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Abstract 

Changes in synapse and neuronal morphology have been reported in the rat 

hippocampal formation after the induction of long-term potentiation (LTP) of the 

perforant path, although few studies have investigated such parameters in the 

maintenance phase of L-LTP. Moreover, the results of investigations of synaptic and 

neuronal morphometry changes after LTP have varied and this could be due to the 

methods of analysis employed, the choice of stimulation protocol a n d  or whether an in 

vitro or in vivo study. 

This in vivo investigation applied unbiased stereological methods to examine the 

morphology and morphometry of perforant path-granule cell synapses, in the dentate 

gyrus, after the induction of LTP. Two controls were employed, the contralateral 

hemisphere of each animal and the inner molecular layer, where the medial perforant 

path has little synaptic input. Many previous studies of the first 6Omin post tetanisation 

have used high frequency stimulation (HFS) to induce LTP however, in this study - to 

determine whether changes in morphology were due to LTP per se - potentiation was 

induced by theta burst stimulation (TBS). 

45min after the induction of LTP there were no significant differences, between 

hemispheres, in the mean numerical density (Nv) of axodendntic or axospinous 

asymmetric synapses, or the mean number of synapses per neuron in the middle 

molecular layer (MML) of the dentate gyrus. There were no significant differences, 

between potentiated and non-potentiated tissue, in the Nvs of those asymmetric 

synapses with perforated or concave profiles. Neither were significant differences 

following LTP demonstrated in the size of the postsynaptic densities of these synaptic 

subtypes or the volume density of apposition zone (AZ) area (Sv) of individual, or all, 

asymmetric axospinous synapses. However, there was a trend towards larger perforated 

synapses in the potentiated hemisphere and, in both hemispheres, concave and 

perforated synapses were larger than average. In the inner molecular layer (IML), there 

were no differences except for a significant decrease in the total AZ volume density in 

the potentiated hemisphere. This would suggest that any morphological modifications 

taking place in the induction phase of L-LTP may be restricted to a fraction of synapses 

in the MML, although perforated synapses appear to be involved. 

xv 



The second part of this study examined morphological correlates 24h after the 

induction of LTP with TBS and HFS. In the MML after induction of LTP with TBS 

there were significant increases in the Nv of asymmetric axodendntic synapses and the 

mean number of axodendntic synapses per neuron. There was an increase in the Nv of 

axospinous synapses and in the mean number of axospinous synapses per neuron that 

was not significant. This was reflected in significant increases in the total AZ Sv and in 

the frequency of macular synapses in the potentiated hemisphere. 24h post tetanisation 

with HFS, there was a significant difference in the Nv of axospinous synapses in the 

MML of the potentiated compared to the contralateral hemisphere. There were also 

significant differences in the frequency of synapses with perforated and concave 

profiles. There were no significant differences in synaptic morphometric parameters, 

between hemispheres, in the IML after either of the stimulating regimes. 

Results from the three animals in each group showing the greatest degree of 

potentiation, were pooled and demonstrated significant differences in the Nv and mean 

number of axospinous synapses per neuron. There was also a significant difference in 

the number of synapses with concave profiles but this was replicated in the IML. 

The effects of these morphological changes, after LTP induction, on the cellular 

mechanisms involved and on synaptic efficacy are discussed, and possible reasons for 

the variable pattern of morphology after different stimulating protocols is considered. 

xvi 



Chapter One Introduction 

The account of the long-tem potentiation (LTP) of synaptic efficacy 

reported by Bliss and L0mo in 1973 captured the imagination of neuroscientists 

and initiated an ever increasing number of investigations to determine whether 

this was indeed the mechanism underlying learning and the storage of memory. 

Considerable progress has been made in clarifying the mechanisms underlying 

LTP induction and expression and LTP in the hippocampus has become the 

foremost model of activity-dependent synaptic plasticity in the mammalian brain 

(Bliss and Collingridge, 1993). LTP was seen as an excellent candidate for a 

memory storage process as it develops quickly, and lasts for a long period, as 

demonstrated in the hippocampus where LTP lasting for several weeks has been 

described (Barnes, 1985). 

The description of LTP in the hippocampus was fortunate, for had LTP first 

been identified in a brain region with less of a historical link to memory 

formation, it might not have received such focused attention. Clinical studies in 

the late 1950’s (Scoville and Milner, 1957). where bilateral surgical resections of 

the brain induced long-lasting retrograde amnesia, demonstrated that normal 

memory function depended on the integrity of the medial temporal lobes. It was 

suspected that the removal of the hippocampal formation was responsible and 

subsequent animal research has been dedicated to understanding how the 

hippocampal formation may promote the formation of new memories. 

The hippocampus is believed to play a critical role in explicit rather than 

implicit memory (Cohen et al, 1999). However, while LTP has features that 



makes it attractive as a memory system it is not clear if this is the mechanism that 

the hippocampus uses to store declarative memories such as spatial memory 

(Barnes 1995). LTP is not unique to the hippocampus or to declarative forms of 

memory and it is more plausible that LTP represents a class of mechanism for 

changing synaptic strength that might be used for memory storage. 

However, the medial temporal lobe is a large region. The dentate gyrus, CA 

(cornu Ammonis) fields and subicular complex lie in the caudal region but its 

rostral portion is occupied by the amygdala and both structures are bordered by 

the entorhinal and perirhinal cortical areas. Therefore, the contribution of the 

hippocampal and non-hippocampal components of the medial temporal lobe to 

memory processes is difficult to determine. 

Figure 1.1 The basic neuroanatomy of a rat brain. 

The three major divisions of the rat brain are shown in saggital section. The brain 
stem includes the medulla, midbrain and cerebellum; the diencephalon comprises the 
thalamus, hypothalamus and pituitary, while the cerebral hemispheres include the striatum, 
olfactory bulb, neocortex, hippocampus and dentate gyrus. After Nicholls, 1994. 

The hypothesis that LTP might serve as a memory storage device or engram 

is supported by the properties of cooperativity, associatively and input-specificity 

that characterise LTP. These properties might be expected in a network of neurons 

designed to associate two distinct pieces of information, and the ability to enhance 

2 



one set of inputs is presumably also required for learning and memory (Lynch and 

Granger, 1992; Gluck and Granger, 1993). LTP also demonstrates the requirement 

for coincident activation of presynaptic and postsynaptic elements that is the 

hallmark of the Hebbian postulate (Hebb, 1949). Hebb’s postulate, originally 

formulated to explain the cellular basis of learning and memory, suggested that 

co-ordinated activity of a presynaptic terminal and a postsynaptic neuron would 

strengthen the synaptic connection between them. Synaptic terminals strengthened 

by correlated activity would be retained, or sprout new branches, whereas those 

that are persistently weakened by uncorrelated activity would eventually forfeit 

their adherence to the postsynaptic cell. 

Although LTP was first observed in the intact experimental animal, progress 

in understanding its cellular basis has relied on in vitro brain slice preparations 

(Bliss and Collingridge, 1993). The best-characterised form of LTP occurs in the 

CA1 region of the hippocampus, in which LTP is induced by transient activation 

of N-methyl-D-aspartate (NMDA) receptors and is expressed as a persistent 

increase in synaptic transmission through u-Amino-3-hydroxy-5-methyl-4- 

isoxazolepropionate (AMPA) receptors (Bliss and Collingridge, 1993; Muller et 

al., 1992). Where, induction of LTP refers to the initial sequence of events that 

triggers the process of synaptic modification and expression refers to those 

neurophysiological and biophysical changes that represent the consequence of this 

modification process. However, in vivo quantitative, ultrastructural studies are 

best facilitated in the hippocampal dentate fascia - where the main afferent path, 

the perforant path, terminates solely on dendritic spines in restricted zones of the 

molecular layer (Fifkova, 1975). 

The introduction to this thesis will attempt to describe the processes 

involved in the induction, expression and maintenance of LTP, and review 

reported morphological changes, after potentiation of the afferents to the 

hippocampus. Where relevant there will be a brief comment on similarities in 

morphology between LTP and learning and memory formation. However, it 
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would be difficult to undertake this exercise without an account of the anatomy of 

the hippocampus, particularly the dentate gyrus, and its role in memory formation, 

and some explanation of the morphology of dendritic spines and synapses. 

1.1 The Hippocampal Formation 

1.1.1 The Hippocampus 

In the rat, the hippocampus extends from almost the septum dorsally, to the 

caudal part of the amygdala ventrally. It consists of Ammon’s Horn, the dentate 

gyrus and the subiculum, and two interlocking cell layers - the granule cell layer 

of the dentate gyrus (DG) and the pyramidal cell layer of Ammon’s Horn. 

Ammon’s Horn is divided into four subfields CA (cornu Ammonis) 1 to CA4, 

although CA4 generally refers to the polymorphic zone of the dentate gyrus, 

based on the Golgi preparations of Cajal. (Figure 1.2) From the dentate gyrus to 

the subiculum, the pyramidal layer of Ammon’s Horn contains the CA3 field 

merging distally with the CA2 field, the proximal part of CA1 joins CA2 and the 

distal part of CA1 borders the subiculum. The basic architecture of the 

hippocampal subfields is very similar. They all consist of one single layer, or 

lamina, of neurons, where the apical dendrites extend into a cell -poor zone - the 

stratum moleculare in the dentate gyrus and the subiculum, the stratum 

lacunosum-moleculare and stratum radiatum in Ammon’s Horn. 

I. I. I. I Inrrinsic circuitry 

Anatomical (Blackstad et al., 1970; Hjorth-Simonsen and Jeune, 1972) and 

electrophysiological (Andersen et al., 1971) data led Andersen to suggest that the 

hippocampus is organised in a wholly laminar fashion and that each lamella 

contains a sequence of almost completely unidirectional connections from the 

dentate gyrus to the subiculum via CA3 and CAI. The mossy fibre axons of the 

granule cells project to the entire transverse extent of CA3, but fibres that 

originate in the infrapyramidal and suprapyramidal blades of the DG terminate in 
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different regions of this field (Claibome et al., 1986). The pyramidal cells in CA3 

give rise to the Schaffer collaterals that synapse in the stratum radiatum and 

stratum oriens with the dendrites of CA1 pyramidal cells and these cells project to 

the subiculum 

Figure 1.2 Schematic diagram of a section through the rat hippocampus, showing the 
major excitatory pathways and their synaptic connections. 

LTP has been observed in response to stimulation of each of the three pathways 
shown (the perforant path; the mossy fibre pathway; and the Schaffer collateral pathway). 
M e r  Purvesetal., 1997 

However, Amaral and Witter (1989) refuted the idea of non-interaction 

between these lamella after further neuroanatomical investigations of 

hippocampal connectivity. They proposed a three-dimensional organisation of 

hippocampal circuitry where, for example, cells in the entorhinal cortex give rise 

to axonal projections that distribute for some distance in a transverse direction in 

the molecular layer of the dentate gyrus. This has implications for the 

interpretation of research using, in vitro slice preparations from the hippocampus, 



as slices do not allow for the evaluation of information flow along the transverse 

and septotemporal axes of the hippocampal system. 

1.1.1.2 The Dentate Gyrus 

The dentate gyrus (DG) contains three concentric layers. The outermost, the 

molecular layer (ML), consists primarily of afferent fibres and dendrites and the 

second, the granule layer (GL), contains the densely packed somata of the granule 

cells. These two layers are referred to collectively as the fascia dentata (Blackstad, 

1958). The third, polymorphic (or infragranular) layer is enclosed within the 

strong curvature of the granule cell layer in a region known as the hilus. The 

granule cell layer can be subdivided, in relation to its location to these pyramidal 

cells, into suprapyramidal and infrapyramidal blades, which merge at the crest of 

the dentate gyrus. 

A number of neuronal forms make up the rodent dentate gyrus but, when 

classified into groups of similar cells, two types are generally referred to; i.e. 

projection neurons and local interneurons, although some of these interneurons 

may possess long range projections (Amaral, 1978). The principal cells of the 

dentate gyrus are the granule cells. These excitatory neurons have dendrites that 

extend through the ML and are covered in spines (Scharfman et al., 1990). The 

synapses their axons make are asymmetric (Claibome et al., 1990) and have been 

shown to contain the excitatory, neurotransmitter glutamate (Stom-Matheson et 

al., 1983). (See Section 1.2.1 Synapses) 

Estimates of granule cell number in the rat dentate gyrus vary widely, 

depending on age and strain as, unlike most neurons, granule cells in the rat may 

continue to be produced by mitosis well into adulthood. Hippocampal 

neurogenesis is dependent on proliferation, survival and differentiation and strain 

differences in granule cell neurogenesis have been identified in mouse 

(Kempermann et al, 1997) and rat (Boss et al., 1985). However, no increase in 

granule cell number with age has been reported for Sprague-Dawley rats during 

6 



the first year of life (approximately 1x106 granule cells per hemisphere at one year 

old) 

The dentate gyrus represents the major input structure of the hippocampus 

with major afferents emanating from the entorhinal cortex while the subiculum 

gives rise to most of the hippocampal efferents to subcortical and cortical areas 

with a contribution from CA1 (Witter et al., 1989; Swanson et al., 1987). 

1.1.2 

The entorhinal cortex (EC), incorporating six cortical layers, is the origin of 

a massive projection to the hippocampus, the perforant pathway (PP), which has 

been reported to terminate predominately in the dentate gyrus (Steward, 1976; 

Wyss, 1981). The dentate gyrus component of the perforant pathway arises 

primarily from the cells of EC layer I1 (Ruth et al., 1982; Steward, 1976). Some 

fibres of the PP cross the molecular layers of the subiculum and CA1 and 

subsequently traverse the hippocampal fissure, to reach the molecular layer of the 

dentate gyrus, where they terminate. However, many fibres travel in the molecular 

layer of Ammon’s Horn along its transverse extent and firstly interact with cells in 

CA3 before reaching the dentate gyrus cells. The EC projects not only to the 

dentate gyrus and CA3 but also densely to CA1 and the subiculum. 

The Entorhinal Cortex and the Perforant Pathway. 

The perforant pathway shows a topological organisation that is related to the 

organisation of the entorhinal cortex. The lateral entorhinal area (LEA) projection 

is known as the lateral perforant path (LPP) and that of the medial entorhinal area 

(MEA) as the medial perforant path (MPP). Anterograde studies (Hjorth- 

Simonsen, 1972; Hjorth-Simonsen and Jeune, 1972; Steward, 1976; Wyss, 1981) 

show that MPP fibres distribute preferentially to the middle one third of the 

molecular layer of the dentate gyrus and CA3 and to the proximal part of CA1 - 

close to the CA1-CA3 border. The fibres from the LPP project to the outer third 

of the dentate gyrus and CA3 and distal portions of CA1. The organisation of the 

LPP is such that a small part of the LEA can interact, not only with a relatively 
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Figure 1.3 The hippocampal formation and parahippocampal region of the rat brain. 

(A) Horizontal section through the hippocampal formation and the parahippocampal 
region, illustrating the various components of ' the hippocampal formation and 
parahippocampal region and their laminar organisation. The fields that make up the 
hippocampal formation i.e. the dentate gyrus, CA fields and the subiculum, are 
characterised by an overall three-layered appearance. In contrast, at the border between the 
hippocampal formation and the parahippocampal region, the number of layers abruptly 
increases. A second, more gradual change in laminar composition takes place at the level of 
the perirhinal cortex, being replaced by the temporal neocortex with a well-developed inner 
granular layer IV. (B) Scheme of the connectivity of the hippocampal formation and 
parahippocampal region. Cells in layer I1 of the LEC project to the outer one third of the 
molecular layer of the DG; cells in layer I1 of the MEC project to the middle one third of 
the molecular layer of the DG. CA1-3, fields of Ammon's horn; DG, dentate gyrus; SUB, 
subiculum; LEC, lateral entorhinal cortex; MEC, medial entorhinal cortex; Pas,  
parasubiculum; PER, perirhinal cortex; PrS, presubiculum. After Witter er al., 2000. 
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large part of the hippocampus along its longitudinal extent, but also with a large 

segment of the apical dendrites of the cells of the dentate gyrus and CA3. The 

MF'P exhibits a more restricted distribution, but is responsible for most of the 

synaptic input onto dendrites in the outer two thirds of the molecular layer of the 

dentate gyrus (Blackstad, 1958; Matthews et al., 1987). The dentate gyrus also 

receives sparse input from the contralateral EC and, as with the ipsilateral 

projection, MPP and LPP terminals are segregated in the ML, with LPP terminals 

in the outer third and MPP terminals in the middle third (Steward, 1976; Wyss, 

1981). 

Figure 1.4 Camera lucida drawing of a dentate granule cell in the rat hippocampus. 

Camera lucida drawing of a dentate granule cell in the rat hippocampus showing the 
actual dimensions of the soma, dendritic tree, and axonal arbour of a typical neurone. After 
Isokawa et al., 1993. Bar lpm 
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Dentate gyms granule cells possess roughly conical dendritic arbours 

(Figure 1.4) extending into the outer two-thirds of the rat DG molecular layer and 

are the major recipients of input (Claibome er al., 1990; Desmond and Levy, 

1982). Electrical stimulation of the PP results in direct excitation of granule cells 

(Lambert, 1990; McNaughton, 1978) and following EC lesions degenerating 

terminals are seen on the dendritic spines of granule cells (Fifkova, 1975; 

Matthews et al., 1976); Nafstad, 1967). Each spine generally receives one 

asymmetric synapse (Patton and McNaughton, 1995) and asymmetric synapses 

make up 86 + 2% of all synapses in the outer third of the rat ML and 89+ 2% of 

those in the middle third (Crain et al., 1973). Unilateral removal of rat EC results 

in the loss of about 86% of all synapses in the outer % of the ML (Matthews et al., 

1976). 

1.1.2.1 EC connectiviîy 

The EC plays a central role in the communication between the hippocampal 

formation and the neocortex. Much of the cortical sensory information that enters 

the hippocampus does so through the entorhinal cortex e.g. there is substantial 

input from olfactory structures including olfactory bulb, anterior olfactory nucleus 

and piriform cortex. This is spread over much of the surface of the entorhinal 

cortex (Amaral, 1993) although some olfactory terminais also occur in layers I1 

and 111. A second major input is from the perirhinal cortex that receives 

information from auditory, visual, polysensory, autonomic and limbic association 

cortices (Witter et al., 1989) and terminates preferentially in layers 1-111. The 

communication is reciprocal as projections to the neocortex originate in the EC, 

particularly those that go by way of the subiculum. 

Therefore, inputs to certain mediolateral portions of the entorhinal cortex 

will be relayed almost exclusively to certain septotemporal portions of the dentate 

gyrus. (Dolorfo and Amaral, 1998). For example, projections conveying 

information from the neocortex terminate preferentially in the MEA (Insausti et 
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al., 1987) or the parts of the EC that send projections to the dentate gyrus. In 

contrast, subcortical structures such as the amygdala, which express information 

concerning the affective significance of stimuli, terminate primarily in the LECA 

(Krettek and Price, 1977) or the part of the EC that sends projections to the 

temporal levels of the dentate gyrus. If there is a topographic organisation to the 

inputs to the EC then this implies that septal and temporal hippocampus may 

receive different kinds of information through the perforant path inputs. 

Rats with lesions restricted to the septal portions of the hippocampal 

formation exhibit longer escape latencies in the Morris water maze than rats with 

lesions restricted to temporal portions of the hippocampus (Moser et al., 1993). 

Furthermore, electrophysiological studies have reported difficulties in recording 

place fields in neurons in the ventral hippocampus (Jung et al., 1994). These 

studies would suggest that the septal portion of the hippocampus receives greater 

direct sensory information from the neocortex and is responsible for carrying out 

spatial information processing. 

1.2 Morphology 

1.2.1 Synapses 

Chemical synapses in the nervous system can be described as asymmetric or 

symmetric, depending on the prominence of the cytoplasmic densities, on each 

side of the synaptic junction (Gray, 1959). Asymmetric synapses (Gray’s type I 

synapses), with a prominent postsynaptic density (PSD), are usually excitatory 

and have clear, spherical synaptic vesicles that contain glutamate. Inhibitory 

synapses (Gray’s type I1 synapses) tend to be symmetric and their smaller, oval 

synaptic vesicles contain gamma aminobutyric acid (GABA) or glycine. Axons 

may form synapses onto the dendritic shaft or onto small protrusions of the 

dendrite called spines and can therefore be further characterised according to their 

contact i.e. axospinous or axodendntic. (Figures 1.5 and 1.6) 
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The presynaptic element and the apposed postsynaptic element surround the 

synaptic cleft, which is an intercellular space between 20 and 30nm wide. The 

synaptic junction, which incorporates the plasma membranes of the pre- and 

postsynaptic elements, closely binds one neuron with another and cell adhesion 

molecules (CAMS) help to maintain the structural integrity of the synapse (Peters 

and Palay, 1996). 

Figure 1.5. Schematic diagram of chemical synapses. 

(A) An excitatory axospinous synapse between a terminal, containing clear, 
spherical synaptic vesicles, and a dendrite containing spine apparatus (Ca” -sequestering 
compartments). (B) An excitatory axodendritic synapse containing small synaptic vesicles 
synapsing directly onto a dendrite, and regulated by an inhibitory axo-axonal synapse (C) 
which contains oval synaptic vesicles. After Nicholis, 1994. 

Of particular interest are neural cell adhesion molecules (NCAMs) - cell 

surface glycoproteins that belong to the immunoglobulin superfamily and have 

various closely related isoforms. There are three major isoforms with molecular 

weights of 120 (NCAM120), 140 (NCAM140) and 180 (NCAM 180) D a  that are 
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characterised by identical extracellular domains containing five immunoglobulin- 

like domains and two fibronectin type 111 homologous repeats. The NCAM 140 

molecule has membrane spanning and cytoplasmic domains similar to the 

NCAM180 molecule although it has an additional intracellular domain. The 

prevalence of the isoforms differs during neural development and NCAM180 

seems to be exclusively expressed on neurons (Kramer et al., 1997) and has been 

shown to accumulate in the postsynaptic density (Persohn et al., 1989). Cells 

expressing polysialylated forms of NCAM have a marked increased capacity for 

structural plasticity (Muller et al., 1996) and sialic acid is strongly expressed 

during neural development. Sialic acid expression remains prominent in the 

hippocampus although generally down regulated in other brain regions in the 

adult rat (Seki and Arai, 1993). 

Application of function blocking antibodies to NCAM have been found to 

inhibit LTP induction in hippocampal region CA1 (Luthi et al., 1994). The 

induction of LTP can also be inhibited by the addition of peptides that block the 

function of cadherins (Tang et al., 1998) and integnns (Xaio et al., 1991). These 

CAMS appear to be required in the very early stage of LTP stabilisation, as 

delaying the application of peptide for 30min had no effect on established LTP. 

The release of transmitter from a presynaptic terminal is regulated by the 

exocytic fusion of secretory vesicles with the plasma membrane and is strongly 

dependent on Ca2+ concentration. In the presynaptic terminal synapsin and actin 

filaments link vesicles together and regulate the numbers of synaptic vesicles 

available to release neurotransmitter into the synaptic cleft (Peters and Palay, 

1996). When a terminal is depolarised and calcium enters, synapsin I becomes 

phosphorylated by Ca2+/calmodulin-dependent protein kinase II (CaMKII) and 

phosphorylation frees the vesicles from cytoskeletal constraint allowing them to 

move into the active zone. 
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Specific integral proteins e.g. synaptobrevin and synaptotagmin (Gerst, 

1999; Sugimori et al., 1998) in the vesicle membrane bind to specific receptor 

proteins e.g. syntaxin (Bennett et al., 1992) and soluble NSF-attachment protein - 

25 (SNAP-25) in the target membrane (Lledo et al., 1998). It is suggested that 

synaptotagmin might insert into the presynaptic membrane in response to Caz+ 

influx thus serving as a calcium sensor for exocytosis (Sudhof, 1995). The 

neurotransmitter released at these localised sites, by exocytosis, rapidly reaches 

the postsynaptic membrane that contains the receptor molecules. 

A 
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Figure 1.7 Schematic diagram of a perforated synapse. 

(A) The presynaptic grid splits with some spillover of transmitter between them and, 
(B) a spinule may invaginate the presynaptic terminal and completely separate active zones 
are formed. After Edwards. 1995. 

NMDA and AMPA receptors are localised in the postsynaptic membrane 

with its adjacent PSD. This is an electron-dense area formed by a planar array of 

spherical sub-units of 18nm in diameter (Kennedy, 1997) and contains many 

proteins, including CaMKII, and signalling molecules that modulate synaptic 

transmission (Kennedy, 1998). The PSD influences the shape of the terminal by 

controlling the size and orientation of filaments linking it to the surrounding 





cytoplasm (Siekevitz, 1985). Synapses can become segmented and presynaptic 

stimulation may cause a spinule to appear in the postsynaptic density and the 

spinule may develop to invaginate the presynaptic terminal leading to the 

formation of two release sites (Carlin and Siekevitz, 1983). (Figures 1.7 and 1.8) 

1.2.2 Dendritic Spines 
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Figure 1.9 Spine morphology in the molecular layer of the dentate gyrus. 

(A) Camera lucida drawings of the morphology of dendritic spines in the dentate 
gyrus. (B) Incidence of stubby ( S ) ,  mushroom-shaped (M) and thin (T) spines on the inner, 
middle and outer regions of the dendritic arbour of a granule cell in the dentate gyrus. After 
Desmond and Levy, 1985. 

Dendritic spines may be long or short, stumpy- or thin- necked and with or 

without a mushroom-shaped head (Desmond and Levy, 1985). (Figures 1.10 and 

1.11) They are thought to localise the Ca” signal and compartmentalise 

biochemical changes occurring inside them, therefore restricting the diffusion of 

Ca2* (Guthrie et al., 1991; Sega1 et al., 2000). The entrance of Caz’, following 

removal of the Mg*+ block, during LTP induction (see section 1.3.1 LTP 

induction) is believed to trigger a series of reactions involving modifications of 

cytoskeletal proteins and thus modification of spine shape (Kim and Lisman, 

1999). Actin (Crick, 1982), myosin (Morales and Fifiova, 1989) microtubule - 

associated protein (Aoki and Siekevitz, 1985) and calpain (Lynch and Baudry, 

1987) have all been implicated in the change in spine shape and total spine area 
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occurring during LTP. This may limit plastic changes only to those spines that 

have detected release of neurotransmitter from the presynaptic terminal (Halpain 

et al., 1998). 

Spines are dynamic structures that can undergo fast morphological 

modification. These morphological effects can alter the biophysics of the spine 

producing a larger synaptic current for a given amount of released transmitter 

(Lynch and Baudry, 1984). Widening of the spine neck could decrease its 

longitudinal resistance and modelling studies indicate that this would have a 

greater impact on fast rather than slow currents i.e. facilitate AMPA receptor 

currents without changing those associated with NMDA receptors. Conversely, an 

increase in the neck resistance, by decreasing the diameter or increasing the length 

of the neck could cause a decrease in synaptic efficacy (Jung et al., 1991; 

Korkotian and Segal, 1998; Korkotian and Segal, 1999). However, studies have 

suggested that LTP expression is not due to changes in spine resistance (Jung et 

al., 1991; Larson andLynch, 1991). 

1.3 Long Term Potentiation 

LTP is expressed as “ a persistent increase in the size of the synaptic 

component of the evoked response recorded from individual cells or from 

populations of neurons” (Bliss and Collingridge, 1993) and can last for 3-8 hours 

in slices and weeks in vivo. 

An early phase of LTP (E-LTP), lasting less than 3 hours, can be dissociated 

from late-phase LTP and does not depend on protein synthesis. Protein 

phosphorylation is crucial in the first few hours of LTP development (Colley and 

Routtenberg, 1993; Reymann et al., 1988) but later protein synthesis and gene 

expression are necessary as demonstrated by experiments using protein synthesis 

inhibitors (Fazeli et al., 1993). The duration of LTP can be restricted to 3 hours if 

anisomycin, which prevents the translation of proteins from messenger RNA, is 
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Figure 1.10 

Electron micrographs of dendritic spines in the molecular layer of the dentate gyrus (A) stubby 
spine, (B) mushroom-headed spine and ( C )  thin spine.The postsynaptic densities are indicated 
by arrows and the presynaptic boutons by *. Magnification x40k, bar = 200nm 

Electron micrographs of dendritic spines 

19 



present at the time of tetanisation but this duration is not affected by actinomycin, 

which blocks the transcription of mRNA from DNA (Matthies, 1989). Therefore, 

the early maintenance of LTP seems to require the synthesis of protein from pre- 

existing mRNA and does not depend on gene transcription. More persistent late 

LTP (L-LTP), or the protein synthesis-dependent phase of LTP maintenance, lasts 

for at least 24h and requires transcription and translation (the CAMP-PKA- 

MAPK-CREB signalling pathway) (Krug et al., 1984; Otani and Abraham, 1989; 

Otani et al., 1989; Nguyen and Kandel, 1996) and the generation of diffusable 

retrograde messengers (Williams, 1996), 

If activity-dependent synaptic plasticity, such as LTP, in the hippocampus 

plays a critical role in certain kinds of memory, then saturation of hippocampal 

LTP may impair spatial learning. Repeated tetanisation at a single site in the 

perforant path has been reported to block spatial learning when leading to LTP in 

the dentate gyrus (McNaughton et al., 1986; Castro et al., 1989) but this has not 

been successfully repeated (Korol et al., 1993; Jeffrey et al., 1993). However, 

(Moser et al., 1998) have been able to disrupt spatial learning in animais with no 

residual LTP but not in animals that were capable of further potentiation. 

The intense interest in the phenomenon of LTP and the research into all 

aspects of the mechanisms involved in the induction, expression and maintenance 

of LTP have provided a vast literature. Many studies have concentrated on the 

induction and expression of LTP due, in part, to the relative ease of monitoring 

experiments for a few hours. However, the maintenance and late phase of LTP, 

especially morphological changes, are less well studied. This introduction will 

give a general overview of the mechanisms believed to be involved. 

1.3.1 The induction and expression of LTP 

The threshold for inducing LTP is a complex function of the intensity and 

pattern of tetanic stimulation. Delivering a tetanus to the pathway of interest can 
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Figure 1.11 A model for the induction of LTP, 

(A) During normal, low frequency synaptic transmission, glutamate (Glu) is released 
from the presynaptic terminal and acts on both the NMDA and non-NMDA receptors (the 
AMPA type are shown here). Na* and K* flow through the non-NMDA but not the NMDA 
channels owing to Mg” blockage of this channel at the resting membrane potential. (B) 
When the postsynaptic membrane is depolarised by the actions of the non-NMDA receptor 
channels, as occurs during a high frequency tetanus that induces LTP, the depolarisation 
relieves the Mg2* blockage of the NMDA channel. This allows Ca” to flow through the 
NMDA channel. The resulting rise in Caz* in the dendritic spine triggers calcium-dependent 
kinases (CaMKII and PKC) and tyrosine kinase that together induce LTP. The CaMKII 
phosphorylates non-NMDA receptors and increases their sensitivity to glutamate thereby 
also activating some otherwise silent receptor channels. Once LTP is induced, the 
postsynaptic cell is thought to release a set of retrograde messengers e.g. nitric oxide (NO) 
that act on protein kinases in the presynaptic terminal to initiate an enhancement of 
transmitter release that contributes to LTP. After Kandel et al. Principles of Neural Science. 
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induce LTP and, while this may vary considerably, the tetanus usually consists of 

a train of 50-100 stimuli at 100Hz or greater. LTP can also be induced in the 

hippocampus by stimulation patterns that occur physiologically which mimics 

hippocampal theta rhythm (Larson and Lynch, 1986, 1988) - the firing pattern of 

hippocampal neurons recorded during exploratory behaviour in intact awake 

animals (Izquierdo, 1973; Oddie and Bland, 1998). Despite the potential 

behavioural importance of theta frequency - generated LTP most studies have 

focused on LTP induced more artificially by high frequency tetanisation and it has 

generally been assumed that since both are dependent on NMDA receptor 

activation the molecular mechanisms of LTP are the same. 

The induction of LTP in hippocampal region CA1 and the dentate gyrus 

depends on four postsynaptic factors; (i) activation of NMDA receptors, (ii) 

postsynaptic depolarisation (iii) influx of calcium and (iv) activation of several 

second messenger systems in the postsynaptic cell by the rise in calcium 

concentration. (Figure. 1.1 1) 

1.3.2 The N-methyl-D-aspartate (NMDA) receptor channel 

The NMDA receptor channel is responsible for the events leading to the 

postsynaptic depolarisation required to trigger the induction of LTP and its 

properties of cooperativity, associativity and input-specificity. Under normal 

circumstances, the NMDA group of receptors contributes little to transmission 

because its associated ion channel is blocked in a voltage-dependent manner by 

magnesium (Nowak er al., 1984). Therefore, the postsynaptic membrane must be 

sufficiently depolarised to expel Mg ’+ from NMDA channels, at the same time 

that L-glutamate has promoted their opening, by binding to NMDA receptors 

(Collingridge and Bliss, 1995). The requirement of the presynaptic terminal to 

provide a sufficient concentration of L-glutamate to activate NMDA receptors has 

been demonstrated by experiments with the NMDA antagonist 2-amino-5- 
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phosphonopentanoate (AP5) (Collingridge er al., 1983) and the NMDA channel 

blocker MK801 (Coan er al., 1987). 

(A! Specifid?; 

Strong stimulation 

Pathway i: 
Inactive 

Figure 1.12 The properties of specificity and associativity of LTP in the 
hippocampus. 

The cells represent CAI pyramidal neurons receiving synaptic inputs from two 
independent sets of axons. (A) Strong synaptic activity initiates LTP at active synapses 
(pathway 1) without initiating LTP at nearby inactive synapses (pathway 2)  (B) weak 
stimulation of pathway 2 alone does not trigger LTP. However, when the same weak 
stimulus to pathway 2 is activated together with strong stimulation of pathway 1, both sets 
of synapses are strengthened. After Purves et al., 1997. 

The frequency-dependence of the induction of LTP is due to the slow time 

course, and voltage-dependence, of the NMDA receptor-mediated conductance 

that is susceptible to the hyperpolarising influence of synaptic inhibition 

(Collingridge er al., 1988). ‘Weak’ stimuli activating relatively few afferent fibres 

do not trigger LTP (McNaughton et al., 1978) because they fail to depolarise the 

membrane rather than as a result of insufficient glutamate. However, LTP is 

associative, in that weak stimulation of a pathway will not by itself trigger LTP 

but, if a neighbouring pathway is strongly activated at the same time, the weak 

pathway can be activated in a Hebbian like manner (McNaughton et al., 1978; 

Levy and Steward, 1979) i.e. the membrane is sufficiently depolarised. (Figure 

23 



1.13) LTP is also specific to activated synapses rather than to all synapses on a 

given cell (Andersen er al., 1977; Lynch et al., 1977). When LTP is induced by 

the stimulation of one pathway, i t  does not occur in other, inactive inputs that 

contact the same neuron. 

1.3.3 Calcium influx 

LTP is induced through NMDA receptor activation and calcium entry into 

post-synaptic spines (Lynch et al., 1983; Nicoll and Malenka, 1995) and this rise 

in Caz' may be enhanced by the release of Caz* from intracellular stores (Alford 

and Collingridge, 1992). The increase in Caz' concentration activates different 

cascades of events, including phosphorylation mechanisms, which ultimately 

modify the functioning synapse by modifications in the structure of the synapses 

(Geinisman et al., 1993) and eventually changes in synaptic connectivity. 

However, LTP expression must, in its initial stages, be related to modifications 

that can be established quite rapidly and that can be reversed since not all E-LTP 

may develop into a long-lasting increase in synaptic expression. 

It seems reasonable to assume that if the triggering mechanism is located 

post-synaptically then the processes that express the effect are located proximal to 

the events that induce it (Bliss and Collingridge, 1993), although whether the 

locus of stable synaptic changes responsible for LTP expression is pre- or 

postsynaptic is a matter of debate. Imaging experiments (Connor et al., 1994; 

Segal, 1995) have shown that tetanic stimulation elevates concentrations of Caz+ 

transiently within dendrites and spines, and this activates enzymes to initiate the 

cascade that leads to the expression of LTP by the potentiation of the AMPA- 

receptor-mediated current. 

1.3.4 Protein kinases 

Although many protein kinases, e.g. CaMKII, protein kinase C (PKC), 

protein kinase A (PKA), mitogen-activated protein kinase (MAPK) and tyrosine 

kinases, (Mackler et al., 1992) are involved in the induction and expression of 
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LTP, the current evidence suggests a central role for Ca2+/calmodulin-dependent 

protein kinase I1 (CaMKII) (Fukunaga and Miyamoto, 2000). CaMKII, an 

oligomeric protein that consists of 10-12 subunits, is a major constituent of the 

postsynaptic density. In its basal state, CaMKII is inactive owing to the presence 

of an auto inhibitory domain that blocks intrasubunit substrate binding. Binding of 

Caz+- calmodulin (Caz’- CaM) adjacent to the auto inhibitory domain, alters its 

conformation and disrupts its inhibitory interaction, thereby causing activation of 

the kinase. The activated kinase undergoes rapid autophosphorylation that 

promotes the association of CaMKII with the PSD, partly through an interaction 

with the NMDA receptor. This places CaMKII not only proximal to a major 

source of Ca ’* influx, but also close to AMPA-type glutamate receptors, which 

become phosphorylated upon stimulation of NMDA receptors (Leonard et al., 

1999). 

The autophosphorylation also generates active CaMKII that can slowly 

phosphorylate exogenous substrates as well as catalysing additional 

autophosphorylation on other sites. Therefore, an elevation of Ca^ concentration 

in a dendritic spine can produce a prolonged kinase activity that persists in the 

absence of Ca” levels. For example, the induction of LTP in hippocampal slices 

results in activation of CaMKU within one minute and this activity is stable for at 

least one hour (Fukanaga et al., 1993; Bama et al., 1997b) in contrast with a 

transient increase in MAPK activity (Liu et al., 1999). The appropriate protein 

phosphatase - probably protein phosphatase 1 (PPl) which is also found at high 

levels in the PSD - dephosphorylates Thr286 and inactivates CaMKII (Strack et 

al., 1997). Transgenic mice in which the autophosphorylation site Thr286 in 

CaMKII is mutated to Ala have normal basal synaptic transmission but do not 

exhibit LTP (Giese et al., 1998). 
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LTP 

Figure 1.13 The role of protein kinases in the induction of LTP 

The rise in Ca’* in the postsynaptic cell resulting from the influx through the NMDA 
receptors leads to generation of the Ca’+- independent form of CaMKII. Activation of the 
NMDA receptors and mGluRs are linked to activation of PKA through adenylate cyclase 
(AC) and activation of PKC, respectively. Inhibition of protein phosphatase 2A ( P E A )  
activity by CaMKII and of protein phosphatase 1 (PPI) by PKA through phosphorylation 
of inhibitor 1 (In-I) may maintain autonomous kinase activity. Newly synthesised CaMKII 
translated from pre-existing mRNA may account for an increase in CaMKII activity. The 
long-lasting enhancement of CaMKII activity increases the sensitivity of AMF’A receptors 
in postsynaptic sites. The increased phosphorylation of neurogranin and Gap 43 by PKC in 
the postsynaptic and presynaptic sites, respectively could increase free Cam concentrations 
and thereby potentiate CaM-dependent signalling, including CaMKII in both sites. Large 
increase in Ca’* and CAMP in turn activate PKA to stimulate gene expression in the 
nucleus. After Fukunaga and Miyamoto, 1999. 
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NMDA receptor-dependent LTP is also associated with an increase in PKC 

activity (Akers et al., 1986; Klann et al., 1991; Klann et al., 1993) and the 

application of PKC inhibitors can block the expression of LTP (Malinow et al., 

1988; Wang and Feng, 1992). The degree of phosphorylation of PKC substrate 

protein can be correlated with the degree of potentiation produced by tetanic 

stimulation of the perforant path in vivo (Routtenberg et al., 1985; Lovinger et al., 

1986). Indeed, in chronically implanted animals the phosphorylation still matched 

that of LTP when measured 3 days after induction (Lovinger et al., 1985). 

Computer modelling of the three - dimensional structure of the PKC molecule has 

proposed that the conformation of PKC regulates accessibility of the phosphates 

to phosphatase (Sweatt et al., 1998). This and other data has suggested that PKC 

is not part of the molecular machinery that produces LTP but is an important 

regulatory component. (Abeliovich et al., 1993). Numerous PKC substrates are 

present postsynaptically but principally they are the AMPA and NMDA subtypes 

of glutamate receptors (Raymond et al., 1993) (discussed later) and neurogranin. 

The phosphorylation state of neurogranin is increased during the 

maintenance of LTP (Ramakers et al., 1995). Neurogranin binds to calmodulin in 

the absence of Caz' and the affinity of calmodulin for neurogranin is lowered 

when the Caz' concentration is elevated. Phosphorylation of neurogranin by PKC 

lowers the affinity of neurogranin for calmodulin and this could lead to a 

postsynaptic elevation of calmodulin (Gerendasy et al., 1995; Gerendasy et al., 

1994). Therefore, a persistent increase in the phosphorylation of neurogranin may 

provide a sustained increase in local Caz' and calmodulin concentrations that 

might result in altered Caz' I CaMKII activity (Chen et al., 1997). 

While NMDA receptors can induce LTP, the expression of the potentiation 

effect is accomplished by the AMPA receptors (Muller er al., 1988). The simplest 

assumption is that calcium-dependent protein kinases directly phosphorylate ion 

channels e.g. phosphorylation of the AMPA receptor by CaMKII results in 

potentiation of the AMPA-receptor mediated current and requires 15-30 min to 
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develop (Mammen et al., 1997). This is supported by evidence that the induction 

of LTP is associated with an increase in single-channel conductance of AMPA 

receptors, in 60% of potentiated cells (Benke et al., 1998). 

Experiments with transgenic mice have indicated that phosphorylation of 

the GluR1 subunit is particularly important for LTP expression. LTP can be 

induced in GluR2 subunit knockout mice (Jia et al., 1996) but while the adult 

GluR1 subunit knockout mouse shows normal basal synaptic transmission, LTP 

cannot be induced (Zamanillo et al., 1999). The GluR1 subunit is regulated by 

protein phosphorylation at two sites on its carboxy terminal Serine 831, 

phosphorylated by CaMKII and PKC, and Serine 85 phosphorylated by PKA 

(Roche et al., 1996; Bania et al., 1997a; Mammen et al., 1997). GluR1 can adopt 

multiple conductance states and phosphorylation has been shown to stabilise the 

higher conductances (Derkach et al., 1999). 

If phosphorylation of the AMPA receptors is required for insertion into 

synaptic membranes only dendritic spines having active CaMKII could express 

functional AMPA receptors. Translation of pre-existing CaMKII mRNA can 

occur within 15-30min of tetanisation and following this local up-regulation of 

translation, CAMP and / or Ca signals can trigger transcription of synaptic 

elements including AMPA receptors (Fukunaga and Miyamoto, 1999). Therefore 

in early LTP maintenance, newly synthesised CaMKII could account for 

stabilisation of synaptic plasticity in specified dendrites that have received tetanic 

stimulation. 

2+ 

In summary, within one minute of LTP induction there is activation of 

CaMKII, which is stable for at least one hour and allows translocation of CaMKII 

to the PSD. This Ca2' independent activity of CaMKII slowly phosphorylates the 

GluR1 subunit of the AMPA receptor, resulting in potentiation of the AMPA- 

receptor-mediated current, because of an increase in single-channel conductance. 
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1.3.5 Silent synapses 

LTP has little effect on the NMDA receptor current but instead selectively 

increases the currents produced by the AMPA receptor (Muller and Lynch, 1988a; 

Muller et al., 1988). This is not consistent with an increase in release of 

neurotransmitter, from a constant population of terminals (Stevens, 1993). If an 

increased number of effective synapses was responsible for explaining the 

selective nature of LTP, then they would need to lack NMDA receptors which 

seems unlikely. However, changes in the shape of existing spines could modify 

the surface geometry of the synaptic region and thereby expose previously 

inaccessible AMPA receptors. Alternatively, modification may affect the 

biophysics of the dendritic spine so as to facilitate AMPA receptor currents 

without markedly changing those associated with NMDA receptors. Facilitation 

of AMPA receptor-mediated transmission in slices of hippocampus is known to 

reduce the amount of afferent stimulation needed to induce a maximal degree of 

LTP (Arai and Lynch, 1992). Enhancement of AMPA receptors with drugs that 

prolong the opening time of AMPA receptors has been shown to improve spatial 

learning in a water maze task (Staubli er al., 1994) and interference with the 

expression of AMPA receptors at the time of testing in rats hinders retrieval of 

memory for a few weeks (Bianchin et al., 1993; Izquierdo et al., 1997). 

The insertion of AMPA receptor protein into the postsynaptic membrane of 

previously silent synapses may contribute to LTP. The fact that not all potentiated 

neurons show an increase in AMPA-receptor channel conductance suggests that 

other mechanisms as well as phosphorylation of AMPA receptors by CaMKII 

may be in operation. Reports have suggested that synapses expressing only 

NMDA receptors before potentiation are prompted by LTP to express functional 

AMPA receptors; these silent synapses are effectively non-functional at normal 

resting potentials but acquire AMPA-type responses after LTP induction (Liao, 

1995). Specifically, induction of LTP bas been shown to induce redistribution of 

transiently expressed GluR1 within 30 minutes in hippocampal slices from 
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intracellular sites in the dendritic shaft of dendritic spine apical dendrites (Shi et 

al., 1999). 

1.3.6 Metabotropic glutamate receptors (mGIuRs) 

Eight sub-types of mGluRs have been cloned and divided into three groups 

according to their sequence homology, pharmacological characteristics and 

coupling to second messenger pathways. Activation of group I mGluRs (mGluR1, 

5) gives rise to the hydrolysis of phosphatidylinositol 4,5-biphosphate into 

inositol 1.4.5-triphosphate (IP3) and diacylglycerol, which are required for 

intracellular Ca” release and activation of PKC, respectively (Nakanishi, 1994). 

mGluRs of group I1 (mGluR2, 3) and group I11 (mGluR4, 6, 7, 8) are negatively 

coupled to adenylyl cyclase (Conn and Pin, 1997). 

mGluRs have been implicated in LTP and learning and memory formation 

but the involvement of different receptor groups in particular functions is still 

controversial. The mGluR group ID1 agonist I-aminocyclopentane-I, 3- 

dicarboxylic acid (ACPD), plus the addition of NMDA, can induce LTP after sub- 

threshold or low frequency stimulation (McGuinness et al., 1991). An inhibition 

of LTP by the class VI1 specific antagonist S-a-methyl-4-carboxyphenylglycine 

(MCPG) has been described (Bashir et al., 1993; Richter-Levin er al., 1994) 

however, in other studies this could not be repeated (Manzoni et al., 1994; Martin, 

1997). 

Bortolotto et al., 1994 have suggested that the activation of mGluRs before 

LTP sets an input-specific molecular switch that then negates the necessity of 

further mGluR-activation during LTP induction, but again others have failed to 

find evidence of this molecular switch (Martin, 1997; Selig et al., 1995). Results 

are similarly inconclusive regarding the function of mGluRs in learning and the 

group I mGluRs may be involved in the fine tuning of hippocampal synaptic 

plasticity. The impact of mGluRs appears to depend on the type and strength of 
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the stimulus supplied and the particular properties of the spatial learning paradigm 

employed (Balschun er al., 1999). 

mGluRs have been shown to modulate the facilitation of LTP within a 

distinct time window of less than 30mins following stimulation and support an 

important role for mCluRs in the events that immediately follow NMDA receptor 

activation (Manahan-Vaughan and Reymann, 1996). This facilitation by mGluRs 

of LTP may be mediated by mGluR-induced activation of PKC and the triggering 

of subsequent second messenger processes that are involved in the maintenance of 

the late phase of LTP. 

Since the characteristics of the enduring form of LTP imply that the 

mechanism probably involves a signal transduction event at the activated synapse 

it has been suggested that LTP may initiate the creation of a short lasting (less 

than 3 hours) protein-synthesis-independent ‘synaptic tag’ at the potentiated 

synapse that isolates the relevant proteins to establish late LTP p rey  and Morris, 

1997). mGluRs may be important in this process as they are believed to couple to 

nearby protein synthesis machinery in the postsynaptic cell to homosynaptically 

regulate an intermediate phase of LTP dependent on new proteins made from pre- 

existing &NA. (Raymond et al., 2000). (See Section 1.4.2 protein synthesis) 

1.3.7 Retrograde messengers 

If the maintenance of LTP involves a presynaptic enhancement of 

neurotransmitter release then some message must be sent from postsynaptic to 

presynaptic neurons. Similarly, the associative property of LTP suggests the 

requirement for a signalling molecule that could percolate to adjacent activated 

pathways. Since dendritic spines do not have the conventional machinery for the 

release of neurotransmitter, the putative retrograde messenger may be membrane 

permeable and reach the presynaptic terminals by free diffusion. There is some 

evidence for several candidates including the soluble gases nitric oxide (Zhuo, 

1999), and carbon monoxide (Stevens and Wang, 1993) as well as arachidonic 
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acid (Williams and Bliss, 1989). platelet activating factor (Wieraszko et al., 1993) 

and several neurotrophins (Kang, 1995; Korte et al., 1996). 

Nitric oxide (NO) is a gas, generated by the enzyme NO synthase (NOS) 

from the amino acid 1-arginine. Synthesis of the neuronal type I isoform of NOS is 

triggered by increased Caz* kalmodulin in the postsynaptic terminal (ODell et al., 

1991). This soluble gas diffuses back to the presynaptic terminal, activates 

guanylyl-cyclase and cGMP-dependent protein kinases (Zhuo et al., 1994), and 

leads to an activity-dependent increase in transmitter release (Hawkins, 1996). An 

inherent problem with the retrograde messenger theory was guaranteeing the 

maintenance of the pathway specificity of LTP. However, when NO was applied 

to hippocampal slices, paired with weak tetanic stimulation of the presynaptic 

fibres, the EPSP was rapidly enhanced and remained enhanced for at least one 

hour (Hawkins et al., 1998). Weak tetanisation, or the application of NO alone, 

had no effect (Zhuo et al., 1993), indicating that NO is only effective at recently 

activated presynaptic terminals. 

Inhibitors of the type I NOS isoform have been shown to block the 

induction of LTP in hippocampal slices especially when injected into the 

postsynaptic cell (O'Dell et al., 1991) suggesting that the production of NO is 

postsynaptic. However, some subsequent studies failed to confirm these results 

(ODell et al., 1994; Cummings et al., 1994). Crucially, LTP was found to be 

normal in mice with a mutation of the isofom suggesting that other isoforms 

contribute to the production of NO during the induction of LTP (ODell er al., 

1994). 

Alternatively, other retrograde messengers may have a role e.g. arachidonic 

acid (AA). This is an unsaturated fatty acid, and is produced by the hydrolysis of 

phospholipids by phospholipases, particularly phospholipase A2 (PLA2). 

Nordihydroguaiaretic acid (NDGA), an inhibitor of lipoxygenase, the enzyme 

which metabolises AA and PLA2, blocks the induction of LTP in vivo and in 

vitro (Lynch et al., 1988; Williams and Bliss, 1988,1989). AA has been shown to 
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produce an input specific and NMDA receptor independent form of potentiation 

when paired with weak afferent activity (Williams and Bliss, 1989). Yet, the slow 

onset, the loss of input specificity at lower concentrations of AA and disagreement 

over the sensitivity of this form of potentiation to NMDA receptor antagonists 

(O'Dell et al., 1991), raised doubts over the role of AA as a retrograde messenger. 

However, when the application of AA is combined with the activation of 

metabotropic glutamate receptors, biochemical and electrophysiological changes 

are produced that are consistent with a role in producing synaptic potentiation 

(McCahon and Lynch, 1994; Collins and Davies, 1993). 

Unfortunately, there is no compelling evidence to support the candidacy of 

any of these proposed molecules as putative retrograde messengers. Indeed, the 

absolute requirement for a retrograde messenger is still speculative, as there is no 

confirmation, although it cannot be excluded, that the maintenance of LTP is at 

least, in part, presynaptic. Rather than a diffusable messenger there may be some 

signalling event involving neuron and glial cell communication (Attwell, 1994). 

1.3.8 Morphological modifications 

Electron microscopic studies have identified changes in spines and synapses 

that accompany LTP and there is increased interest in determining the functional 

consequences of such structural alterations. Morphological modifications, 

especially alterations in synaptic size and shape, have been observed in the first 

hour after tetanisation. (Table 1.1) This can involve perforation of the 

postsynaptic density (Geinisman et al., 1993; Buchs and Muller, 1996) 

modification of presynaptic active zones (Desmond and Levy, 1986b; Schuster et 

al., 1990; Geinisman et al., 1992b), or redistribution of vesicles at the axon 

terminal (Applegate and Landfield, 1988). These early mechanisms, including the 

redistribution of postsynaptic receptors, are likely to be a dynamic feature and, as 

synaptic efficacy may be finely regulated at each individual synapse by activity, 

subtle changes in synaptic profiles are difficult to detect. 
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However, there has been insufficient morphological information from the 

maintenance phase of LTP, and results can be difficult to interpret, due to the 

different stimulation paradigms and time points used (Geinisman, 1996; Weeks et 

al., 1998). Data from continued studies of synaptic morphology, at time points 

beyond 3 hours after induction, could provide important information contributing 

to an understanding of the late phase of LTP. 

Cleavage of adhesive connections could be an early step in the formation of 

new synaptic configurations. Neuronal activity has been shown to regulate the 

expression of PSA-NCAM at the synapse and this expression may be required for 

the induction of synaptic plasticity (Muller et al., 1996). In rats, the level of PSA 

on NCAM increases after a passive avoidance task (Doyle et al., 1992b). 

Stimulation of hippocampal NMDA receptors results in the extracellular 

proteolysis of NCAM (Hoffman et al, 1998) and peptides and antibodies that 

disrupt the extracellular interactions of CAMS cause stable LTP to quickly decay 

over several minutes (Luthi et al., 1994). Elevated concentrations of adhesion 

molecules, have been demonstrated 90min after the induction of LTP in the 

dentate gyrus (Fazeli et al., 1994). 

In addition to their involvement in synaptic remodelling accompanying LTP 

induction, these molecules may contribute to the persistence of potentiation by 

stabilising synapses at later time points. 24h after high frequency stimulation of 

the perforant path, there is a two-fold increase in the number of spine synapses, in 

the molecular layer of the dentate gynis, expressing NCAM180 (Schuster et al., 

1998). Studies using NCAM antibodies have been shown to disrupt consolidation 

of a passive avoidance response in rats when administered 6-8hrs after task 

acquisition (Doyle et al., 1992a). This group have also shown a transient elevation 

in the sialylation state of NCAM 12 to 24 hrs following training (Doyle er al., 

1992b). 

Similarly, for memories persisting more than a few weeks, in whose 

retrieval cortical structures other than the hippocampus play a role, activity- 
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dependent synaptic adhesion changes followed by morphological changes may be 

important. This would require a mechanism to sustain activity-dependent cell 

adhesion changes for long periods until synaptic morphological changes have 

been established - perhaps by a replay of learning related activity by hippocampal 

cells that project to those synapses. Interestingly, a replay of correlated neuronal 

firing patterns acquired during spatial learning by groups of hippocampal 

pyramidal cells has been reported to occur in rats during sleep (Skaggs and 

McNaughton, 1996). 

1.3.8.1 Dendritic spines 

Investigations of spine morphological modifications in the initial hour after 

LTP induction have produced many contradictory results. Increases in the mean 

area of spines, in the width of the spine head and spine neck, have been shown 

after high-frequency stimulation of the perforant path to the dentate gyrus (Van 

Harreveld and Fifkova, 1975). In addition, similar studies have reported a 

decrease in the length of the spine neck (Fifkova and Anderson, 1981). These 

modifications would produce a reduction in the linear resistance of the spine and 

have a greater affect on fast synaptic currents i.e. AMPA - produced responses 

rather than slow NMDA receptor-generated responses (Wilson, 1984). 

However, when CAI pyramidal neurons were potentiated, there was no 

change in the width of dendritic spine neck or the area of dendritic spines (Lee et 

al., 1980). Another study in the CA1 region showed an increase in the number of 

short and stumpy spines (Chang and Greenough, 1984). The morphological 

differences between areas CAI and dentate gyrus, might be explained by the 

different protocols used to induce LTP in the two areas (Chang and Greenough, 

1984). Alternatively, the anatomical correlates of LTP may be different in the two 

systems. 

While i t  is technically difficult to visualise individual synapses in the 

hippocampus during potentiation it is possible to image spines in slices. Using 
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these confocal microscopy techniques (Hosokawa et al., 1995) observed the 

growth of a sub-population of small spines, as well as angular displacement of 

spines, 3.5 hours after chemical induction of potentiation. A decrease in the 

numbers of spines was described 24hrs after tetanisation of the perforant path 

(Rusakov er al., 1997b). Passive avoidance training in one-day old chicks has 

been shown to cause an increase in spine density and spine head diameter, and a 

decrease in spine neck length, 24hrs after passive avoidance learning in the day- 

old chick (Lowndes and Stewart, 1994). 

1.3.8.2 Postsynaptic densi9 

Morphological changes may not be a consequence of potentiation but a 

necessary prerequisite and anatomical change could be a phenomenon required for 

LTP expression. The distribution of receptors at the postsynaptic membrane may 

provide evidence for this hypothesis as changes in shape and size of the PSD 

would alter the ratio of receptor groups. AMPA type-receptors are concentrated in 

the membrane opposite the transmitter release site. However, the type 1 and 5 

mGluRs are concentrated in an annulus, around the synapse, surrounding the 

ionotropic receptors, followed by a wider band of receptors that decrease in 

density (Lujan, 1996). Larger spines generally have larger PSDs (Harris, 1989; 

Lisman and Harris, 1993) and more receptors and ion channels. In studies on the 

hippocampal, dentate gyrus (Desmond and Levy, 1983; Desmond and Levy, 

1986a; Desmond and Levy, 1988) found that there was an increase in the number 

of synapses with large postsynaptic densities following LTP induction. However, 

two hours after LTP induction in hippocampal area CA1 in vitro, there was no 

increase in synapse size (Sorra and Harris, 1998). They also reported no 

significant difference in total synapse number, on the distribution of different 

types of synapses, on the frequency neither of shaft synapses nor on the relative 

proportion of single or multiple synapse axonal boutons. 
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It has been reported that perforated axospinous synapses are twice as likely 

as non-perforated ones to express detectable levels of AMPA receptor subunits, 

whereas no significant differences in NMDA receptor expression were observed 

(Desmond and Weinberg, 1998). As already discussed, the insertion of AMPA 

receptor protein may render perforated synapses especially potent and 

increasingly studies may concentrate on ‘activated’ synapses when investigating 

ultrastructural modifications (Buchs, 1996), and use confocal microscopy 

techniques. 

The curvature of the membrane above the PSD may also vary during LTP. 

In the dentate gyrus, an increase in the number of concave spine synapses with 

large postsynaptic densities was observed (Desmond and Levy, 1983, 1986b. 

1988). This increase was accompanied by a decrease in the number of convex 

synapses and persisted for 6Omin after stimulation, suggesting a possible 

interconversion from non-concave to concave synapses during LTP. 

1.3.8.3 Presynaptic glutamate release. 

Modification of postsynaptic morphology has functional implications for 

the presynaptic terminal and can influence neurotransmitter release from activated 

synapses. Increased probability of release would result from spine growth, if it 

lead to perforation of the PSD, (Greenough et al., 1978) and/or synchronous 

changes in the presynaptic bouton (Desmond and Levy, 1986b; Schuster et al . ,  

1990; Geinisman et al., 1992b; Lisman and Hams, 1993). The number of synaptic 

vesicles attached to the active zone membrane is significantly increased, together 

with the percentage of vesicles adjacent to the active zone, during LTP induction 

of CA1 (Applegate et al., 1987). Alternatively, spine growth or displacement 

could permit receptor-bearing membranes to come into close contact with pre- 

existing release sites allowing receptor access to previously ineffectual transmitter 

release sites. (Hosokawa et al.,  1995). 
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Protein kinase activation by presynaptic depolarisation and a rise in calcium 

concentration may influence the dynamics of the presynaptic terminal. (Figure 

1.13) e.g. Persistently activated PKC may be found in the presynaptic 

compartment (Chen et al., 1997) as demonstrated by increased phosphorylation of 

neuromoduiin / GAP 43, reported in LTP (Wang and Feng, 1992; Ramakers et al., 

1997). 

Investigations of LTP induction suggest an increased probability of release 

although the mechanism for the expression of LTP may also involve an increase 

in quantal size (Isaac et al., 1996). However, a recent study of the late phase of 

LTP, on synapses of CA1 neurons, demonstrated an increase in the number of 

quanta released, and suggested an increase in the number of sites of synaptic 

transmission (Bolshakov et al., 1997). 

1.4 The Maintenance of LTP 

1.4.1 Protein kinase A 

Changes in the abundance of mRNAs for a number of protein kinase 

proteins have been identified 30 min to 3 hours after tetanisation (Mackler et al., 

1992) suggesting that protein kinases may play a role in the maintenance stages of 

LTP in addition to their contribution during the early phase, e.g. AMPA-receptor 

channels can be rapidly modulated by PKA activators (Greengard et al., 1991). 

Studies have suggested that as well as PKC the synergistic activation of PKA is 

necessary for the maintenance of LTP (Matthies and Reymann, 1993; Frey et al., 

1993). in experiments with transgenic mice, with reduced PKA activity in their 

hippocampus, L-LTP was significantly decreased in region CA1, without affecting 

basal synaptic transmission or the early phase of LTP (Abel et al., 1997). 

The catalytic subunit of PKA recruits another second messenger kinase 

MAPK (Martin et al., 1997; Impey et al., 1998) commonly associated with 

cellular growth Doherty et al., 2000, and together the two kinases translocate to 

the nucleus where they activate a genetic switch. (Figure 1.15) The catalytic 
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subunit phosphorylates, and thereby activates, a transcription factor called CREB 

1 (CAMP response element binding protein). This phosphorylated transcriptional 

activator binds to a promoter element called CRE (CAMP response element). By 

means of the MAPK, the catalytic subunit of PKA also acts to relieve the 

inhibitory actions of CREB 2 -an inhibitor of transcription. 

Figure 1.14 A model for the early and late phase of LTP 

A single train of action potentials leads to early LTP by activating NMDA receptors, 
Ca” influx and into the postsynaptic celi and a set of second messengers. With repeated 
trains the Ca’* influx also recruits an adenylyl cyclase, which activates the CAMP- 
dependent protein kinases. The catalytic subunit of PKA recruits another second messenger 
kinase MAPK and together the two kinases translocate to the nucleus where they 
phosphorylate the CREB protein. This phosphorylated transcriptional activator binds to a 
promoter element called CRE (CAMP response element) and activates targets that are 
thought to lead to structural changes. After Purves et al.,  1997 

The presence of a repressor and an activator of transcription suggest that the 

mechanism is highly regulated but CREB activation leads to a cascade of gene 

activation that can lead to growth of new synaptic connections. Inhibitors of PKA 

block L-LTP and associated increases in CRE-mediated gene expression (Impey 
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et al., 1996). Proteolytic processes that lead to the degradation of the regulatory 

subunits of PKA allow the catalytic subunits to continue phosphorylating proteins 

long after the second messenger CAMP has returned to basal levels and can make 

PKA persistently active for up to 24h without requiring a continuous signal. 

There is evidence of increased de novo gene expression after LTP. In the 

first few hours after LTP induction there is an increase in Zifn68 (an immediate 

early gene (IEG) induced by stimuli that produce LTP (Cole et al., 1989; Roberts 

et al., 1996), CaMKII, PKC (Thomas et al., 1994) and MAP2 &NA levels 

(Roberts et al., 1998a). Increased expression of dendritic CaMKII mRNA and 

microtubule-associated protein 2 (MAP2) mRNA is suggested to be a general 

feature of hippocampal plasticity, since it occurs following LTP induction in both 

the dentate gyrus and the CA1 region. Long lasting increases in CaMKII activity 

has been closely associated with stable phosphorylation of the GluR1 receptor, 

synapsin 1 and MAP2 during LTP maintenance (Fukanaga et al., 1995). Increased 

extracellular signal-regulated kinase 2 (ERK2)MAP kinase and raf-B mRNA 

levels are observed by 24 h (Thomas et al., 1994). 

Growth factors e.g. brain-derived neurotrophic factor (BDNF) acutely 

modify synaptic transmission (Figurov et al., 1996) and are required for the 

establishment of LTP (Patterson et al 1996). Synapse-specific effects of growth 

factors may be provided by localised presynaptic release. Synaptosomes prepared 

from the hippocampus of BDNF knockout mice exhibited synaptic fatigue and a 

marked decrease in the levels of synaptophysin as well as synaptobrevin (Pozzo- 

Miller et al., 1999). Treatment of the mutant slices with BDNF reversed the 

electrophysiological and biochemical deficits in the hippocampal synapses. These 

results suggest a role for BDNF in the mobilisation and/or docking of synaptic 

vesicles to presynaptic active zones. 

In vivo studies of the messenger RNAs (mRNAs) encoding proteins of the 

exocytic machinery have been measured at different times following the induction 

of long-term potentiation in the dentate gyrus. In situ hybridisation has revealed 
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increased levels of mRNAs encoding both synapsin I and syntaxin 1B in the 

dentate gyrus 2h and 5h following the induction of long- term potentiation (Hicks 

er al., 1997). An increase in the protein levels of syntaxin 1B and, to a lesser 

extent, the synapsin I, was observed 5h after the induction of LTP, associated with 

an increase in depolarisation-induced release of glutamate within these terminals 

(Helme-Guizon et al., 1998). Increases in both the protein levels and glutamate 

release were not observed when dentate gyrus LTP was blocked by an NMDA 

receptor antagonist. Increased mRNA levels of SNAP-25 are reported 2 h after the 

induction of LTP in granule cells of the dentate gyrus following high frequency 

stimulation of the perforant path in vivo (Roberts et al., 1998b). The persistent 

long-term potentiation- induced postsynaptic increase in mRNAs encoding these 

presynaptic proteins has important implications for the propagation of signals 

downstream from the site of long-term potentiation induction in hippocampal 

neural networks. 

1.4.2 Protein synthesis 

It has already been established that the late phase of LTP requires the 

synthesis of new proteins (Fazeli et al., 1993), and these may play a structural role 

in the modification of existing synapses or the de novo synthesis of new synapses. 

If LTP does incorporate the formation of new synapses, and therefore co- 

ordinated changes on both sides of the synapse, LTP would display pre- and 

postsynaptic effects. 

This process necessitates the delivery of mRNAs to particular intracellular 

locations that allow a local synthesis of macromolecules, with particular 

intracellular domains. In neurons, protein synthetic machinery made up of 

polyribosomes and associated cisterns, are selectively localised beneath individual 

postsynaptic sites (Steward et al., 1996). These polyribosomes may be found at 

the intersection between the spine neck and the main dendritic shaft or beneath 

synapses on dendritic shafts (Steward and Ribak, 1986). They are particularly 
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prominent during periods of synapse growth, during development (Steward and 

Falk, 1986) and when neurons are reinnervated following injury (Steward, 1983). 

Immediate early genes (IEGs) are rapidly induced and exert their effect by 

regulating downstream genes. Late response genes are induced over periods of 

hours to days and frequently encode genes of direct physiological function such as 

growth factors and their receptors, enzymes and proteins. In neurons there are 

perhaps 30-40 IEGs (Lanahan and Worley, 1998), 10-15 are transcriptional 

factors and a subset are transcriptionally induced at the cell body (Steward 1994) 

remote from the synapses yet are anticipated to directly modify synaptic function. 

This would require a signalling process to modulate gene expression in the 

postsynaptic neuron and synthesis of particular gene products to the individual 

synapses that are to be modified. This must be co-ordinated so that modifications 

occur selectively at the activated synapses. e.g. in situ hybridisation techniques 

have shown that the mRNA encoding the a-subunit of CAM kinase I1 is present at 

high levels throughout the molecular layer of the dentate gyrus (Steward and 

Wallace, 1995). 

Several of the mRNAs that are present in dendrites have been identified and 

appear to provide evidence for this mechanism of synapse specific gene 

expression (Steward et al., 1998) where particular mRNAs are translated locally 

at postsynaptic sites on dendrites. The transcript of an immediate early genes 

(IEG) named Arc (activity-regulated cytoskeleton) - associated protein (Lyford et 

al., 1995) is rapidly and transiently induced after LTP (Wallace et al., 1998) and 

delivered into dendrites (Lyford et al., 1995) within 1 hour. Stimulation of the 

medial perforant path to produce a band of activated synapses in the molecular 

layer showed that high frequency stimulation (HFS) induces arc expression and 

causes newly synthesised mRNA to localise in the synaptically activated dendritic 

lamina. 

The elevation of mRNA levels in a restricted region close to the afferent 

synapses would allow a localised enhancement of the synthesis of the 
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corresponding proteins, therefore providing a mechanism for a high degree of 

anatomical specificity and satisfy some of the characteristics of a synaptic tag 

p r e y  and Moms, 1997). Evidence of possible candidates and mechanisms 

reinforce this hypothesis. 

Homer, a small (186 amino acid) soluble cytosolic protein, is strongly 

induced in neurons of the hippocampus after LTP and may be involved in the 

structural changes that occur at metabotropic glutamatergic synapses during the 

maintenance phase of LTP (Kato et al., 1998). Homer protein binds to the C 

terminus of metabotropic receptors and appears to rapidly target excitatory 

synapses and dendritic spines (Brakeman et al., 1997). Neuronal activity can 

modify the affinity of the interaction between homer and mGluR5 and, if it occurs 

at individual synapses, could underlie the synapse specific effects of homer 

(Lanahan and Worley, 1998) 

Rheb a GTP-binding protein (Yamagata et al., 1994) interacts with Raf 

kinase and appears to activate subsequent signalling events (Yee and Worley, 

1997). Rheb signalling requires the coincident activation of PKA, and therefore 

localised response to growth factors, since signalling would be restricted to 

regions of the neuron with activated PKA. These signalling properties of rheb 

may afford synapses specific effects of the IEG even in the absence of specific 

targeting of rheb protein. 

1.4.3 Synapse number 

New synapse formation may involve an intermediate stage, such as the 

perforation of synapses (Nieto-Sampedro, 1982). Alternatively, spine branching 

may occur to either increase or decrease spine density as demonstrated in dentate 

gyrus-granule cell synapses (Trommald et al., 1990; Rusakov et al., 1997b). 

(Figure 1.16) 

Later studies in area CA1 of hippocampal slices in young adult rats 

suggested that branched spines are unlikely to be transient intermediates in the 
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process of dividing from perforated synapses (Sorra, 1998). These results reported 

that different branches of the same spine never synapsed with the same 

presynaptic bouton and that division of a presynaptic bouton is not pari of synapse 

splitting to generate new unbranched spines. 

Perforated synapses appear to be functionally related to synaptic plasticity 

(Greenough et al., 1978) and result from splitting of PSDs. PSDs might increase 

in size before breaking down into several fragments, which may or may not give 

rise to a new simple synapse (Hoff and Cotman, 1982). Jones (1993) has 

suggested that perforated and non-perforated synapses constitute separate 

populations that are formed early 

complementary forms of plasticity. 

A 

in development and 

Figure 1.15 Schematic diagram of models of synapse formation 

each represents 

LTP may involve the formation of new synapses. Two possible models of synapse 
formation involve; (A) the sprouting of a new branch from an exiting terminal or; (B) a 
spinule in the postsynaptic membrane protrudes into the presynaptic terminal to form a new 
synapse. After Agnihotri er al., 1998 
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High frequency stimulation of the Schaffer-collateral commissural pathway 

in the hippocampus causes an early increase in the number of perforated synapses 

(Geinisman er al., 1991). A similar study on slices was able to demonstrate that 

the increase in perforated synapses occurred at synapses that had been potentiated 

(Buchs and Muller, 1996). At these synapses, the apposition zones between pre- 

and postsynaptic structures were also larger, PSDs were longer, and spine profiles 

were enlarged (Buchs and Muller, 1996). After high frequency stimulation of the 

perforant path in young rats the number of perforated synapses with a segmented 

PSD was increased and this increase was confined to the area where LTP had 

occurred (Geinisman et al., 1991). 24hrs after the induction of LTP in vivo an 

increase in the number of perforated concave synapses was found which exceeded 

the overall increase in concave synapses (Weeks et al., 1999). 

Behavioural studies have supported a relationship between the numbers of 

perforated synapse and learning and memory. Aged rats that exhibit a deficit in 

spatial memory showed a reduction in the number of perforated synapses in the 

dentate gyrus in comparison with either young adults or aged rats with good 

memory (Geinisman et al., 1986). 

There is evidence that LTP is associated with the formation of new, mature 

and functional spine synapses, at least, contacting the same presynaptic terminals. 

(Toni et al., 1999) have reported an increase in the proportion of multiple spine 

boutons detected 45-60min after potentiation induced by theta burst stimulation 

(TBS) in slices. An increase in the number of axodendritic synapses has been 

reported 15mins after potentiation (Lee et al., 1980). There is a considerable 

degree of variation in the level of potentiation induced in different animals 

following the induction of LTP. Although, reporting no significant increase in 

synaptic density, Weeks er al (1998) have reported a positive correlation between 

the degree of LTP and the number of synapses per neuron. At later time points, an 

increase in the number of axodendntic synapses was detected 13 days after the 

induction of LTP (Geinisman er al., 1996). During passive avoidance learning in 
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the chick an increase in synapse number in the lobus parolfactorius was detected 

(Stewart et al., 1984, 1987; Pate1 et al., 1988a,b). These changes were detected 

after 24h whereas the associated biochemical changes disappeared after 3 hours. 

In summary, it has been reported that axospinous, perforated synapses 

increase in number soon after the induction of LTP followed by an increase in 

multiple spine boutons. 24h later there is an increase in concave perforated 

synapses and a correlation between the number of synapses per neuron and the 

degree of LTP. Two weeks later this is manifested as an increase in the number of 

axodendritic synapses. 

However, there are many inconsistencies in the data on synaptic 

morphological changes after LTP (Table 1.1) that can be explained from several 

approaches:- 

1. The use of inappropriate stereological methods may introduce biases into 

the investigations and this will be discussed in Chapter Two. 

2. The potentiating stimulation may vary between studies of the potentiation 

of the Schaffer collateral or the perforant path. Most studies of LTP have focused 

on potentiation that is induced by high frequency stimulation (HFS) of at least 

lOOHz,  although frequencies of 400Hz have been used. Theta-burst stimulation 

(TBS) of 3-12Hz, that can be recorded by EEG in the rat hippocampus when an 

animal moves through space (Oddie and Bland, 1998), has also been used to 

generate LTP. It has generally been assumed that since both are dependent on 

NMDA receptor activation the molecular mechanisms of LTP produced by HFS 

are the same as those produced by TBS and that may not be the case. 

3 .  There may be variability between the results of in vitro and in vivo 

investigations. Hippocampal slice preparations have been used for extensive in 

vitro studies of LTP mechanisms and although the hippocampal slice is useful, it 

cannot be viewed as an adequate model of information processing in the in vivo 

hippocampal formation. In vivo confirmation of the results of in vitro 
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morphological investigations is required to fully understand the mechanisms 

involved in the modification of synaptic connectivity after LTP induction. 

1.5 Aims of this thesis 

Many studies have investigated morphological changes in the first 6Omin 

post LTP induction but many of these studies have been non-stereological, in vitro 

and used HFS to induce LTP. (Table 1.1) The widespread use of in vitro studies 

and the difficulty of long-term investigations mean that there are few 

morphological investigations of the maintenance stages of LTP. This thesis 

endeavoured to augment the previous studies by using modern unbiased 

stereological methods and electron microscopy techniques to examine certain 

aspects of morphological modification, in the dorsal hippocampus. 

The first part of the thesis will examine the morphology of synapses in the 

middle molecular layer of the dentate gyrus, 45min after LTP induction with 

theta-burst stimulation of the perforant path. If morphological changes observed 

in previous studies with high frequency stimulation are due to LTP, then similar 

results should be determined with other stimulating paradigms. 

The second part of this thesis will investigate morphological modification 

that may develop 24h after tetanisation, during the maintenance phase of LTP. To 

consider the effects of different stimulation protocols, high frequency stimulation 

and theta-burst stimulation were used to potentiate the perforant path to the 

dentate gyrus of the hippocampus. 

Morphological correlates of LTP might relate to potentiation of synaptic 

strength in several ways but the normal functioning of the neurons of the brain 

requires that synapses be continuously remodelled. The final part of this thesis 

will try to assess whether any morphological changes are the cause of the 

potentiation, or its consequence and consider how these changes may influence 

the cellular mechanisms involved in LTP. 

Personally, I suspect that there will be some morphological changes after the 

induction of LTP as i t  is difficult to believe that a phenomenon that can last for 
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weeks would not involve synaptic modification of some kind. I am unconvinced 

the LTP is the mechanism for the induction and storage of memories but it does 

enhance synaptic efficacy and may be involved in the facilitation of memory 

formation. I believe that in vivo experiments where LTP is induced by more 

physiological stimulation paradigms are necessary to help to explain the LTP - 

memory conundrum. 
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Table 1.1 Morphological studies of the hippocampal formation 

Morphological studies of the hippocampal formation, in the induction and 
maintenance phases of L-LTP. Biased (B) and unbiased (U) stereological methods of 
analysis. Serial reconstruction (R). 

Pages 50-52 
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Chapter Two General Methods 

2.1 Electrophysiology 

2.1.1 Induction of LTP in vivo 

Male Sprague-Dawley rats (300-400g, 2-3 months old) served as 

experimental animals and were anaesthetised with chloral hydrate (3.5% in saline, 

lmV100g). The electrophysiology was performed by Dr Gal Richter-Levin in the 

Department of Psychology, University of Haifa, Israel according to the published 

protocols for LTP induction with Theta Burst Stimulation (TBS) (Akirav and 

Richter-Levin, 1999) and High Frequency Stimulation (HFS) (Richter-Levin, 

Canevari and Bliss, 1998). (Figure 2.1) The electron microscopy, morphological 

and morphometric studies were performed by Elaine Harrison at the Open 

University, Milton Keynes. 

2.1.2 High Frequency Stimulation 

High frequency stimulation (100-400Hz) of the presynaptic neuron, or 

tetanic stimulation, is commonly used to induce LTP in the laboratory. In 

stimulated cells, a high-frequency train of action potentials is followed by a period 

during which action potentials produce successively larger postsynaptic potentials 

or potentiation. (Figure 2.2) To establish a baseline or control the presynaptic 
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neuron is stimulated at a steady rate and the presynaptic neuron is then stimulated 

for several seconds at a higher rate leading to potentiation. 

O 1 2 3 4 
Time (h) 

Figure 2.1 A representative graph of the potentiation induced by High frequency or 
Theta burst stimulation (arrow). % EPSP slope in rat (n=5). The degree of potentiation was 
assessed before perfusion. 

2.1.3 Theta burst stimulation 

The hippocampal theta rhythm with a frequency range of 4-12 Hz is one of 

the largest, most regular EEG rhythms in the rat brain (Skaggs et al 1996) and was 

a starting point in the search for patterns of naturally occurring activity that 

produce LTP. Indeed robust LTP can be induced by using stimulus patterns that 

mimic neuronal activity during theta rhythm. Unlike the long trains of tetanic 

stimulation, short bursts are sufficient to induce LTP when the bursts are 

separated by the period of the theta rhythm (approx 200ms). (Figure 2.3) Shorter 

or longer interburst intervals produce smaller degrees of synaptic change or long- 

term depression (LTD) (Larson 1986b). 
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Tetanic stimulation 

Figure 2.2 The induction of LTP with high frequency stimulation. Long trains of 
tetanic stimulation to an afferent or presynaptic neuron produce a gradual increase in the 
amplitude of postsynaptic potentials. Each presynaptic and postsynaptic potential appears 
as a line indicating its amplitude. Eventually, after weeks in some cases, the postsynaptic 
potentials decline. After Kandel er ai., 2000 

The following experiments were performed and the degree of potentiation in 

each animal, as demonstrated by the % EPSP slope, was monitored for 45-60min 

post induction depending on the experimental protocol. 

1. LTP was induced via theta burst stimulation (TBS) to the perforant 

path and the animals were sacrificed 45min after LTP induction - within the 

period of LTP that does not require protein synthesis. Animals demonstrating 

levels of potentiation in the 130.160% range were taken for perfusion. Five 

animals fulfilled the criteria. 

2. LTP was induced by TBS to the perforant path. The degree of LTP 

was monitored for one hour and then the animals allowed to recover. The degree 

of LTP was measured 24h later and again animals demonstrating levels of 
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potentiation in the 130-160% range were taken for perfusion. Five animals 

fulfilled the criteria. 

3. In order to ensure that putative changes in morphological 

parameters could be generalised to LTP per se and not to a particular form of LTP 

induction. LTP was induced by HFS to the perforant path the degree of LTP was 

assessed as in 2 above and the animals were sacrificed 24h later. Five animals 

fulfilled the criteria. 

Figure 2.3 The induction of LTP with Theta burst stimulation. Short bursts of 
stimulation with an interburst interval of 200ms (mimicking theta rhythm), to an afferent or 
presynaptic neuron produce a gradual increase in the amplitude of postsynaptic potentials. 
Each presynaptic and postsynaptic potential appears as a line indicating its amplitude. After 
Kandel ef aí., 2000 

The experimental design included two groups of within-animal control: the 

contralateral, non-potentiated hemisphere (main control), and the inner molecular 

layer of the ipsilateral dentate gyrus where the density of perforant path synapses 
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is known to be negligibly low (Claiborne, et al. 1990; Desmond and Levy 1982). 

The hippocampi from both potentiated, and non-potentiated hemispheres, were 

dissected (Section 2.2.3) and coded so that all subsequent analyses were carried 

out blind. 

2.2 Tissue preparation 

2.2.1 Introduction 

In any study that uses microscopy, the quality of fixation of the tissue to 

preserve the structures of interest is paramount. This is achieved by chemical 

treatment that terminates the metabolic processes, stabilises components in the 

cell, and can be quite selective. The most widely used system for ultrastructural 

analysis of tissue by electron microscopy, is a double fixation with buffered 

aldehydes (glutaraldehyde and paraformaldehyde) that react primarily with 

proteins, stabilising the tissue by cross-linkage. This is followed by post-fixation 

of the dissected region of interest in osmium tetroxide that reacts with various 

components, but especially unsaturated lipids. During this treatment the blocks of 

tissue will turn black, harden considerably and become brittle. Such a protocol is 

preferred because it causes a very fine precipitation of protein and permits a high 

resolution without appreciable distortion of structure. 

After the tissue is fixed it must be sectioned and the slices cut thin enough 

to transmit electrons and allow clarity of detail. To facilitate sectioning the tissue 

must be infiltrated with an epoxy resin that can be polymerised (by heat) to 

become solid. This process has some associated problems because the alcohols 

used to dehydrate the blocks of tissue before infiltration can extract fat, coagulate 

protein and cause other chemical changes in the tissue. 
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2.2.2 Perfusion 

After the appropriate time courses each animal was anaesthetised with 

chloral hydrate (3.5% in saline, 1 mV100g) by intraperitoneal injection and 

perfused with a solution of 2% paraformaldehyde and 2% glutaraldehyde in 

cacodylate buffer at pH 7.4. The animals in the 45-minute experiment were 

already anaesthetised. 

The animal was placed on a dissecting board in a deep dish and the skin and 

fur was taken back. The peritoneum was opened and, after the rib cage was cut 

away at each side to expose the heart, the pericardial membrane was removed. 

The left ventricle was then punctured with a fine needle attached to the tubing of a 

peristaltic pump and pushed well into the aorta leaving the heart. After clamping 

the descending aorta, to restrict perfusion to the head and upper limbs, the right 

atrium was opened to allow blood and fixative to eventually be released from the 

body. Approximately 50mls of 0.9% saline solution were initially perfused, at a 

rate of 7mls per minute, to prevent blood clots forming when the 200mls of 

fixative was pumped into the animal. 

After perfusion, the animal was decapitated and the brain excised by 

penetrating the skull with small bone cutting instmments. The perfused brain 

should be cream coloured and firm however, all the brains were placed in 20mls 

of fixative for 24h before dissection to ensure complete fixation. 

2.2.3 Dissection 

The hippocampus from each hemisphere was dissected by firstly cutting the 

brain laterally along the mid-line. The hippocampal formation was detached and 

lmm saggital slabs, across the entire dorsal hippocampus (-4 mm from the 

midline), were dissected. The tissue was then trimmed to leave a block containing 
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CA1, CA3, and dentate gyrus that underwent further fixation and embedding for 

electron microscopy. 

2.2.4 Fixation and embedding for electron microscopy 

The tissue slabs were washed in 0.1M sodium cacodylate buffer for 30 min 

with several changes of buffer and then fixed with 1% osmium tetroxide in buffer, 

for one hour, at room temperature. The tissue was again washed in buffer for 10 

min to remove the fixative and then dehydrated with a series of acetone solutions 

of increasing concentrations. 

Dehvdration: 

30% Acetone 10 min 

50% Acetone 20 min 

70% Acetone 20 min 

90% Acetone 20 min 

100% Acetone, 3 x 10-20 min 

100% Acetone (+ molecular sieve) 10-20 min 

The hippocampal slabs were then slowly infiltrated with Epon resin, over 

two days, by initially adding Epon with equal volumes of acetone, allowing the 

acetone to evaporate, and then fresh 100% Epon. The tissue was then placed in the 

bottom of flat-bottomed beem capsules, in the required orientation, the capsules 

filled with fresh Epon and allowed to polymerise overnight at 60°C. 
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2.3 Electron microscopy 

2.3.1 Sectioning 

After polymerisation, the blocks were trimmed to remove excess resin and 

expose the hippocampal formation (Figure 2.4). For stereological assessment of 

granule cell density, the embedded tissue blocks were cut to collect five to eight 

serial, 2 pm thick, transverse hippocampal sections containing dentate gyrus. 

These were stained with toluidine blue and analysed using a modified disector as 

described below. For electron microscopy, the block was trimmed further to the 

region of interest, serial ultrathin (-80 nm) sections were cut (to include the entire 

molecular layer) and collected on carbon-pioloform coated slot grids. The sections 

were stained with uranyl acetate (Leica Ltd, England) for 50 min at 35OC and lead 

citrate (Leica Ltd, England) for 10 min at 2OoC in an automatic LKB Ultrastainer. 

2.3.2 Image acquisition 

Digital images of the sections were acquired from a JEOL 1010 

transmission electron microscope (Figure 2.5) using a Kodak Megaplus digital 

camera and stored on magneto-optical discs using a Macintosh Quadra 950 

desktop computer equipped with a Perceptics PTDCI frame grabber board (Pixels 

Tools Digital Camera Interface). 

The area for analysis was chosen for each animal by using the large viewing 

screen of the microscope (-12K) to measure equal distances from the granule cell 

layer of the dentate gyrus. Cell nuclei were selected at random, along the length of 

the suprapyramidal blade of the dentate gyrus, until 12 pairs of images were 

collected from two serial sections. (Figure 2.5) The stage controller on the Joel 

1010, that allows co-ordinates to be stored and retrieved easily, greatly enhanced 
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this process. The path of the electron beam could clearly be identified due to 

volatilisation of the resin (Figure 2.6) and low-range magnification images 

(-x500) were also taken to ensure the correct location. i.e. Images were captured 

at a distance of 60-80 pm for the medial molecular layer and 30-40 pm for the 

inner molecular layer from the proximal edge of the granule cell layer. (Rusakov 

et al. 1997a). 

2.3.3 Estimation of ultrathin section thickness. 

Section thickness (t) was determined by measuring electron scattering in the 

section and comparing the result with a standard test curve (De Groot 1988). In 

such a curve the relative electron transmission (RET) in sections of various 

thickness is plotted against 'standard' thickness values of the same sections. Each 

curve is valid only for a particular embedding resin and a particular setting of the 

electron microscope. In this instance measurements were carried out at an 

accelerating voltage of 80Kv and an electron beam size of spot size 2. 

The electron scattering was determined directly in the electron microscope 

by measuring the electron current on the viewing screen with the exposure metre. 

Measurements of the difference in electron scattering between the section on the 

support film Es (s) - an area of empty resin, e.g. a blood vessel - and the support 

film ES (f) were used to calculate RET. 

R.E.T= (ES (s) / E S  (f)) x100 
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2.4 Image analysis 

2.4.1 Introduction 

Except for complete serial reconstruction, every study that reports neuron or 

synaptic counts in histologically sectioned material determines numbers of 

counted objects in a fraction of a reference space. The process of counting the 

objects and sampling of the reference space varies but there are four possible 

approaches. 

The first is complete serial reconstruction, which gives an accurate 

determination of neuron or synapse numbers but is inefficient because i t  is too 

labour intensive. Limited, serial section, reconstruction may involve counting 

spines along measured lengths of dendrites in thick sections or, using serial, or 

interrupted electron micrographs for synaptic counts. These methods were 

considered too inefficient for this study. 

The second method involves profile counting, but the number of profiles is 

being estimated, rather than the number of cells and synapses. If numbers of 

profiles are to accurately estimate numbers of cells or synapses, each profile must 

represent a cell or synapse uniquely. Usually, there are more profiles than cells or 

synapses because the latter are split in the process of histological sectioning and 

changing section thickness or size of the objects can also change profile number. 

Total profile numbers in a reference space is estimated by counting profiles at 

constant intervals through the reference space and multiplying by the interval (e.g. 

count profiles in every 10" section and then multiply by 10). 

Rather than estimating profile numbers, it is more common to estimate 

densities (number of profiles per unit of size, usually area) or density ratios. These 

areal densities are determined by counting profiles per unit area (number of 

profiles per mm', per slide etc). Density ratios are calculated from these areal 
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densities in the control and experimental situation (e.g. numbers of labelled 

profiles compared to all profiles mm-’). Proportional changes are of interest and 

not the numbers themselves and the assumption is that changes in profile densities 

or ratios indicate changes in cell and synapse number. 

Nevertheless, cells and synapses can change in size or shape after an event 

that may modify profile densities and ratios but may be unrelated to changes in 

cell and synapse number. Furthermore, if a specific population of cells or 

synapses is lost the resultant change in profile densities and ratios may be 

disproportionate to alterations in cell or synapse numbers. For example, large cell 

loss leads to a considerable decrease in profile numbers because large cells are 

sectioned into more profiles than small cells. 

The reference space may also change, perhaps due to oedema, and this 

changes densities and ratios, even if cell or synapse numbers are constant. Such 

effects may cause biases and these may balance themselves out but other 

investigators can be unaware unless the counts are calibrated i.e. make estimations 

of known populations with the chosen method (Coggeshall et al. 1990). Since the 

effects on synapse size etc of LTP is one of major interest in this investigation this 

method of counting was disregarded. 

Similarly, assumption-based methods make assumptions that allow profiles 

counts to be converted to cell or synapse numbers. Usually the assumption 

requires that something else be measured, for example, nuclear diameter. The 

most frequently used assumption-based method is that of Abercrombie 

(Abercrombie 1946). In this method, nuclear profile counts (n) are multiplied by 

mean nuclear diameter (D) divided by mean nuclear diameter plus section 

thickness (T) to yield neuron number (N). 

N = (n x D) / (D + T) 
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Some of these assumptions are that nuclei are spherical, that one can recognise 

any fragment of a nucleus or synapse sectioned by the microtome knife and that 

sections are perfectly smooth. The reasoning is sound if the assumptions are met 

but this is extremely unlikely and these methods tend to be inaccurate. 

Finally, stereological methods provide unbiased estimates of cell and 

synapse numbers relatively efficiently, and they are used to extrapolate 3-D 

structural quantities (real volumes, surface areas, lengths and numbers) from 

simple counts made on 2D slice images. The images may take various forms, e.g. 

physical or optical sections, but they must be sampled randomly, in orientation 

and /or position, if valid estimates are to be made. Unique associated points are 

defined by the investigator and can include cell bodies, nuclei or postsynaptic 

densi ties. 

In this study, an unbiased stereological approach was preferred because, as 

described above, model or assumption-based methods introduce unknown bias 

and therefore the validity of biological conclusions is unknown. Specifically, the 

physical disector method was employed (Sterio 1984) which relies on pairs of 

parallel sections and the identification and counting of ‘particles’ by appropriate 

criteria. This method depends on particle shape and it must be possible to identify 

all particle profiles on sections that belong to the same parent particle. The 

disector method yields numerical density rather than number (N) itself. In 

consequence, estimates are sensitive to preparation artefacts such as fixation 

distortion (shrinkage or swelling). 

2.4.2 Disector Method 

The acquired images from the electron microscope were analysed using N H  

Image 1.55 software that also allowed the images to be enhanced, by altering 

contrast, to provide clearer identification of synapses etc. In each animal, disector 
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windows (7 x 5 pm) were arranged in each of the12 pairs of adjacent ultrathin 

sections within the medial, or inner molecular layer, from each hemisphere, using 

an unbiased sampling frame (Braendgaar and Gundersen 1986). Paired images 

from the serial sections could then be viewed side by side on the large, 20-inch 

monitor of a Macintosh Quadra 950 computer for analysis. 

Only those synapses that appeared in the unbiased counting frame on one 

section (the reference plane) but not on its partner (the look-up plane) were 

counted. Synapses were identified by the presence of a postsynaptic density, 

indicating an apposition zone (AZ), and at least three presynaptic vesicles. Several 

unbiased counting rules are available for deciding whether or not synaptic profiles 

can be regarded as being included in the counting frame on the reference plane 

(Gunderson and Jensen 1987). In these studies, two sides of the counting frame 

were considered to be forbidden and any synapse touching these forbidden lines 

was not counted. (Figure 2.7) 

The number of synapses meeting the required criteria (Q- syn) is contained 

within the volume of the disector. This volume is equal to the area of the counting 

frame (A) multiplied by the distance between the planes or sections i.e. the 

thickness of the sections (t). Since these specimens have been sampled by 

multiple disectors the mean synaptic numerical density NvSyn can be calculated by 

the equation: 

Where Y' is the thickness of the section and 'A' is the area of the counting 

frame and ZQ-syn is the total number of counted synapse profiles that appear only 

in the nominated section. 

The 40-60 synaptic profiles visible in each window were categorised as 

axodendritic or axospinous synapses and asymmetric or symmetric depending on 
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the nature of their postsynaptic density (Gray 1959), although, numbers of 

symmetric synapses were negligible. 

2.5 Morphometry 

To determine possible changes in synaptic morphology, other than changes 

in synaptic density, measurements were taken of various parameters in a fixed 

area of 10 reference planes. 

2.5.1 Lateral surface area 

An important synaptic parameter analysed in the present study was the 

lateral surface arca (i.e., membrane area) of AZs per unit tissue volume, or the 

volume density of AZ areas, S, (Desmond and Levy 1986b). Estimating this 

quantity from single section micrographs does not rely on any assumptions about 

shapes or sizes of AZs and takes the form: 

Where (LA) is the mean total length of AZ profiles per unit area of sections. 

LA was estimated using the sampling windows described above and because the 

thickness of ultrathin sections was kept unchanged throughout experimental 

samples, a potential small over-estimation of (LA) arising from a non-zero 

thickness of sections was neglected. In each window, all identified AZ profiles 

(10-20 in each window) were carefully marked as curvilinear binary (white) 

segments using cursor-editing tools, and the background image was 'cut off '. The 

total length of the remaining segments was automatically measured and stored to 

a file using NZH Image routines thus giving an estimate of LA. Combining 

estimates of SV and NV allowed the unbiased estimation of the mean lateral area 

of individual AZs, S A Z .  SAZ= s V /  NV 
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2.5.2 Mean projected synaptic height 

The mean projected synapse height H,,,, a measure of the size of the 

postsynaptic density, can be measured using the disector method from 

H,,, = (ZQsyn / CQ~syn) t 

Where Q is the number of synapses in the look-up plane and Q~ the number 

in the reference plane. t is the thickness of the section. 

2.5.3 Perforated, concave and non-concave synapses 

In each of 10 reference planes, synapses with segmented postsynaptic 

densities were identified and the number recorded. Similarly, synapses were 

classified as concave, if the postsynaptic membrane curved towards the 

presynaptic bouton, or not. (Figure 2.8). This was established by comparing the 

membrane with a straight line drawn through the middle of the synaptic cleft. 

2.6 Neuronal volume determination 

2.6.1 Stereological correction ‘per neuron’ using disector 

Because numerical synaptic density also depends on the ‘reference volume’ 

of the tissue (Braendgaar and Gundersen 1986), it was important to assess 

possible dentate volume changes associated with LTP. Ideally, one would 

measure whole hippocampal volume using systematic sampling based on the 

Calvalieri principle (Geinisman et al. 1996). However, since the number of 

granule cells in the dentate is unlikely to change significantly 24 h after LTP 

induction, shrinkage or expansion of this hippocampal area would increase, or 

decrease, respectively, numerical volume densities of the cells. 
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Therefore, comparison of granule cell densities in the control versus 

potentiated hemisphere (in the area where synaptic images were sampled) would 

serve as a ‘local’ volume correction control. Thus, the numerical synaptic density 

is corrected ‘per neuron’ where local synaptic density is weighted with respect to 

local granule cell density (Braendgaar and Gundersen 1986). 

Number of synapses per neuron = Nv N 

Where N is the number of neurons, pm” and Nv_ is the mean numerical 

density of synapses, pm-3. 

2.6.2 Neuronal cell density counting with image analysis 

Images were acquired with the MicroComputer Imaging Device (MCID) 

system, developed by Imaging Research Inc., Brock University, Ontario, Canada. 

This system uses a digital CCTV camera to capture images from a light box or a 

light microscope, in this case an Axiophot light microscope. In two of the 

toluidine blue stained serial sections described above, 4-6 sequential fragments of 

the granule cell body layer were viewed in the microscope (magnification -5OOx) 

and captured as image files. 

Images taken from adjacent (2 pm thick) sections of dentate were analysed 

using a stereological design illustrated in Figure 2.9. In each image, an unbiased 

disector frame was arranged by placing two straight, nearly parallel lines (located 

at -230 pm apart) perpendicular to the cell body layer, with the ‘exclusion line’ 

(Braendgaar and Gundersen 1986) being one of the borders. The routine was 

repeated in the adjacent section, disector counts of the cell nuclei were made in 

each look-up and reference window and displayed simultaneously on the monitor 

screen (Figure 2.9 A-B). 
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The mean cell density value D was derived as: 

D = NJsT  

where (N,) is the mean number of disector scores (over all windows), T is 

the section thickness (2 pm), and s stands for the window length along the cell 

body layer (distance between the lines in Figure 2.9 A-B). 

Therefore, D represents the number of cells contained with a parallelepiped 

of unit area passing through the granule cell layer (Figure 2.9 C-D). In each 

animal, 4-5 disector pairs of sampling windows, each containing 40-50 profiles of 

cell nuclei, were examined giving 100-120 disector scores per hemisphere. 

2.7 Statistical methods 

As each animal had an experimental and control hemisphere the Student t- 

test paired two sample for means was applied. 
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Chapter Three Estimation of morphological and 
morphometric correlates 45 min after the induction of 
LTP by Theta Burst Stimulation (TBS) 

3.1 Introduction 

The physiological paradigm of long-term potentiation (LTP) of synaptic 

transmission in the hippocampus (Bliss and Lomo, 1973) has been extensively studied 

but the cellular basis of LTP expression (in particular the relative importance of pre- 

versus postsynaptic components) still remains the subject of considerable debate (Bliss 

and Lomo, 1973; L a r h a n  and Jack, 1995; Lynch er al., 1990; McNaughton, 1993; 

Nicoll and Malenka, 1995). Whilst it is reasonable to assume that long-lasting changes 

of synaptic efficacy must be supported by structural alterations no universal agreement 

exists concerning the significance of these alterations. However, the plausibility of 

real-time, function-dependent changes in the appearance of living synaptic elements 

(dendritic spines) has been demonstrated in vitro (Hosokawa er al., 1995; Segal, 

1995). 

Although there have been many investigations of morphological correlates of 

synaptic plasticity in the first hour post-tetanisation, the results are disparate. In vivo 

investigations of the dentate gyrus after stimulation of the perforant path (Geinisman 

et al., 1991,1993) have reported some changes in synapse number and/or structure as 

early as 2 min after the induction of LTP (Van Harreveld and Fifkova, 1975; Fifkova 

and Anderson, 1982; Desmond and Levy, 1986a,b; Desmond and Levy, 1990; 
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Trommald, er al. 1990). Various changes have also been reported in the hippocampal 

CA1 region of brain slices after electrical or chemically induced LTP (Lee et al., 1980; 

Chang and Greenough, 1984; Buchs and Muller, 1996; Toni er al., 1999). Many of 

these studies were single section analyses, therefore liable to the inaccuracies outlined 

previously (Coggeshall et al,. 1990), and the data from unbiased serial reconstruction 

may be more reliable (Sorra and Harris, 1998; Trommald and Hulleberg, 1997). 

At the electron microscope level, a large proportion of ultrastructural studies 

concerning hippocampal LTP has explored a relatively homogeneous population of 

perforant path synapses on granule cell dendrites (confined mostly to the medial 

molecular layer of the dentate gyrus). Van Harreveld and Fifkova (1975) demonstrated 

an increased width of dendritic spine profiles in the potentiated tissue 6min to 23h 

after the induction of LTP. Wenzel et al. (1980) presented a set of synaptic changes 

induced by high-frequency stimulation of the perforant path. In parallel, it was 

reported that high frequency stimulation of the perforant path results in an increased 

number of synaptic vesicles located in the proximity of the AZ membrane (Applegate 

and Landfield, 1988; Desmond and Levy, 1988), and in formation of spinule-like 

membrane invaginations into presynaptic terminals (Schuster et al., 1990). In area 

CA1 of the hippocampus, a profound (up to 48%) increase in the number of 

axodendritic synapses was found following the induction of LTP with high-frequency 

stimulation in vitro (Chang and Greenough, 1984). 

Most in vivo studies of morphological changes in the molecular layer of the 

dentate gyrus have been performed after high frequency stimulation of the perforant 

path (Geinisman et al., 1991; Geinisman et al., 1996; Weeks et al., 1998; Weeks et  al., 

1999). However, another effective protocol for inducing robust and persistent LTP is 

Theta burst stimulation (TBS), which is designed to mimic the firing patterns of 

hippocampal neurons recorded during exploratory behaviour in intact, awake animals. 

The objectives of this study were twofold. Firstly, to ensure that putative changes in 

morphological parameters can be generalised to LTP per se and not to a particular 
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form of LTP induction, by testing changes in morphology with altemative stimulation 

paradigms, i.e. TBS. Secondly, to attempt to verify results from some ‘single section’ 

analyses by the use of unbiased stereological methods. 

The experimental design included two groups of within-animal control: the 

contralateral, non-potentiated hemisphere (main control), and the inner molecular layer 

of the ipsilateral dentate gyrus where the density of perforant path synapses is known 

to be negligibly low (Claibome, et al. 1990; Desmond and Levy 1982). The 

hippocampi from both potentiated, and non-potentiated hemispheres, were dissected as 

detailed previously and coded so that all subsequent analyses were carried out blind. 

Low-range magnification images ( ~ 5 0 0 )  were also taken to ensure that images were 

acquired from the correct location: areas irradiated by the electron beam were clearly 

identified as paler circles, as demonstrated previously (Rusakov, et al. 1997a). (Figure 

2.3) There were few symmetric, or inhibitory, synapses, identified in this study and the 

results reflect the density and morphometry of asymmetric synapses. 

3.2 Results 

3.2.1 Mean numerical synaptic density 

There were no significant differences in the mean numerical synaptic density of 

axodendritic or axospinous synapses in the middle or inner molecular layers of the 

dentate gyrus. In the MML the mean axodendritic, synaptic density was 0.14 pm-3 in 

the potentiated hemisphere and 0.17 pnf3 in the control hemisphere (p<O.21). (Figure 

3.1) In the IML the results were similar with a synaptic density of 0.16 pm-’ in the 

potentiated hemisphere and 0.17 pm” in the control hemisphere (p<0.42). (Figure 3.2) 
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Figure 3.1 Mean numerical synaptic density (Nv) of synapses in the middle 
molecular layer of the dentate gyrus, in potentiated and control hemispheres, 45min after 
the induction of LTP by TBS. Mean (+ S.E.M.) of 5 animals 
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Figure 3.2 Mean numerical synaptic density ( N v )  of synapses in the inner 
molecular layer of the dentate gyrus, in potentiated and control hemispheres, 45min after 
the induction of LTP by TBS. Mean (? S.E.M.) of 5 animals 
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Mean numerical axospinous synaptic densities of 2.28 pm-3 and 2.53 pm~’ were 

determined in the potentiated and control hemispheres in the MML (p<0.18). In the 

IML, the mean numerical density of asymmetric axospinous synapses was 2.15 pm-3 in 

the stimulated hemisphere and 2.46 pm” in the contralateral hemisphere (p<O.O8). 
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Figure 3.3 Mean numerical synaptic density (Nv) of synapses in the inner and 
middle molecular layers of the dentate gyrus, in potentiated and control hemispheres, 
45min after the induction of LTP by TBS. Mean (? S.E.M.) of 5 animals. 

There were no significant differences in the mean numerical total synaptic 

density between the IML and MML in the control hemisphere (p<0.39) or the 

potentiated hemisphere (p<0.23). Neither were there significant differences in the 

axospinous mean numerical synaptic density between the IMi  and MML in the 

control hemisphere (p<0.38) or the potentiated hemisphere (p<0.17). (Figure 3.3) 

3.2.2 Neuronal density 

The mean neuronal density of the potentiated hemisphere was 0.0087pm.’ and 

0.0098pm~’ in the control hemisphere (p<0.07) (Figure 3.4). This difference was not 
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significant, but is has been suggested that there may there be some swelling in the 

tissue of the potentiated hemispheres, due to the experimental protocol. Shrinkage or 

swelling would have a detrimental effect on the accuracy of the mean numerical 

density results and the corrected synapse per neuron number may be more meaningful. 

However, shrinkage due to the processing of tissue for electron microscopy has been 

previously investigated (Rusakov, et al. 1998) and shown to be minimal. Since all the 

tissue in these experiments was from the hippocampus, we must assume that the 

relative shrinkage was the same for all tissue examined. 
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Figure 3.4 Neuronal density per pm’ in the granule cell layer of the dentate 
gyrus, at various time points, after the induction of LTP by TBS and HFS. Mean (I S.E.M.) 
of 5 animals except Combined 24hr where mean (t S.E.M.) of 6 animals. 

There were no significant differences in the mean number of synapses per neuron. In 

the MML (Figure 3.3, there was a mean of 185 axodendritic synapses in the 

potentiated hemisphere and 170 in the control hemisphere ( ~ ~ 0 . 3 5 ) .  There were 2993 

axospinous synapses, versus a control mean of 2576, in the potentiated hemisphere 

(p<0.13). 
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Figure 3.5 Mean synapse number per neuron in the middle molecular layer of the 
dentate gyrus, in potentiated and control hemispheres, 45min after the induction of LTP by 
TBS. Mean (k S.E.M.) of 5 animals. 
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Figure 3.6 Mean synapse number per neuron in the inner molecular layer of the 
dentate gyrus, in potentiated and control hemispheres, 45min after the induction of LTP by 
TBS. Mean (+ S.E.M.) of 5 animals. 
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In the IML (Figure 3.6) the mean number of axodendritic synapses per neuron, 

in the potentiated and control hemispheres, was calculated as 210 and 175 (p<O.31) 

respectively. The mean number of axospinous synapses was 2814 and 2505 ( ~ ~ 0 . 1 5 ) .  

Total mean numbers of synapses per neuron were similar in the middle and inner 

molecular layer, with values of 3185 (MML) and 3024 (IML) in the potentiated 

hemisphere. In the control hemisphere there was a mean of 2746 synapses per neuron 

in the MML and 2681 in the IML. 

3.2.3 Mean projected synaptic height 

There was no significant difference in the mean projected synaptic height of 

axodendritic synapses in the middle molecular layer, 227nm in the potentiated 

hemisphere and 21 Inm in the control (p<0.43). Although the axodendritic synapses in 

the IML appeared to be smaller, again there was no significant difference between 

hemispheres: 156nm in the potentiated and 148nm in the control (p<0.38). (Figure 

3.7) 

There was a similar trend towards slightly larger axospinous synapses in the 

potentiated hemisphere in both the MML and IML. In the MML, mean projected 

synaptic height was calculated as 142nm in the experimental hemisphere and 137nm 

in the control (p<0.36). Mean values of 145nm and 133nm (p<0.06) respectively were 

recorded for the IML of the ipsilateral and contralateral hemispheres. (Figure 3.7) 

3.2.4 Volume density of total axospinous AZ area (Sv) 

In the middle molecular layer, there was no significant difference between the 

mean volume density of the apposition zone area i.e. 0.14pm2/pm3 tissue in the 

potentiated hemisphere, and 0.13pm2/pm3 in the control hemisphere (p<0.34). In the 

inner third of the molecular layer there was a significant difference between 

hemispheres with a mean volume density of 0.11pmz/pm3 in the tetanised hemisphere 

and 0.12~mZ/pm3 in the control hemisphere (p<0.03). (Figure 3.8) 
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Figure 3.7 Mean projected synaptic height of axospinous and axodendritic 
synapses, in the inner and middle molecular layers of the dentate gyrus, 45min after the 
induction of LTP by TBS. Mean (k S.E.M.) of 5 animals. 
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3.2.5 Volume density of individual axospinous AZ area 

Individual synapses were larger, but not significantly so, in the MML of the 

tetanised hemisphere with a volume density of 0.06pm2/pm3, whilst the mean volume 

density of synapse in the contralateral hemisphere was 0.05pmZ/pm3 (p<0.20). In the 

IML the mean volume density of an asymmetric synapse was the same in each 

hemisphere, 0.05pm2/pm3 (p<0.42). (Figure 3.9) 

W potintialed hemisphere Oeonirol hemisphere 

T 

IML MML 

Figure 3.9 Mean volume density of individual axospinous apposition zone (AZ) 
area (Sv/Nv) in the inner and middle molecular layers of the dentate gyrus, 45min after the 
induction of LTP by TBS. Mean (L S.E.M.) of 5 animals. 

3.2.6 Characterisation of synaptic profiles 

Each synapse was identified in 10 reference planes, characterised and the means 

calculated; therefore results represent the mean number of synapses found in a 

reference area of 350pm'. A mean of 132.8 (potentiated) and 135.4 (control) synapses 

were classified in the designated area of the MML. (Figure 3.10) An average of 8.60 

(6.42%) perforated synapses were identified in the potentiated hemisphere and 8.40 

(6.1 1%) in the contralateral hemisphere (~0 .47 ) .  The respective values for synapses 
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Figure 3.10 Morphology of axospinous synapses in an area of 350pm2, in the 
middle molecular layer of the dentate gyrqs, 45min after the induction of LTP by TBS. 
Mean (i S.E.M.) of 5 animals 

6 160 o 
F 

140 

2 
.E 120 
w 

:: 
D 80 
% 
o 

%; 
- 4 0  

y1 

F 
100 

L 
O 

60 . k 
3 

E 
c 
2 20 

.patentiled hemisphere Ocontmi hemisphere 

I I 
% Perforated % Concave % Macular No. perforated No. concave No. macular Total 

Figure 3.11 Morphology of axospinous synapses in an area of 350pm’, in the inner 
molecular layer of the dentate gyrus, 45min after the induction of LTP by TBS. Mean (i 
S.E.M.) of 5 animals. 
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with concave profiles were 27.4 (20.24%) and 26.0 (19.42%) (p<0.39) and for simple, 

macular synapses 124.2 (93.58%) and 127.0 (93.89%) (p<0.37). 

In the IML (Figure 3.11), from a total of 108.4 in the potentiated hemisphere and 

114.2 in the contralateral hemisphere there was a mean of 7.0 (6.39%) perforated 

synapses in the potentiated hemisphere and 8.6 (8.50%) in the contralateral 

hemisphere (p<0.32). A mean of 12.4 (10.70%) concave synapses were identified in 

the tetanised hemisphere and 13.4 (12.43%) in the control hemisphere (p<0.44). Again 

most of the synapses identified were macular synapses with a mean of 101.4 (93.61%) 

in the potentiated hemisphere and 105.6 (91.5%) in the control hemisphere (p< 0.31). 

3.2.6.1 

zones 

Morphometv of perforated and concave profiles of synaptic active 

In the MML, the Nv of concave synapses was 0.85pm.’ in the potentiated 

hemisphere and l.OOpm~’ in the control hemisphere (p<0.27) and the mean numerical 

density of perforated synapses was 0.03prn.’ in the potentiated hemisphere and 

0.07pm~’ in the control hemisphere (p<0.18). (Figure 3.12) Further investigations in 

the MML, established a mean projected synaptic height of perforated synapses of 

493nm in the potentiated hemisphere and 389nm in the contralateral hemisphere 

(p<O.lO). Synapses with concave profiles measured 188nm in both the potentiated and 

control hemispheres (p<0.50). (Figure 3.13) 

The mean volume density of the total contact area of the spine head of 

perforated synapses was 0.06pm2,pm~’ in the potentiated hemisphere and 0.05pmZ, pm’ 

in the control hemisphere (p<0.07). The mean total contact area of spines with 

concave profiles was O. 1 8 p m * , ~ m ~ ~  in the potentiated hemisphere and 0.18pm*,pm~3 in 

the contralateral hemisphere (p<0.49). (Figure 3.14) 
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Figure 3.12 Mean numerical synaptic density ( N v )  of axospinous synapses with 
perforated or concave profiles, in the middle molecular layer of the dentate gyrus, 45min 
after the induction of LTP by TBS. Mean (i S.E.M.) o f 5  animals. 
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Figure 3.13 Mean projected synaptic height of axospinous synapses with 
perforated and on concave profiles, in the middle molecular layer of the dentate gyrus, 
45min after the induction ofLTP by TBS. Mean (k S.E.M.) of 5 animals. 
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3.3 Discussion 

The results indicate that 45min after the induction of LTP with TBS there arc no 

significant differences, between the hemispheres, in any of the morphological 

parameters examined in the middle molecular layer. (Table 3.1) However, this may not 

indicate an absence of plasticity as concurrent synaptogenesis and synapse elimination 

could result in no net change in synapse number or size. 

Earlier non-stereological investigations in hippocampal slices have observed 

increases in the number of axodendritic and axospinous synapses 10-15min after LTP 

induction (Chang and Greenough, 1984; Lec et al., 1980). These changes persisted for 

up to 8 hours although (Sorra and Harris, 1998) reported no increase in synapse 

number 2h post-tetanus, in the CA1 region of hippocampal slices after serial 

reconstruction. The present study failed to find any significant differences in 

axodendritic or axospinous asymmetric synaptic densities 45min post-tetanisation and 

a recent stereological study reported similar results 6Omin after the induction of LTP 

with HFS (Weeks er al., 2000). 

.potentiated hemisphere Ucontrd hemisphere 
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Figure 3.14 Total contact area of spine heads with perforated or concave profiles, 
in the middle molecular layer of the dentate gyrus, 45min after the induction of LTP by 
TBS. Mean (i S.E.M.) of 5 animals. 
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There is however a trend towards larger synapses in the potentiated hemisphere. 

The volume density (Sv) of synapses in the potentiated hemisphere was greater per 

unit volume although the mean numerical density of synapses in that volume was less. 

This total increase in area, which can be correlated with total spine volume (Harris, 

1989), is supported by a larger mean surface area of individual synapses and is 

reflected in the slightly longer PSDs in this hemisphere. Other studies with HFS have 

reported a similar trend (Desmond and Levy, 1986b). 

Serial reconstruction has shown that a spine head can appear large and indented 

on one section and small and convex two sections later (Sorra and Harris, 1998) and it 

is not always possible to identify segmented PSDs. It is difficult to identify spine or 

synapse profiles on single sections, and although, in this study, there were serial 

sections to refer to, there may be an underestimation of concave and perforated 

profiles. However, as this underestimation would affect stimulated and control groups 

equally these results should provide an adequate comparison. 

There was no significant difference, between the hemispheres, in the Nv of 

synapses with concave profiles, the size of the PSDs of these synapses or the contact 

area of their spine profiles. Non-stereological studies have reported a decrease in the 

number of synapses with concave profiles of synaptic active zones, two hours post- 

tetanisation, in CA1 (Chang and Greenough, 1984), while in the dentate gyms an 

increase in the number of these synapses was reported 60 min after LTP induction 

(Desmond and Levy, 1986a; Desmond and Levy, 1988). A significantly increased 

PSD surface area (Desmond and Levy, 1986b) and an increased synaptic length per 

neuron (Weeks et al., 2000) of concave spine profiles has been reported after HFS of 

the perforant path. In the present study, there was no change in the morphometry of 

concave profiles between hemispheres and although concave synapses were larger 

than average in the potentiated hemisphere, this applied equally to the contralateral 

hemisphere. 
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Desmond and Levy (Desmond and Levy, 1986b) also found a decrease in the SV 

of non-concave synapses, and suggested that spine heads activated by conditioning 

stimulation enlarge and become concave in shape (Desmond and Levy, 1986a). They 

suggest that the conversion of spine heads from non-concave to concave occurs 

rapidly after conditioning stimulation (within 2-3min) and persists for at least 6Omin 

and propose that concave spine profiles are a correlate of LTP in the dentate gyrus. 

They hypothesise that PSD material is added with this conversion as the active zone of 

the potentiated synapses enlarges. These larger concave synapses may be important, 

although studies of 'activated' synapses have not reported any associated differences 

in the induction phase of LTP after TBS (Buchs and Muller, 1996; Toni et al., 1999). 

Changes in the incidence and morphology of concave synapses may be a phenomenon 

related to the stirnulation protocol employed as suggested by the varied results 

reported after WFS or TBS. However, larger spines are reported to have more 

receptors (Nusser et al., 1998; Takumi et al., 1999; Baude et al., 1995) and the present 

study has concluded that concave synapses are larger than the average axospinous 

synapse. The influence of synaptic size and shape on receptor availability and synaptic 

efficacy will be discussed later. 

The most interesting results concern the morphology of those synapses with 

segmented PSDs. The difference in the Nv of perforated synapses was not significant 

but the lower mean numerical density, per unit volume, suggested a trend towards 

larger synapses. This was supported by the increased size of the PSDs, as reflected in 

the mean projected synaptic height estimation, in the potentiated hemisphere and the 

larger contact area suggesting larger spines. Measurement of the spine contact area 

was judged to avoid the inaccuracies of attempting to measure segmented PSDs from 

single sections. 

Although changes in the incidence of perforated synapses has been observed 

previously within 6Omin of stimulation (Geinisman et al., 1996), this may be a 

transient change. Recent experiments in hippocampal CA1 of cultured slices have 
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employed a calcium marking technique to identify activated synapses (Buchs and 

Muller, 1996), and found a 3-fold increase in the frequency of perforated synapses in 

this population. However, Caz' precipitates are more likely to be detected in spines that 

contain calcium-sequestering tubules of smooth endoplasmic reticulum (SER) and 

only 20% of spines with macular PSDs contain SER unlike 100% of the spines with 

perforated PSDs (Spacek and Harris, 1997). It is conceivable that this analysis was 

restricted to large spines that already had perforated PSDs. Alternatively, more bound 

calcium may be sequestered in spines with SER after LTP. 

Further studies reported that within this group of activated synapses there was a 

gradual increase in the percentage of perforated synapses until 30min after TBS. This 

transient increase was not significant at 45min and had returned to control levels 

6Omin after TBS (Toni et al., 1999). This seems to substantiate my findings at 45min 

post-tetanisation and it would be expected that an approach that examined only 

activated synapses could detect more subtle changes in morphometry than the 

inclusive process employed here. 

Recent studies of LTP induction of the perforant path, with HFS, have reported 

significantly more perforated synapses 6Omin after tetanisation (Weeks et al., 2000). 

In dissociated hippocampal cell cultures, 15min stimulation with the GABAA- 

antagonist picrotoxin (PTX) selectively increases the percentage of perforated 

synapses while other morphological parameters were not affected (Neuhoff et al., 

1999). This increase was blocked when PTX was added with DL-2-amino-5 

phosphonovaleriac acid (APV), indicating that the formation of perforated synapses 

depends on the activation of NMDA receptors. Longer periods of stimulation 

increased the frequency of perforated synapses significantly. This phenomenon may 

explain the increased numbers of perforated synapses observed (Geinisman er al., 

1991; Geinisman et al., 1996; Weeks et al., 2000) where the protocol employed to 

induce potentiation requires 400Hz HFS for up to four days. However, treatment of 

slice cultures with PTX for two weeks blocked the ability of the slices to express LTP 
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(Collin et al., 1997), suggesting that chemically induced saturation of LTP induction 

and perforated synapse formation are functionally related. 

As already mentioned the failure to find any change in synaptic number may be a 

result of spine pruning that counteracts novel spine development. Three-dimensional 

reconstruction techniques to examine synapses in slice culture after LTP have reported 

multiple spine synapses (Figure 2.5) between a single axon terminal and a dendrite 

within 60 minutes of TBS (Toni et al., 1999). This is a time course consistent with that 

of new spine formation observed by (Engert and Bonhoeffer, 1999) but fewer multiple 

synaptic contacts have been reported within 6Omin after HFS (Desmond and Levy, 

1990) in the dentate gyrus. In hippocampal CA1, no change in the incidence of 

multiple synaptic contacts was reported two hours after HFS (Sorra and Harris, 1998). 

The most robust phenomenon, regardless of the stimulating protocol used and 

controversy regarding the methods employed, is the involvement of synapses with 

segmented PSDs in the induction of LTP. The formation of perforated synapses seems 

to be an early morphological consequence of synaptic activation. There may be either 

an increased incidence, or enlargement of these synapses to evolve into several 

separate active zones. Presynaptic boutons may undergo parallel changes with 

postsynaptic changes, as demonstrated by experiments where the administration of 

estradiol results in an increase in spine density. A corresponding increase in the 

number of synaptic terminals staining for synaptophysin was reported, indicating that 

presynaptic boutons were expanding (Murphy and Segal, 1996). The effect of LTP 

would be to increase the number of release sites per bouton and eventually lead to the 

formation of separate synapses, as suggested by the presence of multiple synaptic 

contacts. 

Spines expand the connective prospects for a dendrite that effectively enlarges 

the area occupied by a given dendrite, while permitting tight packing of synapses. 

They are dynamic structures that can undergo fast morphological variations - 

shrinkage of spines can take place within a minute (Halpain er al., 1998). This activity 

92 



may explain the conflicting reporís of activity-dependent changes in axospinous 

synapse morphology during the first few hours post LTP induction. 

" I 

< ' i  i 
I l  

Figure 3.15 The hypothesised configuration of the actin cytoskeleton in dendritic spines. 

The spine head is believed to comprise at least two pools of actin. One set of filaments 
forms a stable core of F-actin in the central region of the spines whereas dynamic filaments 
exist towards the periphery. Actin filaments in the core are rendered stable and resistant to 
polymerisation by end capping proteins. Activation of glutamate receptors is likely to 
modulate multiple actin-dependent processes in spines. Stable actin (-), dynamic actin (-), 
glutamate receptor ( Y  ) and capping protein (O).  After Halpain 2000. 

Local and central factors have a role in the regulation of spine morphology. 

Local changes in [ Ca"] will change spine length, while a central somatic change in 

[ Caz'] will lead to the formation of novel spines or their elimination throughout the 

dendritic tree, via nuclear signalling cascades. e.g. after estradiol administration the 

phosphorylation of CAMP-response-element-binding protein (CREB) leads to an 

increase in dendritic spine density that is not restricted to a single dendrite (Murphy 

and Segal, 1996). 

A moderate and transient postsynaptic increase in [ C$' 1, equivalent to the 

release of Caz' from internal stores, will cause elongation of spines and the formation 

of new ones in vitro (Korkotian and Segal, 1998). A large increase in [ Ca"] resulting 
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from seizure will cause shrinkage of spines and lead to their eventual disappearance 

(Segal et al., 2000). Generally, shrinkage of spines is associated with a stronger link 

between the spine and parent dendrite and spine elongation with independence of the 

spine from the parent dendrite (Korkotian and Segal, 1998; Volfovsky et al., 1999). 

Spine length modification has been demonstrated in the same spine population where 

a short pulse application of glutamate causes elongation of spines, whereas a larger 

pulse of glutamate results in shrinkage of the same spines (Korkotian, 1999). The 

length of the spine neck does not determine synaptic efficiency (Hams and Kater, 

1994), but it could affect the efficiency of the molecular machinery involved in the 

modification of glutamate receptors, or the availability of cytoskeletal elements 

associated with changes in glutamate mediated function (van Rossum and Hanisch, 

1999). In this way, alteration of spine neck length acts as a ‘fine tuning’ mechanism 

for continuous adjustment of synaptic modification (Segal et al., 2000). 

Spines have heterogeneous populations of actin filaments that provide the main 

structural basis for cytoskeletal organisation as most spines lack microtubules and 

intermediate filaments. (Figure 3.15) EM studies have reported a greater density of 

actin filaments in spines than in dendritic shafts (Fifiova and Delay, 1982) while 

microtubule components, including tubulin and MAP2, are restricted to the dendritic 

shaft domain (Kaech et al., 1997). Two forms of actin are present in spines, 

polymerised filaments (F-actin) or unpolymerised globular subunits (G-actin). Their 

states are regulated locally by various actin-associated proteins (Littlefield and Fowler, 

1998; Hall, 1998) and hence the amount of stability and motility of the spine is 

controlled. The rapid motility of spines depends on dynamic, F- actin fibres (Fischer et 

al., 1998) and, the application of actin depolymerisation drugs prevents the formation 

of stable LTP in hippocampal slices (Kim and Lisman, 1999). 

It has also been shown that intense glutamate-receptor stimulation induces the 

disassembly of F-actin in spines within minutes, an event that is correlated with the 

collapse of spine structure (Halpain et al., 1998). Inhibitors of calcineurin, a Ca”- 
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dependent phosphatase, block this effect and calcineurin has been proposed as a 

potential regulator of actin filament integrity in spines. Interestingly, behavioural 

studies, to investigate the role phosphatases play in hippocampal-dependent memory, 

suggest that calcineurin has a function in the transition from short-to long-term 

memory, which correlates with a novel intermediate phase of LTP (Mansuy et al., 

1998). The close association of cytoplasm actins with spines, together with the 

presence of biochemical pathways that support rapid motility under basai conditions 

and can induce rapid actin collapse under excitotoxic conditions, supports the idea that 

actin motility-based changes in spine shape may contribute to synaptic plasticity. 

How can the capacity of spines to modify their morphology improve their ability 

to transduce synaptic signals? Many signalling complexes and receptor clusters are 

anchored to the actin cytoskeleton until a synaptic signal causes actin 

depolymerisation. e.g. clusters of glutamate receptors and the ß subunit of CaMKII, 

two components of the postsynaptic density, have been shown to be tethered to actin 

filaments (Allison et al., 1998; Shen et al., 1998). Changes in actin depolymerisation 

may be used to dynamically regulate mechanosensitive ion channels (Paoletti and 

Ascher, 1994) and to position macromolecular complexes in a signal-dependent 

manner. Therefore, glutamate receptors, or CaMKII, could be released for fusion with 

the PSD by an activity-dependent alteration in actin filament assembly. Dynamic actin 

could also participate in the coupling of other signalling enzymes with their 

appropriate substrates; hence, activity -dependent changes in actin stability could alter 

the number or functional state of proteins clustered at the synaptic junction. 

It is uncertain whether spines, that are seen to move freely in vitro, can be as 

mobile in vivo, but these actin based morphological control mechanisms are still 

relevant to the understanding of the mechanisms of LTP. The distribution of receptors 

in segmented PSDs and the insertion of AMPA receptors into ‘silent synapses’ after 

potentiating stimulation will be discussed in Chapter 5. 
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Dynamic actin may also control the position of organelles inside the spine such 

as polyribosomes or SER (Halpain, 2000) and play a role in the production of new 

membrane proteins or the synthesis of novel spines. During development, dendrites of 

immature neurons can bear numerous transient spine-like projections, or filopodia, 

that do not correspond to authentic spines and only occasionally bear synaptic contacts 

(Fiala et al., 1998). Electrical stimulation, similar to afferent activity, has been 

reported to augment dendritic filopodia and they are proposed to be the precursors of 

spines at developing synapses (Maletic-Savatic et al., 1999; Dailey and Smith, 1996; 

Ziv and Smith, 1996). In vivo electron microscopy studies have shown that incoming 

fibres make synapses with dendritic filopodia that then become mature spines, 

suggesting that spines follow synapse formation (Fiala er al., 1998). 

While there is some indirect evidence for the formation of novel spines after 

LTP in vitro (Toni et al., 1999), unbiased in vivo studies have failed to find an increase 

in synaptic density or multiple synaptic contacts (Weeks et al., 2000) in the first hour 

post tetanisation. Indeed, one in vivo study that recorded the incidence of 

polyribosomes at the base of dendritic spines, in the first hour post HFS, concluded 

that new synapses do not form with the induction of LTP (Desmond and Levy, 1990). 

If new synapses are formed, then spine pruning may occur to keep the synaptic 

number constant. It is not clear whether spine pruning is an active process associated 

with an increase in synaptic activity or a passive process caused by lack of afferent 

activation of the pruned spine. 

Since serial studies have suggested only a redistribution of synaptic weight 

(Sorra and Harris, 1998), other morphological modification may be occurring. It has 

been shown that the distribution of spines along dendrites is not evenly random, but 

includes dense clusters of spines surrounding the dendritic shaft (spine 'collars') 

(Rusakov and Stewart, 1995). Partial fusion of active spines, and more subtle changes 

which result in formation of spine branches, or changes in spine branch positions, 

could significantly increase synaptic signal transfer (Rusakov et al., 1996). Spine 
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density in the cultured neuron can be 10.30% lower than spine density in its in vivo 

counterpart (Collin er al., 1997). However, investigations using this system, plus 

confocal microscopy techniques, will allow minute by minute changes in receptor 

insertion and spine orientation to be investigated and will play an important role in 

directing future in vivo studies. 
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Table 3.1 Morphological and morphometric parameters, in the middle molecular layer of 
the dentate gyrus, 45 miri after the induction of LTP with TBS. 

Results (k S.E.M.) of morphoWca1 and morphomeh.ic investigations, in the middle 
molecular layer of the dentate gyrus. 45 miri after the induction of LTP with TBS. 

98 



Mean of 

hemispheres 
potentiated 

I p < 0.42 I Axodendritic (Nv) 
pm~’ 0.16 I 0.05 0.17 10 .02  

Mean of Potentiated 
control V 

hemispheres control 

Axospinous (Nv) 

Number of 
axodendritic 

synapses per neuron 
Number of 
axospinous 

synapses per neuron 

Axodendntic PSD 
height nm 

Axospinous PSD 
height nm 

I*m~’ 

Axospinous 
(Sv) pm*pm-’ I I I 0.11 IO.01 0.12 f 0.01 p < 0.03 

2.15f 0.29 2.46 10 .22  p < 0.08 

210 I 67 175 f 17 p < 0.31 

2814 I 3 8 9  2505 I 23 1 p < 0.14 

p < 0.38 156 f 23 148 f 20 

145 f 7 1331  8 p < 0.06 

Axospinous SvJNv 
p m * ~ m . ~  

% of synapses with 
perforated profiles 

% of synapses with 
concave profiles 

0.05 10.005 

6.39 I 1.08 

10.70 12.84 

0.05 f 0.004 p < 0.42 

i 

~ 
8.50 I 2.72 p < 0.29 

~ 

I 12.43 f 3.06 p < 0.38 

Table 3.2 Morphological and morphometric parameters, in the inner molecular layer of 
the dentate gyrus, 45 min after the induction of LTP with TBS. 

Results (? S.E.M.) of morphological and morphometric investigations, in the inner 
molecular layer of the dentate gyrus, 45 min after the induction of LTP with TBS. 
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Table 3.2 Morphological and morphometric parameters, in the inner molecular layer of 
the dentate gyrus, 45 min after the induction of LTP with TBS. 

Results (+ S.E.M.) of morphological and morphometric investigations, in the inner 
molecular layer of the dentate gyrus, 45 min after the induction of LTP with TBS. 
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Chapter Four Estimation of morphological and 
morphometrical correlates, 24h after induction of LTP 
with either Theta Burst Stimulation (TBS) or High 
Frequency Stimulation (HFS). 

4.1 Introduction 

While early restructuring of synapses may occur in minutes, the phase of LTP, 

which requires enhanced protein synthesis (both in vivo and in vitro), is believed to 

begin hours after induction of potentiation (Buchs and Muller, 1996). This argues that 

more prominent stmctural change, if any is likely to occur after that period. Recent 

investigations have reported no overall increase in synaptic number 24h post 

tetanization but an increase in the number of perforated concave synapses and in the 

proportion of pre-synaptically concave-shaped synapses (Weeks, et al., 1999). 

However, an earlier study at this time point by the same authors (Weeks, et al., 1998) 

found that synaptic number was positively correlated with the degree of potentiation. 

An increased number of axodendritic synapses in the dentate gyrus has been reported 

thirteen days after the induction and maintenance of LTP (Geinisman, et al., 1996). 

Therefore, 24h post-induction would appear to represent an intermediate stage 

between shorter- and longer-term correlates of synaptic potentiation. 

In this study, to ensure that any changes could be generalised to LTP, two 

different stimulating protocols were applied. Changes in morphology were then 

examined 24h after LTP was induced with either HFS or TBS. 
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4.2 Results 24h after the induction of LTP with Theta Burst 

Stimulation 

4.2.1 Mean numerical synaptic density 

In the MML of the potentiated hemisphere, the mean density of asymmetric 

axospinous synapses was 2.55 pm~’ and 1.9Opm.’ in the control hemisphere (p<O.O8). 

There was a significant difference (p<O.O5) in the density of axodendritic asymmetric 

synapses with 0.17pm~’ in the experimental hemisphere and 0.07pm.’ in the 

contralateral hemisphere. Total synaptic density of 2.72pm.’ and 1.97wm~’ reflected 

these results but did not reach the 95% level of significance (pc 0.07). (Figure 4.1) 

In the IML, no significant differences were demonstrated. Mean axodendritic 

synaptic densities of 0.08pm.’ and 0.09pm.’ (p<0.33) and axospinous synaptic 

densities of 2.24pm” and 2.43pm.’ (p<0.28) were recorded from the potentiated and 

control hemispheres. (Figure 4.2) 

4.2.2 Neuronal density 

There was no significant difference in the mean neuronal density of the 

hemispheres and the results were used to correct the synapse per neuron estimation for 

any swelling or shrinkage. (A mean of 0.0079 neurons, pi’ in the potentiated 

hemisphere and 0.0083 neurons, pm~’ in the contralateral hemisphere, p<0.28). (Figure 

3.4) 

4.2.3 Mean Synapse Number per Neuron 

The MML of the potentiated hemisphere presented significantly different results 

to those of the contralateral hemisphere. The mean number of axodendritic synapses 

per neuron was 213 versus 81 (p< 0.04) and the mean total number of synapses per 

neuron was 3421in the potentiated hemisphere and 2373 in the control (p< 0.05). The 
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Figure 4.1 Mean numerical synaptic density (Nv) of synapses in the middle 
molecular layer of the dentate gyrus, in potentiated and control hemispheres, 24 h after the 
induction of LTP by TBS. (* indicates significant difference p<0.05) Mean (t S.E.M.) of 5 
animals. 
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Figure 4.2 Mean numerical synaptic density (Nv) of synapses in the inner 
molecular layer of the dentate gyrus, in potentiated and control hemispheres, 24h after the 
induction of LTP by TBS. Mean (k S.E.M.) of 5 animals. 

102 



mean number of axospinous synapses per neuron, in the stimulated and control 

hemispheres respectively, was 3230 and 2292. Although the difference between the 

hemispheres was 41%, this did not reach the level of significance (p< 0.06). (Figure 

4.3) 

The mean synapse per neuron numbers in the inner molecular layer did not show 

any significant differences between the hemispheres. In the potentiated hemisphere, 

there was a mean of 97 axodendntic synapses per neuron and 2840 axospinous 

synapses per neuron (2937 synapses in total). In the contralateral hemisphere, the 

mean synapse per neuron values were 113 axodendritic (p<0.37) and 2919 axospinous 

(p<0.42) yielding a mean total synapse per neuron value of 3028 (p<0.41). (Figure 

4.4) 

4.2.4 Mean projected synaptic height 

The mean projected synaptic height of axodendritic synapses in the MML of the 

potentiated hemisphere was 178nm and 171nm in the control hemisphere (p<0.46). 

For axospinous synapses, values of 135 and 139nm were recorded in the expenmental 

and control hemispheres (p<0.33). (Figure 4.5) 

In the inner molecular layer, the mean projected synaptic height of the 

axodendntic synapse was 122nm, in the potentiated hemisphere, and 145nm in the 

control hemisphere (p<0.21). There was a significant difference in the mean synaptic 

height of axospinous synapses in the IML with values of 139nm in the experimental 

hemisphere and 121nm in the control hemispheres (p<0.02). (Figure 4.5) 
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Figure 4.3 Mean synapse number per neuron in the middle molecular layer of the 
dentate gyrus, in potentiated and control hemispheres, 24h after the induction of LTP by 
TBS. . (* indicates significant difference p<0.05). Mean (k S.E.M.) of 5 animals. 
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Figure 4.4 Mean synapse number per neuron in the inner molecular layer of the 
dentate gyrus, in potentiated and control hemispheres, 24h after the induction of LTP by 
TBS. Mean (k S.E.M.) of 5 animals. 
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4.2.5 Total volume density of axospinous AZ area (Sv) 

The total volume density of axospinous synapses in the MML of the tetanised 

hemisphere was significantly different to the control hemisphere with a Sv of 

0.13pmz/pm3 and 0.09pm2/pm3 respectively (p<0.03). In the IML the Sv was 

0.1 1pmZ/pm3in both hemispheres (p<0.041). (Figure 4.6) 

4.2.6 Volume density of individual axospinous synapses (SvlNv) 

In the MML, there was no difference in the volume density of individual 

axospinous synapses with an average volume density of 0.05 pm2/pm3 in both 

hemispheres (p<0.39). (Figure 4.8) In the iML the mean volume density was 0.05 

pmz/pm3 in the potentiated hemisphere and 0.04 pm2/pm3 in the control hemisphere 

(p<0.07). (Figure 4.7) 

I c 
MML 

Mean projected synaptic height of synapses, in the inner and middle 
molecular layers of the dentate gyrus, 24h after the induction of LTP by TBS. Mean (k 
S.E.M.) of 5 animals. 
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Figure 4.6 Mean volume density of total axospinous apposition zone (AZ) area 
(Sv) in the inner and middle molecular layer of the dentate gyrus, 24h after the induction of 
LTP by HFS. (* indicates significant difference p<0.05). Mean (t S.E.M.) of 5 animals. 
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Mean volume density of individual axospinous apposition zone (AZ) 
area (SvlNv) in the inner and middle molecular layers of the dentate gyrus, 24h after the 
induction of LTP by TBS. Mean (i S.E.M.) of 5 animals. 
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4.2.7 Characterisation of synaptic profiles 

As before synapses were identified in an area of 350 pm’ and classified 

according to their synaptic profiles. In the MML, there was a mean of 10.2 (8.57 %) 

synapses with perforated profiles in the potentiated hemisphere and 9.8 (11.10 %) in 

the control hemisphere (p<0.42). There was a mean of 14.8 (13.09%) synapses with 

concave profiles in the potentiated and 12.0 (13.45%) in the control (p<0.38) 

hemispheres. There was a significant difference in the mean numbers of macular 

synapses between the hemispheres with 115.8 (92.0%) in the potentiated and 81.8 

(88.9%) in the contralateral hemisphere (p<0.05). (Figure 4.8) 

In the IML, there were no significant differences in the numbers of synapses 

between the hemispheres. There was a mean of 6.80 (6.90%) synapses with perforated 

profiles and 13.8 (14.06%) synapses with concave profiles in the potentiated 

hemisphere and 5.60 (5.31%) (p<0.31) and 10.0 (9.58%) (p<0.16) respectively in the 

control hemisphere. In the potentiated hemisphere, there was a mean of 89.4 (93.10%) 

macular synapses with 98.20 (94.69%) in the control hemisphere (0.16). (Figure 4.9) 

4.3 

Stimulation 

Results 24h after the induction of LTP with High Frequency 

4.3.1 Mean numerical synaptic density (Nv) 

The mean numerical density of axodendritic synapses in the middle molecular 

layer was 0.23pnY3 in the potentiated hemisphere and 0 . 2 6 ~ m - ~  in the control 

hemisphere (p<0.33). In the inner molecular layer the results were O.16pnY3 and 

0.08p~m.~ respectively (p<0.09). In the MML, the mean Nv of axospinous synapses in 

the potentiated hemisphere was 2.5OpnY3 and 2.00pY3 in the control hemisphere 

(p<0.03). (Figure 4.10) 
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Figure 4.8 Morphology of axospinous synapses in an area of 350 pm', in the 
middle molecular layer of the dentate gyrus, 24h after the induction of LTP by TBS. (* 
indicates significant difference p<0.05). Mean (t S.E.M.) of 5 animais. 
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Figure 4.9 Morphology of axospinous synapses in an area of 350 pm', in the 
inner molecular layer of the dentate gyrus, 24h after the induction of LTP by TBS. Mean (t 
S.E.M.) of 5 animals. 
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In the IML, there was a mean Nv of 2.57pm~’ axospinous synapses in the 

stimulated hemisphere and 2.14 pm.? in the control hemisphere (p<0.17). The total 

asymmetric synaptic density results reflect these findings, with an Nv of 2.73pm~’ in 

the MML of the potentiated hemisphere and 2.27pm.’ in the control hemisphere 

( ~ ~ 0 . 0 4 ) .  In the IML the respective Nvs were 2.73pm’ and 2.22prn~’ (p>0.14). (Figure 

4.11) 

4.3.2 Neuronal density 

The mean neuronal density of the potentiated hemisphere was 0.0010 pm.’ and 

0.0095 pm-’ in the control hemisphere (p<0.35) (Figure 3.4). This difference was not 

significant suggesting minimal shrinkage or swelling due to the experimental protocol. 

The neuronal density value was used to calculate the number of synapses per neuron 

as previously described. 

4.3.3 Synapse per neuron number 

The number of axodendritic synapses per neuron in the MML of the potentiated 

hemisphere was 219 compared to 271 in the control hemisphere (p<0.25). (Figure 

4.12) In the IML, the mean value in the potentiated hemisphere was 171 and 192 in 

the control hemisphere (p<0.40). (Figure 4.13) 

There was no significant difference in the number of axospinous synapses per 

neuron between hemispheres, in the molecular layer of either hemisphere. In the ìvíML 

of the potentiated hemisphere, the mean value was 2415 synapses per neuron and 2110 

in the control hemisphere (p<O.lO). In the IML, the mean value was 2423 asymmetric 

axospinous synapses per neuron in the potentiated hemisphere and 2276 in the control 

hemisphere (p<0.38). 

1 o9 



3.50 

% 3.00 
s 

.- yI 2.50 

6 

% 

v 
x - 
m 
u .- - 2.00 

k - 
CJ 1.50 o 

2 1.00 

2 0.50 

0.00 

Figure 4.10 
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Mean numerical synaptic density (Nv) of synapses in the middle 
molecular layer, in potentiated and control hemispheres, 24h after the induction of LTP by 
HFS. (* indicates significant difference p<0.05). Mean (I S.E.M.) of 5 animals. 
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Figure 4.11 Mean numerical synaptic density (Nv) of synapses in the inner 
molecular layer, in potentiated and control hemispheres, 24h after the induction of LTP by 
HFS. Mean (? S.E.M.) of 5 animals. 
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Figure 4.12 Mean synapse number per neuron in the middle molecular layer of the 
dentate gyrus, in potentiated and control hemispheres, 24h after the induction of LTP by 
HFS. Mean (k S.E.M.) of 5 animals. 
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Figure 4.13 Mean synapse number per neuron i n  the inner molecular layer of the 
dentate gyrus, in the potentiated and control hemispheres, 24h after the induction of LTP 
by HFS. Mean (I S.E.M.) of 5 animals. 
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4.3.4 Mean projected synaptic height. 

In the MML the mean projected synaptic height of axodendritic synapses was 

190nm in the potentiated hemisphere and 156nm in the control group (p<0.19). In the 

same region, the mean synaptic height of axospinous synapses was 119nm and 131nm 

(p<0.26). In the IML, axodendntic synapses had a mean synaptic height of 99nm in 

the experimental and 106nm in the control hemisphere (pc0.43) and axospinous 

synapses were 128nm and 159nm respectively (p<O. 16). (Figure 4.14) 

H potentiated hemisphere 
lSO 1 Ocontrol hemisphere 

Axodendritic 
IML 

Axospinous 
IML 

1 

Axodendritic 
MML 

1 
Arospinous 

MML 

Figure 4.14 Mean projected synaptic height of synapses, i n  the inner and middle 
molecular layers of the dentate gyrus, 24h after the induction of LTP by HFS. Mean (t 
S.E.M.) of 5 animals 

4.3.5 Total volume density of AZ area (Sv) 

There were no significant differences in the mean total volume density of 

synapses between the potentiated and contralateral hemispheres. In the MML the Sv 

was 0.09pmZ/pm’ and 0.08pm’/pm3 respectively (p<0.12) and in the Ih4L 0.1 lpm’/pm3 

and 0.10pmZ/pm’(p<0.41). (Figure 4.15) 
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Mean volume density of individual axospinous apposition zone (AZ) area 
(S"/Nv) in the inner and middle molecular layers of the dentate gyrus, 24h after the induction of 
LTP by HFS. Mean (+ S.E.M.) of 5 animals. 

In the IML, there were no significant differences in the numbers of synapses between 

the hemispheres. There were means of 5.60 (4.97%) perforated and 33.6(29.76%) 

concave profiles in the potentiated hemisphere and 3.20 (3.55%) (p< 0.15) and 31.6 

(30.23%) (p<0.43) respectively in the control hemisphere. There was a mean of 72.8 

(65.28%) macular synapses in the potentiated hemisphere and 66.8 (66.21%) in the 

control hemisphere ( ~ ~ 0 . 2 0 ) .  (Figure 4.18) 

4.4 Pooled results 

The morphological results from the molecular layer after each of the stimulation 

protocols produced some similar trends but also some differing results. Animals were 

perfused for morphological examination if the degree of potentiation measured after 

24h was between 130 and 160%. To attempt to elucidate these findings the results 

from three animals that demonstrated the greatest degree of LTP, from each group, 

were pooled i.e. after TBS those animals with potentiation levels of 143%, 152% and 

146% and after HFS 136%, 160% and 143%. For many parameters studied, there was 
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Figure 4.17 Morphology of axospinous synapses in an area of 3 5 0 p 2 ,  in the 
middle molecular layer of the dentate gyrus, 24h after the induction of LTP by HFS. (* 
indicates significant difference p<0.05). Mean (t S.E.M.) of 5 animals. 

W potentiated hemisphere Ocontrol hemisphere 

T r  
T I 

% pcrforatcd % eoncave % macular NO. perforated No. concave No. macular Tom 

Figure 4.18 Morphology of axospinous synapses in an area of 350pm', in the inner 
molecular layer of the dentate gyrus, 24h after the induction of LTP by HFS. Mean (? 
S.E.M.) of 6 animals. 
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no significant difference between the hemispheres in the MML or IML. However there 

were some interesting differences in morphology and morphometry. 

4.4.1 Neuronal density 

There was no significant difference in the neuronal density of the granule cell 

layer between the potentiated and control hemispheres (p<0.29). (Figure 3.14) In the 

potentiated hemisphere there were an estimated 0.0094 neurons per pm3 and in the 

control hemisphere 0.0087 neurons per pm3. 

4.4.2 Mean numerical synaptic density (Nv) 

The pooled results confirmed the increased mean numerical density of 

axospinous synapses with an Nv of 2.60 pm-’ in the potentiated hemisphere and 1.76 

pm-3 in the control hemisphere (p<O.Ol). (Figure 4.19) The differences in axospinous 

mean numerical synaptic density between the IML and MML in the potentiated 

(p<0.31) and control hemispheres (p<0.16) were not significant. There was also a 

significant difference in the number of axospinous synapses per neuron i.e. 2955 in the 

potentiated hemisphere and 2019 in the control hemisphere (p<0.03). (Figure 4.20) 

None of these parameters was shown to demonstrate any significant differences, 

between hemispheres, in the IML. 

4.4.3 Morphometry 

There were no significant differences in any of the morphometric parameters in 

the middle (Table 4.2), or inner molecular layers. (Table 4.5) The mean total Sv of all 

axospinous synapses was larger in the potentiated hemisphere but just outside the level 

of significance (p<0.06). 
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Figure 4.19 Mean numerical synaptic density (Nv) of synapses in the inner and 
middle molecular layer of the dentate gyrus, in potentiated and control hemispheres, 24h 
after the induction of LTP. Pooled results with 3 animals potentiated with TBS and 3 
animals with HFS. (* indicates significant difference p<0.05). Mean (i S.E.M.) of 6 
animals 

4000 

3500 

3000 

2500 

2000 

15W 

1000 

500 

0 

* 
I * 

I 
Axodendritic Axospinous Total 

IML IML IML 

I 
Axodendritic Axosphous Total 

MML MML MML 

Figure 4.20 Mean number of synapses per neuron in the inner and middle 
molecular layers of the dentate gyrus, in potentiated and control hemispheres, 24h after the 
induction of LTP. Pooled results with 3 animals potentiated with TBS and 3 animals with 
HFS. Mean (? S.E.M.) of 6 animals. 
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4.4.4 Synaptic Morphology 

There was a significant increase in the number of synapses with concave profiles 

in the MML (p<0.04) but this was replicated in the IML (p<0.02). There was also a 

significant increase in the number of perforated synapses in the IML (p<0.05). (Figure 

4.21) 
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Figure 4.21 Morphology of axospinous synapses in the inner and middle 
molecular layers of the dentate gyrus, in potentiated and control hemispheres, 24h after the 
induction of LTP. Pooled results with 3 animals potentiated with TBS and 3 animals with 
HFS. (* indicates significant difference p<0.05). Mean (I S.E.M.) of 6 animals. 

4.5 Discussion 

These data demonstrate that in young adult rats there are significant differences 

in the numerical density of synapses in the middle molecular layer of the dentate gyrus 

24h after tetanisation in the potentiated compared with the control hemisphere. The 

level of significance varies according to the stimulation protocol but, coupled with the 

pooled results, they suggest that there is a bonafide increase in the number of 

asymmetric axospinous synapses 24h after LTP induction. 
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A similar study, also using unbiased stereological techniques, reported an 11% 

increase in the total number of synapses per neuron, in the MML, 24h after the 

induction of LTP with HFS (Weeks et al., 1999). There were some methodological 

differences between the studies: they used higher frequency stimulation (400Hz as 

opposed to the 200 Hz and TBS used here) and the control group consisted of 

implanted non-stimulated animals. This increase was not significant but, interestingly, 

synaptic number was positively correlated with the degree of potentiation (Weeks et 

al., 1998). Animals with a higher a priori number of synapses could show a greater 

degree of potentiation, however, as found in the present study, dissimilar distributions 

of synapses per neuron were reported and the mean for LTP tissue was higher and the 

variance greater. 

Whilst there was a trend towards a reduction in synaptic size in the potentiated 

hemisphere following LTP, this was not significant. The changes in the MML might 

be achieved in two ways: splitting of existing synapses with complete partitioning of 

AZs, or shrinkage of some AZs while new synapses are formed. Studies, including 

those reported in the previous chapter, have shown that from 45min post-tetanisation 

there is no significant difference in the incidence of perforated synapses. However, 

increases in spine density (Trommald and Hulleberg, 1997) and in multiple synaptic 

contacts (Toni er al., 1999) have been reported from around this time. This suggests 

that synapses with segmented PSDs may develop separate presynaptic boutons and 

form new synapses with spines with a divided stem and two heads (bifurcating spines), 

or new dendritic spines. 

There is some disagreement whether segmented synapses are indeed the 

precursors of new macular synapses as previously suggested (Nieto-Sampedro, 1982). 

Spines with perforated PSDs could arise directly from the dendritic shaft during 

development and not need a cycle of synapse splitting and spine retraction to form. 

(Geinisman et al., 1996) Studies of the maturation of synapses in immature 

hippocampal CA1 have determined that perforated synapses increase their number in 
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parallel with macular synapses (Sorra and Hams, 1998). Since almost no splitting of 

dendritic spines occurs at postnatal day 15, splitting is unlikely to be important during 

development. As different parts of a perforated PSD make contact with the same 

presynaptic bouton, different branches of a splitting dendritic spine should also 

synapse with the same presynaptic bouton. During development, different branches of 

the same spine never synapse with the same presynaptic bouton, therefore bifurcating 

spines are unlikely to be transient intermediates in the process of dividing from 

perforated synapses (Sorra and Hams, 1998). 

Similar observations have been made after LTP induction where an increase in 

spine density, particularly bifurcating spines, has been observed (Trommald and 

Hulleberg, 1997; Andersen and Soleng, 1998). However, when reconstructed, the twin 

spine heads never share the same presynaptic bouton (Trommald and Hulleberg, 1997) 

- arguing against PSD division as an intermediate step in synapse formation. However, 

when activated synapses, identified by the accumulation of calcium in dendritic spines, 

were examined 6Omin after the induction of LTP with HFS there was a marked 

increase in the proportion of axon terminals contacting two or more dendritic spines. 

Three-dimensional reconstruction revealed that these spines arose from the same 

dendnte thereby duplicating activated synapses (Toni er al., 1999) and were not 

usually bifurcated. Confocal microscopy studies have indicated that LTP induction 

invokes the growth of small filipodia-like protrusions in CA1 neurons. 27% of these 

new filipodia developed a bulbous head within 6Omin post stimulation, which suggests 

that the filopodia might mature to become spines (Maletic-Savatic er al., 1999). 

There is no reason to believe that both mechanisms cannot be mutually 

employed in synaptogenesis. However, this new synapse formation, 40-60min after 

the induction of LTP, can only contribute to a later stage of LTP and may represent a 

way of consolidating changes in synaptic efficacy that are initiated by receptor 

insertion (Muller, 2000). Two hours after tetanisation, serial reconstruction failed to 

find any changes in synaptic morphology (Sorra and Harris, 1998). This suggests that 
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synapse populations could replace one and other and not be detected as a shift in the 

overall number, or a more plausible explanation may be the difficulty in detecting any 

change, as only a fraction of synapses undergo this duplication (Toni et al., 1999). 

Twenty-four hours after the induction of LTP, the increased number of 

axospinous synapses may be due to the maturation of synapses at filipodia or further 

synaptogenesis in the interim period. Neural cell adhesion molecules (NCAMs) are 

believed to play a role in the synaptic remodelling accompanying LTP e.g. the 

selective removal of polysialic acid (PSA) from NCAM can prevent the induction of 

LTP (Muller et al., 1996). The major isofonn (NCAM 180) is predominantly localised 

in postsynaptic membranes and the PSDs of hippocampal neurons (Schuster et al., 

1998) and strengthening of synaptic efficacy leads to an increase in expression of 

NCAM isoforms (Wheal et al., 1998). The percentage of spine synapses expressing 

the NCAM 180 isofonn increased in the dentate molecular layer 24h after tetanisation 

of the perforant path with HFS (Schuster et al., 1998). As cells expressing 

polysialylated isoforms of NCAM have an increased capacity for structural plasticity 

(Doherty et al., 1990; Doherty et al., 1995) this would suggest that synaptic 

remodelling is a result of LTP. 

Further evidence suggests that modification of synapses is a result of LTP. 

Synapsins, proteins associated with the cytoplasmic surface of the vesicle membrane 

are thought to play an important role in presynaptic function and synaptogenesis. Mice 

lacking synapsins suffer from impaired presynaptic function and a depletion of 

synaptic vesicles in nerve terminals (Ferreira et al., 1998; Rosahl et al., 1995). 

Synapsin I mRNA expression increases in dentate granule cells between 8h and 24h 

post LTP-inducing stimulation (Morimoto et al., 1998) and increased synthesis of 

synapsin I protein, has been confirmed in the MML at a similar time point (Sato et al., 

2000). Synaptic spinules, protrusions of the postsynaptic membrane into presynaptic 

invaginations (Tarrant and Routtenberg, 1977), are thought to be involved in the 

process of synaptic turnover that enhances synaptic efficacy. Therefore, it is 
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interesting that an increased incidence of spinules has been reported 8h and 48h after 

LTP induction (Schuster et al., 1990) and this morphological correlate may reflect the 

combined activity of the pre- and postsynaptic neuron. 

A significant increase in the proportion of presynaptically concave synapses and 

perforated concave synapses, between potentiated and control animals has been 

reported 24h after the LTP induction with HFS (Weeks et al., 1999). I have found a 

significant increase in the number of concave and perforated synapses after HFS but 

not TBS and, although the pooled results indicate a significant increase in the number 

of concave synapse in the MML, similar results were determined in the ih4L. 

Concavity may allow for more efficient uptake of released neurotransmitter but the 

incidence of synapses with concave profiles may be dependent on the stimulation 

protocol (See Chapter 5) as no correlation has been reported between the degree of 

potentiation and the number of concave synapses (Weeks et al., 1998). Differences in 

the mechanisms of LTP induction and expression may also explain the increased 

incidence of axodendritic synapses after the induction of LTP with TBS. While LTP 

induction may or may not be associated with the production of concave or perforated 

synapses, synaptic number appears to be important for the degree of LTP expressed. 

Paradoxically, a decrease in spine density and an increase in the relative 

frequency of shorter, thicker spines has been indicated 24h after the induction of LTP 

(Rusakov et al., 1997b). There is no discrepancy between these two results because the 

number of synapses accommodated by each individual spine could increase while the 

spine densities fall. Computer simulations demonstrated that potentiation of 

postsynaptic responses was compatible with branching of a proportion of spines with 

their neighbours but was not compatible with retraction of spines (Rusakov et al., 

1997b). Partial fusion of active spines, which result in formation of spine branches, 

could significantly increase synaptic signal transfer (Rusakov et al., 1996). 

13 days after the induction and maintenance of LTP it has been demonstrated 

that the numbers of axodendritic synapses in the dentate gyrus increase (-28%) in vivo 
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(Geinisman er al., 1996). Earlier studies from the same laboratory showed that the 

major structural correlate of the earlier phase of LTP (up to one-two hours) is an 

increased number of multiple, completely partitioned AZs at axospinous synapses 

(Geinisman et al., 1993). By combining these results Geinisman and colleagues have 

suggested a scenario where the transition from the induction phase, to the maintenance 

phase of LTP is characterised by partitioning of axospinous synapses, a proportion of 

which gradually becomes axodendntic synapses (Geinisman et al., 1996). (Figure 

4.23) 

My results from the intermediate stage of LTP consolidation, coupled with the 

study of Rusakov et al., 1997b could complement this scenario. Partitioning of AZs, 

combined with spine fusion andor retraction, may lead to an increased number of 

axospinous synapses 24h after the induction of LTP. Alternatively synaptogenesis may 

increase the number of axospinous synapses but in turn, there may be a transformation 

of some axospinous synapses into axodendritic synapses at a later stage. (Figure 5.2) 
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Figure 4.22 Schematic diagram of structural synaptic plasticity associated with LTP. 

Geinisman suggests that a remodelling of pre-existing synaptic contacts underlies the 
selective increases in the number of either axospinous synapses with multiple completely 
partitioned transmission zones (d) following the induction of LTP or asymmetrical 
axodendritic synapses 0 )  during the maintenance phase of LTP. There may be many 
intermediates in synaptic plasticity from (a) a non-perforated axospinous synapse to various 
subtypes of perforated axospinous synapses. Those with partitions (spinules) include (b) a 
focal partition and fenestrated PSD, (c) a sectional spine partition and horseshoe shaped 
PSD. (d) complete spine partition and segmented PSD. Non-partitioned synapses may 
exhibit the same segmentation (e), horseshoe shape ( f )  or fenestration (8). The conversion 
of a perforated axospinous synapse to an axodendritic synapse may include subtypes of 
synapses involving a dendritic spine that does not have a neck (h); or a dendritic spine that 
is partially retracted into the parent dendrite (i); leading to an asymmetric axodendritic 
synapses with a perforated PSD (i). After Geinisman 1996. 
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I TBS I HFS I Combined 

Mean numerical 

synapse density 
(Nv) pm-l 

axodendritic 
0.17 i 0.03 0.23 f 0.07 0.16f 0.04 

0.07 f 0.02 0.26f 0.08 0.14f 0.04 

p< 0.05 p< 0.33 p< 0.39 

Potentiated 

Control 

Potentiated Y 
control 

hemispheres 

Hemispheres 

Mean numerical 

Mean number of 

Mean number of 

synapses per 

Mean number of 

synapses per 

Table 4.1 
middle molecular layer of the dentate gyrus, 24h after the induction of LTP. 

Results (k S.E.M.) of the numerical synaptic density ( N v )  and synapse number per neuron, 
in the middle molecular layer of the dentate gyrus, 24h after the induction of LTP by 
theta-burst (TBS) or high frequency stimulation (HFS). The combined category represents 
the results from 3 animals with the highest levels of potentiation from each stimulation 
protocol (n=6). 

Mean numerical synaptic density and synapse number per neuron, in the 
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Axodendritic 

Table 4.2 Synaptic morphometry, in the middle molecular layer of the dentate gyrus, 24h 
after the induction of LTP. 

Results (k S.E.M.) of morphometric estimations of synaptic profiles in the middle 
molecular layer of the dentate gyrus, 24 h after the induction of LTP by theta-burst 
stimulation (TBS) or high frequency stimulation (HFS). The combined category represents 
the results from 3 animals with the highest levels of potentiation from each stimulation 
protocol (n=6). 
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I TBS 

% Perforated 
profiles 

% Concave 
profiles 

I 

% Macular 
profiles 

Mean number of 
perforated profiles 

Mean number of 
concave profiles 

Mean number 
macular synapses 

Potentiated 
hemisDheres I 8.57 f 1.35 

Control 
Hemispheres I 11.10f 2.37 

I p<0.17 Potentiated v 
control 

Potentiated 13.09 + 6.59 

Control 13.45 f 4.93 

P< 0.49 Potentiated v 

92.0 I 1.72 Potentiated 

88.9 f 2.37 Hemisoheres 

I p< o. 12 Potentiated v 
control 

Potentiated 
hemispheres I 10.2 f 1.07 

Control 
Hemispheres I 9.8 11.66 

p< 0.42 Potentiated v 
control 

Potentiated 
hemispheres 14.8 I 5.86 

Control 
Hemispheres 12.0 I 4.38 

I p< 0.38 Potentiated v 
control 

I 115.8 i 14.10 Potentiated 
hemimheres 

I 81.8i6.72 Control 
Hemimheres 

I p<o.o5 Potentiated v 
control 

HFS 

4.34 f 1.50 

1.93 I 1.22 

p< 0.01 

13.24 f 0.77 

9.23 f 3.17 

P< 0.12 

82.42 f 1.88 

88.85 I 3.74 

p< 0.02 

4.34 11.86 

2.20 f 1.95 

p< 0.03 

15.0 f 0.95 

8.60 f 3.66 

p< 0.05 

94.4 f 7.71 

75.8 f 9.36 

p< 0.15 

Combined 

7.05 f 1.67 

8.27 k 2.94 

p<O.31 

15.31 f4.91 

7.83 + 1.99 

P<O.lO 

86.48 f 2.69 

86.96 f 2.56 

p< 0.44 

8.0 f 1.53 

7.5 f 2.40 

p< 0.38 

16.83 i 4.22 

7.83 f 2.73 

p< 0.04 

102.17 f 13.16 

77.33 f 8.68 

p<o.11 

Table 4.3 Classification of synaptic profiles in the middle molecular layer of the dentate 
gyrus, 24h after induction of LTP. 

Results (I S.E.M.) of the classification of synaptic profiles in 350pm* of the middle 
molecular layer of the dentate gyrus, 24 h after the induction of LTP by theta-burst 
stimulation (TBS) or high frequency stimulation (HFS). The combined category represents 
the results from 3 animals, with the highest levels of potentiation, from each stimulation 
protocol (n=6). 
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I 
axodendritic 

Mean numerical 

axodendritic 
synapses per 

neuron 

synapses per 

Mean number of 

synapses per 
neuron 

Table 4.4 
inner molecular layer of the dentate gyrus, 24h after the induction of LTP. 

Results (& S.E.M.) of the numerical synaptic density (Nv)  and synapse number per neuron, 
in the inner molecular layer of the dentate gyrus, 24h after the induction of LTP by theta- 
burst (TBS) or high frequency stimulation (HFS). The combined category represents the 
results from 3 animals with the highest levels of potentiation from each stimulation 
protocol (n=6). 

Mean numerical synaptic density and synapse number per neuron, in the 
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I TBS I HFS I Combined 

Axodendritic PSD 
height nm 

Potentiated 
hemispheres 122 f 20 99 f 17 128 I 16 

Control 
145 f 19 106 I 26 106 I 14 Hemispheres 

I 

Axospinous PSD 
height nm 

Potentiated v 
control 

Potentiated 
hemispheres 

Control 
Hemispheres 
Potentiated v 

rnntrnl 

p< 0.21 p< 0.43 p< o. 12 

139 i 5 128 I 13 136 I 9 

1 2 1 f 3  159 I 2 3  150 f 20 

p< 0.02 p< 0.16 p< 0.31 

Table 4.5 Synaptic morphometry in the inner molecular layer of the dentate gyms, 24hr 
after the induction of LTP. 

Results (t S.E.M.) of morphometric estimations of synaptic profiles, in the inner 
molecular layer of the dentate gyrus, 24 h after the induction of LTP by theta-burst 
stimulation (TBS) or high frequency stimulation (HFS). The combined category represents 
the results from 3 animals with the highest levels of potentiation from each stimulation 
protocol ( ~ 6 ) .  

Axospinous 
( S V )  pm*,prn-’ 

SvlNv 
pmZ,prn-’ 
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Potentiated 
hemispheres 

Control 
Hemispheres 
Potentiated v 

control 
Potentiated 

0.05 f 0.001 0.04 f0.005 0.05 f 0.003 hemispheres 
Control 

Hemispheres 0.04 I 0.002 0.05 f 0.010 0.05 I 0.008 
Potentiated v 

control 

0.11 f 0.009 

O. I l  I 0.004 

O. 11 I 0.007 O. 11 I 0.008 

0.1OkO.016 0.10 f 0.012 

p< 0.41 p< 0.41 p< 0.20 

p< 0.07 p< 0.23 p< 0.28 



% Perforated 

Mean number of 
perforated profiles 

Mean number of 

Mean number 
macular synapses 

Table 4.6 Classification of synaptic profiles in the inner molecular layer of the dentate 
gyrus, 24h after the induction of LTP. 

Results (k S.E.M.) of the classification of synaptic profiles, in 35Opm’ of the inner 
molecular layer of the dentate gyrus, 24 h after the induction of LTP by theta-burst 
stimulation (TBS) or high frequency stimulation (HFS). The combined category represents 
the results from 3 animals, with the highest levels of potentiation, from each stimulation 
protocol ( ~ 6 ) .  
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Chapter Five General Discussion 

It has been established that long-term potentiation is an enhancement of synaptic 

strength that can be produced by the pairing of presynaptic activity with postsynaptic 

depolarisation and can last for many days (Bliss and Collingridge, 1993). Many 

morphological changes have been shown to occur with LTP, but it is important to 

consider the extent to which the observed alterations could account for the increase in 

synaptic efficacy during LTP. 

Morphological studies have affirmed some of the mechanisms believed to be 

involved in the induction phase of L-LTP i.e. the 2h post-tetanisation period that is 

mediated by the modification of kinases (Racine et al., 1983). Studies of the dynamics 

of presynaptic vesicles have supported the concept that glutamate is released during 

the induction of LTP. One minute after tetanic stimulation in hippocampal arca CAI, 

the proportion of presynaptic vesicles near to the presynaptic membrane, or attached to 

the membrane, increased although the total number of vesicles decreased (Applegate 

and Landfield, 1988). Early postsynaptic morphological changes arc triggered by 

alterations in calcium homeostasis (Fifkova and Morales, 1992; Harris and Kater, 

1994; Harris, 1999) after LTP induction. A rise in the postsynaptic calcium 

concentration, and consequent activation of various signalling cascades, leads to 

modification of the actin-dependent dynamics of the spine, transformation of receptor 

properties and insertion of new receptors into the PSD - mechanisms that arc restricted 

to activated synapses. 
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These modifications may result in changes in the size and shape of synapses and 

such changes have been found associated with LTP (Fifkova and Anderson, 1981); 

Van Harreveld and Fifkova, 1975; Desmond and Levy, 1986b; Weeks et al., 2000). In 

the research reported in this thesis any difference observed in the size of synapses 

between hemispheres was not significant however, when only activated synapses have 

been examined, increased area of spine head profiles and increased length of PSDs 

have been reported (Buchs and Muller, 1996). 

Changes in the incidence of concave synapses have been reported after LTP and 

the concavity of a synapse may have a role in increasing synaptic efficacy by allowing 

for more efficient uptake of neurotransmitter (Chang and Greenough, 1984; Desmond 

and Levy, 1986b). Concave synapses tend to be larger (Desmond and Levy, 1986b) 

and presumably have more receptors (Nusser et al., 1998) and this larger PSD area 

may mediate the enhanced synaptic function measured in LTP. Here, whether 45 min 

or 24h after the induction of LTP, the incidence of concave synapses did not change 

when TBS was used to induce potentiation. This could be due to differences in the 

mechanisms of induction and maintenance of L-LTP when different stimulating 

protocols are employed (Larkman and Jack, 1995). Alternatively, the absence of an 

increased incidence of concave synapses may explain why L-LTP induced by TBS is 

not always as robust as L-LTP induced by HFS. 

In most studies L-LTP is produced by multiple trains of strong, artificial 

stimulation which probably does not occur in nature. CAMP mediated transcription is 

important for the development of L-LTP and tetani that generate L-LTP have been 

shown to provoke increased gene expression (Impey et al., 1996) which can be 

instigated by activation of PKA and adenylyl cyclase. Unlike LTP induced by non- 

theta tetanisation regimes, little is known about the biochemical mechanisms 

underlying theta-burst LTP in the hippocampus (Nguyen and Kandel, 1997). Evidence 

suggests that synapses that undergo LTP can undergo a family of phenotypically 

similar but mechanistically quite different synaptic changes (Fields et al., 1997). 

132 



Therefore, even NMDA receptor -dependent LTP does not necessarily imply a single 

mechanism and it is important that different protocols for eliciting LTP be employed 

when examining morphological changes (Winder et al., 1999). 

Endogenous neurotrophins may play a role in mediating L-LTP induction. The 

application of antibodies to the Trk receptors of hippocampal slices had no effect on 

LTP induced by several trains of tetanic stimulation; however, there were significant 

deficits in LTP induced by TBS. Slices exposed to the same number of inducing 

stimuli, delivered either as TBS or as a single 100 Hz tetanisation, only exhibited Trk- 

sensitive LTP when TBS was used. The late phase of LTP was also significantly 

impaired in slices pre-treated with these antibodies. TrkB ligands were required for up 

to 1 hr after induction to maintain L-LTP. These results indicate that both the temporal 

patterns of synaptic activity and the different temporal phases of synaptic 

enhancement are important in determining the neurotrophin dependence of plasticity 

in the hippocampus (Kang et al., 1997). 

Other studies have pointed toward a specific and unique role of endogenous 

BDNF but not of other neurotrophins in the process of TBS-induced hippocampal LTP 

(Chen et al., 1999). After the application of BDNF antibodies, deficits in LTP were 

observed with TBS but not with tetanic stimulation. LTP was only reduced if BDNF 

was blocked before and during TBS stimulation, suggesting that endogenous BDNF is 

required for a limited time period around the time of LTP induction but not during the 

whole process of LTP. 

Studies using protein kinase inhibitors have suggested functional roles for 

several kinases in the induction of LTP in the hippocampus e.g. inhibitors of PKA 

attenuate both the early and late components of L-LTP (Matthies and Reymann, 1993) 

(Frey et al., 1993). The precise role of any given kinase has yet to be fully established 

but it has been observed that LTP produced by theta frequency stimulation is 

completely dependent on PKA (Thomas et al., 1996). 
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There is some evidence that the molecular mechanisms may be similar 

regardless of the stimulation applied. Investigations in area CA1 of the mouse 

hippocampus have suggested that CAMP- mediated gene transcription may be a 

common mechanism responsible for the late phases of LTP induced by both theta and 

non-theta patterns of stimulation (Nguyen and Kandel, 1997). One of the targets of the 

cAMP/PKA pathway is the phosphorylation of transcription factors such as CAMP 

response-element-binding protein (CREB) which directly affects gene expression 

required for late LTP and after HFS there is a direct activation of CREB. 

However, different patterns of stimulation may produce LTP by recruiting 

different molecular signalling pathways. Activation of the MAPK pathway is critical 

for the induction and maintenance of L-LTP (Impey et al., 1998) but LTP produced by 

TBS differs from LTP produced by HFS by requiring activated ERK (Winder et al., 

1999). Activated ERK may regulate synaptic efficacy at the postsynaptic membrane 

and possibly play a role in targeting long-term changes to activated synapses (Thomas 

et al., 1996). 

Regardless of the stimulating protocol, morphological changes in the incidence 

of perforated synapses have been observed (Buchs and Muller, 1996; Toni et al., 1999; 

Weeks et al., 2000; Geinisman et al., 1993). Activated synapses may develop separate 

presynaptic boutons and therefore strengthen synaptic transmission and eventually 

result in a duplication of spine synapses and an increase in synaptic efficacy by 

increasing the number of release sites between the individual synaptically coupled 

neurons. 

Glutamatergic excitatory synapses contain both ionotropic and metabotropic 

glutamate receptors, NMDAR and AMPAR. The ratio of NMDAR and AMPAR is 

physiologically important as one extreme produces synapses that are silent at normal 

resting potentials (Issac et al., 1995) while, at the other, synapses are formed that are 

incompatible with NMDA receptor-dependent synaptic plasticity (Madison et al., 
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199 1). These effectively non-functional synapses have been observed in various 

regions of the hippocampus (Liao er al., 1995; Min er al., 1998). 

These silent synapses acquire AMPA-type responses following LTP induction 

and this modification could be caused by an increase in the number of receptors, their 

open probability, their kinetics, or their single-channel conductance. Elementary 

channel properties can be rapidly modified by synaptic activity such as the induction 

of LTP (Benke et al., 1998) but tetanic stimulation has been shown to induce a rapid 

delivery of GIURI AMPA receptors into dendritic spines (Shi et al., 1999). 

The GluR2 subunit is the most commonly expressed form of glutamate receptor 

and, in studies of dissociated cell culture, a punctate surface distribution of AMPA 

receptors, co-localised with synaptophysin, has been demonstrated (Noel et al., 1999). 

Synaptic size may be an important factor in determining the ratio of AMPA to NMDA 

receptors at the synapse and the ratio may depend on the PSD diameter (Takumi et al., 

1999) and require synapses to grow in size after the insertion of AMPA receptors. 

Studies of immunoreactive AMPA receptor density have observed that the most 

densely labelled synapses tend to be on the largest spines, an average PSD diameter of 

260nm, while many smaller spines remained unlabelled (c 160nm) (Nusser et al., 

1998; Takumi et al., 1999; Baude et al., 1995). 

It has been suggested that two regulatory mechanisms control the local insertion 

and removal of Ah4PA receptors from the synapse - a constructive pathway and a 

maintenance pathway (Malinow er al., 2000). The constructive pathway is rapidly 

turned on by synaptic activity. It is &ven by transient events localised at a few 

synapses e.g. the rise in Caz+ concentration in spines, and results in a change, in the 

number of receptors, at those synapses. Receptors with the GluR1 subunit are 

delivered to the postsynaptic membrane this way and it has been demonstrated that 

GluR1 knockout mice do not demonstrate LTP. However these mice do not show a 

learning deficiency and it has been proposed that the GluR4 subunit, with a similar 

carboxy tail, is also trafficked by this pathway. The maintenance pathway is always 
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switched on and is responsible for the constant turnover in receptors. It 

existing postsynaptic receptors with receptors from a reserve pool (either 

synthesised or recycled) and does not increase or decrease the number of receptors, 

This is the mechanism for trafficking of AMPA receptors with the GluR2 and ~ 1 ~ ~ 3  

subunit, which have similar intracellular domains. 

The trafficking and stabilisation of AMPA receptors in synapses may hc 

controlled through interactions with the AMPA receptors intracellular carbox!, tails  

and variety of cytosolic proteins that then interact with various transmembrane 

proteins and form a scaffolding complex. Presently, GluR1 is only known to interact 

with synapse associated protein 97 (SAP 97) (Leonard et al., 1998). Interaction 

between NSF and GluR2 is involved in the recycling process that is necessary for the 

insertion and stabilisation of AMPA receptors at the PSD (Noel et al., 1999). 

It is proposed that the delivery of receptors with GIURI subunits depends on a 

retention signal that prevents the insertion of receptors into the synapse unless relieved 

by activity - i t  has been shown that GluR1 cannot enter spines unless there is 

postsynaptic activation of NMDA receptors (Shi et al., 1999). Once inserted in 

synapses, GluR1-containing receptors are renewed by the maintenance pathway and 

the availability of these receptors to this pathway may well depend on protein 

synthesis initiated by kinase activity (Malinow et al., 2000). 

Activation of mGluRs is also required for induction of LTP (Bashir ef U / . ,  1993: 

Richter-Levin et al., 1994) and while the ratio of AMPA to NMDA receptors is 

important, ionotropic and metabotropic receptors require segregation from each other 

within the PSD at individual synapses. The irregular outline of some synapses 

result from a need to accommodate more pensynaptic mGluRs by increasing 

circumference of the PSD. Therefore, perforated synapses may develop in ordei’ 

increase the ratio of perisynaptic to synaptic membrane proteins and keep their r2“”e 

1: h;i\ hCil11 distance from transmitter release sites constant (Lujan, 1996). (Figure 5.1) 

demonstrated that in the Mh4L of the dentate gyms, perforated axospin«us s!”~i~”cs 

136 



switched on and is responsible for the constant turnover in receptors. It replaces 

existing postsynaptic receptors with receptors from a reserve pool (either newlv 

synthesised or recycled) and does not increase or decrease the number of receptors. 

This is the mechanism for trafficking of AMPA receptors with the GluR2 and G I u R ~  

subunit, which have similar intracellular domains. 

The trafficking and stabilisation of AMPA receptors in synapses may be 

controlled through interactions with the AMPA receptors intracellular carboxy tails 

and variety of cytosolic proteins that then interact with various transmembrane 

proteins and form a scaffolding complex. Presently, GluR1 is only known to interact 

with synapse associated protein 97 (SAP 97) (Leonard et al., 1998). Interaction 

between NSF and GluR2 is involved in the recycling process that is necessary for the 

insertion and stabilisation of AMPA receptors at the PSD (Noel et al., 1999). 

It is proposed that the delivery of receptors with GluR1 subunits depends on a 

retention signal that prevents the insertion of receptors into the synapse unless relieved 

by activity - it has been shown that GluR1 cannot enter spines unless there is 

postsynaptic activation of NMDA receptors (Shi et al., 1999). Once inserted in 

synapses, GluR1-containing receptors are renewed by the maintenance pathway and 

the availability of these receptors to this pathway may well depend on protein 

synthesis initiated by kinase activity (Malinow et al., 2000). 

Activation of mGluRs is also required for induction of LTP (Bashir et al., 1993; 

Richter-Levin er al., 1994) and while the ratio of AMPA to NMDA receptors is 

important, ionotropic and metabotropic receptors require segregation from each other 

within the PSD at individual synapses. The irregular outline of some synapses may 

result from a need to accommodate more pensynaptic mGluRs by increasing the 

circumference of the PSD. Therefore, perforated synapses may develop in order to 

increase the ratio of perisynaptic to synaptic membrane proteins and keep their relative 

distance from transmitter release sites constant (Lujan, 1996). (Figure 5.1) It has been 

demonstrated that in the MML of the dentate gyrus, perforated axospinous synapses 
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are twice as likely to express detectable levels of AMPA receptor subunits as their 

non-perforated counterparts (Desmond and Weinberg, 1998). Although this study 

could not establish if the AMPA receptors identified were actually functional, 

segmented synapses could therefore be perceived as more potent than non-perforated 

synapses or the vestiges of recent synaptic activity. The authors of this study believe it 

growth 01 synapse wiln 
E increared ~GlurVnGluR 

Figure 5.1 Schematic diagram of the distribution of glutamate receptors at glutamatergic 
synapses in the hippocampus. 

(A) Summary of the distribution of postsynaptic ionotropic (black) and metabotropic 
(grey) glutamate receptors at glutamatergic synapses in the hippocampus. The M A - t y p e  
receptors are concentrated in the membrane opposite the presynaptic bouton in an area 
concomitant with the PSD. The type 1 and 5 mGluRs are concentrated in a perisynaptic ring 
surrounding the ionotropic receptors, followed by a wider band of receptors decreasing in 
density. Both classes occur at a lower density further in the extrasynaptic membranes (dots). (B) 
A possible effect of the segregation of receptor classes is that when synapses increase in size, an 
expansion of the postsynaptic membrane occupied by ionotropic receptors may lead to an 
increase in the ionotropic to metabotropic receptor ratio, if the synaptic density maintains a 
regular edge. (C) If synapses increase in size by producing a PSD with an irregular edge, leading 
to the appearance of perforated synapses, this could increase the metabotropic to ionotropic 
receptor ratio and maintain the relative spatial relationship between the centre of the presynaptic 
bouton and the rnetabotropic receptors. After Lujan et al 1996 

to be unlikely that the difference in the incidence of AMPA receptors is entirely due to 

their larger size. It has been demonstrated that changes in the postsynaptic structure of 

a synapse can invoke synchronous changes in the presynaptic membrane. Ca" 
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activated structural change may lead to an increase in the synaptic gap resistance that 

enhances positive synaptic electrical feedback and so augment release probability 

(Voronin et al., 1995). The degree of perforation of a PSD may depend on the total 

number of vesicles released over a period of seconds to minutes. When massive 

vesicular release was stimulated in the presence of agents that blocked the recycling of 

presynaptic vesicles there was a rapid enlargement and perforation of PSDs 

(Shupliakov et al., 1997). Therefore, an increased number of perforated synapses, 

immediately after LTP induction, may be a consequence of receptor insertion and 

maintenance of receptor ratios that promote the enlargement of activated synapses. 

This would support the theory that perforations are not permanent features of a 

synapse but occur transiently in response to activation. 

The early maintenance of LTP requires the synthesis of new proteins from 

existing mRNAs (Krug et al., 1984; Otani er al., 1989; Fazeli et al., 1993 and local 

dendritic protein synthesis may contribute to the persistence of late LTP. immediately 

after the induction of LTP, it is hypothesised that a synaptic tag is set to identify the 

activated synapse for further modifications after the transcription of new mRNA and 

protein synthesis and tag candidates include anatomical changes (Frey and Morris, 

1997). Activation of the cAMP/PKA pathway leads to gene activation and to the 

synthesis and distribution of plasticity-related proteins that reveal or stabilise new 

effector mechanisms (new receptors or ion channels) and additional changes in 

plasticity at activated synapses. Changes in synaptic number have been observed in 

the first few hours post induction (Lee, 1980) - although this was not an unbiased 

stereological study. However, when activated synapses were examined an increase in 

the incidence of multiple synapse boutons was reported (Toni er al., 1999) and such 

changes effecting a small proportion of synapses would be difficult to determine in a 

study of all synapses. Although Toni and colleagues found that the spines, synapsing 

with multiple synapse boutons, shared the same postsynaptic neuron, a model has been 

proposed that suggests that such boutons could spread LTP between neurons. 
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If synapses are tagged for further modification then such modifications may be 

initiated by a retrograde signal that is restricted to the synaptic clefts of the potentiated 

neurons and may lead to enhanced release of neurotransmitter at the potentiated 

synapses. This change would affect all synapses that are located on the potentiated 

boutons, and lead to LTP at synapses on neighbouring neurons that share multiple- 

synapse boutons with the initially potentiated neurons (Harris, 1995). In this model, 

restricting the retrograde signal to the potentiated synaptic clefts ensures the axonal- 

input specificity of LTP, and the induction of the secondary LTP requires the same 

cellular mechanisms as those of induction of the primary LTP. 

The results reported in this thesis, and increases in asymmetric, axospinous 

synapse number reported by Weeks et al (1998) suggest that, in the maintenance phase 

of LTP, the increase in the number of synapses is more widespread than during the 

induction phase of LTP. Changes in the number of synapses are believed to be the 

result of CREB activation and gene expression, as phosphorylation of CREB has been 

shown to result in an increase in dendritic spine density that is not restricted to a single 

dendrite (Murphy and Segal, 1996). 

Among the effector proteins that are produced after gene expression are the 

neurotrophins that can have a retrograde effect on the presynaptic membrane and can 

trigger gene expression in the presynaptic cell. Therefore in protein synthesis 

transcription, presynaptic protein kinase activity may be implicated in LTP 

maintenance. Tetanic stimulation of the perforant path that induces LTP in the dentate 

gyrus has been shown to result in an increase in mRNAs encoding for synapsin I and 

syntaxin 2B in the granule cells (Hicks et al., 1997). An increase in presynaptic 

proteins measured postsynaptically results in a corresponding increase in protein 

levels in the axonal terminals of these cells, i.e. in the mossy fibre terminal zone of 

CA3, 5h later. This trans-synaptic LTP is a potential molecular mechanism for the 

distribution of synaptic plasticity beyond a single synapse (Davis et al., 1998). 
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Figure 5.2 Morphological changes following the induction and maintenance of 
LTP. 

Synaptic stimulation, NMDA activation, calcium entry, activation of 
metabotropic glutamate receptors and second messenger cascades (a). Short 
Term Stage of Synaptic Enhancement: Modifications of the internal 
cytoskeleton lead to insertion of receptors into the PSD and changes in synapse 
size and shape e.g. widening and shortening of spine neck, active zone curvature 
(h). Production of new synaptic proteins with further enlargement of synaptic 
active zones and the formation of synaptic perforations (c-d). Intermediate Stage 
of Synaptic Enhancement: Division of perforated synapses and lor formation of 
new synapses and dendritic spines (e-f). Increase in the number of asymmetric 
axospinous synapses (8). Fusion of spines as spine density decreases (h). Long 
Term Stage of Synaptic Enhancement: Retraction of spines to increase the 
incidence of axodendritic synapses (i). 
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As an increase in axodendritic synapses is observed 13 days after tetanisation, 

the increase in axospinous synapse density appears to be transient. This could be 

explained by retraction of some spines (Rusakov et al., 1997b) to convert axospinous 

synapses to axodendritic ones and further consolidation of synaptic efficacy. (Figure 

5.2) 

Since initial interest in LTP was aroused by the possibility that this phenomenon 

may be the mechanism that underlies memory formation then similar morphological 

changes may be expected after learning. The search for cellular correlates of learning 

is a major challenge in neurobiology and structural reorganisation or remodelling 

appears to be associated with various learning paradigms. Immediately after training 

morphological modifications are apparent e.g. spatial re-arrangement of the vesicle 

apparatus in forebrain synapses of the chick has been observed after passive avoidance 

leaming (Rusakov et al., 1993). 

Alterations in the size of synapses have been reported in studies of behavioural 

paradigms such as visual deprivation (Turner and Greenhough, 1985) and increases in 

the size of PSDs have been observed in rats trained or housed in complex 

environments (Wallace et al., 1992). Alterations in the thickness of the postsynaptic 

density have been described during the maturation of young chicks (Rostas et al., 

1991). Interestingly, NMDA administration alone appears to be capable of rapidly 

inducing a transient increase in the length of PSDs and the formation of new synapses 

(Brooks et al., 1991). Therefore, the NMDA receptor, that is crucial for the induction 

of LTP, appears to have an important role in synaptogenesis and synaptic structural 

plasticity. 

Changes in the shape of dendritic spines have been demonstrated, in the 

molecular layer of the dentate gyrus, in rats subjected to a one-way active avoidance 

task. In trained animals the frequency of perforated concave synapses significantly 

increased as compared to untrained controls and the length of the postsynaptic density 
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in both perforated, and non-perforated synapses, significantly increased (Van Reempts 

et al., 1992). 

An increase in spine density, reflecting an increased number of excitatory 

synapses per neuron, has been observed after spatial learning (Moser et al., 1994). 

This appears to be a transient increase as a reported increase in spine number 6 h post- 

training had returned to control levels by 72 h post-training (O'Malley et al., 2000). 

This is supported by a further study that found no training-associated changes 6 days 

after spatial training, although there was a training-associated increase in the clustering 

of synaptic active zones in CA1, indicating alterations in local neural circuitry 

(Rusakov et al., 1997a). 

Studies of rats trained to acquire a passive avoidance response have also 

reported a similar transient increase in spine density in the dorsal dentate gyrus, 3 h - 6 

h after training that returned to basal levels after 72 h (O'Malley et al., 1998). Studies 

of the chick learning model, a one-trial passive avoidance learning task, have reported 

an increase in synaptic density, 6Omin post-training (Doubell and Stewart, 1993) in 

one area of the striatum and 24-48h after training in another region (Lowndes and 

Stewart, 1994). 

The activity of the neural cell adhesion molecule has been implicated in the 

molecular processes associated with synaptic plasticity and stabilisation during 

memory formation (Doyle et al., 1992a) (Doyle et al., 1992b); (Scholey et al., 1993). 

Performance of rats in the Moms mater maze, a spatial learning paradigm which 

requires the hippocampus, is impaired by either intraventricular injection of NCAM 

antibodies (Arami et al., 1996) or the injection of an enzyme which removes polysialic 

acid residuals from extracellular NCAM domains (Becker et al., 1996). 

A time course of NCAM expression has been identified in both the chick and rat 

avoidance paradigms that involves a wave of glycoprotein synthesis 5.5-8h post- 

training ((Rose, 1995); (Murphy et al., 1998); (Skibo et al., 1998). In addition, 
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intraventricular injections of anti-NCAM antibodies 6-8 h post-training were shown to 

impair memory for a one-trial passive avoidance task (Doherty et al., 1995); Scholey 

et al., 1993) - a time window susceptible to the amnesic effects of protein synthesis 

inhibitors (Freeman et al., 1995). This is associated with spatially clustered granule 

cells in the adult rat hippocampus that show a transient time-dependent increase in 

dendritic spine number 6-8 hr following training (Fox et al., 1995). 

It is proposed that NCAM antibodies may not block de novo synapse formation 

but that NCAMs are likely to contribute to selective stabilisation of synapses 

following formation (Schuster et al., 1996) and the selection of synapses to be retained 

and / or eliminated may be dependent on cell adhesion molecule glycosylation events 

in the 10-12h post training period (Doyle et al., 1992a); (Murphy et al., 1998). 

This cascade of events fulfils many of the requirements of LTP maintenance 

whereby L-LTP is dependent on protein synthesis, relies on intracellular transport 

mechanisms and occurs predominantly on dendritic spines to result in changed 

synaptic weight. It would be interesting to investigate morphological changes in 

perforant path-dentate gyms synapses 3-8 hours post tetanisation, and the effects of 

the application of NCAM antibodies, at various time points, after the induction of 

LTP. 

In conclusion, morphological investigations in the hippocampus following the 

acquisition of different learning paradigms do appear to show some similar results to 

morphological, post-stimulation studies of long-term potentiation induced by v a r h s  

stimulating protocols. In future, a more precise relationship, if any, between LTP and 

hippocampal-dependent learning may be found by combining both paradigms in the 

same animal (Moser et al., 1998). 
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Future Experiments 

While the experiments in this thesis have clarified some aspects of the changes 

in morphology after LTP induction with various stimulating protocols the results have 

suggested other areas of investigation. 

As any early changes in morphology are likely to be restricted to activated 

synapses a study of the morphology of spines that are potentiated would be important. 

Confocal microscopy techniques could visualise the activation of individual spines 

that could then be serially reconstructed after electron microscopy. Similarly, electron 

microscopy and reconstruction of neurons from dissociated hippocampal cultures after 

chemical activation might prove useful. 

It would be particularly interesting to examine morphological changes 3 to 6 

hours after the induction of LTP with different stimulating protocols, a period of time 

when changes are seen in the dentate gyrus of the rat after passive avoidance learning. 

These morphological investigations would include an examination of new granule cell 

generation in the dentate gyrus to assess whether this contributes to the increase in 

synapse number observed after 24h. A study of morphological changes several weeks 

after LTP induction, but with TBS, would be an interesting comparison to 

Geinisman’s study 13 days after tetanisation with WFS. Different stimulating protocols 

appear to utilise different signalling pathways and blockade of components of 

translation and transcription, while employing different stimulation paradigms, would 

perhaps indicate which are relevant. 

As already mentioned, whether LTP is the mechanism underlying learning 

would be best investigated by studying LTP and learning success in the same animal. 

Since there appear to be similarities in the morphology reported in the dentate gyrus of 

rats both after LTP of the perforant path, and after passive avoidance learning, it 

would be interesting to saturate LTP in the rodent dentate gyrus and then subject those 

animals to passive avoidance learning, 
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Appendix 

Preparation of stock solutions. 

0.2M Sodium cacodylate buffer. 

Consult relevant COS" assessments. 

For each 1000ml: 

9 

Dissolve 42.8g sodium cacodylate in 500 ml distilled water. 

Add approx. 8ml 1M hydrochloric acid to yield a pH 7.4. 

Make up to 1000ml with distilled water. 

Fixative 

2% paraformaldehyde and 2% glutaraldehyde in O.IM sodium cacodylate buffer. 

Consult relevant COS" assessments. 

For each 1000ml: 

9 Weigh 20g paraformaldehyde. 

Add approximately 350ml distilled water and 5.0ml 1M sodium hydroxide 

(made fresh each time). 

Heat the paraformaldehyde solution in a fume cupboard to 60°C when the 

paraformaldehyde dissolves. 

Cool and add 80ml of EM grade 25% glutaraldehyde. 

Make up to 500ml with distilled water. 

Make up to 1000ml with 0.2M sodium cacodylate buffer pH 7.4. 

9 

9 

9 

9 

9 Filter before use. 

Fixative must be used within 12h and stored at 4°C 
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Epon 812 embedding resin 

Consult relevant COS" assessments. 

Epon 812 (Agar Scientific Ltd, England) 

DDSA - Dodecenyl succinic anhydride (Agar Scientific Ltd, England) 

MNA - Methyl nadic anhydride (Agar Scientific Ltd, England) 

BDMA - N- benzyldimethylamine (Agar Scientific Ltd, England) 

Stock bottles of Epon, DDSA and MNA, as well as mixing bottles and a 

graduated cylinder are warmed for approx. 20min to 60°C. 20ml of Epon, 16ml of 

DDSA and 8ml MNA are added to the mixing bottle and placed on a rotating 

mixer until well mixed.1.3ml BDMA is finally added and the bottle replaced on 

the mixer until the resin is a uniform colour. 

The tissue to be embedded must be completely infiltrated with resin. This is 

achieved by initially soaking the tissue in a mixture of Epon and acetone i.e.: 

1. Add 1:l Epodacetone overnight, on a rotating mixer, with the bottle caps 

off to allow the evaporation of the acetone. 

Replace with fresh Epon and mix for 3h with the bottle caps off. 

Replace with fresh Epon and mix for 2h on a rotating mixer with the bottle 

caps on. 

2. 

3. 

Sections are then placed in flat bottomed beem capsules, filled with fresh Epon 

and polymerised overnight at 60°C. 

188 


