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Abstract. The class of quantum codes called stabilizer codes is increasingly well-understood.
The premise of the stabilizer formalism is that a quantum code can be efficiently described by a
subgroup of its error group, and, interestingly, the stabilizer formalism permits correspondences
with classical linear codes. In this paper, we examine one such correspondence, and we shall use
this to establish the number of distinct stabilizer codes that exist for a fixed parametrisation.

1. Introduction
Coding theory is a branch of mathematics which seeks optimal solutions to problems concerning
the safe and accurate transfer of information. Shannon (1948) established the topic of coding
theory with his seminal paper on the mathematics of communication. Hamming (1950) then
introduced the concept of an error-correcting codes with his work on the correction of errors
on magnetic storage media. In the intervening decades, our society has become phenomenally
technology-orientated and coding theory has played a prominent role in this change.

In recent years, coding theory has evolved beyond its original classical setting and is
considered within a quantum theoretical perspective. Quantum stabilizer codes were introduced
independently by Gottesman (1997) and Calderbank et al (1998), and rank among the most
widely studied of all quantum error-correcting codes. The premise of the stabilizer formalism is
that a quantum code can be described by a subgroup of its error group, and it is this subgroup
which we refer to as the stabilizer of a quantum code. In this paper, we shall provide a brief
overview of the stabilizer formalism before establishing the number of distinct stabilizer codes
for a fixed parametrisation.

2. Preliminaries
Consider a d-dimensional Hilbert space Cd and fix each orthonormal basis state of the space
to correspond to an element of ring Zd of integers modulo d. As such, we have the basis
{|0〉 , |1〉 , . . . , |d− 1〉} ⊂ Cd which we call the computational basis whose elements correspond
to the column vectors of the identity matrix Id. A qudit is a d-dimensional quantum state
|ψ〉 ∈ Cd which can be written as |ψ〉 =

∑d−1
i=0 αi |i〉, where αi ∈ C and

∑d−1
i=0 |αi|2 = 1. The

state space of an n-qudit is formed by taking the n-fold tensor product of the principal space
Cd, (Cd)⊗n, which, correspondingly, possesses a set of orthonormal basis states that can given
by |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |in〉 = |i1i2 . . . in〉 for ij ∈ Zd. The general state of a qudit in the n-fold
space Cdn is
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|ψ〉 =
∑

(i1i2...in) ∈ Zn
d

α(i1i2...in) |i1i2 . . . in〉 , (1)

where α(i1i2...in) ∈ C and
∑
|α(i1i2...in)|2 = 1.

A basis for the set of bounded operators acting on Cd is given by the set of well-known
generalised Pauli matrices E = {XiZj | (i, j) ∈ Zd × Zd}. Any error E acting on a qudit state
can be written as a linear combination of the generalised Pauli matrices. The generalised
Pauli group, or error group, G is a group of order d4 generated by E and τI with center
ζ(G) = 〈τI〉. For an n-qudit system, any element Ei,j of Gn may be written as Ei,j =
τα(Xi1Zj1)⊗(Xi2Zj2)⊗· · ·⊗(XinZjn) where α ∈ Zd and ((i1, j1), (i2, j2), . . . , (in, jn)) ∈ Znd×Znd .
Since the group Gn/〈τI〉 is isomorphic to vector space F2n

d with order d2n, this allows us to write
a correspondence between Gn/〈τI〉 and F2n

d as

Eij = ⊗nz=1Xiz · ⊗nz=1Zjz
≡ (i1, i2, . . . , in|j1, j2, · · · , jn) = (i|j). (2)

A quantum code consists of an encoding function e from the Hilbert space (Cd)⊗k to the

Hilbert space (Cd)⊗n ≡ Cdn , e: Cdk → Cdn where k and n are integers and k < n. In a manner
similar to the classical case, we define the codewords of a quantum code to be those states
contained in the image of e, Im(e). The length of the code is given by n while k denotes the
number of encoded message qudits of the code. The extra n − k qudits introduce additional
information that allows the encoded qudits to be stored in a redundant manner which can then
be later used to detect transmission errors. A code Q is a quantum Jn, kKd code over Cd if it is
a subspace of dimension dk in Cdn . For our purposes, it is not necessary to introduce minimum
distance.

3. Stabilizer Codes
Let Q be a quantum error correcting code. The stabilizer S of Q is a formalism that describes
a quantum code in terms of error operators acting on Gn. More precisely, the stabilizer of Q is
defined to be a set of operators M∈ S of Gn for which the condition

M|ψ〉 = |ψ〉 (3)

is satisfied for all codewords |ψ〉 (Gottesman 1997). Thus, the stabilizer maintains a common +1-
eigenspace of codespaceQ. Stabilizer codes themselves were originally considered over dimension
two, and in this situation, errors are said to either commute or anti-commute with a codeword.
It is exactly this property that helps stabilizer codes elicit a relatively straight-forward error
detection procedure. In particular, the set of all operators that commute with the stabilizer is
called the centralizer. Error detection is then explained by the fact that any error which lies
outside of the centralizer necessarily anti-commutes with some elements of the stabilizer. Note
that since stabilizer codes were initially based on qubit systems, the stabilizer is necessarily an
Abelian subgroup while the centralizer is referred to as the normalizer of the group. We shall
however be considering more general systems based on qudits.

Definition 1 A stabilizer code Q is a subspace of Cdn that satisfies the relation

Q =
⋂
M∈S

{|ψ〉 ∈ Cd
n | M |ψ〉 = |ψ〉} (4)

for some subgroup S of Gn.

The above definition is a generalisation of the usual definition of stabilizer codes based on
qubits. Since S describes the set of operators that leave each state in the quantum code invariant,
S is therefore said to stabilize the code Q.



4. Stabilizer Equivalence
4.1. A classical coding problem
In classical coding theory, an interesting problem is to determine the number of different
generator bases that can be constructed for a linear code for fixed parameters. We will concern
ourselves with this problem before asking if a comparable statement can be made for stabilizer
codes — these being quantum analogue of linear classical codes.

Let F be a field. A classical code C of length n is a linear code if and only if C is a subspace of
the vector space Fn. If C has dimension k over F , then we say that C is an [n, k] linear code over
F . Therefore, C can be specified by a basis consisting of a minimal set of vectors v1, v2, . . . , vk
such that C = {

∑k
i=1 αivi | αi ∈ F}. Setting F = F2, we have the following.

Theorem 1 (Hoffman et al 1991) A binary linear code of dimension k has precisely

1

k!

k−1∏
i=0

(2k − 2i)

different generator bases.

4.2. A quantum coding problem
Motivated by theorem 1, let us now consider the problem of determining the number distinct
Jn, kKd stabilizer codes for fixed n, k and d. We have the following.

Theorem 2 The number of stabilizer sets in the Hilbert space Cdn that maintain a +1-
eigenspace of dimension dk is given by

d
n−k−1(n−k)

2

n−k−1∏
i=0

(
d2(n−i) − 1

)
.

Proof. The error group associated with an n-qudit system is the n-fold product Gn =
{Eij | (i, j) ∈ Znd × Znd}. To count the number of elements within Gn that maintain a +1-
eigenspace, note that the first such element M′1 can be chosen in d2n − 1 ways. Let M′2 be
another element of Gn that commutes with M′1 but is independent from M′1. Then it can
be shown that there exists an N ′2 ∈ Gn that commutes with M′1 but fails to commute with
M′2 (Gottesman 1997). Hence, M ′2 maintains the +1-eigenspace of M′1. Thus, the number of

choices for M′2 that maintain a +1-eigenspace with M′1 is d2n

d − d. In a similar fashion, we
note that forM′l 6= {M′1,M′2, . . . ,M′l−1}, a suitable N ′l can be found such that N ′l commutes
with M′1,M′2, . . . ,M′l−1 but does not commute with M′l. Hence, the number of choices for

M′l that preserve the +1-eigenspace of the set {M′i}, i = 1, . . . , l− 1, is d2n

dl−1 − dl−1. Therefore,
the total number of ways of choosing n− k stabilizers M′i for a code Q is given as

n−k−1∏
i=0

(
d2n

di
− di

)
= d

∑n−k−1
i=0 i

n−k−1∏
i=0

(
d2(n−i) − 1

)
= d

n−k−1(n−k)
2

n−k−1∏
i=0

(
d2(n−i) − 1

)
. (5)

Theorem 3 An Jn, kKd stabilizer code Q has precisely

d
(n−k−1)(n−k)

2

n−k−1∏
i=0

(d(n−i) − 1) (6)

possible choices for stabilizer sets which maintain its +1-eigenspace.



Proof. The codewords associated with a stabilizer code Q are given by

|c1 . . . ck〉 = X
c1
1 . . . X

ck
k

1

|S|
∑
M∈S

M|00 . . . 0〉 (7)

(Gottesman 1997). As the stabilizer code of dimension dk is defined in terms of a +1-eigenspace
S, there are dn−k stabilizer elements that satisfy this definition in a non-trivial manner. There
are a further dk elements associated with the logical encoding process X̄ and, thus, there are
a total of dn elements to choose from in order to maintain the code’s +1-eigenspace. Counting
the numbers of ways that the stabilizer elements Mi, i = 1, . . . , n − k, can be chosen for a
particular stabilizer code, we note there are dn − 1 non-trivial choices that can be made for the
first stabilizer M1. M2 can then chosen independently in dn − d ways, followed by dn − d2
choices forM3. In particular,Ml can be chosen to preserve the +1-eigenspace of Q in dn−dl−1
ways. Since we require n− k stabilizers in total, there are

n−k−1∏
i=0

(
dn − di

)
= d

∑n−k−1
i=0 i

n−k−1∏
i=0

(
d(n−i) − 1

)
= d

(n−k−1)(n−k)
2

n−k−1∏
i=0

(
d(n−i) − 1

)
(8)

choices for elements Mi ∈ S that maintain the +1-eigenspace of Q.
For fixed parameters n and k and d, we can now establish the number of distinct Jn, kKd

stabilizer codes within Cdn .

Theorem 4 The number of distinct Jn, kKd stabilizer codes over Cdn is

n−k−1∏
i=0

(d(n−i) + 1).

Proof. The quotient obtained from equations (5) and (8) is given by

n−k−1∏
i=0

(
d

n−k−1(n−k)
2 d2(n−i) − 1

d
n−k−1(n−k)

2 d(n−i) − 1

)
=

n−k−1∏
i=0

(
d(n−i) + 1

)
(9)

and the result now follows.
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