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Abstract 

Tests of nonword repetition (NWR) have often been used to examine children’s 

phonological knowledge and word learning abilities.  However, theories of NWR 

primarily explain performance either in terms of phonological working memory or 

long-term knowledge, with little consideration of how these processes interact. One 

theoretical account that focuses specifically on the interaction between short-term and 

long-term memory is the chunking hypothesis. Chunking occurs because of repeated 

exposure to meaningful stimulus items, resulting in the items becoming grouped (or 

chunked); once chunked, the items can be represented in short-term memory using 

one chunk rather than one chunk per item. We tested several predictions of the 

chunking hypothesis by presenting 5-6 year-old children with three tests of NWR that 

were either high, medium, or low in wordlikeness.  The results did not show strong 

support for the chunking hypothesis, suggesting that chunking fails to fully explain 

children’s NWR behavior. However, simulations using a computational 

implementation of chunking (namely CLASSIC, or Chunking Lexical And Sub-

lexical Sequences In Children) show that, when the linguistic input to 5-6 year old 

children is estimated in a reasonable way, the children’s data is matched across all 

three NWR tests. These results have three implications for the field: (a) a chunking 

account can explain key NWR phenomena in 5-6 year old children; (b) tests of 

chunking accounts require a detailed specification both of the chunking mechanism 

itself and of the input on which the chunking mechanism operates; and (c) verbal 

theories emphasizing the role of long-term knowledge (such as chunking) are not 

precise enough to make detailed predictions about experimental data, but 

computational implementations of the theories can bridge the gap. 



Running head: VERBAL THEORIES AND COMPUTATIONAL 

IMPLEMENTATIONS 

Page 3  

Keywords: verbal theory, chunking, computational modeling, nonword repetition, 

NWR, CLASSIC. 



Running head: VERBAL THEORIES AND COMPUTATIONAL 

IMPLEMENTATIONS 

Page 4  

Introduction 

Nonword repetition (NWR) is a relatively simple developmental task in which 

children repeat aloud a set of nonwords spoken to them. Strong associations exist 

between NWR performance and language ability. For example, NWR performance at 

four years of age is a strong predictor of vocabulary size at five years of age 

(Gathercole & Baddeley, 1989); NWR is a significant predictor of children’s ability to 

learn a second language (e.g., Cheung, 1996; Masoura & Gathercole, 2005; Service, 

1992); and NWR is a key marker of language impairment (e.g., Bishop, North, & 

Donlan, 1996; Conti-Ramsden, Botting, & Faragher, 2001; Weismer, Tomblin, 

Zhang, Buckwalter, Chynoweth, & Jones, 2000).   

Research involving NWR has suggested that there are both short-term memory 

and long-term memory components to the task. On the one hand, long nonwords are 

repeated less accurately than short nonwords, suggesting that short-term memory 

capacity may be involved (e.g., Weismer et al., 2000; Gathercole & Baddeley, 1989; 

Stokes, Wong, Fletcher, & Leonard, 2006). On the other hand, repetition accuracy is 

greater for nonwords that are rated as wordlike compared to nonwords that are not 

rated as wordlike (e.g., Gathercole, 1995; Munson, Kurtz, & Windsor, 2005); and 

nonwords containing phoneme sequences that occur frequently in the native language 

are repeated more accurately than nonwords containing phoneme sequences that occur 

infrequently in the native language (e.g., Edwards, Beckman, & Munson, 2004; 

Vitevich, Luce, Charles-Luce, & Kemmerer, 1997). The latter two findings suggest 

that long-term memory is also involved in NWR. 

Prior to detailing theoretical explanations of NWR performance, some 

terminology is needed to specify the use of lexical and sub-lexical knowledge in 
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NWR. Henceforth, we use the term wordlikeness to refer to the degree to which a 

nonword contains lexical and sub-lexical units (these can be lexical or morphological 

e.g., rubid, glistering; or they can be phoneme sequences that frequently occur, e.g., 

dake, guck); wordlikeness effect to describe any influence that lexical and sub-lexical 

knowledge has on repetition performance; and phonological knowledge to refer to 

long-term knowledge of phonemes and phoneme sequences. 

 

Theoretical explanations of nonword repetition 

In line with the pattern of NWR performance outlined above, theoretical 

explanations tend to favor either short-term working memory or long-term 

knowledge. Gathercole and colleagues (e.g., Baddeley, Gathercole, & Papagno, 1998; 

Gathercole & Baddeley, 1989; Gathercole, 2006) argue that phonological working 

memory plays a primary role in NWR performance.  Nonwords are stored in 

phonological working memory before being repeated aloud. Because long nonwords 

occupy more space in working memory, the representation of long nonwords is more 

likely to be compromised than the representation of short nonwords (Baddeley, 1986; 

Roodenrys, Hulme, Lethbridge, Hinton, & Nimmo, 2002).    

Alternative explanations of NWR focus on long-term linguistic knowledge. For 

example, Metsala (1999) suggests that NWR performance is influenced by lexical 

restructuring. As children learn new words, there is a drive to further elaborate the 

phonological knowledge of words from dense rather than sparse neighborhoods in 

order to differentiate their similar sounds. In a similar vein, Munson and colleagues 

(Munson, Edwards, & Beckman, 2005; Munson, Kurtz, & Windsor, 2005) suggest 

that phonological knowledge becomes more fine-grained over time as phonological 



Running head: VERBAL THEORIES AND COMPUTATIONAL 

IMPLEMENTATIONS 

Page 6  

representations become increasingly abstracted from the word forms of which they 

are a part. 

Given the apparent contributions of both phonological working memory and 

long-term linguistic knowledge to NWR performance, it is perhaps surprising that in 

the NWR literature there is very little discussion of how these two processes interact. 

There is certainly a variety of research in NWR related domains that explain how 

short-term memory and long-term knowledge may combine. For example, Botvinick 

and Plaut (2006) show how performance on a variety of immediate serial recall tasks 

can be explained by how patterns of weights across units in a recurrent neural network 

(the model’s long-term knowledge of the task) interact with task relevant aspects (the 

short-term activations across the units in the network). Immediate serial recall has 

strong links with NWR since both require one to immediately recall a sequence of 

stimuli. Gupta and Tisdale (2009) therefore adapted the Botvinick and Plaut model to 

apply it to NWR. The model maintains long-term knowledge of the syllables of words 

and nonwords together with the context in which they appeared. Again, short-term 

memory is represented as the set of activations across the units in the network. 

Although the model is not presented with naturalistic data as input (the training 

involves individual words and nonwords), the model does show how repetition 

performance can be influenced by interactions between short-term memory and long-

term knowledge. 

Verbal theories of NWR performance tend to lag behind these computational 

accounts. For example, although the phonological working memory account of NWR 

now includes redintegration (Schweickert, 1993) to cater for long-term influences, 

little thought has been given to its use in NWR. Redintegration uses phonological 
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knowledge to help ‘fill in’ any gaps when the representation of a nonword becomes 

compromised in phonological working memory (e.g., Gathercole, 1995, 2006; Thorn, 

Gathercole, & Frankish, 2005; see also Hulme et al., 1997). However, studies have 

shown that wordlikeness effects emerge even for short nonwords that would not be 

expected to tax memory capacity (e.g., Briscoe, Bishop, & Norbury, 2001; Jones, 

Gobet, & Pine, 2007). 

 

Explanations based on chunking 

One theory aimed at specifying the link between short-term memory and long-

term memory is the chunking hypothesis (Miller, 1956). Chunking refers to the 

continuous grouping and recoding (chunking) of a sequence or pattern of meaningful 

stimuli based on one’s exposure to those stimuli. Long-term memory therefore 

contains chunks, and short-term memory is constrained by the number of chunks that 

it can keep active. Arguably, the computational models discussed earlier are 

instantiations of a chunking account because they share two key attributes with 

chunking. First, long-term patterns of activation gradually change with exposure to a 

given input in a similar way to how a set of items may gradually become grouped into 

a single chunk. Second, a specific pattern of long-term activation within a network 

represents a particular piece (or chunk) of knowledge.  

Although Miller initially viewed chunking as a conscious learning mechanism, it 

is now thought of as an automatic learning process that applies across a range of 

stimuli (Gobet, Lane, Croker, Cheng, Jones, Oliver, & Pine, 2001; Servan-Schreiber 

& Anderson, 1990; Simon, 1974). Besides a plethora of literature that shows how 

learning may be governed by chunking (e.g., Bartram, 1978; Egan & Schwartz, 1979; 
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Gobet et al., 2001), chunking has also been captured computationally in models such 

as CHREST (Gobet & Simon, 2000), EPAM-VOC (Jones, Gobet, & Pine, 2007), 

MOSAIC (Freudenthal, Pine, & Gobet, 2006) and TRACX (French, Addyman, & 

Mareschal, 2011).  

The phoneme is generally considered to be the smallest unit of spoken language 

(e.g., Eimas, Siqueland, Jusczyk, & Vigorito, 1971; Gervain & Mehler, 2010), but the 

vast majority of lexical items are sequences of phonemes (e.g., lUlh9, “mummy”; 

jzs, “cat”) that are usually expressed as part of longer utterances (e.g., /vPsr  Szs/, 

“what’s that?”; /vD9qy  S?  aN9k/, “where’s the ball?”). The chunking of sound 

patterns in spoken language is therefore likely to result in progressively longer 

sequences of phonemes that reflect the frequency with which these sequences are 

encountered in the input
1
. For example, a high frequency sequence such as “mummy” 

will initially be encoded using one chunk for each phoneme, but repeated exposure 

will result in the learning of chunked phoneme sequences such as /lU/, /Ul/, /lh9/, 

/lUl/, /Ulh9/, and the lexical item /lUlh9/. When applying chunking to NWR, 

nonwords, by definition, will not exist as chunked phoneme sequences. However, 

knowledge of chunked sub-lexical sequences like /lU/ and /Ulh9/ will play a major 

role in repetition ability. 

The chunking hypothesis also assumes a limitation in short-term memory 

capacity that restricts the number of chunks that can be held in memory at any one 

time. For Miller (1956) this was 7+/-2 items, though more recent research suggests 

                                                             

1
 In the discussion, we consider the opposing view that words are initially learnt holistically. 
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that this figure may be considerably lower (Cowan, 2000; Gobet & Clarkson, 2004). 

A spoken word, phrase, or utterance will be encoded using one or more chunks, with 

the number of chunks influencing the extent to which the word, phrase, or utterance 

can be remembered. For example, the child who has learnt the chunked phoneme 

sequences /vD9qy/ and /lUlh9/ can encode the utterance “where’s mummy” using 

only two chunks. The child who has only learnt the chunked phoneme sequences /v/, 

/D9/, /qy/, /lU/, and /lh9/ will require five chunks to encode the same phrase. The 

former child is therefore more likely to accurately represent the utterance in short-

term memory than the latter child. Similarly, nonwords that are encoded using few 

chunks are more likely to be repeated accurately than nonwords that are encoded 

using many chunks. 

Crucial to the chunking account is the linguistic input that the child receives, 

because this determines the amount of linguistic knowledge the child learns. When 

the linguistic input is extensive and varied, the child will learn a large number of 

chunked lexical and sub-lexical phoneme sequences, which will subsequently aid 

their language performance. When the linguistic input is more restricted and 

homogeneous, relatively few chunked phoneme sequences will be learnt.  

 

Testing the chunking hypothesis: Children’s NWR performance 

The advantage of the chunking explanation of NWR is that it not only specifies 

how long-term phonological knowledge and phonological working memory interact, 

but it is also able to make predictions about how NWR performance will change 

based on the composition of the nonwords. For example, nonwords that contain 
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lexical items and morphological markers (that would be expected to exist as chunks) 

should be repeated more accurately than nonwords that do not contain lexical items 

and morphological markers. Short nonwords should be repeated more accurately than 

long nonwords because the latter will be represented in phonological working 

memory using a greater number of chunks. 

We therefore test the chunking hypothesis on three sets of nonwords that vary in 

their degree of wordlikeness. The first set is the 2-4-syllable nonwords of the 

Children’s Test of Nonword Repetition (CNRep, Gathercole, Willis, Baddeley, & 

Emslie, 1994). The nonwords are high in wordlikeness because most of them contain 

lexical and morphological elements (Archibald & Gathercole, 2006; Jones, 

Tamburelli, Watson, Gobet, & Pine, 2010; Thal, Miller, Carlson, & Vega, 2005).  The 

second set is the 3-syllable nonwords of Dollaghan, Biber and Campbell (1995), half 

containing a lexical item and half not, reflecting medium wordlikeness. The final set 

is a set of newly devised 3-syllable low wordlikeness nonwords that do not contain 

any lexical items or morphological markers.  

Although the three chosen nonword sets allow us to test any interaction between 

short-term memory and long-term memory, the nonword sets do not allow a properly 

balanced design. This is because we purposely use two existing nonword sets that are 

very established in the literature. For example, use of the CNRep nonwords is 

widespread (e.g., Archibald & Gathercole, 2006; Briscoe, Bishop & Norbury, 2001; 

Conti-Ramsden, 2003). If we are able to show that repetition of existing nonword sets 

is heavily based on an interaction between short-term memory and long-term 

memory, then we are able to question explanations of nonword repetition that are 

primarily based on one or other of short-term memory and long-term memory.   



Running head: VERBAL THEORIES AND COMPUTATIONAL 

IMPLEMENTATIONS 

Page 11  

 

 

The following predictions can be made for the nonword sets: 

 

1. When considering only 3-syllable nonwords, the highest repetition 

accuracy will be for the high wordlikeness nonwords and the lowest 

repetition accuracy will be for the low wordlikeness nonwords.  

2. For the high wordlikeness nonwords, repetition accuracy will decrease 

as nonword length increases.   

3. For the medium wordlikeness nonwords, repetition accuracy will be 

greater for those nonwords that contain a lexical item than for those that do 

not. 

 

Note that none of the verbal theories of NWR outlined above make all of these 

predictions
2
. Those theories that are based on long-term knowledge only make 

predictions 1 and 3, while those theories that are based on short-term memory 

capacity only make prediction 2 (redintegration could help in terms of predictions 1 

and 3, but it is unclear whether nonwords of three syllables become sufficiently 

degraded in quality to warrant redintegration). 

 

Method 

                                                             

2
 It is possible that these predictions would be captured by the Gupta and Tisdale (2009) model, but one 

would need to run simulations in order to verify this. 
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Participants 

25 children (5;4-6;8, M = 6;1; 10 male, 15 female) were recruited from three 

primary schools in and around the Nottingham area.  All children were English 

monolinguals and had no hearing difficulties, as reported by their schoolteacher.  All 

children performed within the normal range for both language (as assessed by the 

British Picture Vocabulary Scale-2, Dunn, Dunn, Whetton, & Burley, 1997) and 

performance IQ (as assessed by the Wechsler Pre-school and Primary Scale of 

Intelligence-3, Wechsler, 2004), and showed no speech difficulties (as assessed by the 

Diagnostic Evaluation of Articulation and Phonology, Dodd, Hua, Crosbie, Holm, & 

Ozanne, 2002). 

 

Materials 

High wordlikeness nonwords (Gathercole et al., 1994). This test comprised 

30 2-4-syllable nonwords (we omitted the 5-syllable items due to 5-6 year old 

children having difficulty repeating nonwords of this length). At each nonword 

length, there were 10 nonwords. The nonwords were split into two blocks of 15 so 

that each repetition session kept the child’s attention.   

 

Medium wordlikeness nonwords (Dollaghan et al., 1995).  This test 

comprised 6 pairs of 3-syllable nonwords, each pair varying by only one phoneme to 

form either a syllable that was a lexical item (e.g., bathesis) or a nonsense syllable 

(e.g., fathesis).  One nonword set therefore contained nonwords composed entirely of 

nonsense syllables and the other nonword set contained nonwords that each contained 

a lexical item.  
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Low wordlikeness nonwords.  This test comprised sixteen 3-syllable nonwords 

that did not contain any morphemes or lexical items that were known to the children 

(based on the Children’s Printed Word Database [CPWD] of word frequencies for 5-9 

year old children, Masterson, Stuart, Dixon, & Lovejoy, 2010).   

 

Design 

Across nonword sets, wordlikeness (high, medium, or low) was the within 

subjects variable. For the high wordlikeness nonwords, nonword length was the 

within subjects variable. For the medium wordlikeness nonwords, the within subjects 

variable was whether or not the nonword contained a lexical item. In all cases, the 

dependent variable was the accuracy of the repetition. 

 

Procedure 

All children were assessed on an individual basis in a quiet room within the 

school and away from their classroom.  Testing normally comprised three separate 

15-minute sessions spread across several days or weeks (depending on the school and 

availability of the children).  Each session involved administering one psychometric 

test and one or two nonword tests.  Presentation of the nonword files was counter-

balanced.  Repetition responses were recorded onto a Sony ICD-MX20 digital voice 

dictaphone for later transcription.   

 

Results 
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Nonword repetitions were transcribed into their phonemic form by the fourth 

author.  A random sample of 15% of the children’s recordings was transcribed by a 

trained linguist and a researcher experienced in transcribing nonwords, but who was 

not working on this project.  Average inter-rater reliability was 87.3% (range: 85.0%-

92.3%). 

Figure 1 shows the repetition accuracy for each of the nonword sets. For the 

analyses, we take each of our three predictions in turn. Prediction 1 related to 

wordlikeness effects that were expected to be present across the 3-syllable stimuli of 

the three different nonword sets. This was confirmed using a one-way ANOVA, 

F(2,48) = 8.15, p = .001, ηp
2
 = .25. However, post hoc Bonferroni tests showed that 

while high wordlikeness nonwords were repeated more accurately than low 

wordlikeness nonwords (p = .002), there was no statistically significant difference 

between high wordlikeness and medium wordlikeness nonwords (p = .138) nor 

between medium wordlikeness and low wordlikeness nonwords (p = .197). 

 

INSERT FIGURE 1 ABOUT HERE 

 

Prediction 2 related to length effects that should be seen in the high 

wordlikeness nonwords. The high wordlikeness data showed a strong effect of 

nonword length, F(2,48) = 26.66, p < .001, ηp
2
 = .53. Post hoc Bonferroni 

comparisons showed that repetition accuracy for 2-syllable nonwords was 

significantly higher than both 3- and 4-syllable nonwords (p = .01 and p < .001 

respectively) and 3-syllable nonwords were repeated more accurately than 4-syllable 

nonwords (p < .001).  
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Prediction 3 related to lexical item effects in the medium wordlikeness 

nonwords. Half of these nonwords contain a lexical item and should therefore be 

repeated more accurately than the other half of the nonwords that do not contain a 

lexical item. This prediction was not supported statistically, t(24) = .64, p = .527, 

Cohen’s d = .13. 

It is clear that the predictions of the chunking account are only partially 

supported in 5-6 year old children. One explanation for the pattern of results observed 

is the reliance that chunking places on long-term phonological knowledge, because 

long-term knowledge determines the extent to which a given linguistic input is 

represented accurately in short-term memory. This is the main weakness of chunking 

as a verbal theory: unless one is able to reasonably estimate phonological knowledge, 

any predictions based on chunking are likely to lack precision. In fact, this is the case 

for any verbal theory that emphasizes the role of long-term knowledge in task 

performance.  

In order to conduct a more precise test of the chunking hypothesis, our chief 

requirement is therefore the ability to approximate children’s phonological 

knowledge. A secondary requirement is a precise specification of how phonological 

knowledge interacts with a given linguistic input to constrain the extent to which the 

input can be represented accurately in short-term memory.  

The linguistic input that the child receives is known to be an important 

determinant of their vocabulary acquisition (e.g., Hoff & Naigles, 2002; Huttenlocher, 

Haight, Bryk, Seltzer, & Lyons, 1991). We can therefore expect the language that the 

child hears to have a major influence on the phonological knowledge that the child 
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subsequently acquires. In order to begin to estimate the child’s phonological 

knowledge, we require the following: 

 (1) A large input set that approximates the kind of input received by 5-6 year 

old children; 

(2) A computational implementation of chunking that can use linguistic input to 

acquire phonological knowledge using mechanisms that are analogous to those in the 

verbal theory;  

(3) A plausible account of short-term memory capacity and how it interacts with 

phonological knowledge that can constrain learning and task performance.  

The next section describes a computational implementation that meets these 

requirements.  

 

CLASSIC: A computational implementation of the chunking hypothesis 

CLASSIC (Chunking Lexical and Sub-lexical Sequences in Children) is a 

computational model of the chunking process that is indistinguishable from the model 

previously labelled EPAM-VOC (Jones, 2012; Jones, Gobet, & Pine, 2007, 2008). 

This model was previously labelled EPAM-VOC because it is based on the 

Elementary Perceiver and Memorizer (EPAM, Feigenbaum & Simon, 1984). It is 

renamed here in order to make explicit the relation between the model and the account 

that it is intended to implement. CLASSIC uses large corpora of naturalistic speech 

data as input and learns long-term chunks of phonological knowledge
3
. Both chunk 

                                                             

3
 Other models of NWR exist such as OSCAR (Brown, Preece, & Hulme, 2000), the primacy model 

(Page & Norris, 1998), and a model of phonological vocabulary learning (Gupta & Tisdale, 2009). 
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learning and NWR performance are constrained by a short-term memory capacity that 

interacts with phonological knowledge. When a large amount of phonological 

knowledge exists, all or a large proportion of a given input utterance or nonword is 

likely to be processed; when only a small amount of phonological knowledge exists, 

only a small proportion of a given input utterance or nonword is likely to be 

processed. We will now describe the large-scale naturalistic input set that is used in 

the model, together with the way that long-term chunks are learned, how they interact 

with short-term memory capacity, and how the model performs nonword repetition. 

 

Large-scale naturalistic datasets 

CLASSIC begins with no phonological knowledge except the individual 

phonemes of the English language. From this starting state, the model must learn 

phonological knowledge in a way that approximates children’s learning. Variation in 

the input that children receive at different ages therefore needs to be reflected in the 

model’s input. For example, the linguistic input a 5-6 year old child receives is 

somewhat different from the input recived by a 2-3 year old child. We therefore 

employ two input sets, one relating to 2-3 year old children (‘younger input’) and the 

other relating to 4-6 year old children (‘older input’). Over time, the model gradually 

receives a higher proportion of the older input at the expense of the younger input.  

For the younger input, we use the maternal utterances from the Manchester 

corpus (Theakston, Lieven, Pine, & Rowland, 2001) taken from the CHILDES 

                                                                                                                                                                               

None of these models uses large corpora of naturalistic data as input, which we have argued is critical 

in estimating long-term phonological knowledge. 
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database (MacWhinney, 2000). The Manchester corpus consists of 12 sets of mother-

child interactions involving 2-3 year old children, recorded over the course of a year 

and including an average of 25,519 maternal utterances (range 17,474–33,452).   

For the older input, parental utterances to 4-5 year-old children are used (again 

taken from CHILDES) together with a large set of sentences from story books that are 

aimed at 5-6 year-old English children (e.g., “Snow White” and “The Ugly 

Duckling”).   

All of the input is converted into its phonemic equivalent using the CMU 

Lexicon Database (available at http://www.speech.cs.cmu.edu/cgi-bin/cmudict).  The 

model is run independently for each of the 12 mothers, meaning that a fresh model is 

used with each set of mother’s utterances. The advantage of this approach is that it 

results in variation in the model’s NWR performance. The amount of input seen by 

the model is the number of utterances that are produced by each mother. For example, 

Anne’s mother produces 31,393 utterances, and therefore the Anne model is presented 

with 31,393 utterances. 

When the model begins learning, 100% of its input is based on a random 

selection of utterances (without replacement) from the younger input set. As learning 

proceeds, an increasing proportion of the younger input is replaced with the older 

input, again randomly selected without replacement. For example, at the beginning of 

the 31,393 utterances presented to the Anne model, 100% are taken from Anne’s 

mother. After 10% of the input has been seen (3,139 utterances) the input changes so 

that 90% is from Anne’s mother and 10% is from the ‘older’ input set. After the next 

10% has been seen (6,279 utterances), 20% of the input is from the ‘older’ set and 
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80% from the ‘younger’ set. This pattern is repeated until 100% of the input has been 

presented.   

Note that there is a random element to the model. It is therefore run 10 times 

for each mother. As we will see below, the repetition process for the model also has a 

random element to it, and hence every NWR test is administered to the model 10 

times.  The simulations therefore produce a total of 12 × 10 × 10 = 1,200 NWR results 

for each of the NWR tests.  

For statistical analyses, only 2 sets of NWR results are used from each mother 

(2 × 12 mothers = 24 sets of NWR results). The model runs from each mother have a 

great deal of overlap between them because they are derived from the same mother 

input; similarly the ‘older’ input across all of the models is sampled from the same 

source. The variance across all 1,200 model runs is therefore likely to be very low. 

Using only 2 runs per mother enables us to match the sample size of the children 

while keeping the overlap in input across the models to a minimum. Two model runs 

are therefore taken from each mother that are representative of the results for that 

mother (having a repetition accuracy within +/- 5% of the average repetition accuracy 

across all of the 100 runs for that mother). 

 

Learning long-term phonological knowledge 

Phonological knowledge is represented in CLASSIC by chunked phoneme 

sequences that are both sub-lexical (e.g., /lU/) and lexical (e.g., /lUl/). Any given 
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input to the model is encoded using as few chunked phoneme sequences as possible
4
. 

For example, when the model has yet to begin learning, the representation of /vPs/ 

(“what”) will comprise three chunks (one for each of the constituent phonemes). 

However, later learning may include the chunk /vP/ and therefore the same input can 

now be encoded using two chunks, /vP/ and /s/.  Chunked phonological knowledge is 

therefore critical for encoding an input using the smallest number of chunks, a process 

that is important when we consider short-term memory capacity later. 

The process by which chunks are learnt is very simple. Once an input is 

represented in as few chunks as possible, CLASSIC learns a new chunk for each 

adjacent set of chunks. If the input was /f?THM/ (“going”) and was encoded using the 

two chunks /f?T/ and /HM/, a new chunk would be learnt for the whole word. 

Similarly, if the input was /jzs/ and was encoded using only the individual 

phonemes, the chunks /jz/ and /zs/ would be learnt. Although chunk learning may 

appear to occur rather too quickly, it is important to realize that this reflects the large 

difference in scale between the amount of input received by the model (which 

includes only a very small subset of the language to which the child is exposed) and 

the amount of input received by the language-learning child. 

 

The interaction between long-term memory and short-term memory 

                                                             

4
 When an input can be represented in different ways using the same number of chunks (e.g., /a dH j/ 

and /H M/ or /a dH/ and /j H M/ for ‘baking’), the representation containing the highest frequency 

chunks is selected. Outside of the model, an articulation process uses frequency on the assumption that 

frequently encountered chunks will be easier to articulate than infrequent chunks. 
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A variety of research suggests not only that children’s auditory processing is 

limited by short-term memory capacity (e.g., Baddeley, 1986; Gathercole & 

Baddeley, 1989), but also that this capacity is time-limited (e.g., Baddeley, 1986; 

Baddeley & Hitch, 1974).  We therefore represent short-term memory capacity using 

a temporal duration of 2,000 ms (Baddeley, Thompson, & Buchanan, 1975) and 

allocate a time to match each of the chunks that are used to represent the input. 

The time to match a chunk is based on estimates from Zhang and Simon (1985) 

who suggest that it takes 400 ms to match a chunk and an additional 30 ms to match 

each phoneme in a chunk except the first. In this way, (word) length effects are 

produced since a greater amount of time is required to match a chunk that contains 

many phonemes as opposed to a chunk that contains few phonemes. For example, the 

chunk /jzs/ would require 460 ms and /lUlh9/ would require 490 ms. The time 

allocated to a given input is the sum of the times to match each of the chunks that 

represent the input.  

When a given input has an allocated time that is below the 2,000 ms temporal 

duration of short-term memory capacity, it can be represented accurately within short-

term memory. However, when a given input has an allocated time that exceeds 2,000 

ms, the representation of the input in short-term memory is compromised. This means 

that fewer adjacent chunks can be learned. The probability of learning a chunk is 

2,000 ms divided by the time required to represent the input. For example, if the input 

is represented by five chunks each with a time allocation of 460 ms (resulting in a 

total access time of 5 × 460 ms  =  2,300 ms), then the probability of learning a new 

chunk for each adjacent pair of chunks would be 2,000 ms / 2,300 ms  =  .87.  
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Although the mechanism by which short-term memory capacity and chunked 

phoneme sequences interact is simple, it is also powerful. When the model has learnt 

few chunks, any given input is likely to require many chunks to represent it – thus 

compromising the representation of the information held in short-term memory and 

leading to a low level of learning. When the model has learnt many chunks, it is likely 

that any given input can be represented with few chunks and this in turn will result in 

a high level of learning. 

CLASSIC is consistent with – but more precisely specified than – the verbal 

chunking theory on which it is based. However, to perform nonword repetition we 

need to consider an additional process: articulating the contents of a chunk. We 

explain this process in the next section. 

 

Performing nonword repetition 

NWR is achieved by presenting the model with the phonemic representation of 

each individual nonword in the same way that normal speech input is presented to the 

model.  A nonword is therefore encoded using as few chunks as possible. Consistent 

with the interaction between short-term memory capacity and long-term chunked 

phoneme sequences, when the time allocation for the chunks exceeds 2,000 ms then 

the likelihood of accessing the contents of each chunk is probabilistic, using the same 

method as that outlined for learning chunks. However, an additional process is used in 

articulation because it is likely that the more often a sequence of phonemes has been 

used, the higher the probability of being able to articulate the sequence correctly. The 

frequency with which a chunk has been used during the course of the model’s 

learning is therefore taken into account. This assumption is supported by good 
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correlations between the frequency with which phonemes and consonant clusters are 

used by the children in the Manchester corpus and the age of acquisition of the 

phonemes and clusters (from Smit, Hand, Freilinger, Bernthal, & Bird, 1990), r(48) = 

-.51, p < .001. However, prior to assessing whether or not a sequence will be 

articulated correctly, the frequency of a chunk is divided by the number of chunks that 

are required to represent the input. An input that is represented using a small number 

of relatively infrequent chunks (e.g., /U f/ and /k h9/ for ‘ugly’) is likely to be easier 

to articulate than the same input represented using a greater number of relatively 

frequent chunks (e.g., /U/, /f/, /k/, and /h9/) because the former indicates greater 

experience with the phoneme sequences that are contained in the input
5
. 

The threshold for error-free articulation is a frequency of 10,000. For 

frequencies below that, the probability of correct articulation is Log(chunk frequency) 

/  Log(10,000). For example, when a chunk has only been accessed 100 times, the 

probability of accurate repetition of its contents is .5; when the frequency is 1,000 the 

probability is .75; and when the frequency is 5,000 the probability is .92. 

 

Results 

Figure 2 shows the repetition accuracy for the nonword sets in two formats: averaged 

across the 2 runs per mother (2 × 12 mothers = 24 runs), and averaged across all 1,200 

runs of the model. All statistical analyses are based on the 24 runs. The 1,200 run data 

                                                             

5
 In essence, this implements the assumption that exposure to a phoneme sequence is developmentally 

more advantageous than exposure to the component parts of the sequence in separate contexts, an 

assumption that dates back as far as Jakobson (1968/1941) but is also made more recently by Demuth, 

Culbertson, and Alter (2006) and Goad and Brannen (2003), amongst others. 
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is included simply to show that the 24 runs are representative of the overall 

performance of the model. 

Prior to testing the predictions outlined in the introduction, we show that the 

model provides a good match to the child data. There is a strong correlation between 

the child data and the 1,200-run model (r(4) = .92, p = .010) and between the child 

data and the 24-run model (r(4) = .91, p = .012).  We also calculate Root Mean 

Squared Error (RMSE) on these figures.  RMSE indicates the average discrepancy 

between two datasets.  For children and the 1,200-run model, the RMSE is 5.43, 

indicating that on average, the 1,200-run model is within 5.43% of all of the 

children’s datapoints.  The RMSE is 6.19 for children versus the 24-run model.  In 

combination, the correlation and RMSE results show that (a) the model provides a 

very good fit to the children’s data; and (b) the 24-run model is a good approximation 

to the performance seen when all of the 1,200 simulations are considered. 

Each of our three predictions is taken in turn, as per the children. A one-way 

ANOVA confirmed the wordlikeness effects in the 3-syllable stimuli (prediction 1), 

F(2, 46) = 4.16, p = .022, ηp
2
 = .15), with post hoc Bonferroni tests indicating higher 

levels of repetition accuracy for 3-syllable high wordlikeness nonwords over the low 

wordlikeness nonwords (p = .024), with no further differences across groups (p = .072 

or greater). These results mirror those of the children.  

 

INSERT FIGURE 2 ABOUT HERE 

 

The repetition accuracy data showed a strong nonword length effect for the high 

wordlikeness nonwords (prediction 2), F(2,46) = 50.64, p < .001, ηp
2
 = .69. Post hoc 
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Bonferroni comparisons showed that repetition accuracy for 2-syllable nonwords was 

significantly higher than for both 3- and 4-syllable nonwords, and 3-syllable 

nonwords were repeated more accurately than 4-syllable nonwords (all ps <= .001). 

These results also mirror those of the children. 

In keeping with the child data, there was no difference between the medium 

wordlikeness nonwords that contained a lexical item and the ones that did not 

(prediction 3), t(23) = 1.62, p = .118, Cohen’s d = .33. 

These results show that, although the child data only partially support the 

predictions of the verbal chunking theory, they are nevertheless highly consistent with 

the predictions generated by CLASSIC, the computational implementation of the 

theory. The model is a faithful representation of the verbal theory. However, one key 

variable that is outside of the verbal theory is the nature of the linguistic input that the 

child receives, which is the source of the phonological knowledge that the child and 

the model learn. We can therefore examine the phonological knowledge in the model 

to see if it provides some clues as to the differences in the predictions made by the 

verbal theory and the computational implementation.  

When the model is examined in more detail, it becomes apparent that two main 

factors influence repetition accuracy. First, encoding nonwords that are higher in 

wordlikeness requires fewer chunks than encoding nonwords that are lower in 

wordlikeness (t(23) = 10.71, p < .001, Cohen’s d = .92). On average, 3-syllable high 

wordlikeness nonwords required 3.22 chunks (SD = .58) whereas low wordlikeness 

nonwords required 3.87 chunks (SD = .67).  It is this difference that is the primary 

source of the wordlikeness effect. 
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Second, some of the lexical parts of nonwords do not have robust 

representations. A good example of this is the medium wordlikeness nonwords, 

because one set of these all have a lexical item in them. Table 1 shows the CPWD 

frequency for each of the lexical items in the medium wordlikeness set of nonwords, 

how often each item appears in a single chunk in the model across 1,200 simulations, 

and the average frequency of the chunk in which each lexical item appears.  It is clear 

from the table that solid representations only occur for two of the lexical items: bath 

and kiss.  Not surprisingly, the nonwords containing these items have the highest 

accuracy in the model (66% and 68% respectively). 

 

INSERT TABLE 1 ABOUT HERE 

 

 

 

Discussion 

We have described chunking theory and how it applies to NWR performance, 

the focus of the theory being the phonological knowledge that the child acquires. The 

chunking account makes a series of predictions relating to length and wordlikeness 

effects in the NWR performance of 5-6 year old children. A study using children of 

this age showed that these predictions were only partially confirmed. Simulations 

using CLASSIC, a computational implementation of chunking theory, showed that 

when the linguistic input of 5-6 year old children was estimated in a reasonable way, 

the model matched the child data in every respect. These results suggest that 

phonological knowledge plays a critical role in NWR performance. The simulations 
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using CLASSIC show that the predictions of the chunking hypothesis can only be 

properly verified using a computational implementation. We argue that this is the case 

generally with verbal theories in psychology, but particularly for those that involve 

long-term knowledge.  

One of the two primary aims of the current research was to highlight the role of 

chunking in NWR performance. This was accomplished by using three sets of 

nonwords that varied in their wordlikeness. In doing so, emphasis was placed on the 

interaction between short-term memory capacity and long-term phonological 

knowledge – thereby providing a stringent test of the chunking hypothesis.  Once the 

linguistic input to 5-6 year old children had been estimated in a reasonable way, and 

the theory implemented as a computational model, a remarkable match to children’s 

performance was shown across all three nonword sets.  In terms of the goodness of fit 

between the model and child data, all correlations were extremely high and all RMSE 

rates were low.  In terms of the accuracy of nonword repetition, the model showed 

exactly the same pattern of statistical effects as the children. A plausible account of 

the learning of phonological knowledge together with a reasonable account of the 

linguistic input the child receives provides a very good explanation of the child data.   

The computational implementation of the chunking hypothesis clearly specifies 

how short-term memory capacity and long-term knowledge interact with one another.  

With learning, the effective size of short-term memory increases – as the size of the 

chunks increase, the same number of chunks can now capture a larger amount of 

information.  An analysis of the number of chunks that were required to represent 

nonwords showed how differences in chunk size were the major reason for the 
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superior repetition accuracy of high wordlikeness nonwords over low wordlikeness 

nonwords.  

By exploring the intricacies of the model it was also possible to explain NWR 

performance further. For example, both the children and the model failed to show the 

same effects for medium wordlikeness nonwords that were seen in the 10-11 year old 

children from Dollaghan et al. (1995).  Dollaghan and colleagues found a significant 

difference in repetition performance for nonwords containing a lexical item over ones 

that did not, whereas no such difference was found in either our children or our 

model.  Detailed examination of the model suggested a straightforward explanation of 

the discrepancy between the two studies: the linguistic input that 5-6 year old children 

receive is not sufficiently rich to lead to wordlikeness effects for these nonwords at 

this stage of language learning. 

The second primary aim of the current study was to demonstrate the need to 

develop computational implementations of verbal theories. The predictions that arose 

from a verbal theory of chunking were not wholly borne out in the child data because 

a large part of chunking theory concerns long-term knowledge. The CLASSIC model 

of chunking was able to explain the child data in its entirety. The computational 

implementation of chunking theory required not only a well-specified description of 

how chunks were learnt and how they interacted with linguistic input and STM, but 

also a well-specified description of the linguistic input itself.  

Taken together, the predictions from the verbal theory of chunking and the 

predictions from the computational implementation of chunking show how important 

it is to be able to estimate a person’s long-term knowledge. If one is unable to reliably 

estimate this knowledge, any verbal theory involving long-term knowledge will fail to 
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make accurate theoretical predictions. In many cases, therefore, verbal theories will 

lack sufficient precision to make detailed predictions about experimental data. 

Implementing verbal theories as computational models such as CLASSIC – and thus 

clearly specifying concepts such as long-term knowledge – helps to produce more 

accurate theoretical predictions. 

However, although CLASSIC provides a very good match to the child data, 

some researchers may take issue with some parts of the theory and its approach to 

language learning. In particular, the theory suggests that phonological knowledge is 

learnt by gradually building upwards from the phoneme. This contrasts sharply with 

the view that word learning is holistic from a relatively early age (Hallé & Boysson-

Bardies, 1996). Supporting the holistic view, research on phonological awareness has 

shown that young children find it difficult to break words into constituent parts such 

as onset and rime (e.g. Carroll, Snowling, Stevenson, & Hulme, 2003; Liberman, 

Shankweiler, Fischer, & Carter, 1974). We do not think that these empirical data are 

inconsistent with chunking, for two reasons. First, awareness tasks explicitly test 

one’s ability to manipulate word parts, whereas nonword tests are an implicit measure 

of phonological knowledge. Children may therefore be able to benefit from sub-

lexical knowledge when repeating nonwords even though they cannot use this implicit 

knowledge in phonological awareness tasks. Second, the developing child rarely uses 

parts of words in everyday speech. Almost all of the spoken information for children 

therefore involves whole words and it may be the case that – even though knowledge 

of these words was gradually built up from individual phonemes and phoneme 

sequences – the words themselves have now become so ingrained as to be difficult to 

decompose back into sub-lexical sequences. 
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Like any scientific model, the model presented here abstracts away from and 

simplifies aspects of reality. Clearly, other processes beyond chunking are involved in 

NWR performance. For example, Coady and Aslin (2004) suggest that several 

additional processes are involved in NWR such as the perception and encoding of 

novel sound sequences (see also Jones & Witherstone, 2011), their temporary storage, 

and the articulatory mechanisms by which the sounds are reproduced. However, we 

believe that chunking is directly related to the most significant predictor of NWR 

performance – the child’s existing phonological knowledge. While other factors may 

also produce shifts in performance in one direction or another, our view is that the 

child’s phonological knowledge is the major influence on NWR performance.     

In summary, we have presented a chunking theory of the learning of 

phonological knowledge together with a study of 5-6 year old children’s NWR 

performance. Our results showed that, with reasonable linguistic input, a 

computational implementation of the chunking hypothesis was able to closely 

simulate the repetition data across three different nonword sets. In particular, the 

model was able to reproduce subtle effects of wordlikeness that depend on the detail 

of the stimuli used for training and testing the model.  This illustrates both the 

importance of using input that is representative of the speech that children hear and 

the fact that computational models, but not verbal theories, can take advantage of such 

input to capture the statistical properties of the environment. CLASSIC incorporates a 

theory of how short-term memory capacity and long-term phonological knowledge 

interact in the learning of novel sounds that is consistent with the child data presented. 

Together with its previous incarnation EPAM-VOC, CLASSIC can replicate a wide 

range of data on NWR with great precision. To our knowledge, no other model enjoys 
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such a high level of success with this task. The model shows how computational 

implementations of verbal theories are required in order to precisely specify different 

aspects of the theory. Together, the theory and model represent a step forward in our 

understanding of children’s NWR performance and provide valuable insights into 

how children learn new words. 
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Table 1.  CPWD frequency for nonwords containing a lexical item in the medium 

lexicality nonword set.  Also shown is how often the lexical item appears within a 

single chunk in the 1,200 simulations, and if so, the frequency in CLASSIC of the 

chunk in which the lexical item appears.   

 

Lexical item CPWD frequency How often lexical 

item appears within 

a single chunk (%) 

Average frequency 

of chunk in which 

item appears 

Bath 257 82 108 

Blame 22 23 201 

Kiss 43 84 191 

Ref 8 1 23 

Speed 27 9 108 

Trash 0 12 85 
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Figure 1.  Nonword repetition accuracy (%) for the high wordlikeness nonwords, the 

medium wordlikeness nonwords, and the low wordlikeness nonwords. Error bars 

indicate standard error.  Label key for x-axis: The numerals indicate the number of 

syllables in the nonword; the letters indicate the nonword type (H = High 

wordlikeness nonwords; ML = Medium wordlikeness nonwords containing a lexical 

item; MN = Medium wordlikeness nonwords not containing a lexical item; L = Low 

wordlikeness nonwords). For example, 2H represents 2-syllable high wordlikeness 

nonwords. 
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Figure 2.  Nonword repetition accuracy (%) for the high wordlikeness nonwords, the 

medium wordlikeness nonwords, and the low wordlikeness nonwords, for the 24 

representative runs of the model and all 1,200 runs of the model. Error bars indicate 

standard error.  Label key for x-axis: The numerals indicate the number of syllables in 

the nonword; the letters indicate the nonword type (H = High wordlikeness nonwords; 

ML = Medium wordlikeness nonwords containing a lexical item; MN = Medium 

wordlikeness nonwords not containing a lexical item; L = Low wordlikeness 

nonwords). For example, 2H represents 2-syllable high wordlikeness nonwords. 

 


