Synthesis of Bis(ethylenedithio)tetrathiafulvalene (BEDTTTF) Derivatives Functionalised with Two, Four or Eight Hydroxyl Groups.

R. James Brown, ${ }^{\text {a,b }}$ Andrew C. Brooks, ${ }^{\text {a,b }}$ Jon-Paul Griffiths, ${ }^{\text {a }}$ Betrand Vital, ${ }^{\text {a }}$ Peter Day, ${ }^{\text {b }}$ John D. Wallis ${ }^{\text {a }^{*}}$
${ }^{\text {a }}$ School of Biomedical and Natural Sciences, Nottingham Trent University, Clifton
Lane, Nottingham NG11 8NS, UK; E-mail: john.wallis@ntu.ac.uk
${ }^{\text {b }}$ Davy-Faraday Research Laboratory, The Royal Institution of Great Britain, 21
Albemarle St., London W1S 4BS, UK; E-mail: pday@ri.ac.uk

Abstract

Short synthetic routes to a range of BEDT-TTF derivatives functionalised with two, four or eight hydroxyl groups are reported, of interest because of their potential for introducing hydrogen bonding between donor and anion into their radical cation salts. The cycloaddition of 1,3-dithiole-2,4,5-trithione with alkenes to construct 5,6-dihydro-1,3-dithiolo[4,5-b]1,4-dithiin-2-thiones is a key step, with homo- or hetero-coupling procedures and O-deprotection completing the syntheses. The first synthesis of a single diastereomer of tetrakis(hydroxymethyl)BEDT-TTF, the cis, trans product, was achieved by careful choice of O-protecting groups to facilitate separation of homo- and hetero-coupled products. Cyclisation of the trithione with enantiopure $1 R, 2 R, 5 R, 6 R$-bis(O,O-isopropylidene)hex-3-ene-1,2,5,6-tetrol (from D mannitol) gave two separable diastereomeric thiones, which can be transformed to enantiomeric BEDT-TTF derivatives with four or eight hydroxyl groups.

Following on from the extensive studies on tetrathiafulvalene (TTF), ${ }^{1}$ bis(ethylenedithio)tetrathiafulvalene, more commonly known as BEDT-TTF or ET 1, has played a prominent role in the recent development of molecular conductors, superconductors and bifunctional materials, and a wide range of its radical cation salts have been prepared and their properties investigated. ${ }^{2}$ Particular highlights are the salts $(\mathrm{ET})_{2}\left(\mathrm{Cu}(\mathrm{NCS})_{2}\right)$ and $(\mathrm{ET})_{2}\left(\mathrm{~N}(\mathrm{CN})_{2}\right) \mathrm{X}(\mathrm{X}=\mathrm{Cl}$ or Br$)$ which become superconducting at low temperatures, ${ }^{3}$ the paramagnetic superconducting radical salt $(\mathrm{ET})_{4}\left[\mathrm{Fe}(\text { oxalate })_{3}\right] \cdot \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CN},{ }^{4}$ a layered salt with a mixed chromium(III) / manganese (II) oxalate network which has independent electrical and ferromagnetic properties, ${ }^{5}$ and salts with $\mathrm{MHg}(\mathrm{SCN})_{4}{ }^{-}(\mathrm{M}=\mathrm{K}$ or Tl$)$ which form a chiral surface metal in a magnetic field. ${ }^{6}$ The superconducting salts are of great interest to theoretical physicists since the salts are clean systems whose electrical behaviour can be modelled, and provide test beds for exploring new aspects of superconductivity. A range of substituted ET derivatives is now becoming available. ${ }^{7}$ The installation of a substituent on one of the ethylene bridges forms a stereogenic centre, and a number of racemic monosubstituted ET donors have been prepared, for example with sidechains terminating in amino ${ }^{8}$ or amido ${ }^{9}$ groups, e.g. 2-3, or a long hydrocarbon chain, ${ }^{10}$ e.g. 4. The enantiopure ester 5^{11} has also been reported. Disubstituted and tetrasubstituted derivatives e.g. the enantiopure dimethyl-ET ${ }^{12} \mathbf{6}$ and its meso isomer, ${ }^{12}$ enantiopure tetramethyl-ET ${ }^{13} 8$ and racemic dichloro-ET ${ }^{14} 7$ as well as materials with additional ring systems such as $\mathbf{9}^{15}$ have been prepared. However, care is necessary to avoid preparing mixtures of stereoisomers when each "end" of the ET molecule is substituted. ${ }^{7}$ A number of interesting properties are emerging. Thus, a 2:1 superconducting perchlorate salt of enantiopure dimethyl-ET $6\left(T_{c}=3.0 \mathrm{~K}, 5.0 \mathrm{kbar}\right)$ was reported by Hilti, Zambounis et al., while a $2: 1$ hexafluorophosphate superconducting salt was obtained from the meso-isomer of this donor $\left(\mathrm{T}_{\mathrm{c}}=4.3 \mathrm{~K}\right.$, 4.0 kbar) by Mori et al. ${ }^{12}$ Troitksy has used the hexadecyl-ET 4 to prepare conducting thin films. ${ }^{16}$ New ET derivatives containing metal binding sites such as $\mathbf{1 0}$ with potential for preparing bifunctional materials with magnetic metal ions, ${ }^{17-18}$ and an enantiopure donor 11 derived from (-)- β-pinene have recently been prepared. ${ }^{11}$ Cross coupling reactions have been utilised to prepare substituted derivatives of the ethylenedithio-TTF system 12. ${ }^{19}$ Furthermore, substituted derivatives of selenium containing donors, such as BETS 20 13, may soon become available following developments in synthetic approaches ${ }^{21}$ which will be of interest since some BETS
radical cation salts have electrical properties which can be modified by an external magnetic field. ${ }^{20}$

1

$2 \mathrm{R}=\mathrm{CH}_{2} \mathrm{NH}_{2} ; 3 \mathrm{R}=\mathrm{CH}_{2} \mathrm{CONH}_{2}$ $4 \mathrm{R}=n-\mathrm{C}_{16} \mathrm{H}_{33}$

5

$X=$

10

12

13

Here we describe the synthesis of a range of ET donors carrying between one and eight hydroxyl groups. Introduction of hydroxyl groups on to a donor molecule brings not only the possibility of hydrogen bonding in the radical cation salts to anchor the anions in unique sites and orientations, but also provides a point for attachment of further functionality. In the TTF series mono-, di- and tetra(hydroxymethyl) derivatives have been reported, ${ }^{22-24}$ hydrogen bonding to anions in their radical cation salts has been observed, ${ }^{24}$ and they have been utilised in the construction of more complex systems. ${ }^{25} \mathrm{We}$ and others have reported synthetic routes to racemic hydroxymethyl-ET 14, ${ }^{18,26,27}$ the cheapest and most efficient using the acetyl protecting group, and we have also synthesized the enantiopure form. ${ }^{28} \mathrm{~A}$ number of semiconducting microcrystalline $2: 1$ radical cation salts of racemic $\mathbf{1 4}$ have been prepared. ${ }^{26}$ Routes to the ET donor with cis oriented hydroxymethyl groups $\mathbf{1 5},{ }^{27}$ a stereoisomeric mixture of the tetrakis(hydroxymethyl)ET $\mathbf{1 6}^{\mathbf{2 9}}$ and donors with expanded outer rings substituted with hydroxyl or hydroxymethyl groups $17-18^{30-31}$ have been reported. Two radical cations salts of di(hydroxymethyl)-substituted materials have been described: $(\mathbf{1 5})_{2} \mathrm{Cl}$ and $(\mathbf{1 7})_{2} \mathrm{I}_{3}$. In the former ${ }^{27}$ the chloride is hydrogen bonded by hydroxyl groups from three donors, and lies between stacks of
donors, while in the latter ${ }^{32}$ the donors hydrogen bond with each other while the triiodides lie in isolated pockets. Here we describe, with experimental details, syntheses of racemic hydroxyethyl-ET 19 and trans-di(hydroxymethyl)-ET 20, the first synthesis of a single diastereoisomer of the tetrol tetrakis(hydroxymethyl)ET, the cis,trans isomer 21, and the syntheses of the enantiopure tetrol 22 and octol 23, with the aim of making these new interesting donors accessible to the materials chemistry community.

14

15

16

17

18

19

20

21

Discussion.

Preparation of hydroxyethyl-ET 19.

The general approach in these syntheses is illustrated by the synthesis of hydroxyethyl-ET, HEET, 19. The synthetic routes rely on the cyclisation of the trithione 24 with the appropriate alkene, a reaction first used by Neilands. ${ }^{33}$ Refluxing but-3-en-1-ol with trithione 24 in toluene gave the thione 25 in 83% yield, followed by protection of the hydroxyl group as an acetate to give 26, which was necessary for a successful subsequent cross coupling reaction. Thione sulfur/oxygen exchange gave oxo compound 27, which was cross coupled with the unsubstituted thione 28 to give the protected donor 29 in 54 \% yield. Hydrolysis gave HEET 19 in five steps with an overall yield of 14% (Scheme 1). Both hydroxymethyl-ET 14^{18} and HEET 19 have
been functionalised either by ester formation or by tosylation and substitution. For example, HEET forms ester 32 with thiophene-3-carbonyl chloride and ester 34 with the thiophene containing carboxylic acid 33 in the presence of DCC/DMAP, and its tosylate 30 is substituted with thiophene-3-methylthiolate to give sulphide 31.

Scheme 1

Preparation of trans-vic-bis(hydroxymethyl)-ET 20.

The ET derivative with two vicinal trans oriented hydroxymethyl groups was prepared in a similar way. Cyclisation of trithione $\mathbf{2 4}$ with the trans-but-2-en-1,4-diol, which was prepared from but-yn-1,4-diol by reduction with lithium aluminium
hydride, ${ }^{34}$ gave diol 35 in 41% yield. Protection of hydroxyl groups as acetates to give 36, was followed by the standard three steps of (a) sulfur/oxygen exchange to give oxo compound 37, (b) cross coupling with unsubstituted thione 28 to give the protected donor 38 in 55% yield, and (c) deprotection to give the trans diol 20 in an overall yield of 17% (Scheme 2). The different disposition of the hydroxymethyl groups, compared to the cis isomer 15, is expected to affect the structures of its radical cation salts with anions which can act as hydrogen bond acceptors.

24

35

 $\mathrm{Hg}(\mathrm{OAc})_{2}$

20

38

Scheme 2

Preparation of cis,trans-tetrakis(hydroxymethyl)-ET 21.

Tetrakis(hydroxymethyl)substituted ETs are very attractive donors because of the hydrogen bonding potential at both "ends" of the molecule. However, there are five possible stereoisomers depending on whether the two groups at each end of the molecule lie cis or trans, 41-45 ($\mathrm{R}=\mathrm{CH}_{2} \mathrm{OH}$) (Scheme 3), and two of these stereoisomers ($\mathbf{4 1}$ and $\mathbf{4 5)}$) are racemic mixtures. It is important to develop syntheses of individual stereoisomers, since electrocrystallisation of a stereoisomeric mixture is a strategy frought with problems; identification of the product relies on X-ray crystallography to determine which stereoisomer or stereoisomers are present, ${ }^{35}$ assuming that all crystals have the same composition of course. An outline of the stereochemical consequences of various coupling strategies is given in Scheme 3. Homo-coupling of a racemic trans-disubstituted oxo compound 39 will give a
racemic mixture of the tetrasubstituted ET 41 from self coupling of each enantiomer of 39 , as well as a meso compound 42 arising from coupling of the two opposite enantiomers. Homo-coupling of a cis disubstituted oxo compound 40 will give diastereomeric products 43 and 44 . In both cases, separation of the products is likely to be extremely difficult. Homo-coupling of one enantiomer of the trans oxo compound 39 would yield one enantiomer of the all-trans isomer 41, but attempts to prepare the appropriate single enantiomer of the trans oxo compound $42(\mathrm{R}=$ $\mathrm{CH}_{2} \mathrm{OH}$) have so far been unsuccessful. The fifth stereoisomer 45 is the product of cross coupling of the cis and trans disubstituted oxo compounds 39 and $\mathbf{4 0}$, but is accompanied by all other homo-coupled products.

Scheme 3

However, we have now developed a strategy for isolation of this last stereoisomer cis,trans-tetrakis(hydroxymethyl)ET 21. The overall synthetic plan is shown in Scheme 4. The key step is the protection of the hydroxyl groups of the cis and trans compounds for coupling with groups of quite different polarities. Thus, hydroxyl groups of the cis-di(hydroxymethyl) thione 46 were protected with two BTDMS groups to give thione 47^{27} which was converted to its oxo compound 48. The hydroxyl groups of the trans-di(hydroxymethyl) thione 35 were protected as acetates to give thione 36. Cross coupling of cis- and trans compounds 48 and 36 in triethyl phosphite gave three sets of materials: the desired cross coupled material 53 (2 x TBDMS, 2 x acetyl O-protecting groups) and the two pairs of homo-coupled materials: $\mathbf{4 9}$ and 50 ($4 \times$ TBDMS O-protecting groups) and 51 and 52 ($4 \times$ acetyl O-
protecting groups). The three groups of materials were separated by chromatography. The cross coupled product, with two protecting groups of each type, runs between the two sets of homo-coupled products which each carry four protecting groups of the same type. Finally, the tetrol 21 was prepared by hydrolysis of the protecting groups of 53 with aqueous $20 \% \mathrm{HCl}$ in THF. We believe this principle of using two protecting groups of quite different polarities will find application in the synthesis of further polysubstituted donors.

Preparation of enantiopure tetrol and octol donors 22 and 23.

We have already reported the total diastereoselectivity of the reactions of the trithione 24 with enantiopure alkenes (-)- α-pinene, (-)- β-pinene and (+)-2-carene. ${ }^{11}$ Encouraged by this, we extended the study to the structurally less complex enantiopure alkene 54 (Scheme 5) which has two stereocentres adjacent to the double bond and four protected hydroxyl groups and which is readily prepared from D mannitol. ${ }^{36}$ Trithione 24 reacted with this alkene to give major (31\%) and minor (5\%)

56
$\mathrm{Hg}(\mathrm{OAc})_{2}$

$(\mathrm{EtO})_{3} \mathrm{P}$

22

23

Scheme 5.
1:1 addition products which were assigned structures 55 and 56 respectively, based on the X-ray crystal structure of the minor isomer 56 (Fig. 1). Thus, the major product is formed by addition of trithione $\mathbf{2 4}$ to the Si face of enantiopure alkene 54 as shown in Fig 2, while the minor adduct is formed by addition to the Re face. Molecular mechanics studies indicated there was no strong conformational preference for rotation about the bonds between the alkene and each cyclic ketal, with a small energy minimum for the conformation shown in Fig 2.

Fig. 1. Molecular structure of minor diastereomer 56.

Fig. 2. Preferred conformation of alkene 54 with the $S i$ face upwards.

The X-ray structure of the minor product 56 shows that the dithiin ring takes up a twisted boat conformation with both ring $s p^{3}$ carbon atoms strongly displaced to the same side of the plane defined by the other atoms of the fused ring system but with C 5 displaced by more than C4 (C4: by $1.277(4)$, C5 by $1.486(5) \AA$). The torsions about the dithiin $s p^{2} \mathrm{C}$-S bonds are $-48.8(5)$ and $52.0(5)^{\circ}$, and the twist in
the boat structure is indicated by the largest torsion in this ring about the C5-S5 bond: $-66.3(4)^{\circ}$, much larger than that of $28.4(5)^{\circ}$ for the C4-S4 bond. The trans arrangement of the dioxolane rings means that one lies over the organosulfur ring system and the other lies away from it. Each dioxolane ring adopt an envelope conformation with the flap at the carbon atom between the oxygen atoms. The best planes of these rings lies at 40.3(2) and 50.7(2) ${ }^{\circ}$ to the best plane through the planar portion of the organosulfur system. There are distinct differences in the chemical shifts of the carbon atoms in the dithiin ring for the major and minor diastereoisomers 55 and 56. The major isomer exhibits chemical shifts for the $s p^{3} \mathrm{C}$ atoms at $\delta_{C}: 44.3$ and for the $s p^{2} \mathrm{C}$ atoms at $\delta_{C}: 118.9$ similar to those of other trans disubstituted derivatives e.g. the dimethyl derivative 60 ($\delta_{C}: 43.5$ and 120.4) whose solid state conformation lies between a half chair and an envelope. ${ }^{37}$ In contrast, for the minor diastereomer the shifts of the corresponding carbon atoms are larger: δ_{C} : 51.7 and 128.3. The trans diester 61, which like the minor isomer also show a boat conformation in the solid state, has corresponding shifts at $\delta_{C}: 50.2$ and $\delta_{C}: 129.9$ for 61. ${ }^{38}$ These larger shifts may relate in part to the poorer conjugation of the dithiin S atoms with the dithiole ring when the former has the boat conformation.

60

61

The major product 55 was converted to its oxo compound 57 with mercuric acetate and coupled to the unsubstituted thione $\mathbf{2 8}$ using triethyl phosphite to give the protected donor 58 in 35% yield after chromatography. Finally, deprotection with 2 M HCl in THF yielded the enantiopure tetrol 22 in 94% yield. Furthermore, self coupling of the oxo compound 57 in triethyl phosphite furnished the donor bearing four ketal groups 59 in 60% yield, which could be deprotected in a similar way to give the enantiopure octol 23.

The oxidation potentials of the new hydroxyl substituted donors, measured in dichloromethane, indicate that the overall pattern of two reversible oxidations is
retained (Table 1), though the octol 23 was completely insoluble in this solvent, and measurements in THF did not indicate a reversible system. We are now investigating the electrocrystallisation of these materials. Of particular interest will be to see how the interaction of the hydroxyl groups with the anions control the solid state structures of the radical cation salts.

Table 1. Cyclic voltammetry data for selected donors. ${ }^{a}$

Compound	E_{1}	E_{2}
$\mathbf{1}$	0.51	0.94
$\mathbf{1 9}$	0.49	0.90
$\mathbf{2 0}$	0.50	0.88
$\mathbf{2 1}$	0.52	0.86
$\mathbf{2 2}$	0.52	0.85
$\mathbf{5 8}$	0.55	0.93
$\mathbf{5 9}$	0.55	0.89

${ }^{\mathrm{a}}$ Measured relative to $\mathrm{Ag} / \mathrm{AgCl}$ at a platinum electrode in dichloromethane containing $0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$ as charge carrier and using a $100 \mathrm{mV} \mathrm{s}^{-1}$ scan.

Conclusion.

We have reported syntheses of a series of ET-derivatives carrying one, two, four and eight hydroxyl groups, two of them in enantiopure form. Molecules 22-23 are particularly attractive donors, since, apart from the potential for having chiral hydrogen bonding networks in their radical cation salts, these donors are starting materials for preparing dendrimeric materials. These single enantiomers will also provide important substrates for investigating the influence of chirality on electrical and magnetic properties. The second enantiomers will be available from the other enantiomer of alkene 54, and the racemate is available by mixing equal amounts of the two enantiomers, a rare case where it is more work to prepare the racemate than the enantiomer. Rikken has reported magnetochiral anisotropy in the conductivity of carbon nanotubes, ${ }^{39}$ and our donors will provide a test bed for investigating the effect of chirality on the electrical properties of organosulfur donors. Furthermore, the
diastereoselectivity of the cycloaddition of thione 24 with alkene 54 is a very encouraging result suggesting that cycloadditions of trithione 24 with further enantiopure alkenes will be a key step in designing and preparing further enantiopure donors.

Experimental.

General. NMR spectra were measured on a JEOL JNM-EX270 spectrometer at 270 MHz for ${ }^{1} \mathrm{H}$ and at 67.8 MHz for ${ }^{13} \mathrm{C}$ using CDCl_{3} as solvent and tetramethylsilane (TMS) as standard unless otherwise stated, and measured in p.p.m. downfield from TMS with coupling constants reported in Hz . IR spectra were recorded on PerkinElmer Spectrum RX 1 FT-IR spectrometer, and are reported in cm^{-1}. Optical rotation data were measured on a PerkinElmer 241 polarimeter. Mass spectra were recorded at the EPSRC Mass Spectrometry Centre. Chemical analysis data were obtained from Mr. T. Spencer, University of Nottingham. An X-ray diffraction dataset was measured by the EPSRC National Crystallography Service at Southampton University. Flash chromatography was performed on 40-63 silica gel (Merck).

5,6-Dihydro-5-(2'-hydroxyethyl)-1,3-dithiolo[4,5-b]-1,4-dithiin-2-thione 25

3-Buten-1-ol ($7.00 \mathrm{~g}, 104.4 \mathrm{mmol}$) and trithione $24^{40}(8.00 \mathrm{~g}, 40.8 \mathrm{mmol})$ were refluxed in toluene $(400 \mathrm{ml})$ for 4 h . After cooling to room temperature the reaction mixture was filtered, and the solid washed with ethanol. Combined washings and filtrate were evaporated and the residue purified by flash chromatography (ethyl acetate) to furnish 25 as an orange oil ($8.84 \mathrm{~g}, 83.0 \%$), which solidified on standing; m.p. $52-53^{\circ} \mathrm{C} ; \delta_{H}$: $3.88\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{CH}_{2}\right.$ and $\left.5-H\right), 3.46\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.4,2.8,6-H_{\alpha}\right), 3.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ 13.4, 6.7, $\left.6-H_{\beta}\right), 2.02\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{CH}_{2}\right), 1.52(1 \mathrm{H}, \mathrm{s}, \mathrm{O}-H) ; \delta_{C}: 207.7(\mathrm{C}=\mathrm{S}), 121.9$, 121.5 (3a- \& 7a-C), $59.3\left(2^{\prime}-\mathrm{CH}_{2}\right), 39.8(5-C), 37.1(6-C), 34.9\left(1^{\prime}-\mathrm{CH}_{2}\right) ; v_{\max }($ thin film): 3386, 2924, 1483, 1412, 1293, 1057, 890; found C, 31.3; H, $2.9 \% \mathrm{C}_{7} \mathrm{H}_{8} \mathrm{OS}_{5}$ requires C, 31.3; H, 3.0 \%.

5,6-Dihydro-5-(2'-acetyloxyethyl)-1,3-dithiolo[4,5-b]-1,4-dithiin-2-thione 26

Acetic anhydride ($4 \mathrm{ml}, 36.3 \mathrm{mmol}$) was added to a solution of $25(8.84 \mathrm{~g}, 33.9 \mathrm{mmol})$ in pyridine (50 ml) at room temperature and then stirred at $70^{\circ} \mathrm{C}$ for 12 h . Water (300 ml) was added and the mixture extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 100 \mathrm{ml}$). The organic solution was washed consecutively with 0.5 M HCl solution ($3 \times 100 \mathrm{ml}$) and $\mathrm{H}_{2} \mathrm{O}$ (100 ml), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to yield 26 as a brown oil ($8.86 \mathrm{~g}, 86.0 \%$); $\delta_{H}: 4.25\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{CH}_{2}\right), 3.73(1 \mathrm{H}, \mathrm{m}, 5-H), 3.43\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.3,3.0,6-H_{\alpha}\right), 3.20$ $\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.3,6.8,6-H_{\beta}\right), 2.14\left(2 \mathrm{H}, \mathrm{m}, 1\right.$ ' $\left.-\mathrm{CH}_{2}\right), 2.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}: 207.7(2-$
C), $170.7(C=O)$ 122.0, 121.7 (3a- \& 7a- C), $60.8\left(2^{\prime}-\mathrm{CH}_{2}\right), 39.7(5-C), 34.6$ (6-C), $33.8\left(1^{\prime}-\mathrm{CH}_{2}\right), 20.9\left(\mathrm{CH}_{3}\right) ; v_{\max }$ (thin film): 2955, 1737, 1485, 1426, 1384, 1364, 1236, 1062, 890; found C, $34.8 ; \mathrm{H}, 3.1 \%, \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~S}_{5}$ requires C, $34.8 ; \mathrm{H}, 3.3 \%$.

5,6-Dihydro-5-(2'-acetyloxyethyl)-1,3-dithiole[4,5-b]-1,4-dithiin-2-one 27

To a solution of $26(8.86 \mathrm{~g}, 29.2 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(100 \mathrm{ml})$ and glacial acetic acid (30 ml) was added mercuric acetate $(15.02 \mathrm{~g}, 47.1 \mathrm{mmol})$. After 2 h . stirring at room temperature the mixture was filtered. The filtrate was washed consecutively with saturated NaHCO_{3} solution ($3 \times 100 \mathrm{ml}$) and water (100 ml), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to afford 27 as a light brown solid (5.65g, 67.5%); m.p. $46-47^{\circ} \mathrm{C}$; δ_{H} : $4.23\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{CH}_{2}\right), 3.74(1 \mathrm{H}, \mathrm{m}, 5-H), 3.45\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.3,2.7,6-H_{\alpha}\right), 3.20(1 \mathrm{H}$, dd, $\left.\mathbf{J}=13.3,6.7,6-H_{\beta}\right), 2.14\left(2 H, m, 1 '-\mathrm{CH}_{2}\right), 2.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{C}: 188.3(2-\mathrm{C})$, $170.7\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right), 112.4,112.3$ (3a-\& 7a-C), $60.8\left(2^{\prime}-\mathrm{CH}_{2}\right), 41.2(5-\mathrm{C}), 35.8(6-\mathrm{C})$, $33.8\left(1^{\prime}-\mathrm{CH}_{2}\right), 20.8\left(\mathrm{CH}_{3}\right) ; v_{\max }(\mathrm{KBr}): 2967,1729,1670,1634,1509,1464,1425$, 1398, 1368, 1247, 1049, 895, 767, 469; found C, 36.7; H, $3.3 \%, \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{~S}_{4}$ requires C, 36.7; H, 3.4 \%.

(2-Acetyloxyethyl)-ET 29

A mixture of oxo compound $27(2.83 \mathrm{~g}, 9.90 \mathrm{mmol})$ and unsubstituted thione 28 ($4.43 \mathrm{~g}, 19.8 \mathrm{mmol}$) were heated in triethyl phosphite to $80^{\circ} \mathrm{C}$ under N_{2} for 5 h . to give an orange solution. Triethyl phosphite was removed by distillation in vacuo and the residue purified by flash chromatography (5:1 cyclohexane / ethyl acetate) to yield 29 as a red/orange solid $(2.50 \mathrm{~g}, 54.5 \%) ;$ m.p. $109-110^{\circ} \mathrm{C} ; \delta_{H}: 4.23\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{CH}_{2}\right), 3.64$ $(1 \mathrm{H}, \mathrm{m}, 5-H), 3.34\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.1,3.2,6-H_{\alpha}\right), 3.32\left(4 \mathrm{H}, \mathrm{s}, 5 "-\& 6\right.$ " $\left.-H_{2}\right), 3.32(1 \mathrm{H}$, dd, $\left.\mathrm{J}=13.1,6.5,6-H_{\beta}\right), 2.05\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \& 1^{\prime}-\mathrm{CH}_{2}\right) ; \delta_{C}: 170.7(\mathrm{C}=\mathrm{O}) 113.9 \& 113.0$ $\left(s p^{2}-C\right), 61.2\left(1^{\prime}-\mathrm{CH}_{2}\right), 40.1(5-C), 35.3(6-C), 33.7\left(1^{\prime}-C H_{2}\right), 30.2(5$ " \& 6"-C), 20.9 $\left(\mathrm{CH}_{3}\right) ; v_{\max }(\mathrm{KBr}): 2955,2920,1731,1365,1239,1039,905,772,668$; found $\mathrm{C}, 35.8$; $\mathrm{H}, 3.0 \%, \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}_{8}$ requires C, 35.7; H, 3.0%.

(2'-Hydroxyethyl)-ET 19

A solution of $29(0.65 \mathrm{~g}, 1.40 \mathrm{mmol})$ in THF (10 ml) and $20 \% \mathrm{HCl}$ solution (5 ml) was stirred under N_{2} for 48 h . The solution was neutralised by the addition of solid NaHCO_{3}. The organic layer was collected, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and purified by flash
chromatography ($2: 1$ cyclohexane / ethyl acetate) to afford 19 ($0.31 \mathrm{~g}, 51 \%$) as a bright orange powdery solid; m.p. $141-142^{\circ} \mathrm{C} ; \delta_{H}: 4.69(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.1, \mathrm{OH}), 3.81(1 \mathrm{H}$, $\mathrm{m}, 5-H), 3.55\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{CH}_{2}\right), 3.45\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.2,3.0,, 6-H_{\alpha}\right), 3.38(4 \mathrm{H}, \mathrm{s}, 5$ ",- 6 " $\left.H_{2}\right), 3.27\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.2,6.5,6-H_{\beta}\right), 1.84\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{CH}_{2}-\right) ; \delta_{C}: 115.1,115.0 \&$ $114.4\left(s p^{2}-C\right), 59.8\left(2^{\prime}-C H_{2}\right), 42.5(5-C), 39.5(6-C), 36.9\left(1^{\prime}-C H_{2}\right), 31.2\left(5^{\prime \prime}-\& 6^{\prime \prime}-\right.$ C); $v_{\max }(\mathrm{KBr}): 3450,2922,1652,1458,1280,1046,767$; found C: 33.7, H: 3.0\%, $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{OS}_{8}$ requires C: $33.6, \mathrm{H}: 2.8 \%$.

(2'-Tosyloxyethyl)-ET 30

Hydroxyethyl-ET $19(0.20 \mathrm{~g}, 0.47 \mathrm{mmol})$ and tosyl chloride ($0.36 \mathrm{~g}, 1.88 \mathrm{mmol}$) were stirred together in dry pyridine $(2 \mathrm{ml})$ under nitrogen for 2 h . The resulting solution was diluted with chloroform (25 ml), absorbed on silica and purified by flash chromatography ($2: 1$ cyclohexane / ethyl acetate) to give 30 ($0.17 \mathrm{~g}, 64 \%$) as an orange solid, m.p. $90{ }^{\circ} \mathrm{C} ; \delta_{H}: 7.78\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2, \operatorname{Ar}-\mathrm{H}_{2}\right), 7.36(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2$, $\mathrm{Ar}-$ $\left.H_{2}\right), 4.18\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.7,-\mathrm{CH}_{2} \mathrm{O}\right), 3.63(1 \mathrm{H}, \mathrm{m}, 5-H), 3.33(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.1,13.3,6-$ H_{α}), $3.27\left(4 \mathrm{H}, \mathrm{s}, 5 "-6 "-H_{2}\right), 2.99\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.7,13.3,6-H_{\beta}\right), 2.45\left(\mathrm{Ar}-\mathrm{CH}_{3}\right), 2.03$ (2H, m, 1' $-\mathrm{CH}_{2}$); $\delta_{C}\left(\mathrm{DMSO}_{6}\right): 145.1,132.3,130.0,127.8$ (Ar-C C_{6}), 113.7, 113.0, $112.1\left(s p^{2}-C\right), 67.0\left(2^{\prime}-C\right), 38.3(5-C), 34.8(6-C), 33.6\left(1^{\prime}-C H_{2}\right), 30.1\left(5^{\prime \prime}-\& 6^{\prime \prime}-C\right)$, $21.6\left(\mathrm{CH}_{3}\right)$; $v_{\max }(\mathrm{KBr}): 2922,1596,1410,1349,1286,1187,1172,1094,966,905$, 811, 769, 663, 553; m/z (CI): 583 ([M+1] $\left.{ }^{+}, 10\right), 411$ ([M-TsO] $\left.{ }^{+}, 100\right) ;$ HRMS (ES): found $\left[\mathrm{M}^{+}\right] 582.8822, \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}_{9}$ requires 582.8820 .

Thiophen-3-ylmethylthioethyl-ET 31

To a solution of sodium metal $(0.03 \mathrm{~g}, 1.2 \mathrm{mmol})$ in dry methanol $(5 \mathrm{ml})$ under nitrogen and in the dark was added a solution of thiophene-3-methylthiol ${ }^{41}(0.12 \mathrm{~g}, 1 \mathrm{mmol})$ in dry THF (10 ml). After 10 min . stirring a solution of tosylate $30(0.30 \mathrm{~g}, 0.52 \mathrm{mmol})$ in dry THF (20 ml) was added and the resulting mixture stirred for 20 h . The mixture was partitioned between DCM and water and the organic layer collected, dried over MgSO_{4} and purified by flash chromatography ($8: 1$ cyclohexane / ethyl acetate) to yield $31(0.21 \mathrm{~g}, 71 \%)$ as an orange solid; m.p. $159-162^{\circ} \mathrm{C} ; \delta_{H}: 7.30(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.0$, $\left.5.0,4{ }^{\prime}-H\right), 7.10\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.2,3.0,5^{\prime}-H\right), 7.07\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.2,5.0,2^{\prime}-H\right), 3.74$ (s, 2H, SCH ${ }_{2} \mathrm{Ar}$), $3.65(\mathrm{~m}, 1 \mathrm{H}, 5-H), 3.28\left(\mathrm{~m}, 5 \mathrm{H}, 6_{\alpha^{-}}, 5^{\prime}-, 6^{\prime}-H\right), 2.95(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$
6.4, 13.1, $\left.6_{\beta}-H\right), 2.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{CH}_{2}\right), 1.94\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{CH}_{2}\right) ; \delta_{C}: 138.4\left(3^{\prime}{ }^{\prime}-\mathrm{C}\right)$, $128.0\left(2^{\prime \prime}-C\right), 126.3\left(5{ }^{\prime}-C\right), 122.4\left(4{ }^{\prime \prime}-C\right), 113.0,112.9,111.7,111.6\left(s p^{2}-C\right), 42.0$ (5-C), $35.1\left(\mathrm{SCH}_{2} \mathrm{Ar}\right), 33.8(6-C), 30.9\left(\mathrm{SCH}_{2} \mathrm{CH}_{2}\right), 30.1 \quad\left(5^{\prime}-\right.$, , 6'-C), 28.4 $\left(\mathrm{SCH}_{2} \mathrm{CH}_{2}\right) ; \boldsymbol{v}_{\max }(\mathrm{KBr}): 2916,1408,1284,1233,886,773,726,678,616 ; m / z(\mathrm{EI}):$ 540 ($[\mathrm{M}]^{+}, 20 \%$), 236 (55\%), 224 (100%); HRMS (EI): found $\left[\mathrm{M}^{+}\right] 539.8454$, $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~S}_{10}$ requires 539.8454 .

Thiophene-3-carboxylic acid, HEET ester 32

To a solution of HEET $19(0.16 \mathrm{~g}, 0.38 \mathrm{mmol})$ in dry THF (10 ml) was added triethylamine (2 ml) and thiophene-3-carbonyl chloride $(0.11 \mathrm{~g}, 0.77 \mathrm{mmol}$), which had been prepared from the carboxylic acid ${ }^{42}$ with thionyl chloride. This mixture was stirred for 12 h ., concentrated and purified by flash chromatography (10:1 cyclohexane / ethyl acetate) to yield $32(0.13 \mathrm{~g}, 62 \%)$ as an orange solid; m.p. $125-128^{\circ} \mathrm{C} ; \delta_{H}: 8.11$ (dd, $\left.1 \mathrm{H}, \mathrm{J}=1.1,3.1,2^{\prime}-H\right), 7.51\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5.0,1.1,5^{\prime} ’-H\right), 7.32(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.1$, 5.0, 4''-H), 4.46 (m, 2H, CH2O), 3.66 (m, 1H, 5-H), 3.40 (dd, 1H, J = 3.1 13.1, 6- H_{α}), 3.27 (s, 4H, 5'-, $6^{\prime}-H_{2}$), $3.14\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6.4,13.1,6-H_{\beta}\right), 2.22\left(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{CH}_{2}\right) ; \delta_{C}$: $162.4(C=0)$, $133.1\left(4\right.$ '"-C), $133.0\left(3^{\prime \prime}-C\right), 127.8\left(2^{\prime \prime}-C\right), 126.2\left(5^{\prime \prime}-C\right), 113.8,113.0$, $112.9,111.4\left(s p^{2}-C\right), 61.4\left(\mathrm{CH}_{2} \mathrm{O}\right), 40.3(5-C), 35.3(6-C), 33.9\left(5-\mathrm{CH}_{2}\right), 30.1\left(5^{\prime}-, 6^{\prime}-\right.$ C); $\boldsymbol{v}_{\max }(\mathrm{KBr}): 3000,2909,1703,1518,1414,1266,1189,1109,1008,824,771,752$, 700, 502; m/z (EI): 537.8 ([M] ${ }^{+}, 100 \%$); HRMS (EI): found 537.8463 [M] ${ }^{+}$, $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}_{9}$ requires 537.8480 .

Thiophen-3-ylmethoxyacetic acid, HEET ester 34

To a solution of HEET $19(0.20 \mathrm{~g}, 0.47 \mathrm{mmol})$, thiophen-3-ylmethoxyacetic acid ${ }^{43}$ $(0.08 \mathrm{~g}, 0.47 \mathrm{mmol})$ and 4 -dimethylaminopyridine $(5 \mathrm{mg})$ in dry dichloromethane (10 ml) was added N, N '-dicyclohexylcarbodiimide $(0.13 \mathrm{~g}, 0.61 \mathrm{mmol})$. This was stirred for 20 h . at room temperature, after which the mixture was concentrated and purified by chromatography ($5: 1$ cyclohexane / ethyl acetate) to yield $34(0.15 \mathrm{~g}, 56 \%)$ as an oily orange solid; $\delta_{H}: 7.25\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.0,5.0,5^{\prime} ’-H\right), 7.20\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 2^{\prime}{ }^{\prime}-H\right)$, 7.03 (br d, $1 \mathrm{H}, \mathrm{J}=5.0,4 ’ ’-H$), 4.57 (s, 2H, $\mathrm{OCH}_{2} \mathrm{Ar}$), 4.25 (m, 2H, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 4.03 (s, $\left.2 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{O}\right), 3.55(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}) 3.29\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.013 .1,6-H_{\alpha}\right), 3.21(\mathrm{~s}, 4 \mathrm{H}$, $\left.5^{\prime}-, 6^{\prime}-H_{2}\right), 3.00\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6.2,13.1,6-H_{\beta}\right), 2.02\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.4,5-\mathrm{CH}_{2}\right) ; \delta_{C}: 170.0$ $(C=0), 137.9(3 '>-C), 127.3\left(2^{\prime \prime}-C\right), 126.2(5 ’ ’-C), 123.7\left(4{ }^{\prime}-C\right), 113.7,112.9,112.5$,
$111.8\left(s p^{2}-C\right), 68.3\left(\mathrm{OCH}_{2} \mathrm{Ar}\right), 66.8\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{O}\right), 61.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 39.8(5-\mathrm{C}), 35.1$ $(6-C), 33.5\left(5-\mathrm{CH}_{2}\right), 30.0\left(5^{\prime}-, 6^{\prime}-C\right) ; v_{\max }(\mathrm{KBr}): 2916,2853,1747,1659,1456$, $1415,1275,1192,1155,1119,1010,917,885,854,766,693 ; m / z(\mathrm{CI}): 583$ ([M] ${ }^{+}$, 10%), 244 (100%); HRMS (EI): found 581.81737 [M] ${ }^{+}, \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}_{9}$ requires 581.8741.
trans- 5, 6- Bis(hydroxymethyl)-5, 6- dihydro- 1, 3-dithiolo [4, 5-b]-1, 4- dithiin-2- thione 35
A mixture of E-but-2-en-1,4-diol ${ }^{34}(1.50 \mathrm{~g}, 17.0 \mathrm{mmol})$ and trithione $24(2.23 \mathrm{~g}$, 11.3 mmol) in toluene (220 ml) was refluxed for 5 h . The solvent was removed under reduced pressure and the residue purified by flash chromatography (1:1 cyclohexane / ethyl acetate) to give 35 as a brown powdery solid (1.33g, 41.2%); m.p. $110-112^{\circ} \mathrm{C}$; $\delta_{H}\left(\mathrm{MeOH}-\mathrm{d}_{4}\right): 3.80\left(6 \mathrm{H}, \mathrm{m}, 5-, 6-H \& 2 \mathrm{x} \mathrm{CH}_{2} \mathrm{O}\right) ; \delta_{C}\left(\mathrm{MeOH}-\mathrm{d}_{4}\right): 209.5$ (2-C), 122.7 (3a-, 7a-C), $64.9\left(2 \times \mathrm{CH}_{2} \mathrm{OH}\right), 45.4(5-, 6-C) ; v_{\max }(\mathrm{KBr}): 3260,2931,2872$, 1485, 1459, 1070, 1041, 1019; found C, 29.6; H, $2.8 \%, \mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}_{5}$ requires C, 29.6; H, 2.8 \%.
trans- 5, 6-Bis(acetyloxymethyl)-5, 6- dihydro- -1, 3-dithiolo [4, 5-b]-1, 4- dithiin-2- thione, 36
Acetic anhydride $(0.70 \mathrm{ml}, 7.40 \mathrm{mmol})$ was added to a solution of $35(1.05 \mathrm{~g}$, 3.70 mmol) in pyridine $(15 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ and the mixture stirred at room temperature overnight. DCM (100 ml) and water $(30 \mathrm{ml})$ were added. The mixture was shaken and the organic layer collected. This was washed sequentially with 1 M HCl ($3 \times 100 \mathrm{ml}$) and water $(50 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to yield 36 as a dark orange/ brown oil ($1.28 \mathrm{~g}, 94.1 \%$); $\delta_{H}: 4.32\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{O}\right), 3.74(2 \mathrm{H}, \mathrm{m}, 5,6-H), 2.07(6 \mathrm{H}, \mathrm{s}, 2$ x OCH_{3}); $\delta_{C}: 206.5(2-C), 170.7(2 \times C=O) 118.8(3 \mathrm{a}-, 7 \mathrm{a}-\mathrm{C}), 64.7\left(2 \times \mathrm{CH}_{2} \mathrm{O}\right), 40.1$ (5-, 6-C), $20.7\left(2 \times \mathrm{CH}_{3}\right) ; v_{\max }$ (thin film): 2923, 1743, 1381, 1363, 1222, 1064, 1034; $m / z(\mathrm{AP}): 369\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 309(5) ; \operatorname{HRMS}(\mathrm{ES}):$ found: $368.9419(\mathrm{M}+\mathrm{H})^{+}$, $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~S}_{5}+\mathrm{H}$ requires: 368.9417 .

trans- 5,6-Bis(acetyloxymethyl)-5, 6- dihydro-1, 3- dithiolo [4, 5-b]-1, 4- dithiin-2-one, 37

To a solution of $36(0.15 \mathrm{~g}, 0.41 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(10 \mathrm{ml})$ and glacial acetic acid (3 ml) was added mercuric acetate $(0.19 \mathrm{~g}, 0.61 \mathrm{mmol})$. After 2 h . stirring at room temperature
the mixture was filtered. The filtrate was washed consecutively with saturated NaHCO_{3} solution $(3 \times 10 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to afford 37 as a light brown oil ($0.13 \mathrm{~g}, 90.6 \%$); δ_{H} : $4.34(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH} 2 \mathrm{O}), 3.72(2 \mathrm{H}, \mathrm{m}, 5-$, 6- H), 2.04 ($6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}$); $\delta_{C}: 187.2(2-\mathrm{C}), 169.7$ ($2 \mathrm{x} C=\mathrm{O}$) 109.6 (3a-, 7a- C), 64.5 (5-, 6- $\left.\mathrm{CH}_{2} \mathrm{O}\right), 41.2(5-, 6-C), 20.4\left(2 \times \mathrm{CH}_{3}\right) ; v_{\max }$ (thin film): 3025, 2943, 1744, 1692, 1644, 1507, 1440, 1381, 1364, 1222, 1035, 891, 755; m/z (AP): 352 ([M] ${ }^{+}, 80$), 293 (100); HRMS (ES): found: $369.9914\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{5} \mathrm{~S}_{4}+\mathrm{NH}_{4}$ requires: 369.9911.

trans-vic-Bis(acetyloxymethyl)-ET, 38

A mixture of oxo compound $37(0.75 \mathrm{~g}, 2.13 \mathrm{mmol})$ and thione $28(0.72 \mathrm{~g}, 3.20 \mathrm{mmol})$ were heated in triethyl phosphite $(10 \mathrm{ml})$ to $90^{\circ} \mathrm{C}$ under N_{2} for 5 h . to give an orange solution. Triethyl phosphite was removed by distillation in vacuo and the residue purified by flash chromatography ($3: 1$ cyclohexane / ethyl acetate) to yield 38 as an orange solid ($0.62 \mathrm{~g}, 55.1 \%$); m.p. $122-123^{\circ} \mathrm{C}$; $\delta_{H}: 4.27(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.2,5.7,2 \mathrm{x}$ $\mathrm{CH}_{\alpha} \mathrm{O}$), $4.23\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.2,8.0,2 \times \mathrm{CH}_{\beta} \mathrm{O}\right), 3.65(2 \mathrm{H}, \mathrm{m}, 5-, 6-H), 3.24(4 \mathrm{H}, \mathrm{s}, 5$ ' , 6'- H_{2}), $2.04\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right) ; \delta_{C}: 170.2(2 \times \mathrm{C}=\mathrm{O}) 113.7,110.2\left(s p^{2}-\mathrm{C}\right), 64.7(2 \times$ $\mathrm{CH}_{2} \mathrm{O}$), 40.6 (5-, 6-C), $30.0\left(5^{\prime}-, 6^{\prime}-C\right)$, $20.7\left(2 \times \mathrm{CH}_{3}\right)$; $v_{\max }(\mathrm{KBr}): 2931,1740,1381$, 1362, 1230, 1033, 909, 772; m/z (AP): 529 ([M+H] ${ }^{+}$, 100), 357 (80); HRMS (ES): found: $528.8886(\mathrm{M}+\mathrm{H})^{+}, \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S}_{8}+\mathrm{H}$ requires: 528.8892.

trans- vic-Bis(hydroxymethyl)-ET, 20

A solution of donor $38(0.20 \mathrm{~g}, 0.38 \mathrm{mmol})$ in THF (20 ml) and $20 \% \mathrm{HCl}$ solution (10 ml) was stirred under N_{2} overnight. The solution was neutralised by the addition of solid NaHCO_{3}. The organic layer was collected, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to afford $20(0.15 \mathrm{~g}, 89.2 \%)$ as a bright orange powdery solid; m.p. $150^{\circ} \mathrm{C}(\mathrm{dec}) ; \delta_{H}$ (MeOH-d ${ }_{4}$): 3.65 ($6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CHCH} \mathrm{H}_{2}$), 3.25 ($4 \mathrm{H}, \mathrm{s}, 5^{\prime}-, 6^{\prime}-H_{2}$); $\delta_{C}\left(\mathrm{MeOH}-\mathrm{d}_{4}\right): 114.8$, $112.6\left(s p^{2}-C\right), 65.0\left(2 \times C H_{2} \mathrm{O}\right), 45.9(5,6-C), 31.1\left(5^{\prime}-, 6^{\prime}-C\right) ; v_{\max }(\mathrm{KBr}): 3401$, 2919, 2861, 1451, 1417, 1298, 1167, 1026, 1005, 884, 773; m/z (AP): 445 ([M+H] , 100), 357 (51); HRMS (EI): found: 443.8605, $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}_{8}$ requires: 443.8603 .
cis- 5, 6-Bis(hydroxymethyl)-5, 6-dihydro- 1, 3-dithiolo [4, 5-b]-1, 4- dithiin- 2thione, $46^{29,33}$

A mixture of cis-but-2-en-1,4-diol $(1.70 \mathrm{ml}, 20.4 \mathrm{mmol})$ and the trithione $24(2.00 \mathrm{~g}$, 10.2 mmol) in toluene $(200 \mathrm{ml})$ was refluxed for 5 h . The solvent was removed under reduced pressure and the residue purified by flash chromatography (1:1 cyclohexane / ethyl acetate) to give 5 as a bright yellow powder ($1.10 \mathrm{~g}, 38.0 \%$); $\delta_{H}: 4.96(2 \mathrm{H}, \mathrm{s}, 2 \mathrm{x}$ OH), $4.06\left(4 \mathrm{H}, \mathrm{m}, 5-, 6-H \& 2 \times \mathrm{CH}_{\alpha} \mathrm{O}\right), 3.91\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{\beta} \mathrm{O}\right) ; \delta_{C}: 209.9$ (2-C), 122.7 (3a-, 7a-C), $63.0\left(2 \times \mathrm{CH}_{2} \mathrm{OH}\right), 45.4$ (5-, 6- C); $v_{\max }(\mathrm{KBr}): 3218,2938,1494$, 1459, 1069, 1041, 1017, 894.
cis- 5, 6- Bis(t-butyldiphenylsilyloxymethyl)- 5, 6- dihydro-1, 3- dithiolo [4,5-b]1, 4-dithiin- 2- thione, 47

To a solution of $46(2.00 \mathrm{~g}, 7.04 \mathrm{mmol})$ in dry DMF (120 ml) was added sequentially imidazole $(9.59 \mathrm{~g}, 140.8 \mathrm{mmol})$ and t-butyldiphenylsilyl chloride ($4.51 \mathrm{ml}, 17.6 \mathrm{mmol}$). After stirring at room temperature overnight, water (100 ml) and dichloromethane (200 ml) were added, the dichloromethane layer separated, and the aqueous layer extracted twice more with dichloromethane ($2 \times 40 \mathrm{ml}$). The combined organic solution was washed sequentially with ice-cold $\mathrm{HCl}(3 \mathrm{M}, 3 \times 50 \mathrm{ml})$ and water (50 ml) and dried over MgSO_{4}. The solvent was removed under reduced pressure and the residue purified by flash chromatography (dichloromethane) to afford 47 as an orange oil ($2.67 \mathrm{~g}, 49.8 \%$); $\delta_{H}: 7.75\left(8 \mathrm{H}, \mathrm{m}, \operatorname{Ar}-H_{8}\right), 7.50\left(12 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-H_{12}\right), 4.06(6 \mathrm{H}, \mathrm{m}, 2 \mathrm{x}$ $\left.\mathrm{CH}_{2} \mathrm{O}, 5-, 6-H\right), 1.15\left(18 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta_{C}: 207.8(2-\mathrm{C}), 135.4,132.4,129.9,127.8$ ($\mathrm{Ar}-\mathrm{C}_{24}$), $121.4(3 \mathrm{a}-, 7 \mathrm{a}-\mathrm{C}), 63.5\left(2 \times \mathrm{CH}_{2} \mathrm{O}\right), 47.9(5,6-\mathrm{C}), 26.7\left(2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 19.0$ $\left(2 \times C\left(\mathrm{CH}_{3}\right)_{3}\right) ; v_{\max }$ (thin film): 2933, 2922, 2856, 1720, 1470, 1427, 1273, 1113, 1067, 823, 739, 701, 614; m/z (AP): 778 ([M+ $\left.\mathrm{H}_{2} \mathrm{O}\right]^{+}, 38$), 249 (100); HRMS (EI): found: 760.1473, $\mathrm{C}_{39} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{~S}_{5} \mathrm{Si}_{2}$ requires: 760.1483.
cis- 5, 6- Bis(t-butyldiphenylsilyloxymethyl)- 5, 6- dihydro- 1, 3- dithiolo[4, 5-b]1, 4- dithiin- 2- one, 48

To a solution of thione $47(2.50 \mathrm{~g}, 3.28 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(60 \mathrm{ml})$ and glacial acetic acid (20 ml) was added mercuric acetate $(1.57 \mathrm{~g}, 4.92 \mathrm{mmol})$. After 2 h . stirring at room temperature the mixture was filtered. The filtrate was washed consecutively with saturated NaHCO_{3} solution $(3 \times 100 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and
evaporated to afford 48 as an orange oil $(2.37 \mathrm{~g}, 97.0 \%) ; \delta_{H}: 7.80\left(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-H_{8}\right)$, $7.49\left(12 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}_{12}\right), 4.10\left(6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{O}, 5-6-\mathrm{H}\right), 1.18\left(18 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$; $\delta_{C}: 188.5$ (2-C), 135.2, 132.3, 129.6, 127.5 (Ar- C_{24}), 111.3 (3a-, 7a-C), 63.5 (2 x $\left.\mathrm{CH}_{2} \mathrm{O}\right), 48.9(5-, 6-\mathrm{C}), 26.5\left(2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.9\left(2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$; $v_{\text {max }}$ (thin film): 3075, 2955, 2932, 2856, 1682, 1627, 1471, 1427, 1112, 823, 738, 700; found C, 62.5; H, $5.8 \%, \mathrm{C}_{39} \mathrm{H}_{44} \mathrm{O}_{3} \mathrm{~S}_{4} \mathrm{Si}_{2}$ requires C, 62.9; H, 6.0 \%.

cis-Bis(t-butyldiphenylsilyloxymethyl)- trans-bis(acetyloxymethyl)-ET, 53

A mixture of oxo compound $47(2.37 \mathrm{~g}, 3.19 \mathrm{mmol})$ and thione $36(1.20 \mathrm{~g}, 3.26 \mathrm{mmol})$ were heated in triethyl phosphite $(30 \mathrm{ml})$ to $90^{\circ} \mathrm{C}$ under N_{2} for 5 h . to give an orange solution. Triethyl phosphite was removed by distillation in vacuo and the residue purified by flash chromatography (5:1 cyclohexane / ethyl acetate) to yield 53 as an orange oil $(0.68 \mathrm{~g}, 20.0 \%)$ from the second orange band; $\delta_{H}: 7.70\left(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-H_{8}\right)$, 7.40 ($12 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-H_{12}$), 4.33 (2H, m, 5', 6'- H), 3.80 ($10 \mathrm{H}, \mathrm{m}, 5-6-H$ \& 5-, 6-, $5^{\prime}, 6^{\prime}-$ $\left.\mathrm{CH}_{2} \mathrm{O}\right), 2.10\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{COCH}_{3}\right), 1.01\left(18 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta_{C}: 170.2(2 \times \mathrm{C}=\mathrm{O})$, $135.5,132.5,129.8,127.7\left(\mathrm{Ar}-C_{24}\right), 113.7,112.0,110.4,109.3\left(s p^{2}-C\right), 64.8(5,6-$ $\mathrm{CH}_{2} \mathrm{O}$), 63.7 ($5^{\prime}, 6^{\prime}-\mathrm{CH}_{2} \mathrm{O}$) 48.3 (5-, 6- C), 40.7 ($\left.5^{\prime}-, 6^{\prime}-\mathrm{C}\right) 26.7\left(2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 20.7$ $\left(2 \times \mathrm{COCH}_{3}\right), 19.0\left(2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ; v_{\max }$ (thin film): 2955, 2922, 2856, 1749, 1721, 1462, 1428, 1380, 1273, 1224, 1114, 1073, 1034, 739, 701; m/z (AP): 1065 ([M] $]^{+}, 2$), 893 (3), 565 (15), 383 (100); HRMS (EI): found: $1065.1469, \mathrm{C}_{50} \mathrm{H}_{56} \mathrm{O}_{6} \mathrm{~S}_{8} \mathrm{Si}_{2}$ requires: 1065.1459.

Cis, trans -tetrakis(hydroxymethyl)- ET, 21

A solution of $53(0.23 \mathrm{~g}, 0.22 \mathrm{mmol})$ in a mixture of THF (20 ml) and $20 \% \mathrm{HCl}$ solution (10 ml) was stirred under N_{2} for 60 h . The solution was neutralised by the addition of solid NaHCO_{3}. The organic layer was collected, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to afford $21(0.08 \mathrm{~g}, 73.3 \%)$ as an orange brown solid; m.p. $154-155^{\circ} \mathrm{C} ; \delta_{H}$ ($\mathrm{MeOH}-\mathrm{d}_{4}$): 3.83 ($2 \mathrm{H}, \mathrm{m}, 5^{\prime}-, 6^{\prime}-H$), 3.64 ($10 \mathrm{H}, \mathrm{m}, 5-, 6-H \& 5-, 6-, 5^{\prime}, 6^{\prime}-\mathrm{CH}_{2} \mathrm{O}$); δ_{C} ($\mathrm{MeOH}-\mathrm{d}_{4}$): 113.1, 112.3, $\left(s p^{2}-C\right), 65.0\left(5-, 6-C \mathrm{H}_{2} \mathrm{O}\right), 63.0\left(5^{\prime}, 6\right.$ '- $\left.\mathrm{CH}_{2} \mathrm{O}\right) 45.9(5-$, 5'-,6-, 6'- C); $v_{\max }(\mathrm{KBr}): 3378(\mathrm{OH}), 2912,2862,1654,1384,1179,1028 ; m / z(\mathrm{AP}):$ $505\left([\mathrm{M}+\mathrm{H}]^{+}, 22\right) ; \operatorname{HRMS}(\mathrm{EI})$: found: 503.8817, $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S}_{8}$ requires: 503.8814.

Reaction of trithione 24 with alkene 54

A mixture of the di-ketal $54^{36}(0.50 \mathrm{~g}, 2.20 \mathrm{mmol})$ and the trithione $24(0.86 \mathrm{~g}$, 4.40 mmol) in toluene (25 ml) was refluxed for 8 h . The solvent was removed under reduced pressure and the residue purified by flash chromatography (5:1 cyclohexane / ethyl acetate) to elute $5 R, 6 R-5,6$-bis(($\left.4^{\prime} R\right)-2^{\prime}, 2^{\prime}$-dimethyl-1,3-dioxolan-4'-yl)-5,6-dihydro-1,3-dithiolo[4,5-b] 1,4-dithiin-2-thione 55 as a yellow solid ($0.28 \mathrm{~g}, 30.0 \%$), m.p. $164-165^{\circ} \mathrm{C}$; $\delta_{H}(400 \mathrm{MHz}): 4.45(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CHOH}), 4.18(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.1,6.0,2$ x $\left.\mathrm{CH}_{\alpha} \mathrm{HOH}\right), 4.03\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.1,4.2,2 \times \mathrm{CHH}_{\beta} \mathrm{OH}\right), 3.71(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.8,5-, 6-H)$, $1.41\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 1.33\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right) ; \delta_{C}(100 \mathrm{MHz}): 206.5(2-\mathrm{C}), 118.9$ (3a-, $7 \mathrm{a}-C), 110.6$ (2×2 '- C), 75.9 ($2 \times 4{ }^{\prime}-C$), $67.8(2 \times 5$ '- C), $44.3(5,6-C), 27.1(2 \times$ CH_{3}), $25.3\left(2 \times \mathrm{xH}_{3}\right) ; v_{\max }(\mathrm{KBr}): 2988,2935,1488,1458,1377,1368,1235,1148$, 1066, 830; m/z (AP): 425 ([M+H] ${ }^{+}$31), 177 (100); HRMS (ES): found: 425.0038 $[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S}_{5}+\mathrm{H}$ requires: $425.0035 ;{ }^{293}[\alpha]_{\mathrm{D}}=+489(\mathrm{c}=0.12, \mathrm{DCM})$. Further elution with 1:1 cyclohexane / ethyl acetate gave a second fraction containing 56 and starting material 54 which was further purified by flash chromatography (dichloromethane) to give a yellow oil which on trituration with ether gave $5 S, 6 S$ -5,6-bis((4'R)-2',2'-dimethyl-1,3-dioxolan-4'-yl)-5,6-dihydro-1,3-dithiolo[4,5-b] 1,4-dithiin-2-thione 56 as a yellow solid ($0.05 \mathrm{~g}, 5.4 \%$); m.p. $96-98{ }^{\circ} \mathrm{C}$; $\delta_{H}: 4.42(2 \mathrm{H}, \mathrm{m}$, $2 \times \mathrm{CHOH}), 4.12\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.7,6.4,2 \times \mathrm{CH} \mathrm{H}_{\alpha} \mathrm{HOH}\right), 3.86(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.7,5.8,2 \mathrm{x}$ $\left.\mathrm{CH}_{\beta} \mathrm{OH}\right), 3.46(2 \mathrm{H}, \mathrm{m}, 5-6-H), 1.44\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 1.33\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH} \mathrm{H}_{3}\right) ; \delta_{\mathrm{C}}$: 208.8 (2-C), 128.3 (3a-, 7a-C), 110.3 (2×2 '-C), 75.8 (2×4 '-C), 66.9 ($2 \times 5^{\prime}-C$), 51.7 (5-,6-C), $26.4\left(2 \times \mathrm{CH}_{3}\right), 25.0\left(2 \times \mathrm{CH}_{3}\right) ; v_{\max }(\mathrm{KBr}): 2990,2929,2877,1464,1380$, $1269,1212,1154,1052,1024,966,920,853,514 ;{ }^{293}[\alpha]_{\mathrm{D}}=-143 \quad(\mathrm{c}=0.36$, DCM); m/z (EI): 424 ($\mathrm{M}^{+}, 8$), 101 (38), 84 (30), 76 (24), 72 (28), 49 (38), 43 (100); HRMS (ES): found 425.0041, $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S}_{5}+\mathrm{H}^{+}$requires: 425.0038.

X-ray studies on 56 .

Crystal data: $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S}_{5}, \mathrm{M}_{\mathrm{r}}=424.61$, orthorhombic, $\mathrm{a}=9.3614(7), \mathrm{b}=$ $10.3321(4), \mathrm{c}=20.0889(15) \AA, \mathrm{V}=1943.1(2) \AA^{3}, \mathrm{Z}=4, \mathrm{P} 2_{1} 2_{1} 2_{1}, \mathrm{D}_{\mathrm{c}}=1.45 \mathrm{~g} \mathrm{~cm}^{-3}$, $\mu(\mathrm{MoK} \alpha)=0.061 \mathrm{~mm}^{-1}, \mathrm{~T}=120(2) \mathrm{K}, 2508$ unique reflections, 2239 with $\mathrm{F}>$ $4 \sigma(\mathrm{~F}), \mathrm{R}=0.061, \mathrm{wR}=0.098$. Data deposited at the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ with reference CCDC XXXXX.

The structure was solved and refined using the SHELXS and SHELXL computer packages. ${ }^{44}$

5R,6R-5,6-Bis((4'R)-2',2'-dimethyl-1,3-dioxolan-4'-yl)-5,6-dihydro-1,3-dithiolo[4,5-b]1,4-dithiin-2-one 57.

To a solution of $55(0.47 \mathrm{~g}, 1.10 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(20 \mathrm{ml})$ and glacial acetic acid $(6 \mathrm{ml})$ was added mercuric acetate $(0.53 \mathrm{~g}, 1.65 \mathrm{mmol})$. After 2 h . stirring at room temperature the mixture was filtered. The filtrate was washed consecutively with saturated NaHCO_{3} solution ($3 \times 50 \mathrm{ml}$) and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to afford 57 as an orange solid ($0.38 \mathrm{~g}, 84.0 \%$); m.p. $116-118^{\circ} \mathrm{C} ; \delta_{H}: 4.51(2 \mathrm{H}, \mathrm{m}, 2 \times 4$ 'H), $4.20\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.9,6.1,2 \times 5^{\prime}-H_{\alpha}\right), 4.04\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.2,4.2,2 \times 5\right.$ ' $\left.-H_{\beta}\right), 3.71$ $(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.9,5-, 6-H), 1.42\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 1.34\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}: 188.9$ (2C), 110.6 (2×2 '- C), 109.6 ($3 \mathrm{a}-, 7 \mathrm{a}-C$), 76.1 (2×4 '- C), 68.0 ($2 \times 5^{\prime}-C$), 45.7 (5, 6C), $27.1\left(2 \times \mathrm{xH}_{3}\right), 25.4\left(2 \times \mathrm{xH}_{3}\right) ; v_{\max }(\mathrm{KBr}): 2988,2935,1683,1381,1372,1260$, $1245,1229,1214,1074,822 ;{ }^{293}[\alpha]_{\mathrm{D}}=+206(\mathrm{c}=0.14, \mathrm{DCM}) ; m / z(\mathrm{EI}): 408(100$, M^{+}), 393 (15, [M-15] ${ }^{+}$); HRMS (EI): found 408.0190, $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{~S}_{4}$ requires 408.0188.

R,R-vic-Bis((4"R)-2",2"-dimethyl-1",3"-dioxolan-4"-yl)-ET, 58.

A mixture of oxo compound $57(0.10 \mathrm{~g}, 0.25 \mathrm{mmol})$ and the thione $28(0.08 \mathrm{~g}$, 0.37 mmol) was heated in triethyl phosphite $(5 \mathrm{ml})$ to $90^{\circ} \mathrm{C}$ under N_{2} for 5 h . to give an orange solution. Triethyl phosphite was removed by distillation in vacuo and the residue purified by flash chromatography ($3: 1$ cyclohexane / ethyl acetate) to yield 58 as an orange solid ($0.05 \mathrm{~g}, 34.9 \%$); m.p. $88-90^{\circ} \mathrm{C}$; $\delta_{H}: 4.37\left(2 \mathrm{H}, \mathrm{m}, 2 \times 4{ }^{\prime}-H\right), 4.13$ $\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.1,5.9,2 \times 5\right.$ ' $\left.-H_{\alpha}\right), 4.00\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.1,4.4,2 \times 5\right.$ ' $\left.-H_{\beta}\right), 3.67(2 \mathrm{H}$, dd, J = 8.9, 1.0, 5-, 6-H), $3.26\left(4 \mathrm{H}, \mathrm{s}, 5^{\prime}, 6^{\prime}-H_{2}\right), 1.40(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH} 3), 1.32(6 \mathrm{H}, \mathrm{s}, 2$
 x $\left.5^{\prime \prime}-C\right), 44.9(5,6-C), 30.2\left(5^{\prime}, 6^{\prime}-\mathrm{C}\right), 27.1\left(2 \times \mathrm{H}_{3}\right), 25.4\left(2 \times C H_{3}\right) ; v_{\max }(\mathrm{KBr})$: 2978, 2916, 1654, 1650, 1638, 1618, 1560, 1510, 1456, 1384, 1368, 1249, 1213, 1145, 1062, 1016, 922, 834, 766, 507; ${ }^{293}[\alpha]_{\mathrm{D}}=+51.2 \quad(\mathrm{c}=0.13, \mathrm{DCM}) ; m / z(\mathrm{EI}):$ $584\left(\mathrm{M}^{+}, 2\right), 356(5), 132$ (9), 101 (14), 88 (23) 43 (100); HRMS (ES): found: 584.9507, $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}_{8}+\mathrm{H}^{+}$requires: 584.9513 ; found C: $41.0, \mathrm{H}: 4.0 \%, \mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}_{8}$ requires C: 41.1, H: 4.1\%.

R, R-vic-Bis((2"R)-1",2"-dihydroxyethyl)-ET, 22.

Diketal 58 ($60 \mathrm{mg}, 0.12 \mathrm{mmol}$) was stirred with a mixture of aq. $\mathrm{HCl}(4 \mathrm{M}, 4 \mathrm{ml})$ and THF (8 ml) under nitrogen for 12 h . Evaporation and drying in vacuo gave the tetrol $22(49 \mathrm{mg}, 94 \%)$ as a buff powder, m.p. 201-202 ${ }^{\circ} \mathrm{C} . \delta_{H}\left(\mathrm{DMSO}_{\mathrm{d}}\right): 3.82(2 \mathrm{H}$, br d, J = 9.5, 5-,6-H), $3.67\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.2,2 \times \mathrm{CH}_{\alpha} \mathrm{H}_{\beta} \mathrm{O}\right), 3.60(6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}-$ $\left.\mathrm{CH}_{\alpha} H_{\beta} \mathrm{OH}\right), 3.34\left(4 \mathrm{H}, \mathrm{s}, 5^{\prime}, 6^{\prime}-H_{2}\right) ; \delta_{H}\left(\mathrm{DMSO}_{6}\right): 112.9,110.5,110.0,109.9\left(s p^{2}-\right.$ C), $71.8(2 \mathrm{x}-\mathrm{CH}(\mathrm{OH}))$, $63.3\left(2 \mathrm{x}-\mathrm{CH}_{2} \mathrm{OH}\right), 42.7(5,6-C), 29.5\left(5^{\prime}, 6^{\prime}-\mathrm{C}\right) ; v_{\max }$ (KBr): 3293, 2920, 1425, 1329, 1296, 1259, 1182, 1109, 1078, 1051, 1026, 958, 870, 818, 766, 626, 523; ${ }^{293}[\alpha]_{\mathrm{D}}=+69(\mathrm{c}=0.035, \mathrm{THF}) ; m / z(\mathrm{EI}): 504\left(\mathrm{M}^{+}, 1\right)$; HRMS (EI): found: 503.8818, $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S}_{8}$ requires: 503.8809; found C: $33.3, \mathrm{H}: 3.4$ $\%, \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S}_{8}$ requires C: $33.3, \mathrm{H}: 3.2 \%$.

R,R,R,R-Tetrakis((4"R)-2",2"-dimethyl-1",3"-dioxolane-4"-yl)-ET, 59.

Oxo compound $57(0.19 \mathrm{~g}, 0.46 \mathrm{mmol})$ was heated in triethyl phosphite (3 ml) to $90^{\circ} \mathrm{C}$ under N_{2} for 18 h . to give an orange solution. Triethyl phosphite was removed by distillation in vacuo and the residue purified by flash chromatography ($8: 1$ cyclohexane / ethyl acetate) to yield 59 as a pale orange solid ($0.11 \mathrm{~g}, 60.2 \%$); m.p. $176-178{ }^{\circ} \mathrm{C}$ dec.; $\delta_{H}: 4.38(4 \mathrm{H}, \mathrm{m}, 4 \mathrm{x} 4$ '' $-H), 4.18\left(4 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.0,6.0,4 \times 5\right.$ ' $\left.-H_{\alpha}\right)$, $4.03\left(4 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.0,4.3,4 \times 5{ }^{\prime}-H_{\beta}\right), 3.70\left(4 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.8,2.0,5-, 6-, 5^{\prime}-, 6^{\prime}-H\right)$, $1.43\left(12 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{CH}_{3}\right), 1.35\left(12 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}: 111.0 \& 109.9\left(2-, 2^{\prime}-\mathrm{C}\right.$ \& $3 \mathrm{a}-, 7 \mathrm{a}-$,3a'-, 7a'-C), 110.4 (4 x 2'’-C), $76.0\left(4 \times 4{ }^{\prime}-C\right), 68.0\left(4 \times 5\right.$ '’- C), 44.9 (5-, 6-,5'-, $6^{\prime}-$ C), $27.1\left(4 \times \mathrm{CH}_{3}\right), 25.4\left(4 \times \mathrm{CH}_{3}\right) ; v_{\max }(\mathrm{KBr}): 2986,2933,2880,1458,1382,1371$, $1248,1215,1150,1065,970,923,836,774,513 ;{ }^{293}[\alpha]_{\mathrm{D}}=+65.3 \quad(\mathrm{c}=0.15, \mathrm{DCM}) ;$ m / z (APCI): 785 ([M+1] $\left.{ }^{+}, 25\right), 727$ (24), 569 (100), 73 (58); HRMS (EI): found: 784.0485, $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{O}_{8} \mathrm{~S}_{8}$ requires: 784.0483; found C: 46.0, H: 5.1\%, $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{O}_{8} \mathrm{~S}_{8}$ requires C: $45.9, \mathrm{H}: 5.1 \%$.

R,R,R,R-Tetrakis((2"R)-1",2"-dihydroxyethyl)-ET 23.

Tetraketal $33(40 \mathrm{mg}, ~ 0.051 \mathrm{mmol})$ was stirred with a mixture of aq. $\mathrm{HCl}(4 \mathrm{M}, 1.5$ ml) and THF (11 ml) under nitrogen for 24h. Evaporation and drying in vacuo gave the tetrol 23 ($26 \mathrm{mg}, 82 \%$) as a brown-buff powder, m.p. $>330^{\circ} \mathrm{C}$ (some contraction at $\left.170-172{ }^{\circ} \mathrm{C}\right)$. $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}+\right.$ one drop $\left.\mathrm{D}_{2} \mathrm{O}\right): 3.61(16 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{SCH}-$
$\left.\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2} \mathrm{OH}\right) ; \delta_{C}\left(100 \mathrm{MHz}, \mathrm{DMSO}_{6}\right): 110.5$ (3a-,3a'-,7a-,7a'-C) \& 109.8 (2, $\left.2^{\prime}-\mathrm{C}\right), 71.8(4 \mathrm{x}-\mathrm{CH}(\mathrm{OH})), 63.3\left(4 \mathrm{x}-\mathrm{CH}_{2} \mathrm{OH}\right), 42.7(5-, 5-‘, 6-, 6 ’-C) ; \quad V_{\max }(\mathrm{KBr}):$ $3254 \mathrm{br}, 2962,1404,1259,1082,1013,869,792,700,676,661 ;{ }^{293}[\alpha]_{\mathrm{D}}=+187.5$ (c = 0.048 in DMF); m/z (ES ${ }^{+}$): 647 ([M+Na], 3), 279 (20), 171 (23), 47 (100); m/z (ES^{-}) 659 ([M + $\left.\mathrm{CH}_{3} \mathrm{OH}\right], 4$), 623 ([M-H], 6), 475 (5), 311 (8), 228 (14), 227 (15), (226, 14), 179 (12), 127 (5), 69 (100); HRMS (ES^{+}): found: 624.9315, $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{8} \mathrm{~S}_{8}$ +H requires: 624.9310 ; found $\mathrm{C}: 34.5, \mathrm{H}: 4.1 \%, \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{8} \mathrm{~S}_{8}$ requires C: $34.6, \mathrm{H}$: 3.9\%.

Acknowledgements.

We thank the EPSRC, Nottingham Trent University and the Royal Institution of Great Britain for studentships (RJB, ACB, JPG) and support. We thank the EPSRC Mass Spectrometry Service and the EPRSC National Crystallography Service for data, and the EPSRC Chemical Database Service ${ }^{45}$ for access to the Cambridge Crystallographic Database. ${ }^{46}$

References.

1. M.R. Bryce, J. Mater. Chem., 2000, 10, 589 \& Adv. Mater., 1999, 11, 11; M. R. Bryce, W. Devonport, L.M. Goldenberg, C. Wang, Chem. Commun., 1998, 945; M. Herranz, L. Sanchez, N. Martin, Phosph. Sulf. Relat. El., 2005, 180, 1133; J.L. Segura, N. Martin, Angew. Chem. Int. Ed., 2001, 40, 1372.
2. J. Singleton, C. Mielke, Cont. Phys. 2002, 43, 63 \& Physics World, 2002, 35; P. Day, Comp. Rend. Chem., 2003, 6, 301.
3. J.M. Williams, A.J. Schultz, U. Geiser, K.D. Carlson, A.M. Kini, H.M. Wang, W.K. Kwok, M.H. Whangbo, J.E. Shirber, Science, 1991, 252, 1501; M.H. Whangbo, C.C. Torardi, Acc. Chem. Res., 1991, 24, 127; T. Ishiguo, K. Yamaji, G. Saito, "Organic Superconductors", Springer Verlag, Berlin, 1998.
4. M. Kurmoo, A.W. Graham, P. Day, S.J. Coles, M.B. Hursthouse, J.L. Caulfield, J. Singleton, F.L. Pratt, W. Hayes, L. Ducassse, P. Guionneau, J. Am. Chem. Soc., 1995, 117, 12209.
5. E. Coronado, J.R. Galán-Mascaros, C.J. Gomez-Garcia, V. Laukhin, Nature 2000, 408, 447; E. Coronado, P. Day, Chem. Rev., 2004, 104, 5419 ; E. Coronado, J.R. Galán-Mascaros, J. Mater. Chem., 2005, 15, 66.
6. J. Singleton, N. Harrison, M.M. Honold, H. Yaguchi, C. Mielke, D. Rickel, I. Deckers, P.H.P. Reinders, F. Herlach, M. Kurmoo, P. Day, Physica B, 1998, 246, 6; H. Yaguchi, N. Harrison, M.M. Honold, C. Mielke, J. Singleton, P.J. Gee, D. Rickel, I. Deckers, P.H.P. Reinders, F. Herlach, M. Kurmoo, P. Day, Physica B, 1998, 251, 75; M.M. Honold, N. Harrison, M.V. Katsovnik, H. Yaguchi, J. Singleton, C.H. Mielke, N.D. Kushch, M. Kurmoo, P. Day, Phys. Review B, 2000, 62, 7908.
7. J.-P. Griffiths, J.D. Wallis, J. Mater. Chem., 2005, $15,347$.
8. J.-P. Griffiths, A.A. Arnal, G. Appleby, J.D. Wallis, Tetrahedron Lett., 2004, 45, 2813.
9. R.J. Brown, G. Cameresa, J.-P. Griffiths, P. Day, J.D. Wallis, Tetrahedron Lett., 2004, 45, 5103.
10. B.Y. Khodorkovskii, G. Pukitis, A.Y. Puplovskii, A. Edzina, O.Y. Neilands, Khim. Get. Soed., 1990, 131.
11. J.-P. Griffiths, H. Nie, R.J. Brown, P. Day, J.D. Wallis, Org. Biomolec. Chem., 2005, 3, 2155.
12. J.S. Zambounis, C.W. Mayer, K. Hauenstein, B. Hilti, W. Hofherr, J. Pfeiffer, M. Buerkle, G. Rihs, Adv. Mater., 1992, 4, 33; S. Kimura, T. Maejima, H. Suzuki, R. Chiba, H. Mori, T. Kawamoto, T. Mori, H. Moriyama, Y. Nishio, K. Kajita, Chem. Commun., 2004, 2454.
13. J.D. Dunitz, A. Karrer, J.D. Wallis, Helv. Chim. Acta, 1986, 69, 69; A. Karrer, J.D. Wallis, J.D. Dunitz, B. Hilti, C.W. Mayer, M. Bürkle, J. Pfeiffer, Helv. Chim. Acta, 1987, 70, 942.
14. O.J. Dautel, M. Fourmigué, J. Chem. Soc. Perkin Trans. 1, 2001, 3399.
15. A.I. Kotov, C. Faulmann, P. Cassoux, E.B. Yagubskii, J. Org. Chem., 1994, 59, 2626.
16. V.I. Troitsky, T.S. Berzina, E. Dalcanale, M.P. Fontana, Thin Sol. Films, 2002, 405, 276.
17. J.-P. Griffiths, R.J. Brown, B. Vital, P. Day, C.J. Matthews, J.D. Wallis, Tetrahedron Lett., 2003, 44, 3127.
18. Q. Wang, H. Nie, J.P. Griffiths, P. Day, J.D. Wallis, New J. Chem., 2006, 1790.
19. K. Heuze, M. Fourmigué, P. Batail, J. Mater. Chem., 1999, 9, 2373; C. Rethore, M. Fourmigué, N. Avarvari, Chem. Commun., 2004, 1384.
20. H. Kobayashi, B. Zhang, H. Tanaka, T. Otsuka, E. Fujiwara, A. Kobayashi, Syn. Met., 2003, 137, 1157; B. Zhang, H. Tanaka, H. Fujiwara, H. Kobayashi, E. Fujimwara, A. Kobayashi, J. Am. Chem. Soc., 2002, 124, 9982; S. Uji, H. Shinagawa, T. Tereshima, T. Yakabe, Y. Teral, M. Tokumoto, A. Kobayashi, H.Tanaka, H. Kobayashi, Nature, 2001, 410, 908.
21. T. Otsubo, K. Takimiya, Bull. Chem. Soc. Jpn., 2004, 77, 43; K. Takimiya, T. Jigami, M. Kawashima, M. Kodani, Y. Aso, T. Otsubo, J. Org. Chem., 2002, 67, 4218; M. Kodani, K. Takimiya, Y. Aso, T. Otsubo, T. Nakayashiki, Y. Misaki, Synthesis, 2001, 1614; A. Chesney, M.R. Bryce, S. Yoshida, I.F. Perepichka, Chem. Eur. J., 2000, 6, 1153.
22. J. Garin, J. Orduna, S. Uriel, A.J. Moore, M.R. Bryce, S. Wegener, D.S. Yufit, J.A.K. Howard, Synthesis, 1994, 489.
23. P. Hudhomme, S. Le Moustardier, C. Durand, N. Gallego-Planas, N. Mercier, P. Blanchard, E. Levillain, M. Allain, A. Gorgues, A. Riou, Chem. Eur. J., 2001, 7, 5070.
24. S. Perruchas, K. Boubekeur, P. Batail, Cryst. Growth Design, 2005, 5, 1585; S. Perruchas, K. Boubekeur, P. Molinie, Polyhedron, 2005, 24, 1555; A. Dolbecq, A. Guirauden, M. Formigué, K. Boubekeur, P. Batail, M.M. Rohmer, M. Benard, C. Coulon, M. Sallé, P. Blanchard, J. Chem. Soc., Dalton Trans, 1999, 1241; S.G. Liu, M. Cariou, A. Gorgues, Tetrahedron Lett., 1998, 39, 8663; T. Inoue, H. Yamochi, G. Saito, K. Matsumoto, Syn. Met., 1995, 70, 1139.
25. M.A. Herranz, N. Martin, S. Campidelli, M. Prato, G. Brehm, D. M. Guldi, Angew. Chem.. Int. Ed., 2006, 45, 4478; J. Lyskawa, M. Sallé, H.-Y. Balandier, F. Le Derf, E. Levillain, M. Allain, P. Viel, S. Palacin, Chem. Commun., 2006, 2233; A.Y. Ziganshina, Y.H. Ko, W.S. Jeon, K. Kim, Chem. Commun., 2004, 806; D. Kreher, M. Cariou, D.G. Liu, E. Levillain, J. Veciana, C. Rovira, A. Gorgues, P. Hudhomme, J. Mater. Chem., 2002, 12, 2137; G. Cooke, M.A. Florence, V.M. Rotello, J.F. Stoddart, Tetrahedron Lett., 2000, 41, 8163; W.

Devonport, M.R. Bryce, G.J. Marshallsay, A.J. Moore, L.M. Goldenberg, J. Mater. Chem., 1998, 8, 1361.
26. N. Saygili, R.J. Brown, P. Day, R. Hoelzl, P. Kathirgamanathan, E.E.R. Mageean, T. Ozturk, M. Pilkington, M.M.B. Qayyum, S.S. Turner, L. Vorwerg, J.D. Wallis, Tetrahedron, 2001, 57, 5015.
27. H. Li, D. Zhang, B. Zhang, Y.X. Yao, W. Xu, D. Zhu, Z. Wang, J. Mater. Chem., 2000, 10, 2063.
28. F. Leurquin, T. Ozturk, M. Pilkington, J.D. Wallis, J. Chem. Soc. Perkin Trans. 1, 1997, 3173.
29. H. Li, D. Zhang, W. Xu, L. Fan, D. Zhu, Syn. Met., 1999, 106, 111; K. Balodis, J. Kacens, J. Kraupsa, A. Edzina, O.Y. Neilands, Lat. Kim. Zur., 1991, 627.
30. T. Ozturk, N. Saygili, S. Oskara, M. Pilkington, C.R. Rice, D.A. Tranter, F. Turksoy, J.D. Wallis, J. Chem. Soc. Perkin Trans 1, 2001, 407.
31. G.A. Horley, T. Ozturk, F. Turksoy, J.D. Wallis, J. Chem. Soc. Perkin Trans. I, 1998, 3225.
32. S.-X. Liu, A. Neels, H. Stoeckli-Evans, M. Pilkington, J.D. Wallis, S. Decurtins, Polyhedron, 2004, 23, 1185.
33. O.Y. Neilands, Y.Y. Katsens, Y.N. Kreitsberga, Zh. Org. Khim., 1989, 25, 658.
34. J.V. Schoss, F.C. Hartman, Bioinorg. Chem., 1980, 9, 217.
35. A.M. Kini, J.P. Parakka, U. Geiser, H.-H. Wang, F. Rivas, E. DiNino, S. Thomas, J.D. Dudek, J.M. Williams, J. Mater. Chem., 1999, 9, 883.
36. F.W. Eastwood, K.J. Harrrington, J.S. Josan, J.L. Pupra, Tetrahedron Lett., 1970, 5223; R.S. Tipson, A. Cohen, Carbohyd. Res., 1968, 7, 232.
37. J.D. Wallis, J.D. Dunitz, Acta Crystallogr., 1988, C44, 1037.
38. T. Ozturk, D.C. Povey, J.D. Wallis, Tetrahedron, 1994, 50, 11205.
39. G.L.J.A. Rikken, E. Raupach, V. Krstic, S. Roth, Molec. Phys., 2002, 100, 1155; V. Krstic, S. Roth, M. Burghard, K. Kern, G.L.J.A. Rikken, J. Chem. Phys., 2002, 117, 11315; V. Krstic, G.L.J.A. Rikken, Chem. Phys. Lett, 2002, 364, 51.
40. N. Svenstrup, J. Becher, Synthesis, 1995, 215.
41. P. Cagniant, D. Cagniant, Bull. Chim. Soc. Fr., 1967, 2597.
42. H. Wynberg, J. Metselaar, Synth. Commun., 1984, 14, 1.
43. Y. Tschuiya, T. Nomoto, M. Hayashi, Y. Iwasawa, H. Masaki, M. Ohkubo, Y. Sakuma, Y. Nagata, T. Satoh, T. Kamei, Eur. Pat. Appl. 1991, EP 448078A2.
44. G.M. Sheldrick, SHELXS-97 and SHELXL-97, Computer Programs for the Solution and Refinement of Crystal Structures, University of Göttingen, Germany, 1997.
45. The United Kingdom Chemical Database Service, D.A. Fletcher, R.F. McMeeking, D.J. Parkin, Chem. Inf. Comput. Sci., 1996, 36, 746.
46. Cambridge Structural Database, F.H. Allen, Acta Crystallogr., 2002, B58, 380.

