizes. As a result
stable charge state at the valence band edge itself could higere are either electrons in delocalized band states at the

anything from 0 to +3. LDA conduction band edge or holes at the valence band
edge. This is shown for the example of gnin Fig. 10. To
VII. ORIGIN OF THE LINEAR SCALING TERM quantify the localization of a particular Kohn-Sham eigen-
FOR NEUTRAL DEFECTS state we start by projecting it onto Wigner-Seitz c8lls

. . . around each atom. We then select some radiasound the
We expect linear scaling terms to arise from two sources

X . . defect and find the average projection per aimmover the
gt(; rtTC'ne(;?é?gIeéirreelﬁexgtfs(ggst;g:sor}?iiggrfrgglﬁ:ecgéae {art of the cell where >r,, and similarly the average. for
: . N ng her <r, region. The localization is then given by the ratio
from the monopole term in the multipole expansion of the
electrostatic interactions: Roughly speaking, it is the Made-

lung energy of the localized charge on the defect interacting 33— r—— 30p—T——7 171300
with the compensating jellium background in the image | In, cell | Defect levels |11 ? ]
cells. This is shown schematically in Fig. 9. Péat shows 25F [ Tpoint [ Ja2sof| __Troint - 1250
the typical situation for a positively charged defect: An infi- o | [\ : ! Ii{éi‘{ﬁis 1
nite array of very tightly localized positive core chargese o 2 - 200[ ‘\‘ : 1F | averaged | 200
in each periodic image of the supergedire only partially & [ E v I, ]
compensated by the localized electrons in @less tightly § 15SE caM Jisof V-

localized defect levels. The remaining charge is compensate® - sex— [ ‘p ¢

by jellium. Makov and Payrfeextracted the part of the sys- § 1E A 100f Ve

tem shown in Fig. @) consisting of an infinite array of =~ [~ vem U

positive delta functions interacting with jellium and showed 0.5F 1 sof 0:

that is gives rise to a formation energy error which is linear . : N

in the supercell size, with a strength proportional to the ol 1 b

a1
0 0.25 05 0 0.25

square of the charge on the defect. This error should there 1L (1/8 atom cell size)

fore be absent for unrelaxed neutral defects. The fact that we
see a clear linear contribution to the unrelaxed formation F|G. 10. Localization of the Kohn-Sham levels corresponding to
energy of, for example, the neutralpl@nd tetrahedral In  (left pane) the valence and conduction band edges aftipeint in
interstitials is thus somewhat unexpected. the cell containing Ipp); (middle panel the defect levels in the
The explanation lies in the localization/delocalization of band gap for Ing), P, and Irp, calculated at thd™ point; (right
the states which become occupied and unoccupied when thgne) the three Ip defect levels averaged over the whole Brillouin
cell contains a neutral defect. In the cases of the neutradone. See text for details. Lines are simple quadratic fits for guid-
interstitials and vacancies one or more defect I@ydie out-  ance: The correct form for this scaling has not been investigated.
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p- partially localized. Clearly the Jahn-Teller structural relax-
_ ations are required in order to properly localize these states.
In the unrelaxed structure we effectively have two localized
. ) , o . electrons and two partially delocalized ones in the middle of
For an isolated dgfect in an otherwise perfect infinite lattice e pang gap, leading to the spatial charge distribution shown
a,— asr—= if the state is localized, since-—0. On  gchematically in Fig. @). Electrostatically, this again be-
the other handg,— 1 if the state is delocalized as the tWo hayes to first order like a jellium background charge sur-
averageg.. andp- then tend to the same value. rounding a positively charged, localized defect, resulting in
Here we have finitd. sized supercells, so we choose  he jinear scaling observed. As with the interstitials, predict-
such thatp.. is calculated over the outermost complete shelli,g the specific gradient expected must be left to future work.
of atoms around the defect, plus the atoms in the cell cornergyere. e simply note that this mechanism should also affect
p< is then calculated over the remaining 2, 4, and 6 completg,e nrelaxed formation energies of other defects with par-
shells in the 64, 216, and 512 atom cells, respectiv@lye 8  yiq|ly filled degenerate levels in the band gap. It seems rea-
atom cell is too small for this analysjsSupercell scaling of  s5nhapie to presume that it is involved with the neutra] V

a,(ri(L)) then has the same behavior as for the isolated desng perhaps ), although they also have linear terms arising
fect. Thus, in Fig. 10¢,, is plotted against one over the cell fqm partially filled band states.

size for various states of interest. The left panel shows the
localization scaling of the states at the LDA valence band VIIl. OTHER SOURCES OF ERROR
maximum(VBM) and conduction band minimug@BM) for Finite-size errors are not the only types of errors present
cells containing an unrelaxed;d, while the middie panel i, ihese calculations: Errors also arise from the truncation of
(with a very different vertical scajeshows it for the midgap the basis set and thke-point integration as well as from
defect levels of both Ip,) and the antisites. The well be- the yse of both pseudopotentials and LDA. Furthermore,
haved B, is included for comparison. These localizations, memory size limitations forced us to use pseudopotentials in
like the level diagrams in Fig. 8, have been calculated at thevhich the indium 4 shell is treated as core rather than va-
I" point, but using fullyk-point converged charge densities. lence. Although the central aim of this paper is to study the
For Inp the band states are delocalized and the defect leveteatment of finite-size errors it is still informative to esti-
is localized. The VBM and defect levels are filled, while the mate the size of these other sorts of errors for comparison. In
delocalized CBM level is half filled. Hence adding the defectprinciple, errors arising from the pseudopotentials and the
to the cell has added two localized electrons and one deld-DA should be independent of supercell size, though some
calized electron in the vicinity of the band gap. Hence, weshort range dependence may still be anticipated since
have an electrostatic situation like that shown schematicallghanges may affect the amount of defect band dispersion.
in Fig. 9c). To a first approximation we can replace the This contribution should disappear exponentially with super-
charge density of the delocalized electron by its averageell size.
value, thus recovering the situation of Fig:a@ We thus In Fig. 11 we show the change in the unrelaxed formation
predict a linear term in the formation energy scaling. How-energies wherleft pane) the In 4 electrons are treated as
ever, the distribution of the delocalized charge is in realitycore rather than valencécenter panelthe US-PP are re-
far from uniform on the scale of the atomic spacing, so it isplaced by the projector augmented wave methggAW) or
not clear what the prefactor and effective charge should beright pane) the LDA exchange correlation functional is re-
Hence, without performing the detailed mathematical derivaplaced by the generalized gradient approximatiGicA) of
tion required(which lies beyond the scope of the current Perdue and Want. These formation energy differences are
papej we cannot predict what gradient the linear termshown as a function of supercell size for the seven stable
should have. point defectV,p,, Inp, INjn), INip), Vp, P, @and Riey). FoOr

The case of Ip is different. There are no electrons in the GGA and for LDA with the In 4 as valence a plane-
delocalized conduction band states or holes in the valenogave cutoff of 200 eV gives the same level of accuracy as it
band. However, the localization of the defect level atkhe does with the In 4 as core. For PAW on the other hand a
point is rather weak, certainly compared tg &d Inp). The  plane-wave cutoff of 300 eV is required for the same accu-
defect level of Ip is threefold degenerate and partially filled. racy level. The relaxed lattice constants and band gaps also
Away from thel" point this degeneracy is split by the inter- change. For LDA with In 4 as valence we find 5.833 A and
action of the defect with its images, leading to different dis-0.581 eV, respectively, for LDA with PAW we find 5.830 A
persions of the defect levels in different directionkispace, and 0.597 eV while for GGAwith US-PP and In d as cor¢
with one level having lower energiaway fromI'). At most ~ we find 5.956 A and 0.473 eV.
k points this state is thus completely filled, while the other The errors coming from the pseudopotentidisft and
two are partially empty. Hence, averaging the Wigner-Seitzenter panels of Fig. 1Jare, as anticipated, largely indepen-
projection over the whole Brillouin zon@using 8<8x 8,  dent of the supercell size. The slight dependence is well de-
4X4x4 and 2<2X2 point Monkhorst-Pack grids in the scribed by a two parameter fit to the general exponential
64, 216, and 512 atom cells, respectiyetiie completely Chy \ _ oo 1
filled level becomes fully localizedright panel of the fig- Eq(L) =Eq +adexpl™) - 1] 8)
ure). The other two levels are more occupied at the origin in(solid lines in the figurge Changing the In & electrons from
k space than elsewhere and hence in real space are ordgre to valence has, not surprisingly, only a fairly small ef-

a,(r) = o
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E ad LDA/GGA derbinding. An exact §o|ution to the DFT formation energies
05F A A —A~ would lie somewhere in between—and probably closer to the
04f 3 3 LDA results since LDA gives a better lattice constant for
03— E bulk InP. We note also that we have not allowed spin polar-
0.25_ _ 3 ization in our calculations, using LDA instead of the local
015——_—7—?—-’4 1 spin density approximatio(lLSDA). However, for most of

F J i our defects the use of LSDA would simply cause further

finite-size errors since it would introduce spurious magnetic
interactions between the defect and its PBC images. The ex-
ceptions occur for the Jahn-Teller active defegbts, Vp, and
V,,) where the degeneracies can in certain cases be lifted by
Hund’s rule couplings. However, this is only important for
E ok materiald® with more tightly localized bonds or dangling
10 02505075 1 0 02505 075 bonds than we have here, so we may safely omit it.

1/L (1/8 atom cell size) The results from replacing LDA with GGA are shown in
_ the right panel of Fig. 11 and are somewhat surprising: There
FIG. 11. Scaling of errors from other sources. Left panel: Thejs 5 clear finite-size error associated with the choice of

change in formation energy when the Id dlectrons are treated as gy change-correlation functional for certain defects, namely
core rather than valence—i.e., the formation energy using an US-P Mo Mgy Ve and Pihex- The antisites on the other hand

with In 4d treated as valence minus the formation energy found h anifi t Il size d d h
earlier with the In 4 as core. Center panel: the change in formation>1OW NO Significant SUpercell size depen enbg, shows

energy when PAW is used rather than US-@Rth with In 4 only a small size dependence but is still fitted better by a

treated as valengeRight panel: the change in formation energy polynomial than by a,n exponentiplThe defects for WhiCh
when GGA is used instead of LDA. Solid line fits are to E8), the LDA/GGA error difference depends on supercell size are

dashed lines are to E¢l). those for which the defect levels lie outside the band gap.
This indicates that the spurious delocalized states are treated
fect (well below 0.1 eV upon the phosphorus related de- differently by different exchange-correlation functionals.
fects, but a much more significant effect upon the indiumThis is confirmed by checking the degree of localization of
related ones, particularly i, and I, where the effect is on  the electrons/holes at the band edges: When GGA is used the
the same order of magnitude as the finite-size errors. PAWwalues ofe, are 20 to 400% larger than with LDA. These
produces more accurate results than any pseudopotentigianges are linked to the change in band gap and also to the
method since it reconstructs the exact valence wave functiofact that the defect bands move closer to the band edges
with all nodes in the core region. The replacement of US-PRat least near th& point) for these particular defects. Hence
with PAW produces only sma[lO(0.1 eV) or les§ changes We may expect large, supercell size dependent errors of
in the formation energies with virtually no size dependence©(0.5 €V) from the choice of exchange-correlation func-
The |argest difference between the correction in the 8 atorﬁona| when partially filled defect bands lie outside the band
cell and that in the 64 atom cell is only 0.01 eV, so thegap but we expect smaller(@.1 eV) size independent errors
US-PP to PAW changes have not been calculated in the 218hen the defect levels lie within the band gap.
atom cell. This demonstrates that the widely used US&p@ Table IV compares the size of the errors arising from
perfectly reasonable for this type of calculation. It shoulddifferent sources. The basis set errors are estimated from the
also be noted that in most cases the small correction whegifference in formation energy in the 64 atom supercell when
PAW is introduced partially cancel that made when movingthe plane-wave cutoff is raised from 200 to 400 eV. The
the In 4d electrons from core to valence, at least for thek-point errors are different in each supercell: The errors
examples studied here. shown in the table are the largest occurring for any of the
The errors arising from the exchange-correlation func-supercells used, estimated as the difference between the
tional have two main forms. First, the band gagusuall) ~ mean valueES and the valueES(N.,) obtained using the
strongly reduced compared to experimegior InP GGA  largestk-point grid actually calculated for the defect and
does worse than LDA once lattice parameter optimizatiorsupercell in question. All other sources of error—such as
has been includedThis reduction leads to ambiguities in the defect band dispersion, etc.—are contained within the finite-
definition of the formation energy for charged defects, in turnsize errors shown. Most of the errors listed are on the 0.1 eV
leading to large uncertainties in predictions. For some semiscale or below, which in practical calculations is usually ac-
conductors the band gap can even be reduced to zero makiegptable. The finite-size errors and some of those arising
the material appear metallic and dramatically altering therom treating the In d electrons as core are larger, lying on
properties of many defects. However, neither of these effectthe ~0.5 eV level. We note, however, that for charged de-
occurs here, since we consider neutral defects and obtainfacts we anticipate even larger finite-size errors—up to
nonzero band gap. Nevertheless, a second exchang&-2 eV in many caséé—while we do not anticipate the
correlation related error is present: LDA overbinds all bondsgrrors from the In pseudopotentials being significantly differ-
moving some defect formation energies up and others dowrent from those here. The presence of defect level dispersion
Hence to assess the errors involved we here compare witlffects is confirmed by the existence of the exponentially
GGA, which is known to have the opposite effect: un-shrinking supercell size dependence in the errors related to

oP,
E O Y,
04F [0 Py
-0.5

o
(5]
T

0 0.25 0.5 0.75

195202-11



C. W. M. CASTLETON AND S. MIRBT PHYSICAL REVIEW B70, 195202(2004)

TABLE IV. Comparing the size of the errors arising from the various different approximati@ans.
Finite-size errors from the supercell approximati@mown for the 64 and 512 atom supercel®) The
treatment of the In @ electrons as coréscaled to an infinite cell (¢c) US: The use of ultrasoft pseudopo-
tentials, compared to PAscaled to an infinite cell (d) The LDA, compared to GGAscaled to an infinite
cell). (For the cases in which a finite-size term appears in the LDA versus GGA error a more valuable
comparison is of the errors in individual cells, so the values in the 64 and 512 atom cells are then given in
brackets). (e) Basis set truncatio(in the 64 atom ce)| and(f) k-point integral truncationiShown for the cell
in which it is worst for the defect in questigor(g) “Final” shows the scaled LDA formation energy when the
pseudopotential errors are accounted (Atl energies in electron volts.

Defect Supercell Ind us LDA Basis k grid Final
Vin 0.40/0.20 0.11 0.00 0.26.24/0.23 0.003 0.003 4.84
Inp 0.41/0.21 0.30 0.10 0.12 0.003 0.0007 3.57
INi(1n) 0.40/0.25 0.08 0.16 0.48.18/0.33 0.01 0.007 4.67
Inip) 0.55/0.33 0.47 0.06 0.82.05/0.17 0.02 0.007 4.56
Pin 0.03/0.03 0.02 0.01 0.07 0.01 0.002 2.46
Vp 0.12/0.03 0.07 0.00 0.40.23/0.3} 0.004 0.001 2.93
Pithex 0.06/0.02 0.02 0.07 0.18.07/0.10 0.04 0.009 4.85

pseudopotentials and to the LDA for the antisites. These reway to treat the finite-size supercell approximation errors.
sults also confirm that they are short ranged. Their energynlike other methods this does not rely upon any modeling
scale is rather hard to estimate directly, but the size of th@r assumptions about the errors, other than that they are pri-
exponential components in Fig. 11 suggests that the error®arily long rangedpolynomial rather than exponentiand
involved are only on the 0.01-0.1 eV scale even for the &lecrease with increasing supercell size. This method requires
atom cell. An alternative estimation comes from the errofthe results of calculations in at least three supercells, and at
bars on the scalings themselvesee Table )l which are least four if we are to have an idea of the accuracy of the

0.01-0.35 eV, only a small part of which comes from thefesulting scaled energies. Hence for some difficult cases in
defect level di,spersion. which the 8 atom cell is simplyoo unreliable it may occa-

The fact that the errors coming from the pseudopotential§ionally be necessary to use supercells with up to 1000 at-

have only a small and exponentially decaying cell size de®™ms:

o Three sources of finite-size error have been examined: In
pe”def?ce means that it is perfectly.reasonable to make ﬂlﬁe case of relaxed formation energies there are elastic errors
approximations we needed to make in order to be able to d

. . - Hue to the finite volume available for relaxation. We showed
calculations in sufficiently large supercells to correctly asses§ ot as they should, these scale linearly with inverse super-

the finite-size errors. The amplitude and sign of thgse nonsizgy| size(L™1) with very little hint of any higher order error
dependent errors can be calculated separately in a smallgf,, arising, even when Jahn-Teller distortions are taken into
cel—the 64 atom cell for example—and simply added orgecount. The second type of error is the dispersion of the
subtracted from the final finite-size scaled results in order tQafect levels, which has only a relatively small effect upon
produce much more accurate and reliable defect formatioghe formation energies, at least when the defect levels are
energies than those normally published. This has been dongmpletely filled. These effects appear to shrink exponen-
for the LDA formation energies of the present examples inja|y with increasing supercell size, as anticipated, but ap-
the last column of Table IV, but is equally valid for the errors ez 16 slightly increase the uncertainties in the final scaled
in the relaxed formation energies and those in the G&A  formation energies. The third source of error is much more
least if no delocalized hole/electron states have appeared &jynjficant and arises for both relaxed and unrelaxed forma-

the valence/conduction band edges tion energies. It is due to charged multipole interactions be-
tween a defect and its images in the PBCs. We have shown
IX. CONCLUSIONS that these errors are present and not always negligible, even

for neutral defects. Linear errors can arise if fully or partially

We have studied the finite-size errors which occur wherfilled defect levels lie outside the band gap in the neutral
the supercell approximation is used in the calculation of thecharge state, leading to delocalized holes at the valence band
formation energies and structures of point defects in semiedge or electrons at the conduction band edge. Linear errors
conductors, using the neutral native defects of InP as an exan also appear in unrelaxed formation energies due to the
ample. We have calculated the relaxed and unrelaxed formavay in which the defect/image interactions lift degeneracies
tion energies using plane-waeb initio DFT in simple cubic  for partially filled degenerate defect states within the band
supercells containing 8, 64, 216, and 512 atoms—the largesgfap. Both of these ways for linear scaling errors to arise can
currently computable. To examine and correct for these erapply for other non-neutral defects. They indicate that the
rors we have used finite-size scaling with inverse superceltalculation is in some way unphysical, for example that the
size, which we consider to be the most reliable and accurateharge state involved is not actually stable. However, in

195202-12



FINITE-SIZE SCALING AS A CURE FOR SUPERCELL PHYSICAL REVIEW B 70, 195202(2004)

practice it is often necessary to calculate formation energieformation energies for charged deféétsince both the elec-
of such unstable charge states in order to check which trartrostatic errors themselves and the cross terms between them
sitions levels do actually lie inside the gap. It is thus impor-and the elastic errors will then be stronger.
tant to be aware that large finite-size errors, such as those To summarize: The use of largep to 500 or occasionally
reported here, can occur even in calculations for neutral deesven 1000 atomsupercells with finite-size scaling has been
fects, as this can lead to transition levels calculated in indishown to be a very promising route around the errors which
vidual supercellgwithout scaling to appear to lie inside the arise in the use of the supercell approximation to calculate
gap when they should lie outside and vice versa. formation energies of defects in Ill-Yand othey semicon-
Indeed, electrostatic errors are still present even for physiductors. Errors scale with a linear plus a higher order term,
cally reasonable cases, such gsavid(probably V,,, due to  most probably cubic. We have also found several instances
defect states which enter the gap as the cell size grows. Thayhere scaling recovers physically relevant results that are
are even present and may remain significant for defects suadwven hidden in calculations on the 512 atom cell: Formation
as the neutral P which has all of its defect levels within the energies which are wrong by 1/2 eV and defect levels
gap in all supercells. This is because neutral defects in cryswhich appear inside the valence or conduction bands in su-
talline solids still have higher order charge multipole mo-percell calculations when they should actually lie inside the
ments, especially if the system is made up of more than onband gap.
type of atom with different electronegativities. We have
shown that for unrelaxed formation energies these errors
scale as the inverse cube of the supercell $lz€). For
relaxed formation energies this is almost certainly the case The authors would like to thank A. Hoglund for useful
also, although we do find possible indications that the leadeiscussions, as well as U. Gerstmann and his coworkers at
ing nonlinear error term may sometimes scale as the inverge University of Paderborn, Germany. The calculations in
square(L™?). Further work with more defects is needed to this paper were performed at Uppsala University and at the
confirm or definitively rule out this possibility. It could Parallel Computing Centré®DC), Stockholm, Sweden. The
clearly be answered by removing the 8 atom cell from theauthors would also like to thank the Géran Gustafsson Foun-
scaling and replacing it with the 1000 atom cell, but thatdation, the Swedish Foundation for Strategic Research
must wait for improved computing facilities. In the mean- (SSB, and the Swedish Research Courf¥R) for financial
time, an answer may be obtained from scaling studies o$upport.
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