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Poisson’s spot is a diffraction phenomenon producing an intensity maximum at the center of the 
geometric shadow of circular opaque objects. In an analog of the Poisson spot experiment, we show 
that a tubular cone of x-rays incident upon a crystalline sample produces diffraction spots or foci, 
corresponding to Bragg maxima within a transmission shadow. We discuss the beam geometry and 
the intensity gain recorded at the foci in transmission mode. We describe the geometric growth and 
decay of the foci over a linear axis with the aid of a movie sequence synchronized with the plotting 
of a diffractogram. The mean signal of a small central area in each successive camera image 
provides the intensity data for the diffractogram. © 2010 American Institute of Physics. 
[doi: 10.1063/1.3514235] 

The characterization and measurement of crystallo-
graphic structure are of fundamental importance in many 
branches of science. Angular dispersive x-ray diffraction 
employed routinely for such analysis dominates this field. 
However, the coherently scattered or diffracted x-ray signa
tures are weaker, by orders of magnitude, in comparison with 
the interrogating x-ray beam. State of the art commercially 
available powder diffractometers may employ highly sensi
tive large-area detectors with high quantum efficiency and 
low noise operating over relatively long integration periods. 
This conventional approach is not ideal for the development 
of scanning techniques and direct imaging applications, 
which would benefit from higher intensity signals, reduced 
integration periods, and converging diffracted beams. In this 
paper we report examples of diffraction image sequences, 
which demonstrate the growth and collapse of x-ray foci 
along the symmetry axis of a tubular interrogating x-ray 
beam. Our approach embodies an analog, employing x-rays, 
of the optical phenomenon that produces an intensity maxi-
mum, known as Poisson s spot, at the center of the geomet
ric shadow of circular opaque objects. In common with short 
wavelength Poisson spot techniques employing x-ray zone 
plates or molecular beams we measure the relative intensity 
of diffraction maxima at the center of a circular geometric 
shadow. Unlike these techniques, we employ an annular 
zone, defined at the intersection of a tubular cone of x-rays 
and a crystalline sample, enabling constructive on-axis inter
ference to form intense spots or foci. The relative intensity 
and distribution of the foci correspond to the Bragg maxima 
determined by the crystalline structure of the sample. 

Consideration of diffraction patterns composed of indi
vidual Debye ring contributions hypothesizes the formation 
of a Poisson spot analog in Fig. 1. A tubular cone of x-rays 
with its symmetry axis incident normally upon a planar poly-
crystalline sample and image plane (positioned on the trans
mission side of the sample) will produce a continuum of 
relatively inclined Debye cones resulting in planar patterns 
composed of elliptical rings. The resultant circular termini 

and spot intensity fluctuations are due to rotational symmetry 
at the image plane. The opening angle of the Debye cones is 
determined by Bragg’s condition, X =2d sin 8, where X is the 
wavelength of the incident wave, d is the spacing between 
the planes in the atomic lattice, and 6 is the angle between 
the incident ray and the scattering planes. 

Our experiment setup, in the photograph in Fig. 2 and 
schematic in Fig. 3, enables a tubular cone of x-rays, using a 
wavelength of 0.7107 Å, to be normally incident upon a 
planar, 0.18 mm thick, polycrystalline sample of aluminum 
oxide. The annular illuminated portion of the sample had an 
outer radius of 9.64 mm and an inner radius of 9.38 mm 
(mean radius, Rs=9.5\ mm). The sample and x-ray source 
remained in fixed positions and separated by 150 mm 
throughout the experiment. A thermoelectrically cooled cam
era employing a charge-coupled device camera imager com
posed of 1024 X 1024 pixels, with each pixel 13 /JUO\ in size, 
was coupled to a Gd202S:Tb phosphor screen configured 
normal to the symmetry axis. The camera was mounted on a 
stepper motor translation stage and captured a sequence of 
820 images, each integrated over a 45 s period with the im-

'Electronic mail: paul.evans@ntu.ac.uk. 

FIG. 1. (Color) The discretized representation of a continuum of Debye 
rings forming external and internal termini together with a Poisson spot 
analog at the imager. The internal terminus at Dr<Dtl2 converges or col
lapses, with increasing imager to sample separation, to form a diffraction 
spot at Dr=Dtl2; a further increase in separation produces a diverging or 
expanding circular terminus described by the pattern at Dr>Dtl2. 

0003-6951/2010/97 as 20 nd /2 cated in 3/$30.00 97, 204101-1 ©2010 American InstituteofPhysics 
Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 

152.71.179.154 On: Thu, 17 Oct 2013 14:01:03 

http://dx.doi.org/10.1063/1.3514235
http://dx.doi.org/10.1063/1.3514235
http://dx.doi.org/10.1063/1.3514235
mailto:paul.evans@ntu.ac.uk
http://scitation.aip.org/termsconditions


204101-2 Evans et al. Appl. Phys. Lett. 97, 204101 (2010) 

FIG. 2. (Color) Experiment apparatus. (a) X-ray port, (b) annular slit colli
mator, (c) sample, (d) camera, and (e) translation stages. 

ager cooled to 233 K, at 0.1 mm increments along an 82 mm 
component (starting at Z=10 mm and ending at Z=92 mm) 
of the symmetry axis. The resultant diffraction images were 
quantized to 16 bits, representing 65 536 possible gray lev
els, by the camera. An example of 36 images forms the 
thumbnail matrix of Fig. 4. A diffractogram relating the in
tensity of a central, approximately circular area of 80 pixels 
throughout the image stack against 28 is presented with hkl 
peak notation in Fig. 5. The mathematical equation, assum
ing that the tubular beam had ideally thin walls, for the ap
proximate calculation of 2 8 is given by 

28= cp + tan 1 (RJZ), (1) 

where <p is the primary x-ray tubular cone half angle and Z is 
the separation between the sample and the Poisson spot 
along the symmetry axis, as described in Fig. 3. A software 
program automatically extracted and computed the mean in
tensity of the nominally central area for each of the diffrac
tion images. The sampled area comprised 80 pixels to ac
commodate the finite size of the spot, together with any 
relatively small lateral shift in the incident spot positions on 
the imager, due to nonperfect alignment of the apparatus. 
The resultant diffractogram also includes a plot recorded us
ing a pencil beam, under identical experiment conditions as 
the tubular cone. The pencil beam was produced by blocking 
the majority of the annular primary x-rays to illuminate an 
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FIG. 4. An image sequence demonstrating the formation of four Poisson 
spot analogs extracted from a master sequence of 820 images, obtained at 
0.1 mm increments, along the symmetry axis. Image 1 corresponds to a 21.8 
mm separation from the aluminum oxide sample, with the remainder of the 
example sequence made up of every fifth image (or 0.5 mm step) to com
plete a set of 36 images. The crystallographic planes responsible for the 
diffraction spots apparent in images 3, 8, 22, and 35 are identified by their 
Miller indices (116), (024), (113), and (110), respectively. 

approximately rectangular 0.27 mmX 1.29 mm area on the 
sample. This approach conserves the geometric properties of 
the resultant Debye rings to maintain consistent angular, 28, 
resolution produced by the pencil beam and by each “ele
ment” of the tubular cone. The tubular beam foci, simulta
neously produced along the symmetry axis, realize an inten
sity gain in comparison to the “single” Debye rings produced 
by the pencil beam. The gain is proportional to the ratio of 
the cross sectional areas of the annular x-ray beam to the 
pencil beam, the uniformity of the intensity of the annular 
footprint, and the preferred distribution of crystallographic 
orientations within the sample, e.g., peak 300, see Fig. 5, had 
a gain of 18.33. A more detailed comparison between con-

FIG. 5. (Color) A transmission mode diffractogram obtained by sampling a 
central, 80 pixel, area throughout the 820 image sequence to provide an 
angular range in 2-theta space from approximately 10° to 34°. The profile in 
blue color is produced by the Poisson technique and the profile in green 
color is produced by a pencil beam approach. For demonstration purposes 
the synchronization of the plotting of a limited set of 38 data points, includ
ing one for each of the 36 images presented in Fig. 4, over a 2-theta range 
from approximately 17° to 27°, is highlighted by a moving dot in red color. 

FIG. 3. (Color) Schematic depicting the experiment setup employing a tu- This movie sequence demonstrates the agreement between the Poisson spot 
bular cone of x-rays incident upon a planar polycrystalline sample to enable images and the expected Bragg maxima for an aluminum oxide sample 
a cam era to capture a dMfrac ction te i jmages along the sym e m u eetry axis. (enh a tnced o ten'ine). [t U : hRt L t : ht t cp: t / a /d txdn o .a i.org/10.1e 063/1 351 4 t 235. 1.] 
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ventionally derived reflection mode data published for ex-
ample, in the International Centre for Diffraction Data pow-
der diffraction databases and the transmission Poisson 
technique, would require the application of modified Lor-
entz, absorption, and preferred orientation corrections, which 
have not been applied to the data presented in this paper. 

We conclude that appropriately designed tubular beam 
geometry may increase the intensity of the diffraction signals 
by orders of magnitude in comparison with those measured 
conventionally with a pencil beam. In addition, the tubular 
geometry integrates diffraction signatures through azimuthal 
angles to interrogate simultaneously sectors of reciprocal 
space, which could help mitigate the effects of preferred ori-
entation. This latter point coupled with use of extended 
sample illumination to effect an amplification of the intensity 
of inherently weak diffraction signals make our technique a 
promising candidate for high specificity and high speed mo-
lecular scanning applications. 
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