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Abstract Wind power has become one of the renew-

able resources with a major growth in the electricity

market. However, due to its inherent variability, fore-

casting techniques are necessary for the optimum schedul-

ing of the electric grid, specially during ramp events.

These large changes in wind power may not be cap-

tured by wind power point forecasts even with very

high resolution Numerical Weather Prediction (NWP)

models. In this paper, a fuzzy approach for wind power

ramp characterisation is presented. The main benefit of

this technique is that it avoids the binary definition of

ramp event, allowing to identify changes in power out-

put that can potentially turn into ramp events when

the total percentage of change to be considered a ramp

event is not met. To study the application of this tech-

nique, wind power forecasts were obtained and their
corresponding error estimated using Genetic Program-

ming (GP) and Quantile Regression Forests. The error

distributions were incorporated into the characterisa-

tion process, which according to the results, improve

significantly the ramp capture. Results are presented
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using colour maps, which provide a useful way to inter-

pret the characteristics of the ramp events.
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1 Introduction

During the last decades, there has been an increasing

interest on the use of renewable energy sources to de-

crease CO2 emissions. As a result, efforts have been

made to integrate renewable energy into the electric

grid. Wind power has had the strongest growth in the

electricity markets over the last years [1]. However, wind

as a source of energy is specially challenging due to its

variability and intermittence. Integrating large amounts

of wind power into the electric grid requires the imple-

mentation of forecasting tools able to provide informa-

tion to the grid operator for the day-ahead market and

in real-time.

In most markets, one day before the real time opera-

tion, grid operators set a schedule defining which units

will supply the expected demand for the next day at

each hour. Backup units are also allocated to deal with

unexpected shutdowns of the scheduled units. These de-

cisions are part of what is called the Unit Commitment

(UC) problem, and depending on the market, these can

be taken early in the morning or by mid-day on the day

before. In order to include wind power on the day-ahead

market, a forecast on the short term (up to 48 hours into
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the future) of the hourly wind power production would

need to be provided to the grid operator.

Wind power forecasting models are nowadays used

by some grid operators for UC, however, existing tools

need to be improved to be able to handle extreme situ-

ations related to wind power generation [2]. These ex-

treme situations, also known as ramp events, may be

related to specific meteorological events, such as cold

fronts or high pressure levels, which can produce dras-

tic and unexpected increases or drops in the level of

power production of a wind farm [3]. These sudden in-

creases or drops may happen within a couple of minutes

or a couple of hours. An early detection of the possibil-

ity of these events happening would let the grid opera-

tor prepare the most appropriate backup units accord-

ing to the characteristics of the event. Different types

of backup units respond at different speeds so an esti-

mation of the intensity and the time scale of an event

is important. The prediction of ramp events is com-

monly addressed using either point forecasts, obtained

by running high resolution numerical models, or ensem-

ble forecasts, which are obtained by running NWP mod-

els with different perturbations of the initial state [25].

Despite high resolution numerical runs being avoided in

ensemble forecasting, ensembles are still computation-

ally expensive. NWP models may have misplacement

errors and therefore the closest point of the grid might

not always be the best reference point from the numer-

ical model. In addition, current ramp characterisation

techniques are based on a crisp binary definition, which

can leave out events that did not quite meet the amount

of change expected but that could be equally important

to consider.

This paper puts together a wind power forecast-

ing approach and a ramp characterisation technique in

order to address the weaknesses introduced previously

and extending the preliminary results obtained in [28].

Wind power forecasts are first obtained by using GP

as a final downscaling procedure at different points of

the mesoscale grid, producing a set of models and pos-

sible wind power realisations for a wind farm located

in a semi-complex terrain in Galicia, Spain. The error

of each forecast is quantified and incorporated into the

characterisation process, which consists of a set of fuzzy

rules. These rules are based on the assumption that

changes in power output that do not meet the strict

definition of ramp event can be equally important and

damaging and should not be ignored. To differentiate

between highly probable events and events with lower

probability, a score is given that is the result of the

application of fuzzy rules defined based on post expe-

rience. The rest of the paper is organised as follows:

Section 2 presents previous work related to wind power

and ramp event prediction. Section 3 provides detail

about the proposed approach for wind power forecast-

ing and uncertainty estimation using Quantile Regres-

sion Forests. Section 4 discusses the ramp characterisa-

tion approach and the results. Finally, Section 5 draws

the paper to a close giving conclusions and future work.

2 Related Work

In order to characterise large changes in power output,

one must first obtain a wind power forecast. Most short-

term forecasting tools are based on Numerical Weather

Prediction (NWP) models, as these can capture the at-

mospheric flow more accurately than methods based

purely on historical observations [4]. These models can

be classified into three types. Firstly global models, e.g.

the Global Forecast System (GFS) from the National

Oceanic and Atmospheric Administration in the USA

(NOAA) [5], which produce low space resolution fore-

casts of the entire globe. Secondly, mesoscale models,

which produce forecasts with a space resolution of up

to one square km in a specific region, and finally lo-

cal models, with the highest space resolution. Mod-

els such as the High Resolution Limited Area Model

(HIRLAM) have been used for short term forecasting

[6, 7]. In [8], the Weather Research and Forecasting

(WRF) mesoscale model [9] is used for quantifying wind

uncertainty for the day ahead and for studying the eco-

nomic impact of large amounts of wind power in the

electric grid. In [10] the use of global physical mod-

els together with Neural networks and autoregressive

models was proposed for short term forecasting. Neural

networks were found to be the approach that provided

better results. In [11] the ETA model has been applied

to wind speed forecasting in Sweden.

Two main approaches are derived from NWP pre-

dictions; the physical approach, which translate wind

forecasts at a certain grid point using mathematical

descriptions of the physical processes relevant to the

translation, and the statistical approach, which com-

bine inputs such as wind speed, wind direction, tem-

perature together with online measurements to either

estimate wind speed or wind generation [12]. Further



Characterisation of Large Changes in Wind Power for the Day-Ahead Market Using a Fuzzy Logic Approach 3

details of these methods can be found in reviews of

wind power prediction [4, 12–14]. In any case, the re-

sulting forecast can either be a point forecast, which

provides an exact amount of the hourly power output,

or an ensemble or scenario forecast, which provides a

set of possible wind power estimates.

The point forecast approach generates a power pre-

diction based on the result of one run of the numerical

model to predict wind speed at a close point from the

location of interest (usually a location at the farm).

A statistical downscaling technique may be applied to

correct the local physical attributes that could not be

modeled. These methods included a Kalman filter ap-

proach [15], ANN approach [19], bias correction meth-

ods and a combination of these. In [16], a WRF model

is implemented together with the Kalman filter method

for wind speed and wind power forecasting for a wind

farm in China. Kalman filter approaches have also been

applied in [17] and [18], as post-processing tools for cor-

recting the bias of WRF wind speed predictions, re-

ducing significantly the size of the training set, com-

pared to ANN based methods. The majority of these

approaches require the numerical weather prediction

model to run at a very high resolution, which is time

and resource consuming. Salcedo-Sanz et al. use a neu-

ral network approach (ANN) to perform the final down-

scaling from the MM5 mesoscale model to the obser-

vation sites avoiding the execution of the numerical

model at high resolutions [19]. However, neural net-

works behave as black boxes, which do not provide

internal information about the model that was found.

They also need a significant amount of training data

to ensure generalisation. The same forecasting model

used in [19] was implemented in [20] replacing the ANN

with a support vector machine (SVM) approach. Al-

though point forecasts does not provide a quantification

of the wind power uncertainty directly, different meth-

ods can be applied to estimate it. These methods are

local quantile regression, local Gaussian modeling, the

Nadaraya-Watson estimator, kernel density estimation

for pdf computation, among others [41].

The ensemble forecast approach generates a set of

forecasts by running the NWP model varying the ini-

tial conditions [21,22] or the physical parameterisations

[23]. Due to the computational cost of ensembles, these

are run at a lower resolution to reduce the cost. Greaves

et al. present a study where NWP models are used for

wind power ramp forecasting [24]. NWP forecasts from

two sources are used to improve the characterisation of

the timing uncertainty of the ramps. Bossavy et al. pro-

posed the use of NWP ensembles for wind power ramp

predictions [25]. The ensembles are used to improve the

timing error of ramp forecasts. According to Cutler et

al, the timing or phase error of numerical models can

be addressed taking into account a wider area of the

NWP grid, not only the closest point to the observa-

tion site, due to the misplacement errors that the nu-

merical model may have [26]. Using a set of grid points

could generate an ensemble prediction which is taking

into consideration the horizontal error of the numerical

model. In [28], a ramp detection algorithm based on

wind power models generated by genetic programming

(GP) is presented. Preliminary results show a poten-

tial use of neighbour points as a way to quantify the

uncertainty of ramp events.

The majority of ramp event studies define a ramp as

a specific percentage of change in power output within a

specific time window (binary classification). The disad-

vantage of this definition is that slightly lower changes

might not be identified that may be equally impor-

tant to the grid operator. Gallego et al. present a ramp

forecasting approach using wavelets [27]. This approach

avoids using a fix change percentage, analysing the power

forecast at different magnitudes of change and differ-

ent time windows. Despite their promising results, the

application on the day-ahead market is not addressed

in depth nor how this could allow end users to inter-

pret the different ramp intensities. This paper explores

a new approach for characterising ramp events which

minimises the sentisitivity of the binary classification

and provides more insight about the characteristics of

the event, providing a visual representation that could

benefit system operators in the understanding of the

severity of events to come.

3 Proposed method for wind power forecasting

In order to predict the wind power output of a wind

farm at each hour for the next day and identify the

possible future ramp events, two major steps are car-

ried out in this approach. First, wind speeds at a close

point to the wind farm are obtained using the Weather

Research and Forecasting - Advanced Research WRF

(WRF-ARW) numerical weather prediction model. Sec-

ondly, wind speed predictions and wind power observa-

tions at the farm are used by a GP based algorithm
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to obtain a model which best represents the relation-

ship between the wind speed predicted by the numerical

model and the actual power output produced by the

wind farm.The model found can be applied to newly

available wind speed forecasts to predict the power out-

put of the wind farm.

3.1 Wind speed prediction

WRF-ARW is a non-hydrostatic limited area model

from the National Center of Atmospheric Research in

the USA (NCAR) [32]. The model solves a system of

differential equations that represent the dynamics of

the atmospheric flow, except that it does not take into

account the ocean-land interactions. The solver uses

a second- or third -order Runge Kutta time integra-

tion scheme with a small time step for the acoustic

and gravity-wave modes. Its prognostic variables in-

clude velocity components u and v in Cartesian coordi-

nate, vertical velocity w, potential temperature pertur-

bations, perturbation geopotential, perturbation sur-

face pressure of dry air, turbulent kinetic energy, and

scalars (water vapor mixing ratio, rain/snow mixing ra-

tio, cloud water/ice mixing ratio, etc.). This mesoscale

model has multiple physics options classified in differ-

ent categories, which are (1) microphysics, (2) cumulus

parameterisation, (3) land surface model, (4) planetary

boundary layer and (5) radiation. To reduce as much

as possible the execution time of the model, a CUDA

based version of the WSM5 (WRF Single Moment 5

Cloud) microphysics kernel was used [33].The rest of

the physics options used are shown in Table 1.

Table 1: Physics options used in the WRF model

Domains 2 nested domains
Dynamics nonhydrostatic Euler equations
Longwave Radiation rapid radiative transfer model

(RRTM)
Shortwave Radiation simple downward integration
Surface Layer MM5 similarity
Boundary Layer YSU scheme
Cumulus Kain-Fritsch (new Eta) scheme

In this research, the initial state was generated using

GFS forecasts and terrestrial data. GFS runs four times

a day, at 00Z, 06Z, 12Z and 18Z (Zulu time). At each

run, it produces low resolution forecasts. This means

the entire globe is divided into a grid of usually 1◦× 1◦

producing forecasts at each of the intersection points of

the grid. Each run predicts up to 16 days in advance

with a three-hour time step. For this study, the runs

from 06Z were used, taking into account that forecasts

need to be provided to the operator before noon for the

day ahead. From each run, only the first 48 hours of the

complete forecasted horizon were considered. For each

GFS run, a WRF-ARW run was executed, producing

a higher resolution forecast in time and space. Those

values forecasted for the next day (19 to 42 hours into

the future), as shown in Figure 1, are the values of

interest in this study.

Fig. 1: WRF-ARW 48 hour horizon in a 06Z run started

at day D. The next day forecast horizon corresponds to

those values 19 to 42 hours into the future

WRF-ARW, as other mesoscale models, allows nest-

ing. This means the model can run at different resolu-

tions or domains; one contained into the other, where

the inner domains have a higher resolution in a smaller
area. Figure 2 shows the domain settings that were used

in this work. As shown in the figure, the model was set

to run in two domains. The first domain, which cov-

ers a major part of Spain, has a resolution of 30km x

30km and results from the first integration of the WRF

model from the GFS grid (111km x 78km). The second

domain, which is centered on Galicia, the area of inter-

est, has a resolution of 10km x 10km and is obtained by

a second model integration that uses the first domain as

boundary conditions. A third domain was considered,

but the computational cost of running at 3km resolu-

tion was considered too high. From the model output,

wind speed and wind direction forecasts from the clos-

est point of the grid to the location of the wind farm

are used for power prediction.
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Fig. 2: WRF-ARW two domain setting. The second do-

main (white area) is centered in the point of interest,

which is Galicia, Spain.

3.2 Wind Power Prediction using Genetic

Programming

In a previous work [34], GP was used as a final down-

scaling step from the mesoscale model to the location

of the observation site for wind speed forecasting. Re-

sults obtained showed the ability of the GP approach

to model the relationship between the forecasts of the

WRF-ARW model and the observations at specific sites.

Wind speed forecasts can be easily converted into wind

power forecasts using the power curve provided by the

wind turbine manufacturer. However, the performance

of the wind turbines depends on the characteristics of

the place where they are located. For this reason, the

use of local wind power observations to estimate the

power output of each turbine is suggested [35]. This pa-

per revisits and extends the GP downscaling approach

from [34] as a wind power prediction technique. While

the input to the algorithm stays the same (numeri-

cal model predictions), the output changes to the total

wind power produced by the wind farm.

Genetic Programming [29] is a biologically inspired

computation technique based on the evolution of indi-

viduals over time, through events such as inheritance

and mutation, which progressively refines them into

better individuals. In GP, a population of programs (in

a binary tree layout) is evolved, each program repre-

senting a set of instructions to solve a specific problem.

GP, like nature, is a stochastic process, which cannot

guarantee to find the global optimum but it is that ran-

domness which can lead it to escape local optima, which

deterministic methods may be captured by [30].

Symbolic regression via GP is a non-parametric,

non-linear regression technique that looks for an ap-

V1

V3

+

/

C

Fig. 3: Example of a tree expression of the program

v0 = v1 + v3/C.

propriate model structure and model parameters as op-

posed to classic regression, which assumes a certain

model structure and estimates the optimal parameters

that best fit a given sample of data [31].

As shown by the example in Figure 3, a GP tree is

formed by a set of terminals and functions. The func-

tions may be basic arithmetic operators {+, -, *, /},
standard mathematical functions (sine, cosine, logarith-

mic, exponential), logical functions or domain-specific

functions. The terminals may be constants or any problem-

related variables. In wind power prediction, variables

such as wind speed, wind direction, temperature, among

others, may be relevant for the problem. The evolution

process will be able to identify those variables that are

relevant for the model.

Two basic genetic operators are used in order to cre-

ate new individuals at each generation. One is crossover,

which provides the means to generate new individuals

from an existing population. It combines the material

from two selected trees to generate two new trees. The

second operator is mutation, which replaces a randomly

selected subtree from a complete tree with a new ran-

domly generated subtree. Every new individual in a

population is a candidate for mutation, however this

depends on a certain probability. The mutation prob-

ability is a parameter that needs to be tuned during

experimentation and it is usually set to very small val-

ues.

In order to ensure generalisation, a parsimony pres-

sure technique [31] is used, which penalises the fitness

of a program according to its complexity (number of

nodes in the tree), reducing the probability for it to be

selected in future generations for crossover. The mathe-

matical representation of the penalisation function used

is shown on Equation 1. The first term of the fitness

equation is the sum of the errors between the obtained

output (new forecast) and the desired output (obser-

vations) in the test set (test set size = s). The second
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term is the complexity factor, where t is the number

of nodes of the GP tested and k is a trade-off weight

that allows to control the level of pressure of the com-

plexity factor. A small value of k (e.g. k = 0.1) would

be translated into low complexity pressure, and higher

values of k (e.g. k = 1.0) will add a strong pressure to

the penalisation.

f =
1

s

s∑
i=0

e(i) + k

(
(t2log2 (t)

s

) 1
2

(1)

The GP approach was used to model the relation-

ship between wind speed forecasts from the numer-

ical model WRF-ARW and the power production of

the farm. A starting point was to a single point from

the mesoscale grid, the closest one as presented on [28]

and subsequently extending it to the use of four neigh-

bour points. For this study, data from the experimen-

tal wind farm, Sotavento, located in Galicia, Spain, was

used [36]. This wind farm is composed of 24 wind tur-

bines of 9 different models (each model with a different

power curve) and has a total nominal power of 17.56

MW. The wind farm provides open access to wind speed

and wind power observations. The wind speed observa-

tions are obtained by an anemometer situated at the

wind farm at 45m height. The day-ahead electricity

market requires hourly forecasts to plan the commit-

ment and dispatch of the power units. For this reason,

mean hourly wind speeds from the farm where used.

In order to perform the experiments using the clos-

est point from the grid, the training, validation and

test sets were generated using four months of day-ahead

WRF-ARW forecasts, from January to April 2012 (not

consecutive days, due to missing global model data).

Observations from the same period of time were ob-

tained from the Sotavento wind farm. Therefore, for

every hourly wind speed and direction forecast (at the

closest point of the mesoscale grid to the wind farm), a

wind power observation was associated. The first three

months were used as a training/validation set and the

fourth month as a test set.

As it can be observed in Figure 4, changes in the

wind direction affect the energy production of the farm.

When the wind blows in East Northeast direction (56.25

to 78.75 degrees) or in West Southwest direction (236.25

to 258.75 degrees), the maximum wind power output is

achieved for high wind speeds. On the other hand, when

the wind blows in North direction (348.75 to 11.25 de-

grees) the power output is lower even for the higher

wind speeds. For this reason, it is important to take

into account both wind speed and wind direction as

inputs for the GP.

Fig. 4: Relationship between wind speed, wind direction

and the power output at Sotavento wind farm for three

months, January to March, 2012.

Once the data sets were ready, the parsimony pres-

sure parameter was found experimentally and 50 runs

of the algorithm were performed. The best model in 50

runs is applied to test data (Figure 5).

It can be observed in Figure 5 that the global trend

is well captured, however, there is a time misplacement

around hour 150, which is associated with a weakness

of NWP modeling to forecast synoptic events like cold

fronts and high or low pressure systems in the adequate

position [26]. This misplacement could be addressed by

taking into account a wider area from the mesoscale

grid instead of taking only the closest point.

3.3 Uncertainty Estimation of Wind Power Forecasts

A point forecast like the one obtained can be used

by the grid operator for the daily unit commitment.

However, it has been shown that the point forecast is

more useful if it is supplied with an uncertainty esti-

mation [37]. This estimation can give the operator a

better idea about the amount of backup needed. The

total error of the wind power forecast can be the prod-

uct of two sources. The first source of error is the error

introduced by the numerical model. This error tends to
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Fig. 5: Best Model found applied to test data (April

2012) and the real power output at Sotavento. Pressure

parameter k=2.0.

increase as the forecasting horizon increases. The sec-

ond source of error is the conversion process from wind

speed to wind power. This process can depend on local

conditions such as the roughness and orography of the

wind farm location [38]. This type of error could be po-

tentially decreased by the use of empirical power curves

rather than the power curve provided by the manufac-

turer.

There are several approaches in the literature to

quantify the uncertainty of wind power point forecast

errors. In general, the error distribution is found by ob-

serving the behaviour of the error on past forecasts and

by using explanatory variables which are additional in-

formation such as wind speed, wind direction, tempera-

ture, that can improve the understanding and thus the

modeling of the error.

In order to anaylse the behaviour of the forecast er-

ror obtained with the GP model, histograms were used.

Figure 6 shows the empirical distribution of the error in

the training set for the first and last hour of the next-

day horizon. Each hour of the horizon has been treated

separately as a first attempt to study the use of the

error estimation on the ramp characterisation. One can

observe that the distribution of the error is different for

the horizon t+19 and t+42. The shorter horizon shows

a more distributed error while the larger horizon shows

more overestimation errors, as the frequency of negative

errors is higher. It can also be observed that the upper

bound of the empirical distribution at t+42 is slightly

higher. This means that at this horizon errors of 35%

were observed, while at t+19 errors stayed lower than

30% of the nominal capacity of the farm.

Studies suggest that wind power forecast errors do

not follow a normal distribution as wind speed forecast

errors do. In fact, wind power error distributions have

been found to have high kurtosis and skewness [37]. For

this reason, an approach that makes no assumption of

the distribution when estimating the uncertainty could

be more appropriate. Quantile Regression Forests [39]

is a non-parametric technique to estimate conditional

quantiles for high dimensional predictor variables of

a response variable. The detailed description of this

method is out of the scope of this paper but can be

found in [39]. By looking into the training errors of the

GP model, error quantiles were obtained by applying

the quantile regression forest method for each hour of

the next-day horizon. The distribution of the error was

found using wind power, wind speed and wind direction

forecasts as explanatory variables. Figure 7 presents the

point forecasts for the first four days of the April test

set as well as the prediction intervals (10%, 20%, ...,

90%) obtained using the error distributions found.

The distributions found were applied to the test set

which corresponds to one month after the last training

point. It is important to consider that the distributions

found are considering a small set of history observa-

tions, which could probably indicate that these are only

accurate for a short period after the last training point.

In order to assess the influence of the sample size on the

quality of the estimated intervals, reliability diagrams

were used. These reliability diagrams provide informa-

tion about the deviation of the actual coverage (âα) of

the forecasted intervals from the nominal proportions

(α). This deviation is defined as

α− â(α) = α− z(α)

N
(2)

where N is the total number of observations and

z(α) is the number of observations that fell in the inter-

val with proportion α. Figure 8 depicts the reliability

evaluation results for the predictive distributions ob-

tained in the following 200 hours after the last training

point and for the complete test set. The diagrams are

for the complete next-day horizon (hours 19 to 42). This

means that all probabilistic forecasts for all look-ahead

times were used with equal weight when calculating the

deviations.
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Fig. 6: Empirical distributions of the prediction error obtained with v1 for two look-ahead times. Prediction errors

are normalised on a scale [-1,1].
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Fig. 8: Reliability diagrams of 5, ..., 95 percentiles estimations made with the Quantile Regression Forest procedure.
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From Figure 8 there are a couple of things to note.

The narrower intervals (10% and 20%) tend to be over-

estimated on the first 200 hours, having a slightly higher

coverage, while the larger intervals tend to be underes-

timated. In the same figure, diagram b shows how the

reliability decreases as the horizon increases. The re-

sults confirm the behaviour that was expected. The in-

tervals are valid only for a short period of time after the

training period. In order to maintain the reliability, the

GP model would need to be retrained as new informa-

tion becomes available and the error distribution needs

to be recalculated. This would require further study.

Most existing prediction methods provide point fore-

casts and, more recently, a way to calculate their un-

certainty. However, there are situations where a fore-

cast from a single source does not provide enough in-

formation, specially during extreme situations where

power system operators need to handle large deviations

of power generation. There is a growing interest in the

use of ensembles in order to improve point forecasts and

to develop uncertainty models from these. However, it

has been shown that NWP models are capable of mod-

eling these events but with a misplacement error [26].

The following section presents two approaches for ramp

characterisation based on the incorporation of the error

distribution into the ramp detection algorithm and the

use of a Fuzzy Inference System (FIS) to avoid the crisp

classification.

4 Power Ramp Characterisation

One of the current challenges in wind power forecasting

is the ability to handle extreme events, which can repre-

sent a different situation depending on the end user. In

general, a ramp event is a rapid change in power output,

either increase or decrease, within a small time window.

Whether to use an increase of 50% or 30% of nominal

power is, as mentioned before, up to the system opera-

tor. Wind power forecasts usually model very well the

increases or decreases that happen within large time

windows (at a small change rate). However, changes

in small time windows are more difficult to model cor-

rectly. Cutler et al. [26] studied the weather phenomena

that were causal of ramp events. They found that the

majority of the events that were studied were associ-

ated with cold fronts, low pressure systems and troughs,

which are well modeled by the numerical model but

might be placed in the wrong physical position.

Another factor that might contribute to the inade-

quate characterisation of ramp events is the crisp def-

inition of such events. In the literature, most studies

are based on a binary definition, where the ramp is de-

fined as a specific percentage of change in a specific

time window. With this definition, events which might

be slightly lower in change might not be identified but

could be equally important in the eye of the operator. A

good characterisation strategy should be more flexible

and able to identify small but potential events.

The approach presented in this paper incorporates

two different aspects. One is the incorporation of the

uncertainty error information into the ramp detection

algorithm and the use of fuzzy rules to classify the

events. The other is the use of multiple grid points

to address the misplacement, expecting that other gird

points could model some events that were not well mod-

eled using the closest point.

The basic ramp approach with no error considera-

tion using fix percentage change and window size pro-

ceeds as follows:

1. The percentage p of the amount of change in power

output and the maximum window size w are set.

2. The current sliding window size is set to 1.

3. Using the current sliding window size, the power

signal is analysed to identify any increase (ramp-

up) or decrease (ramp-down) by p percent. As soon

as a ramp is detected, this is identified as the start

time of the ramp and the end of the ramp will be

identified in the following hours as soon as the ramp

changes direction.

4. In the final set of ramps identified, if any two are

overlapped, they are considered as one ramp, and

the start and end times are readjusted.

5. The size of the window is increased one hour.

6. If the window size has not reached its maximum

+1, then go to step 3, else, check any overlaps and

output the identified ramps.

The algorithm was applied on both forecasted and

real power output of the farm to identify the falsely and

truely forecasted ramps. The time window was set to 5

hours, according to [24]. The percentage of change was

set to 30% due to a very small number of real events

of higher change. A total number of 21 ramps were ob-

served in the available data from the month of April.

Of the 21 ramps observed, 8 of them where forecasted

accurately in direction (ramp up or down) and with

a phase error less than ±12 hours. This time period
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of association is the maximum time difference between

the timing of the forecast and the observed ramps, ac-

cording to [24], that can maintain realistic connection

between the forecast and the observed event. Events

further apart might be representing totally different

events. The total ramp accuracy and ramp capture per-

centage were calculated using equations 3 and 4.

ramp capture =
true forecasts

true forecasts + missed ramps
(3)

forecast accuracy =
true forecasts

true forecasts + false forecasts

(4)

True forecasts are those forecasted ramps that are

associated with an observed ramp; false forecasts are

those ramps that were forecasted but did not occur;

finally, missed ramps are those observed events that

were not forecasted. Figure 9 shows an example of a

true forecast of a ramp up that occurred on the 9th

of April. Although the observations indicate that the

ramp started around 10:00 hrs, the forecast was able

to model this event one hour later, from 11:00 hrs to

02:00 hrs the next day. One can also notice that the

fluctuation at 10am was not modeled. It might have

been caused by local conditions that were not captured

at the mesoscale level, however the increase tendency

was modeled effectively.

Table 2 shows the results of the approach described

previously (left) as well as results obtained with a sec-

ond approach that takes into account the error (right).

This approach will be introduced later on in the paper.

Focusing on the results at the left, it can be observed

that the capture percentage obtained from the forecast

is quite low. However, the result is not reflecting what

could be appreciated in the signal, as some of the ramps

that were not detected by the algorithm were about 3%

under the threshold. The ramps would have been de-

tected using a smaller percentage of change that could

be equally important to the operator. However, taking

into account the current definition of a ramp imple-

mented in the algorithm, only those ramps that are of

exactly 30% or more can be detected. Other ramps that

were not captured had an error between the 5 and 10%,

which can be attributed to the known underestimation

of the forecast. If the estimation of the error was consid-

ered in the process, it could improve the ramp capture.
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Table 2: Ramp frequency and forecast accuracy on April

2012 at Sotavento using the model at the closest point

Basic Considering
approach the error

Number of true forecasts 8 15
Number of false forecasts 3 5
Number of missed ramps 14 7
Forecast Accuracy 72.72% 75%
Ramp Capture 36.36% 68.18%

4.1 Incorporating the forecast error distribution

According to the previous analysis, the error of the

model on the training set is most of the time negative

(over estimation). However, the histograms show some

large under estimation errors. This could be potentially

related to the fact that the GP algorithm works by min-
imising the root mean squared error (RMSE), which

during ramp events where there are timing errors might

result into high penalisations. For this reason, it could

be expected that some large changes in power output

would be missed in subsequent forecasts. To investi-

gate the potential of using the error distribution for the

ramp characterisation, the ramp detection algorithm

presented previously was adapted to incorporate the

error during the calculation of the change percentage

on the sliding window. The possible errors on the start

and end of the window were taken into account only if

by incorporating the error, the difference between start

and end point increased. It is important to make clear

that so far the error distribution is not time dependent,

each hour is treated independently.
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Results with this approach are shown also in Table

2. The ramp capture increases significantly and there

is not much increase in the number of false forecasts,

keeping the ramp accuracy at a sufficient level. These

accuracy measurements are obtained using the binary

definition on the real power output. This could mean

that ramps that are apparently false forecasts could ac-

tually be “almost” a ramp on the real power output.

This situation is shown on Figure 13. The figure shows

a ramp up and ramp down which are not at the 30%

change on the observations. The figure also shows four

different forecasts using four different points from the

grid. Most of the models show an increase and decrease

which are identified as a ramp events. Although in the

real power output this was not identified as a ramp due

to the binary definition, it could still be of impact, if it

is just slightly lower.

In order to avoid these “false” captures, the binary

definition of ramp events could be relaxed and changes

could be categorised or scored according to certain cri-

teria. To do this, a fuzzy rule based approach is pro-

posed. This will allow to also consider those events,

which are likely to become ramp events.

4.2 A Fuzzy Logic approach for ramp characterisation

Fuzzy set theory, proposed by L.A. Zadeh, provides a

methodology that allows to deal with the imprecision

of practical systems [40]. In a given system, where an

output is produced according to certain inputs, those

inputs or elements may have different states or values

which represent ranges. This ranges which are not pre-

cisely defined, can be modeled using fuzzy sets. To de-
cide whether the element belongs to one or another set,

a membership function is used. The membership func-

tions depict the degree of membership or one-to-one

correspondence between an element in a domain and a

truth value. Membership functions take the form

µA(x)← f(x ∈ A) (5)

where µA is the membership function and x is an

element of the set X, which may belong to a fuzzy set

A. The membership functions may have different shapes

according to the experience of the designer.

Once the input is mapped to a set, the process of

deciding what the output should be is done by using

a set of rules. Fuzzy rules describe in a high level lan-

guage how elements of the domain, which are inputs to

the system, map to the outputs. These are a set of IF-

THEN rules that are applied when an input has been

mapped to its fuzzy set with the membership function.

After the evaluation of these rules, a fuzzy set asso-

ciated with each model solution variable is produced.

Then, a process of defuzzification is used to find the

value that best represents the information contained in

the fuzzy set. This value is called the FIS score.

In terms of ramp characterisation, the decision to be

made is whether a change in power is a potential ramp

event. The binary classification can be avoided by char-

acterising the event as a high, medium or low probable

ramp event without discriminating it completely. The

variables that are used in the decision making process,

as well as the rules, are chosen by and depend on the

knowledge and expertise of the designer. The experience

of power grid operators would need to be taken into ac-

count in order to adjust the inputs, fuzzy sets and rules

according to the situation of the grid. Here, the design

decisions were based on the behaviour observed in past

data. Two input variables are considered, the amount

of change in power and the time window. There is an in-

teresting relationship between these two variables that

can provide information about ramp events. When the

time window is small and a large change is observed,

there is a high probability that the tendency could con-

tinue in the following hours, marking the start of a ramp

event. Moreover, when the time window increases to a

medium size (2 ∼ 4 hours), and if the change is high

enough, there might still be a high possibility that a

ramp event is happening. Finally, if the time window

is at its maximum size and the change was close to

the percentage of change that defines a ramp event (in

this case 30%), then it is definitely a ramp. On the

other hand, there are situations which are less likely

of developing a ramp event. Situations where the time

window is high and the change is low, either the in-

crease/decrease event is occurring very slowly or the

event happened in a smaller window, so in both cases

the probability is low. This is opposite to a low change

in a small window which can potentially still be a ramp

in the coming hours.

This behaviour was translated into fuzzy sets and

rules. Figure 10 shows the two input variables and mem-

ber functions used. The time window size uses a tri-

angular member function, as it is the standard. The
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Fig. 11: Surface plot of the solution domain according

to fuzzy rules.

power change rate implements a gaussian membership

function, as this function has a softer transition between

sets. It also naturally introduces a “shoulder” near zero,

suppressing the influence of small changes without in-

troducing a third free parameter. The rules are shown

in Table 3. With these rules and the fuzzy sets, a more

soft decision of what a ramp event is could be made,

allowing the identification of smaller equally important

events.

To test the fuzzy inference system, the forecast sig-

nal was filtered into 5 signals. The first signal is the

result of calculating the differences in power output tak-

ing a sliding window of one hour. The second signal was

created taking the differences on sliding windows of two

hours. The same process was repeated for the other win-

dow sizes. Each filtered signal is slightly shorter than

the original due to the window size. Once the five fil-

tered signals were obtained, each one was used indi-

vidually as input to the fuzzy inference system. Each

value of the filtered signal was taken as a new input,

and the window size was chosen according to the fil-

tered signal being tested. Results are shown in Figures

12. Colour maps were used to facilitate the interpreta-

tion of the results. As the human eye is sensible to the

difference in colour, differences can be captured more

easily than when results are presented as quantities.

In addition, the shapes provide some interesting facts

about the characteristics of the event. A maroon colour

corresponds to a FIS score of 1, which represents a high

severity. A light maroon/crimson colour corresponds to

a mid-high severity which is between 0.7 and 0.9 score.

The yellow/green corresponds to low severity events,

while the blue colour is definitely not a ramp event.

The ramp up and down events were separated into two

graphs to avoid colour maps being too saturated. The

top figures are the actual power signal, the figures in

the middle show the ramp up events and the last row

shows the ramp down events.

Focusing on the second line of the figure, the ramp

up events, it can be observed that the largest change

(between hour 60 and 80) is the strongest in FIS score

along the 5 filtered signals. What the persistent colour

in almost all filter signals means is that the change at

the different time windows was very high and so was

the total amount of change. The step shape of the line

is due to the fact that at the very beginning of the

event, the change on the following hour was slow but

then suddenly increased in the following hours, marking

a high score at the same start time but on the 5th

filtered signal. In addition, the band on the top (5 hour

window) is wide, meaning that the change continued

to increase even after the 5 hour window. If the event

was shorter, strictly limited to 5 hours, the line would

be thinner. This effect is not reflected for example on

the change detected after hour 160. A straight line is

shown in this case, meaning that from the very start

of the event it increased with a very prominent slope.

The ramp up observed at hour 80 is a false ramp due

to large error on the forecast. The corresponding ramp

down of this false ramp up can also be observed on
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Table 3: Rules

Rule 1. If change is high then rampSeverity is high
Rule 2. If time is fast and change is medium then rampSeverity is midhigh
Rule 3. If time is medium and change is medium then rampSeverity is midhigh
Rule 4. If time is slow and change is medium then rampSeverity is medium
Rule 5. If time is fast and change is low then rampSeverity is medium
Rule 6. If time is medium and change is low then rampSeverity is medium
Rule 7. If time is slow and change is low then rampSeverity is low
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Fig. 12: Real power output and fuzzy inference system scores corresponding ramp up and ramp down events on

the same time period. The graphs on the left correspond to the first 100 hours after the last training point. The

graphs to the right correspond to hours 100 to 200 after the last training point.
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the bottom of the figure. Another interesting thing to

mention is that the “false” ramp up before hour 20 is

shown with a slightly lighter colour meaning that the

total change in the 5 hour window did not reach the 30%

change, nevertheless it is an important increase to take

into account. Looking more into the bottom part of the

figure, it can be observed that the largest ramp down

events are correctly identified, at hours 120 and 180.

The original power signal has several small increases

and decreases which can be seen in the filtered ones as

noise.

All these characteristics that can be highlighted

through the use of the colour maps can improve the

identification of the ramps as more information about

how the event will be developed is given. The results

show in general the capacity of the fuzzy system to

identify the events that were previously identified using

the ramp detection algorithm, and in addition to this,

presents some additional events which are categorised

as potential ones. These additional events are presented

in lighter colours as they represent less risk and there-

fore less probability of actually happening. It might still

be possible that the forecast signal even with the error

taken into account could not represent the real intensity

of the event due to misplacement errors, and that other

points of the grid could highlight better these changes.

It would be interesting to see if exploring other closer

locations could provide even more important evidence

of these changes.

5 Conclusions and Future Work

In this paper, a novel approach to wind power ramp
characterisation is presented. The approach introduces

the use of the error distribution and fuzzy logic rules

to improve the characterisation of ramp events which

might not be identified by using a binary definition.

According to the results shown in Table 2, the percent-

age of ramp capture improves as the error is taken into

account and the introduction of fuzzy rules provides

information about possible events which were not fore-

casted with a change of 30 % but could potentially be of

interest to the grid operator especially during periods

of constant fluctuations.

Although the number of “false” ramps may increase

with the fuzzy approach for ramp detection, it will be

able to flag more potential events, which is equally im-

portant giving the operator the information to decide
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Fig. 13: Ramp on the 4th of April using the four grid

points surrounding the farm.

whether it should be considered a ramp event or not.

An interesting point to address in future work is the

use of neighbour points to provide an estimation of

the start and end time of the event. Preliminary re-

sults as the one in Figure 13 show how an event can

be modeled differently considering different surround-

ing points. Figure 14 shows some preliminary results ap-

plying the fuzzy approach to these points. In the figure,

the closest point (top right) and two neighbour points

on the same period of time are presented. In general,

there is a match in the three points about the events

shown, although they present different intensities. The

interesting aspect to see in this figure is the detection of

two events around the 300th hour by the second neigh-

bour (bottom right). These frequent changes in power

output were not well modelled by the closest point of

the grid. However, a neighbour point to the west of the

wind farm is starting to represent these events which

are not well located in time but they can indicate a

period of various changes that might be important to

considerate from the system operator’s point of view.

This is consistent with the wind direction observations

which in general come from the southwest of the farm.

It is important to take into account that these re-

sults are related specifically to the Sotavento Experi-

mental Wind Farm. Each wind farm has different ter-

rain characteristics that affect the power production of

the farm in different ways. The advantage of GP is that

no assumptions about the model are needed. This does

not mean that the model could not be improved with
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Fig. 14: Real power output and fuzzy inference system scores corresponding ramp down events at three different

points on the same time period (250 to 350 hours after the last training point).

local information, specially for the smaller fluctuations.

However, for a day-ahead forecast, this approach pro-

vides a wider picture of the possible events at the farm.

Other variables, such as temperature and pressure, will

be explored as a way to improve the fuzzy inference

model during periods of smaller frequent fluctuations

as these are usually associated with sudden changes in

power output. Finally, from the system operator’s point

of view, the fuzzy logic approach would allow a bet-

ter understanding of how the events will develop over

time. Future work will also focus on providing an eas-

ier way to interpret the results and how to combine

the fuzzy ramps from different points into one forecast,

which would also be easier to interpret by the system

operator.

References

1. WWEA, World wind energy half-year report 2012, Tech.
rep.World Wind Energy Association (2012).

2. Ferreira, C., Gama, J., Matias, L., Botterud, A. and Wang,
J. A Survey on Wind Power Ramp Forecasting, Tech. rep.
ARL, DIS-10-13 (2010).

3. Pinson, P. Catalogue of complex extreme situa-
tions.Technical Report, EU Project SafeWind, Deliverable
Dc1.2, (2009).

4. Giebel, G. The State of the Art in Short-Term
Prediction of Wind Power: A Literature Overview,
2nd Edition, Project ANEMOS. Available at
http://www.safewind.eu/images/Articles/Deliverables/
swind deliverable dp-1.4 sota v1.1.pdf [Accessed on
September 17, 2013].

5. Kanamitsu, M. and Alpert, J.C. and Campana, K. A. and
Caplan, P.M. and Deaven, D.G. and Iredell, M. and Katz,
B. and Pan, H. L. and Sela, J. and White, G. H., Recent
Changes Implemented into the Global Forecast System at
NMC, Weather and Forecasting, Vol.6, 1991, pp. 425-435.

6. Landberg, L., Short-term prediction of the power produc-
tion from wind farms, Journal of Wind Engineering and
Industrial Aerodynamics, Vol. 80, 1999, pp. 207-220.

7. Landberg, L., Short-term prediction of local wind condi-
tions, Journal of Wind Engineering and Industrial Aerody-
namics, vol. 89, 2001, pp. 235-245.

8. Constantinescu, E.M., Zavala, E.M., Rocklin, M., Sang-
min Lee, Anitescu, M., A computational framework for un-



16 Giovanna Mart́ınez-Arellano et al.

certainty quantification and stochastic optimization in unit
commitment with wind power generation, IEEE Transac-
tions on Power Systems, vol. 26, 2011, pp. 431- 441.

9. Skamarock, W.C. and Klemp, J.B. and Dudhia, J. and O.
Gill, D. and Barker, D. M. and Wang, W. and Powers, J.
G., A Description of the Advanced Research WRF Version
2, AVAILABLE FROM NCAR, Vol.88, 2001, pp. 7-25.

10. Alexiadis, MC., Dokopoulos, PS., Sahsamanoglou, H.,
Manousaridis, IM., Short-term forecasting of wind speed
and related electrical power, Solar Energy, Vol. 63(1),1998,
pp. 61-68.
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