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Abstract 

Many bioacoustic studies have been able to identify individual mammals from variations in 

the fundamental frequency (F0) of their vocalizations. Other characteristics of vocalization 

which encode individuality, such as amplitude, are less frequently used because of problems 

with background noise and recording fidelity over distance. In this thesis, I investigate 

whether the inclusion of amplitude variables improves the accuracy of individual howl 

identification in captive Eastern grey wolves (Canis lupus lycaon). I also explore whether the 

use of a bespoke code to extract the howl features, combined with histogram-derived 

principal component analysis (PCA) values, can improve current individual wolf howl 

identification accuracies. From a total of 89 solo howls from six captive individuals, where 

distances between wolf and observer were short, I achieved 95.5% (+9.0% improvement) 

individual identification accuracy of captive wolves using discriminant function analysis 

(DFA) to classify simple scalar variables of F0 and normalized amplitudes. Moreover, this 

accuracy was increased to 100% when using histogram-derived PCA values of F0 and 

amplitudes of the first harmonic. When this method was extended to wild Eastern wolf howls, 

a similar result was achieved of 100% for solo howls and 97.4% for chorus howls from 119 

wolves using histogram derived PCA values. This was a new result for wild Eastern grey 

wolves. Individuality in howls was then tested in 10 other subspecies. The results showed that 

all wolf subspecies tested showed individuality in the F0 and amplitude changes of their 

howls and could be identified with 74.0% to 100% accuracy. Finally, the use of artificial 

neural networks (ANNs) to survey howls using novel data was assessed. The ANNs achieved 

higher accuracy than DFA, where DFA did not achieve 100%, and were capable of 

attributing novel howls to known wolves. Therefore howls could be used as a survey method 

in situ. 
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‘Only a mountain 

has lived long enough 

to listen objectively 

to the howl of a wolf’ 

Aldo Leopold (1949) 
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1. Introduction 

1.1 Answering the Call of the Wild: 

Using Acoustics in Wildlife Monitoring 

 

1.1.1 Introducing bioacoustics 

 

Bioacoustics is the science of animal sound and relies on audible communication 

between individuals and groups. It is increasingly being used to monitor species presence, 

numbers and behaviour without having to witness individuals (Catchpole et al. 2008). 

However, using animal vocalisations is not new, and has been used by ornithologists to 

identify species for millennia (Eichholz 1962). Today, with the development of digital sound 

recordings and software designed to extract and identify the key sound variables (Bradbury 

and Vehrencamp 1998), the application of bioacoustics has become greatly enhanced. For 

example, since Nikol’skii (1984) suggested using audio libraries to study vocalisations, in 

particular bird song, bioacoustics has moved so far forward that birds can now be identified 

and monitored at an individual, breeding pair and population level (Walcott et al. 2006; 

Mager et al. 2007b). 

 

Bioacoustics can provide an excellent alternative to visual surveys because perception 

of sound is not dependent on line of sight or high visibility of the study species. Sound 

analysis methods which have been used for over thirty years on birds, bats and cetaceans are 

now being used for a more diverse range of species including grey mouse lemurs 
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(Microcebus murinus) (Leliveld et al. 2011), Arctic foxes (Alopex lagopus) (Frommolt et al. 

2003) and bullfrogs (Rana catesbeiana) (Bee and Gerhardt 2002). The findings of these 

studies link vocalisations to advertisements of variables from body size and condition to 

group size and regional accent (learnt) or geographic-associated signature (inherited) (Wright 

1996; Abgrall et al. 2003; Mathevon et al. 2003; Benson-Amram et al. 2011; Charlton and 

Reby 2011; Yu et al. 2011; Briefer and McElligott 2011a; Hall et al. 2013; Balint et al. 

2013). Moreover, extensive studies of bat vocalisations have identified them to species level, 

with a particular application for separating cryptic species by vocalisation (Adams et al. 

2010b). Bat calls have also been used to track individuals (Fenton et al. 2004), separate 

individuals belonging to different groups (Boughman and Wilkinson 1998), identify 

associations with their home-range’s roost site (Jameson and Hare 2009), and even track 

long-term maternal effects (Jones and Ransome 1993). Over time, it is hoped that these 

findings will be applied to many other taxa including insects and anurans (Ganchev and 

Potamitis 2007; Bencsik et al. 2011; Han et al. 2011). 

 

 

1.1.2 Animal communication 

 

Communication occurs when one animal sends a signal which is received by another. 

These signals vary hugely from species to species and may consist of scent, sound, touch or 

visual signals such as colouration, bioluminescence or body language. However, true 

communication requires information to be encoded and transmitted by the sender for 

decoding by the receiver, although this message does not need to be consciously encoded For 

example, a seal pup will instinctively vocalise without knowing that it is communicating to 

its mother (Collins et al. 2006). Vocalisations have typically evolved to communicate 
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information of advantage to the sender, rather than the receiver, with animals advertising 

factors such as size and health (Bradbury and Vehrencamp 1998). Nevertheless, this 

information may be intercepted by unintended observers. For example, a deer scent-marking 

its territory may be detected by both other deer (intended recipients) and wolves (Canis 

lupus) (unintended recipients), which may lead to predation on the scent-marking deer (Mech 

1970). In addition, scientists may intercept these signals with more benign motives for 

tracking animals by their calls (Joslin 1967). 

 

Animals communicate in a variety of ways but most studies have focused on long-

range vocalisations such as howls, pant calls, songs and bellows rather than short-range 

vocalisations such as grunts, growls and whimpers (Bradbury and Vehrencamp 1998). The 

first class of these vocalisations tend to be territorial advertisements or calls to advertise 

presence to other members of a group or kin e.g. seal pups calling to their mothers (Collins et 

al. 2006). The second class of calls are typically used to communicate immediate responses 

to other individuals’ behaviours, such as a warning growl of a wolf in response to an attempt 

to steal food (Mech 1970). These calls do not necessarily need to communicate individual 

identity nor mood or warning, although the growls can be like territorial calls in terms of 

threatening and advertising possession of a resource (Mech 1970). 

 

 

1.1.3 Bioacoustics – from first recognising birds to today 

 

Identifying animals by the sounds they make is an ancient science. Pliny the Elder 

wrote the first documented book on ornithology as part of the Historia Naturalis Book X in 

77 AD, describing the habits and biology of a variety of species with details varying from 
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perfectly accurate to perfectly ludicrous (Eichholz 1962). For example, the common 

nightingale (Luscinia megarhynchos) is described as singing continuously for fifteen days, 

with every bird learning song from its elders then presenting a unique song itself (Eichholz 

1962). This is the first published scientific description of animal communication and the part 

about learning song is true (Kiefer et al. 2010). Since Pliny the Elder, thousands of books and 

papers have been devoted to the subject of bird song and other forms of animal 

communication. Some of this has filtered through to the public consciousness well enough 

that ornithology is a popular pastime and most people can at least identify a few basic animal 

sounds (e.g., the songs of whales or the howls of wolves) despite perhaps never having heard 

more than a recording of the noise in passing. With more acclimatisation, this knowledge 

becomes more precise; for example, dog owners can distinguish between their dog’s barks 

and those of others (Molnar et al. 2006). Wolf keepers can also do this with howls (V. 

Allison-Hughes, pers. comm.). 

 

Over the past fifty years, analyses of bird song, bat echolocation squeaks and whale 

song have shifted from obscure hobby interests to vital survey techniques. Advances in 

recording technology mean that computerised sound analysis can now decode information in 

the calls which was previously ignored. For example, it has become possible to identify 

species, family groups, sex, age and individuals by vocalisation variables alone (Bradbury 

and Vehrencamp 1998) in a vast range of species (see Table 1.1). These advances have been 

rapid; whale song is now considered to be so familiar and well known that recordings of it are 

sold as relaxation aids (Bradbury and Vehrencamp 1998). However, when American military 

researchers first recorded the sound in the 1950s as part of an acoustic experiment off the 

coast of Hawaii, it was not identified as the long and complex song of humpback whales 

(Megaptera novaeangelia) until 1967 (Payne and McVay 1971). Since then, whale song has 

been shown to encode species (Baumgartner et al. 2008), kinship, sex and maternal 
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inheritance patterns as well as possible ecotype of killer whales (Orcinus orca) (Riesch et al. 

2006; Miller et al. 2007; Deecke et al. 2010). 

 

1.1.4 Bioacoustics for surveying populations and species distributions 

 

The science of bioacoustics has developed to enable the vocalisations of different 

species to be utilised in monitoring populations and in exploring the relationship between the 

animal and its individual call (Bradbury and Vehrencamp 1998). However, application in situ 

is often limited by the accuracy of identification, whether to species, group or individual, so 

improving this accuracy is vital before surveys that can reliably identify individuals in the 

wild using vocalisations alone can be undertaken. As acoustic monitoring systems become 

more advanced (Blumstein et al. 2011), recording vocalisations in situ has become easier and 

cheaper, and surveys relying on their analysis is now possible and affordable. 

 

Recording and counting vocalisations of species emitted either spontaneously or in 

response to playbacks is increasingly being used to count and monitor populations for a 

number of reasons including conservation and wildlife management. Although sperm whale 

(Physeter macrocephalus) populations have been estimated using underwater acoustic 

methods since 1982 (Watkins and Moore 1982) and bird studies have a similar longevity 

(Brown and Smith 1976), more recently these techniques have been applied to an increasing 

number of taxa including birds (Cheng et al. 2012), bats (Rodhouse et al. 2011), cetaceans 

(Whitehead 2009) and canids (Darden et al. 2003). Bioacoustics surveys have even been 

shown to outperform visual surveys leopard seal (Hydruga leptonyx) vocalisations can 

successfully be used to survey the numbers of seals present in an area with greater accuracy 
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i.e. fewer false absences, than visual surveys (Rogers et al. 2013), although modelling this for 

more species requires similar comparisons of visual and acoustic surveys in situ. 

 

Differences in vocalisations between even closely-related species are now being 

exploited for tracking purposes. The simplest form of this assigns species identity to a 

vocalisation, such as knowing that the howl is from a wolf rather than a coyote, but far more 

is possible. Oswald et al. (2007) used the whistles of nine Delphinid species to correctly 

classify them with 80% accuracy. These whistles can now be used to show the presence or 

absence of a species in a known area and thus track them over the enormous ranges of 

oceanic mammals as well as to separate the calls of closely related species to establish their 

ranges (Oswald et al. 2007). The delphinids benefit from knowing the species of the caller 

because they can moderate their behaviour accordingly, e.g. long-finned pilot whales 

(Globicephala melas) increase their group size in response to killer whales calls (Cure et al. 

2012), a clear effect of the presence of one species affecting the behaviour of another. 

Regional-associated signatures have been used to separate such diverse species as Ryuku 

scops owls (Otus elegans) (Takagi 2013), two species of pika (Ochotona princeps and O. 

collaris) (Conner 1982; Trefry and Hik 2010), and Weddell seals (Leptonychotes weddellii) 

(Pahl et al. 1997). Geographic and population associated signatures can be used to separate 

populations but these signatures need to be used with caution as they may change if the 

animals migrate to a new territory and alter their call to match the locals’ call, as in common 

loons (Gavia immer) (Walcott et al. 2006). 
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1.1.5 The Physics of and Physical Characteristics Expressed in Vocalisations 

 

The way that vocalisations are formed vary between taxa, and familiar examples 

include dogs barking, birds singing and bats emitting high pitched chirps, all produced by 

different mechanisms. The most commonly used component to describe these vocalisations is 

the fundamental frequency (F0) which is the pitch of the vocalisation expressed in Hertz (Hz) 

(Bradbury and Vehrencamp 1998). On musical instruments, this would be called the note 

played. However, as is clear from the dissimilarity in sound from one musical instrument to 

another, a single note played on different instruments sounds dissimilar while still using the 

same F0 (Bradbury and Vehrencamp 1998). Source filter theory was originally developed in 

studies of human vocalisations and describes how differences between animals’ sound 

production mechanisms affect the sound produced (Taylor and Reby 2010). In mammals, the 

‘source-filter’ theory states that vocal signals result from a two-stage production with sound 

starting in the larynx, referred to as the source, then travelling out through the supralaryngeal 

vocal tract, referred to as the filter (Taylor and Reby 2010). The qualities of these two 

physical characteristics therefore control and constrain the sounds produced when air is 

expelled from the lungs and are often related to the physical mass and size of the animal 

vocalising (Riede and Fitch 1999; Taylor and Reby 2010). The vocal folds of the larynx, 

often called the vocal chords in humans, consist of three layers: epithelium, muscle and vocal 

ligament and along with the spacing between them form the glottis where vocal sounds are 

produced (Janik and Slater 1997; Bradbury and Vehrencamp 1998). Fundamental frequency 

is determined by the rate of opening and closing of this glottis, called the glottal wave (Taylor 

and Reby 2010). Lower fundamental frequency results from longer and heavier folds which 

vibrate more slowly than smaller vocal folds (Bradbury and Vehrencamp 1998). The sound is 

then modulated through the filter of the supralaryngeal vocal tract, which consists of all the 

air cavities between the larynx and the opening of the mouth and or nostrils (Taylor and Reby 
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2010). The shapes of these cavities and their constriction or relaxation affect the overall 

sound produced by shaping the resonant frequencies (Taylor and Reby 2010). These resonant 

frequencies form spectral peaks called formants and these formants may directly reflect the 

length of vocal tract in many non-human mammals and denote body size in some species 

including the dog (Canis familiaris) (Riede and Fitch 1999). The physical differences 

between vocal tracts alter the sounds produced and constrain what can be produced and 

therefore may encode information about the individual vocalising (Riede and Fitch 1999; 

Taylor and Reby 2010). For a fuller review of sound production and the effects of differences 

in source and filter see Taylor and Reby (2010). 

 

Animal vocalisations can encode this information in a variety of ways as well as the 

fundamental frequency including the amplitude, number of harmonics, duration, abrupt shifts 

in frequency and repetition of the call (Bradbury and Vehrencamp 1998). Vocalisations can 

be distinguished from one another by quantifying and subsequently analysing different 

components of the sound which make up the vocalisation (Bradbury and Vehrencamp 1998). 

Fundamental frequency is described using variables such as its mean, maximum, minimum 

and range. Changes in F0 over time, which include the coefficient of modulation and the 

coefficient of variation (Theberge and Falls 1967; White et al. 1970; Bradbury and 

Vehrencamp 1998), are typically used for identification, sometimes with its harmonics 

(Theberge and Falls 1967). Harmonics are always an integer multiple of the F0. If the F0 is f 

the harmonics have the frequencies 2f, 3f, 4f (Bradbury and Vehrencamp 1998). These 

harmonics are the overtones which complete the sound. The F0 forms the pitch of the sound, 

which is heard when the animal vocalises, while the number of harmonics forms the timbre of 

the voice. Changes in the F0 are typically the focus of most identification studies because it is 

relatively robust to distance from receiver, and easy to track (Bradbury and Vehrencamp 

1998). 

http://en.wikipedia.org/wiki/Integer
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Absolutes of, and changes in, amplitude, which measure vocalisation volume 

(Bradbury and Vehrencamp 1998), are used far less often because of difficulties in reliably 

recording it at distance, but in a small number of studies it has been found useful to identify 

individuals (Yin and McCowan 2004; Charrier and Harcourt 2006; Charlton et al. 2009; 

Briefer and McElligott 2011b; Pitcher et al. 2012). In these studies, amplitude changes were 

found to include individual vocal signature and to potentially encode information on both the 

temporal change of the amplitude and its absolute values (Yin and McCowan 2004; Charrier 

and Harcourt 2006; Charlton et al. 2009; Briefer and McElligott 2011b; Pitcher et al. 2012). 

The changes in F0 and amplitude have quantifiable differences in the various components of 

vocalisations which can therefore be used to decipher a large amount of information from an 

animal, such as species (Thinh et al. 2011), individual identity (Yin and McCowan 2004; 

Vannoni and McElligott 2007) and kinship (Hoffmann et al. 2012), and can also be used to 

describe the physical characteristics of the vocalising animal (Briefer and McElligott 2011a). 

 

Physical characteristics of individuals affect vocalisations as differences in the length 

and shape of the vocal tract, mouth, palate and tongue, hormonal state, quality of physical 

condition, body size and lung capacity can all affect noise production (Bradbury and 

Vehrencamp 1998). For example, smaller animals tend to have higher frequency 

vocalisations both between and within species; smaller bodied juveniles vocalise at a higher 

pitch than adults (Bradbury and Vehrencamp 1998). Where the physical characteristics have 

a direct effect on vocalisations, bioacoustics can be used to indicate the body size, age, sex 

and condition of animals at a distance (Growcott et al. 2011). The evolutionary advantages 

for this are obvious: avoiding predation and attracting mates (Davies and Krebs 1997).  
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Advertising size through vocalisations has been noted in a diverse collection of 

species including dogs (Canis domesticus) (Taylor et al. 2010), common loons (Mager et al. 

2007b), goats (Caprica hircus) (Briefer and McElligott 2011a), rock hyraxes (Procavia 

cavensis) (Koren and Geffen 2009) and lions (Leo panthera) (Pfefferle et al. 2007). Dogs can 

use growls to assess the size of an unseen dog (Farago et al. 2010), although this can be an 

unreliable signal depending on whether the intent conveyed is playfulness or aggression 

(Balint et al. 2013). Age can also be monitored using vocalisations, with individuals of 

known ages used to calibrate the variables for individual species e.g. meerkats (Suricata 

suricatta) (Hollen and Manser 2006). Typically, higher frequency contact calls are emitted by 

younger animals, with a few exceptions such as the alarm call anti-predator deception of 

ground squirrels (Spermophilus suslicus and S. fulvus) (Matrosova et al. 2007). 

Advertisements of size and age can also be exploited during species surveys: Rogers et al. 

(2013) described vocalisation differences between individual leopard seals at different ages, 

allowing populations to be separated into age classes (sub-adult and adult) as part of the 

survey. However, each species may have different acoustic indicators of the actual age of the 

animal beyond what is directly affected by body size. 

 

Most studies have found that vocalisations can be used to assign individuals reliably 

to a gender including in dogs (Chulkina et al. 2006). However, sex differentiation is similarly 

complicated by the effect of body size on vocalisations. For example, the sex-specific roar 

characteristics of lions may be due to the large dimorphism between the sexes, with males up 

to 50% larger than females (Pfefferle et al. 2007). Nevertheless, of the reviewed literature, 

100% of sexually dimorphic and 93.3% of non-sexually dimorphic species encoded sex in 

their vocalisations (see Table 7.1, Appendix 1). Only black-legged kittiwake (Rissa 

tridactyla) and big brown bats (Eptesicus fuscus) were excluded as they have contradictory 

studies (see Table 7.1, Appendix 1). Therefore, whether a species is sexually dimorphic or 
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not, the vocalisation is likely to advertise the sex of the caller which can be used as a survey 

tool when assessing wild populations (Mager et al. 2007b; Charlton et al. 2012). Although 

the applications of this have not yet been fully explored, bioacoustics surveys could provide a 

means of establishing the sex ratios of populations, providing insights into the behavioural 

ecology of species. 

 

Body condition and health can also be advertised in vocalisations and have been 

found in species such as dogs (Taylor et al. 2010), red deer (Cervus elaphus) (Reby and 

McComb 2003), fallow deer (Dama dama) (Vannoni and McElligott 2009), bison (Bison 

bison) (Wyman et al. 2008), common loons (Mager et al. 2007b) and brown skuas 

(Catharacta antarctica lonnbergi) (Janicke et al. 2007), where anatomical constraints enforce 

an honest signal in males. The advantages of an honest signal of condition are to attract mates 

and to reduce competition between unevenly matched rivals (Dawkins and Guilford 1991). 

While body size and condition are often advertised honestly, dishonest signalling is also seen 

in the natural world. Dishonest signalling can benefit the caller if, for instance, it avoids 

predation by sounding larger than it is (Matrosova et al. 2007). This is the case for ground 

squirrels where the pups have lower calls than would usually be true for their body size 

(Matrosova et al. 2007). For acoustic surveys, it is necessary to establish whether a signal is 

honest or dishonest before using it as a criterion for assessment as for male green frogs (Rana 

clamitans) where the fundamental frequency can be manipulated to dishonestly signal larger 

body size, but higher rate of vocalisation cannot similarly be faked (Bee et al. 2000).  
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1.1.6 Evolving vocalisations: speciation, geographic-associated signatures and 

environmental effects 

 

Exploring whether animals have fixed geographic-associated signatures would 

provide a window into the history of both mobile individuals and movement between 

populations. For example, socially learnt regional accents are found in many non-human 

species such as songbirds (Wright 1996; Mendes et al. 2011), suggesting that populations 

could diverge into subspecies, with this evolution reflected in their changing vocalisations 

(Thinh et al. 2011). Speciation often depends on reproductive isolation through geographic 

separation; therefore identifying the geographic variation in vocalisations within a species 

can provide historical information on the separation not readily available from other non-

genetic methods (Conner 1982). Studies of cetaceans have moved from simple species 

separation to complex assessments of how and when species arose and are still diverging 

(Riesch and Deecke 2011; Filatova et al. 2012; Murray et al. 2012). The bioacoustics of 

terrestrial mammals show that there may be a similar structure of vocalisation reflecting 

species identity across taxa as in aquatic mammals. This is exemplified in the American pika 

where the most distant populations show the greatest vocal divergence, and so the 

interconnectedness of the populations can be inferred from geographic-associated signatures 

in their vocalisation (Conner 1982). Furthermore, American and collared pika (O. collaris) 

vocalisations show geographic differences which probably reflect genetic divergence and 

thus illuminate the evolutionary history of the two species (Trefry and Hik 2010). 
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1.1.7 Social affiliation displayed in Vocalisations 

 

Kinship and social affiliation have already been shown in the vocalisations of species 

as varied as rhesus monkeys (Macaca mulatta) (Rendall et al. 1996), killer whales (Deecke et 

al. 2010) and wild house mice (Mus musculus musculus) (Hoffmann et al. 2012). Payne et al. 

(2003) attributed elephant (Loxodonta africana) calls to individuals and family groups as the 

basis of an acoustic monitoring scheme that is one of the first implemented for terrestrial 

mammals. Where kinship groups are separated, knowing which individuals are calling as well 

as their relatedness allows more accurate monitoring of ranges and behaviour than knowing 

kinship or identity in isolation (Payne et al. 2003).  

 

With increasing sensitivity to differences between individuals and groups, recent 

studies of vocalisations have shown that animal communication may encode far more 

information than previously believed. For example, goats (Capra hircus) (Briefer and 

McElligott 2011b; Briefer et al. 2012), sheep (Ovis aries) (Sebe et al. 2010) and wild house 

mice (Galaverni et al. 2012) show the ability to recognise their kin by their calls often, but 

not exclusively, between mother and offspring. The advantages of this are clear: to avoid 

parental investment in non-kin juveniles and to avoid within-kin aggression. Additionally, 

kinship advertisements between individuals may mediate territorial behaviours and reduce 

potential conflicts. Furthermore, Italian wolves (C. lupus italicus) are known to display their 

pack’s signature in their howls (Zaccaroni et al. 2012). What is not known is how this pack 

signature is controlled, by social learning or genetic mechanisms, or whether it is stable over 

time and with changes in the pack composition. 
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1.1.8 Individual identification from vocalisations 

 

One of the most effective uses of bioacoustics is the ability to define individuality 

without obtaining sightings of obvious physical traits or analyses of genetic markers 

(Thompson et al. 2010a). This is especially useful in species which do not show obvious 

differences between individuals, or are particularly cryptic. Individual identification can be 

used to optimise surveys of populations by allowing capture-mark-recapture instead of 

presence/absence surveys by matching vocalisations to individuals (Tripp and Otter 2006), 

and for many species this could substantially improve knowledge of territory size and range 

as well as showing movement of individuals within ranges (Thompson et al. 2010a).  

 

Individual identity in vocal signatures has been shown in many studies (Table 1.1). 

The studies typically used fundamental frequency (F0) variables, with descriptive variables 

established for individuals using analysis of variance (ANOVA), or similar analysis, into 

differences between mean values. When these mean values were shown to exhibit greater 

between-individual than within-individual differences, they were used to relate vocalisations 

back to the originating individual (via a classification scheme) and the level of accuracy 

achieved was recorded. Discriminant Function Analysis (DFA) was the most frequent form 

of classification analysis, with 84% (n = 52) of studies reviewed using DFA to identify 

individuals from their calls. DFA is used to analyse a variety of variables, both temporal and 

spectral F0 and amplitude modulation, extracted from sonograms of the recorded sounds. The 

lowest identification accuracy achieved was 29% in Weddell seals (Collins et al. 2006) and 

the highest combined accuracy was 99% in the swift fox (Vulpes velox) (Darden et al. 2003). 

This difference in accuracy is sometimes a function of the age of the study with earlier 

studies involving less developed techniques, thus exhibiting lower accuracies (e.g. Bee and 

Gerhard (2001) vs. Bee (2004) for the bullfrog Rana catesbiana). Additionally, dogs have 
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been shown to distinguish between strange and familiar dogs’ barks and to respond 

accordingly (Molnar et al. 2009). 
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Table 1.1 Individual identification studies and their analysis methods 

Order Common Name Latin Name Analysis Method Accuracy Reference 

Accipitriformes Bald eagle 
Haliaeetus 

leucocephalus 
DFA 83 -100% (Eakle et al. 1989) 

Amphibia Armobatid Allobates femoralis DFA 64.9% (Gasser et al. 2009) 

Amphibia Bullfrog Rana catesbiana DFA 52-100% (Bee and Gerhardt 2001) 

Amphibia Bullfrog Rana catesbiana 
PCA,  

DFA 
75.5% (Bee 2004) 

Anseriformes 
White-faced 

whistling duck 
Dendrocygna viduata DFA 93-99% (Volodin et al. 2005) 

Artiodactyla Fallow deer Dama dama DFA 36.6-53.6% (Vannoni and McElligott 2007) 

Artiodactyla 
Fallow deer, males 

only 
Dama dama Neural network 87.9% (Reby et al. 1998) 

Artiodactyla 

Goitred gazelle 

(juveniles & 

adolescents) 

Gazella subgutturosa DFA 52.1-64.4% (Lapshina et al. 2012) 

Caprimulgiformes Marbled frogmouth Podargus ocellatus DFA  (Jones and Smith 1997) 

Carnivora African wild dog Lycaon pictus DFA 67.0% (Hartwig 2005) 

Carnivora Asiatic wild dog Cuon alpinus DFA 44.7-96.7% (Volodina et al. 2006) 
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Carnivora Barking fox Alopex lagopus DFA 90% (Frommolt et al. 2003) 

Carnivora Coyote Canis latrans DFA 69-83% (Mitchell et al. 2006) 

Carnivora Dog, domestic Canis familiaris DFA 40% (Yin and McCowan 2004) 

Carnivora Dog, domestic Canis familiaris DFA 63.5% (Chulkina et al. 2006) 

Carnivora Eastern wolf Canis lupus lycaon DFA 86.5% (Tooze et al. 1990) 

Carnivora Iberian wolf Canis lupus signatus DFA 84.7% (Palacios et al. 2007) 

Carnivora Meerkat Suricata suricatta 
Multi-nomial 

regression 
90% (Schibler and Manser 2007) 

Carnivora Swift fox Vulpes velox DFA 99% (Darden et al. 2003) 

Cervidae Red deer Cervus elaphus 

Homo-morphic 

analysis & hidden 

Markov models 

93.5% (Reby et al. 2006) 

Cetacea Amazonian manatee Trichechus inunguis DFA Not given (Sousa-Lima et al. 2002) 

Cetacea Bottlenose dolphin Tursiops truncatus DFA 75.7% 
(Lopez-Rivas and Bazua-Duran 

2010) 

Chiroptera 
African large-eared 

long-tailed bat 
Otomops martiensseni DFA 70% (Fenton et al. 2004) 

Chiroptera Bechstein’s bat Myotis bechsteinii 
DFA not reliable 

results 
N/A (Siemers and Kerth 2006) 

Chiroptera Big brown bat Eptesicus fuscus DFA 63% (Kazial et al. 2001) 



30 

 

Chiroptera 
Big brown bats 

(juveniles only) 
Eptesicus fuscus DFA 79% (Camaclang et al. 2006) 

Chiroptera Cuban Evening bat Nycticeius cubanus DFA Not given (Mora et al. 2005) 

Chiroptera Little brown bat Myotis lucifugus 
DFA, Univariate, 

Multivariate 
66-89% (Melendez and Feng 2010) 

Coraciiformes 
Rufous-headed 

hornbill 
Aceros waldeni DFA 89% (Policht et al. 2009) 

Coraciiformes Visayan hornbill 
Penelopides panini 

panini 
DFA 90% (Policht et al. 2009) 

Cuculiformes Pheasant coucal Centropus phasianinus Not proved N/A (Maurer et al. 2008) 

Gruiformes Corncrake Crex crex DFA 80-100% (Peake et al. 1998) 

Gruiformes Siberian crane Grus leucogeranus DFA 97.3% (Bragina and Beme 2010) 

Hyracoidea Rock hyrax Procavia capensis DFA 93.3% (Koren and Geffen 2011) 

Marsupialia Koala Phascolarctos cinereus DFA 87.7% (Charlton et al. 2011a) 

Mustelidae California sea otter Enhydra lutris nereis DFA 

80% 

mothers, 

75% 

juveniles 

(Mcshane et al. 1995) 

Mustelidae Leopard seal Hydruga leptonyx Markov process 83% (Rogers and Cato 2002) 

Mustelidae 
Northern elephant 

seal 

Mirounga 

angustirostris 
PCA 54-64% (Insley 1992) 
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Mustelidae Northern fur seal Callorhinus ursinus PCA 79-82% (Insley 1992) 

Mustelidae Stellar sea lion Eumetopias jubatus 
Back propagation 

network 
71% (Campbell et al. 2002) 

Mustelidae Weddell seal Leptonchotes weddellii DFA 29-52% (Collins et al. 2006) 

Passeriformes 
Brownish-flanked 

bush warbler 
Cettia fortipes DFA 90-99% (Xia et al. 2010) 

Passeriformes Eastern wood-pewee Contopus virens PCA, DFA 95.0-97.% (Clark and Leung 2011) 

Passeriformes Passerines Order: Passeriformes 

Feature extraction 

methods; neural 

network 

architecture 

69.3-97.1% (Fox et al. 2008) 

Passeriformes 
South-western 

willow flycatcher 

Empidonax traillii 

extimus 

DFA; 

Artificial neural 

network 

86%; 

 

81% 

(Fernandez-Juricic et al. 2009) 

Passeriformes Spotted antbird Hylophylax naevioides DFA >70% (Bard et al. 2002) 

Primates Agile gibbons Hylobates agilis agilis PCA, DFA Not given (Oyakawa et al. 2007) 

Primates Barbary macaque Macaca sylvanus DFA 80.5-96% (Hammerschmidt and Todt 1995) 

Primates Orangutan 
Pongo pygmaeus 

wurmbii 
DFA 21-100% (Delgado 2007) 

Primates Red-bellied lemur Eulemur rubriventer DFA 80.5% (Gamba et al. 2012) 
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Primates 
Red-capped 

mangabey 
Cercocebus torquatus PCA / MANOVA  (Bouchet et al. 2012) 

Primates Spider monkey Ateles geoffroyi DFA 50% (Chapman and Weary 1990) 

Psittaciformes 
Green rumped 

parrotlets 
Forpus passerines DFA 39-55% (Berg et al. 2011) 

Rodentia 
Belding’s ground 

squirrel 
Spermophilus beldingi 

DFA & Fixed 

effect linear 

regression 

45-100% (McCowan and Hooper 2002) 

Rodentia 
European ground 

squirrel 
Spermophilus citellus DFA 98% (Schneiderova and Policht 2010) 

Rodentia House mouse Mus musculus musculus Stepwise DFA 63.9-69.2% (Hoffmann et al. 2012) 

Rodentia 
Taurus ground 

squirrel 
Spermophilus taurensis DFA 94% (Schneiderova and Policht 2010) 

Strigiformes African wood owl Strix woodfordii DFA 80.9-100% (Delport et al. 2002) 

Strigiformes European eagle owl Bubo bubo DFA 89-98% (Grava et al. 2008) 

Strigiformes Great grey owl Strix nebulosa DFA 71.4-92.8% (Rognan et al. 2009) 

Strigiformes 
Queen Charlotte 

saw-whet owl 

Aegolius acadicus 

brooksi 
DFA 69-75% (Holschuh and Otter 2005) 

Strigiformes Western screech owl Megascops kennicottii DFA 92.3% (Tripp and Otter 2006) 
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1.1.9 Advancing the technology and applications 

 

Population studies of cryptic species typically rely on either in situ camera trapping or 

post-hoc monitoring involving the collection of genetic material, scat, etc. from known or 

suspected territories (for a review of existing techniques, see Long 2009). However, 

bioacoustics tracking does not require invasive techniques of capturing and is akin to camera 

trapping in terms of implementation and post-hoc monitoring techniques. Visual analysis 

tools can be used to identify individual leopards from their spots (Miththapala et al. 1989) or 

polar bears from their whisker patterns (Anderson et al. 2007) from photographs, enabling 

fine scale surveys and the tracing of life histories through remote cameras (Miththapala et al. 

1989; Anderson et al. 2007). The technical ability to monitor acoustics is nowhere near as 

well-developed as that for camera trapping, although an exception to this is cetacean studies 

where techniques are advancing rapidly with complex systems comparable to those of camera 

trapping (Klinck et al. 2012). It is hoped that bioacoustics will become to be viewed as a 

similarly useful tool to camera trapping which could potentially even be extended to silent 

species such as fish where populations and species could be monitored via echograms 

(Petitgas et al. 2003). 

 

Technological advances in software programming have not kept pace with the 

expanding number of species known to show individuality, with many analyses still relying 

on manual programming choices instead of a single automatic programme for the entire 

process. However, the sound analysis of bat vocalisations is common enough for programmes 

such as Anabat (O'Farrell and Gannon 1999) and Anascheme (Adams et al. 2010b) to have 

been developed to automate the analysis of echolocation calls and assign vocalisations to 

species and region with a high degree of accuracy (>50% for species, up to 99% for region) 
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(Adams et al. 2010b). Being able to assign any vocalisation to species and region allows an 

excellent and fast method of characterising populations and monitoring them over time. 

Showing how different populations relate to one another, when used in conjunction with the 

known geography of the regions where the samples were collected, can show how they may 

have evolved distinctive calls and how geographical features may affect the development of 

the calls (Ziegler et al. 2011; Ey and Fischer 2009; Irwin et al. 2008).  

 

Acoustic recordings of hundreds of species have been collected in vast audio libraries 

such as the Macaulay Sound Archive (USA), British Library Sound Archive (UK), Borror 

Laboratory (USA) and the Tierstimmen Archiv of the Museum für Naturkunde (Germany). 

These recordings have been collected by professional individuals and organisations such as 

the British Broadcasting Corporation (BBC) and also amateur enthusiasts. The iBats 

Program, a bat call database which uses volunteers to record and submit bat echolocations to 

an international database for analysis to yield information on species distribution (Walters et 

al. 2012) forms an excellent model for future species monitoring systems as it utilises simple 

methods which can be implemented by citizen scientists. For instance, in addition to bird 

watchers recording visually identified species at specific sites, they could record their calls. 

This would give scientists a database of species distribution and, with individual recognition 

becoming increasingly used, could also be used to track movements of individuals between 

populations or over time. 
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1.2 A Brief Introduction to the Wolf: 

Biology, Ecology and Social Structure 

 

1.2.1  Brief Overview 

 

The grey wolf is the largest and was historically the most widely distributed canid in 

the world (Macdonald and Sillero-Zubiri 2004). However, due to persecution and habitat 

fragmentation, wolves are now less widely distributed than the red fox (V. vulpes) 

(Macdonald and Sillero-Zubiri 2004). Wolves inhabit a wide range of habitats across North 

America, North Africa, Europe and Asia (Mech 1970; Rueness et al. 2011). Their preferred 

prey is wild ungulates, although they will take livestock opportunistically when wild prey is 

scarce (Meriggi and Lovari 1996; Meriggi et al. 2011; Milanesi et al. 2012). They hunt in 

cooperative packs that range in size from 2-46 individuals, averaging 4 adults (Macdonald 

and Sillero-Zubiri 2004; Smith and Ferguson 2005). Persecution of wolves is still widespread 

but in countries with strong conservation lobbies, wolf numbers are beginning to recover, 

with some countries now recognising their important role in the ecosystem (Gula 2008; 

Liberg et al. 2012; Sandom et al. 2012). 

 

1.2.2 Grey Wolf Taxonomy – Debate and Dissent 

 

Grey wolf taxonomy is the subject of constant debate and revision (Wayne and 

Hedrick 2011) which causes problems for those attempting to conserve or study the species 

(Leonard and Wayne 2008; Mech 2009). There is a continually revised debate about how 
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many subspecies exist but it is generally agreed that the previously recognised 24 subspecies 

of North America should be revised down to 6 subspecies based on Nowak (2003), listed in 

Table 1.2, and that Eurasia should have 12, listed in Table 1.3. These subspecies range in 

morphology, territory size, hunting behaviour and prey choice, which can be independent of 

prey availability (Mech 1970; Macdonald and Sillero-Zubiri 2004; Rueness et al. 2011). 

Further revision of subspecies and species lines within the genus Canis is ongoing, with a 

new subspecies added as recently as 2011 (Rueness et al. 2011), and revision of how C. lupus 

is identified must be changed, with biological, behavioural and morphological data in conflict 

(Bozarth et al. 2011). Because of the difficulty of collecting data on the more remotely 

located subspecies, such as the Tibetan wolf (C. l. chanco), it is possible that the number of 

wolf species will be revised upwards to separate the most isolated wolves, as suggested by 

Sharma et al. (2004). 

 

 

 

Table 1.2 Currently accepted wolf subspecies of North America (Nowak 2003) 

Common Name Latin Name 

Arctic Canis lupus arctos 

Eastern Canis lupus lycaon 

Great Plains Canis lupus nubilus 

Mackenzie Valley Canis lupus occidentalis 

Mexican Canis lupus baileyi 

Red Canis lupus rufus 
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Table 1.3 Currently accepted wolf subspecies of Eurasia (Nowak 2003) 

Common Name Latin Name 

Arabian Canis lupus arabs 

Caspian sea Canis lupus cubanensis 

Eurasian Canis lupus lupus 

North African / Golden Jackal Canis lupus lupaster / Canis aureus lupaster 

Himalayan Canis himalayensis 

Hokkaido Canis lupus hattai 

Honshu Canis lupus hodophilax 

Iberian Canis lupus signatus 

Indian Canis lupus pallipes 

Italian Canis lupus italicus 

Steppe Canis lupus campestris 

Tibetan Canis lupus chanco 

Tundra Canis lupus albus 
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1.2.3 Distribution 

 

The wolf’s current status across the world is that of a slowly increasing population 

with large differences in hunting pressure, habitat suitability and prey availability, which are 

key factors defining the expansion and future range of the species (Salvatori and Linnell 

2005). Their current distribution in Europe is shown in Figure 1.1 (Salvatori and Linnell 

2005), although this should not be considered a fixed distribution. Wolves can travel up to 1, 

000km and gene flow occurs across the north of Eurasia, with potentially interconnected 

populations across northern Russia, Finland and Norway (Wabakken et al. 2007; Aspi et al. 

2009). 

 

Grey wolves are found in 26 countries throughout Europe as well as North America, 

North Africa and parts of Asia (Boitani 2003; Rueness et al. 2011). The data informing 

analyses of the current North American and European population status of grey wolves varies 

hugely from country to country. While the American, Canadian, Italian, Polish, Swedish and 

Norwegian populations are relatively well documented, Eastern European wolves are less 

studied and more subject to hunting groups whose influence may inflate government figures 

(Salvatori and Linnell 2005; Busch 2007).  
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Figure 1.1 Current Grey Wolf Distribution in Europe from Salvatori & Linnell (2005) 

(adapted from black and white) 
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In North America, wolves have been well studied in terms of their biology and their 

role in an ecosystem (see Mech 1970, 1997; Ripple and Beschta 2003, 2005, 2009). These 

studies tend to focus on populations in easily observed habitats, such as the Arctic tundra 

(Mech 1995), and relatively closed systems, such as Isle Royale (Nelson et al. 2011), as the 

huge geographic distances that a wolf can travel in the search for a mate complicates 

tracking. One of the most visible subspecies, because of the excellent lines of sight over long 

distance of Arctic tundra, is the Arctic wolf but these have ranges which can exceed 6, 

600km
2
 and daily straight line distances of 41km or more (Mech and Cluff 2011). However, 

the information on North American subspecies is considerably better than that for Eurasian 

wolves due to the high public interest in the return of extirpated subspecies to their local 

wilderness (Smith and Ferguson 2005).  

 

Asian wolf subspecies are the least studied of the genus. Their range is increasingly 

limited by conflicts with humans and they are now found in remote regions and uninhabited 

mountains, in developing countries without the money for wildlife research or protection, and 

are often still considered pests rather than balancers of prey populations, and thus ecosystems 

(Boitani 2003). The work that has been undertaken has focused on their genetics and 

distribution, and their relationship to domesticated dogs (Sharma et al. 2004). The Indian 

subcontinent holds two different basal clades of wolf-dogs, neither of which appears to have 

been involved in the domestication of wolves into dogs and whose position in the phylogeny 

is unclear (Sharma et al. 2004). Whether the Indian and Tibetan wolves are in fact grey wolf 

subspecies or species in their own right remains unclear and more work is needed to establish 

their position in the global distribution of subspecies and species (Sharma et al. 2004).  
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The gene flow between the populations of subspecies of wolves across Asia has not 

been established which complicates the population counts across the continent, although it 

has been shown that there are few geographic land barriers that can prevent wolves’ 

dispersal, with individuals dispersing over mountain ranges as large as the Alps and Rockies 

and across the Mongolian steppes (Lucchini et al. 2002; Oakleaf et al. 2006; Marucco et al. 

2009; Chen Jiu-Yi et al. 2011). There is much research to be done on their ecology, 

behaviour, distribution and use of habitat across these regions. Recent reliable estimates for 

Iraq, Iran, Afghanistan, Nepal and Bhutan are not currently available (Boitani 2003). A rough 

estimate, using all known estimates collated in Boitani (2003), puts the population of wolves 

on the Asian continent at approximately 100, 000 individuals but it is impossible to know 

how accurate this figure is, the distribution of subpopulations or the changes over time. 

 

1.2.4 Biology, Reproduction and Pack Life 

 

The basic social unit of the wolf pack is the mated pair, which is extended by their 

offspring which may stay with their parents for one to five years (Mech and Boitani 2003). 

Packs hold territories that vary in size from 33km
2
 to 6, 664km

2
; and pack size is dictated by 

prey availability and saturation of the habitat (Mech and Boitani 2003; Mech and Cluff 

2011). Packs as large as 47 individuals including pups have been recorded but this is 

considered unusual, with 2 to 7 adults and resultant offspring more usual (Mech and Boitani 

2003; Smith and Ferguson 2005). 

 

Mating is elicited by the dominant female in the pack from a dominant male during 

oestrus, and gestation typically lasts 55-57 days (Mech and Boitani 2003; Packard 2003). 

Wolves birth their young into dens which can be simple scratched earth patches, caves or 
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proper dug-ins, and there is evidence that wolf dens can be used for more than 700 years 

(Mech 1997; Mech and Boitani 2003). These dens are typically deep within the wolf’s 

territory and pups stay in them until they are old enough to be moved to the rendezvous site at 

the age of six to eight weeks (Mech 1970). The rendezvous site is a place for them to play 

safely while their parents hunt, where the pups play and adults congregate (Theuerkauf et al. 

2003). From the age of six weeks, the wolf pups can howl and will join in their parents’ 

choruses (Harrington and Asa 2003). This howl is distinctive of their smaller body size, being 

higher in pitch than that of the adults (Harrington and Asa 2003). 

 

The birth sex ratio is 50:50 in most cases, with no significant differences in survival 

between sexes (Mech 1970; Mech and Boitani 2003). Pup mortality is high with up to 70% 

dying before their first year, often during their dispersal from the natal pack at 10-12 months 

(Mech 1970). Anthropogenic effects cause up to 70% of wolf mortality through hunting, 

collisions with cars and collisions with trains but there are also cases of intraspecific (wolf on 

wolf) killing (Murray et al. 2010; Latham and Boutin 2011). In captivity, wolves may reach 

the age of 17 years but in the wild more than 9 is considered old and few are recorded over 

the age of 13 (Busch 2007). However, there is a great difficulty in assessing wolf age in the 

wild as there is a typical error rate of 1-3 years from tooth wear analysis (Gipson et al. 2000). 

 

Both male and female pups typically disperse from their natal pack from the age of 10 

months, unless a surplus of food is readily available which allows them to stay (Gese et al. 

1996; Kojola et al. 2006). The dispersed offspring typically form their own packs with 

dispersers from other territories, rather than joining existing packs (Mech 1970). Genetic 

analyses are beginning to be used to identify the relationships between wolves within and 

between wild packs (Caniglia et al. 2012; Carroll et al. 2012). 
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Using evidence from faeces (scats), wolf pack life has been revised from the classic 

alpha model to a more flexible system where any wolf may change position from submissive 

omega to dominant alpha and back again over the course of a lifetime (Mech 1999). It is now 

understood that no wolf is born to be the dominant alpha or the omega ‘scape-wolf’ and that 

most so-called alpha behaviour relates instead to the parent wolves guiding and reprimanding 

their own offspring (Mech 1999). This accords with evolutionary principles as the younger 

wolves are usually closely related, either siblings or offspring, of the dominant pair, and the 

cooperative benefit of hunting together and raising pups follows kin selection theory 

(Hamilton 1964), with elder siblings helping younger to survive (Lehman et al. 1992). 

 

Pack sociality is beneficial in terms of territory defence and predation (Mech 1970). 

There is increasing evidence that the availability of prey determines the size of the wolf pack, 

with packs living in areas where there is a large prey base more likely to have offspring that 

do not disperse after the first year (Mech 1999). As Mech (1999) noted that younger animals 

may not hunt well enough to help their parents for the first year of life, this may enable the 

yearlings to improve their own hunting skills. If conditions are particularly good, with prey 

availability high, offspring may even breed as part of the parental pack before risking the 

dangers of dispersal (Mech and Boitani 2003). The benefits to the parent wolves of non-

dispersal by their yearlings may be found in avoiding the high mortality rate (70%) that 

accompanies the first year of dispersal and the yearlings becoming “baby-sitters” helping to 

raise the next year’s pups, which can improve their survival rate (Mech 1999). The 

cooperative benefits of working as a team in catching prey appear to be limited beyond the 

pair, as two wolves can successfully kill a bull moose (Alces alces), but the indirect benefits 

of continuing to provision and protect the pair’s older offspring when there is surplus food 



44 

 

are clear (Mech and Boitani 2003). Some wolves do not reach sexual maturity until they are 5 

years old and therefore may not be capable of breeding at once if they disperse at the 

youngest age of 10 months, meaning they will not lose reproductive time by remaining for 

some months with their parents beyond this age (Mech and Boitani 2003). 

 

1.2.5 Habitat 

 

Wolves exhibit a broad range of habitat choice including mountains, tundra, marshes, 

forests, farmland and deserts (Macdonald and Sillero-Zubiri 2004). Where prey is widely 

distributed and common, territory choice is decided by factors such as road density, avoiding 

human use of the land, and vegetation cover (Wabakken et al. 1984; Macdonald and Sillero-

Zubiri 2004; Theuerkauf 2009). 

 

What remains clear is that wolf habitat varies greatly in terms of geography, ecology 

and biodiversity, and suitability is mostly determined by prey availability rather than specific 

geographic characteristics (Mech 1970; Macdonald and Sillero-Zubiri 2004). While human 

density decreases preference, wolves living in already saturated areas will colonise land that 

brings them into conflict with humans and there are numerous anecdotal examples of wolves 

using human roads and tracks (Mech 1970; Smith and Ferguson 2005). Wolves also utilise 

human resources such as rubbish dumps and offal sites, suggesting that in future wolves may, 

like bears (Ursa spp.), be found at city outskirts, rooting through rubbish bins when wild 

ungulates are scarce (Meriggi and Lovari 1996). There is no current reliable model for 

predicting wolf habitat suitability or choice studies, although two studies use historical data 

that could prove to have predictive power (Karlsson et al. 2007; Jedrzejewski et al. 2008). 
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The wolf’s very flexibility prevents accurate modelling and makes efforts to conserve 

suitable habitat difficult. 

 

1.2.6 Wolves as Predators 

 

Wolves can hunt as individuals or as co-operative teams in the form of the pack, 

although not all pack members may participate in every hunt (Mech 1970). They catch prey 

by running them down and biting at the haunches, throat and face; they do not, as long 

believed, hamstring their prey by snapping the tendons in the rear legs (Mech 1970). They 

attempt to pull down rather than run to exhaustion their prey, choosing injured animals 

preferentially (Mech 1970). Mech and Peterson (2003) estimate that a captive adult wolf 

requires 13 deer weighing 45kg per year to survive as a minimum; more is required for wild 

wolves and especially for breeding females due to the higher energetic costs associated with 

wider ranging activity and hunting activity. Calculating this in the wild is naturally difficult 

and so has not been done as yet. 

 

Typical prey species of the grey wolf are moose (Alces alces), elk (Cervus elaphus), 

reindeer (Rangifer tarandus), white-tailed deer (Odocoileus viginianus) and other large 

ungulates including domestic species such as cows (Bos primigenius), sheep (Ovis aries) and 

horses (Equus caballus) (Mech 1970). They may also predate on beaver (Castor canadensis), 

mice (Mus spp.), Rocky Mountain goat (Oreamnos americanus), pronghorn (Antilocapra 

americana), arctic hare (Lepus arcticus), birds and wild boar (Sus scrofa) when available, but 

do not prefer domestic species to wild prey (Mech 1970; Meriggi and Lovari 1996). 
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Prey behaviour can affect sensitivity to wolf predation (Mech 1970). Estimates of 

hunting success on North American deer and elk suggest rates as low as 7-10% as wolves 

often “test” animals before committing to a long chase (Mech 1970; Mech and Boitani 2003; 

Mech and Peterson 2003). This “testing” essentially involves an individual being selected and 

a wolf running towards it; often, if it stands its ground, the individual will be left alone (Mech 

1970). This testing relies on a degree of predation-avoidance behaviour not seen in animals 

which have lived in the absence of wolves, such as naive Scandinavian moose, which have 

not been exposed to hunting pressures for several generations (Sand et al. 2006). Wolf 

hunting success rate on naive moose was 45-64%, i.e. 35-57% higher than their success rate 

against wolf-habituated American moose (Sand et al. 2006). This shows that wolves do affect 

prey behaviour and use of habitat, although this is limited by the heterogeneity of the 

landscape (Kauffman et al. 2007; Theuerkauf and Rouys 2008). Prey animals such as deer 

preferentially use the best feeding sites in the absence of wolves, but ‘landscapes of fear’ 

created by wolves may affect entire ecosystems as they shift their prey from preferred areas 

to safer ones (Kauffman et al. 2010; McPhee et al. 2012). For ungulates, the single most 

important factor to counteract regulation by predators was spacing behaviour which 

corresponded to environmental heterogeneity (Skogland 1991). It may also be a way of 

wolves behaviourally mediating trophic cascades by creating areas where deer and moose 

choose not to feed due to predation risk (Kauffman et al. 2010). 

 

Predator avoidance behaviour may also introduce interspecies commensalism in the 

presence of wolves. Ravens (Corvus corax) follow wolves and call to alert wolves to the 

presence of carcasses and American moose (Alces alces) use these calls to avoid predation by 

wolves (Berger 1999). However, this behaviour is quickly lost (within 10 generations) where 
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wolves have gone extinct (Berger 1999). The ravens benefit when the wolves make a kill, 

producing scavenging meat for the birds (Stahler et al. 2002). 

 

The relationship between birds and wolves is not well studied beyond ravens. What is 

known is that Berkut eagles (Aquila chrysaetos) prey on wolves (by smashing into their backs 

and paralysing them); some riparian songbirds benefit from wolves controlling ungulate 

numbers in Yellowstone through predation and that ravens benefit from wolves providing 

fresh carcasses in both Europe and America (Stahler et al. 2002; Ballard et al. 2003; Mech 

and Peterson 2003). Ravens employ a kleptoparasitic foraging strategy preferentially 

associating with Yellowstone wolves in winter when food is less available and are able to 

remove up to 37kg of flesh from a carcass per day (Stahler et al. 2002; Ballard et al. 2003; 

Mech and Peterson 2003). Ravens have an innate fear of novel food sources and by 

associating with wolves they know the provenance of their meal but they will not eat from 

experimentally placed meat (Stahler et al. 2002). They are attracted to howling wolves and 

are flexible enough to consider gunshots as similar indicators of scavenge meat (Harrington 

1978; White 2005). The ravens’ behaviour has a strange offset for the wolves as lone wolves 

are much less capable than packs of more than 10 of protecting their food, losing 66% of the 

kill to ravens compared to the pack’s 10% (Ballard et al. 2003). 

 

Wolves indirectly benefit a host of other species by providing scavenger-meat, 

including ravens, jays (Garrulus glandarius), wolverines (Gulo gulo) bald eagles (Haliaeetus 

leucocephalus), grizzly bears (Ursa arctos spp.) and even 57 species of beetles (Wilmers et 

al. 2003; Dijk et al. 2008). As apex predators, they are not frequently in direct conflict with 

these species. The greatest source of wolf mortality is not that from predatory grizzly bears or 

wolf-interspecies killing, but from humans (Morner et al. 2005; Gude et al. 2012). 
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1.2.7 Conflict with Humans and Future Conservation 

 

The wolf has long been regarded as a figure of hate and distrust by many rural 

communities, with the fairytales of childhood warning of the danger of the wolf and a 

medieval identification of the wolf with the Christian Devil (Wallner 1998). This has led to 

the wolf being more widely reviled than other predatory species such as bears, despite many 

more cases of bear attacks recorded in both Europe and America (Breitenmoser 1998). Even 

positive stories of wolves such as Romulus and Remus, nursed by a she-wolf before going on 

to found Rome, and St Francis’ taming of the Wolf of Gubbio, have undertones of violence – 

Romulus will kill Remus, the ‘Wolf of Gubbio’ begins by ravaging the town and devouring 

livestock before being tamed and, eventually, entombed and mourned (Anonymous 1973; 

Wallner 1998). Reported attacks of non-rabid, wild wolves on humans in the 20
th

 century 

have not been borne out by independent researchers though historically there are some 

validated instances (Linnell et al. 2002). For a full review of the evidence of wolf attacks on 

humans, see Linnell et al. (2002). Factually unfounded it may be, but the fear of wolves has 

been a driving factor of their persecution for centuries. 

 

This attitude of fear and negativity persists today and it has only been in the last 60 

years that biologists have come to realise that while conflict may be inevitable, wolf 

extinction is not. In a now famous passage, Aldo Leopold (1949) describes his epiphany that 

wolf management should not equate to wolf extirpation: 
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“In those days we had never heard of passing up a chance to kill a wolf. In a second 

we were pumping lead into the pack, but with more excitement than accuracy; how to aim a 

steep downhill shot is always confusing. When our rifles were empty, the old wolf was down, 

and a pup was dragging a leg into impassable side-rocks. 

 

“We reached the old wolf in time to watch a fierce green fire dying in her eyes. I 

realized then, and have known ever since, that there was something new to me in those eyes—

something known only to her and to the mountain. I was young then, and full of trigger-itch; I 

thought that because fewer wolves meant more deer, that no wolves would mean hunters’ 

paradise. But after seeing the green fire die, I sensed that neither the wolf nor the mountain 

agreed with such a view.” 

(Leopold 1949) 

 

Leopold’s instinct was not a unique one. The wolf is extinct in many historic ranges 

and has only just begun to return to Norway and Sweden after centuries of persecution 

(Wabakken et al. 1984; Zimmermann et al. 2001; Ericsson and Heberlein 2003). The re-

colonisation of habitats by wolves usually occurs when persecution is reduced or outlawed, 

with more tolerant or less populated countries such as Poland and Russia forming reserve 

populations from which wolves continually disperse to less tolerant neighbouring countries, 

like Belarus (Macdonald and Sillero-Zubiri 2004; Pilot et al. 2006). However, conflicts still 

occur and both legal and illegal hunting of wolves is a major cause of mortality and prevents 

normal dispersal and re-colonisation movements (Caniglia et al. 2010; Rogala et al. 2011; 

Gude et al. 2012). In Scandinavia, wolves are controlled by reindeer herders as a means of 

protecting their herds which limits their dispersal potential and population size (Tveraa et al. 

2007). Across the world, conflict with humans is likely to define both where wolves will be 
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able to re-colonise in future but also where they will be able to maintain viable, if 

fragmented, populations.  

 

The future of the wolf as it re-colonises former territory may be seen in Finland. 

Where once the wolf had been completely extirpated by human effort, Finland now has a 

population of 185 wolves which are expanding their territory into the west and south where 

they have not been found for more than a hundred years (Kaartinen et al. 2005; Kaartinen et 

al. 2009). Between 1996 and 1999 there were around 100-120 wolves in Finland and 43 

confirmed attacks on dogs by wolves, mostly on hunting dogs in forests where the wolves 

were hunting moose, and only one attack was on a dog in a house yard (Kojola and Kuittinen 

2002). There have been no recorded attacks on humans, and wolves continue to avoid human 

dwellings and roads (Kaartinen et al. 2005). Further study showed that a single wolf pack 

was responsible for 71% of 21 confirmed attacks on domestic dogs and that the encounters 

appeared to be due to the wolves hunting the dogs instead of chance encounters (Kojola and 

Kuittinen 2002; Kojola et al. 2004). This suggests that future human-wolf conflict will be 

concentrated where wolves and hunters share ranges and prey choices rather than in villages 

or isolated farms. The historical fear of the wolf may reoccur where these conflicts occur, but 

is otherwise probably unjustified. 

 

Reintroduction efforts are controversial, compensation and education schemes are not 

always successful, but more than fifteen years since the reintroduction of the wolf to 

Yellowstone it has been noted that if the abundance of Leopold’s habitat is to be restored, so 

must be wolves (Smith and Ferguson 2005; Hedrick and Fredrickson 2008; Milheiras and 

Hodge 2011; Sparkman et al. 2011). Tracking the movements of these wolves will be crucial 

to future conservation efforts as they begin to re-colonise former areas. Tracking wolves is a 
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difficult, physical and time-intensive enterprise as wolves are shy and frequently inhabit 

remote and even hostile habitats (Mech 1970). Whether studying their behaviour, tracing 

their genetic flow across vast landscapes or monitoring their numbers for localised predator 

control or protecting livestock, knowing where wolves are and how they are using their 

territory will be essential for future work. Tools should include a combination of camera 

traps, radio collars, track and scat surveys and howl surveys.  

 

 

1.2.8 Howling as a Tracking Method 

 

Tracking wild carnivores is a difficult and expensive practice. The best data on 

individual movement comes from Global Positioning System (GPS) or radio telemetry 

collars, but the data gained from these are limited to the individuals and the animal must first 

be caught and sedated before it can be collared (Long 2008). Genetic analysis of scats can 

also identify individuals, but these cannot be collected without either scaring off the wolves 

from the area or waiting until they have left it. There is also the expense of deoxyribonucleic 

acid (DNA) analysis kits and personnel hours (Long 2008). Snow tracking is only possible 

when there is enough snow for tracks, either in winter or at high altitude, and is physically 

arduous, requiring long hours in the field (Ballard et al. 2003; Mech and Boitani 2006; Long 

2008). There is a strong interest, therefore, in developing immediate methods of surveying 

populations without requiring expensive genetics or telemetry collars. 

 

The cheapest method for surveying wolf pack distribution and abundance in the 

summer months when snow tracking is impossible is elicited howling, where a howl is played 

or howled by a researcher and responded to by wild individuals (Joslin 1967; Harrington and 



52 

 

Mech 1982). A wolf howl is a harmonic sound with a clear structure and a mean frequency in 

adults of 150-1000Hz and in juveniles of 200-1, 300Hz (Harrington and Asa 2003). Juvenile 

howls last just 3 seconds and adults up to 14 seconds, with a mean of 3-7 seconds (Harrington 

and Asa 2003). Pups emerge from the natal den at 3 weeks of age and will join the daily pack 

chorus from this time, but do not come into their adult voices until 6-7 months of age as their 

juvenile tone drops from 1, 100Hz at 2 weeks to around 350Hz (Harrington and Asa 2003). 

Single howls can be continued in bouts for up to 9 minutes, and chorus howls, those of more 

than two wolves together, last 30-120 seconds and may be repeated for up to 15 minutes 

(Harrington and Asa 2003). Chorus howls are distinguished using fundamental frequencies 

that differ by at least 15Hz from one another (Harrington and Asa 2003). Howl form and 

frequency characteristics have been found to differ consistently among individuals, allowing 

wolves to identify each other (Theberge and Falls 1967; Tooze et al. 1990).  

 

Elicited howling is the method of counting wolves by induced responses to stimulated 

howling within pack territories during the summer (Harrington and Mech 1979). This method 

yields a rough survey of minimum wolf numbers from heard responses with a confidence 

interval of typically +/- 3 individuals per chorus (Harrington and Mech 1979)and is generally 

used for rough population estimates or for locating the rendezvous site where the pups are 

kept during the summer months (Harrington and Mech 1979). These rendezvous sites are 

areas with a high scat concentration and are often used to provide the data for diet studies and 

genetic studies of familial relationships (Mech 1970). More accurate winter estimates of 

adult, but not juvenile, wolves are typically made using snow tracking (Mech 1970). 

However, none of these methods yield a true census as there is no way of knowing whether 

every individual has been counted, so all survey methods can only yield minimum counts. 

Applied mathematics have begun to be used to separate howls within choruses in both wild 
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and captive samples (Dugnol et al. 2007a; Dugnol et al. 2007b; Dugnol et al. 2008), although 

results have so far been limited to “noise” cleaning and have not established a clear method 

for wolf counting. More recently, Passilongo et al. (2012) achieved minimum counts using 

spectrographic counting. 

 

Individual identity signatures have been recognised in wolves since 1967 (Theberge 

and Falls 1967). However, individual adult wolves were not identified by sound analysis of 

their howls until more recently, with 86.5% accuracy in captive Eastern wolves (C.l. lycaon) 

(Tooze et al. 1990), 84.7% accuracy in captive Iberian wolves (C.l. signatus) (Palacios et al. 

2007) and 75.7% accuracy in wild Italian wolves (C.l. lupus) (Passilongo et al. 2012).  



54 

 

 

1.3 Rationale 

 

Bioacoustics in the future can be expected to be as widespread and useful as camera 

traps are now for remote monitoring of populations in situ. Surveys of vocalisations are 

similarly easy to implement with low-maintenance methods of collection such as howl boxes 

(Ausband et al. 2011). Howl boxes are automated recording systems which play recorded 

wolf howls as elicitations to howl and then record any sounds for a set period afterwards, the 

advantage being that they are solar powered and can be left in situ for days (Ausband et al. 

2011). It is likely that all species encode at least some information about themselves in their 

vocalisations, from individuality to gender and kinship, and that by describing these vocal 

differences bioacoustics can represent a tool for identification, monitoring and investigation 

of behaviour. This information is encoded in fundamental frequency, temporal variables and 

amplitude modulation. It may include information that is consciously amended with changing 

circumstance, as found when common loons change territories (Walcott et al. 2006) or 

information that is passed matrilineally and never lost, as found in killer whales (Miller and 

Bain 2000; Deecke et al. 2010). Research on bat vocalisations show potential ways forward 

for bioacoustics research in other species such as using automated identification programmes 

(Walters et al. 2012), exploring individuality and kinship on population levels (Yoshino et al. 

2008) and monitoring the change of vocalisations over time and geographic space (Davidson 

and Wilkinson 2002). Just as humans can recognise voices automatically (Skaric 2008), such 

recognition is seen in other species that have been tested (Proops and McComb 2012) and it 

will not be surprising to see this level of recognition found in many more. 
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Mech (1970) considered the grey wolf to be very well studied in the wild, but codified 

that much remains to be learnt. Studies so far have highlighted the complexity of their social 

behaviour, their timidity of humans, their effects on their prey’s behaviour and the cascade 

effect on their environment through their prey choices. They are apex predators with complex 

social lives and have direct effects on their prey’s behaviour (Mech 1970). Wolves may act as 

top-down controls on their local habitat and their presence may indirectly influence willow 

trees (Salix spp.) (Creel and Christianson 2009), river banks (Beschta and Ripple 2008), song 

birds (Baril et al. 2011) and soil nutrients (Bump et al. 2009), and directly influence the 

behaviour of their prey (Kittle et al. 2008) and fellow predators such as coyotes (Arjo and 

Pletscher 1999).  

 

However, in the absence of snow, reliable population counts are hard to obtain 

(Carlos Blanco and Cortes 2012; Duchamp et al. 2012). Howl surveys are undertaken to 

establish the presence of wolves and to identify rendezvous-sites, but have previously not 

been able to assess populations at the individual level (Joslin 1967). Developing new methods 

for tracking and surveying wolves is a priority for scientists interested in monitoring 

populations, exploring predator prey relationships and demonstrating the results of 

conservation efforts on population management (Carlos Blanco and Cortes 2012). The 

examination of wolf howls represents a survey method that can be improved by following 

advances in bioacoustics analyses for whales (Oleson et al. 2007) and corncrakes (Terry and 

McGregor 2002). The improvements can also be implemented with little financial investment 

compared to GPS and DNA tracking methods (Ausband et al. 2011). This study focuses on 

individuality present in the amplitude and fundamental frequency changes of wolf 

vocalisations and begins to indicate how wolf howls are complex, information-rich and 

important. 
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1.4 Aims 

 

This thesis aims to establish whether the findings of individual identity expressed in 

vocalisations found for birds, bats and cetaceans can also be repeated for wolves with the 

intention of forming a basis for a future survey method. The usefulness and expediency of 

bioacoustics has become evident as the number of taxa studied has expanded. The 

identification of individual wolves via their howls have so far been limited to three 

subspecies and this thesis aims to improve the accuracy of the identification as well as 

showing whether these characteristics are expressed in other subspecies. 

 

Therefore, this thesis aims to: 

 

1. Improve individual identification in captive Eastern grey wolves using the time 

course of howl amplitudes 

This chapter will focus on testing whether the new method works in controlled ex situ 

circumstances, using a single subspecies with previous best result for accuracy with 

known individuals. 

 

2. Identify individual wild Eastern grey wolves using fundamental frequency and 

amplitude of howls 

This chapter will extend the findings of Chapter 2 to wild wolves recorded in different 

conditions and circumstances on a range of equipment to demonstrate whether the 

sound feature extraction method works in situ. 
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3. Demonstrate whether Artificial Neural Networks (ANNs) can classify howls to 

individual wolves as a novel survey method, using howls from Eastern wolves 

and ten other subspecies 

This aims to show that unknown individuals can be successfully monitored by their 

howls alone using advanced statistical methods in order to prove that ANN models of 

howls could be used as a survey method in situ for both Eastern wolves and other grey 

wolves. 



58 

 

 

2. Improving individual identification in captive Eastern Grey 

Wolves (Canis lupus lycaon) using the time course of howl 

amplitudes 

 

This chapter was published in Bioacoustics as Root-Gutteridge et al. (2014b). 

 

2.1 Introduction 

 

Bioacoustics studies are increasingly being used in population ecology because 

vocalisations have been found to be highly variable both within and between individuals (e.g. 

Tooze et al. 1990) and so can be used as a method of individual identification. This vocal 

individuality can be utilised for monitoring populations remotely over time and can thus be 

applied to conservation studies (for a review see Terry et al. (2005)). A large range of 

mammals have been found to show individual identity in their vocalisations including Eastern 

grey wolves (Canis lupus lycaon) (Theberge and Falls 1967), giant pandas (Ailuropoda 

melanoleuca) (Charlton et al. 2009) and red squirrels (Tamiasciurus hudsonicus) (Digweed et 

al. 2012). Such individuality is shown in variation in both the fundamental frequency (F0) and 

duration of calls (Joslin 1967; Frommolt et al. 2003). A third key component of acoustic 

communication is amplitude variation within calls (Bradbury and Vehrencamp 1998), 

however most studies investigating individual recognition have ignored amplitude data, often 

because of the difficulty of in situ recordings (Frommolt et al. 2003) as amplitude attenuates 

(loses signal) over distance, particularly at higher frequencies (Bradbury and Vehrencamp 
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1998). Nevertheless, some studies have suggested that amplitude may carry as much 

individual information as fundamental frequency itself (Mcshane et al. 1995; Charrier and 

Harcourt 2006). Furthermore, the unequal attenuation of amplitudes between vocalisations 

can be compensated by measuring changes within amplitudes of individual vocalisations (i.e. 

normalised amplitude) rather than absolute amplitude data. For example, Charrier and 

Harcourt (2006) implemented normalised amplitude alongside fundamental frequency 

changes in Australian sea lions (Neophoca cinerea) and found a strong link between both 

amplitude and frequency modulations and individual identities. These parameters were used 

to predict strong individual recognition where the inclusion of amplitude data improved the 

accuracy of individual recognition over fundamental frequency alone (Charrier and Harcourt 

2006). Similar findings have been shown in California sea otters (Enhydra lutris nereis) 

(Mcshane et al. 1995) and giant pandas (Charlton et al. 2009). Therefore, amplitudes may 

also be useful in improving individual identification accuracy in other mammal species. 

 

Another source of error in many bioacoustics studies is the interference of background 

noise. Sound analysis programmes address this by using cross-correlation functions but not 

all achieve the removal of sound that is not harmonic, such as waves on a beach (Schrader 

and Hammerschmidt 1997). Praat (Boersma and Weenink 2005) is one such commonly 

applied vocal analysis software programme and has been used to extract acoustic features, 

such as frequency and amplitude, for analysis of individuality in mammal vocalisations (e.g. 

red lemurs (Eulemur rubriventer) (Gamba et al. 2012), spotted hyenas (Crocuta crocuta) 

(Benson-Amram et al. 2011), goats (Briefer and McElligott 2011b), and giant pandas 

(Charlton et al. 2009). However, Praat is not capable of tracking vocalisations precisely 

unless it is manually adjusted to get a good fit and may further require specially written code 

to extract all desired features (Briefer et al. 2012). 
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The examination of extracted acoustic features from vocalisations for individuality is 

typically ascertained using a Discriminant Function Analysis (DFA) (Tooze et al. 1990; 

Darden et al. 2003; Zsebok et al. 2012). This identifies a linear combination of independent 

variables that best discriminate groups, defined by the user (e.g. vocalisations from individual 

A), from each other. Simple scalar acoustic variables are singly-dimensioned values, 

describing a characteristic of the data, which are user-defined. For example, Palacios et al. 

(2007) identified mean fundamental frequency, maximum fundamental frequency, number of 

harmonics and frequency modulation as the most important discriminant variables in Iberian 

wolf (Canis lupus signatus) howls. 

 

DFA can also be used to cross-validate the accuracy of individual identification using 

the selected best combination of variables by comparing predicted group membership (e.g. 

vocalisation belongs to individual A) with actual group membership. However, DFA requires 

the user to supply the 'group' to which any recordings belong, thus clustering together known 

vocalisations (e.g. where 'group' might refer to the same individual). Therefore, DFA is a 

'supervised' classification technique, requiring the user to identify groups prior to the 

analysis.  

 

When using simple scalar variables, the user chooses and computes specific scalars, 

using the time-course of the extracted parameters, such as the mean and standard deviation, 

maximum and minimum values, etc. (see Table 2.2). Although this method is robust and 

straightforward, it inherently carries the risk that 'some' important information is dismissed 

from the analysis. To remedy this, the analytical procedure for determining individuality can 

be refined further by using a Principal Component Analysis (PCA) to reduce the original 
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scalar acoustic variable set to a smaller set of uncorrelated variables (principal components). 

The first principal component contains the largest variance in the data so accounts for as 

much of the variability in the data as possible. The principal component values, or “scores”, 

can be plotted two or three-dimensionally to show a scatter and, where a scatter groups 

vocalisations from the same individual more closely than vocalisations from different 

individuals, identity is suggested (Pearson 1901; Tooze et al. 1990). The PCA values can be 

fed into a DFA to determine how accurately they can be used to identify individuals e.g. if 

the largest differences are indeed between individuals (Tooze et al. 1990). PCA is not 

supervised by the observer and does not describe the cause of the deviations in the data, it 

merely finds them (Pearson 1901).  

 

Theberge and Falls (1967) were the first to suggest that Eastern wolves (C.l. lycaon) 

are able to discriminate between the howls of individuals and packs. Fundamental frequency 

variation has since been used to identify individuals in three subspecies of wolves; Eastern 

wolves (Tooze et al. 1990), Iberian wolves (Palacios et al. 2007) and Italian wolves 

(Passilongo et al. 2012). The accuracy of individual identification using DFA of simple scalar 

acoustic variables ranged from 75% (Passilongo et al. 2012) to 86.5% (Tooze et al. 1990), 

with the most accurate results achieved for captive wolves. However, individual vocalisation 

identity has also been found in other canid species and accuracy has been as high as 99% in 

swift foxes (Vulpes velox) (Darden et al. 2003). Nevertheless, no canid vocalisations have 

been tested for individuality using a combination of both fundamental frequency and 

amplitude data. Wolves are a good model species for such a study as their howls have 

evolved to be transmitted over long distances up to 10 km (Joslin 1967) for territory defence 

and to communicate individual identity to other pack members (Theberge and Falls 1967). 

With no visual or olfactory clues available over long ranges, wolf howls may have evolved to 
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carry information about the identity of the individual, its pack and even its current state of 

arousal (Harrington and Asa 2003). One variable that is known to communicate individual 

identity in wolves is the fundamental frequency at the position of the maximum amplitude of 

the howl (Tooze et al. 1990). As the accuracy of individual vocalisation identity of wolf 

howls is currently 86.5% (Tooze et al. 1990), it is likely that wolf identity could be improved 

by adding amplitudes to the acoustic analysis. 
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2.2 Aims 

 

The aims of this chapter are to:  

 

1. Effectively prevent background noise from adding variation to an analysis by 

producing a bespoke code designed to extract the fundamental frequency features and 

amplitudes of the first four harmonics from wolf howls, and comparing this with 

features extracted using the commonly applied software Praat. 

 

2. Improve the accuracy of individual wolf vocalisation identities by including the 

amplitudes of the first four harmonics of the howls, which are those with the lowest 

frequency and highest amplitudes. 

 

3. Maximise the efficiency of the search for differences between individuals by adding a 

new statistical method of histogram-derived PCA values to increase the accuracy of 

individual identification. 
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2.3 Materials and methods 

2.3.1 Source of wolf howls 

 

Eighty-nine howls from six captive wolves (mean per wolf = 14.8, standard deviation: 

SD = ±20.1, Table 2.1) were captured on 12 recordings made at Wolf Park, Indiana, between 

16
th

 and 29
th

 December 1997. Consecutive recordings of howls were used because Tooze et 

al. (1990) showed that individuals did not vary their calls enough to cause pseudo-replication 

when using consecutive calls. All howls were recorded on a single microphone set-up: a 

Marantz PMD-221 recorder and Audio Technica 835A microphone using no parabola; 

Master record number JT9701 on Analogue Cassette at an index of 1430 ms. These were 

digitised via Studer to A/D board via Akai cassette into Waveform Audio File Format (.wav). 

All recordings were made by the same observer (J. Tilley) standing next to the enclosure at a 

distance of no more than 20m from individual wolves (Monty Sloan of Wolf Park, pers. 

comm.). All howls were acquired from the Borror Laboratory of Bioacoustics, Ohio State 

University, with permission from the copyright holder. 
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Table 2.1 Number of wolf howls used per individual 

Wolf ID Gender Solo howls used 

Aurora Female 54 

NK Male 5 

Seneca Male 5 

Socrates Male 4 

Ursa Female 2 

Vega Female 19 

Total 3 male, 3 female 89 howls 
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2.3.2 Sound analysis 

2.1.1.1 Standard analytical procedure using Praat and DFA 

 

The free-access speech analysis programme Praat (Boersma and Weenink 2005) was 

used to extract both fundamental frequency and amplitude features from background noise. 

Praat is accepted method for identifying individuality from vocalisations and outputs 

fundamental frequency data by fitting points to spectrograms (Skaric 2008). The spectrogram 

time-step was set to 0.0468s (defined by bit rate of recordings), and harmonics were fitted to 

the fundamental frequency and exported as text files. The length of section was a 

compromise between recordings that were too long, which deteriorate the number of points 

one can extract along a specific howl, and those that were too short, which deteriorate the 

frequency assessment. Two howls were excluded from analysis because Praat could not 

isolate the howls from the background noise.  
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2.1.1.2 Bespoke Matlab code 

 

Chebli & Bencsik (unpbl.) developed two codes in Matlab® (Mathworks Inc. 2005) 

for (i) semi-automatic extraction of the time course of both the amplitude and frequency of 

the vocalisation, and (ii) further assessment of the benefit of exploiting the amplitude data. 

Chebli, Bencsik and I discussed the aspects of the howl feature which could be extracted and 

the purpose of the code. The howl feature extraction code can be found in Appendix 2. I used 

the same 89 wolf howls to compare features extracted by Praat with those extracted by the 

bespoke Matlab-derived code. 

 

Within each howl, the modulus Fourier spectrum of a short section (0.0468s) was 

calculated and stacked along time to obtain a ‘spectrogram’ (Figure 2.1). 
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a)  

 

 

 

b) 

 

 

Figure 2.1 Processed (a) and raw (b) spectrograms from wolf howl 25082:2 extracted 

using the bespoke Matlab code. The colour codes the sound amplitude on a logarithmic 

(dB) scale. Note that the other howl present at 0 s to 1 s is successfully excluded. 
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Howl audio files showed sharp peaks at frequencies that were exact multiples of one 

another (see Figure 2.1). The best fitting model between the natural peak shape was a 

Lorentzian function, defined by 
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where A was the peak's amplitude, F0 the peak's frequency and   the Lorentzian’s 

half-width at half of its maximum. I found that fitting the value of   resulted in spurious 

results (i.e. the fitted function was often mismatched to the experimental peak), whilst forcing 

its value to 30 Hz gave excellent match to the vast majority of the data. Note that the value of 

  required updating if the frequency resolution (set to 1/46ms in this case) of the 

spectrogram was to be changed. 

 

The full function fitted to any instantaneous spectrum, p(f), was the sum of four 

Lorentzian peaks forced to be exact multiple frequencies of each other, resulting in a five 

parameter fitting procedure: 
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Each howl was extracted sequentially as the process was semi-automatic with the user 

required to define only the exact start and end of the howl within the recording, found by 

means of showing the user the full spectrogram and having the user define these parameters. 

The feature extraction then started exactly in the middle of these two user-chosen boundaries, 

as this was where the signal to noise ratio (SNR) was usually at its best. The user was 

prompted to check that the first fitted spectrum was correct. Next, the software extracted the 
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rest of the feature fully automatically, moving frame by frame until the end of the howl, then 

going back to the middle and moving frame by frame to the start. By scanning the 

spectrogram in this way, and by automatically feeding starting values for the five parameters 

that were fitted in the immediate neighbour time-frame of that being examined, it was found 

that the fitting procedure was rendered faster and remarkably robust.  

 

Some howls exhibited one or more discontinuities in the time course of the frequency, 

i.e. a large, abrupt change in frequency from one time frame to the next, which occasionally 

affected the feature extraction accuracy. This was tackled using the following strategy: for 

any particular instantaneous spectrum, an estimate of the frequency of the lowest peak was 

reliably obtained by identifying the maximum of the cross-correlation function between (i) 

the data and (ii) the five parameter function, P, in which the four amplitude values were set to 

those fitted in the immediate neighbour time-frame. Based on this estimate, the frequency and 

amplitudes of the four peaks with the lowest frequencies were successfully fitted until the 

entire spectrogram was analysed, thereby providing a dataset matrix of dimension N x 5, 

where N was the length of the howl divided by 46ms. 

 

The code excluded background noise and harmonic sounds, such as bird song, by 

excluding any sound feature that was not a harmonic multiple of the F0 of the vocalisation. 

This allowed lower quality recordings containing background noise to be used, excluding the 

noise from the output file. 

 

Close agreement was found between raw and fitted data (Figure 2.1). The time course 

of the resulting five extracted parameters is shown individually in Figure 2.2. The histograms 

for the same howl are shown in Figure 2.3. 
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Figure 2.2 Time course of the fitted frequency (a) and amplitudes (b) for the howl 

shown in Figure 2.1; a) red represents F0 changes over time; b) the four colours present 

the four different amplitudes of harmonics 1-4. Note the independence between the time 

courses of the four fitted amplitudes on the bottom plot, thereby justifying their 

individual extraction. 
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Figure 2.3. Time course (top graphs) and corresponding probability histograms (bottom 

graphs) for the amplitude (left graphs) and the frequency (right graphs) of the same 

howl as shown in Figure 2.1 and Figure 2.2. In the histograms, the information 

regarding the absolute time at which a specific amplitude or frequency occurs is lost, 

thereby helping the PCA search in identifying relevant deviations. 
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2.1.1.3 Defining individuality through simple scalar variables 

 

The simple scalar variables, identified by Tooze et al. (1990) and Palacios et al. 

(2007) that are necessary to identify individuals from their howls, were calculated for features 

extracted by both Praat and the bespoke Matlab code (listed with definitions and 

abbreviations in Table 2.2). For the bespoke Matlab code, the simple scalar variables 

necessary to describe the amplitudes of the first four harmonics were also calculated by 

normalising them to the maximum amplitude of each harmonic (Table 2.2). 
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Table 2.2 Variables of frequency used for individual identification in simple scalar 

variable analyses. ‘*’ denotes variables used in Praat analysis.  

Variable Name Definition of Variable 

FreqPaf F0 at the position of maximum amplitude of first harmonic 

F0Mean* Mean frequency of the fundamental at 0.0468s intervals over duration 

(Hz) 

F0Max* Maximum fundamental frequency (Hz) 

F0Min* Minimum fundamental frequency (Hz) 

F0Range* Range of the fundamental: Range = F0Max – F0Min (Hz) 

CofM* Coefficient of frequency modulation =∑ │ f (t) – f (t+1) │/ (n-1)x 100 

F0Mean 

CofV* Coefficient of frequency variation = (SD / Mean) x 100 

Abrupt* Number of discontinuities in the fundamental 

(change of more than 25Hz in one time step) 

Posmax* Position in the howl at which the maximum frequency occurs: 

Posmax = time of F0Max/Dur 

Posmin* Position in the howl at which the minimum frequency occurs: 

Posmin = time of F0Min/Dur 

F0End* Frequency at the end of the fundamental (Hz) 

Dur* Duration of the howl measured at the fundamental (s) = t(end) - t(start) 

NorAmp1Range Normalised range of the amplitude of the first harmonic (H1) 

= Range of Amplitude of H1/ Maximum of Amplitude of H1 

NorAmp2Range Normalised range of the amplitude of the second harmonic (H2) 

= Range of Amplitude of H2/ Maximum of Amplitude of H2 

NorAmp3Range Normalised range of the amplitude of the third harmonic (H3) 

= Range of Amplitude of H3/ Maximum of Amplitude of H3 

NorAmp4Range Normalised range of the amplitude of the fourth harmonic (H4) 

= Range of Amplitude of H4/ Maximum of Amplitude of H4 

NorAmp1Min Normalised minimum amplitude of the first harmonic (H1) 

= Minimum of Amplitude of H1/ Maximum of Amplitude of H1 

NorAmp2Min Normalised minimum amplitude of the second harmonic (H2) 

= Minimum of Amplitude of H2/ Maximum of Amplitude of H2 



75 

 

NorAmp3Min Normalised minimum amplitude of the third harmonic (H3) 

= Minimum of Amplitude of H3/ Maximum of Amplitude of H3 

NorAmp4Min Normalised minimum amplitude of the fourth harmonic (H4) 

= Minimum of Amplitude of H4/ Maximum of Amplitude of H4 

NorAmp2Max Normalised maximum amplitude of the second harmonic (H2) 

= Maximum of Amplitude of H2/ Maximum of Amplitude of H2 

NorAmp3Max Normalised maximum amplitude of the third harmonic (H3) 

= Maximum of Amplitude of H3/ Maximum of Amplitude of H3 

NorAmp4Max Normalised maximum amplitude of the fourth harmonic (H4) 

= Maximum of Amplitude of H4/ Maximum of Amplitude of H4 

NorAmp1Mean Normalised mean amplitude of the first harmonic (H1) 

= Mean of Amplitude of H1/ Maximum of Amplitude of H1 

NorAmp2Mean Normalised mean amplitude of the second harmonic (H2) 

= Mean of Amplitude of H2/ Maximum of Amplitude of H2 

NorAmp3Mean Normalised mean amplitude of the third harmonic (H3) 

= Mean of Amplitude of H3/ Maximum of Amplitude of H3 

NorAmp4Mean Normalised mean amplitude of the fourth harmonic (H4) 

= Mean of Amplitude of H4/ Maximum of Amplitude of H4 
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2.3.3 Using PCA for automatic identification of deviations defining individuality 

 

For automatic identification of deviations, the data were entered, in the form of a 

'training database', to a PCA in Matlab, to enable automated identification of the largest, 

statistically-independent deviations found in the howl database. (Martin Bencsik and 

Alexandra Bourit developed the code in Matlab, which I then used in the analysis.) This 

supplied the information that may be missing from defined simple scalar variable analysis 

alone. 

 

The main challenge in this newly developed method was supplying PCA with a 

training database that did not include the phase lag of the howl relative to the recording start 

and end (as this information was irrelevant), yet retained the rest of the information. The best 

results were obtained by computing the histogram distributions of the time courses of the 

parameters. These histograms (Figure 2.4) were then stacked and entered as a training 

database into a PCA search. Smoother histograms were obtained by interpolating the time 

course data by a factor of 10. 
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Figure 2.4 Raw spectrum (blue curve) superimposed with a five-parameter fitted 

function (red curve) as described in the text, using the same howl as in Figure 2.1 and 

Figure 2.2. Note the remarkable agreement between the fitted curve and the raw data, 

and the effective dismissal of non-howl-related information, such as the large 

background noise seen between 0 and 250 Hz. 
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PCA values based on the set of scalars were characterised, and the 40 greatest values 

were considered for further classification using DFA. Including more PCA values in the 

analysis added variation to the dataset that did not improve groupings of howls from 

individual wolves. 

 

PCA values were generated for the six individuals for i) the 87 howls extracted by 

Praat, ii) these 87 howls extracted separately by the bespoke Matlab code and iii) the full set 

of 89 howls extracted by the bespoke Matlab code. The PCA values were obtained from the 

histograms of both the fundamental frequencies (F0 probability) for all howls, and the 

amplitude of the first harmonic (amplitude probability), for the 89 howls extracted by the 

bespoke Matlab code. When both F0 and amplitudes were used together, these were 

concatenated into arrays of 80 PCA values. 

 

2.1.1.4 DFA classification of individuals using PCA values and simple scalar 

variables 

 

For the dataset of 87 howls extracted by both Praat and the bespoke Matlab code, 

DFA was applied to two sets of descriptive variables: the simple scalar variables and the 

histogram-derived PCA values describing F0. For the full set of 89 howls extracted by the 

bespoke Matlab code only, DFA was applied to three matched levels of analysis: it was 

applied to simple scalar variables and histogram-derived PCA values of F0 alone, amplitudes 

alone, and F0 and amplitudes together. The simple scalar variables and PCA values of each 

howl were labelled with their originator wolf name and the DFA was applied in SPSS 17 

(SPSS Inc. 2010). 
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To optimise the DFA on the simple scalar variables, one-way analyses of variance 

(ANOVAs) were undertaken in SPSS 17 (SPSS Inc. 2010) on each of the 27 acoustic features 

to see if there was a significant difference in acoustic features between individuals which 

would be useful for DFA (Tooze et al. 1990). Variables which were non-significant were 

excluded from the DFA.  

 

For the 89 howls extracted via the bespoke Matlab code only, stepwise DFA was then 

undertaken to establish which variables contributed the most to the clustering by changing 

which variables are included and removing them if they do not add to discrimination. 

Variables were entered in this analysis based on the change in Wilk’s lambda (F to enter = 

3.84; F to remove = 2.71) which is the probability that it is associated with the desired value. 

 

Eight levels of analysis were applied to the data using 1) the 12 simple scalar 

variables describing F0 alone (Table 2.2) matched with 2) the 40 PCA values describing F0 

alone obtained from the various training databases; 3) the three simple scalar variables 

describing amplitude change of harmonic one (Table 2.2) matched with 4) the 40 PCA values 

describing amplitudes of harmonic one alone; 5) all simple scalar variables of amplitude 

changes of harmonics one to four; 6) all 27 simple scalar variables describing F0 and its 

amplitude changes (Table 2.2) matched with 7) up to 80 PCA values describing F0 and 

amplitudes of harmonic one together; 8) all 27 simple scalar variables describing F0 and 

amplitude changes of harmonics one to four. Finally, the variables defined as the best 

indicators of individual identity were entered into a separate DFA to establish how accurately 

they alone could predict identity. 
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2.4 Results 

2.4.1 Choice of significant variables using ANOVA and stepwise DFA 

2.4.1.1 ANOVA results 

 

One-way ANOVAs were used to test for differences in the acoustic variables between 

individuals. For the 87 howls extracted by Praat, 9 out of the 11 variables were significant 

indicators of individuality and 2 were excluded from DFA: the position in the howl at which 

the maximum frequency occurs (PosMax: F5,86=0.678; p=0.641) and the number of 

discontinuities in the fundamental frequency (Abrupt: F5, 86=1.609, p=0.167). For the 

matched 87 howls extracted by the Matlab code, position at which the maximum frequency 

occurs (PosMax: F5, 86=2.217, p=0.060) and the position in the howl at which the minimum 

frequency occurs (PosMin: F5, 86=1.937, p=0.097) were also found to be non-significant 

indicators of individuality so were excluded from DFA. However, Abrupt was not excluded 

(F5, 86=4.484, p=0.001), possibly because the code was better at tracking the howls and 

created less steep jumps than Praat where the howl changed rapidly. 

 

For the full dataset of 89 howls extracted by the bespoke Matlab code, PosMax 

(d.f.=88; F5, 88=2.157, p=0.067) and PosMin (d.f.=88; F5, 88=1.902, p=0.103) were again 

excluded from DFA. For the amplitude variables, the range of the normalised amplitude of 

harmonic 3 (Nor Amp3Range) (d.f.=88; F5, 88=2.090, p=0.075) and the minimum of the 

normalised amplitude of harmonic 3 (NorAmp3Min) (d.f.=88; F5, 88=2.131, p=0.070) were 

also excluded from DFA.  
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2.4.1.2 Stepwise DFA results 

 

 

Stepwise DFA of the Matlab code’s simple scalar variables showed that the four most 

important variables were the mean of the fundamental frequency (F0Mean: F to remove = 

88.321, Wilks lambda = 0.156), coefficient of variation of fundamental frequency (CofV: F 

to remove = 19.919, Wilks lambda = 0.054), the normalised mean amplitude of the second 

harmonic (NorAmp2Mean: F to remove = 10.141, Wilks lambda = 0.039) and the normalised 

maximum amplitude of the third harmonic (NorAmp3Max: F to remove = 10.051, Wilks 

lambda = 0.039). 

 

2.4.2 Benchmarking with Praat 

 

Using Praat, 87 of the 89 howls were successfully analysed using nine simple scalar 

variables to describe the fundamental frequency (Table 2.2). Two of the 89 howls were 

excluded because Praat could not reliably extract them due to background noise interference. 

DFA of F0 alone achieved 82.8% accuracy of individual identification (Table 2.3). However, 

when the histogram-derived PCA values were used in the analysis instead of the simple scalar 

variables the accuracy was improved by 11.5% to 94.3% (Table 2.3). 
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Table 2.3 Summary of the Discriminant Function Analysis accuracies using Principal Component Analysis values and simple scalar 

variables of fundamental frequency (F0) changes, Amplitude changes and both fundamental frequency and amplitude changes together, 

and the difference between the PCA value and simple scalar variable analyses, for 89 howls extracted by the Matlab code. 

Data Used Variables used Simple scalar variable 

accuracy % 

PCA values 

accuracy % 

Difference from simple 

scalar variable % 

Praat 87 howls F0 changes 82.8 94.3 +11.5 

Bespoke code 

87 howls 

F0 changes 
85.1 96.6 +11.5 

Bespoke code 

89 howls 

F0 changes (analyses 1 & 2) 83.1 92.1 +9.0 

Amplitude changes of harmonic 1 

(analyses 3 & 4) 
74.2 85.4 +11.2 

Amplitude changes of harmonics 1-4 

(Analysis 5) 
89.9 - - 

F0 & Amplitude changes of harmonic 1 

(analyses 6 & 7) 
88.8 100 +11.2 

F0 & Amplitude changes of harmonics 1-4 

(Analysis 8) 
95.5 - - 

Four best variables for identity: 

F0Mean, CofV, NorAmp2Mean, NorAmp2Max 
89.9 - - 
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Using the Matlab code in place of the Praat software improved howl extraction 

possibilities, allowing extraction of all 89 (100%) howls compared to Praat’s 87 (97.8%) 

(Table 2.3). When the 87 Praat-extracted howls were matched with the howls extracted with 

the Matlab code, individual identification using the significant simple scalar variables of F0 

alone were improved by 2.3% to 85.1% (Table 2.3). 

 

When the analysis used the histogram-derived PCA values instead the accuracy was 

again improved by 11.5% to 96.6% (Table 2.3). This presented a further improvement on the 

histogram-derived PCA values of Praat-extracted howls by 2.3% (Table 2.3). 

 

2.4.3 The application of bespoke code to extract howl features  

 

The bespoke code was used to undertake eight analyses on all 89 Matlab-extracted 

howls (Table 2.3). The findings show that individual identity was present in the changes of F0 

and amplitudes. Using the four variables found to be most useful by stepwise DFA (F0Mean, 

CofV, NorAmp2Mean, NorAmp3Max), DFA achieved 89.9% accuracy of individual 

identification using just these simple scalar variables (Table 2.3). The findings also 

demonstrate that DFA of histogram-derived PCA values improved on results using the simple 

scalar variables alone (Figure 2.5). This suggests that more simple scalar variables are needed 

to fully describe the howls and to maximise the accuracy achieved. 

 



84 

 

 

Figure 2.5 Discriminant Function Analysis (DFA) results for correct individual 

identification from analysis 7 which used histogram-derived PCA values of F0 and 

amplitude of harmonic one. 
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2.5 Discussion 

 

The inclusion of amplitude to improve identification of individual mammals has 

rarely been attempted due to the difficulty of reliably extracting amplitudes, with distance and 

background noise confounding fidelity (Frommolt et al. 2003). However, this is beginning to 

change, with more studies including amplitude data to improve identification accuracies 

(Charlton et al. 2009; Depraetere et al. 2012; Pitcher et al. 2012). My findings show that 

including normalised amplitudes of harmonics improved the individual identification 

accuracy of wolves in DFA of both simple scalar variables and histogram-derived PCA 

values. The previous best accuracy for captive Eastern wolves using all F0 variables alone 

was 86.5% (Tooze et al. 1990). However, my accuracy of 100% (achieved with histogram-

derived PCA values and the Matlab code) cannot be improved further and is the highest 

accuracy recorded compared to other canid species where F0 alone was used (Darden et al. 

2003), and to other species where amplitude changes have been used in addition to F0 

(Charrier and Harcourt 2006; Charlton et al. 2009; Rek and Osiejuk 2011). 

 

I have shown that Eastern wolves express individuality in their howls through both 

temporal changes in F0 variables and the amplitude they generate at different points in the 

howl. However, not all of the amplitude variables are of equal value in identifying 

individuals, and amplitude of harmonic two appeared to contribute most to identification, 

shown by stepwise DFA. Consequently, further work could investigate what defines the most 

important amplitude changes and how these arise, and the effect of distance on the 

transmission of the amplitudes of the different harmonics. Nevertheless, it is likely that by 

including amplitudes in analyses of other subspecies of wolves and canids, individual 
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identification accuracy in these species will be improved further. In addition, although my 

new extraction code is directly applicable to the harmonic vocalisations of canids, the use of 

amplitudes alongside F0 to increase the accuracy of individual identification should be 

extended to other species if needed. 

 

One of the limitations of the approach utilised in this study is that my bespoke code 

was generated using the licensable software Matlab, whereas the less accurate but more 

accessible Praat software is free. However, my bespoke code achieved better extraction 

(100% of howls compared to 97.8%) and produced an automatic fit that also extracted 

amplitudes. In addition, my bespoke code achieved higher individual identification accuracy 

for F0 alone (+2.3%) and achieved 100% accuracy in identifying individuals when it 

extracted amplitude alongside F0 data. Again, this suggests that other species would also 

benefit from code specifically designed to extract their vocalisations. For long range 

vocalisations of canids my code could be used to improve identification accuracy, especially 

where background noise has previously prevented good quality extraction of data e.g. in 

barking foxes (Alopex lagopus) (Frommolt et al. 2003) where the amplitudes of recordings 

were affected by the sounds of waves on the beach. 

 

Comparing the DFA findings for simple scalar variables and histogram-derived PCA 

values, it can be seen that when PCA values of F0 or amplitudes were used, PCA achieved a 

higher individual identification accuracy than simple scalar variables. As PCA describes the 

differences between the individuals and simple scalar variables describe what these 

differences are, this suggests that further simple scalar variables should be added to describe 

howls if using this method alone. However, these two systems can be seen as complementary 

rather than antagonistic as although histogram-derived PCA values show a more complete 
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image of the differences that exist between individuals, they do not provide information on 

how these differences are defined. Therefore, using histogram-derived PCA values in 

conjunction with simple scalar variables allows a fuller picture to emerge. I suggest that using 

histogram-derived PCA values could improve the accuracy of individual identification in 

mammals by identifying a larger number of significant deviations between individuals that 

may not be represented by simple scalar variables alone. 

 

Amplitude is seldom used in bioacoustics studies because of the difficulty of reliably 

extracting it and controlling the conditions that it is recorded under (Lameira and Wich 

2008). Also, it can attenuate over distance, although this does not mean that the information it 

carries is always lost (Lameira and Wich 2008). This study adds to the increasing evidence 

that amplitude does encode information about individual identity (Charrier and Harcourt 

2006; Charlton et al. 2009; Pitcher et al. 2012), although it has rarely been tested at distance. 

It would be advantageous to have definite knowledge of the identity of the individual wolf 

howling as they often use howls to communicate over long distances with pack-mates and 

potential breeding partners (Joslin 1967). However, the application of amplitudes in situ 

requires more work to establish the rate of attenuation over distance and through different 

habitats, and how far this is affected by individuals, either consciously or through vocal tract 

differences (Bradbury and Vehrencamp 1998). For example, amplitude measurements may 

function better in certain environments with few obstacles between subject and observer but 

should be used with caution for species with high frequency calls or those in highly 

heterogeneous environments. The next step is to demonstrate whether including amplitudes 

could be effective in identifying wild wolves and this will be the focus of the next chapter. 

For these, the distance between observer and wolf would, by necessity, vary substantially and 

it would be important to show whether the amplitudes would remain reliable indicators of 
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wolf identity. It is expected that they should be as robust to distance as orangutan (Pongo 

pygmaeus wurmbii) calls are, with fidelity up to at least 300m (Lameira and Wich 2008). 

 

I limited my study to solo howls from individuals so as not to introduce any problems 

of crossover, seen in chorus howls, affecting amplitudes. Reliably extracting amplitudes from 

these more complex recordings poses a future challenge. However, Palacios et al. (2012) 

used chirplet transformation of recordings to separate and extract howls within choruses, 

where multiple wolves were howling at the same time, and their howls could not easily be 

separated. I suggest that using histogram-derived PCA values with this, or a similar 

technique, could allow the reliable separation and classification of howls to individuals using 

F0 alone. This method could then be optimised by adding amplitude changes to the analysis. 

 

Charrier and Harcourt (2006) were the first to use normalised amplitude data when 

using in situ wild recordings. Further work could focus on extending my result to wild 

wolves, and identifying differences between vocalisations of different wolf subspecies, packs 

and possibly genders. I propose that the use of amplitude data in captive mammal 

populations, where attenuation and degradation will be minimised, will be beneficial to 

studies trying to identify individuals from vocalisations. However, there have been few 

studies which have focused on captive and wild recordings of mammal species. Extending 

these results to other species, in particular canids known to carry individual identity 

information in their long-distance vocalisations such as coyotes (Mitchell et al. 2006) and 

African wild dogs (Lycaon pictus) (Hartwig 2005), could be possible.  
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2.6 Conclusion 

 

I have demonstrated that my new bespoke Matlab code has substantially improved 

both the extraction of acoustic features of Eastern wolf howls and the accuracy of individual 

identity. Furthermore, I believe that using my combination of bespoke code to extract the 

features and the addition of histogram-derived PCA values could improve individual 

identification accuracies in other mammal species.  
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3. Identifying individual wild 

Eastern grey wolves (Canis lupus lycaon) 

using fundamental frequency and amplitude of howls 

 

This chapter was published in Bioacoustics as Root-Gutteridge et al. (2014a). 

  

3.1 Introduction 

 

The science of bioacoustics has developed to enable the vocalisations of different 

species to be utilised in monitoring populations and in exploring the relationship between the 

animal and its individual call (Bradbury and Vehrencamp 1998). For example, acoustic 

sampling has successfully been used to monitor wild populations of bats (O'Farrell and 

Gannon 1999; Parsons and Jones 2000; Bohn et al. 2007) and marine mammals (Berrow et 

al. 2009; Frasier et al. 2011). However, application in situ is often limited by the accuracy of 

identification, whether to species, group or individual, so improving this accuracy is vital 

before surveys that can reliably identify individuals in the wild using vocalisations alone can 

be undertaken. 

 

As acoustic monitoring systems become more advanced (Blumstein et al. 2011), 

recording vocalisations in situ has become easier and cheaper, and surveys relying on their 

analysis are now possible and affordable. The identification of individuals through non-

invasive methods such as acoustic monitoring has the potential to produce accurate counts 
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which are vital in conservation studies (for example, McGregor and Peake (1998)) where 

double-counting and miscounting need to be avoided. For example, a bioacoustic approach 

has recently been applied to monitor site fidelity in endangered European eagle owls (Bubo 

bubo) (Grava et al. 2008).  

 

Increasingly, researchers have tried to determine whether vocalisations carry 

information about the individual and if these can be used as the basis of individual and life 

history surveys. This has been so successful in bats that entire software programmes have 

been developed around their calls, and a bat can now be identified to species (Parsons and 

Jones 2000), roost site (Fenton et al. 2004; Jameson and Hare 2009) and kinship group 

(Boughman 1997) from its echolocation characteristics alone. It is possible that vocalisations 

of many other species will carry similar information, and therefore bioacoustics has the 

potential to improve on current animal identification methodologies. 

 

Acoustic monitoring has already been used to explore the distribution of populations 

of wild canids, often using elicited response techniques to monitor species with large 

territories (Joslin 1967). Howls from wild wolves have been used to track wolves in presence 

/ absence surveys because they can be heard from distances of 10 km or more (Joslin 1967). 

These howls have been recorded using both observers with microphones and more recently 

with automated howl stimulation boxes (Ausband et al. 2011), which are reusable, movable 

and reliable for elicited wolf howl recordings. However, capture-mark-recapture surveying 

cannot be undertaken as there is currently no accurate method in place to individually identify 

wolves based on their howls alone. The accuracy of acoustic sampling of wild wolves is 

75.7% when using fundamental frequency (Passilongo et al. 2012), less than the 80% 

threshold suggested by Terry and McGregor (2002). However, the inclusion of amplitude 



92 

 

variables in sound analyses have been shown to be useful in improving identification 

accuracy in a number of species including California sea otters (Mcshane et al. 1995), giant 

pandas (Charlton et al. 2009) and Australian sea lions (Pitcher et al. 2012). In addition, when 

tested over a short distance of less than 20 m, amplitudes have been shown to improve the 

identification accuracy of captive Eastern wolves to 95.5% using simple scalar variables and 

to 100% when using histogram-derived PCA values (Chapter 2). 

 

In Chapter 2, I reported the development of a bespoke Matlab (Mathworks Inc. 2005) 

code for extraction of howls from recordings of captive wolves (Chapter 2), which increased 

both the number of howls extracted and the accuracy achieved by the free speech analysis 

programme Praat (Boersma and Weenink 2005). The recordings were made at a short 

distance from the howling wolves to minimise interference, and little work has focused on 

amplitude differences over distance. Whether a similar result could be achieved for wild 

wolves is unknown as there are problems of amplitude attenuation with increasing distance 

(Bradbury and Vehrencamp 1998) and interference in amplitude fidelity under both different 

atmospheric conditions (Bradbury and Vehrencamp 1998) and in different habitats (Charrier 

et al. 2003).  
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3.2 Aims 

 

Therefore, the aims of this chapter are to: 

 

1. show whether the bespoke Matlab code developed in Chapter 2 can reliably 

improve the extraction of sound variables from poor quality and chorus howls 

which pose challenges to extraction (Palacios et al. 2012); 

 

2. demonstrate whether amplitudes can be useful in distinguishing howls of 

individuals recorded in the wild, and increase the accuracy of identification 

shown through fundamental frequency alone, with the hope of establishing a 

baseline for potential in situ population surveys; 

 

 

3. determine whether differences in microphone quality affects individual 

identification accuracy; 

 

4. determine whether any differences between wolf pack vocalisations are a 

result of microphone recording fidelity or pack-association signature. 
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3.3 Materials and methods 

 

A total of 179 howls from 119 individual wild wolves (mean per wolf = 1.53, SD = 

±2.67) were obtained from 24 recordings from the British Library Sound Archive, Fred H. 

Harrington via PBS website, and Macaulay Library, New York, with the permission of the 

copyright owners. The howls were all cited as being from Eastern wolves, and individuals 

were visually identified at the time of recording. One hundred and fifty-six of the howls were 

recorded around Algonquin Park, Canada, between May 1959 and 2003. The howls were 

recorded on six different microphone set-ups in.wav form at 512 bit rate (see Table 3.1 for 

details). 
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Table 3.1 Sources of wolf recordings and number of individuals explored. Wolf identity was established either visually or by only 

sampling a limited number of howls from a recording. 

Recording Area Recording Date Recording Source Microphone Type Number of 

Howls 

Number of 

Individual Wolves 

Unknown Exact date unknown 

(1990s) 

 

Fred H. Harrington Unknown model 3 1 

Ellesmere Island, 

Canada 

Exact date unknown 

(1990s) 

British Library 

Sound Archive 

 

Unknown model 5 1 

Algonquin Park, 

Canada 

1980-1995 British Library 

Sound Archive 

Dan Gibson P-650 

and Sony P-206, 

third model unknown (BBC) 

 

80 50 (maximum) 

Algonquin Park, 

Canada 

1959-1960 Macaulay Sound 

Archive 

Nagra III recorded by William 

Gunn 

91 67 (maximum) 
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Of the 179 howls, I sampled 67 solo howls from 10 individuals (mean per wolf = 6.7, 

SD = ±7.65), with a minimum of three howls per wolf. These were high quality individual 

howls without any background noise and were used to show whether measuring change in 

amplitude was suitable for identifying individuals in the wild. The remaining 112 howls were 

taken from a maximum of 109 wolves, with either one or two howls per wolf. These included 

poor quality howls (N=10), where the recordings were affected by wind or water noise, and 

chorus howls, where several wolves were howling at the same time i.e. where normalised 

amplitudes of harmonics were unsuitable for analysis, except for the normalised amplitude of 

the fundamental frequency. For the chorus howls, only howls that overlapped in time (the 

second howl starting before the first ended) were used. So, from a potential 40 howls per 

recording, often only two or three were actually included. 

 

3.1.1.1 Feature extraction of howls 

 

Howls were extracted from audio files using the bespoke code (Chapter 2) designed in 

Matlab (Mathworks Inc. 2005) and simple scalar variables were used to describe the features 

of the fundamental frequency and the amplitudes of the first four harmonics (see Table 3.1). 

Amplitudes of harmonics two to four could not be reliably extracted from the chorus because, 

although wolves howl on different fundamental frequencies, they may overlap at points on 

the same frequencies for the higher harmonics of their howls (Theberge and Falls 1967). 

Furthermore, poor quality howls were also expected to have less fidelity in amplitude 

(Bradbury and Vehrencamp 1998). Therefore the amplitudes of harmonics two to four were 

only used in the analyses for the solo howls. 
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3.1.1.2 Automatic identification of deviations by PCA 

 

The howl feature extraction data were fed, in the form of a training data base, to a 

Principle Component Analysis (PCA) where the 40 greatest PCA values were considered for 

further identification using Discriminant Function Analysis (DFA). PCA values were 

obtained using two separate strategies (i) the histograms of the fundamental frequency (F0 

probability) only, undertaken on all 179 howls, and (ii) the histograms of the amplitude of the 

first harmonic (amplitude probability) only, limited to the 67 high quality solo howls. 

Therefore, the 67 solo howls had a total of 80 PCA values (F0 and amplitude of harmonic one 

probability) for further identification via DFA. 

 

 

3.3.1 Classification using DFA 

 

DFA was optimised by using one-way analyses of variance (ANOVA) in SPSS 17 

(SPSS Inc. 2010) on all data sets to determine whether there was a difference within 

individuals, microphones and packs for each of the 27 extracted simple scalar variables 

(Table 2.2) so that only variables which were significantly different between individuals were 

used in the DFA, following Palacios et al. (2007). 



98 

 

 

3.1.1.3 Analysis 1: Individual identification of wolves from chorus and poor quality 

howls 

 

Using bespoke Matlab code (Chapter 2), I extracted acoustic features from 179 howls 

from a maximum of 119 wolves. DFA was applied to (i) the histogram-derived PCA values 

and (ii) simple scalar variables describing changes in F0 only. In addition, DFA was applied 

to (i) the histogram-derived PCA values and (ii) simple scalar variables describing changes in 

both F0 and normalised amplitude of harmonic one (NorAmp1) in an attempt to improve 

individual identification further (Chapter 2). 

 

3.1.1.4 Analysis 2: Individual identification of wolves from solo howls 

 

A further analysis was made of the 67 solo howls, from 10 wolves, where all 

amplitudes could be used. Therefore, in addition to simple scalar variables describing F0 and 

normalised amplitude of harmonic one, the normalised amplitude of harmonics two to four 

(NorAmp2, NorAmp3 and NorAmp4) were included in the DFA. Analyses were undertaken 

for (i) F0 alone, (ii) amplitudes of harmonics one to four alone, and (iii) both F0 and 

amplitudes of harmonics one to four together. A stepwise DFA was then undertaken to 

establish which acoustic variables contributed most to the analysis, with variables considered 

based on the change in Wilk’s lambda (F to enter = 3.84; F to remove = 2.71). 
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3.1.1.5 Analysis 3: Identification of wolves using different microphone types 

 

A separate DFA was performed for each of the three microphones that had recorded 

howls from more than one individual wolf (see Table 3.3 for details). Analyses were 

undertaken using the simple scalar variables describing (i) F0 alone and (ii) F0 plus the 

normalised amplitudes of harmonic one. 

 

3.1.1.6 Analysis 4: Potential microphone and pack differences 

 

DFA was applied to all 179 howls which were recorded using 6 different microphone 

types and were from 14 different packs. Microphone type, where unknown, was assumed to 

be different because of the different decades the recordings were made and the improbability 

of a 1990s’ era recorder using the same as the 1960s’ era recorder (Table 3.1). Analyses were 

undertaken using the simple scalar variables describing (i) F0 alone and (ii) F0 plus the 

normalised amplitudes of harmonic one. 
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3.4 Results 

 

Following the optimisation of extracted sound variables for DFA, only the position in 

the howl at which the minimum frequency occurred (PosMin) was non-significant for all 119 

wolves together (F62, 116=1.259, p=0.162), the 10 wolves from the solo howls (F9, 66=1.806, 

p=0.087), the 14 packs (F13, 165=1.715, p=0.062) and the 6 microphone types (F5, 173=1.724, 

p=0.131). This was in agreement with optimisation of extracted sound variable from captive 

Eastern wolves (Chapter 2). 

 

3.1.1.7 Analysis 1: Individual identification of wolves from chorus and poor quality 

howls 

 

When all 179 howls from the 119 wolves were analysed together, DFA using F0 

simple scalar variables alone, extracted by the bespoke Matlab code, achieved 82.7% 

identification accuracy (Table 3.2). This accuracy was improved to 97.4% when using 

histogram-derived PCA values, suggesting that individuality is strongly present in howls, 

despite the quality of howl recording or the extraction of acoustic variables from chorus 

howls. However, more simple scalar variables are required to define individuality to match 

the PCA values result. 
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Table 3.2 Summary of the Discriminant Function Analyses for individual identification of wild wolves. 

Howls used Variables used Identification accuracy 

from DFA using simple 

scalar variables 

Identification accuracy from 

DFA using histogram-derived 

PCA values 

Difference between DFA using 

simple scalar variables and 

histogram-derived PCA values 

179 howls, 

including solo 

and chorus 

 

F0 82.7% 97.4% +14.7% 

67 solo howls 

F0 88.1% 100% +11.9% 

Amplitude of 

Harmonics 1-4 
88.1% 100% +11.9% 

F0 and 

Amplitude of 

Harmonics 1-4 

98.5% 100% +1.5% 
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3.1.1.8 Analysis 2: Individual identification of wolves from solo howls 

 

When the 67 best quality solo howls were analysed with DFA using F0 simple scalar 

variables alone, 88.1% identification accuracy was achieved which was further improved to 

an accuracy of 100% when using histogram-derived PCA values (Table 3.2). These same 

percentages were also seen for amplitudes of harmonics one to four alone (Table 3.2). When 

DFA was applied to both F0 and amplitudes of harmonics one to four, identification accuracy 

was increased to 98.5% (+10.4% over either F0 or amplitude alone) and further improved to 

an accuracy of 100% when using histogram-derived PCA values of F0 and amplitude one 

(Table 3.2; Figure 3.1). Therefore, wild wolves like captive wolvess can be accurately 

identified from solo howls using changes in both F0 and amplitude of their howls, indicating 

that amplitudes carry information on wolf identity.  
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Figure 3.1 Plot of DFA output using histogram-derived PCA values for 67 solo howls 

from 10 wolves with 100% accuracy achieved. 
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Stepwise DFA of the bespoke Matlab code’s simple scalar variables showed that the 

four most important variables were the normalised maximum amplitude of the third harmonic 

(NorAmp3Max: F to remove = 17.151, Wilks lambda = 0.018), duration (Dur: F to remove = 

21.847, Wilks lambda = 0.021), F0 at the position of maximum amplitude of first harmonic 

(FreqPAF: F to remove = 19.311, Wilks lambda = 0.019) and range of the F0 (F0Range: F to 

remove = 13.764, Wilks lambda = 0.015). These four variables alone could achieve 

identification accuracies of 85.1%, compared to 98.5% using all 26 variables.  

 

 

3.1.1.9 Analysis 3: Identification of wolves using different microphone types 

 

Using simple scalar variables of F0 alone, the lowest identification accuracy was 

82.4%, achieved from the oldest microphone (Nagra III recordings made in 1959-1960), with 

the newer recordings achieving 90-100% accuracy (Table 3.3). However, this could not be 

separated from the effect of the larger sample size for the Nagra III recordings. When simple 

scalar variables of normalised amplitudes of harmonic 1 were also included in the analyses, I 

improved the accuracies achieved (apart from the Dan Gibson P650 microphone which 

remained at 100%; Table 3.3). The F0 alone findings were similar to those for all 179 howls 

analysed together (82.7%) and for wild wolves (75.7%) (Passilongo et al. 2012). Therefore, it 

is likely that I detected differences between wolves rather than simply detecting differences 

in equipment. 
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Table 3.3 Discriminant Function Analysis for each microphone type. 

 Nagra III 

 

Dan Gibson P650 

 

Unknown BBC 

model 

 

Number of howls 91 49 10 

Number of individuals 67 22 3 

Identification Accuracy 

for F0 only 
82.4% 100% 90% 

Identification Accuracy 

for F0 & HAmp1 
87.9% 100% 100% 
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3.1.1.10 Analysis 4: Potential microphone and pack differences 

 

Using simple scalar variables of F0 alone, the different microphones were identified 

with 74.9% accuracy (Figure 3.2) and the different packs with 66.5% accuracy (Figure 3.3). 

Viewing these figures together, it is clear that the groupings to microphones and packs are too 

similar to separate the effects of each and to know which is creating the groupings. However, 

when using simple scalar variables of both F0 and the normalised amplitude of harmonic one, 

the howls recorded on different microphones were identified with 79.9% accuracy (+5.0%) 

and from different packs with 70.4% accuracy (+3.9%). Pack-association signature and 

microphone effect could not be separated further. 
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Figure 3.2 Plot of DFA output for 179 howls recorded across 6 microphones with 74.9% 

accuracy in microphone identification, using simple scalar variables. Clustering to 

microphone is stronger for some microphones (e.g. Nagra III) than others (e.g. Dan 

Gibson P-650 and Sony P-206 parabola microphones).  
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Figure 3.3 Plot of DFA output for 179 howls recorded with 66.5% accuracy in pack 

identification, using simple scalar variables. Note the similarity to Figure 3.2 in the 

distribution of wolves and that pack-association signature is weak compared to 

individual identification. 
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3.5 Discussion 

 

We show that wild Eastern wolves can be individually identified with high accuracy 

using methods of howl extraction and analysis developed for captive Eastern wolves (Chapter 

2). My findings improve upon other methods (Tooze et al. 1990; Passilongo et al. 2012), with 

DFA from histogram-derived PCA values for F0 alone achieving 100% accuracy for wolf 

identity from solo howls (Table 3.2).  

 

Normalised harmonic amplitudes were shown to improve individual identification 

accuracy of howls from wild wolves in their natural habitat, as it was for captive Eastern 

wolves (Chapter 2). It is likely that by including amplitudes in analyses of other canids, 

individual identification accuracy in these species may also be improved. I further suggest 

that the simple scalar variables used in previous bioacoustics studies to accurately assign wolf 

identity (Tooze et al. 1990; Palacios et al. 2007; Passilongo et al. 2012), can be improved by 

using DFA with histogram-derived PCA values. 

 

Furthermore, utilisation of the new bespoke Matlab extraction code overcame the 

problem of reliably extracting amplitudes. This has formerly beset in situ recording studies 

(e.g. (Frommolt et al. 2003; Mitchell et al. 2006) due to the difficulty in reliably excluding 

background noise. The new bespoke Matlab extraction code substantially alleviates this 

difficulty and may allow recordings to be re-analysed with amplitude data included, thereby 

improving accuracy of identification of individuals from their vocalisations. 
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The application of encoding individual identity from amplitudes in situ requires more 

work to establish the rate of attenuation over distance, through different habitats and under 

different atmospheric conditions, and how far this is affected by individuals, either actively or 

through vocal tract differences. For my data, non-standard recording conditions including 

distance between recording equipment and wolf did not prevent us from accurately 

identifying individuals and correctly classifying howls, suggesting that differences in weather 

conditions and distance to howl will not prevent my method from working. Nevertheless, 

more detailed analysis of wolf howls in natural habitats is suggested to assess the rate of loss 

of amplitude across the lowest four harmonics and the effects of distance and weather, with 

changes in temperature and wind speed expected to have the largest impact on amplitude 

attenuation (Frommolt 2002; Frommolt et al. 2003). For this study, only recordings made 

under calm dry conditions were used when amplitudes were included. 

 

My findings showed that not all of the amplitude variables were of equal value in 

identifying individuals, and changes in amplitude of harmonic three showed the greatest 

individuality, contributing the most to correct classification. Mitchell et al. (2006) suggested 

that coyotes (Canis latrans) may control amplitudes of vocalisations in order to achieve the 

highest fidelity at distances of over 1km. Whether wolves do the same is unknown but my 

findings suggest a field of further study, with a focus on whether there is a specific quality of 

the amplitude of harmonic three, which clearly carries more information on the individual 

animal than the other harmonics.  

 

When all 179 howls were included in the analysis, the small number of howls per 

individual (often one chorus howl per individual by necessity) produced findings that (82.7-

97.4% accuracy, Table 3.2) were more tentative than when only the ten wolves with at least 
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three howls per individual were tested (88.1-100% accuracy, Table 3.2). Therefore it was 

easier to separate a few wolves represented by multiple howls than many wolves each 

represented by one or two howls. However, the finding for the full 119 is still the highest 

accuracy of individual identification for wild wolves using F0 alone. Furthermore, the 

complicated chorus howls and low quality of the recordings did not prevent high accuracy of 

identification of all wolves. Being able to include chorus howls in acoustic analyses improves 

the usefulness of my method of individual identification as wolves are displaying 

individuality as part of a group as well as when howling solo (Theberge and Falls 1967; 

Palacios et al. 2007). Again, my new method of extraction and analysis could allow howl 

recordings to be re-analysed to include individual information from chorus howls. 

 

As microphone technology has advanced, it is possible that differences in equipment 

used to collect howls and the associated differences in recording fidelity (particularly in 

amplitude) would affect the accuracy of individual identification. Overall, there were 

differences between the newer microphones and the oldest (Nagra III), with only the two 

newest microphones achieving 100% accuracy when using F0 and amplitudes together. 

Microphone age, where uncertain, was estimated from the age of the recordings and because 

these spanned decades, it was unlikely that the microphone used by Gunn in the 1960s would 

be contemporaneous with those used by the BBC in the 1990s (Table 3.1). However, when 

only the best quality howls were used, 100% accuracy was still achieved (Table 3.2). This 

either indicates that there is no difference in recording quality with different microphones or, 

more likely, that the new bespoke Matlab code is capable of extracting howl data with 

minimum influence of microphone type as presumably poorer quality microphones would 

just produce poorer quality recordings akin to those with lots of background noise. 
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Classification of individuals (Figure 3.2 and Figure 3.3) did not show a clear effect of 

pack or microphone conclusively as there was some overlay between microphone type and 

pack identity which could not be separated further. There was also a possibility of regional 

association signature (Figure 3.3) where wolves from Algonquin Park grouped more closely 

to each other than wolves from more distant geographic regions. In addition, many of the 

recordings were from wolves in the same geographic region and therefore probably related to 

each other (e.g. packs from the 1990 s could have been descended from the 1960 s), making it 

impossible to compare pack-association signature with those found by Passilongo et al. 

(2010) in Italian wolves. I suggest that both pack and regional association signatures should 

be explored in Eastern wolves as they have been in Italian wolves (Passilongo et al. 2010; 

Zaccaroni et al. 2012), focusing either on differences between packs from the same 

geographic region in the same time frame or alongside genetic studies to compare potential 

pack-association signature with relatedness. Information on how pack-association signature is 

maintained or changes over time would be interesting for both learning-culture studies and 

genetic studies and could be used to show whether wolves retain their natal pack-association 

signature when removed from their natal pack. 

 

3.6 Conclusion 

 

The high accuracy of individual identification of captive Eastern wolves from howl 

recordings (Chapter 2) is repeated here for wild Eastern wolves, suggesting that the new 

bespoke Matlab extraction code and analysis based on histogram-derived PCA values could 

improve extraction of vocalisations from recordings of other canid species. This new method 

of analysis of vocalisations could form the basis of future survey techniques for the individual 

identification of wild canids. 
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4. Using Artificial Neural Networks to 

Identify Individual Wolves: 

A Novel Survey Method 

 

4.1 Introduction 

 

Knowing the population size of species is fundamental to providing effective wildlife 

management. However, accurate censusing of populations is notoriously difficult, especially 

for species that are nocturnal, elusive or at low density (Long 2008). To recognise individuals 

for surveys, they must have demonstrable inter-individual variation that can be assessed and 

used to uniquely identify them e.g. the distinctive arrangement of whiskers on a polar bear 

(Anderson et al. 2007). Chapters 2 and 3 showed that Eastern grey wolves have high 

individual variation in their howls that can be used to identify individuals with up to 100% 

accuracy using discriminant function analysis (DFA). This suggests that howls do indeed 

carry enough between-individual variation to function as a tool for in situ monitoring of 

wolves and may also be applicable to other canids which have shown individual variation in 

their vocalisations (Darden et al. 2003; Frommolt et al. 2003; Robbins and McCreery 2003; 

Hartwig 2005). 

 

Wolf surveys are very difficult to perform accurately in situ because of their large 

home range sizes, long dispersal distances and fear of humans (Joslin 1967; Carlos Blanco 

and Cortes 2012). Current techniques such as radio telemetry and GPS collars are expensive, 

time-consuming to use and require the capture of individuals (Gogan et al. 2004), while 

remote wolf howl surveys by ear do not produce reliable counts of numbers or identify 

individuals (Harrington and Mech 1982). However, howls do provide a useful remote 
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monitoring tool for both finding and tracking wolves in situ as they carry over distances of 

more than 6 miles (10 km) (Joslin 1967). Nevertheless, although current analytical methods 

(such as DFA) can identify individual wolves from recordings of howls, they can only do so 

where the identity of the wolf howling is already known and cannot identify unknown howls 

from new individuals (Tooze et al. 1990). Therefore, a further method of recognition capable 

of assigning novel data to novel individuals is required before vocalisations can be used for in 

situ surveys (Terry and McGregor 2002). Artificial neural networks (ANNs) present a 

potential non-invasive analytical tool to quantify and identify new wolves and to recognise 

their howls in new recordings. 

 

Although artificial neural networks have been used for such diverse applications as 

disease classification (Lemetre et al. 2010), the identification of biomarkers (Lancashire et al. 

2009), and the environmental effects of ozone on clover (Trifolium repens) (Ball et al. 1998), 

they have also been used for almost twenty years in the fields of mammal vocalisation 

research (Potter et al. 1994) and ecological modelling (Lek and Guegan 1999). In order for 

the ANN models to be applicable to wildlife surveys an accuracy of 80% or higher is desired 

from the validation data (Terry and McGregor 2002). Neural networks have already 

successfully identified known individuals from their vocalisations in fallow deer (90% 

recognition) (Reby et al. 1998), corncrakes (Crex crex) (96.5% recognition) (Terry and 

McGregor 2002), stellar sea lions (Eumetopias jubatus) (76.7% recognition) (Campbell et al. 

2002), south-western willow flycatchers (Empidonax traillii extimus) (80.7% recognition) 

(Fernandez-Juricic et al. 2009) and blue monkeys (Cercopithecus mitis stuhlmanni) (73% 

recognition) (Mielke and Zuberbuehler 2013). Furthermore, while comparatively few studies 

have used ANNs to identify individuals, the results have been striking: ANNs achieved an 

accuracy of 92.5-95.6% for the classification of types of vocalisations in black lemurs 
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(Eulemur macaco), compared to DFA and PCA accuracies of only 76.1-88.4% (Pozzi et al. 

2010). Similarly, when Jennings, Parsons and Pocock (2009) compared accuracies of human 

and ANN classifications of bat echolocation calls to species, ANNs were more accurate than 

75% of humans and achieved higher accuracies overall. ANNs have even achieved accuracies 

of 100% for recognition and 90% for prediction success on fallow deer vocalisations (Reby et 

al. 1997). ANNs are therefore considered to be a good direction for the further improvement 

of classifying vocalisations.  

 

4.1.1 Artificial Neural Networks methodology 

 

Artificial neural networks were inspired by the human body’s natural neurons, 

synapses, axons and membranes (Bishop 1994). ANNs can either reduce complex systems to 

simpler elements to make them easier to understand, or gather simple elements to form more 

complex systems (Rumelhart et al. 1986). Networks are characterised by components of a set 

of nodes and the connections between those nodes (Bishop 1994). Nodes receive inputs and 

process them to obtain an output, which can be as simple as a sum of the inputs or as complex 

as a node containing another network (Rumelhart et al. 1986; Bishop 1994). The connections 

can be either uni- or bi-directional between nodes and the connections control the flow of 

information between the nodes (Lemetre et al. 2010). The inputs are multiplied by the weight 

of the signal (the signal strength) and these weights can be positive or negative, with positive 

weights promoting and negative weights inhibiting the input’s importance in the overall 

network (Lemetre et al. 2010). The desired output of the network can be obtained by 

weighting all the artificial neurons, a difficult process where hundreds or thousands are used, 

according to which specific inputs are used (Lemetre et al. 2010). The process of using 

algorithms to adjust these weights is referred to as learning or training (Rumelhart et al. 
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1986). This training can be corrected in back-propagation networks where weights are 

changed according to the desired outcomes, and inputs can be weighted differently to obtain 

different desired results (Newhall et al. 2012). 

 

For wolf howls, this adjustment could be a case of weighting the mean of the 

fundamental frequency more heavily when looking to identify sex than when trying to 

ascertain individual identity, and negatively weighting those variables which are found to be 

less important for assessing sex or individual identity, such as the position of the minimum 

frequency. However, one criticism of ANNs is that they are a ‘black box’ where the user does 

not know which variables are being weighted during the analysis. However, this can be 

overcome by analysing the nature of the input layer as well as the information contained in 

the output layer (Schmid et al. 2005). In the case of howls, this could be tested by altering the 

variables used in the input and comparing the output accuracies e.g. ANOVA-selected 

variables versus all variables. This is a similar method to automated stepwise DFA where the 

importance of each variable to the classification is tested.  

 

ANNs use back-propagation algorithms to construct models from examples of data 

with known outputs, known as a supervised approach, allowing the prediction of an output 

vector (e.g. wolf identity) for a given input vector (e.g. fundamental frequency) (Lek and 

Guegan 1999; Ball et al. 2002). The models use the data presented in the training database, 

which is assumed to be representative of any set of potential data. Therefore, for ANNs to 

work with wolf howls, there must be consistency in how wolf howls differ between 

individuals, which can be generalised to define differences between all possible individuals. 

In the case of ANNs, this means including enough howls to generate generalised rules for 

individual identity rather than specific rules for separating two particular wolves. This 
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method can also be applied to sexes, packs, geographic regions etc with the expectation that 

including more examples in the training dataset will provide more useful generalised rules. A 

too small database will generalise rules according to differences between particular 

individuals which may have anomalous features in their howls.  

 

4.1.2 Application of ANNs to population surveys 

 

One of the advantages of ANNs is that they can recognise novel data not used in a 

training data set and can assign the novel data to an “unknown” category based on the rules 

built with the known training data. For example, DFA in Chapter 2 demonstrated that 

F0Mean, CofV, NorAmp2Mean and NorAmp2Max were the most important variables for 

individual identification, and therefore these would be more weighted in ANNs than PosMin 

which did not appear to carry information about the vocalising individual. 

 

ANNs are capable of identifying unknown individuals (which DFA cannot), thus they can be 

used as a non-invasive identification method to assist population surveys (Terry and 

McGregor 2002). However, the effectiveness of ANNs for population surveys using the calls 

of individuals has only been assessed in corncrakes (Terry and McGregor 2002) and 

flycatchers (Fernandez-Juricic et al. 2009). Nevertheless, the accuracies of identification for 

these were good with ANNs achieving best identification and recognition accuracies of 

91.3% and 94.7%, respectively, for corncrakes (Terry and McGregor 2002) and 81% 

identification and 81% recognition for flycatchers (Fernandez-Juricic et al. 2009). As the 

effectiveness of ANNs in vocal recognition is still being assessed, ANN accuracies are 

compared to the established DFA accuracies before applying ANNs to novel data 

(Fernandez-Juricic et al. 2009). However, both of these studies achieved the minimum of 
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80% recognition accuracy for in situ surveys, suggesting that ANNs can be used for future 

survey efforts.  

 

It is expected that an ANN model that has achieved a high accuracy using only the 

training data will classify vocalisations to individuals with a high degree of confidence 

(Fernandez-Juricic et al. 2009). However, to maximise the accuracy of the predictions for 

novel data, a set of best models must be developed with the known training data. While 

ANNs have successfully classified novel data to individuals in corncrakes (Terry and 

McGregor 2002) and south-western willow flycatchers (Fernandez-Juricic et al. 2009), the 

potential of neural networks as survey tools has yet to be explored in wolves and other 

canids.  

 

Achieving the best models for individual identification of wolves from howls will be 

a challenge because, while ANNs can cope with complex data, increasing the amount of data 

may impact on the accuracy of the model. For example, pack-association signature (Palacios 

et al. 2007), pack signature (Passilongo et al. 2010; Zaccaroni et al. 2012), the inclusion of 

howls from only a single pack of a single subspecies or multiple packs from multiple 

subspecies, and the number of howls per wolf might all affect model accuracy. 
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4.2 Aims 

 

This chapter aims to show whether ANNs can be used to successfully attribute howls 

to unknown wolves and to establish the accuracy of the classification for: 

 

1. Individual identity within Eastern wolves 

(Using the howl data from Chapters 2 and 3) 

2. Individual identity within nine subspecies / species combined 

3. Individual identity within European wolves 

4. Individual identity within Mackenzie Valley (present in North America) wolves 

5. The number of howls per wolf required to achieve over 80% correct classification 

6. Pack identity for eleven subspecies / species 

7. Subspecies identity for eleven subspecies / species 
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4.3 Method 

 

4.3.1 Howl collection 

 

A total of 1262 wolf howl recordings were collected from a variety of sources (see 

Table 10.1 in Appendix 4). These included both solo and chorus howls and were sampled 

from both wild and captive populations of as many subspecies as could be sourced (Table 

4.1). A description of each subspecies can be found in Appendix 3. 
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Table 4.1 Total number of Canis howls sampled per subspecies 

Subspecies Scientific name 
Number of chorus 

& solo howls* 

Number of 

solo howls 

Arctic C.l. arctos 40 20 

Eastern Timber C.l. lycaon 724 286 

European C.l. lupus 195 139 

Great Lakes C.l. lycaon x. nubilus 9 9 

Great Plains C.l. nubilus 33 17 

Iberian C.l. signatus 25 25 

Mackenzie Valley C.l. occidentalis 134 72 

Mexican C.l. baileyi 42 29 

North African Wolf / 

Golden Jackal 

Canis aureus lupaster / 

Canis aureus 
44 35 

Red C.l. rufus 7 0 

Tibetan C.l. chanco 9 0 

Total 11 subspecies 1262 632 

*Including those solo howls used in solo howl analysis 
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4.1.1.1 Howls suitable for individual identification 

 

Although 1262 howls were sourced, identity was known for only some of these 

wolves, and samples for the individual identity analysis were limited to those where identity 

could be established (sources of howls and numbers of howls used per subspecies are listed in 

Appendix 4). Wherever possible, samples from both wild and captive populations were used 

for each subspecies. However, this was not possible for red wolves, where only captive 

individuals were recorded, or for Great Plains and Great Lakes wolves, where only wild 

wolves were recorded. Wild wolf identity was established as in Chapter 3 by using either 

only solo howls or only a limited selection of howls per chorus that overlapped in time. 

 

Captive wolf howls were collected by the author using the elicited howling method 

developed by Harrington & Mech (1979). Where possible for captive wolves, video footage 

was also recorded using a Sanyo Xacti CG20 digital video recorder to aid later individual 

identification when wolves were howling in chorus. 

 

4.3.2 General method for ANNs 

 

The data were analysed using Statistica (StatSoft 2012), which automatically 

randomly separates the data into three: a training subsample (70% of the original dataset), a 

testing subsample (15%) and a validation subsample (15%), by a process known as Monte 

Carlo or Random Sample Cross-validation. These percentages can be manually altered but 

were left unchanged and the sub-sampling method was set to be random. The training 

subsample is used to form the model, the testing subsample is used while the model is being 
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formed and the validation subsample is used to independently train the model on data 

completely new to the model (Bishop 1994; Lancashire et al. 2009). 

 

The ANN was a form of multi-layer perceptron analysis, where multiple layers of 

activation nodes exist in a directed graph with each layer fully connected to the next layer, 

and is a modified form of standard linear perceptron. The minimum and maximum numbers 

of hidden units were set automatically by Statistica (typically 4-14 minimum units, 21-25 

maximum units, depending on input number). The ANNs were programmed to run 1, 500 

best-fit classification models and to select 10 models with the lowest errors. Following 

(Fernandez-Juricic et al. 2009), one model was selected as presenting the highest overall 

training and recognition performances: if ANN model 1 achieved 100% training 

classification and 85% correct recognition but ANN model 2 achieved 98% training 

classification and 95% correct recognition, ANN model 2 was selected. 

 

To establish a baseline for identity using an accepted standard method, SPSS 17 

(SPSS Inc. 2010) was used to match each ANN model with one using DFA, as for Chapters 2 

and 3, in order to make direct comparisons (Fernandez-Juricic et al. 2009). 

 

 

4.3.3 Variables used in the ANN 

 

Although histogram-derived PCA values achieved the highest rates of accuracy for 

individual identification in Chapters 2 and 3, they were not used in the ANNs as PCA values 

alter when additional data are included. Therefore, applying a PCA to a dataset including an 



124 

 

additional wolf howl would alter all the previous values and make models formed on the first 

dataset inapplicable to the new dataset. 

 

As in Chapters 2 and 3, to optimise the variables used in the ANNs one-way analyses 

of variance (ANOVAs) were undertaken in SPSS 17 on each of the simple scalar variables to 

see if there was a significant difference between individuals which would be useful for the 

ANNs (Tooze et al. 1990). Variables which were non-significant were excluded from the 

models. Findings from analysis of the PCA values in Chapters 2 and 3 suggested that not 

enough simple scalar variables were being used to describe the changes in amplitude, so the 

coefficient of variation of the amplitude of each harmonic was added to the analysis for 

simple scalar variables, which matched the coefficient of variation of the fundamental 

frequency in Chapters 2 and 3. This was acquired using the same formula as the coefficient of 

variation of F0 described in Table 2.2: ‘Coefficient of amplitude variation = (SD / Mean) x 100’, 

Chapter 2. 

 

Finally, any survey method needs to be effective at classifying chorus howls as well 

as solo howls, so both were used in the analyses, with amplitude data included only where 

applicable (e.g. to solo howls). Therefore, two sets of model ANNs were developed, one 

where only fundamental frequency (F0) was applicable for chorus and low quality howls, and 

a second where amplitude data could also be used for solo howls. 
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4.3.4 Individual Identity 

 

Eight subsamples from the total dataset were compiled to explore the accuracy of 

ANNs to classify howls to individuals (Table 4.2). The datasets included different numbers of 

packs and subspecies (see Table 4.1 and Table 4.3). Analyses 1-4 were limited to Eastern 

wolves and the same 156 solo wolf howls that were used in Chapters 2 and 3 were again used 

as test models to find the most useful set of variables for the ANNs. Analyses 5 and 6 looked 

at a combination of howls from 9 subspecies with either chorus howls included (Analysis 5) 

or excluded (Analysis 6). Two subspecies of the 11 were excluded due to the very small 

sample sizes. Finally, analyses 7 and 8 looked at European and Mackenzie Valley wolves, 

two subspecies with the next largest datasets to Eastern wolves. The solo howls from 

European and Mackenzie Valley wolves used in Analysis 6 are the same as those used in 

Analyses 7 and 8, respectively. 1500 ANN models were built and the best 10 were retained 

for comparison. 
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Table 4.2 Analyses undertaken for individual identification for all subspecies using PCA values and simple scalar (SS) variables for 

either F0 data alone or F0 data plus various amplitude variables [* indicates howl used in chapters 2 and 3] 

Subspecies Analysis 

Number of 

individuals 

Number of 

howls 

Variables used 

F0 
F0 & Nor Amp 

of Harmonic 1 

F0 & Nor Amp of 

Harmonics 1-4 

F0, Nor Amp of Harmonics 

1-4 & Nor Amp CofV 

Eastern 

1 6 89 solo* 
X X X X 

2 10 67 solo* 
X X X X 

3 16 156 solo* 
X X X X 

4 134 

430 chorus 

& solo 

X N/A 
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All 9 subspecies 

5 162 

774 chorus 

& solo 

X N/A 

6 118 632 solo X X X  

European 7 19 139 solo X X X X 

Mackenzie Valley 8 8 72 solo X X X X 
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Table 4.3 List of howls used per subspecies for Analyses 5 and 6 

Subspecies Number of howls used for 

Analysis 5 

Number of howls used for 

Analysis 6 

Arctic 35 20 

Eastern 369 286 

European 159 139 

Great Lakes 9 9 

Great Plains 17 17 

Iberian 25 25 

Mackenzie Valley 90 72 

Mexican 29 29 

North African / Golden jackal 41 35 
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4.1.1.2 Exploring the Effect of Howl Sample Size on ANN Classification Accuracy 

 

Following Fernandez-Juricic, del Novo and Poston (2009), analyses 9 and 10 

established how many howls were required to achieve the 80% recognition accuracy required 

for in situ monitoring (Terry and McGregor 2002) with simple scalar variables of either F0 

alone or F0 with the normalised amplitudes of harmonics 1-4, as in Table 2.2. Therefore, 

ANNs were run on subsamples of howls of 3, 4, 5, 6, 7, 8, 9, 10 and 20 solo howls per wolf, 

in order to establish whether a minimum number of howls are required to successfully build 

models for surveying and at what point adding additional howls stopped increasing the 

accuracy of the models. 

 

For Analysis 9, howls were selected randomly (using a random number table) from 

the total number of solo howls (N=632) used in Analysis 6, with 9 subspecies represented. 

Following Fernandez-Juricic, del Nevo and Poston (2009). For analysis 10, only Eastern wolf 

howls were used (N=430) to reflect the results of subspecies association signature in 

Analyses 11 and 12, using the same method as for Analysis 9. Analyses removing pack-

association signature were not possible because there were not enough individuals per pack. 

 

4.3.5 Exploring Pack & Subspecies Association Signatures in Howls 

 

Analyses 11 and 12 were undertaken on data including and excluding chorus howls to 

determine whether pack or subspecies association signature existed and if this could affect 

the overall accuracy of the individual identification when the largest datasets were used. This 
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used the same protocol as for individual identification, simply replacing the target variable 

‘individual ID’ with ‘pack ID’ or ‘subspecies ID’. 

 

Analysis 11 used chorus howls where amplitudes were not applicable so F0 alone was 

used, analysis 12 used only solo howls and therefore both amplitude and F0 variables were 

applicable (Table 4.4). Two further subspecies (red and Tibetan wolves) were included in 

analysis 11, having been excluded before because they were only represented by chorus 

howls so were not suitable for individual identification analysis. 

 

Table 4.4 Analyses using simple scalar variables for pack and subspecies identity for 

chorus and solos howl collections 

Analysis No. of 

subspecies 

No. of howls F0 F0 & NorAmp1-4 

Pack Subspecies Pack Subspecies 

11 11 1262 (chorus & solos) X X   

12 9 632 (solos only) X X X X 
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4.4 Results 

 

4.4.1 Individual Identity 

 

The most accurate ANN models were always achieved using simple scalar variables 

of F0 and normalised amplitudes of harmonics 1 – 4, and were always more accurate than the 

DFA method of identification for the training ANN (where possible when DFA did not 

achieve 100% accuracy) but not the validation ANN (Table 4.5). However, the validation 

performances for the single subspecies analyses (1-3, 7 & 8) of 82.6 - 100% were all above 

the accepted 80% correct classification accuracy for in situ surveys (Terry and McGregor 

2002). For wolves compared across packs, as well as across individuals, the validation results 

were increased to 100% in analysis 2 (Table 4.5). Although not all models achieved the 80% 

accuracy threshold, exceptions occurred where there were very large differences in the 

number of cases representing each wolf so that a wolf might not be included in the randomly 

selected training dataset (as in Analysis 4) or when many subspecies were analysed together 

(as in Analyses 5 and 6). Therefore, ANNs worked when single howls were included to 

separate individuals but random selection is not advised when training databases. 
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Table 4.5 Findings from the most accurate models for individual identification of wolves for analyses 1-8, achieved using simple scalar 

variables (SS) of fundamental frequency (F0) and normalised amplitudes of harmonics 1-4 (NorAmp1-4) where applicable for solo howls 

Subspecies Analysis DFA 

accuracy (%) 

ANN accuracy (%) Difference in accuracy between 

DFA and training ANN (%) 

Variables used 

Training Validation 

Eastern 

1 95.5 100 92.3 +4.5 SS F0 & NorAmp1-4 inc. 

CofV NorAmp1-4 

2 100 100 100 0.0 SS F0 & NorAmp1-4 inc. 

CofV NorAmp1-4 

3 95.5 100 82.6 +4.5 SS F0 & NorAmp1-4 inc. 

CofV NorAmp1-4 

4 74.0 87.1 42.2 +13.1 SS F0 

All 9 subspecies 5 64.7 73.4 40.5 +8.7 SS F0 

6 78.0 85.6 52.1 +7.6 SS F0 & NorAmp1-4 

European 7 95.0 100 85.0 +5.0 SS F0 & NorAmp1-4 inc. 

CofV NorAmp1-4 

Mackenzie 

Valley 

8 98.6 100 90.0 +1.4 SS F0 & NorAmp1-4 inc. 

CofV NorAmp1-4 
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For all 9 subspecies combined (analysis 9) it was shown that using 3 howls in the 

ANN model was sufficient to achieve 80% or higher individual classification accuracy, using 

simple scalar variables of F0 alone (Figure 4.1a) or F0 with amplitude data (Figure 4.1b). 

However, findings from the ANN validation data for all 9 subspecies combined showed that 

to achieve 80% or higher individual classification accuracy, 9 howls were required using 

simple scalar variables of F0 alone (Figure 4.1a) and 7 howl were required when amplitude 

data (Figure 4.1b) was included in the models.  

 

A further analysis using only Eastern wolf howls (analysis 10) was undertaken to 

determine how many howls were required from each wolf to achieve an accuracy of 80%. 

The analysis revealed that when the sample was limited to a single subspecies, Eastern 

wolves, 9 howls were required per wolf to build models with at least 80% recognition 

accuracy using simple scalar variables of F0 alone (Figure 4.2a) but only 6 howls were 

required per wolf when amplitude data (Figure 4.2b) was included in the model. In addition, 

higher training classification accuracies were achieved for 3, 4 and 5 howls per wolf (Figure 

4.2). Therefore, it is likely that including different subspecies of wolves in the same database 

will decrease the accuracy of the ANN classification. 
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Figure 4.1 All subspecies: classification accuracies for ANN training and validation data 

and DFA data for howls using simple scalar variables of a) F0 alone and b) both F0 and 

amplitudes.  

 



136 

 

 

 

Figure 4.2 Eastern wolves only: classification accuracies for ANN training and 

validation data and DFA data for howls using simple scalar variables of a) F0 alone and 

b) F0 and amplitudes.  
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4.4.2 Exploring Pack & Subspecies Association Signature in Howls 

 

For all 1262 chorus and solo howls (analysis 11), the variable coefficient of variation 

(CofV) was excluded by ANOVA for pack identity as there was no significant difference 

between individuals (F79, 1261=0.856, p=0.806). No variables were excluded for subspecies 

identity. The mean number of howls for packs = 16.18 with SD = ±26.48. The mean number 

of howls for subspecies = 114.73, SD = ±210.38. 

 

ANN models achieved recognition accuracies of 66.5% and 80.2% when using 

training data for packs and subspecies, respectively (Table 4.6). This suggests that both pack 

and subspecies show unique vocal signatures so should be taken into account when collating 

databases as they may interfere with the correct classification of individuals when they are 

collated. 

 

Table 4.6 Results for pack and subspecies identity for all 1262 howls, chorus and solo, 

using simple scalar variables of F0 

1262 howls DFA 

accuracy 

(%) 

ANN accuracy (%) Difference in accuracy 

between DFA and training 

ANN 

Training Validation 

78 packs 42.7 66.5 44.6 +23.8 

11 subspecies 64.7 80.2 67.6 +15.5 
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For the 632 solo howls (analysis 12), no variables were excluded by ANOVA. ANN 

models achieved accuracies of 86.2% and 85.8% when using training data for packs and 

subspecies, respectively (Table 4.6). This provides further evidence to suggest that both pack 

and subspecies show unique vocal signatures. 

 

Table 4.7 Pack and subspecies results for 632 solo howls from 64 packs across all 9 

subspecies and 9 subspecies, using simple scalar variables of F0 and amplitudes 1-4 

632 howls DFA 

accuracy 

(%) 

ANN accuracy (%) Difference in accuracy 

between DFA and 

training ANN 

Training Validation 

64 Packs 66.0 86.2 53.5 +20.2 

9 Subspecies 67.7 85.8 75.5 +18.1 
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4.5 Discussion 

 

4.5.1 Individual Identity 

 

The 89 howls used in chapter 2 and Analysis 1 were from a single pack and ANNs 

were effective at using rules built from the known (training) subsample to classify howls in 

the unknown (validation) subsample. As was shown in chapters 2 and 3 for DFA, the most 

accurate models for simple scalar variables used both the normalised amplitude variables and 

the F0 variables with 92.3% accuracy of classification for unknown solo howls (Table 4.5). 

This was further borne out in analysis 2 which looked at wolf howls from multiple packs 

where identification classification accuracy increased to 100% for unknown howls, which 

cannot be improved (Table 4.5). Overall, these findings concur with those from chapters 2 

and 3 that individual identity is present in both F0 and amplitude changes of howls. Analyses 

3 and 4 compared results across packs and showed again that including amplitude data 

achieved more accurate classifications (Table 4.5). Furthermore, analyses 5, 6, 7 and 8 

extended this result to other subspecies, showing that including amplitude data improved the 

identification of individuals for all nine subspecies tested (Table 4.5). The results for 

individual identification compare well with the results achieved for other mammals using 

ANNs including fallow deer (90% recognition) (Reby et al. 1998), stellar sea lions (76.7% 

recognition) (Campbell et al. 2002), and blue monkeys (73% recognition) (Mielke and 

Zuberbuehler 2013). 
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4.5.2 Exploring the Effect of Howl Sample Size on ANN Classification Accuracy 

 

As validation accuracies of over 80% were achieved for most analyses, satisfying the 

requirement for in situ surveys (Terry and McGregor 2002), this suggests that ANNs are 

suitable as a survey method for identifying wolves using their howls as a capture-mark-

recapture model. However, the survey method needs to be optimised for highest accuracies 

for in situ monitoring. While the results showed that the ANNs always outperformed DFAs in 

the identification of individuals, the identification accuracy for both methods fell as sample 

size increased, whether using chorus or solo howls (Table 4.6). Superficially, this contradicts 

the idea that increasing sample sizes should improve ANNs (Rumelhart et al. 1986). 

Nevertheless, analyses 8 and 9 showed that increasing the number of howls per wolf directly 

increased the identification accuracy, whether F0 alone or F0 with normalised amplitudes 

were used (Figure 4.1 and Figure 4.2). This agreed with the results of Fernandez-Juricic et al. 

(2009) where increasing the number of vocalisations per bird to over 15 fitz-bew calls 

decreased the error margins of recognition by ~11%. Furthermore, when only a single 

subspecies of wolf was analysed the number of howls required to achieve over 80% accuracy 

of identification dropped from 9 to just 6 howls per wolf (Figure 4.2). To achieve 100% 

accuracy of recognition, 9 howls per wolf were required (Figure 4.2).  

 

4.5.3 Exploring Pack & Subspecies Association Signature in Howls 

 

Both subspecies and pack identity were present in howls so were likely to interfere 

with the correct identification of individuals (Table 4.6 and Table 4.7). Therefore, increasing 

the sample set of training databases of a subspecies with a small sample size by adding howls 
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from a second subspecies could lower the accuracy of the models and should be avoided. For 

instance, Tibetan wolves were represented by a single wolf. Therefore, more data from 

Tibetan wolves with known identity should be collected before attempting to use this method 

in situ, instead of using a model based on the lone Tibetan wolf plus other howls sourced 

from European or Eastern wolves. However, Eastern and European wolves already have 

sample sizes large enough in this database to form reliable models for recognising new 

wolves (over 100 solo howls per subspecies, Table 4.1). 

 

Subspecies and species association signature was defined in both chorus and solo 

howl models (analyses 10 and 11). This was despite the large sample size differences 

between the subspecies and species, with Eastern wolves represented by over 700 howls from 

captive and wild wolves, and Tibetan wolves represented by only 9 howls from a single 

captive wolf. Subspecies association signature has been suggested before by Palacios et al. 

(2007) but has not yet been properly quantified. This chapter has not attempted to quantify 

the differences between the subspecies and species. Instead, it has aimed to show that there 

are pack and subspecies association signatures which should be taken into account when 

compiling ANN training databases. Furthermore, this could be of interest to wolf taxonomists 

looking for further characteristics which may define differences between the subspecies and 

species, and to match against genetic changes. Vocalisation data has been used to investigate 

relatedness and species identity in bats (Ramasindrazana et al. 2011), frogs (Smith et al. 

2012) and primates (Thinh et al. 2011; Meyer et al. 2012). Therefore, more work could 

investigate patterns of vocal inheritance in wolves and determine whether it is purely genetic 

or has a learnt-aspect. 
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For in situ surveys, effective dataset size should also be limited to samples from only 

local wolves to maximise accuracy, whether the aim is to assign solo howls to the wolf’s 

pack or to assign chorus howls to individual wolves, predicting identity for novel wolves. 

This limit to samples was previously suggested for south-western willow flycatchers, where 

ANNs also showed the effect of population level signature on their vocalisations (Fernandez-

Juricic et al. 2009). The most accurate ANN models were based on 6 or more solo howls per 

wolf where amplitudes were applicable and included. However, as wolves often howl in 

chorus, a chorus model is also desirable. For the chorus model, where only F0 variables are 

applicable, at least 7 to 8 howls per wolf were required to achieve the 80% recognition for in 

situ monitoring (Terry and McGregor 2002). Therefore a solo model, where amplitudes are 

applicable, and a second model for low quality and chorus howls, where amplitudes are not 

applicable, could be used in tandem to produce the most accurate survey method. 

Furthermore, I suggest an existing database of wolf howls should be used to train the models 

for classifying chorus howls, with a preference for the highest quality howls. There is an 

expected decrease in the recognition accuracy of individuals when chorus and not solo howls 

are used because of the decrease in the available number of descriptive variables when 

amplitudes are not applicable. It is possible that older microphone models may also have 

recorded less faithfully so the age of recording should be considered when judging whether to 

include the howls in the database. 

 

Pack identity has previously been shown from howls of Italian wolves (Passilongo et 

al. 2010) with an identification accuracy of 95.5% using DFA of F0 variables alone. This 

degree of accuracy could not be matched in the current study where only 42.7% accuracy was 

achieved for all wolves in analysis 11 (Table 4.6). Although ANNs increased the accuracy by 

23.9% (Table 4.6), these results were comparatively weak, suggesting that other factors were 
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affecting classification accuracies. However, Passilongo et al.’s (2010) 95.5% result was 

achieved for howls from a single subspecies and geographic area, whereas the results in 

analyses 11 and 12 were across all subspecies.  

 

Mirroring the advantages for individuality, there are advantages for advertising 

species or kinship group for both avoiding inter-species conflict and preventing breeding or 

attacks between closely-related groups (Bradbury and Vehrencamp 1998). However, what is 

still unclear is how far pack-association signature is the result of genetics and how far it may 

be the result of social learning (Passilongo et al. 2010). Further investigations into pack-

association signature would be enlightening as to whether social learning or genetic 

influences control this association signature. Again, as for individual identity, it may be that 

differences across subspecies are affecting the rate of classification, even if it is as simple as 

many geographic areas being compared. Also, in the current study, howls were included from 

the same geographic area of Algonquin Park, Canada, over a period of more than 30 years, so 

if pack-association signature is heritable (Passilongo et al. 2010), packs classified as different 

may have been related and therefore not truly separate. In greater sac-winged bats 

(Saccopteryx bilineata), group signature is acquired through social modification, a form of 

social learning, rather than genetically inheriting it (Knoernschild et al. 2012). (For a review 

of vocal learning see Janik and Slater (1997; 2000)). Further work could establish how far 

pack-association signature and subspecies signature are maintained across geographic 

distances and time, and if the regional differences seen in other species such as American 

pikas exist in wolves (Trefry and Hik 2010).  

 



144 

 

 

4.6 Conclusion 

 

ANN models achieved identification accuracies of 100% whenever a single 

subspecies was considered and amplitude data were included. In addition, validation 

accuracies of over 80% were achieved for these analyses, satisfying the requirement for in 

situ surveys (Terry and McGregor 2002). This suggests that ANNs can be used to identify 

individuals and use known patterns within small groups to attribute identity to unknown 

individual wolves, with up to 100% accuracy (73.4% to 100%, mean=93.3%), and could 

therefore be used in situ to monitor wolves. To optimise in situ surveys using wolf howls to 

capture-mark-recapture individuals, findings show that it is best to use a minimum of 6 to 7 

howls per wolf, solo howls wherever possible, and only howl samples from the same 

subspecies (and where possible from the same pack). Using historic recordings, as in chapter 

3, did not alter the findings so if there are existing recordings of other individuals of the same 

subspecies, these could be used as a starting point. 

 

ANNs have previously been used to identify species of bats (Parsons and Jones 2000; 

Walters et al. 2012), birds (Connor et al. 2012) and insects (Ganchev and Potamitis 2007); 

and individuals in both deer (Reby et al. 1997) and birds (Terry and McGregor 2002; Peake 

et al. 1998; Fernandez-Juricic et al. 2009). The trend of results show that ANNs improve on 

DFA classification performances and that they can be used for both species identification 

(Walters et al. 2012) and population monitoring at an individual level (Terry and McGregor 

2002; Fernandez-Juricic et al. 2009). The results in this chapter mirror these findings, 

suggesting that ANNs are also appropriate for wolf howls and could potentially be used to 

classify unknown individuals as a future capture-mark-recapture survey method.
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5. Discussion of Results 

5.1 Howls in Context 

 

Wolf howls have been used to survey wolf populations for more than forty years 

(Joslin 1967). However, this thesis has aimed to improve the method used for surveying from 

simple presence/absence surveys to a systematic approach of attributing howls to individuals. 

To this end, two forms of data description (simple scalar variables and histogram-derived 

PCA values) and two forms of statistical analysis (Discriminant Function Analysis and 

Artificial Neural Networks) were used. While Discriminant Function Analysis achieved up to 

100% accuracy when attributing howls to known individuals using histogram-derived PCA 

values for both captive and wild recorded individuals (64.7% to 100%), Artificial Neural 

Networks were required to extend this to unknown individuals where they correctly 

discriminated between and classified individuals in both the training and recognition samples 

with up to 100% accuracy (73.4% to 100%, mean=93.3%). The most accurate results for both 

methods were achieved when the howls sampled were from the same subspecies and from 

either a small number of packs or the same pack, which agreed with the results from analyses 

10 and 11 in Chapter 4 where both pack and subspecies association signature was established. 

 

Wolves can hear and respond to howls over distances of 10 km or more (Joslin 1967), 

thus howls are useful for territorial defence, mate-seeking and social bonding. Individual 

recognition is a complex subject but wolves are known to recognise other wolves using both 

physical features and scent (Mech 1970), although these are short-range cues. With no visual 

or olfactory clues available over long ranges, wolves have evolved so that their howls carry 
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information that allows individual recognition, although whether this information affects 

response rate needs investigating. The results for all subspecies in Chapter 4 support the 

universality of this, which is hardly surprising as long calls are known to encode identity in 

coyotes (Mitchell et al. 2006), African wild dogs (Hartwig 2005) and many non-canid species 

(Caudron et al. 1998; Spillmann et al. 2010; Cheng et al. 2012; Gamba et al. 2012). 

 

The results achieved for individual identification using fundamental frequency alone 

for wolves (61.7% - 100%) compare well with the published results for other species using 

fundamental frequency alone koalas (87.7%) (Charlton et al. 2011b) and African wild dogs 

(67%) (Hartwig 2005). The inclusion of amplitude data always improved the identification 

accuracy achieved when using F0 alone (78% - 100%). Artificial neural networks further 

improved the results achieved with DFA and can be used to classify novel howls to 

individuals with up to 100% confidence in recognition. Comparing these findings with the 

information explored in the introduction (Table 1.1) it can be seen that vocalisations carrying 

information on individual identity are near universal. 

 

This universality of identity advertisement is not surprising as where multiple 

individuals act and react as part of repeated interactions, individual recognition can grant 

many advantages. These include the ability to make knowledge-based judgements in the 

future. Previous knowledge alters what any individual will do to optimise outcomes 

(Hamilton 1964). Equally, identifying a number of known individuals within an unknown 

pack may alter the interaction. Dogs advertise their identity in their barks (Yin and McCowan 

2004) and discriminate between callers (Molnar et al. 2009). It is also possible that, as for 

goats (Briefer and McElligott 2011b), wolf pups will respond more readily to their mother’s 
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howls than to others, and this vocal recognition may help to protect them by altering their 

responses so that they do not advertise their position to unrelated hostile wolves. 

 

Wolves are already known to respond differently to howls depending on whether they 

are solo or part of a chorus (Harrington and Mech 1982; Harrington and Mech 1983); this is a 

numerical assessment ability that has been more thoroughly tested in lions (Mccomb et al. 

1994) and spotted hyena (Benson-Amram et al. 2011). However, wolves have already 

demonstrated the ability to assess the quantity of objects using discrimination between food 

items (Utrata et al. 2012), and may be similarly capable of assessing the number of 

individuals in a chorus. If wolves can similarly assess which individuals are making up the 

chorus howl, this grants more information to the listener and will correspondingly alter their 

behaviour. The stronger the advertising signal, the more useful it is to the listener, so the 

100% correct classification by statistical analysis may be matched with 100% correct 

recognition by wolves where their hearing is good enough. 

 

5.2 Howling as a remote monitoring tool 

 

Wolf howls have been used for presence / absence surveys since the 1960 s (Joslin 

1967). However, these have been criticised for failing to assess numbers accurately (Fuller 

and Sampson 1988). For capture-mark-recapture surveys, inter-individual differences have to 

exist and be recognisable by researchers. Chapters 2 and 3 demonstrated that wolf howls 

show individual differences that can be successfully used to classify wolves to individual 

with up to 100% accuracy (95.5% to 100% for solo howls, 82.7% to 97.4% for chorus 

howls). Chapter 4 explored how these differences could also be used to classify novel howls 

to individuals and showed that given at least 6 howls per wolf, a recognition accuracy of 80% 
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to 100% could be achieved. This is the first time that unknown wolves have been able to be 

individually identified via their howls and thus provides a non-invasive method of remotely 

assessing populations via acoustic monitoring. This also has implications for the ability to 

accurately monitor individuals from a distance because it changes surveys from presence / 

absence to capture-mark-recapture. Using this system, multiple howls per wolf are recorded 

for comparison and can indicate many factors such as population size and individual 

movements by comparing different recordings of howls and demonstrating if they are the 

same or different individuals.  

 

Although individual-specific acoustic monitoring is not yet widely used, it has been 

used for diverse purposes including monitoring occupancy of nest sites (Holschuh and Otter 

2005), population monitoring (Terry and McGregor 2002; Fernandez-Juricic et al. 2009), 

evolution in real time (Irwin et al. 2008), attracting individuals close enough to count visually 

(Mills et al. 2001) and the effects of migration on shared social behaviour (Walcott et al. 

2006). In addition, several studies have used bioacoustics to monitor population sizes 

(O'Farrell and Gannon 1999; Tripp and Otter 2006; Thompson et al. 2010b; Walters et al. 

2012; Xia et al. 2012). Of these studies, elephants represent the most similar model species as 

they also transmit calls over long distances, live in family groups and have large home ranges 

(Thompson et al. 2010b). Acoustic monitoring of elephants revealed that the area used by the 

species was considerably larger than that indicated from dung surveys alone, thus the overall 

methodology was proposed as a tool for acoustically active but visually elusive species 

(Thompson et al. 2010b). Like that study, the results here suggest that precise acoustic 

surveys are a neglected field in long-range monitoring and that by optimising studies for the 

species, whether by using simple counts or by the complex monitoring achieved for European 

eagle owls (Grava et al. 2008), higher accuracies and better detail can be obtained. 
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5.3 Future directions 

 

In considering the future use of bioacoustics for terrestrial mammal tracking, 

researchers should consider the work already undertaken on marine mammal species. Wolves 

and whales show similarities in their life patterns: both live in family groups, communicating 

with other individuals over huge distances, with complex social lives, and both species are 

extremely difficult to track. Whale song has been found to be information-rich, with complex 

interactions between individuals taking place at distances of tens of miles, and showing 

specific geographic accents (McDonald et al. 2001), kin-specific qualities to their calls 

(Miller and Bain 2000; Schulz et al. 2011) and individual identification (Schulz et al. 2011). 

The findings from this thesis show that individuality is present in wolf howls in many 

subspecies but the defining characteristics differ between subspecies, suggesting that wolves 

may show patterns of vocal complexity similar to whales. 

 

It is likely that individual identity will also be shown in other subspecies of wolf when 

it is possible to collect howl recordings of them for analysis. Increasing sample size for the 

subspecies studied here, and adding more samples from other subspecies where available, is a 

clear next step: using these new howls, it should be conceivable to establish possible 

differences between populations, regions or subspecies. A huge amount of further work is 

possible in this field including comparing differences between subspecies and vocalisations, 

as has been found in crested gibbons (Thinh et al. 2011) and leaf monkeys (Meyer et al. 

2012), and exploring the way that different wolf subspecies encode identity – whether all the 
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subspecies have the same differences between individuals or if different subspecies encode 

identity differently as suggested by (Palacios et al. 2007). 

 

Other further work could focus on whether the same methodology applied here could 

improve the individual identification rates for other canid species with harmonic 

vocalisations. Initial tests show that the bespoke Matlab code is applicable to other canid 

howls and barks (unpublished data) and the histogram-derived PCA values are applicable to 

any extracted datasets, regardless of source. The analysis of howls from other canid species 

could be used to investigate many concepts. For example, the implications of honest 

signalling in knowing who is calling can extend beyond simple one-on-one interactions into 

complex social associations. Amongst others these can include the effects of social-group 

size and pack spacing on kin-specific association signatures. Furthermore, research could 

address how far social ecology and vocalisation qualities are controlled by either genetic 

influences, social learning or a combination of both (Janik and Slater 2000). More research 

should also assess how well wild-type call characteristics are retained over long-term 

captivity (generations) and also the stability of calls over time in both wild and captivity 

(Matrasova et al. 2010). Many of these issues have not been addressed directly in the 

literature but pose important points for investigation in the future. 

 

Other work could focus on establishing how the differences in vocalisations between 

individuals arise. Body size, condition and sex have been shown to be present in vocal 

patterns of koala (Charlton et al. 2011b), common loons (Mager et al. 2007b) and goats 

(Briefer and McElligott 2011a). As our knowledge of vocal communication increases, further 

fields of examination open up with the possibility of howls encoding more information about 

individuals including position in dominance-hierarchy, age and health.  
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Wolves howl for a variety of purposes and express their identity through their howls. 

Also, they may express simple signals of communication and information. For example, it 

has been suggested that different howls are used for long range communication, gathering the 

pack for hunts and social bonding (Joslin 1967; Theberge and Falls 1967; Mech 1970). 

However, much more work is required to show whether wolves use different howl patterns 

for different purposes of the howl. 

 

Finally, the sound analysis and collection programme iBats uses volunteers to record 

bat vocalisations and upload them to a database where they can be analysed to determine the 

presence of species and track differences within and between populations (Walters et al. 

2012). A similar system could be used for wolves, with conservation groups, tourism groups 

and researchers all recording howls and uploading them to an international database for 

analysis. As there are already several acoustic libraries, this should not be difficult to 

implement. Dr Karl-Heinz Frommolt, who was kind enough to allow permission to his 

collection, has begun such a project with a vast collection of 120 000 sound files from many 

species as part of the Museum für Naturkunde (http://www.animalsoundarchive.org/). 

Analyses of the differences between wolf howls, coyote howls and dog howls would be 

useful to both phylogenetic studies and in situ assessments of the species of animal recorded 

howling. In summary, wolf howls contain information which has only just begun to be 

decoded and there is still much work to be done to add to the method of identification of 

individuals described here. 

 

 

 

http://www.animalsoundarchive.org/
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5.4 Summary 

 

This thesis presents the first attempt to use amplitude changes to identify individuals 

in canid species. The results showed that by using amplitude changes, identification of 

individuals could be achieved with up to 100% accuracy and that this was robust to distance. 

The results add to the growing number of studies where including amplitude data improves 

the classification of vocalisations to above the desired 80% accuracy for surveys and suggests 

that, like fundamental frequency changes, changes in amplitudes carry information about 

individuals in many different species. Therefore, it is suggested that amplitudes should be 

included in other mammal vocalisation studies. Furthermore, artificial neural networks could 

be developed as a reliable survey tool for all canid species. This is already taking place in situ 

as since the publication of Chapters 2 and 3 in the journal ‘Bioacoustics’ (published online in 

July 2013), three separate wolf research groups have approached Nottingham Trent 

University interested in exploiting the new method of extraction and DFA for monitoring 

their wolves. Additionally, the bespoke Matlab code and DFA method is already being used 

for the identification of golden jackals in Greece by volunteers with the Archipelagos 

Institute of Marine Conservation and to analyse new howls from Eastern wolves by a student 

of Oregon State University.  

 

Compared to bats and birds, little work has been undertaken on canid vocalisations 

and the results detailed here show that there is still much information to be decoded from 

their howls, including pack and phylogenetic identity, cultural transmission and learning. 

However, we can already hear the wolf’s individual identity loud and clear in its famous ‘call 

of the wild’. 
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7. Appendix 1 Bioacoustics Reviews  

 

Sexual dimorphism is seen in many different species. A review using Web of 

Knowledge included 26 studies which had investigated sexual dimorphism present in 

vocalisations and the results are presented in Table 7.1. 
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Table 7.1 Sexual dimorphism and sex encoding vocalisations 

Order Common Name Latin Name Species 

sexually 

dimorphic? 

Sex 

encoded? 

Paper 

Amphibia Boreal chorus frog Pseudacris maculate No Yes (Bee et al. 2010)  

Anseriformes Cuban whistling duck Dendrocygna arborea No Yes (Volodin et al. 2009)  

Anseriformes Fulvous whistling duck Dendrocygna bicolour No Yes (Volodin et al. 2009)  

Anseriformes Red-billed whistling duck Dendrocygna autumnalis No Yes (Volodin et al. 2009)  

Anseriformes White-faced whistling duck Dendrocygna viduata No Yes (Volodin et al. 2005; 

Volodin et al. 2009)  

Caprimulgiformes Marbled frogmouth Podargus ocellatus No Yes (Jones and Smith 1997) 

Carnivora African Lion Panthera leo Yes Yes (Pfefferle et al. 2007)  

Carnivora Domestic dog Canis lupus familiaris No Yes (Riede and Fitch 1999; 

Chulkina et al. 2006; 

Farago et al. 2010)  

Carnivora Meerkat Suricata suricatta No Yes (Hollen and Manser 2006) 

Cetacea Antillean manatee Trichechus manatus  manatus Yes Yes (Sousa-Lima et al. 2008)  

Cetacea Orca Orcinus orca Yes Yes (Miller et al. 2007)  

Charadriiformes Black-legged kittiwake Rissa tridactyla Yes No (Mulard et al. 2009)  

Charadriiformes Black-legged kittiwake Rissa tridactyla Yes Yes (Aubin et al. 2007)  

Charadriiformes Brown skua Catharacta antarctica No No (Janicke et al. 2007)  
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lonnbergii 

Chiroptera Big brown bat Eptesicus fuscus No No (Kazial et al. 2001)  

Chiroptera Big brown bat Eptesicus fuscus No Yes (Kazial and Masters 2004) 

Chiroptera Lesser horseshoe bat Rhinolophus hipposideros No Yes (Jones et al. 1992)  

Chiroptera Trident-leaf nosed bat Asellia tridens No Yes (Jones et al. 1993)  

Ciconiiformes Oriental white stork Ciconia boyciana Yes Yes (Eda-Fujiwara et al. 2004)  

Columbiformes Collared dove Streptopelia decaocto No Yes (Ballintijn and tenCate 

1997) 

Cuculiformes Pheasant coucal Centropus phasianinus Yes Yes (Maurer et al. 2008)  

Passeriformes Northern cardinal Cardinalis cardinalis No Yes (Yamaguchi 1998) 

Perissodactyla Horse Equus caballus No Yes 

 

(Lemasson et al. 2009)  

Rodentia Great gerbil Rhombomys opinus No Yes (Randall et al. 2005)  

Rodentia Ground squirrels, marmots Marmotinae spp. No Yes (Matrosova et al. 2011)  

Strigiformes Western screech owl Otus kennicottii Yes Yes (Herting and Belthoff 

2001) 
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A review of current papers (Table 7.2) suggests that regional and geographical 

differences in vocalisations are widespread enough across genera that they can be used to 

identify the home territory of individuals in other untried species. A further area of research 

should focus on the fidelity of individuals to this particular accent and under what 

circumstances it possibly can be lost. Changes of accent with region are seen in common 

loons (Walcott et al. 2006).  
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Table 7.2 List of species where geographic or regional accent has been shown 

Common name Latin Name Purpose of Study Paper 

African warbler Cisticola erythrops Geographic / Species (Benedict and Bowie 2009) 

Bats genus Microchiroptera Microchiroptera Geographic (Adams et al. 2010b)  

Blue whale Balaenoptera musculus Geographic (McDonald et al. 2006)  

Common Loon Gavia immer Geographic (Mager et al. 2007a)  

Crested gibbons Nomascus nasutus, N. concolor, N. leucogenys, 

N. siki, N. annamensis, N. gabriellae 

Geographic (Thinh et al. 2011)  

European blackbird Turdus merula Geographic (Mendes et al. 2011)  

Gibbon Hylobates agilis Geographic (Sharma et al. 2004) 

  

Greater sac-winged bat Saccopteryx bilineata Geographic  (Davidson and Wilkinson 2002) 

Harp Seals Pagophilus groenlandicus Geographic (Van Opzeeland et al. 2009)  

Okinawa least horseshoe bat Rhinolophus cornutus pumilus Regional (Yoshino et al. 2008)  

Pika Ochotona-Princeps Geographic (Conner 1982) 

Scarlet rosefinch Carpodacus erythrinus Geographic (Sinezhuk and Krechmar 2010) 
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Short-beaked common dolphin Delphinus delphis Geographic (Ansmann et al. 2007)  

Sulawesi Tarsiers Tarsier tarsius, T. dianae, T. Pelengensis Geographic (Burton and Nietsch 2010) 

Tamarin Saguinus I. Labiatus Geographic (Maeda and Masataka 1987) 

Wallacea’s bat Rhinolophus philippinensis Geographic (Kingston and Rossiter 2004) 

Yellow-naped Amazon parrot Amazona auropalliata Geographic / group (Wright 1996) 

Yellow-naped Amazon parrot Amazona auropalliata Geographic (Wright 1996) 

Yellow-naped Amazon parrot Amazona auropalliata Geographic / group (Wright and Wilkinson 2001) 

Putty-nosed monkey Cercopithecus nictitans Geographic not encoded (Price et al. 2009)  

South-western Willow 

Flycatcher 

Empidonax Trailii Extimus Population variation 

across regions 

(Fernandez-Juricic et al. 2009)  
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8. Appendix 2 Bespoke Howl Feature Extraction Matlab Code 

 

This is the bespoke Matlab code used to extract howls, as written by Dr Martin 

Bencsik and Manfred Chebli. 

 

% The purpose of this code is to extract the main parameters of a howling 

% contained in a noisy recording, and save them. 

  

% Clear Matlab's memory and close all the windows 

clear all 

close all 

  

%First, we have to define where is the audio file 

%and in which folder it is contained. 

folder_name = 'C:\Users\Holly\Documents\Analysis\'; 

file_name = 'W Canis lupus R1 C3 st 1min 38s.wav'; 

  

  

% The name of the wolf is important as the parameters will be saved under 

% its name. 

wolf_name = 'RGF'; 

  

  

% This settings are the mean parameters of the recording that has been used to develop 
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% the software. They are considered as "standard" parameters and they will be used 

% for the analysis of the first spectrum. 

  

% The only unsure parameter is the frequency. If the analysis is no good,  

% be sure that the first number is near the frequency of the fundamental,  

% and modify it if needed. 

params = [500 10 10 2 1.5]; 

  

% The p function will be used at the end of the code, when saving the data 

% into a variable. So if the wolf has not changed, it will be incremented 

% at the end of the code, given the analysis is sucessful. 

display('Has the wolf changed ? (yes = 1 / no = 2)') 

  

  

ant = input (' '); 

if ant == 1 

 p == 0; 

end 

  

% Read the wave file. 

[sound_data, sampling_rate, Nbits] = wavread([folder_name file_name]); 

  

% Get rid off the stereo part and keep only the 

% left part of the sound. 

mono_data = sound_data(:, 1); 
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% Here are the FFT's length and the duration of the howling in digits. 

F = 2048; % FFT's length 

T = ceil(length(mono_data)/F)-1; % Howling duration 

  

% Generate a frequency axis, in Hertz, for the spectrogram: 

frequency_axis = 0:((sampling_rate/2)/(F/2 - 1)):(sampling_rate/2); 

  

% Generate a time axis, in seconds, for the spectrogram: 

time_axis = 0:((T*F/sampling_rate)/(T - 1)):(T*F/sampling_rate); 

  

  

% Cut the string of datas into : 

% F parts vertically 

% T parts horizontally 

mono_data_reshaped = reshape(mono_data(1:T*F), F, T); 

  

% At this point, the string of data are converted to a FxT Matrix. 

  

% Compute the Fourier Transform : 

f = fft(mono_data_reshaped); 

  

  

% Time by 10*log(x) to get the log of the signal 
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% Take only the first F/2 points vertically to not get the symetrical part 

% Realise a Brick Wall Filter for the spectrogram's 150 first points. 

brick_wall_UL = 150; 

[a BWUL] = min(abs(frequency_axis - brick_wall_UL)); 

f(1:BWUL, :) = 1e-3; 

  

% At this point, the 150 first Hz of the spectrogram are set to 1e-3. 

  

% Create the spectrogram by taking the logarithm of the modulus of the fft 

% of the reshaped data. Note that only F/2 points vertically are used in 

% order to get rid of the symetrical part of the fft. 

spectrogram = 10*log(abs(f((1:F/2), (1:T)))); 

  

  

% Set the limits of the frequencies to be displayed: 

F_min = 50; 

% identify the corresponding index: 

[a F_min_index] = min(abs(frequency_axis - F_min)); 

  

F_max = 5000; 

% identify the corresponding index: 

[a F_max_index] = min(abs(frequency_axis - F_max)); 

  

% Cleaning the variable 

clear Fo CCF detected_frq data artificial_spectrogram m n howling_number 
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set(gcf, 'doublebuffer', 'on') 

  

% Display the spectrogram for the user to choose the number of howlings he 

% wants to analyse. 

figure(1) 

imagesc(time_axis, [frequency_axis(F_min_index) frequency_axis(F_max_index)], 

spectrogram(F_min_index:F_max_index, :)) 

colorbar 

set(gca, 'YDir', 'normal') 

ylabel 'Frequency / Hz' 

xlabel 'Time / s' 

title 'Spectrogram' 

  

% Number of howling 

display 'how many howlings do you want to analyse ?' 

howling_nb = input('number of howling: '); 

  

% Default frequency limitation value 

% The frequency limitation will be used in the cross-correlation part 

frequency_lim = 220; 

  

% This variable is used to end the while loop. 

answer = 2; 
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% Variable for the changing of the beginning and ending points of the 

% howling if the user is not satisfied. 

emp = 1; 

  

% Upper Frequency Limitation for the cross-correlation. 

Upper_lim = 800; 

  

  

% Here is the while loop. The code will run and the software will try to 

% extract the main parameters of the howling. However, this will not work 

% perfectly everytime. To obtain better results, we have decided to make 

% more passes. 

  

% At the end of the analysis, the results are displayed. The user is then 

% asked is he or she is satisfied by the results obtained. If he is, the 

% variable p is incremented and the parameters are saved. If he is not, he 

% will be able to change several parameters to obtain a better result. 

  

while answer ~= 1 

 % Cleaning 

 clear artificial_spectrogram data detected_frq 

  

 % Display the spectrogram 

 figure(1) 
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 imagesc([], [frequency_axis(F_min_index) frequency_axis(F_max_index)], 

spectrogram(F_min_index:F_max_index, :)) 

 colorbar 

 set(gca, 'YDir', 'normal') 

 ylabel 'Frequency / Hz' 

 title 'Spectrogram' 

  

 % This for loop lets the user choose the beginning and the end of the 

 % each howling. 

 % On the second pass, it appears only if the user wants to change the 

 % beginning and the end of the howlings. 

 if emp == 1 

 for howling_number = 1:howling_nb 

 display(['select starting point of the howling n°' num2str(howling_number)]) 

 tfn_LL = input('starting point = '); 

 display(['select ending point of the howling n°' num2str(howling_number)]) 

 tfn_UL = input('ending point = '); 

  

 m(howling_number) = tfn_LL; % Store the startings points 

 n(howling_number) = tfn_UL; % Store the endings points 

 end 

 end 

  

 % The m and n variables are row of data which as many number as the 

 % number of howling analysed. 
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 % m correspond to the starting point of each howling, and n correspond 

 % to the ending point. 

  

 close all 

  

 % The analysis is done for every howling separately 

 for howling_number = 1:howling_nb 

  

 UL = Upper_lim; % Defined above 

 LL = 100; % Lower limit of the cross-correlation 

 PP = m(howling_number); % Used for the loading bars 

  

 frequency_limitation = frequency_lim; 

  

 % Define the scanning strategy of the howling. 

 % The analysis start at the mid point of the howling, and goes 

 % forward until the end. Then, it return to the mid point and goes 

 % backward until the beginning. 

 scan_strategy = m(howling_number):n(howling_number); 

 mid_point = scan_strategy(round(length(scan_strategy)/2)-1); 

 scan_strategy = [scan_strategy(round(length(scan_strategy)/2)):scan_strategy(end) 

scan_strategy(round(length(scan_strategy)/2)-1):(-1):scan_strategy(1)]; 

  

 % This line change the set of parameters given at the beginning for 

 % some adapted to the mid point of the howling. 
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 params = fminsearch('difff_lorentz', params, [], exp(0.1*spectrogram(:, 

scan_strategy(round(length(scan_strategy)/2)))), frequency_axis'); 

  

 for time_frame_nb = scan_strategy 

  

 %%%%%%%%%%%%%%%%%%%%%%%%%% 

 % CROSS CORRELATION PART % 

 %%%%%%%%%%%%%%%%%%%%%%%%%% 

  

 %Display the progress of the analysis with loading bars ! 

 if howling_nb > 1 

 PP = PP + 1; 

 else 

 PP = PP + 1; 

 end 

  

 % Allocate the memory of the CCF_frequency_span variable 

 CCF_frequency_span = zeros(1, UL); 

 CCF_frequency_span(1, LL:UL) = LL:1:UL; 

 Fo_index = 1; 

  

 for Fo = CCF_frequency_span 

 % For Fo going from LL to UL, realise a cross-correlation 

 % to determine the frequency of the fundamental. 
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 % Plot the two first function of the Cross-Correlation : 

 % the spectrum corresponding to the time frame number, and 

 % the four generated Lorentzian peaks. 

  

 % Decide which set of parameters will be used to generate the 

 % four Lorentzian peaks, and calculate the cross-correlation 

 % function. 

 if time_frame_nb == mid_point; 

 CCF(time_frame_nb, Fo_index) = (sum(exp(0.1*spectrogram(:, time_frame_nb))'.* 

Lorentz(data(time_frame_nb+1, :), frequency_axis))); 

 else 

 CCF(time_frame_nb, Fo_index) = (sum(exp(0.1*spectrogram(:, time_frame_nb))'.* 

Lorentz([Fo abs(params(2:5))], frequency_axis))); 

 end 

  

 Fo_index = Fo_index + 1; 

 end 

  

 % Find the maximum of the cross-correlation function. 

 [a b] = max(CCF(time_frame_nb, 1:UL)); 

  

  

 if CCF_frequency_span(b) < frequency_limitation 

 % The noise might be of higher amplitude than the howling,  

 % so we check if the maximum is before or after the 
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 % frequency_limitation. 

 % If it is before, it is considered as noise, so everything 

 % from 1 to the frequency_limitation is forced to zero, and 

 % the search for the maximum of the cross-correlation is 

 % done once again. 

 [a boundary] = min(abs(CCF_frequency_span - frequency_limitation)); 

 CCF(time_frame_nb, 1:boundary) = zeros; 

 CCF(time_frame_nb, UL+1:end) = zeros; 

 [a d] = max(CCF(time_frame_nb, :)); 

  

 detected_frq(time_frame_nb) = CCF_frequency_span(d); 

 else 

 % The Cross-Correlation worked. 

 detected_frq(time_frame_nb) = CCF_frequency_span(b); 

 end 

  

 % End of the Cross-Correlation Part. 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% 

  

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 % SEARCH OPTIMUM PARAMETERS PART % 

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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 % Fit the spectrum with generated Lorentzian peaks using the 

 % fminsearch function. 

 if time_frame_nb == mid_point 

 params = fminsearch('difff_lorentz', abs(data(time_frame_nb+1, 1:5)), [], 

exp(0.1*spectrogram(:, time_frame_nb)), frequency_axis'); 

 else 

 params = fminsearch('difff_lorentz', [detected_frq(time_frame_nb) params(2:5)], [], 

exp(0.1*spectrogram(:, time_frame_nb)), frequency_axis'); 

 end 

  

 if params(1) > frequency_limitation 

  

 % Save the data 

 data(time_frame_nb, 1:5) = params; 

 artificial_spectrogram(time_frame_nb, :) = Lorentz(params, frequency_axis); 

 else 

 % If the condition is not respected, it generates an array of 

 % zeros instead of fitting the datas. 

 % Save the data 

 data(time_frame_nb, 1:5) = zeros(1, 5); 

 artificial_spectrogram(time_frame_nb, :) = zeros(1, size(spectrogram, 1)); 

 end 

 % Display the progress of the extraction so as to allow the 

 % viewer to keep track of the quality of the extraction: 

 imagesc(flipud(log(artificial_spectrogram'))) 



212 

 

 pause(0.1) 

 end 

 end 

 % close figure 7 

  

 % End of the search for the optimal parameters 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% 

  

 % At this point, we are in possession of the five main parameters which 

 % defines the howling. 

  

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 % RECONSTRUCTING THE SPECTROGRAM PART % 

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

 clear reconstructed_spectrogram howling_number params 

  

 % Reconstruct the spectrogram from the variable 'data'. 

 for howling_number = 1:howling_nb 

 for time_frame_nb = m(howling_number):n(howling_number) 

 params = [data(time_frame_nb, 1) data(time_frame_nb, 2) data(time_frame_nb, 3) 

data(time_frame_nb, 4) data(time_frame_nb, 5)]; 

 reconstructed_spectrogram(time_frame_nb, :) = Lorentz(params, frequency_axis); 
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 end 

 end 

  

 % If there is noise between the end of the last howling and the end of 

 % the recording, this space is set to zero. 

 reconstructed_spectrogram(n(howling_nb)+1:T, :) = zeros(T-n(howling_nb), F/2); 

  

 % Display the reconstructed spectrogram, in different boxes for each 

 % howling. Display the original howling too. 

 for howling_number = 1:howling_nb 

 figure(1) 

 subplot((ceil(howling_nb/3)+1), howling_nb, howling_number) 

 imagesc([], frequency_axis, 10*log(abs(reconstructed_spectrogram((m(howling_number) - 

(round(0.01.*(n(howling_number)-m(howling_number))))):(n(howling_number) + 

(round(0.01.*(n(howling_number)-m(howling_number))))), :)')), [-80 45]) 

 set(gca, 'YDir', 'normal') 

 xlabel 'Digits' 

 axis([1 size(reconstructed_spectrogram((m(howling_number) - 

(round(0.01.*(n(howling_number)-m(howling_number))))):(n(howling_number) + 

(round(0.01.*(n(howling_number)-m(howling_number))))), :)', 2) 0 3500]) 

  

 pause(1) 

  

 subplot((ceil(howling_nb/3)+1), howling_nb, howling_number+howling_nb) 
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 imagesc([], frequency_axis, spectrogram(:, (m(howling_number) - 

(round(0.01.*(n(howling_number)-m(howling_number))))):(n(howling_number) + 

(round(0.01.*(n(howling_number)-m(howling_number)))))), [-80 45]) 

 set(gca, 'YDir', 'normal') 

 xlabel 'Digits' 

 title 'Spectrogram' 

 axis([1 size(spectrogram(:, (m(howling_number) - (round(0.01.*(n(howling_number)-

m(howling_number))))):(n(howling_number) + (round(0.01.*(n(howling_number)-

m(howling_number)))))), 2) 0 3500]) 

  

 pause(1) 

 end 

  

 % Ask the user if he is satisfied by the analysis. 

 display 'Are you satisfied by this result ? (yes = 1; no = 2)' 

 answer = input(' '); 

  

 % If the user is not satisfied, he is asked to change settings for the 

 % next pass. 

 % This settings are : 

 % - The frequency limitation 

 % - The Upper frequency limitation 

 % - The startings and endings points of the howlings 

 if answer == 2 

 figure 
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 plot(data(m(1):n(end), 1)) 

 display 'Choose the lowest frequency of the howlings. Previous value was :' 

 frequency_limitation 

 frequency_lim = input('frequency limitation = '); 

  

 display 'Do you want to change the startings and ending points' 

 display 'of each howling ? (yes = 1 / no = 2)' 

 emp = input(' '); 

  

 display 'Do you want to change the upper limit ? (yes = 1 / no = 2)' 

 tamp = input(' '); 

 if tamp == 1 

 display 'Input new Upper Limit :' 

 Upper_lim = input(' '); 

 end 

 end 

  

end 

  

  

% When the user is satisfied, the analysis will be labelled as successful,  

% and the p variable will be incremented. Then, the five rows of data will 

% be saved as *.mat files 

p = p+1; 
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for howling_number = 1:howling_nb 

 saved_data = data(m(howling_number):n(howling_number), :); 

 save([wolf_name, '_', num2str(p), '_', num2str(howling_number)], 'saved_data') 

end 

 



217 

 

 

9. Appendix 3 A Brief Description of Wolf Subspecies 

 

This appendix consists of information on the different grey wolf subspecies here 

analysed. 

 

9.1 Grey Wolves 

 

Figure 9.1 shows the decreased range of the grey wolf in North America from the 

historic levels (Paquet and Carbyn 2003). Figure 9.2 shows the current distribution of wolf 

subspecies in North America with the currently accepted taxonomy of five main subspecies 

(Nowak and Federoff 1996). The importance of historic range is that once a particular 

subspecies of wolf has been extirpated, the same subspecies may not return when re-

colonisation or reintroduction occurs and mixing may occur between subspecies if the origin 

population is of a different subspecies to the historic subspecies. Care must therefore be taken 

to check the current classification of recordings of subspecies which may be labelled ‘Canis 

lupus crassodon’. 
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Figure 9.1 Original and Current Range of Grey wolf in North America (Paquet and 

Carbyn 2003) 
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Figure 9.2 Distribution of current wolf subspecies in North America (Nowak and 

Federoff 1996) 
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Subspecies of wolf are listed by Old World followed by New World. Much of the diet 

and behaviour of wolves is similar wherever they are found and interbreeding can occur 

between both Old and New World subspecies in any combination. Known examples of this 

interbreeding include Mackenzie Valley (C.l. occidentalis) and European wolf (C.l. lupus) 

crosses living in UK zoos, e.g. Torak at UK Wolf Conservation Trust. Differences between 

subspecies do not appear to stop pack bonding, with Europeans and Mackenzie Valley 

wolves living together at UK Wolf Trust and a Tibetan (C.l. chanco) wolf, which lived 

peacefully with European wolves in captivity in Bavaria in the 1970 s (Zimen 1981). 

Morphological differences exist but no genetic barriers to successful reproduction have been 

cited and the grey wolf is considered to be one continuously distributed species with distinct 

subspecies or races arising over geographic distance rather than a set of subspecies co-

existing and undergoing diverging evolution in the same area (Nowak 2003; Agnarsson et al. 

2010; Fain et al. 2010). 



221 

 

 

9.2 European wolf (Canis lupus lupus) 

 

The European or Eurasian wolf is one of the most widely distributed subspecies of 

grey wolf, found from the wilds of far eastern Russia to Finland and as far south as Italy and 

Turkey (Vila et al. 1999). It has one of the largest variations in size within a subspecies with 

a length of 105-160cm and a weight of 32-50kg (Boitani 2000). Its diet, despite its reputation 

as a major predator of livestock, mostly depends on wild prey, with a preference for wild 

ungulates where available (Meriggi and Lovari 1996; Lanszki et al. 2012; Milanesi et al. 

2012; Wagner et al. 2012). They have been extirpated from much of their former territory 

because of conflicts with humans and are still in continued conflict in many countries which 

prevent their further recolonisation (Mech 1970; Jedrzejewksi et al. 2005). The most recent 

summary of the legal status of wolves across Europe is shown in based on Salvatori & 

Linnell (2005). Table 9.1 shows Spain and Portugal to have European wolves, but these are 

considered as a separate subspecies (Iberian) by Palacios et al. (2007) and are therefore 

analysed as such. 
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Table 9.1 Legal Status, Population and Trend of Grey Wolves in Europe (Salvatori & 

Linnell 2005). 

Country No. of 

wolves 

Trend Legal status Hunted? 

Albania 450-600 Stable Fully protected Yes, illegally 

Bosnia-

Herzegovina 

Unknown Unknown Partly protected Yes, legally 

Bulgaria* 1, 000 Stable Not protected Yes and legal bounty 

Croatia 130-170 Stable Partly protected Yes, quota 15 per year 

Czech 

Republic 

5-17 Unknown Fully protected Unknown (probably) 

Estonia 100-150 Stable Partly protected Yes, legally 

Finland 185 Increasing Fully protected No, only lethal control 

France 80-100 Increasing Partly protected Yes, only lethal control 

Germany c. 10 Stable Fully protected No 

Greece 500-700 Stable Partly protected Yes, illegally 

Hungary 3-6 Unknown Fully protected Yes, illegally 

Poland 700 Stable Fully protected Yes, illegally 

Romania 2, 000-4, 000 Stable Partly protected Yes, legally 

Slovak 

Republic 

500 Stable Partly protected Yes, legally 

Slovenia 60-100 Stable Fully protected Yes, illegally 

Italy c. 500 Increasing Fully protected Yes, illegally 

Latvia 300-500 Increasing Partly protected Yes, quota c. 140 
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Lithuania 400-500 Increasing Not protected Yes, legally 

Macedonia 800-1, 000 Stable Partly protected Yes, quota c. 400 

Norway 23-26 Increasing Fully protected No, only lethal control 

Portugal 300 Stable Fully protected Yes, illegally 

Spain 2, 000 Increasing Partly protected Yes, legally & illegally 

Sweden 48-49 Increasing Fully protected No 

Switzerland 3 Stable Fully protected Yes, legally & illegally 

Turkey 5, 000-7, 000 Decreasing Not protected Yes legally encouraged 

Ukraine 2, 000 Unknown Not protected Yes legally encouraged 

 

Key to Table 9.1: 

Not protected – no legal protection whatsoever in place and often refused to sign Bern 

Convention or did not allow it to be applied to wolves. *Bulgaria provides a 

significant bounty on each wolf, a policy shared previously by USSR and by Russia. 

Partly protected – some legal protection with hunting seasons allowed or special 

quotas and licenses for hunting. 

Fully protected – full legal protection with only lethal control or very low quotas for 

hunting wolves. 
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9.3 Iberian wolf (Canis lupus signatus) 

 

The Iberian wolf is limited in its distribution to Spain and Portugal (Figure 9.3). It is a 

subspecies which is closely related to the European wolf and the Italian wolf, although it is 

smaller than the European wolf. Its name means ‘signed’ due to the black marks on the 

species’ forepaws, tails and cross and white marks on the upper lips (Palacios et al. 2007). 

Their weight is ~30kg for females and ~40kg for males, making them similar to red wolves 

and Mexican wolves and smaller than European wolves found in Russia and Asia (Palacios et 

al. 2007). Like all wolves, they are omnivorous with a varied diet including small mammals, 

roe deer (Capreolus capreolus), wild boar (Vos 2000) and domestic horses (Vos 2000; Barja 

2009). Its howl has previously been described using fundamental frequency by Palacios et al. 

(2007), and the howls are the same collected and analysed by Vicente Palacios, with his kind 

permission. 
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Figure 9.3 Distribution of Iberian wolf in Spain and Portugal 

Source: ‘Report on the conservation status and threats for wolf (Canis lupus) in Europe’ 

(Salvatori and Linnell 2005) 
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9.4 Golden Jackal (Canis aureus) and 

North African wolf (Canis aureus lupaster) 

 

The golden jackal is found throughout North and East Africa, the Middle East, south-

eastern Europe and central, southern and western Asia (Figure 9.4) (Rueness et al. 2011). It 

measures 70-106cm in body length and weighs 7-15kg with males 12% larger and heavier 

than females (Moehlman 1987). Their coats give them their ‘golden’ name as it shades from 

pale gold to brown-tipped, with a darker saddle across the back (Moehlman 1987). They are 

opportunistic omnivores, although they feed primarily on rodents (Microtus spp.) and occupy 

a range of habitats from deserts to evergreen forests (Moehlman 1987; Markov and Lanszki 

2012). The longevity in the wild is eight to nine years and the oldest jackal in captivity died 

at eighteen (Moehlman 1987). They are monogamous cooperative breeders and young may 

stay with their parents as helpers to the succeeding year of pups (Moehlman 1987). 

 

Following Rueness et al.’s (2011) reassessment of the phylogeny of the golden jackal, 

which was previously considered a monophyletic group, the North African wolf (Canis 

aureus lupaster) has recently been reclassified from a Golden Jackal. Its range was extended 

by Gaubert et al. (2012) to include Senegal, Mali and Algeria. The North African (or African) 

wolf is considered one of the four distinct lineages within the grey wolf clade, the other three 

being Holarctic wolves / dogs (C. lupus / familiaris), Tibetan or Himalayan wolves (C.l. 

chanco) and Indian wolves (C.l. pallipes) (Gaubert et al. 2012). Their distribution is shown in  

Figure 9.8. Because it is impossible to know whether the sampled animals classified as 

golden jackal by the recorder at the time were in fact golden jackals or North African wolves, 
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all are treated as Canis aureus spp. and included here as a monophyletic group, although 

possibly that of Canis aureus lupaster. 

 

Figure 9.4 Distribution of Golden Jackal, including that of North African wolf in 

Ethiopia. Source: ‘Figure 1’ of Rueness et al. (2011).  

NB: Numbers indicate the number of samples taken by Rueness et al. (2011) for their 

classification of the North African wolf, formerly the Golden Jackal. 
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9.5 Arctic wolf (Canis lupus arctos) 

 

The Arctic wolf (Canis lupus arctos) is found throughout the Arctic Circle, including 

northern Canada and Greenland, and distribution is shown in Figure 9.5. They have the 

typical white coat of polar animals and feed primarily on Arctic hares (Lepus arcticus) (Mech 

1997; Mech 2007). At the furthest most point of their range at Ellesmere Island, they rely on 

muskoxen (Ovibos moschatus) and live in larger than average packs of 20 or more adults 

(Mech and Cluff 2011). The territory size of the Arctic wolf is the largest of any known wolf, 

with one pack holding a range of 6, 640km
2 

(Mech and Cluff 2011). Both recordings in the 

wild and in captivity are limited by opportunity – in the wild because of the harshness of 

conditions in the Arctic Circle and in captivity because only one pack is kept in the UK, at 

UK Wolf Conservation Trust. 
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Figure 9.5 Distribution of Arctic wolf 

Source: International wolf centre, downloaded 11/06/12 

http://www.wolf.org/wolves/experience/field_notes/high_arctic/arctic_range.asp 

http://www.wolf.org/wolves/experience/field_notes/high_arctic/arctic_range.asp
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9.6 North American subspecies 

 

Table 9.2 shows wolf population estimates in Northern America.  

 

Table 9.2 Legal Status, Population and Trend of Grey Wolves in North America taken 

from Boitani (2003) with updated figures from US Fish and Wildlife Service website 

(downloaded 25.06.12) (Anonymous 2012) 

 

Area No. of 

wolves 

Trend Legal status Hunted? 

Canada 52, 000-60, 

000 

Increasing Only protected in 3% 

of Canada 

As big game 

Alaska 6, 000-7, 

000 

Increasing Partially protected As big game 

August-April 

Minnesota 2, 900 Increasing Protected but culled Illegally 

Wisconsin 600 Increasing Fully protected Illegally 

Michigan 600 Increasing Protected but culled Illegally 

Wyoming Idaho 

Montana 

1, 700 Increasing Protected but culled Illegally 

Oregon 24 Increasing Protected but culled Illegally 

Arizona (Mexican 

subspecies) 

42 Increasing Fully protected Illegally 

North Carolina 70 Increasing Fully protected No 
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9.7 Eastern wolf (Canis lupus lycaon) 

 

Eastern wolves weigh between 26-36kg, similar to Iberian wolves, with females about 

5kg on average lighter than males (Mech and Paul 2008). They typically have silver or grey-

brown coats, which may darken in winter, with a lighter undercoat (Nowak 2003). A more 

thorough discussion of their biology can be found in Chapter 2. 

 

 

9.8 Mackenzie Valley wolf (Canis lupus occidentalis) 

 

Otherwise known as the Canadian timber wolf, the Mackenzie Valley wolf is one of 

the largest subspecies of grey wolf weighing from 38-65kg and standing 81-95cm at the 

shoulder (Smith and Ferguson 2005). It has a pack size of typically six to twelve individuals, 

although the largest ever documented pack size was the Druid pack of Yellowstone Park 

which had 37 members (Smith and Ferguson 2005). Their diet is preferentially based around 

wild ungulates such as bison and elk but also includes salmon, rodents, vegetation and 

scavenged carrion, with local ecology affecting prey choice (Stahler et al. 2006; Garrott et al. 

2007; Watts et al. 2010; Adams et al. 2010a). They are found across Canada and were the 

subspecies used to restore wolves to Yellowstone National Park (Smith and Ferguson 2005). 

 

9.9 Great Plains wolf (Canis lupus nubilus) 
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Despite eradication from Wisconsin and Michigan in the 1960 s, the Great Plains wolf 

is still the most common subspecies in North America (Leonard et al. 2005). Its range is now 

mainly limited to Minnesota, with smaller populations on Isle Royale, and slowly returning to 

Wisconsin and Michigan (Leonard et al. 2005). They are considered to be a larger, broader 

headed, taxonomically distinct subspecies (Mech et al. 2011). Their diet is similar to the 

Mackenzie Valley wolf, with a preference for white tailed-deer (Odocoileus virginianus) and 

muskrats (Ondatra zibethicus) (Chavez and Gese 2005).  

 

9.10 Mexican wolf (Canis lupus baileyi) 

 

The Mexican wolf (Canis lupus baileyi) is the smallest of the North American 

subspecies of grey wolf, weighing 27-37kg (Servin 1997). Their diet mainly consists of elk 

(Cervus elaphus) but also includes domestic cattle (Bos primigenius taurus), deer 

(Odocoileus spp.), and small mammals (Merkle et al. 2009). Perhaps due to naivety of 

predation after the wolf’s extirpation, Mexican wolves consume more large-sized prey than 

other North American grey wolves (Reed et al. 2006). 

 

The Mexican wolf was extirpated from its historic range by the 1950 s and was 

declared endangered in 1976 and today is only kept in captivity and reintroduction zones in 

Blue Range, Arizona (Figure 9.6) (Brown and Parsons 2001). Despite all known Mexican 

wolves descended from seven founders that were captured from the wild and bred in 

captivity, they do not show inbreeding depression (Brown and Parsons 2001; Hedrick and 

Fredrickson 2008).  
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Figure 9.6 Current distribution of Mexican wolf 

Source: U.S. Fish and Wildlife Service Mexican Wolf Recovery Program website 

downloaded 11/06/12. http://www.fws.gov/southwest/es/mexicanwolf/BRWRP_map.cfm 

http://www.fws.gov/southwest/es/mexicanwolf/BRWRP_map.cfm
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9.11 Red wolf (Canis lupus rufus) 

 

The average red wolf weighs 23-28kg and is 135-165cm in length, notably smaller 

than other North American subspecies (Paradiso and Nowak 1972). They feed primarily on 

white-tailed deer (Odocoileus virginianus), raccoons (Procyon lotor) and marsh rabbits 

(Sylvilagus palustris) (Philips et al. 2003). A typical pack is five to eight individuals with 

offspring dispersing at one to three years of age (Karlin and Chadwick 2012).  

 

Due to human persecution, the red wolf was almost completely extirpated during the 

20
th

 century, falling to an entire population of less than 100 individuals confined to a small 

area of coastal Texas and Louisiana in the 1970 s (Bohling and Waits 2011). Fourteen 

captured animals formed the base of the captive-breeding programme (Bohling and Waits 

2011). Since 1987, red wolves have been released into north-eastern North Carolina (Figure 

9.7) and in 1991 they were also released into Great Smoky Mountains National Park, 

Tennessee (Hedrick and Fredrickson 2008). Their numbers are slowly increasing but they are 

still listed as critically endangered by the IUCN (Bohling and Waits 2011). 
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Figure 9.7 Distribution of Red wolf (Canis lupus rufus) in North Carolina 

Source: IUCN Red List website downloaded 11/06/12 

http://maps.iucnredlist.org/map.html?id=3747 

 

http://maps.iucnredlist.org/map.html?id=3747
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9.12 Grey wolves in Asia 

 

 

 Table 9.3 is taken from Boitani (2003) who used published figures and educated 

estimates provided by fellow members of the IUCN / SSC Wolf Specialist Group to compile 

the numbers. It remains the best estimate of wolf distribution across Asia. 

 

Table 9.3 Status, Population and Trend of Grey Wolves in Asia (Boitani 2003) 

Country No. of wolves Trend Legal status Hunted? 

Syria 200? ? Not protected Yes 

Lebanon <50 ? Not protected Yes 

Israel 150 Stable Protected Yes 

Jordan 200? > Not protected Yes 

Egypt (Sinai) <50 Stable Not protected Yes 

Saudi Arabia 300-600 Stable Not protected Yes 

India 1, 000 Decr. Not protected Yes 

China – Cheiludijang 599? Decr. Not protected Yes 

China – Xinjiang 10, 000 Decr. Not protected Yes 

China – Tibet 2, 000 Decr. Not protected Yes 

Mongolia 10-20, 000 Stable? Not protected Yes 

Russia 25-30, 000 Increasing / stable Not protected Yes 

Kazakhstan 30, 000 Stable Not protected Yes 

Turkmenistan 1, 000 Stable Not protected Yes 

Uzbekistan 2, 000 Stable Not protected Yes 

Kirgizstan 4, 000 Stable Not protected Yes 

Tadjikistan 3, 000 Stable Not protected Yes 

 

Source: ‘Wolf Conservation and Reproduction, p.323, Table 13.1’ (Boitani 2003) 
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9.13 Tibetan wolf (Canis lupus chanco) 

 

The Tibetan or ‘woolly’ wolf (Canis lupus chanco) is distributed throughout central 

Asia, Tibet, northern Mongolia, north China and the Himalayas ( 

Figure 9.8) (Srivastav and Nigam 2009). Sharma et al. (2004) suggest that it may even be a 

completely separate species of wolf to the wolf-dog clades. It measures 89-100cm long and 

around 25-30kg in weight (Srivastav and Nigam 2009). Like many other wolf subspecies, 

Tibetan wolf packs comprise two to twenty individuals, with a typical pack size of eight 

(Srivastav and Nigam 2009). The Tibetan wolf was not included in the analysis of individual 

identity as only a single captive individual from the subspecies has been recorded but can be 

considered for the pack and subspecies analysis. 
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Figure 9.8 Wolf distribution in the Northern Hemisphere showing historical 

distributions of Canis lupus, and the subspecies Indian wolf C. l. pallipes and Tibetan 

woolly wolf C. l. chanco 

“(a) Map of wolf distribution in the Northern Hemisphere showing historical 

distributions of Canis lupus, and the subspecies C. 1. pallipes and C. 1. chanco. (b) Map 

of the Indian subcontinent with study sampling localities indicated for wolves and dogs. 

No further locality data beyond country were available for two Tibet (in box) and one 

Nepal sample (below box). The question mark refers to a USNM sample that was of 

uncertain origin; field notes suggest it was collected in Ladakh, Kashmir.” 

Source: Figure 1 from Sharma et al. 2011 (Sharma et al. 2004)  
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10. Appendix 4 Sources of Howls 

 

1262 howls from 217 recordings were used in the database. This included howls from 

eleven subspecies. Table 10.1 lists all of the sources of recordings. 
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Table 10.1 List of all sources for howls used in Analyses 10 and 11, Chapter 3. 

Subspecies Source No. of howls 

Arctic 

BBC Frozen Planet DVD 12 

Macaulay Sound Archive 1 

Personal recording 11 

Tigress Productions ‘In the Wild’ DVD 11 

Eastern 

Borror Laboratory 287 

British Library Sound Archive 111 

Fred Harrington (via PBS) 3 

‘Language & Music of Wolves’ CD 6 

Macaulay Sound Archive 186 

Wolf Park CD 162 

European 

Claudia Capitani 6 

‘The Voices of Wolves, Jackals and Dogs’ CD 17 

Macaulay Sound Archive 88 

Personal recording 46 

Museum für Naturkind Tierstimmen Archiv 13 

Wild Sweden (pers. rec.) 12 

Yorgos Iliopoulos (pers. rec.) 13 

Great Lakes Christine Anhalt (pers. rec.) 9 

Great Plains Tigress Productions ‘In the Wild’ DVD 7 

Iberian Vicente Palacios (pers. rec.) 25 

Mackenzie Valley 

Macaulay Sound Archive 9 

Personal recording 87 
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Museum für Naturkind Tierstimmen Archiv 38 

Mexican 

Borror Laboratory 39 

John Theberge (pers. rec.) 3 

North African 

‘The Voices of Wolves, Jackals and Dogs’ CD 10 

Macaulay Sound Archive 1 

Museum für Naturkind Tierstimmen Archiv 33 

Red ‘The Voices of Wolves, Jackals and Dogs’ CD 7 

Tibetan Macaulay Sound Archive 9 

 


