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Abstract 

Silica nanostructures find applications in drug delivery, catalysis, and composites, however, 

understanding of the surface chemistry, aqueous interfaces, and biomolecule recognition remain 

difficult using current imaging techniques and spectroscopy. A silica force field is introduced 

that resolves numerous shortcomings of prior silica force fields over the last thirty years and 

reduces uncertainties in computed interfacial properties relative to experiment from several 

100% to less than 5%. In addition, a silica surface model database is introduced for the full range 

of variable surface chemistry and pH (Q2, Q3, Q4 environments with adjustable degree of 

ionization) that have shown to determine selective molecular recognition. The force field enables 

accurate computational predictions of aqueous interfacial properties of all types of silica, which 

is substantiated by extensive comparisons to experimental measurements. The parameters are 

integrated into multiple force fields for broad applicability to biomolecules, polymers, and 

inorganic materials (AMBER, CHARMM, COMPASS, CVFF, PCFF, INTERFACE force field). 

We also explain mechanistic details of molecular adsorption of water vapor, as well as 

significant variations in the amount and dissociation depth of superficial cations at silica-water 

interfaces that correlate with zeta-potential measurements and create a wide range of aqueous 

environments for adsorption and self-assembly of complex molecules. The systematic analysis of 

binding conformations and adsorption free energies of distinct peptides to silica surfaces is 

reported separately in a companion paper. The models aid to understand and design silica 

nanomaterials in 3D atomic resolution, and are extendable to chemical reactions. 
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1. Introduction 

Silicon dioxide, or silica, is widely available in nature, by technical synthesis, and biologically 

enriched in various organisms.1-3 Silica is used as filler in nanocomposites and tires,4-6 for 

purification of gases and liquids,7,8 as well as in catalyst supports.9-11 More recently, silica 

nanoparticles find applications in drug delivery, biosensors, and cosmetics that exploit 

interactions with biological molecules in aqueous solution.12-15 Diatoms in marine environments 

also produce hierarchically organized silica-protein skeletons,16-18 and laboratory efforts have 

aimed at replications using designed amino acid sequences.19-25 Success in terms of achievable 

order of silica nanostructures has yet been limited, even though several peptides and proteins 

isolated from microorganisms and cellular templates were employed.19,21,22,26-30 Engineering 

complex silica-containing materials requires quantitative understanding of the role of the silica 

precursors, surface chemistry of silica formed, as well as competitive interactions with solvents 

and proteins. The effect of pH, molecular conformation, and buffer composition on materials 

properties is thereby critical.19,31,32 Overall, many questions related to silica biomineralization, 

specific molecular recognition, and interfacial adhesion remain difficult to answer using 

available instrumentation. Molecular simulation can provide missing insight and accelerate 

rational materials design, and reliable tools for such simulations are needed. 

The simulation of bulk and surface properties of silica has been of interest since the 

emergence of numerical computer methods in the 1980s (Table 1).33-43r88,r09 Numerous 

developments have occurred over the years and substantial shortcomings still persist (section S1 

for details). Early force fields often assumed overly ionic Si-O bonds, and surface models 

containing functional groups such as silanol (SiOH) and siloxide (SiO‒ Na+) were not 

feasible.33,34r88 Subsequent models introduced covalent bonds and more broadly applicable 

energy expressions.35,36,39,40,44 Nevertheless, surface properties continued to deviate up to 
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multiples from experimental data and the chemical variety of silica surfaces, including surface 

ionization in particular, was not taken into account. Additional shortcomings include shrinkage 

over 20% in some models and errors in stoichiometry.36,39,40 Similar difficulties are also 

encountered in reactive force fields that employ less compatible, highly complex energy 

expressions.45 A key step towards chemical precision of atomistic models has been the careful 

evaluation of the correct balance of covalent bonding versus ionic bonding, which is reflected by 

atomic charges of +1.1±0.1e for Si in tetrahedral oxygen coordination.46 Structural properties, 

surface, and hydration energies can then be computed in agreement with measurements.47 At the 

same time, the observation of silica surface chemistry and pH conditions in the model is 

paramount.19,48 Specifically, the area density of silanol groups (SiOH) and the degree of 

ionization of silanol groups to siloxide groups (e.g. SiO–  Na+) are critical. The area density of 

silanol groups can vary between 0 and 9.4 groups per nm2,49 and ionization to siloxide groups in 

the range of 0.0 to 2.0 ionized groups per nm2 has been observed by potentiometric titration 

depending on type of surface, pH, ionic strength, and type of cation.19,50-53  

The aim of this contribution is the introduction of a silica surface model database that covers 

all types of surface chemistry and pH, as well as the introduction of a silica force field that 

resolves limitations of prior models. Our team has previously proposed accurate force fields for 

related minerals, in comparison to which silica is a relatively simple case.19,46-48,54,55 The current 

model provides complete understanding of all parameters and increases the computed accuracy 

of many properties by an order of magnitude, including silica-water and silica-organic interfaces. 

The main features are: (1) full atom mobility, (2) match of computed and experimental cell 

parameters, (3) good match of computed and measured density of states (IR, Raman), (4) full 

range of silica surface models with Q2, Q3, Q4 surface environments and interpretation in the 
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context of experiment, (5) full range of surface ionization corresponding to pH and surface 

type/particle size, (6) match of computed and measured immersion energies of Q3 surfaces 

(pyrogenic silica) in water, (7) consistency of computed and measured adsorption isotherms of 

water on Q3 surfaces, (8) match of water contact angles on surfaces between Q3 to Q4 type, (9) 

agreement of the amount of dissociated cations with zeta potentials on ionized Q3 surfaces as a 

function of pH and particle size, (10) quantitative correlation between computed and measured 

peptide adsorption on ionized Q3 and Q2/Q3 surfaces for peptides carrying various charges (see 

ref. 56), (11) compatibility of the force field with major organic and biomolecular force fields 

(CHARMM,57 CVFF,58 AMBER,59 PCFF,35,60-62 COMPASS,63 INTERFACE48), (12) low 

number and full interpretation of force field parameters.  

This paper focuses on the introduction of the silica models and provides full validation for 

aqueous interfaces. Accurate data for adsorption of various peptides are reported in a companion 

paper to maintain reasonable length.56 In section 2, we discuss the surface model database and 

the construction of model surfaces for given chemical conditions and pH. In section 3, we 

describe the force field and structural validation. In section 4, properties of solid-liquid, solid-

vapor interfaces, and electric double layers are analyzed in comparison to measurements. 

Conclusions follow in section 5. Computational methods and further details are provided in the 

Supporting Information. 

 

 

  



Page 6 of 46 

Table 1. Comparison of essential performance characteristics of silica force fields. 

 Potential 

function  

Bulk Si 

charge (e) 

Surface SiOH 

(OH/nm2) 

SiOH 

ionization (%) 

Atom 

mobility 

∆Himm (Q3) 

(mJ/m2)  

Experiment  +1.1±0.1a 0 to 9.4 0 - 25%b  160±5c 

Present study 9-6/12-6 LJ +1.1 0 to 9.4 0 - 25%  167±2c 

Butenuth et al.40 12-6 LJ +1.6 4.4 Not reported   d 178±5c 

Hassanali et al.37 Buckingham +2.4 4, 6.4 0%  280, 830±5c 

Lopes et al.39  12-6 LJ +1.08 4, 9.3e 0%   f >1000c 

Cruz-Chu et al.36 12-6 LJ +1.0 Non-stochiometricg No ionizationg 
 NA 

Beest et al.34 Buckingham +2.4 NA (bulk only)  NA  NA 

Hill and Sauer35 9-6 LJ +0.5 Full range possible 0%  <0h 

Catlow33 Buckingham +4.0 NA (bulk only) NA    NA 

Feuston et al.r88 BMH, SW 

potential 

+4.0 NA NA    NA 

 

a Refs. 46,64-66. b Ionization to SiO- Na+ groups varies from 0 to ~2.0 per nm2 as a 

function of surface characteristics (cleavage plane, particle size, porosity), pH, and 

ionic strength.19,50,51,53,67-71 

c Pyrogenic silica in pure water, ref. 72.  d More than 30% shrinkage in comparison to X-

ray data when atom positions are not fixed. e Quartz (011) and (100) surfaces. f More 

than 20% shrinkage in comparison to X-Ray data when atom positions are not fixed. g 

Si and O have multiple valencies, such as Si atoms with three bonds and O atoms with 

one bond and missing counter ion on the surface. h Only repulsive van-der-Waals 
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parameters for superficial Si and O are given. The atomic charge for silanol H is very 

low (+0.0657e). 
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2. A Silica Surface Model Database 

Our team has previously shown that differences in the surface structure of various silica 

nanoparticles are so substantial that combinatorially attracted peptides exhibit less than 20% 

sequence similarity at comparable pH and ionic strength.19,73-76 Sequence similarity is entirely 

random (5%) when the pH value varies in addition. Specific models for a given type of silica and 

conditions in solution are thus essential19 and proposed here to cover the range of possible 

surface chemistry and ionization (Table 2). Similar diversity of surface environments is also 

expected for other oxides such as titania and apatites, however, not for precious metals that are of 

simple chemistry and attract similar peptide sequences.77-83  

Two major factors play a role for the construction of a silica surface model. One is the type 

of substrate that determines the area density of silanol groups; the other is the degree of 

ionization (Table 2). Silica exists in various crystalline polymorphs, e.g., quartz, tridymite, 

cristobalite, stishovite, and amorphous phases, e.g., silica gel, precipitated silica, fumed silica 

particles, and porous glasses.2,84-86 These forms of silica exhibit different bulk, surface, and 

physiological properties. The surfaces of the many types of silica have been extensively 

characterized, and such information has rarely found entry into appropriate molecular models to 

date (some are given in the Interface force field48). The most common techniques for surface 

characterization are measurements of the specific surface area (BET) combined with 

measurements of weight loss upon heating to determine the area density of silanol groups,49,87,88 

measurements of contact angles,89,90 immersion energies,72,91-93 adsorption isotherms,94,95 solid 

state NMR spectroscopy,96 infrared (IR) and Raman spectroscopy,19,97,98 X-ray photoelectron 

spectroscopy (XPS),99 as well as potentiometric titration50-53,67-71 and ζ-potential measurements.19 

Potentiometric titration and ζ-potential measurements are critical to quantify surface ionization 
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as a function of pH and ionic strength. The available redundant information provides excellent 

guidance to build realistic surface models that are essential for predictive simulations (Figure 1 

and Supporting Information). 

2.1. Type of Substrate and Area Density of Silanol Groups. Some hydrated cleavage 

planes of quartz, surfaces of large silica nanoparticles, and various forms of silica at high pH 

contain Q2 surface environments, i.e., two silanol groups per superficial silicon atom (=Si(OH)2), 

and mixed Q2/Q3 surface environments. The area density of silanol groups is then in the upper 

range of 9.4 to 4.7 per nm2 (Figure 1e). Most silica glasses, porous glasses, and medium size 

nanoparticles (~100 nm) contain 70-90% Q3 environments on the surface ((Si(OH)), i.e., one 

silanol group per superficial silicon atom (Figure 1 a-d). The remainder of 10-30% is comprised 

of Q2 and Q4 environments. The average area density of surface silanol groups in aqueous 

amorphous silica is 4.5-4.9 per nm2, whereby 4.7 silanol groups per nm2 coincides with the area 

density of a perfect Q3 silica surface.49,87 Silica surfaces after thermal treatment feature a higher 

proportion of Q4 environments, i.e., siloxide bridges without silanol groups (Figure 1f). The type 

and area density of silanol groups thus depends on the chosen crystal cleavage plane, particle 

size, synthesis protocol, thermal pretreatment, humidity, and aging. In addition, surface 

roughness and porosity can be important for a given model and implemented by processing 

models of the corresponding even surfaces. 

2.2. Ionization of Silanol Groups. All silanol groups on the surface (SiOH) are subject to 

deprotonation-protonation equilibria. Neutral silanol terminated surfaces are found at pH values 

between 2 and 4 (point of zero charge) and partial conversion into metal siloxide groups SiO– ∙∙∙ 

M+ occurs with solution electrolytes as a function of substrate type, pH, ionic strength, and type 

of cations (Table 2). M+ can be an alkali cation or the equivalent of other cations. The common 
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range is between 0 and 1.0 SiO–···M+ groups per nm2, corresponding to between 0 and 20% 

ionization on a Q3 surface, and less than 2.0 siloxide groups per nm2 for any type of silica 

surface. In general, ionization increases from Q4 towards Q2 environments, toward higher pH (in 

hyperbolic form), and toward higher ionic strength. The precise extent of ionization per unit 

surface area depends on (1) the area density (Q2, Q3, Q4) and type of silanol groups (geminal, 

vicinal, isolated, occluded in pores),2,19,85,94 (2) pH, (3) ionic strength of the solution, (4) and the 

type of cations and anions present in solution.50-53,67-71 As an example, the sensitivity of surface 

ionization is graphically illustrated for common amorphous silica nanoparticles prepared by 

Stöber-like synthesis (Figure 2).19 

The type of surface and pH are key factors for surface ionization. However, the role of ionic 

strength is also critical. For example, when freshly cleaved crystal surfaces or freshly 

synthesized pyrogenic silica nanoparticles (Figure S1) are immersed in ultrapure water of an 

ionic strength I < 10-3 M, practically no ionization occurs because buffers and stabilizing metal 

ions are absent (<1%).50,52,67,69 This is important for a range of measurements such as immersion 

energies, contact angles, and adsorption isotherms that are reported as part of force field 

validation (section 4). Under conditions in the human body and during biomimetic synthesis, 

ionization is close to the levels shown in Table 2. The precise amount of ionization for a desired 

model should thus always be determined using data in the original literature50-53,67-71 or direct 

experimental measurements. 

2.3. Model Choices and Validity. Overall, it has been demonstrated that the silanol area 

density and the degree of ionization can both vary more than an order of magnitude, underlining 

that the choice of suitable surface models is greatly important (Table 2). At the same time, 

experimental data also suggest that minor differences have limited impact and are not a reason 
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for concern. Numerous previous19 and present simulations of silica interfaces have confirmed 

that results differ enormously for the extremes, although the sensitivity to small changes is not 

high. With this insight in mind, we developed a surface model database that contains over twenty 

different silica models to enable informed choices (see Supporting Information). To achieve 

quantitative correlations with measurements, the chosen area density of silanol groups should 

agree within ±0.5 per nm2 (range: 0 to 9.4 per nm2) and the degree of ionization within ±0.15 per 

nm2 (range: 0 to ~2.0 per nm2) with a true sample. The example of common amorphous silica 

nanoparticles illustrates this argument (Figure 2).19 

Details of the construction of models are fully described in section S9 of the SI. The 

distribution of ionized sites (SiO‒ Na+) in the surface model database was chosen corresponding 

to the minimum energy and dynamic proton distributions could become feasible using constant 

pH molecular dynamics.100 Available models can be further customized for particular ionic 

environments, porous, and other morphologies, especially when sample-specific data are 

available (see further discussion in section S2). 
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Figure 1. Representative models of silica surfaces. (a-c) Regular Q3 surfaces with a total Si-

O(H,Na) density of 4.7 nm-2 and 0%, 9%, and 18% ionization in top view (upper panel) and side 

view (lower panel). The models are suitable for silica at different pH and particle size. (d-f) More 
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specialized surfaces in top view (upper panel) and side view (lower panel). (d) Amorphous Q3 

silica surface with a total Si-O(H,Na) density of 4.7 nm-2 and 18% ionization, similar to (c). (e) 

Regular Q2 surface with a total Si-O(H,Na) density of 9.4 nm-2 and 18% ionization. (f) Annealed 

50:50 Q3/Q4 surface with a total Si-O(H,Na) density of 2.4 nm-2 at the point of zero charge. 

Surface ionization and pH relate to an ionic strength of 0.1-0.3 mol·dm-3 near physiological 

conditions. 

 

Table 2. Guide towards surface models for a given silica substrate, as implemented in the silica 

surface model database. Essential information includes the area density of SiO(H,Na) groups, the 

degree of ionization, and the surface topography. 

Type of substrate 1. Area density of 

silanol groupsa 

2. Ionization to  

(SiO– M+)b 

3. Surface 

topography 

Quartz surfaces, silica 

nanoparticles >200 nm 

size, silica at pH > 9 

Q2 and Q2/Q3 

(9.4 to 4.7 per 

nm2) 

pH 2: ~0 per nm2 

pH 5: ~0.5 per nm2 

pH 7: ~1.0 per nm2 

pH 9: ~1.5 per nm2 

Substrate-

specific: 

smooth, 

rough, 

porousd 

Most silica glasses, porous 

silica, silica nanoparticles 

<200 nm size 

Q3 

(4.7 per nm2) 

pH 3: ~0 per nm2 (0%) 

pH 5: ~0.3 per nm2 (6%) 

pH 7: ~0.6 per nm2 (13%) 

pH 9: ~0.9 per nm2 (20%) 

Silica surfaces and 

nanoparticles annealed at 

200-1000 °C 

Q3/Q4 and Q4 

(4.7 to 0 per nm2)c 

 

pH 4: ~0 per nm2 

pH 7: 0-0.6 per nm2 

depending on Q3 content 
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a The area density and specific changes from Q2 to Q4 at high temperatures are described in refs. 

49,88.  b We assume physiological conditions with an ionic strength I ~ 0.1-0.3 M of sodium ions. 

Ionization at a given pH for different ionic strength I and other cations must be reevaluated 

according to data in refs. 19,50-53,67-71. Also, silica begins to dissolve at pH9. c Rehydration can 

lower the Q4 content in favor of Q3. d Pore parameters include pore diameter, depth, and area 

density of pores on the surface. Narrow pores likely reduce ionization. 

 

 

 

Figure 2. Schematic relationship between surface ionization and pH for amorphous silica 

nanoparticles from Stöber-type synthesis. Large nanoparticles contain Q2/Q3 surface 

environments, medium and smaller nanoparticles mostly Q3 environments. The amount of SiO‒

Na+ groups per nm2 is shown at an ionic strength of 0.1-0.3 mol·dm-3 (see details and original 

data in refs. 19,50-53). 
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3. Force Field Parameters and Structural Validation 

3.1. Choice of Functional Form. We choose common harmonic energy expressions that are 

suitable for inorganic compounds and allow accurate simulations of interfaces with water, 

biomolecules, and polymers.47,48,101 We aim at broad applicability using multiple platforms, 

including CHARMM, CVFF, AMBER (equation 1), PCFF, and COMPASS (equation 2): 

 

𝐸𝑝𝑜𝑡 =  ∑ 𝜀𝑖𝑗 

𝑖𝑗,   𝑛𝑜𝑛 𝑏𝑜𝑛𝑑𝑒𝑑
1,2 𝑎𝑛𝑑 1,3 𝑒𝑥𝑐𝑙

[(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− 2 (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

] +
1

4𝜋𝜀0
∑  

𝑖𝑗,   𝑛𝑜𝑛 𝑏𝑜𝑛𝑑𝑒𝑑
1,2 𝑎𝑛𝑑 1,3 𝑒𝑥𝑐𝑙

𝑞𝑖 𝑞𝑗

𝑟𝑖𝑗
 

+ ∑ 𝑘𝑟,𝑖𝑗  ∙ (𝑟𝑖𝑗 − 𝑟0,𝑖𝑗)
2

𝑖𝑗,   𝑏𝑜𝑛𝑑𝑒𝑑  + ∑ 𝑘𝑖𝑗𝑘  ∙ (𝜃𝑖𝑗𝑘 − 𝜃0,𝑖𝑗𝑘)
2

𝑖𝑗𝑘,   𝑏𝑜𝑛𝑑𝑒𝑑                                 (1) 

 CHARMM, CVFF, AMBER 

𝐸𝑝𝑜𝑡 =  ∑ 𝜀𝑖𝑗 

𝑖𝑗,   𝑛𝑜𝑛 𝑏𝑜𝑛𝑑𝑒𝑑
1,2 𝑎𝑛𝑑 1,3 𝑒𝑥𝑐𝑙

[2 (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

9

− 3 (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

] +
1

4𝜋𝜀0
∑  

𝑖𝑗,   𝑛𝑜𝑛 𝑏𝑜𝑛𝑑𝑒𝑑
1,2 𝑎𝑛𝑑 1,3 𝑒𝑥𝑐𝑙

𝑞𝑖 𝑞𝑗

𝑟𝑖𝑗
 

+ ∑ 𝑘𝑟,𝑖𝑗  ∙ (𝑟𝑖𝑗 − 𝑟0,𝑖𝑗)
2

𝑖𝑗,   𝑏𝑜𝑛𝑑𝑒𝑑  + ∑ 𝑘𝜃,𝑖𝑗𝑘  ∙ (𝜃𝑖𝑗𝑘 − 𝜃0,𝑖𝑗𝑘)
2

𝑖𝑗𝑘,   𝑏𝑜𝑛𝑑𝑒𝑑                               (2) 

 PCFF, COMPASS 

 

The potential energy Epot contains 12-6 and 9-6 Lennard-Jones potentials for repulsive and 

dispersive van-der-Waals interactions, respectively, a Coulomb potential for electrostatic 

interactions, as well as harmonic potentials for bond stretching and angle bending. Torsion 

potentials are not necessary due to the limited number of rotational degrees of freedom. 

The functional forms in equation 1 and equation 2 exhibit some differences, for example, in 

12-6 versus 9-6 exponentials of the Lennard-Jones (LJ) potential, in combination rules to obtain 

 and  for pairs of different atom types i and j, as well as in conventions for scaling of s ij eij
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nonbond interactions between 1,4 bonded atoms. These differences were accounted for by 

adjusted parameter sets for each force field (Tables 3 and 4) and tests to achieve near-identical 

performance. Furthermore, some default energy terms in the mentioned force fields are not 

needed for silica, such as Urey-Bradley, torsion, and out-of-plane potentials in class I force fields 

(CHARMM, CVFF, AMBER), as well as higher order cubic, quartic, and cross terms in class II 

force fields (PCFF, COMPASS).47,48,101 The presence of such terms for other molecules does not 

interfere with the silica parameters. 

3.2. Force Field Parameters. The parameters for nonbonded and bonded interactions are 

listed in Table 3 and Table 4 for all energy expressions. We distinguish five atom types 

consistent with different chemical environments, which are sufficient to describe bulk and 

surface properties in excellent agreement with experimental measurements (Figure 3).46,48,55 The 

atom types include silicon, bulk oxygen, silanol oxygen, hydrogen, and sodium. All atoms 

possess nonbonded terms (Table 3). Bonded terms are included between neighboring atoms with 

predominantly covalent character, i.e., silicon-oxygen bonds with atomic charges of +1.1±0.1e 

for Si in tetrahedral oxygen coordination as well as oxygen-hydrogen bonds in silanol groups 

(Table 4).46,47 

The silica parameters are compatible with TIP3P and flexible SCP water models, leading to 

<5% difference in interfacial properties, as well as with parameters for biomacromolecules, 

surfactants, and polymers in CHARMM, CVFF, AMBER, PCFF, and COMPASS using standard 

combination rules (Tables 3 and 4). Among the force fields with 12-6 potentials (equation 1), 

silica parameters for CHARMM and CVFF are identical since arithmetic versus geometric 

combination rules for s ij
 cause only a negligible difference. Silica parameters for CHARMM 

and AMBER are identical except for the Si–O equilibrium bond length r0,ij
 (1.68 Å for 
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CHARMM and 1.65 Å for AMBER). The shorter bond length r0,ij  
in AMBER compensates for 

the partial reduction of nonbond interactions between 1,4 bonded atoms through the scaling 

factor of 0.5 for LJ and 5/6 for Coulomb interactions versus the scaling factor of 1.0 for both in 

other force fields. The different values of r0,ij
 lead to the same average Si–O bond length of 1.61 

Å in MD simulation at 298 K, in agreement with X-ray data for all energy expressions.102,103 

PCFF and COMPASS require different  and  values due to a less repulsive 9-6 LJ 

potential.47,104 

 

Table 3. Non-bonded parameters for silica and silica surfaces. 

  9-6 LJ 

PCFF, COMPASS 

12-6 LJ 

CVFF, CHARMM, AMBER 

Atom Charge (e)  (Å)  (kcal/mol)  (Å)  (kcal/mol) 

Si  +1.1, +0.725a 4.2 0.08 4.15 0.093 

O (Bulk) -0.55 3.6 0.04 3.47 0.054 

O (Silanol) -0.675, -0.9a 3.6 0.12 3.47 0.122 

H +0.40 1.098 0.013 1.085b 0.015b 

Na+ +1.0 3.3 0.08 3.17c 0.094c 

 

a Sodium siloxide groups require +0.725e for Si and -0.9e for O (Figure 3). 

b LJ parameters for silanol hydrogen (s ii
, eii ) can also be set to zero as in water hydrogen in 

SPC and TIP3P models. The computed heat of immersion changes <5 mJ·m-2 (<3%). 

s ii eii

s ii eii s ii eii
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c We recommend these 12-6 LJ parameters ( , ) for sodium ions (ref. 48). The computed 

hydration energy of -95±5 kcal/mol at 298 K agrees with measurements of -97 kcal/mol at 

infinite dilution (ref. 105). Alternative parameters are available in CHARMM (2.7275 Å, 0.0469 

kcal/mol) (ref. 106) and AMBER (2.738 Å, 0.0874 kcal/mol) (ref. 107), whereby the listed Na+ 

diameter s ii
 of 2.73 Å appears small in comparison to 3.087 Å for isoelectronic Ne (ref. 108), 

especially upon added contraction by strong Coulomb forces with water and other species. 

 

 

Table 4. Bonded parameters for silica and silica surfaces. 

 

Type 

Bond: Er = kr (rij - r0,ij )
2
 

kr  (kcal/(mol·Å2)) r0,ij
 (Å) 

Si-O 285 1.68, 1.65a 

O-H 495 0.945 

  

 

Type 

Angle: Eq = kq (qijk -q0,ijk )
2
 

kq
 (kcal/(mol·rad2)) q0

 (°) 

O-Si-O 100 109.5 

Si-O-Si 100 149.0 

Si-O-H 50 115.0 

a r0,SiO
 = 1.65 Å must be used with the AMBER force field and r0,SiO

 =1.68 Å with all other force 

fields due to different scaling of nonbond interactions of 1,4 bonded atoms (see text).  

 

s ii eii
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Figure 3. Atom types and atomic charges (in units of e) in the silica model. Osilanol and Si 

carry different charges when part of a siloxide group. 

 

3.3. Derivation. The force field focuses on a chemical rationale for each parameter and aims 

at quantitative correlations with atomic-scale and bulk properties.46-48 This approach differs from 

“black box” DFT assignments and leads to the best possible accuracy as explained in the 

INTERFACE force field for a range of inorganic compounds.48 The full derivation and 

interpretation of parameters for silica is described in the Supporting Information (section S3) and 

important aspects are summarized in the following. 

The atomic charges qi  are vital to represent the balance of covalent versus ionic bonding 

precisely, and to enable consistency amongst parameters for silica, water, organic, and other 

inorganic compounds. Values of  were assigned in agreement with electron deformation 

densities, dipole moments, an extended Born Model, comparisons to related compounds across 

the periodic table, as well as the known reactivity of Si-O bonds in chemical reactions (Figure 

3).46 Equal importance was given to the validation of Lennard-Jones parameters  and  in 

qi

s ii eii
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comparison to experimentally measured surface properties, especially hydration energies (Table 

3).47,48,55,109 Initial values for  and  were assigned on the basis of known atomic radii,110 

polarizability,108 and the numbers of nonbonded neighbors in the nearest coordination shells.48 

Accordingly,  values of bulk and silanol oxygen atoms are distinguished while oxygen atoms 

in Si-OH and Si-O– groups as well as all Si atoms could be treated the same (Figure 3).  

Bonded parameters were assigned consistent with X-ray84,102,103 and IR/Raman data.97,98,111 

Equilibrium bond lengths  and bond angles  reflect X-ray measurements with minor 

adjustments (Table 4).84,102,103 Bond stretching and angle bending constants kr,ij  and kq ,ijk
 were 

initially selected according to known vibration constants47,55,111 and refined to reproduce 

measured IR and Raman spectra of silica, using the Fourier transform of the velocity 

autocorrelation function as previously described.47 

Finally, non-bonded parameters  and  were refined to reproduce the cell parameters of 

α-quartz and α-cristobalite  and hydration energies of Q3 surfaces.72,91 Minor changes were made 

upon additional testing of the influence of all parameters through systematic variation within 

physically reasonable ranges in more than 500 individual calculations. 

3.4. Validation of Structural, Vibrational, and Mechanical Properties. The force field 

yields an average Si-O bond length of 1.61±0.02 Å for α-cristobalite and α-quartz in NPT 

simulations consistent with X-ray measurements of 1.61±0.01 Å for all energy expressions.102,103 

Computed cell parameters and gravimetric densities of α-quartz and α-cristobalite agree with 

measurements on average better than 1% for all energy expressions (Table 5 and Table S1). An 

exception is the c dimension of α-cristobalite that is computed to be up to 3.7% lower than in 

experiment (in PCFF only), related to different crystal packing and lower density compared to α-

s ii eii

eii

r0,ij q0,ijk

s ii eii



Page 21 of 46 

quartz. The introduction of additional specific force field types could eliminate this deviation but 

appeared unnecessary. 

The model also reproduces vibration frequencies of silica in ±20 cm–1 agreement with IR and 

Raman measurements (Figure 4).97,98,112,113 Strong bands at 950-1200 cm-1 correspond to 

asymmetric Si-O-Si stretching vibrations, weaker bands at 550-850 cm-1 to the symmetric Si-O-

Si stretching vibrations νs, and strong bands at 400-550 cm-1 to O-Si-O bending vibrations. The 

O-H stretching vibration of SiOH groups on silica surfaces near 3700 cm-1 is also reproduced in 

the simulation (not shown, see ref. 97 for experimental data). The agreement of the major peaks at 

~1100 cm–1, ~800 cm–1, and ~480 cm–1 is very good for a simple, non-quantum mechanical 

model.r82 Although the intensities cannot be reproduced due to the lack of the full electronic 

structure, the vibrational signature appears clear enough to monitor frequency shifts in 

chemically different environments. 

Computed elastic moduli of quartz and cristobalite are higher than values obtained by X-ray 

scattering and Brillouin spectroscopy measurements,89,102-104 a fact that is related to the 

superposition of extensive bonded terms and nonbond terms in the force field (see details in 

section S4).48,55,102,104,114-117 
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Table 5. Cell parameters of α-quartz and α-cristobalite according to X-ray data and NPT 

molecular dynamics simulation under standard conditions with PCFF (equation 2). Uncertainties 

are given in brackets in units of the last digit. Data for CVFF, CHARMM and AMBER energy 

expressions (equation 1) show even smaller deviations (Table S1). 

 

 

Property 

α-quartz (5×5×5 super cell) α-cristobalite (6×6×4 super cell) 

X-raya Simulation X-rayb Simulation 

Density (g/cm3) 2.66 (4) 2.68 (2) 2.32 (4) 2.43 (2) 

a (Ǻ) 24.57 (1) 24.59 (2) 29.85 (2) 29.80 (2) 

b (Ǻ) 24.57 (1) 24.59 (2) 29.85 (2) 29.80 (2) 

c (Ǻ) 27.03 (1) 26.67 (2) 27.70 (2) 26.70 (2) 

α (°) 90.0 (0) 90.0 (0) 90.0 (0) 90.0 (0) 

β (°) 90.0 (0) 90.0 (0) 90.0 (0) 89.9 (0) 

γ (°) 120.0 (0) 120.0 (0) 90.0 (0) 90.1 (0) 

a Ref. 84,103. b Ref. 102. 
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Figure 4. Vibration spectrum of α-cristobalite (3D periodic crystal) in molecular dynamics 

simulation in comparison with experimental IR and Raman measurements (ref. 98,112,113).  

 

4. Silica-Water Interfacial Properties 

The analysis of aqueous silica interfaces further establishes the reliability of the force field and 

provides new insight into the role of surface chemistry and pH for the structure of adsorbed 

water and electric double layers. 

4.1. Heat of Immersion. The heat of immersion  equals the enthalpy (or energy) 

released upon immersion of clean, vacuum-dried silica particles into water, and is suited to 

validate silica-water interactions (Figure 5). The enthalpy of immersion of pyrogenic silica was 

determined in calorimetric measurements as = 160±5 mJ/m2 at 300 K72 and computational 

results match this value within the uncertainty. However, it is important to choose equivalent 

DHimm

DHimm
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silica surfaces in experiment and simulation due to the wide variability of surface chemistry and 

hydration energies between 100 and 1300 mJ/m2 (see Table S2, Figure S1, and section S5).72,91-

93,113,118,119 Pyrogenic silica is a suitable choice due to the absence of internal cavities and a well-

defined area density of 4.7±0.1 silanol groups per nm2 (~80% are Q3 type).72,91 The 

measurements were carried out in ultrapure water at pH = 7 whereby the very low ionic strength 

I < 10-3 M leads to negligible silanol ionization (<1%).37,39,54,56 Therefore, Q3 surface models 

with 4.7 silanol groups per nm2 and 0% surface ionization are appropriate for corresponding 

simulations (Figure 1a and section 2.2). The computed immersion energy of a Q3 surface with 

4% ionization increased to 173 mJ/m2 using the PCFF water model compared to 157 mJ/m2 for a 

0% ionized Q3 surface. The data indicate a negligible uncertainty, as an increment in ionization 

by 1% increases the computed immersion energy only ~2.5%.  

The agreement of the calorimetric heat of immersion DHimm
= 160±5 mJ/m2 with simulation 

results of 167, 160, and 157±2 mJ/m2 at 300 K using SPC (flexible), TIP3P, and PCFF water 

models also shows that standard combination rules of 12-6 LJ and 9-6 LJ potentials describe 

silica-water interfacial interactions very well. The treatment of silica-organic and silica-

biomolecular interfaces follows the same combination rules and enables similar performance.56 

This example of thermodynamic consistency between phases also illustrates the foundation of 

the INTERFACE force field as a uniform simulation platform for all materials classes, which 

aims at the best possible reproduction of surface properties of individual solids, liquids, and 

gases to gain subsequent access to a multitude of interfaces in high accuracy without additional 

fit parameters.48 
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Figure 5. Heat of immersion of pyrogenic silica surfaces in water. (a) The computational 

procedure involves three molecular dynamics simulations. (b) Results for regular Q3 surfaces 

without ionization using different water models, and experimental results (ref. 72,91).  

 

4.2. Contact Angle. The comparison of measured and computed contact angles q  of water 

provides insight into differences between Q2, Q3, and Q4 surfaces (Figure 6).89 Clean silica 

surfaces with an average silanol area density between 9.4 and 4.7 per nm2 correspond to Q2, 

Q2/Q3, and Q3 surfaces and exhibit a contact angle   = 0° (Figure 6a). These surfaces are 

strongly hydrophilic due to the formation of hydrogen bonds between surface Si-OH groups and 

water molecules and thus not distinguishable by contact angles. Heat treatment from 200 ºC to 

1000 ºC successively decreases the area density of surface silanol groups as a result of 

condensation of adjacent silanol groups in Q2 and Q3 environments to Q4 environments, and the 

surface wettability is reduced to  = 42° for Q4 surfaces (Figure 6b-d). The agreement between 

equilibrium contact angles in measurement89 and in molecular dynamics simulation for silica 

q
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surfaces between Q3 and Q4 falls within ±3°. The transition in surface chemistry was represented 

by models with ~4.7, 2.35, 1.2, and 0 silanol groups per nm2, and the silanol groups were non-

ionized to represent interfaces with deionized water (see sections 2.2 and 4.1).37,39,54,56 The data 

also agree with an empirical correlation between the equilibrium contact angle  of 

silica/water/vapor interfaces and the area density of silanol groups  (normalized to 4.7 nm-2 

for a regular Q3 surface) derived from silica powders (see section S6 for details):120 

.       (3) 

 

 

Figure 6. Water contact angles on charge-neutral silica surfaces ranging from Q3 to Q4 

environments in simulation and experiment (ref. 89). Increased content of Q4 environments from 

(a) to (d) represents surfaces annealed at temperatures between 200 and 1000 °C. 

 

4.3. Adsorption Isotherms. Adsorption isotherms are a further sensitive measure of water 

adsorption.92,94,95,121-123 The adsorbed amount of water as a function of the vapor pressure in the 

gas phase P relative to the saturation vapor pressure P0 was experimentally determined by 

Muster et al,90 Zhuravlev,88 and Baker et al95 using well-defined silica substrates with area 

q

aSiOH

cosq = 0.257 ×(aSiOH / 4.7 nm-2 )+0.743
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densities of ~4.6, ~4.6, and ~4.1 silanol groups per nm2 (Figure 7 and Section S7). Adsorption 

isotherms computed by the Gibbs ensemble method for a non-ionized Q3 silica surface with 4.7 

silanol groups per nm2 are in good agreement (Figure 7). The monolayer saturation pressure is 

consistently found between 0.2 and 0.3 times , characterized by the onset of deviations 

from Langmuir-like adsorption isotherms.88,90,92,95,123 

The simulations results also indicate structural details of adsorbed water. Notably, silanol 

groups constitute about half the water monolayer due to protrusion from the surface (Figure 1a-

c). Compared to “true” water monolayers on atomically smooth substrates (16 mol/m2 or ~10 

molecules per nm2), the amount of adsorbed water on Q3 silica at monolayer surface coverage is 

therefore lower (7 mol/m2 or ~4 per nm2, more details in section S7). The simulation also 

shows that water molecules initially nucleate as clusters on the silica surface, especially near 

silanol groups. As a consequence, some water molecules are located in positions corresponding 

to a partial bilayer and trilayer starting at very low coverage (not counted in computed 

isotherms). Therefore, monolayers are not well defined (Figure S2), consistent with deviations of 

the shape of the adsorption isotherms from ideal Langmuir curves (Figure 7). Follow-up 

simulations can reveal more details for a variety of surface morphologies. 

P / P0
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Figure 7. Adsorption isotherms of water according to simulation and measurements (refs. 

88,90,95). The computed adsorption isotherm on a non-ionic Q3 silica surface, highlighted by the 

dashed line, agrees with the lower range of measurements on silica particles containing 4.1 to 4.6 

silanol groups per nm2. Simulations in the Gibbs ensemble show that adsorbed water clusters 

exceed monolayer thickness and continuous monolayers form at approximately 0.25 times the 

saturation vapor pressure P0
. 

 

4.4. Role of Superficial Cations and Zeta Potential. Silica nanoparticles are often used in 

aqueous and physiological environments. Alkali cations neutralize the negative surface charge at 

pH > pzc and are a key contributor to interfacial chemistry (Figure 1). As a result of the 

competitive interaction of alkali ions with surface siloxide groups and water molecules, a 

fraction of the cations dissociates into the aqueous phase and establishes an electric double layer 

composed of negatively charged siloxide ions and positively charged alkali ions. This principal 
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behavior, as previously described by our team,19 can be seen in a density profile (Figure 8). The 

presence of several water layers of weakening intensity within 1 nm distance from the surface 

was found, and dissociation of cations past 0.3 nm from the surface is more frequent for less 

ionized surfaces. These “dissociated” cations are also most mobile upon application of a voltage 

and determine the outcome of zeta potential measurements. 

 

 

Figure 8. Density profile of water and sodium ions on a regular Q3 silica surface with different 

degree of ionization according to computation. The vertical red line indicates the average 

position of silanol oxygen atoms on the surface. The density profile of water is essentially 

independent from the sodium content and shows the formation of three distinctive layers of 

decreasing intensity. The profile approaches a uniform density of 1.00 g/cm3 more than 1.0 nm 

away from the oxygen atoms of the surface. The distribution of sodium ions indicates major 

differences as a function of the degree of ionization: the penetration depth into solution is highest 

for lowest ionization (see Figure 9 for details). 
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The penetration depth and area density of dissociated cations, i.e., cations that are more than 

0.3 nm away from superficial oxygen atoms of Si(O,Na) groups, are characteristic for the 

interfacial region, resulting in differential adsorption of peptides, drugs, surfactants, and 

polymers. The simulation shows that the total amount of dissociated cations in solution increases 

from 0 to ~0.45 nm–2 when the surface ionization changes from 0% to 20%, and then decreases 

to ~0.3 nm-2 for higher ionization (Figure 9). Notably, at higher degree of ionization, the 

majority of alkali cations remains bound to the surface since mutual repulsion forces upon 

detachment would dramatically increase (Figures 8 and 9).19 The computed amount of free cation 

in solution with higher mobility correlate well with ζ potential measurements as a function of pH 

and particle size (Figure 10). Changes in surface ionization can result from a change in particle 

size (Figure 10a), from a change in pH (Figure 10b), or both (Figure 2). 

These trends highlight the importance of the cation density per surface area and help 

understand swelling observations in experiment.32 Swelling has been particularly well studied for 

clay minerals, where cation densities per area similar to silica result in highest swelling and zeta 

potentials (0.5 to 1.2 cations per nm2, see section S8).124-126 These parallels suggest that the 

cation density per surface area is a key quantity for mineral surfaces with electric double layers 

and instrumental to understand properties of aqueous interfaces. 

We also note that the force field opens up new opportunities for atomic-level monitoring of 

such tunable aqueous interfaces since surface ionization of silica and associated aqueous 

properties were disregarded in prior simulations (the relevance was first reported in refs. 19,48). 

The accurate computation of immersion energies, contact angles, adsorption isotherms, and 

cation dissociation as a function of surface environment (Q4, Q3, Q2), pH, and particle size 
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therefore provides unique opportunities to understand and rationally design silica-based materials 

in combination with laboratory studies.  

 

Figure 9. Integral count of sodium ions per nm2 between two aqueous Q3 silica surfaces as a 

function of distance from superficial oxygen atoms of SiO(H, Na) groups for different 

percentage of silanol ionization according to atomistic simulation. The two numbers in each 

graph indicate the cumulative amount of dissociated sodium ions, defined as >0.3 nm away from 

surface oxygen atoms, in relation to the total available amount of sodium ions per surface area. A 

higher total charge density causes less sodium dissociation, and leads to a maximum amount of 

dissociated sodium ions near 20% surface ionization (~0.9 SiO‒ Na+ per nm2). The trend is 

consistent with zeta potentials, swelling observations on silica, and similar observations on clay 

minerals as a function of the area density of cations. 
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Figure 10. Correlation of the amount of dissociated cations per nm2 with zeta potentials as a 

function of particle size and pH. (a) Larger particles exhibit more surface ionization and an 

increase in zeta potential up to a certain size, which correlates with the amount of dissolved ions 

in the computation (experimental data from our previous study ref. 19 at pH = 7). (b) Higher pH 

values also increase surface ionization and the zeta potential up the limits known by surface 

titration (~25%, experimental data by Patwardhan et al.19 for particles of 82 nm size), and the 

amount of dissolved cations in the simulation is in near-quantitative agreement. 

 

4.5. Comparison to Prior Force Fields, Limitations, and Opportunities. As mentioned in 

the introduction, several atomistic force fields for silica have been developed in the last 30 years 

(Table 1). The current force field eliminates major shortcomings and introduces the full range of 

variable surface chemistry for all types of silica, temperature pretreatment, pH values, and 

nanoparticle characteristics. Through careful analysis and interpretation of the parameters, 

predictive accuracy is achieved for structural and interfacial properties, as well as for specific 

recognition of biopolymers that corresponds to improvements from up to several 100% deviation 
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in earlier models, or lack of feasibility altogether, to less than 5% deviation from 

experiment.19,33-48,60-62,104  

Remaining limitations of the model include the simulation of chemical reactions, a 

temperature range for best performance of 0-600 K, and some uncertainty in mechanical 

properties due to conventions in harmonic force fields (see section S4). However, simplicity and 

broad compatibility of the new potential facilitate extensions for reactivity, such as dynamic 

proton distributions using constant pH molecular dynamics100 or augmentation of the harmonic 

bonded terms to Morse potentials to enable bond dissociation. Parameter adjustments at higher 

temperatures and pressures are possible to explore phase transformations of silica glasses. In 

addition, the silica parameters have become part of the INTERFACE force field that contains 

accurate parameters for further ring silicates, layered silicates, and aluminates.48 The derivation 

of reliable parameters for chemically similar zeolites and metal-organic frameworks is therefore 

also feasible with limited effort. 

4.6. Anticipated Impacts on the Materials Chemistry Community. Silica is abundant in 

the biosphere and one of the most widely used materials, for example, in the form of porous 

glasses for gas and liquid separations,7,8 in nanoparticle form for drug delivery,12,14,15 as a filler 

material in composites,4-6 and in the form of core-shell nanoparticles for biomarkers and 

catalysts.9-11 Accurate models in atomic resolution at the scale of 1 to 100 nm allow 

unprecedented insight into adsorption isotherms and the prediction of selective adsorption of 

gases, peptides, and drug molecules for various silica chemistries and morphologies.19,20,25,29,56 

Molecular-level information about recognition of silica nanoparticles (amorphous, crystalline 

etc) by biopolymers on cell surfaces as a function of pH, ionic strength, and size can also help 

understand toxicity and support the development of treatments, e.g., for silicosis.127,128 The 
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mechanism of silica mineralization by diatoms in vivo and in vitro has not yet been well 

understood and the synthesis of sophisticated silica nanostructures remains difficult.19,27,30 

Simulation is one of few techniques that can provide nanometer-scale insight in 3D resolution 

coupled with experimental measurements, and extensions of the silica force field to silica 

precursors could provide more detailed insight and control. Silica particles of different origin are 

also used as fillers in polymer nanocomposites for automotive and aerospace applications, tires, 

and insulators.4-6 The understanding of silica interactions with various polymer segments has not 

yet far progressed, and accurate models from the nanoscale upwards can provide quantitative 

estimates of interfacial adhesion and affinity to various polymers, solvents, and plasticizers to 

optimize thermal and mechanical properties. Further, novel catalysts using mesoporous silica and 

silica-containing nanostructures have been made.9,10 The mechanism of silica dissolution and 

precipitation in the form of calcium-silicate-hydrate gels is also essential to understand cement 

hydration and develop sustainable building materials.129,130 These examples illustrate that a wide 

range of current and future applications of silica likely benefit from atomic level detail that 

accurate modeling and simulation can provide. 

 

5. Conclusions 

In this article we have introduced models for the full range of chemically variable, pH responsive 

silica surfaces, and presented a silica force field that reproduces atomic-scale, bulk, and 

interfacial properties in excellent agreement with experimental data. A database of 20 different 

representative surface model structures is provided on the basis of information about existing 

surface types, the influence of particle size, thermal modifications, pH, and ionic strength (Table 

2). Although models of silica surfaces must be customized for the area density of silanol groups, 
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the fraction of ionized metal–siloxide groups, as well as surface topography to be of predictive 

value, many silica nanoparticles and porous glasses can be approximated as Q3 silica surfaces 

with customized degree of ionization. Thereby, small differences in silanol number or degree of 

ionization have no major effect. 

New findings on aqueous silica interfaces are also reported based on observations from 

Monte Carlo and Molecular Dynamics simulations. The mechanism of the formation of water 

layers from the gas phase involves nucleation near silanol groups and the creation of diffuse 

water multilayers. A key parameter of bulk aqueous silica interfaces is the number of dissociated 

cations per surface area, a factor that correlates with experimentally measured zeta potentials. 

The force field for silica is conceptually simple and involves only few parameters with 

clearly defined interpretation that can be regarded as an atomic-level code for its interfacial 

properties. Several shortcomings in prior force fields are resolved by introducing full mobility of 

atoms, chemically justified polarity, surface environments from Q2 to Q4, incorporation of 

ionization as a function of pH and particle size, validation of hydration properties, and contact 

angles. As a result, deviations up to several 100% in previous models are reduced to less than 

10% and the silica parameters are integrated in common biomolecular and materials oriented 

force fields such as AMBER, CHARMM, CVFF, PCFF, COMPASS, INTERFACE, including 

flexible SPC and TIP3P water models. Possible uses include computational guidance in the 

design of silica nanostructures in atomic resolution for drug delivery, biomarkers, catalysts, 

environmental remediation, membranes for gas separation, and filler materials for composites. 

Predictions of the selective adsorption of highly specific biomolecules are described in a follow-

on paper.56 The parameters can also be extended to zeolites, metal organic frameworks, and 

reactive potentials. 
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