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“Physics isn’t a religion. If it were, we’d have a much easier time raising money.”

Nobel Laureate Professor Leon Lederman

“There is no democracy in physics. We can’t say that some second-rate guy has as much

right to opinion as Fermi.”

Nobel Laureate Luis Walter Alvarez, 1911-1988

“Reports that say that something hasn’t happened are always interesting to me, because

as we know, there are known knowns; there are things we know we know. We also know

there are known unknowns; that is to say we know there are some things we do not know.

But there are also unknown unknowns - the ones we don’t know we don’t know.”

Donald Rumsfeld



Abstract

Complex fluids are commercially- and industrially-important materials which exhibit or-

dering on scales much larger than atomic. Their usage is typically in non-equilibrium

conditions, however traditional methods for measuring rheology are not appropriate for

measuring samples with gradients present, such as temperature and concentration. In

this work a safe and easy to use optical tweezer (OT) apparatus has been developed in

order to facilitate the investigation of various systems during dilution or drying. In con-

trast to other OT setups, this equipment is safe to use without laser goggles or interlocked

rooms, yet still allows full access to the microscope. Proof-of-concept experiments are

performed on aqueous poly (ethylene oxide) (PEO) solutions to demonstrate the changes

in viscosity and concentration over time, and the OT is then used in a rheological inves-

tigation into a commercially-relevant wormlike micelle (WLM) system, in conjunction

with Diffusing Wave Spectroscopy (DWS) and traditional bulk rheology.

It is shown for the first time that equimolar (eM) SDS:CAPB WLM samples can be

considered ‘model’ systems, and form close approximations of Maxwellian systems on

the addition of extra salt or surfactant above 0.1eM. The effect of an uncharged poly-

mer (PEO 4M MW) on this WLM network structure was subsequently investigated;

its effects are consistent with current theories of polymer-surfactant interactions. The

effect of a conditioning polyelectrolyte on the network structure was also studied; its

effect was highly dependent on surfactant and electrolyte concentration, but hinted at

the previously unreported behaviour of a polyelectrolyte initiating micellar branching.

A precursor investigation into evaporation of sessile droplets of aqueous PEO solutions

is presented last, reporting a previously unseen droplet evaporation regime in which the

solid deposits grow to nearly twice their starting height. This research concludes that the

growth phenomena is due to the unusual solvation mechanism of PEO, and a predictive

theory is presented in support of this.
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1
Introduction

“παντα ρει και oυδεν µενει” (Everything flows, nothing stands still)

Heraclitus, 535-475 B.C.

1.1 Introduction

Fluids are ubiquitous in our daily lives, from the water we drink for hydration to the

liquid fuels which ignite in rocket engines. Accurate control and understanding of fluids is

therefore of upmost importance to many commercial and industrial processes, as well as

being of academic interest. Whilst liquids such as water are relatively well understood1,

there exists a class of substances called ‘complex fluids’ - where the components exhibit

a degree of ordering on scales much larger than atomic - which have revolutionised the

world we live in. Plastics, rubber, detergents, liquid crystal displays (LCDs), shampoo,

food technology [5, 6] and inkjet printing [7, 8] are all examples of products or techniques

which have been made possible or improved by research into complex fluids.
1In terms of its long-time behaviour in equilibrium conditions at room temperature, water is relatively

well understood. There is much research interest in water as it has been shown, for example, to be
viscoelastic at picosecond time scales [4].

1
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One example of a complex fluid is formed when surfactant2 molecules self-assemble into

structures called ‘wormlike micelles’ (discussed in detail in §2.3.2), which are pumped

underground by energy companies in order to extract more hydrocarbons using less

energy [9]. The same micellar network structures are used in shampoos and conditioners

in order to deposit active material such as silicone on hair [10, 11, 12], and a different

variety of micelles are under investigation as a method for enhancing drug delivery by

the pharmaceutical industry [13, 14].

Whilst the static properties of these fluids are relatively well understood, their industrial

value depends on their dynamic, or non-equilibrium properties, for which as yet there

is no comprehensive theory [15, 16, 17, 18]. One example of this is with the molecule

poly(ethylene oxide) (PEO) (discussed in detail in §2.4); this molecule is used as a

viscosifier in many food [19] and personal care products [20], yet is also used to reduce

turbulence in fire hoses [21], two effects which may appear to be contradictory, but are

the result of a change in the Reynold’s number.

The research presented here looks at the non-equilibrium properties of various commercially-

relevant complex fluids.

1.1.1 Thesis Layout and Motivation

This research was partially funded by Unilever PLC who are interested in understanding

the non-equilibrium properties of their products such as shampoo, detergent, deodorant

and food. In order to create a solid basis for further research, we started with a one-

component polymeric system and investigated the effects of concentration gradients. A

concentration gradient can be introduced in one of two ways; either an overall increase
2Surfactant is a portmanteau of surface active agent, referring to molecules which decrease surface

tension, typically due to opposite ends having hydrophobic and hydrophilic properties.
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in concentration is created through evaporation, or a decrease through dilution. Evap-

oration was investigated first as it is easier to perform, and this was then extended to

dilution later, as this is more relevant to Unilever’s products. A brief description of the

various chapters is included below.

Chapter 2 - On the Physics and Rheology of Polymers in Solution

All the work presented in this thesis concerns either ‘standard’ polymers or ‘living’ poly-

mers, so this chapter presents an overview of polymer physics, with special attention

paid to poly(ethylene oxide) which is used throughout. Many measurements shown in

this work are rheological studies of polymers, therefore an introduction to the field of

rheology is also included.

Chapter 3 - Optical Tweezers and their use with Complex Fluids

A type of laser trap called an ‘optical tweezer’ (OT) has been employed to study complex

fluids during dilution, of which multiple geometries were designed and built in order

to find the most effective solution. This chapter comprises an in depth study into the

physics, engineering and operation of these OTs, with some proof-of-concept experiments

performed for later work.

Chapter 4 - Wormlike Micelle Rheology and Microrheology

A common component of Unilever’s products is the aforementioned wormlike micelle

(WLM) network structure. This chapter reports an investigation undertaken into the

behaviour in equilibrium and non-equilibrium conditions of a ‘model’ WLM system,

whilst the system complexity was gradually increased towards a commercially-viable

system.
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Chapter 5 - Bootstrap droplets

The investigation into evaporating sessile droplets is presented with experimental data

from aqueous PEO samples in the context of current evaporation theories, and ends with

a proposed theory attempting to explain the behaviour shown.



2
On the Physics and Rheology of Polymers in Solution

“I have stretched ropes from steeple to steeple; garlands from window to window; golden

chains from star to star, and I dance.”

Arthur Rimbaud, 1854-1891

2.1 Introduction to Polymeric Complex Fluids

Complex fluids are liquid states of matter in which small scale ordering at the atomic

or molecular level induces macroscopic behaviour that is not seen in so-called ‘simple’

fluids. Examples of such ordering include micelles, spherical vesicles, hexagonal packing

and lamellar phases; the richness of behaviour in complex fluids comes directly from

this ordering. Typically the rearrangement dynamics that occur when a stress is applied

are frequency dependent, and the bulk system may display fluid- or solid-like properties

depending on the nature of the perturbation.

All fluids have a characteristic property called viscosity η, a measure of the resistance to

the rate of deformation, defined as a coefficient relating the shear stress σ to the shear rate

γ̇ where σ = ηγ̇. Whilst complex fluids also have a viscous property, the entanglements

5
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between network structures can store energy when compressed; the attempt to minimise

the energy stored in entanglements produces a bulk elastic response. As a result these

fluids are termed viscoelastic, and whether the fluid stores (elastic regime) or dissipates

energy (viscous regime) depends on the timescale of the applied force. This elastic

response can also be considered a coefficient, giving σ = Eγ, where E is Young’s modulus

of the sample1.

Figure 2.1: Schematic diagram showing a dashpot and a spring, representative of
the viscous and elastic moduli, respectively. The elastic component from the spring is
usually referred to as E or G in polymer systems, however in this analogy it is shown

as the spring constant k.

In macroscopic physical terms the elastic and viscous responses are analogous to springs

and dashpots2 respectively, as shown in Figure 2.1. In series, these two components

create a mechanical representation of the Maxwell model of viscoelasticity, and in par-

allel they form the Kelvin-Voigt model [22, 23]. A consequence of this behaviour is that

the boundary between solid and liquid becomes harder to define, with many materi-

als showing properties consistent with both liquids and solids, depending on how the

measurement is performed.
1E and G are the elastic modulus and shear modulus, respectively, however they are proportional for

incompressible elastic materials.
2A dashpot is a piston filled with viscous material.
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2.2 Theoretical and Experimental Rheology

For experimental measurement of samples with frequency-dependent behaviour, an os-

cillation can be applied with varying periodicity to extract rheological parameters3. Tra-

ditionally this has been performed using a cone and plate rheometer as shown in Figure

2.2.

r

z

R

Base plate

θ

Ω

d

Figure 2.2: Schematic of cone and plate geometry for bulk rheology, where θ is the
cone angle, Ω is the rotation speed of the cone, R is the cone radius and d is the distance

between the tip of the cone and the base plate.

A truncated cone with a very shallow cone angle is placed at a precise distance d away

from a flat plate; d is the distance from the plate the tip of the cone would be if the un-

truncated cone were placed with the tip just touching the base plate. There is usually a

torque sensor on the shaft of the cone, and either the cone or the plate can be used to drive

the sample. There are two main methods for measuring rheological parameters using

a mechanical rheometer; strain-controlled or stress-controlled. In a strain-controlled

rheometer a motor is used to drive the cone shaft at a given speed, and the torque spring

attached to the base plate measures the torque required to keep the plate static. In a

stress-controlled rheometer the drive shaft is given a constant torque, and the rotation

of the cone is measured using an optical encoder [24, 25, 26]. Due to the differences in

force application a strain-controlled rheometer performs experiments that are suited to
3Frequency-dependent behaviour can also be extracted using non-oscillatory methods, such as creep

experiments.
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stress relaxation experiments, and a stress-controlled rheometer performs experiments in

a method similar to a shear creep test. Further to this, during shear an elastic sample

will exert a small but measurable force on both the cone and plate from which the first

normal stress difference can be calculated.

Rheological experiments require the measurement of η; to achieve this with a cone and

plate geometry one requires σ and γ̇. The shear stress σ in the sample can be found by

considering the torque T on the cone [25, 27], which for Newtonian fluids is given by;

T =
2πR3 σ cos2θ

3
(2.1)

where R is the radius of the cone, θ is the cone angle and σ is the stress at the cone.

Where θ is small, cos θ ≈ 1, ∴

σ =
3T

2πR3
(2.2)

which is independent of r, θ and φ, and therefore σ is constant across the sample. For

non-Newtonian fluids, the equivalent calculation yields

T =
2R3γ̇η(γ̇)

3
(2.3)

where the shear rate γ̇ = Ω
θ , where Ω is the rotation speed of the cone [28]. γ̇ is

also constant throughout the sample due to the small angle approximation mentioned

previously, therefore measuring the torque T as a function of the rotation speed Ω yields

rheological data directly.
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If a sinusoidal stress is applied to a viscoelastic sample, the strain response contains

both an in phase (elastic) and an out of phase (viscous) sinusoidal component, where

the phase angle between the stress and the strain is δ. Thus the forced oscillation can

be defined as

γ(t) = γ0e
iwt (2.4)

where γ0 represents the strain amplitude [29]. The shear stress can therefore be expressed

as

σ(t) = σ0e
i[ωt+δ]. (2.5)

Given these two definitions a complex shear modulus G∗ can be defined as

G∗ =
σ(t)

γ(t)
=
σ0

γ0
(cosδ + isinδ) = G′ + iG′′, (2.6)

where G′ and G′′ are the storage and loss moduli, respectively. The storage modulus

(G′) represents the elastic energy stored by the system (the spring component), and the

loss modulus (G′′) represents the energy dissipated due to viscous forces (the dashpot

component).

In order to fully explain the rheological parameters introduced in the remainder of this

chapter, I will now show some example data from a bulk rheology experiment.

Figure 2.3 shows representative rheology data from an oscillation experiment performed

on an ARES LS1 rheometer. The storage and loss moduli (G′ and G′′, respectively) are
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= 1/2πτR

1

2

5

10

20

50

100

G
′ ,
G

′′
(P

a
)

0.001 0.01 0.1 1 10 100

Frequency (Hz.)

G′

G′′

−→
‘Rouse’
modes

0

10

20

30

40

G
′′
(P

a)

0 20 40 60 80 100

G′ (Pa)

Exp.

Cole-Cole

Figure 2.3: Representative rheology data for a Maxwellian fluid; experimental data is
from the bulk rheology of 0.1 equi-Molar SDS:CAPB wormlike micelle (WLM) system
performed on an ARES LS1 rheometer (explained in detail in §4). Upper: G′,G′′ vs
ω, where G0 is the plateau (elastic) modulus at f = G′′min, Lower: G′′(G′), known as

a ‘Cole-Cole’ plot for the same data (discussed in §2.2.1).

shown on the upper graph, and the parameters used in the rheological data throughout

this work are labelled with dashed lines. G0 is the plateau modulus, which indicates a

highly elastic system when the plateau is well-defined. The minima in G′′ (labelled G′′min)

indicates the frequency at which we take G′ = G0. The frequency f at which G′ and G′′



Chapter 2. On the Physics and Rheology of Polymers in Solution 11

cross is equal to 1
2πτR

where τR is the relaxation time of the system4. This relaxation time

τR indicates the conversion from viscous- to elastic-dominated behaviour; the larger G′

values for f > 1
2πτR

show that elasticity dominates, and conversely the larger G′′ values

for f < 1
2πτR

show that viscous effects dominate. At these low frequencies in the viscous

region, G′ → ω2 and G′′ → ω for this sample. This is referred to as the terminal region,

and is important in later calculations. The lower graph shows G′′(G′), the importance

of which is described in §2.2.1 and §2.2.2.

If a shear is applied to a material and σ is linearly proportional to γ̇, the deformation is

said to be in the linear viscoelastic regime,

σ(t) =

∫ t

−∞
G(t− t′)γ̇(t′)dt′, (2.7)

where G(t) is the relaxation modulus. For polymeric complex fluids this usually occurs

when the applied force is small. For a Newtonian fluid, the relaxation modulus G(t) =

ηδ(t) (where δ(t) is the phase angle, not the Dirac delta function), and substituting into

Equation 2.7 gives

σ(t) =

∫ t

−∞
ηδ(t− t′)γ̇(t′)dt′ = ηγ̇(t). (2.8)

Rheological measurements in the non-linear viscoelastic regime are possible, but are

more complex and harder to interpret; in this work all experiments were performed in

the linear viscoelastic regime.
4In this work all rheological data is presented in Hertz, where traditionally it may have been given

in radians/sec. This work compares microrheological data (optical tweezers and Diffusing Wave Spec-
troscopy, both introduced later) with bulk rheology experiments; since no oscillatory stress is being
applied in the passive microrheological work, I think it inappropriate to deal with radians. However,
where quantitative τR values are given, they are calculated as 1

ωG′=G′′
where angular frequency ω is in

radians/sec (ω = 2πf).
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The complex viscosity η∗ is the complex shear modulus divided by the angular frequency,

η∗ =
G∗(ω)

iω
, (2.9)

the magnitude of which can be calculated by |G
∗(ω)|
ω [29].

The zero-shear viscosity η0 is the viscosity a sample has when unperturbed, i.e. in the

low-shear limit. η0 is related to the plateau modulus multiplied by the characteristic

relaxation time [29],

η0 ≈ G0τR, (2.10)

and can be approximated by extrapolating η∗ to the low-frequency limit, however the

measurement of η0 is only valid when the Cox-Merz rule applies [30].

2.2.1 Maxwellian Fluids

A perfect Maxwellian fluid is one which can be described by a single relaxation time,

where the mechanical representation is an ideal spring and dashpot in series as mentioned

in §2.1. In a viscoelastic Maxwell fluid, the storage and loss moduli are given by

G′ = G0
(ωτR)2

1 + (ωτR)2
(2.11)

G′′ = G0
ωτR

1 + (ωτR)2
(2.12)
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where τR is the characteristic relaxation time of the system. Using these definitions one

can show that the intersection of G′ and G′′ (shown in Figure 2.3) is given by

G′ = G′′

G0
(ωτR)2

1 + (ωτR)2
= G0

ωτR

1 + (ωτR)2

ωτR = 1 (2.13)

which gives the characteristic relaxation time as

τR = ω−1
G′=G′′ . (2.14)

This allows us to quantify the relaxation processes in a system from the rheological data.

Maxwellian fluids can be easily determined using the following criteria [11], as shown on

Figure 2.3;

• G′ intersects with G′′ at G′′max

• G′′max ≈ G0
2

• η0

G0
≈ 1

ωG′=G′′

where η0 is the zero shear viscosity and G0 is the plateau modulus, or elastic modulus,

which is a measure of the elasticity of the system. This last definition shows the two

methods of calculating τR; the closer these two quantities are, the narrower the spectrum

of relaxation times.
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The quintessential observation which denotes a Maxwellian fluid is a semi-circular Cole-

Cole plot (see §2.2.2), where a semi-circle represents a singular relaxation time, as one

would expect from a spring and dashpot in series. A consequence of these definitions

is that where a Cole-Cole plot cannot be fit with a semi-circle, one must assume the

existence of additional relaxation times, equivalent to extra springs and dashpots in

parallel with each other as shown in Figure 2.4.

...n

Figure 2.4: Generalised Maxwell Model (GMM) shown as a mechanical representation
of springs and dashpots.

Figure 2.4 shows the Generalised Maxwell Model (GMM) for viscoelasticity in a me-

chanical representation of springs and dashpots in parallel. Each spring and dashpot

set represents a relaxation time of the system, for as many τR values as are necessary

to fully describe the behaviour. The GMM model gives limited insight into rheologi-

cal behaviour as the relaxation times are still described by discrete spring-dashpot pair

parameters rather than a continuous spectrum.
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2.2.2 Cole-Cole Plots

Cole and Cole [31] were working on dielectric relaxation, and subsequently modified the

Debye equation to account for discrepancies between theoretical and experimental values.

They proposed that the distribution of relaxation times in a dielectric system could be

described by

ε∗(iω)− ε∞ =
(εs − ε∞)

1 + (iωλ)(1−α)
(2.15)

where λ is the dielectric relaxation time, α is the dispersion parameter, and which re-

duces to the Debye equation when α = 0 [32]. It was subsequently shown by Havriliak

and Negami [33] that the molecular mechanisms underlying dielectric relaxation and me-

chanical relaxation are identical (above the glass transition temperature Tg [34]); as a

result the Cole-Cole plot has become widely used when quantifying polymeric systems

[35, 36, 37].

2.2.3 Protocol for bulk rheology experiments

In order to ensure that these rheological studies were accurate and repeatable, the fol-

lowing protocol was used in all mechanical rheology experiments;

1. The sample was placed carefully on the rheometer base plate.

2. The cone was lowered slowly, in stages, with the excess sample cleaned at each

stage (care was taken with the removal of excess so as not to fracture the sample/-

meniscus).
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3. A solvent trap was placed over the cone and plate geometry to inhibit evaporation

from the sample (this allowed experiments up to ∼4 hours before the sample had

to be re-loaded).

4. The sample was left to equilibrate for a minimum of 5 minutes.

5. A strain sweep test was performed from low to high strain in order to find the

linear response region (ie. the maximum strain value for which the sample can still

be considered to be in the linear viscoelastic regime); this step is clarified below.

6. The sample was left to equilibrate for a minimum of 5 minutes.

7. A frequency sweep test was performed from high to low frequency, with a fixed

strain set around the middle of the linear region found previously (in all experiments

the strain was between 7-10%).

0.1

0.2

0.5

1

ta
n
(δ
)

0 10 20 30 40 50
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Figure 2.5: tan(δ) against strain for a strain sweep performed as part of the bulk
rheology experimental protocol for a WLM sample.

Figure 2.5 shows the data from a strain sweep performed as described in the experi-

mental protocol above. The strain is initially at a low value (< 1%), and is gradually

increased until the tan(δ) value starts to rise. At this point, ≈ 30-40% in Figure 2.5, the
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strain is sufficiently high that the sample can be considered to be entering the non-linear

viscoelastic region. The linear region is signified by the large plateau between ∼ 5-30%

strain. A value within the linear region was then set for the constant strain value during

the frequency sweep, which was usually around 10% for the samples in this work.

To confirm that this protocol does not damage the sample, a highly entangled multi-

component system was chosen for a study in which 5 experiments were performed;

1. The experiment was performed as described above.

2. The experiment was performed with an additional pre-shear of 1/s for 120 s. im-

mediately before the frequency sweep.

3. The same sample as for the pre-shear test above was left for 20 minutes (it was not

re-loaded), and a frequency sweep was performed.

4. The same sample as for the previous 2 experiments was left for a further 20 minutes

(40 minutes in total, sample not re-loaded), and a frequency test was performed.

5. The sample was re-loaded and the original protocol described was performed again

(ie. the same as experiment 1 in this study).

Figure 2.6 shows the change in behaviour between the original and re-loaded samples

with identical experimental protocols (Experiments 1 and 5 above). The plateau mod-

ulus shows no discernible change, and there are only minor variations in G′′, which can

be considered within experimental error. We can therefore be confident that the experi-

mental protocol produces consistent behaviour.

Figure 2.7 shows the rheological changes in the system when a pre-shear is applied to

the sample (Experiments 1,2 and 3 above). The pre-shear was at a constant rate of 1/s
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Figure 2.6: Viscoelastic moduli for an entangled, multi-component system. This
shows the difference in results when the sample is reloaded, with identical experimental

protocols. For clarity the data has been truncated between 1-100Hz.
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Figure 2.7: Viscoelastic moduli for an entangled, multi-component system. The
original data is the same as that shown in Figure 2.6, the Pre-shear shows the sample
which was pre-sheared at 1/s for 120s, and the ’Shear+20m.’ data is the same sample

after a 20 minute delay, as described above.

for 120 s., and was immediately followed by the frequency sweep. The data labelled

‘Original’ is the same as that in Figure 2.6. The pre-shear changed the system rheology

significantly, seen in the large deviations in G′′, however the plateau modulus remained

constant throughout. This shows that the elasticity of the system was not affected by

the pre-shear, but the viscous component was affected. The triangles show the same

frequency sweep performed after a 20 minute delay, and show that at short times (f >50
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Hz.) the G′′ behaviour has returned to its original state, but at long times the shear-

effect remains. We can therefore conclude that the sample is sensitive to its shear history,

but the original measurements were of the sample in its equilibrium state, to which the

sample gradually returns over time. In conjunction with the data from Experiments 1

and 5 above, this shows that the loading protocol does not induce sufficient shear to

affect the sample rheology. We can also see that as the sample equilibrates to its original

state, the high frequency behaviour is the quickest to change. The data from Experiment

4 (40 minute delay) showed no obvious change from Experiment 3 (20 minute delay),

and therefore for clarity was removed from Figure 2.7.

2.3 Polymers

The label ‘polymer’ refers to any long-chain molecule consisting of identical linked sub-

units, or ‘monomers’, repeated many times. As these long chains entangle and interact,

they give rise to behaviour unseen in so-called ‘simple’ materials.

}

N=2
'Dimer'

N=1
'Monomer'} ...3 4 5 6

N = small
'Oligomer'

N=large
'Polymer'

N

Figure 2.8: Diagram showing the names attributed to various degrees of polymerisa-
tion. The shaded dots on the line represent individual units (monomers) being repeated;
this could be an atom or molecule, for example each dot could represent -C-C-O- in a

poly(ethylene oxide) chain, or -C- in a surfactant tail.

Figure 2.8 shows the usual names given to chains with varying degrees of polymerisation,

N . These names come from the Greek words mono (one), dio (two), oligos (few) and

poly (many). Polymer chains very rarely, if ever, form a linear chain as shown in Figure
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2.8; the brownian motion of each individual atom bonded along the chain implies that

when considered macroscopically, the chain appears as a random coil [38]. However at

short lengths individual sections of a polymeric molecule can be considered to be rigid

rods. We can therefore define a length above which a polymer chain is flexible, this is

the persistence length lp and can be described thermodynamically by lp = l0 exp
(

∆ε
kBT

)

where l0 is a length of a few Angströms (Å), T is the temperature and ∆ε is the energy

difference between minima in the atomic bonds [38, 39]. The persistence length is also

half of the Kuhn length b, defined as the minimum length so that a section of chain of

length b can be considered freely jointed to the next.

Figure 2.9: Schematic showing (a) the persistence length for a flexible polymer in
relation to (b) the macroscopic polymer chain. θ represents the angle between tangents

after a given length L, shown in Equation 2.16.

Figure 2.9(a) shows a representative section of a polymer ‘random’ coil to clarify the

persistence length. θ is the angle between tangents to the polymer direction from the

initial and final positions after a length L, which gives the definition of persistence length

lp as:

〈cos(θ)〉 = e
− L
lp (2.16)
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where 〈cos(θ)〉 is the expected value of the angle. This is more useful as a definition

of the persistence length as it shows lp to be the length over which θ correlations fade

to 0. We can therefore define the flexibility of a chain by considering the ratio of the

persistence length to the total length L, where lp
L � 1 yields a flexible molecule at large

scales, and conversely lp
L � 1 yields a rigid rod (at intermediate values the molecule can

be considered semi-flexible).

For a flexible polymer in a good solvent, the random coil can be treated theoretically as

a fractal object; the characteristic size of each fractal rg is termed the radius of gyration.

For N →∞ this is given by

rg = κaNν (2.17)

where κ is a constant, a is the distance between consecutive bonds, N is the degree of

polymerisation and the exponent ν depends on whether the polymer is being treated

as self-avoiding [38, 40]. Equation 2.17 introduces a quintessential aspect of polymer

physics - scaling laws; this example shows how rg scales with N for a homologous series

in which ν, a and κ will be constant, and many other aspects of polymer behaviour are

governed by power laws [38, 41, 42]. To show the importance of these power laws, and to

further clarify rg, the exponent ν will now be defined mathematically for a self-avoiding

and non self-avoiding polymer.

If the polymer is not being treated as self-avoiding, it can be considered to be a freely

jointed chain undergoing a random walk. In a random walk an object takes a series of

N steps5, where each step is towards a nearest-neighbour site and each site has an equal
5Here the steps in a random walk are labelled N so as to avoid confusion with the level of polymeri-

sation N .
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statistical probability of being ‘chosen’, irrespective of direction. For an ideal chain in

thermodynamic equilibrium, where no interactions exist between monomer units, the

step length is equal to the Kuhn length b and the end to end distance vector ~r is given

by

~r = a1 + a2 + ...+ aN =
N∑

n=1

an (2.18)

and therefore the mean end-to-end distance is

〈~r · ~r〉 =

〈(
N∑

i=1

ai

)
·




N∑

j=1

aj



〉

=

〈∑

i

∑

j

ai · aj
〉
. (2.19)

Separating out the i = j cases gives 〈~r2〉 = Na2 +
〈∑

i 6=j ai · aj
〉
and the i 6= j terms

disappear when the mean is taken, yielding

〈~r2〉 = Na2, (2.20)

showing that the average end-to-end distance is proportional to
√
N [38, 43, 44]. Thus

for an ideal chain, the exponent ν = 1
2 (from Equation 2.17).

When chain-chain interactions are accounted for, therefore changing the model to a self-

avoiding random walk, the exponent ν can be calculated with the introduction of excluded

volume effects, first demonstrated by Flory [40, 44]. Excluded volume effects arise from

the fact that solid objects cannot overlap, and therefore experience an effective repulsion.

If these objects are spheres of volume v, modelled as a gas of N objects6 in a volume V ,
6Here the N objects in a gas are the monomers in a polymer chain, therefore the symbol N is the

same as the degree of polymerisation.
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the entropy for each object is reduced by kBv
N
V [44]. Applying this to a polymer which

occupies a volume r3, and therefore has a segment concentration cseg ∼ N
r3 ,we find the

free energy from the excluded volume Fexc:

Fexc = kBTv
N2

2r3
, (2.21)

to which we can add an elastic term from the configurational entropy Fconf [44], giving

the total free energy as

Ftotal = Fexc + Fconf (2.22)

Ftotal = kBTv
N2

2r3
+ kBT

r2

Na2
(2.23)

∴ r ∼ aN3/5 (2.24)

showing that for a self-avoiding polymer, the exponent ν = 3
5 (in a good solvent) [38,

40, 44]. This is a mean-field result as there are no fluctuations present; the addition of

a renormalisation group is necessary in order to account for these effects.

In summary, for an ideal chain rg ∝ N1/2 and for a self-avoiding chain rg ∝ N3/5.

Therefore in taking into account the chain-chain interactions at all distances we find the

polymer coil swollen relative to an ideal random walk7.

The Rouse Model is a variation of the random walk, where the polymer is approximated

by a series of beads connected by Hookean springs, with the beads undergoing Brownian
7The actual value of ν for self-avoiding chains has been calculated to be 0.588, therefore the Flory

model is a very close approximation to a real polymer.



Chapter 2. On the Physics and Rheology of Polymers in Solution 24

motion (see §3.1.2), therefore the step length can change [38, 45, 46, 47]. This theory

was then extended by Zimm in order to account for hydrodynamic interactions [48].

Figure 2.10: Schematic diagram showing the definitions of polymer concentration
regimes.

rg is not just a mathematical entity, it is an important quantity when discussing the rhe-

ological behaviour of polymeric solutions. These solutions are usually described as being

in one of three regimes; dilute, semi-dilute or concentrated. Although the boundaries of

these regimes are sometimes vague, in this work I will use the following definitions as

shown in Figure 2.10:

• Single-star boundary: c∗ is the polymer concentration at which the random

coils begin to touch/overlap, and is known as the overlap concentration. φ∗ is

the corresponding volume fraction. This is the boundary between the dilute and

semi-dilute regimes.

• Double-star boundary: c∗∗ is the polymer concentration at which elasticity

first arises (ie. there is a crossing-point in the viscoelastic moduli). φ∗∗ is the



Chapter 2. On the Physics and Rheology of Polymers in Solution 25

corresponding volume fraction. This is the boundary between the semi-dilute and

concentrated regimes.

From Figure 2.10 we see that for the dilute and semi-dilute regimes the polymer segment

concentration cseg plotted against position shows noticeable peaks and troughs, whereas

for the concentrated regime there is no discernible difference between polymers. We can

also differentiate between dilute and semi-dilute, as cseg will drop to zero in the dilute

regime .

2.3.1 The Reptation Model

Long polymeric chains in a free solution (c � c∗) diffuse via this random walk process

discussed above. In an entangled system, where c > c∗, there are many obstacles in

their path (ie. other polymers), and the reptation model defines a curvilinear diffusion

occurring between these obstacles in a conceptually similar way to a snake’s movement.

This argument was put forth by de Gennes who described the method of reptation as

“similar to unravelling a knot", whereby one section creates some slack and the molecule

progresses through diffusion of this stored length [38, 49]. Edwards expanded on this by

forming the idea of a tube inside of which the molecule can move freely, and the process

of reptation acts to remove a section from one end of the tube and add it to the other

end [43, 50]. Within the reptation model we can define a terminal, or reptation time

τrep, the time taken for a tube to be completely renewed. It can also be shown that the

diffusion co-efficient of the tube Dtube is given by

Dtube = µtubeT =
D1

N
, (2.25)
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where µtube is the tube mobility, T is the temperature and D1 is a diffusion constant

independent of N. In order to occupy a tube which is not in contact with the original

tube, the molecule must diffuse via reptation over a distance on the order of its own

length L, thus

τrep
∼= L2

Dtube

∼= NL2

D1
, (2.26)

however L obviously scales linearly with N , therefore

τrep ∝ N3. (2.27)

Reptation is just one of a multitude of relaxation processes present in high concentration

polymeric systems; the Rouse model described above can be considered a continuous

relaxation function, for example [51, 52]. Where deviations from the Maxwell model

are present in high-frequency data, this is often attributed to Rouse modes arising, an

example of which can be seen in Figure 2.3 on p.10.

2.3.2 ‘Living’ Polymers

Micelles are self-assembled aggregates of surfactant molecules which exhibit macroscopic

and nanoscopic phase changes as their concentration is varied.

Figure 2.11 shows a representative visualisation of micelle phases; this is a simplified

system where various liquid-crystalline phases have been ignored, and these only apply

to single-tailed surfactants. At very dilute concentrations (a), the surfactant molecules

are distinct and separate; at a pre-defined concentration labelled the critical aggregation
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Figure 2.11: Visualisation of micellar phases with increasing surfactant concentration.
(a) At concentrations below the critical micelle concentration (CMC) the surfactants
have no structure, (b) at higher concentrations the hydrophobic tails are shielded from
the water by hydrophilic heads creating spherical micelles, (c) as the concentration is
increased further the spherical micelles condense into wormlike (cylindrical) micelles,
and (d) at very high concentrations the surfactant molecules form a dense lamellar

phase (image created using Ruby and V-Ray).

concentration or critical micelle concentration (CMC), the hydrophobic tails will attempt

to minimise the surface area in contact with water by condensing together with the head

groups directed radially outwards (b). As the concentration is increased, the spheres

elongate, gradually forming cylindrical rods with spherical ends. Further increases in the

concentration lead to (c) the formation of ‘wormlike’ micelles (WLMs), which can be

millimetres long, yet only nanometres in diameter [11, 12]. At high concentrations, sur-

factants will form lamellar bilayers (d), however in this work we only concern ourselves

with wormlike micelles and concentrations below this (Figure 2.11 (a-c)). These micellar

phases are also dependent on the surfactant geometry; this work deals with single-tailed

surfactants, where the effective volume can be considered to be a cone, therefore facili-

tating the creation of spheres/cylinders. Dual-tailed surfactants have an effective volume

that is closer to a cube, and therefore have a very different phase diagram.

As WLMs elongate they also become entangled, as per normal polymers, however in
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contrast to traditional polymeric molecules the length of a WLM is constantly changing

through reversible scission and recombination processes with other micelles, even when

the bulk system is at rest [53, 54]. It is this variation in length which denotes the phrase

‘living’ polymers. Applying the mean-field theory to WLM network structures yields an

exponential8 length distribution of the micelles [55, 56]. This mean length, or average

contour length, L̄ varies with surfactant volume fraction φ as

L̄ ∼ φ1/2eEc/kBT (2.28)

where Ec is the end-cap energy; the energy required to form a curved surface at the end

of each micelle [57].

The dynamics of a living polymer system are highly dependent on two quantities; τrep

introduced in Equation 2.26, and the average time before a scission, or breaking, event

τbreak. If τbreak � τrep, then reptation is faster and dominates; the micelles behave

like unbreakable chains, albeit with exponential polydispersity, and a stress relaxation

function given by

σ(t) ∼ exp

[
−
(

t

τ

)1/4
]

(2.29)

which would be transformed into a standard exponential decay if the system was monodis-

perse [57]. Conversely there is the case where scission dominates over reptation (τbreak �

τrep); this is Maxwellian behaviour in which the stress relaxation is given by a single ex-

ponential decay,
8The distribution can be considered peaked in certain cases, such as systems containing actin fila-

ments.
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τR =
√
τbreakτrep (2.30)

where τR represents the characteristic relaxation time of the bulk system, discussed in

§2.2.1. Another important quantity in micellar systems is the entanglement length le,

which is the average distance between entanglements measured along the contour, and

for flexible micelles is given by

G0 =
kBT

ξ3
=

kBT

l
9/5
e l

6/5
p

, (2.31)

where ξ is the correlation length which gives the average mesh size of the network struc-

ture [11, 57]. In certain situations [57] the entanglement length can also be calculated

using

G′′min

G0
=
le
L̄
, (2.32)

or alternatively if le is known, Equation 2.32 can be used to estimate the value of L̄

[12, 58].

In charged systems such as SDS [59], CTAB-CPBr [60], CTAT-SDBS [61] and SDS-CAPB

[62], the addition of an electrolyte can screen the charges along the micelle causing L̄

to increase. This can be conceptualised in terms of the head-group interactions; if the

electrolyte screens the charges between head groups, then surfactant heads can fit closer

together without feeling a repulsion. As a result of this tighter packing at the end-

caps, it takes a larger free-energy difference to create the required radius of curvature.

The micelles will therefore favour fewer end-caps for a given concentration, creating
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longer micelles. Another consequence of additional electrolyte is that the micelles become

more flexible (lp decreases), due to the charge screening. On the addition of sufficient

electrolyte or extra surfactants into a micellar network, L̄ may increase to a point at

which the micelles begin to branch; this branching has been verified experimentally

using cryo-TEM [63], and leads to various rheological changes in the bulk system. The

branching can also be explained by considering the free energy; a branch has the opposite

curvature to an end-cap, therefore given sufficient length and flexibility, the micelle may

favour branching to reduce the free energy difference from the end-caps.

2.4 The structure and properties of poly(ethylene oxide)

(PEO)

Figure 2.12: A PEO monomer (opaque) shown in a chain (transparent), without
Hydrogen atoms for clarity; the grey and red balls represent carbon and oxygen atoms,

respectively (created using Python, BallVIEW and POV-Ray).
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Poly(ethylene oxide) (PEO) refers to polymeric molecules consisting of repeated C-C-O

sub-units (carbon-carbon-oxygen), where the carbon atoms are each bonded to 2 hy-

drogen atoms, although in visualisations the hydrogens are usually implicit as shown

in Figure 2.12. The acronym PEO is sometimes used interchangeably with that of

poly(ethylene glycol) (PEG), with PEO and PEG both referring to C-C-O-backbone

polymers.

Historically the acronym PEG has been used to refer to short-chain molecules (. 20k

MW) and PEO has been used for chains & 20kMW. This situation arose from the various

techniques used for polymerisation, where polymerisation of ethylene glycol (C2H6O2)

could originally only yield low MW product; as the techniques were refined the range

of MWs accessible from each technique increased and today the two terms are usually

used synonymously [64]. Figure 2.12 shows how PEG/PEO can be polymerised from

the respective monomers; ethylene glycol can be formed by reacting ethylene oxide with

water, and a C-C-O-backbone polymer can be created from either monomer. The prod-

ucts differ by the end-groups created; ethylene glycol will be hydroxyl-terminated (OH),

and ethylene oxide will be CH2CHO-terminated. As a result, shorter polymers may

display different behaviour as the end-groups are significant, however for most polymers

the difference is negligible and both PEO and PEG can be considered identical. In

this work where a molecule is referred to as PEO or PEG, the last letter refers to the

method of polymerisation (and therefore implicitly the type of end-group), rather than

an implication as to the length of the molecule.

In the last 80 years, PEO/PEG have been synthesized from ethylene oxide/glycol monomers

using a variety of chemicals including succinic acid [65], stannic chloride [66], boron tri-

flouride [67] and tetrahydrofuran (THF) [68], to name just a few. PEG/PEO has many

wide and varied uses including soft drinks, drag reduction in fire hoses [21], repairing
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damaged axons [69, 70], preserving waterlogged wood such as shipwrecks [71], and as a

viscosifier in personal care products [11, 12, 72].

Molecular weight-independent properties

Table 2.1 shows the basic attributes of PEO/PEG molecules which are irrespective of

molecular weight.

Table 2.1: Molecular weight-independent properties of PEO/PEG.

Property Value
Formula C2nH4n+2On+2

Molar Mass 44n+18
Density 1.13g cm−3

Scaling exponent νLS 0.583 ± 0.031
Scaling exponent νCHARMM 0.515 ± 0.023
Persistence length lAFM

p 3.8 ± 0.02Å
Persistence length lCHARMM

p 3.75 ± 0.05 Å
Mean Carbon-Carbon bond length lC−C 1.53 Å
Mean Carbon-Oxygen bond length lC−O 1.43 Å

The scaling exponent ν shows how rg scales with N (from Equation 2.17); νLS is from

static and dynamic light scattering experiments for 86,000 < MW < 1,000,000 performed

by Devanand and Selser [73]. The persistence length lAFM
p is from Kienberger et al who

performed an extended worm-like chain (eWLC) fit to force-extension profiles from an

Atomic Force Microscope (AFM) [74], lCHARMM
p and νCHARMM are from Lee et al who

ran molecular dynamics (MD) simulations using CHARMM for low MW PEG/PEO

chains (N = 9, 18, 27 and 36) [75]. It is interesting to note that Lee et al differentiate

between PEO and PEG in their MD simulations, giving lp = 3.7Å and 3.8Å for PEO

and PEG, respectively. The mean bond lengths are from Bowen and Sutton [76] who cal-

culated the interatomic distances for a wide range of chemical bonds using experimental

structural data; their results have subsequently been verified specifically for PEO using

X-ray crystallography [77].
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The scaling exponent values tell us about the behaviour of PEO/PEG at various length

scales; as mentioned above νLS is the experimental value for 86k-1M MW, which is

comparable to the exponent in the Flory model for a self-avoiding chain. Conversely

νCHARMM is the simulation value for short chain PEO/PEG, which is comparable with

the value for an ideal (non-self-avoiding) chain. Therefore we can see that for low N ,

the C-C-O backbone behaves as an ideal chain, but as the MW is increased, chain-chain

interactions become more prominent and must be taken into account.

Molecular weight-dependent properties

Table 2.2: Table of PEG/PEO MWs and parameters used in this work (†inhibited
with 200-500ppm BHT), where N is the degree of polymerisation, r is the molecular
radius, rg is the radius of gyration, c∗ is the overlap concentration and lc is the contour

length.

MW Sigma Code N r rg Volume c∗ lc
(nm) (nm) (nm3) (% wt.) (nm)

3.35k P4338-1KG 56 4.34 1.77 23.3 23.86 33.72

8k P-4463 134 6.70 2.73 86.05 15.44 80.54

20k Unknown 335 10.6 4.33 340.13 9.77 201.36

100k 181986 1,678 23.71 9.68 3,802 4.37 1,006.8

300k† 182001-250G 5,034 41.07 16.77 19,759 2.52 3,020.4

1M† 372781-250G 16,780 75 30.62 120,255 1.381 10,068

4M† 189464-250G 67,120 150 61.24 962,042 0.691 40,272

8M† 372838-250G 134,240 212.13 86.60 2,721,066 0.488 80,544

Table 2.2 shows some physical parameters for the various MW PEO/PEG used in this

work. rg has been calculated from [78], c∗ has been calculated from experimental mea-

surements and lc is from [79].

In order to show that rheological experiments performed for this work are comparable

with the literature [1], Figure 2.13 shows viscosity data for 1,8,10 and 20k MW solutions

at a variety of concentrations (scaled by c∗). The general trend is clearly evident, and
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Figure 2.13: Viscosity against rescaled concentration c
c∗ for various concentrations

of 1, 8, 10, and 20k MW PEG/PEO. The hollow symbols represent data from the
literature (taken from [1]), and solid symbols show experimental data from this work.

I can be confident that there are no major discrepancies between the samples/protocols

used here and those in [1].

2.4.1 Hydration and Solvation of PEO

The hydrophobic nature of CH2 groups in the PEO/PEG backbone, in combination with

the hydrogen bonding with oxygen in aqueous conditions, makes this molecule highly suit-

able for study as a model biopolymer; the interactions that arise in PEO/water systems

may shed light on more complex interactions, such as protein folding and stabilisation,

which are driven by the same hydrophobic and hydrogen-bonding forces [80, 81].

Figure 2.14: Schematic showing the likely hydration configuration of a PEO/PEG
monomer in aqueous solution.
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The solvation characteristics of PEO however are non-standard; if one carbon atom is

removed from the repeated monomer unit (-CH2O-, poly(methylene oxide) (PMO)), the

molecule is insoluble in water despite half of the hydrophobic CH2 groups being removed.

Likewise if a CH2 group is added to the monomer unit (-CH(CH3)CH2O- poly(propylene

oxide) (PPO)), the molecule is also insoluble in water [81, 82]. The solubility of the

PEO/PEG molecule arises from the average intermolecular distances between oxygen

atoms of ∼ 4.7Å, which corresponds with the oxygen-oxygen next-nearest neighbour dis-

tance in water [82], as shown in Figure 2.14. Hydrogen-bonding occurs between oxygen

atoms in the polymer backbone and the hydrogen atoms in water molecules; this bonding

creates a ‘dress’ of water molecules around each PEO/PEG molecule, effectively shield-

ing the hydrophobic CH2 groups from the solvent. Each PEO/PEG monomer has 2-3

water molecules in its ’dress’, which has been confirmed experimentally [83, 84] and the-

oretically using electrostatics with Density Functional Theory (DFT) [2]. DFT studies

have shown the possibility of 2nd and 3rd order ‘dresses’ (ie. water molecules hydrogen-

bonded to the ‘dress’ below it) [2], but at the time of writing this has not been confirmed

experimentally.

A consequence of PEO/PEG solvation being driven by hydrogen-bonding is that raising

the temperature of an aqueous PEO/PEG solution can break the hydrogen bonds, forcing

the polymer to come out of solution. PEO/PEG is therefore one of the few molecules for

which solubility decreases with increasing temperature (it has an upper critical solubility

temperature (UCST)). Branca et al have also suggested that the hydration level of the

PEO/PEG backbone can be calculated directly from viscosity measurements [85]. They

conclude that the number of bound solvent molecules per monomer unit increases with

N due to the random walk of the molecule trapping further solvent molecules between

adjacent polymer sections. Shikata et al have also measured the hydration level of PEO
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using dielectric relaxation (introduced earlier as the origin of Cole-Cole plots), which

gives an increasing number of hydration water molecules per ethylene oxide monomer

upto a MW ∼ 1500, above which all MWs have a constant hydration level of 3.7 solvent

molecules per monomer [86].

2.4.2 The conformation of a PEO molecule

PEO/PEG have been known to form helices at small length scales in the solid state for

some time [87], and it is thought that due to the preferential trans-gauche-trans (tgt)

conformation of the O-C-C-O dihedral the same helicity may occur in dilute aqueous

conditions [2, 85, 88].

Figure 2.15: The conformation of a PEO molecule in vacuo showing the helix formed
by successive trans-gauche-trans bonds. (a) Side view and (b) end view of same

molecule (created using Python, BallVIEW and POV-Ray).
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Figure 2.15 shows the result from an electrostatics calculation of PEO in vacuo using

DMol3; one can see that the oxygen atoms are held in the core of the helix by the

successive tgt conformations, which in solution would force the hydrogen bonding solvent

molecules to form a helix rather than a cylinder.

Figure 2.16: Figures from [2] showing (a) the minima in the topology for hydrogen-
bonding to PEO, and (b) the simulated ‘dress’ of water along a PEO helix.

Aray et al showed that the dihedral angle is around 85.4◦ creating a helical revolution

every ∼4 monomers, which is corroborated by the calculation performed in this work

shown in Figure 2.15. This helix is therefore of sufficient size to encourage hydrogen-

bonding from the water molecules along its entire length, as shown in Figure 2.16 (the

images in this Figure are taken from [2]). Figure 2.16 (a) shows the minima in the

topology (red spheres) for hydrogen bonding to the oxygen atoms calculated using DFT,

and (b) shows the water molecules that are hydrogen-bonded to the polymer after a

MD simulation. This work by Aray et al can be seen to corroborate the experimental

calculations of Branca et al [85] by showing that 2−3 water molecules are bound per

monomer.

At longer scales (N & 4 [78]) the polymer follows a random walk as described in §2.3,

however the unorthodox helical structure gives PEO/PEG interesting properties, and

certainly contributes to its solubility given that ∼ 2
3 of the backbone is a hydrocarbon

and therefore hydrophobic.
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2.4.3 Clustering

Any hydrophobic molecules in water will aggregate (or go to an interface) if their trajec-

tories meet in order to minimise the surface area in contact with the solvent. Even when

shielded from the free solvent, PEO/PEG molecules may form clusters as the hydrogen

bonds are easily broken. Aggregates in multi-component systems are known to nucleate

around impurities such as dust, and this was originally proposed as the process by which

clusters formed in PEO/PEG systems [89]. However PEO clusters have been shown to

form even in double-distilled, filtered and de-ionised water [80]. There is therefore cur-

rently no consensus opinion on the origin or mechanisms of PEO/PEG cluster formation,

and this has been the subject of much research over the last two decades [80, 81, 90, 91].

Figure 2.17: View from underneath a freshly deposited PEO droplet; (a) Filtered
through 0.45µm filter, and (b) unfiltered.

Figure 2.17 shows the view from underneath 2 droplets of aqueous PEO solution; (a)

shows the clear droplet after the clusters have been filtered out using a 0.45µm filter,

and (b) shows the unfiltered droplet. These images were taken on a Nikon TE-2000

Eclipse microscope with a 2× objective lens. Figure 2.17(b) also clearly shows the

polydisperse nature of these clusters. After some time, the clusters will reform in the

filtered solution, however this can be inhibited with the addition of chloroform [80].

Aggregates of polymeric molecules have also been shown to reduce turbulence in dynamic
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systems [92], which could explain the drag reduction effect of high MW PEO in fire hoses

discussed previously.

2.5 Concluding Remarks

This chapter has introduced the physical concepts necessary for a full understanding of

this work. PEO/PEG features heavily in this research as it is used extensively in the

next 3 experimental chapters.

The next chapter presents the optical trapping equipment, theory and calculations that

have formed a core part of this research, and concludes with experimental data from

aqueous PEO systems as a proof-of-concept for the more in depth studies.



3
Optical Tweezers and their use with Complex Fluids

“The atoms become like a moth, seeking out the region of higher laser intensity.”

US Energy Secretary, Nobel Laureate Professor Steven Chu

3.1 The Background and Physics of Optical Tweezers

Ever since Johannes Kepler noticed that the tails of comets always point away from the

Sun [93], Western science has been aware of radiation pressure; the force exerted on any

surface exposed to electromagnetic radiation1. The theoretical framework for this force

comes from the relativistic energy-momentum tensor [95, 96],

E =
√

(~pc)2 + (m0c2)2 (3.1)

where ~p is the photon momentum, c is the speed of light in a vacuum and m0 is the rest

mass. Using Equation 3.1 we can see that for a photon (where m0 = 0), the momentum

is given by
1The first observation of the specific direction of comet’s tails was by Fracastoro in 1538, however he

incorrectly assumed that the comet was a lens focussing the Sun’s rays [94].

40
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~p =
E

c
, (3.2)

therefore the momentum imparted on an object by a photon is directly proportional to the

photon’s energy. Using Maxwell’s eponymous equations relating the properties of electric

and magnetic fields in combination with the Lorentz force (~Florentz = q( ~E + ~v × ~B)),

Poynting defined a vector ~S such that

~S =
1

µ0

~E × ~B, (3.3)

where µ0 is the magnetic constant, and ~E and ~B represent the electric and magnetic field

components, respectively [97]. Equation 3.3 describes the power per unit area through

a surface; in conjunction with photon momentum (described above), this can be used to

calculate the force on an object from electromagnetic (EM) radiation.

Therefore not only can a force be exerted on an object using photons, but that force can

be calculated from first principles.

In reality, using photons to confine particles requires an accurate control of the light

beam; it is possible to destroy objects if the intensity is too high, for example. A limiting

factor is also that the characteristic refractive index n of any material is dependent on the

wavelength of the incident beam; the highest level of control will therefore be attained

with a monochromatic EM radiation source. Thus it was not until the invention of the

laser (or optical maser) in 1958 [98] that photonic force traps became feasible.

The earliest laser traps used pressure from counter-propagating beams in order to hold

microscopic particles [99, 100], followed by vertically aligned single-beam lasers using
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radiation pressure to counter gravity [101, 102], and resonance radiation pressure to trap

atoms [103], work all pioneered by Arthur Ashkin. Later, Ashkin et al invented a single-

beam gradient trap whereby the conservation of momentum from refracting photons in

a focussed laser beam created an harmonic potential for dielectric particles [104]. This

is discussed in more detail later.

Hardware to manipulate refractive particles in this way has become known as optical

tweezers (OTs), and the use of OTs to trap and cool individual atoms led to the 1997

Nobel Prize being awarded to Steven Chu, one of Ashkin’s early collaborators [105].

Optical tweezer setups can generally trap particles from 25nm to 10µm2, and by per-

forming a force-displacement calibration (discussed in §3.2.4) an OT can measure forces

up to ∼ 200 pN with sub-pN resolution [104]. As a result OTs are particularly useful for

measuring biologically relevant properties; examples being the stretching of DNA [107],

elasticity of actin [108, 109] and the force exerted on organelles in vivo [110].

Photons incident on a spherical, refractive particle exert both a gradient (trapping) force

(~Fgrad) and a scattering force (~Fscat). The photons which reflect off the particle’s surface

will exert a ‘forward’ force, i.e. one acting in the downstream direction of the incident

beam, as shown in Figure 3.1. These photons create ~Fscat, which will always act to push

the particle away from the light source. Some photons will refract through a dielectric

particle; conservation of momentum ensures that the change in direction of a photon

exerts a corresponding force in the opposite direction on the particle. Given a spherical

particle and a focussed Gaussian beam (discussed later), the particle will feel an overall

force in the upstream direction of the incident beam, as shown in Figure 3.1.
2Using multiple traps a 300µm cheek cell has been manipulated [106].
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Figure 3.1: Schematic showing example photon paths through a trapped particle for
(a) a central bead and (b) an offset bead.
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If the gradient force can overcome the scattering force (and any other forces acting on

the particle, such as Brownian motion), then the particle will be held in a potential using

only a single beam of light.

In the Rayleigh regime where the particle diameter d is much smaller than the wave-

length of light λ (d� λ), ~Fgrad and ~Fscat can be calculated using an electric dipole

approximation first proposed by Ashkin [104]; the scattering force is given by

~Fscat = nb
σ〈~S〉
c

=
I0

c

128π5r6

3λ4

(
m2 − 1

m2 + 2

)2

nb (3.4)

where m is the effective refractive index (index of particle / index of medium), nb is the

refractive index of the particle, r is the radius of the particle, 〈~S〉 is the time-averaged

Poynting vector introduced in Equation 3.3, I0 is the initial intensity of the incident

beam and σ is the cross-sectional area of the particle.

The gradient force is given by

~Fgrad = −nb

2
α∇E2 = −n

3
br

3

2

(
m2 − 1

m2 − 2

)
∇E2, (3.5)

where α is the polarisability of the Rayleigh particle. Equation 3.5 shows that Fgrad is

proportional to the gradient of electric field magnitude squared (∇E2); thus the force

exerted on a particle is proportional to the gradient of intensity of the beam, in the

direction of increasing E, resulting in the particle being attracted to the area with greatest

photon flux (ie. the centre of the beam).

Since ~Fscat acts in the direction of the propagation of light and ~Fgrad acts in the direc-

tion of highest beam intensity, the equilibrium position of a trapped particle is offset
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downstream from the focal point of the beam, as shown in Figure 3.1.

If the particle size is increased (d & λ), refraction effects can no longer be ignored so

standard ray optics methods are employed to calculate the trapping forces [111]. If the

particle diameter d is sufficiently larger than the wavelength λ then diffraction effects be-

come negligible [112], and the forces present can be closely approximated by considering

the refraction of individual photon paths through the particle.

In the ray optics regime, each photon path incident on the particle is taken into account;

the force exerted on the trapped object is calculated using the momentum change of

each photon, calculated using Equation 3.2. Thus, each time the photon is refracted, it

imparts momentum to the particle. If the particle is offset in the trap (due to an external

force such as Brownian motion), the refractive force ~FR on the side of the bead closest

to the beam centre feels a greater restoring force, creating the potential well. This is

shown in Figure 3.1, and since the particles used in this work were between 0.5-10µm,

all experimental OT data presented in this work were taken in the ray optics regime.

Experiments have shown that the refractive index of the bead, nb, must be at least ∼10%

greater than than of the trapping medium in order for the gradient force to dominate

[113, 114].

The trapping strength can be increased by using a high numerical aperture (NA) objec-

tive lens;

NA = n× sin(θ) (3.6)

where n is the refractive index of the objective lens and θ is the angle from the edge of

the lens to the focal point. From Equation 3.6 it can be seen that a larger NA objective

results in a tighter focus (increased θ), thus the trapping depth decreases as the NA
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increases. However, a tighter focus also increases the gradient force from refraction,

therefore in choosing an objective lens a compromise must be made between trap strength

and trapping depth. Another aspect of Equation 3.6 is that in raising the NA to increase

trapping strength, the limiting factor is n (because sin(θ) < 1 ∀ θ). Therefore in order to

achieve NA > 1, immersion oil must be used on the objective lens so that the refractive

index on exiting the lens is as high as possible. In all the work presented here, immersion

oil with a refractive index noil was used, where 1.4 < noil < 1.518, depending on the setup.

This work also used objective lenses with 60x (Nikon, NA=1.4), 63x (Leica, NA=1.3)

and 100x (Nikon, NA=1.4).

3.1.1 Gaussian Laser Beams

Laser traps have been shown to work with many types of laser beams; Laguerre-Gaussian

beams exhibit axial and lateral trapping forces (creating ‘Optical spanners’ ) [115] and

self-interference in Bessel beams can recreate a trapping potential even after the laser is

blocked [116], to name just two. In this work all optical traps were created with a TEM00

laser mode, which means that the intensity profile shows a single, central maxima that

decays radially in a uniform manner.

Ashkin’s original work involved high refractive index particles being irradiated with a

Gaussian TEM00 laser beam [99]; since particles are attracted to regions of higher photon

flux, an axisymmetrically focussed Gaussian trapping beam yields a Gaussian distribu-

tion for the particle position, with position fluctuations due to thermal Brownian motion

(see §3.1.2). Gaussian distributions are given by (ignoring normalisation constants)

p(x) ∝ e−v/kBT = e−kx
2/kBT (3.7)
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and the energy is governed by Boltzmann statistics [117, 118], where the change in energy

between two levels is given by

E1

E2
=
e
− ε1
kBT

e
− ε2
kBT

= e
− ∆ε

kBT (3.8)

and the negative natural log of this gives the system energy, − ln
[
e−

∆ε
kT

]
= ∆ε

kT . In a

similar manner, taking the negative natural log of the particle displacement histogram

yields the effective trap potential:

F (x) = − ln[p(x)] = − ln
[
e−kx

2/kBT
]

= − kx
2

kBT
. (3.9)

Therefore a correctly aligned trap created with a perfectly Gaussian beam creates a

Hookean potential, F (x) ∝ kx2, where k is the effective spring constant, as shown in

Figure 3.2 (p.48).

3.1.2 Brownian motion

Stochastic movements of microscopic particles, labelled ’Brownian motion’, are present in

every material in the known universe; these motions are directly related to temperature,

ceasing only at T = 0K, and as such they are ubiquitous in many fields of science.

Initial observations of this phenomenon were performed by the Scottish biologist/botanist

Robert Brown who mistakenly attributed the motions of pollen grains to life at first,

before noticing the same behaviour in inorganic materials such as soot, dust and rocks

and labelling them ‘irritable particles’ [119, 120]. In an ironic twist, modern theories
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Figure 3.2: Main: Representative Gaussian curve showing the histogram of particle
displacement in an optical trap from a 5µm particle in water, with a theoretical fit.
The data has been scaled so that the fit reaches a maxima at x = 0, y = 1, and the
x-axis represents the histogram ’bin’ number with each bin being ≈50nm wide. Inset:
The effective potential well given by the Gaussian distribution of the Brownian motion

displacement.

attribute the emergence of life to Brownian motion [121], rather than vice versa as

Brown first guessed.

Despite its enormity, the importance of Brown’s work was not well understood at the

time, thus it was only at the turn of the 20th century that its relevance became apparent.

Louis Bachelier’s successful defence of his doctoral thesis [122], containing the first theory

of Brownian motion, is seen by many as the instigation of stochastic processes relevant

to mathematical finance; from a physical point of view Bachelier’s work was much more

important than that, as it allowed a little known physicist named Albert Einstein to give

the molecular-kinetic theory of heat (see §3.1.2.1) an experimental test [123]. Einstein

predicted that Brownian motion of visible, microscopic objects was due to the thermal

(Brownian) motion of solvent molecules, however his data was inconclusive.

Einstein’s prediction was hugely influential; if it failed it also refuted the kinetic theory of

heat, if it was successful it would allow the calculation of Avogadro’s number [123], which
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Einstein achieved in his doctoral research by studying the diffusion of sugar molecules

in solution [124]. Rigorous experimental verification of Einstein’s ideas was achieved by

Jean Perrin [125, 126], who later won the Nobel Prize.

3.1.2.1 Molecular-Kinetic Theory

The first formal formulation of the molecular-kinetic theory, or the ‘theory of moving

particles’, applied to gaseous molecules only and was performed by Clausius in 1857

[127]. Subsequent work on this pioneering research has led to similar theories for matter

and heat. The kinetic theory of matter contains 3 postulates [128, 129];

• All matter consists of atoms and molecules.

• All atoms and molecules undergo constant movements.

• Collisions between atoms and molecules are perfectly elastic.

The molecular-kinetic theory of heat consists of 5 accepted postulates [123, 130];

• Heat is a form of energy.

• Molecules can carry potential and kinetic energy.

• Potential energy arises from electric interactions between molecules.

• Kinetic energy gives the molecules their motions.

• Energy can convert between potential and kinetic.

These 8 postulates were used by Einstein in his theoretical formulation of Brownian

motion; a consequence being the lowest temperature possible is that with no thermal
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motion (absolute zero, 0 Kelvin ≈ −273◦ Celsius), and that at any temperature above

absolute zero all atoms and molecules undergo continuous, random movements.

3.1.2.2 Mathematical Description of Brownian Motion

Einstein defined a probability density ρ of a particle being at a certain position x after

a given length of time t such that ρ = ρ(x, t). After deriving the diffusion equation

∂ρ

∂t
= D∆ρ, (3.10)

where D is the diffusion constant, one can take the initial condition x = 0 at t = 0,

yielding

ρ(x, t) =
1

(4πDt)3/2
e−

x2

4Dt (3.11)

which is a Gaussian probability distribution [123]. Einstein showed from first physical

principles that the diffusion constant

D =
kBT

γ0
, (3.12)

where γ0 from Stokes’ Law is

γ0 = 6πηav, (3.13)
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where η is the viscosity, a is the radius of the spherical particle and v is the particle’s

velocity [123, 124]. Equations 3.12 and 3.13 form the Stokes-Einstein equation, which is

related to the Fluctuation-Dissipation Theorem (FDT) [131].

3.1.2.3 Relevance to Studies with Optical Traps

Particles in the size range applicable to OTs (a . 20µm) all undergo Brownian motion

that can be seen with an optical microscope, with the caveat that when in an optical

trap larger displacements are reduced but high frequency movements remain unaffected

(this is shown later). A trapped particle in an OT can therefore be considered to undergo

‘restricted’ Brownian motion, where the magnitude of the imposed potential (introduced

in §3.1.1) varies with the square of displacement from the centre.

3.2 Practical Considerations of Optical Tweezer Setups

3.2.1 The Basics

An expanded laser beam is focussed, usually with a microscope objective, creating an

area with increased photon flux [104]. Spherical particles up to a few tens of nanometres

diameter, with a refractive index at least 10% greater than the solvent, will feel an

attractive force towards the laser focal point [113, 114].

It has been shown that the greatest trapping force comes from the outer part of the beam

[113], as a result it is preferable to slightly overfill the back aperture (rear opening) of

the objective lens. Overfilling ensures the widest possible cone, resulting in a stronger

trap.
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3.2.2 Experimental Setups for Optical Tweezer Microrheology

The multitude of uses for OTs has led to a variety of experimental setups in use around the

world, depending on the quantity being measured - usually a force (instantaneous particle

displacement) or brownian motion (particle displacement at longer times). Biologists

commonly use a trapping laser (eg. λ = 1064nm, a wavelength at which most cells

are transparent) combined with a shorter wavelength (higher energy) ‘cutting’ laser (eg.

λ = 532nm) to perform surgery in vivo [132, 133], chemists have employed the use of a

spectrometer in the detection setup in order to measure the Raman spectra of trapped

particles [134, 135] and biophysicists have used multiple-trapping techniques to probe

the elasticity of various materials [136, 137, 138], to name just a few.

Nd:YAG Laser
1W, 1064nm

L2

Telescope (Beam Expander)

L1

Objective Lens
63x, NA 1.3

Trapping Point

Figure 3.3: The simplest setup required for single-beam optical trapping. The exam-
ple values given are from the NTU single-beam setup.

In this work, I am only measuring the rheological properties of samples, therefore no

beam-sharing or holographic techniques are used as they may adversely affect the con-

sistency of the trap. Only one trap is needed in this work, and the repeatability of the

potential is of prime importance in order to compare rheological data. The basic concept

of microrheology (using Brownian motion to calculate rheological parameters) involves

measuring particle displacement, extracting the diffusion co-efficient D, and using the

Stokes-Einstein relation to extract the viscosity η from D (the extraction of viscoelastic

parameters is discussed later). With this in mind, the experimental hardware was kept

as simple as possible in order to perform these experiments. All setups used in this
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work consist of a single 1064nm laser used to trap a single silica or polystyrene particle

between 0.5-10 microns in diameter, as shown in Figure 3.3.

3.2.2.1 Single-telescope Design

The simplest form of OT, as shown in Figure 3.3, involves using 2 lenses (a telescope)

to expand the beam, and a third (objective) lens to focus the expanded beam. Lower

numbers of optical components allow for higher beam intensities as less photons are lost

in reflection, and simpler alignment than larger setups, however this comes at the expense

of flexibility.

The tweezer setup at Nottingham Trent University (NTU), as shown in Figure 3.4 (p.54),

is an example of a single-telescope design. The decision to have a single telescope was

made for simplicity and safety; the laser fibre enters the custom enclosure at the back

of the microscope, and the beam path is completely enclosed in anodised steel until the

beam has passed through the sample. A bespoke laser-proof box (for λ = 1064nm), with

electronic interlocks to automatically shut off the laser, was built to fit the microscope

stage, the result being that nobody can be exposed to dangerous levels of laser light

without completely dismantling the microscope.

The act of focussing a laser is highly dangerous, and therefore safety is a prime concern

when designing an OT. This is compounded by the fact that near infra-red (IR) lasers

(such as λ=1064nm) do not provoke the blink reflex of the human eye, as they are

invisible. As a result, near IR beams have the potential to cause more damage than a

higher intensity but visible beam. Another safety factor (particularly relevant to inverted

microscopes) is that downstream from the focal point the laser propagates as an inverted

cone, with higher magnifications producing larger spreading angles (∼ 75◦ for a 100×
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Figure 3.4: Upper: Close-up of the microscope stage, showing the laser-proof box
and interlocks. Lower: Optical path for the tweezer setup used at NTU.

Nikon objective, as measured by myself). Despite this, OTs are fairly safe to use as

the large spreading angle means the beam rapidly loses intensity per unit area. Using

the UK’s Health and Safety Executive (HSE) guidelines, I calculated that the dangerous

radiation area extended 4.3mm from the focal point for the NTU 100× objective, and

13mm from the focal point for the 60× objective. The laser-proof box was therefore

designed primarily to ensure no skin or eye could get within 13mm of the objective lens,
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and secondly as a peace of mind guarantee that no laser light is propagating towards the

user.

The microscope is a Nikon TE-2000 Eclipse, the anodised steel enclosure was built by

Elliot Scientific, the laser-proof box and electronic interlock circuits were designed and

built by myself.

This OT setup has an interchangeable detection module, visible in Figure 3.4, allowing

either a CCD (for Brightfield Illumination, see §3.2.3.1) or a Quadrant Photo-Diode

(QPD, see §3.2.3.2) to be used for particle position measurements, or both with an

additional beam-splitter.

3.2.2.2 Dual-telescope Design

Figure 3.5 on page 56 shows the dual-telescope OT setup with Brightfield Illumination

detection as used at Rutherford Appleton Laboratory (RAL) for some of the experiments

presented in §3.4.

The second telescope in this setup, along with the two extra mirrors (M3 and M4),

allow for more precise control and alignment of the laser trap. For example, this layout

facilitates fine-tuning of the intensity distribution over the trap, something which cannot

be performed on the single-telescope design in §3.2.2.1.

Important experimental notes are the iris/diaphragm around the focus of the 1:1 tele-

scope, designed to remove secondary Bragg reflections from the AOD, and the 1064nm

bandpass filter used to remove 800nm noise which was present due to the age of the laser.

This setup was also used to detect backscattered laser light by either turning off the mi-

croscope illumination (making experiments more difficult), or by placing a 1064 bandpass
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Figure 3.5: Optical Tweezer setup used at RAL
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filter in front of the QPD. Backscattered laser detection offers slightly higher spatial reso-

lution compared with brightfield illumination, however the lower intensity at the detector

increases the relative noise level.

3.2.2.3 Acousto-Optical Deflectors (AODs)

Precise control over the position of the laser focus can be achieved using an acousto-

optical deflector (AOD); an AOD uses a crystal, vibrating under pressure from an acoustic

transducer, to accurately modify the direction of propagation of the beam. An AOD

works by employing Bragg diffraction, described by

nλ = 2dsinθ (3.14)

where n is an integer representing the order of the diffraction peak, d is the distance

between crystal planes and θ is the angle of diffraction.

The resolution of these devices is sufficient in position to allow nanometre control of

the trap position, and in time to allow beam-sharing (&20kHz). Beam-sharing involves

sending a periodic signal to the AOD so that the laser switches between 2 or more defined

positions, allowing multiple traps to be created. Although beam-sharing was performed

on the OT setup at RAL, all experimental data presented here was taken with no beam-

sharing, so as to achieve the maximum possible accuracy for the rheological studies

(positioning the beam at a constant point increases the consistency of the trap).

It should be noted that due to the multiple orders of Bragg diffraction peaks, a single

AOD will give multiple intensity peaks in a plane perpendicular to the beam propagation.

Experimentalists must be aware of this, and ‘cleaning’ the beam by placing an iris around



Chapter 3. On Optical Tweezers and Complex Fluids 58

Figure 3.6: Image of a trapped 5µm diameter bead. The rings around the circumfer-
ence are diffraction rings. The scale bar is 2.5µm.

the focal point of a 1:1 telescope removes the extra noise without inhibiting the beam

when the position of the AOD crystal is changed.

3.2.3 Particle Displacement Detection

In order to calibrate the trap, it must be possible to quantify the particle displacement

in the potential well - this section covers the various experimental methods to achieve

this.

3.2.3.1 Brightfield Illumination

In the brightfield illumination technique, the position of the bead, illuminated by the

microscope lamp and condenser, is imaged directly onto a detector (either a video camera

or a QPD). This is the lowest resolution method to obtain the particle position, as the

spatial resolution is usually limited on the order of the wavelength of light3, and the

temporal resolution is ultimately limited by current technology in camera electronics.
3This detection method has been used in conjunction with cross-correlation and image processing

techniques to yield a nanometre-scale spatial resolution [139], however even two decades later desk-
top computers cannot perform these calculations in real-time, and more modern techniques give sub-
nanometre precision.
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For example, a ‘standard’ camera will record at 25 frames per second (fps), giving a

Nyquist sampling frequency on the order of 10Hz, and hence an upper limit to any

frequency dependent data. As a result, this method is not widely used for microrheology,

but is common in other uses of optical tweezers. A fast camera can be used, however the

acquisition rate is limited by the incident light intensity (in practice this was found to

be ∼4000fps without additional illumination), therefore this technique was not used in

this research.

3.2.3.2 Laser Radiation Detection with Quadrant Photodiode (QPD)

Of the photons incident on the trapped particle, some will refract through the bead and

some will be reflected back through the optics. Coated beamsplitters can separate the

laser wavelength from microscope illumination wavelengths, allowing visualisation (via a

camera) concurrently with nanometre position resolution (via a QPD) in either forward

or back-scattered geometries.

a

bc

d ~x = (a+b)−(c+d)
(a+b+c+d)

~y = (a+d)−(b+c)
(a+b+c+d)

~x

~y

Figure 3.7: Diagram showing the setup and calculations when using a QPD to detect
bead position.

Figure 3.7 shows a schematic of a QPD along with the calculations used to extract x-

and y-position. In order to calculate the x-position, the two left (a + b) and two right

(c+d) quadrants are subtracted from each other, this is then normalised by all quadrants
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(a+b+c+d) in order to remove any fluctuations in laser intensity (y-position is calculated

by upper (a+ d) and lower (b+ c) quadrants).

QPDs are used for three main reasons; for pre-amplification of weak signals, for current

to voltage conversion, and for high temporal resolution processing (>MHz). It is also

possible to input the raw quadrant signals into a computer; this method was employed

when using the RAL dual-telescope tweezer, which requires software signal processing.

3.2.3.3 True Interferometric Detection

Although laser detection methods with QPDs give better spatial resolution than direct

imaging methods, it is possible to achieve high-frequency sub-nanometre accuracy using

either Optical Trapping Interferometry (OTI) [114, 140], or Back-Focal-Plane Interfer-

ometry (BFPI) [141, 142]. Apart from the improved spatial resolution, inteferometric

methods have the added advantage of not requiring the centre of the detector to be

aligned with the incident beam.

The main experimental difficulty is that for high accuracy interference fringes, one must

ensure that no other light impinges on the detector. It is for this reason that OTI and

BFPI were not used extensively in this project, as it was not feasible with either the NTU

(Figure 3.4) or RAL (Figure 3.5) tweezer setups to stop all light entering the detection

geometry.

3.2.3.4 Circuit for simultaneous pre-amplification and processing of QPD

signals

The usual method of collecting data from a QPD involves amplifying/converting the

raw signals from current to voltage (1 op-amp per channel), performing the summing



Chapter 3. On Optical Tweezers and Complex Fluids 61

calculation, eg. (a+ b), (1 op-amp per channel), and finally performing the differential,

eg. (a+ b)− (c+d), (1 op-amp per dimension - x and y), yielding a total of 10 op-amps.

This method also does not perform the normalising discussed in §3.2.3.2, which requires

at least another 3 op-amps.

Each resistor used for amplification across the op-amps must be perfectly matched (ie.

the actual resistance values must be as close as possible), otherwise the resulting signals

will not be amplified equally. Many components (especially resistors) have a tolerance

of between 5 and 20%, and matched components with <1% tolerance are much more

expensive, therefore finding matched components is a costly and time-consuming task.
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Figure 3.8: Circuit schematic used for processing QPD signals on NTU single-
telescope optical tweezer. Rf resistors control the amplification, and matched R1−4

resistors will give equal amplification to each input.

To solve this, the NTU QPD detection setup employed one op-amp each for the x- and

y-dimensions, using the circuit shown in Figure 3.8 (designed by myself). This circuit

performs simultaneous summing, differential and amplification requiring only 2 matched

feedback resistors and 4 matched input resistors. In this circuit, the op-amps were Texas

Instruments THS Series, with an optimum input resistance of 20MΩ (where optimum

is the resistance at which the signal to noise ratio is highest). I therefore used 20MΩ
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resistors, which were each measured to ensure the resistances were ±0.5% across all

components, and the impedance was always matched to the next stage.

This circuit was used in situations where the original signal level was sufficiently low as

to cause the data acquisition (DAQ) card resolution to be the bottleneck.

3.2.4 Particle Position Calibration and Optical Tweezer Alignment

Once particle position can be accurately measured, using the techniques discussed in the

previous section, the detector response must be calibrated to particle position so that

displacement against time can be calculated from QPD voltage data.

This section describes the three methods used in this work to calibrate detector voltage to

position with a QPD, and finishes with a brief discussion of experimental considerations

when aligning an OT.

3.2.4.1 Particle position calibration with an Acousto-Optical Deflector (AOD)

Using an AOD, discussed in §3.2.2.3, a trapped particle can be moved with nanometre

precision, allowing for the QPD signals to be calibrated against position. QPDs in an

OT setup have a linear response region inside which any particle movement results in a

change in the raw signals which varies linearly with displacement.

Figure 3.9 shows representative data from a calibration I performed using this AOD

method at RAL. Before taking this data, the laser power was turned to maximum to

reduce the Brownian motion. A 5µm particle was then swept across a range of 3µm in

both x- and y-directions in 100nm steps. The fact that both linear regions have the same



Chapter 3. On Optical Tweezers and Complex Fluids 63

Gradient −9.0× 10−4

(V/nm)

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

V
o
lt
a
ge

on
Q
P
D

(V
)

−2000 −1000 0 1000 2000

Bead Position (nm)

x-calib

y-calib

Linear fit

Figure 3.9: X- and Y- position calibration using an AOD and QPD

gradient confirms that the QPD response is symmetrical. The gradient is shown on the

graph, and using this value all voltage data has been converted to position.

The AOD itself is calibrated by taking images of a trapped particle at the extents of the

viewing region, and then dividing by the arbitrary position values shown in the AOD

software, thus converting an uncalibrated voltage value into nm. In the RAL system the

AOD calibration was on the order of 1nm per AOD step.

It should be noted that although AOD calibration is an accurate method, the process

of moving the trap in order to calibrate position means that the relative light intensities

on each quadrant are not representative of the equivalent displacement due to Brownian

motion when the trap remains fixed. Therefore in this work AOD calibration was used

regularly as a way of confirming trap symmetry and alignment, but was ultimately

complemented and corroborated with a more accurate technique.
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3.2.4.2 Bead position calibration with a Nano-positioning stage

A nano-positioning stage gives nanometre precision when aligning the sample; using a

dried sample containing tracer particles, a bead can be swept through the trap whilst

keeping the trap stationary. Using a dried sample means that Brownian motion can be

ignored.
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Figure 3.10: Nanopositioner calibration data for a 5µm particle trapped in the RAL
optical tweezer setup using Brightfield Illumination and Backscattered laser detection

geometries.

Representative data for a nano-positioner calibration performed at RAL is shown in Fig-

ure 3.10. The circles represent the calibration in brightfield illumination geometry (see

§3.2.3.1) and the squares represent the same calibration performed using the backscat-

tered laser light incident on the QPD (see §3.2.3.2). Although the two calibrations do

not align perfectly, they confirm the AOD calibration that the linear response region of

the QPD gives a calibration constant of around −9.0× 10−4 V/nm.

Due to the manner in which a spherical particle scatters the incident beam, the QPD

response can have multiple minima and maxima given a wide calibration region, as shown

in Figure 3.10.
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3.2.4.3 Optical Tweezer calibration using a sample of known viscosity

The third, and easiest, method to calibrate an OT setup is to trap a bead in a solution of

known viscosity, and by measuring the corner frequency of the PSD (discussed in §3.3.2),

one can calculate the trap stiffness α using Equation 3.19 (on page 72). This method

does not require a particle to be moved manually in order to calibrate the PSD response,

however in order to achieve an accuracy similar to the AOD method, the OT setup must

be carefully aligned and have very low noise levels. This method was used to calibrate

the NTU tweezer shown in Figure 3.4.

3.2.4.4 Optical Tweezer calibration using the Histogram method

Another way to calibrate a laser trap is to record the position variations due to Brow-

nian motion at a given trap strength, and to plot a histogram of displacement (ie. the

probability distribution P ). For a Brownian process

P (x) = Ae−v(x)/kBT ,∴ v(x) ∝ −kBT lnP (x), (3.15)

where A is a normalisation constant. As it is based on displacement statistics, the

accuracy of this method increases with the amount of data collected, however this method

was not used as the calibrations mentioned previously are faster and more accurate.

3.2.4.5 Aligning an Optical Tweezer setup

The series of 8 images in Figure 3.11 show the Newton’s rings [143] pattern formed as the

objective lens position is moved (i.e. the focus is changed). These images were taken by

turning the microscope illumination off and placing a silvered mirror face down on the
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Figure 3.11: Images showing the changing Newton’s Rings pattern as the trap is
focussed. Images a-h show the trap image as the objective lens is moved closer to the

mirror, with b showing the point at which the trap is focussed onto the mirror.

microscope sample holder; moving the objective towards the mirror moves the position of

the trap focus closer to the mirror. Figure 3.11 (b) is obtained when the trap is focussed

directly onto the mirror. This technique visualises the trap is so that the alignment of

the beam optics can be checked. Images (c)-(f) in Figure 3.11 show a correctly aligned

trap; the points to note are that the Newton’s Rings pattern is symmetrical, circular and

the intensity is roughly even across the rings (as shown in Figure 3.12).

Interference to cause these rings could occur in many places in an optical system, es-

pecially so in this case when the beam is deliberately being reflected back through the

same optics. It is worth noting that Figure 3.12 shows a second, much narrower, set

of interference fringes which originate from the thin wavelength-dependent coatings on

some optics. This was tested by individually replacing components, and it does not affect

the operation of the trap.

Figure 3.13 shows a common alignment problem where the laser enters the telescopes

or objective at an angle. For a dual-telescope setup as shown in Figure 3.5, adjusting

mirrors M1-4 should fix the problem.
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Figure 3.12: Upper: A CCD Image of a correctly aligned optical trap. The yellow
line shows where the profile in the lower graph was performed. Lower: A representative
profile of the Newton’s rings pattern, showing the smaller secondary interference peaks.

Figure 3.13: Incorrect trap alignment - Intensity profile is not symmetrical, adjust
mirrors to fix.
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Figure 3.14: Incorrect trap alignment - Trap does not come to a clean focus, adjust
telescopes or mirrors to fix.

Figure 3.14 shows another incorrectly aligned trap. The central bright spot shown in

Figure 3.12 is missing as the laser does not come to a clean focus. The usual cause of

this problem is uncollimated light entering the back of the objective, which could be a

symptom of misalignment of either the telescopes or the steering mirrors.

3.2.5 Laser-induced Heating

A high-intensity focussed laser beam will impart thermal energy to its surrounding

medium, as a result one must be aware of the laser power emerging from the objec-

tive lens. It has been shown that if the beam power is less than 50mW at the point

where it contacts the sample, then the heating effect due to the trap4 will be less than

1◦C [144].
4This heating effect will be sample-dependent, however this rule holds for the typical water-based

samples used in this work.
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If the sample heating is not calculated and limited (by reducing laser power at the focal

point, if needed), the viscosity η and refractive index n of the sample could change during

measurements, as both are sensitive to temperature.

3.3 Methods for Rheological Measurements of Complex Flu-

ids with Optical Tweezers

OTs are one of several methods which can be used to measure the viscoelastic proper-

ties of a sample [3]; other examples include bulk rheology, Diffusing Wave Spectroscopy

(DWS) [145] and video particle tracking [146]. OT microrheology uses small sample

volumes (µL) and measures the local microrheology through analysis of an added probe

particle undergoing restricted Brownian motion within an optical trap. The temporal

resolution is limited by the acquisition rate of the hardware (∼kHz), and spatial res-

olution is limited by the detection setup used (discussed in Section 3.2.3), but can be

∼nm. High-specification OTs can provide frequency resolution of viscoelastic properties

exceeding mechanical rheology and comparable with light scattering methods (f∼100

kHz), and entry level OTs provide frequency resolution comparable with mechanical

rheology (f∼kHz).

The main advantage OTs have over DWS and bulk rheology is that the local rheological

properties of inhomogeneous samples are measured; these inhomogeneities may either be

local variations present in the sample initially, or introduced through a gradient across the

sample. Typically only shallow concentration gradients can be used as steeper gradients

lead to faster material flow, which can dislodge the particle from the trap. However, in

many cases predictions can be extrapolated from the low gradient case assuming linear
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diffusion holds, and other forms of gradient (such as temperature or pH) do not suffer

from this problem.

It is pertinent here to mention that there is still some debate over whether microrheology

measures the same physical properties as bulk rheology [147, 148]. Logically, the Brow-

nian motion of a tracer particle will only be linked to the bulk response if the contour

length and mesh size of the network structure are both much smaller than the size of the

tracer particle.

Many complex fluids (of commercial, industrial and academic interest) such as emulsions

or suspensions contain particles suitable for optical trapping (see §4.11), and therefore

they can be easily studied using OTs without modifying the samples with extra com-

ponents. Polydispersity in some systems means that either particles must be chosen

carefully, or multiple calibrations performed.

3.3.1 Measuring the Diffusion Coefficient from Brownian Motion

Raw data from OT experiments is collected in the form of x and y position measurements

over time. This can be converted into the power spectral displacement (PSD) using a

Fourier transform, or the mean square displacement (MSD, 〈∆r2〉), depending on which

calculations are required.

The power spectrum is a plot of signal power against frequency; the more movements

at a given frequency, the higher the value will be. The diffusion coefficient (D) can be

extracted from the region of the power spectrum with negative gradient (on logarithmic

axes, due to the power law of -2) by substituting Equation 3.12 (D = kBT
γ0

) into
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PSD(f) ≈ kBT

π2γ0f2
=

D

π2f2
(3.16)

where γ0 is from Stokes’ Law (Equation 3.13).

The MSD is a plot of 〈∆r2〉 against time, and in a similar analysis to the power spectrum

the diffusion co-efficient can be extracted from linear regions, which for motion in the

x-y plane is

〈∆r2〉 = 4Dt, (3.17)

where D is the diffusion coefficient.

3.3.2 Converting Brownian Motion to Viscosity

An OT keeps a bead in the trap by radiation pressure which removes the fewer larger and

slower movements; this has the effect of creating a plateau (roll off) at low frequencies

in the PSD, with the exact roll off frequency determined by the refractive index (of

solvent, immersion oil and bead), solvent viscosity (or elasticity), laser wavelength and

laser power. An example of this low frequency roll off can be seen in Figure 3.15 below

∼55Hz.

In a Newtonian fluid, this roll off means that the power spectrum can be fitted with a

Lorentzian,

PSD(f) ≈ kBT

π2γ0(f2
c + f2)

, (3.18)
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with corner frequency,

fc =
α

2πγ0
(3.19)

where α is the trap strength.

Lorentzian = kBT
π2γ(f2

c+f2)

fc = 55Hz., η = 1× 10−3Pa.s. High frequency rolloff

Low frequency rolloff (fc)
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Figure 3.15: Power spectrum of bead motion for a trapped 5µm bead in distilled water
recorded using the RAL OT setup. The low frequency rolloff is due to the OT, the high
frequency rolloff is due to the detector resolution limit. The data is from a calibration
with distilled water at 21◦C, therefore knowing that the viscosity is ∼ 1 × 10−3Pa.s.,
we would require a roll-off frequency of 55Hz if the system was accurate. The measured

rolloff is ∼ 60 Hz.

The power spectral density shown in Figure 3.15 is from a calibration performed at RAL

using distilled water at 21◦C, and a representative calculation showing the conversion of

Brownian motion to viscosity is also shown.

3.3.2.1 Mathematical Correction due to Particle-Surface Interactions

Due to the precise control over the position of the probe particle in an OT experiment,

it is possible to place the bead (radius R) a given distance from an interface (height h)

in order to study the particle surface-interactions. If this is performed, the value for γ

from Equation 3.13 must be modified as follows [149],
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γ =
γ0
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R
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)5
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(3.20)

3.3.2.2 Typical microrheology data for Newtonian Samples
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Figure 3.16: Representative MSD for a 5µm diameter polystyrene bead in water. The
red line indicates where the gradient is unity.

Figure 3.16 shows an example MSD for a 5µm diameter polystyrene particle in water; the

particle position was recorded at 6kHz for 2000s., with each 1s. of data being processed

(into MSD) individually, and then the average was taken over all MSD files. The data was

split every second due to the large volume (4 channels at 6kHz, with 4 channels at 100kHz

later), and we could not guarantee that data was not dropped between acquisitions. It

would therefore be inappropriate to place the data end-to-end and treat as a single

experiment.

Figure 3.16 shows the format in which I will display MSD data, so I will briefly discuss

how to read these graphs.

The grey areas represent the limits of experimental reliability, and the labels around

the graph represent physical or experimental limits which dictate the usable data. The
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Table 3.1: Table of limits for OT data, relative to MSD calculations.

Label Limit Reason/Fix
1

fmax
Data acquisition
frequency

This equipment acquired data at 6kHz, therefore mo-
tion can only be considered below the Nyquist fre-
quency of 3kHz.

texpt Experiment time
(length)

Our experiments were run for 1 second, therefore due
to the lack of data as t → 1s., data beyond 0.2s has
been ignored. At times quicker than this, the data
becomes statistically reliable. Running the experiment
for longer would extend this limit, as would a greater
number of repeats.

2kBT
α Trap strength The OT removes low frequency, large displacement

movements from the particle. There is therefore an
upper limit to the displacement of a trapped particle
- this can be raised by lowering the laser power whilst
ensuring that the particle does not diffuse away.

x2
res x-resolution This is the resolution of the detection hardware, and

represents the smallest motion which can be detected.
Displacements below this value will still register a sig-
nal on the detector, but they cannot be differentiated
from noise. The resolution can be increased by using
a true interferometric detection method, discussed in
§3.2.3.3.

reasons for these limitations are discussed in Table 3.1. Each limit presented here can be

modified experimentally; the white area representing useful data can be maximised using

newer hardware/longer experiments, however these limits will always be applicable to

some extent. As a result, care was taken to minimise the effects, but for proof-of-concept

work I did not spend a significant amount of time attempting to increase the range of

available data.

Table 3.2: Viscosities of aqueous polymer solutions

Sample Viscosity
(Pa.s.)

Water 0.001
3k 50% 0.03
8k 50% 0.3
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Figure 3.17: PSD of 50% wt. 3k MW PEO, 50% wt. 8k MW PEO and water. The
red lines indicate one decade differences between the gradients - coinciding with the 1

decade difference between their respective viscosities.

Figure 3.17 shows the PSDs of two low molecular weight aqueous polymer solutions

and water. From bulk rheological measurements (performed by myself), their relative

viscosities are shown in Table 3.2. There is ∼1 decade between the viscosities of the

samples, and this is mirrored in the PSDs in Figure 3.17, where the -2 gradient sections

are separated by approximately the same amount, indicated by the red arrows.

3.3.3 Converting Brownian Motion to Viscoelastic Moduli

Data from viscoelastic samples must be treated differently as there is an additional elastic

component to the Brownian motion, with the common techniques shown in Figure 3.18

below, reproduced from Reference [3].

Traditionally OT data has been converted into viscoelastic moduli using a Laplace trans-

form method (§3.3.3.1), and the separation of real and complex components can also

be achieved using the Kramers-Kronig relations (§3.3.3.2), however a recent theoreti-

cal advance [150] has removed the need for Laplace/inverse-Laplace/Fourier conversions
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Figure 3.18: Diagram from Reference [3] showing the various methods used to convert
experimental data into viscoelastic moduli. The dashed red line is an addition I have
made showing the theoretical advance made by Evans et al, which avoids Laplace/-

Fourier transforms and Kramers-Kronig relations.

(§3.3.3.3); this direct conversion is shown by the dashed red line in Figure 3.18. These

techniques are discussed in detail in this section, along with their relative merits.

3.3.3.1 Laplace Transform Method

Traditionally, x-y position data from OTs has been converted into viscoelastic moduli

using a Laplace Transform (LT) method [3, 151, 152]. The generalised Langevin equation

(GLE) is used to describe particle displacement in a potential:

mν̇(t) = fR(t)−
∫ t

0
ζ(t− τ)ν(τ)dτ, (3.21)

where fR(t) is the restoring force (optical trap), m is the mass and ν(t) is the velocity

of the particle [152]. In terms of the Maxwell model discussed in §2.2.1, the integral

over v represents viscosity (dashpot), and the ζ(t) term is an elastic memory function
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(spring). The fluctuation-dissipation theorem [131, 153], which describes the properties

of non-equilibrium systems in terms of their equilibrium properties5, thus becomes

〈fR(0)fR(t)〉 = kBTζ(t), (3.22)

and the LT of Equation 3.21, substituting in Equation 3.22, yields

L [mν̇(t)] = G̃(s) =
s

6πa

[
6kBT

s2〈∆r̃2(s)〉 −ms
]

(3.23)

where s is the complex Laplace parameter, when certain assumptions are made [152].

This allows the complex modulus G∗ to be found after fitting a polynomial to the MSD,

and determining the value of the first and second logarithmic derivatives, which have

analytic expressions. The equations for G′ and G′′ are given in closed analytical form

[152, 155], therefore the LT does not need to be calculated numerically, as it has been

performed analytically.

Although in widespread use with microrheological data, the LT method is less than ideal

as the parametrisation of the MSD means a model is implicitly assumed.

3.3.3.2 Kramers-Kronig Method

The Kramers-Kronig relations [117, 156, 157] connect the real and imaginary parts of

some complex functions from frequency-domain data, and have therefore been used to

convert Fourier-transformed particle displacement data into viscoelastic moduli [37, 158].

Using the Kramers-Kronig relations is less common than the LT method discussed in
5The Stokes-Einstein relation is therefore a type of fluctuation-dissipation theorem as it relates the

diffusion coefficient to viscosity [154].
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§3.3.3.1, however the equations still contain integrals which must be calculated numeri-

cally, resulting in truncation errors.

3.3.3.3 Evans-Tassieri-Auhl-Waigh (ETAW) Method

The truncation errors and model assumption in the Kramers-Kronig and LT methods are

avoidable. Evans et al recently showed that it is possible to directly convert compliance

data into viscoelastic moduli using [150],

iω

G∗ω
= iωJ(0)+

(
1− e−iωt1

) (J1 − J(0))

t1
+
e−iωtN

η∞
+

N∑

k=2

(
Jk − Jk−1

tk − tk−1

)(
e−iωtk−1 − e−iωtk

)

(3.24)

where G∗(ω) is the frequency-dependent complex modulus, J is the compliance and η∞

represents the infinite viscosity (an extrapolation of the long-time gradient of the compli-

ance to infinity). This closed-form solution means that using only a single experimental

parameter η∞ the storage and loss moduli can be calculated without assuming a model

or fit; this is essentially a ’dot-to-dot’ treatment of experimental data.

By removing assumed models and truncation errors, the viscoelastic moduli reveal true

experimental noise from rheological and microrheological data for the first time. By

using

J(t) =
3πa

2kBT
〈∆r2(t)〉 (3.25)

to relate the MSD to compliance, where a is the radius of the trapped particle, one can

use either compliance or MSD for this calculation.
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Figure 3.19: Representative Mean-Squared Displacement data with error bars show-
ing the statistical uncertainties that arise due to less data being available at longer

times.

Figure 3.19 shows a representative MSD plot for a 5µm bead in a viscoelastic system.

The increase in errors as t → 1 are statistical errors due to the relative lack of data

points at long times. Statistically significant errors due to this can be reduced with

longer experimental times, but will always be present.

The method described above removes errors associated with processing and calculations,

leaving only statistical uncertainties and experimental noise [150, 159]. This technique

is not only more accurate than LT or Kramers-Kronig, but since it is direct conversion,

it is as accurate as possible for this calculation. The rheological OT data presented in

this work was processed using this method; for completeness the Python code I wrote

for this method is in Appendix A, and for brevity I shall eponymously refer to this as

the ETAW method.
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Figure 3.20: MSD data for 0.1 equi-Molar SDS:CAPB WLM solutions shown with
water. The percentage values in the legend refer to the % wt. NaCl in the WLM

samples.

3.3.3.4 Typical microrheology data for Non-Newtonian Samples

Figure 3.20 shows representative MSDs for OT experiments on non-Newtonian systems

- entangled wormlike micelles (WLMs). The WLM sample with no additional salt (◦)

shows much larger particle displacements at longer times than for the same sample with

salt (�). However, both samples are still well below the level of water (and close to xres),

a common problem encountered due to the high viscosity and elasticity of WLM network

structures.

Using an interferometric detection geometry as discussed in §3.2.3.3, the x2
res limit could

be lowered, however there is no guarantee that this would yield rheological data from

which useful quantities could be extracted, but it would certainly increase the range of

data available for the two WLM samples shown here.
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Figure 3.21: Schematic showing experimental method for non-equilibrium Optical
Tweezer experiments. (a) shows the ideal setup for the start of an experiment, (b)
shows a representation of ‘normal’ diffusive mixing and (c) shows the anomalies that
occur predominantly during dilution of living polymer systems, discussed further in

Chapter 4.

3.3.4 Method for Performing Non-Equilibrium Experiments with OTs

Non-equilibrium OT experiments were performed using the geometry shown in Figure

3.21, consisting of a 20mm diameter cylinder with a 100µm thick coverslip attached

to the base. Small, but known, volumes of samples were placed in the cylinders and

left overnight to equilibrate. The viscosity (or elasticity) of some samples was sufficient

enough to require being left overnight in order to form an even 2mm thick layer at the base

of the cylinders. The cylinders were sealed during this time to prevent evaporation. When

ready, the sample holders were carefully placed on the stage of an inverted microscope,

and a particle was found, trapped and moved to the optimal distance above the coverslip

(∼ 100µm, the working distance of the objective lens). Water was then carefully placed

on top of the sample using a long pipette. As the OT can only exert a force on the order

of a few hundred pN, placing water on top typically knocks the particle out of the trap.

Despite this I found it simpler to find, trap and move a bead first, quickly recapturing it

at the correct height above the coverslip, rather than try to find and move a bead during

the dilution process. It should also be noted that for the more viscous samples, the trap

strength was not great enough to move a particle, therefore the laser focus is placed over
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a particle at the correct height, and the OT is used simply for position measurement

until the sample has diluted sufficiently.

3.4 Results from Non-equilibrium experiments with Optical

Tweezers

Using the geometry introduced in §3.3.4, non-equilibrium experiments have been per-

formed on a variety of viscous polymer samples in order to investigate changes to η

during dilution.

The data shown in this section is representative of various types of samples and pro-

cessing techniques; §3.4.1 shows the dilution of a Newtonian sample in conjunction with

equilibrium sample data in order to calculate the concentration over time, §3.4.2 shows

the dilution of a Non-Newtonian sample along with the G′ and G′′ data over time, and

§3.4.3 shows the evaporation of a Newtonian sample over time.

3.4.1 Dilution of 8k MW PEG with MSD Analysis

An 8k MW PEG 50% wt. sample was diluted 20:1 with water, and the particle displace-

ment was monitored over one hour.

Figure 3.22 shows the MSD of particle motion during this experiment, where the grey

areas represent unreliable data due to the limits labelled on the graph (discussed in

§3.3.2.2). These experiments were performed by recording the x and y motions of the

bead for 300 seconds, where each second the latest data is written to a separate file.

The MSD is then calculated for each file, and the average is taken giving the results

shown above. The times shown on Figure 3.22 signify the difference in time between the
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Figure 3.22: MSD of a 5µm particle during dilution of 50% wt. 8k PEO solution.

dilution solvent being added and the start of each 300 s. experiment. 5 µm particles

were used throughout, with a laser power of 800 mW (corresponding to < 50 mW at the

focus) and a 63× Leica objective lens. Data acquisition was performed with LabView,

using a modified RAL script, and all data processing was performed using custom-written

Python/numpy programs.

This data shows a steady increase in particle displacement during dilution, as expected,

as the sample transforms from a viscous polymer solution to the dilute regime. After only

46 minutes, the 8k PEG MSD was approaching that of water - the y-intercept clearly

increases showing a decrease in η over time. From Table 2.2 (p.33) we find that at t = 0,

c ≈ 3c∗; taking into account the viscometer data from Figure 2.13, I assume the sample

to be purely viscous during this experiment, ie. c < c∗∗.

Figure 3.23 shows the MSD of particle motion for pre-diluted 8k PEG samples at equi-

librium. Using these in conjunction with the non-equilibrium data shown in Figure 3.22,

it is possible to calculate the change in concentration over time. This can either be

calibrated and converted to viscosity, or the viscosity can be calculated directly from the

MSD data as discussed in §3.3.2.
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Figure 3.23: MSDs of various concentration 8k PEG solutions at equilibrium. The
red arrows indicate the places where the OT affects the data (creates a plateau).
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Figure 3.24: Viscosity vs. time for the 20:1 dilution of 8k MW PEG 50% wt. with
water.

I have converted the MSD data shown in Figure 3.22 to viscosity using the static data in

Figure 3.23 as a calibration, this can be seen in Figure 3.24. The dashed red line shows

the viscosity of the PEG solution at t = 0, and the solid red line represents the literature

value for the viscosity of water at 21◦C [160]. As with all OT experiments presented

here, the trapped particle was held ∼100µm from the lower surface, with an overall

sample thickness of ∼2mm. A distance of 100µm was used as this was the maximum

working distance (WD) of the objective lens, and I wanted to minimise particle-surface

interactions (described in §3.3.2.1). Substituting the particle radius (5µm) and height
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from surface (100µm) into Equation 3.20 (Rh = 5
100 = 0.05) gives an error due to particle-

surface interactions of ≈ 3% for these experiments.
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Figure 3.25: Concentration (scaled by c∗) against time for the 20:1 dilution of 8k
MW PEG 50% wt. with water. The conversion from viscosity to concentration was

performed using the experimental data from Figure 2.13.

Figure 3.25 shows the same data as Figure 3.24 with the viscosity values converted

to concentration using the experimental data from Figure 2.13 (p.34). This shows the

validity of OT equipment for measuring the concentration of a sample during dilution,

which is difficult to obtain using bulk rheometry. If this research were to be continued,

this data could be corroborated using quantitative phase refractometry (using ultra-violet

absorption) during the OT experiments.

When the dilution water is placed on top of the PEG solution, there is obviously a delay

before particle displacement changes as the top of the sample dilutes first. If it had

been possible to monitor the particle displacement nearer the surface of the sample, the

local viscosity would have decreased much faster than shown here. The emphasis in

this experiment was on accuracy of the local viscosity measurements in order to validate

the technique, however using multiple traps (via beam-sharing, holography or multiple
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lasers) the viscosity at a range of locations could be monitored concurrently yielding

a more representative picture of the macroscopic dilution gradient evolving over time.

These techniques could also probe the homogeneity of the sample during dilution, or to

probe the isotropy as the polymers disentangle. It is experimentally challenging however

to trap many particles at various heights, and the proximity of the particles may lead to

additional interaction effects such as depletion-interaction.

3.4.2 Dilution of 300k MW PEO with PSD Analysis

A sample with 7.8% wt. 300k MW PEO was diluted 20:1 with water, using the same

experimental protocol as described in §3.4.1 above; the solvent being placed carefully on

top of the polymer solution so as not to induce any artificial mixing. The position of

a 5µm particle, placed ∼ 100µm from the lower surface, was monitored over ∼5 hours,

and the power spectral density (PSD) over time is shown below in Figure 3.26 (on page

87). This 300k PEO can be considered to be in a highly entangled state at 7.8% wt.,

and has viscoelastic properties at this concentration.

The 3d graph (top) is presented here as representative of the noise present in non-

equilibrium OT experiments. The 50Hz (mains) and 125Hz (table resonance) marked on

the graph are important experimentally as they lower the overall accuracy, and must be

removed or accounted for. The 50Hz noise is simply the mains power oscillation being

transferred into the laser pumping system, therefore the trap stiffness oscillates, giving

the bead a periodic motion on top of its stochastic thermal movements. Noise at ∼125Hz

is more difficult to find as many modern mechanical components have similar frequencies;

in this case, 125Hz was the resonance of the optical table on which the sensitive OT setup

was mounted. Small air currents in the interlocked room at RAL blowing over the optical

breadboard holes caused vibrations in the table, in a manner conceptually similar to the
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Figure 3.26: PSD during dilution of 300k PEO 7.8% wt. solution.

operation of a flute. This could only have been removed by filling the table/holes with

sound absorbing foam, or removing the air currents, neither of which was feasible. As a

result, where 125Hz was present in our raw data, it was removed via a bandpass filter

before data processing (as was the 50Hz mains noise).

It can be seen that the relative intensity of the 50Hz noise increases over the length of

the experiment. This can be understood in terms of trap strength relative to sample
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viscosity; at t = 0s sample stiffness inhibits particle movement, therefore the weak trap

(α ≈ 100pN) does not have much effect on the bead. We know that the bead is trapped,

otherwise the 50Hz from the laser would not be visible, however the OT can be considered

to be placed over the bead for detection purposes but without trapping it.

The same principle applies to the decreasing intensity of the 125Hz. table resonance,

whereby a ‘stiff’ sample will transfer a larger proportion of the microscope vibrations to

a particle than a more liquid (damped) sample. As further dilution allows larger particle

displacements, the relative effect of the laser pumping increases, therefore the 50Hz noise

increases and the 125Hz noise decreases over time.

The lower graph in Figure 3.26 shows the same data as the upper one, viewed from above.

with the square root dependence of diffusion shown by the red arrow. Lower frequencies

show a steady increase in intensity as natural diffusion mixes the polymer solution with

solvent over a period of 4-5 hours6.

Figure 3.27 shows the viscoelastic moduli for the data shown in Figure 3.26; G′ and

G′′ here were calculated using the ETAW Method (§3.3.3.3) from the MSD of particle

displacement.

Both G′ and G′′ show a rapid decrease in the first 1-2 hours, followed by a slow decline

until the end of the experiment. It can be concluded that since no rapid change is shown

in the power spectral densities (Figure 3.26) over this period, the initial decrease shown

here represents the period when this sample can be considered to be viscoelastic. After

this time, (t∼6000 s.) the polymers are most likely diluted to the point where they are

no longer highly entangled and show only viscous behaviour.
6No syneresis was noticed during this or any other polymer dissolution experiment.
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Figure 3.27: G′ and G′′ against ω during dilution for 7.8% wt 300k PEO initial
solution. (a) Shows G′ evolving over time, (b) shows G′′ evolving over time

G′′ clearly shows maxima and minima changing over time, as expected for a Maxwellian

system being diluted. It is interesting to note that although G′′min occurs at roughly

the same frequency over the entire experiment, the value of the minima increases in a

stepped fashion. However, the frequency of G′′max increases whilst the value decreases

over the experiments. To summarise this, the frequency and value of G′′min and G′′max

both converge during the dilution of this viscoelastic sample, but only G′′max changes in

frequency.

Despite the smooth nature of the PSD in Figure 3.26, the viscoelastic moduli show

much variation, possibly due to an accumulation of local inhomogeneities during dilution

and the non-smoothed nature of ETAW equation output. Further to this, since the
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loss in viscoelasticity is clearly non-linear, the usual parameters for describing a non-

Newtonian system such as the relaxation time τR and the plateau modulusG0 are difficult

to interpret without a theory encompassing micelle dissolution.
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Figure 3.28: G′,G′′ versus frequency for 300k PEO 7.8% wt. aqueous solution, per-
formed on an ARES-LS1 rheometer.

Figure 3.28 shows bulk rheology data performed on the undiluted 300k 7.8% wt. sample

used in the dilution experiment above. Here we see that the viscoelastic moduli nearly

cross in the range accessible by a cone and plate rheometer, and probably do cross above

100Hz, indicating an element of elasticity will be present at this concentration, but that

it is close to being purely viscous, consistent with the dilution experiment above. From

Table 2.2 (p.33), we find that the initial concentration c0 ≈ 3c∗ for this sample, similar

to c0 for the 8k dilution in the previous section; it is interesting to note that 3c∗ > c∗∗

for 300k, but not for 8k MW, due to increased entanglements from the longer chains.

3.4.3 Evaporative Drying of 100k PEO Solution with MSD Analysis

Figure 3.29 shows the changing MSD for a 5µm particle as 10% wt. 100k MW PEO

solution is left to evaporate in ambient conditions. This was a different experimental
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Figure 3.29: MSD of a 5µm particle undergoing brownian motion during evaporation
of 100k 10% wt solution

alignment as for the dilution studies, resulting in a slightly larger x2
res value, and without

the additional water placed on top of the sample.

The MSDs show that rheological measurements during evaporation are viable using OTs,

however the available data decreases over time, as opposed to the dilution measurements.

This results in any potential phase transitions or new behaviour becoming more difficult

to interpret, therefore I concentrated on dilution experiments. However, evaporation is

somehow a less violent process than dilution.

3.5 Conclusions and Further Work

3.5.1 Validation and Limitations of the Technique

This chapter has shown that non-equilibrium rheological measurements are possible with

an OT, and that the data is reliable within experimental uncertainties.
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The dilution of 8k PEG (§3.4.1) shows that the viscosity, and hence concentration, can

be easily monitored over time when a shallow gradient is present in the sample, allowing

for detailed investigation of the dissolution process.

The dilution of 300k PEO (§3.4.2) has demonstrated the possibility of extracting standard

rheological parameters in the presence of a gradient. In conjunction with the ETAW

method, this yields local rheology data, with experimental noise still present. Using the

ETAW method is viable, i.e. the conversion remains valid, as long as the rate at which

the moduli change is much longer than the timescale of each experiment [159].

Measurements of rheological parameters have been performed during evaporation of 100k

aqueous PEO solution (§3.4.3), demonstrating that different types of gradient can be

present during these experiments. With evaporation, less usable data is available during

the course of the experiment, therefore either low viscosity samples should be used from

the start, or a much higher accuracy detection geometry/OT setup should be used.

3.5.2 Conclusions Drawn on the suitability of OTs for Rheology

None of these experiments can be reliably performed on DWS or mechanical rheometers,

as both of these techniques measure the ensemble average, or bulk, rheology. On top of

this, most commercial or industrial applications of polymeric complex fluids involve a

gradient of some kind being introduced; food is heated, cooled and diluted, hair products

are diluted, and micelles used to extract oil are subjected to extremes in temperature and

pressure as well as concentration gradients [9]. As a result, OTs are useful for accurately

measuring rheological properties of non-equilibrium systems, and equilibrium systems

which require very small sample volumes [161]. Magnetic tweezers are a related technique

in which carefully aligned magnetic fields are used to control a magnetic particle [162,
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163], from which the calculations for viscous or viscoelastic quantities are identical to

those for OTs. Magnetic tweezers (MTs) were not used in this study as the large fields

required may have aligned the wormlike micelles. This would have been time-consuming

to verify, so OTs were used throughout. It would be interesting to verify this, as MTs

could also be used for non-equilibrium experiments. Recently surface acoustic wave

(SAW) devices have been used to confine cells and particles in a similar manner to OTs

and MTs [164]; these acoustic tweezers (ATs) are promising as they can trap multiple

particles easily, and are extremely cheap to build.

Although there is no comprehensive theory for the dissolution of polymer/micelle so-

lutions [15, 16], I have shown that qualitative and quantitative conclusions can be

drawn from non-equilibrium OT experiments. Some recent advances [165, 166] show

that progress is being made in this field, which will hopefully lead to rigorous character-

isation and explanations of the effects seen here.

3.5.3 Further Work

Extending the available data in the experiments presented here would make the technique

useful to a wider range of samples; the most effective way would be to enclose the OT

setup and perform true interferometric detection, in order to lower the x2
res limits on the

graphs shown here.

Another method would be to employ multiple traps to hold a 3-dimensional array of

beads that would give a more complete picture of the dissolution dynamics over time.

The simplest option would be to slow the dilution by adding less solvent to a larger

sample, and to take individual measurements of more than a second in order to increase

the statistical reliability at long times.



Chapter 3. On Optical Tweezers and Complex Fluids 94

It would also be interesting to measure the properties of other important systems, which

were previously inaccessible without a non-contact trapping apparatus. Examples in-

clude the viscosity change in engine oil as the temperature is increased, monitoring the

structural integrity of a living cell as the pH is varied, adding a crosslinker to a polymeric

system to monitor the dynamics of gelation and the behaviour of bacteria in the presence

of food or light, to name just a few.

3.5.4 Concluding Remarks

This chapter has shown that the viscous and viscoelastic properties of complex fluids

in non-equilibrium conditions can be monitored over time, and subsequently quantified,

using various OT setups. This work represents the preparatory and proof-of-concept

work for an in-depth study on the rheological properties of a commercially-viable model

shampoo system (a WLM network structure), in equilibrium and non-equilibrium con-

ditions.

The next chapter presents the results from this shampoo study, and the OT techniques

verified here are used in conjunction with bulk rheology and DWS to quantify the physical

properties as the system complexity is increased.



4
Wormlike Micelle Rheology and Microrheology

“Chemistry has been termed by the physicist as the messy part of physics, but that is no

reason why the physicists should be permitted to make a mess of chemistry when they

invade it.”

Frederick Soddy, 1877-1956

4.1 Introduction

Wormlike micelles (WLMs) are self-assembled surfactant aggregates introduced in Chap-

ter 2; this chapter represents an investigation performed for Unilever PLC aimed at

understanding the rheological behaviour of a ‘model’ micellar network, and gradually

increasing the complexity towards a commercially-viable system.

Many commercial products contain surfactant aggregates for reasons such as controlled

deposition [167, 168], conditioning [20, 169, 170] and as a detergent [171, 172], to name

just three. Real-world products consist of many individual components; the interactions

between these are not always well understood. As a result this work was structured

to start with a simple ‘ideal’ micelle network which forms the basis of many Unilever

95
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products, and to attempt to understand the changes in the rheology caused by each

individual additive.

4.1.1 Chapter Layout

Table 4.1: Table showing the increasing complexity of the WLM system studied in
this work. The left hand column shows the section for each study, and the values in

the cells show the range of concentrations for each additive.

Section SDS CAPB NaCl PEO Preservative Jaguar
Equilibrium experiments

§4.3 0.1-0.2M 0.1-0.2M
§4.4 0.1-0.2M 0.1-0.2M 0-3%
§4.6 0.1-0.2M 0.1-0.2M 0-3% 0.1-0.5%
§4.7 0.1-0.2M 0.1-0.2M 0-1.5% 0.1-0.5% Glydant/Nipagin
§4.8 0.1-0.2M 0.1-0.2M 0-3% 0.2-0.4% Glydant 0.1%

Non-equilibrium experiments
§4.9 0.1M 0.1M 1.5%
§4.10 0.2M 0.2M 1.5% 0.5%
§4.11 N/A N/A N/A N/A N/A N/A

Table 4.1 shows the experimental results sections in this chapter, and the components

present in each study. This chapter finishes with some non-equilibrium experiments

performed using optical tweezers on the initial micelle network, the micelle network with

a polymer and finally a real-world product formulation.

4.2 Dual-surfactant SDS:CAPB Wormlike Micelles

Wormlike Micelles (WLMs) have been introduced in §2.3.2, however the micellar systems

studied here differ slightly from the standard model. These micelles consist of two differ-

ent surfactant molecules, each equally weighted with respect to the molar concentration;

the two components being Sodium Dodecyl Sulphate (SDS, see §4.2.2.1) and Cocami-

dopropyl Betaine (CAPB, see §4.2.2.2). The equal molar concentrations are referred to
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throughout as equimolar, where for example ‘0.1 eM’ refers to 0.1M of each component,

0.2M in total.

Dual-surfactant micelles such as these have been shown to have much more pronounced

viscoelastic behaviour at lower concentrations than single-surfactant micelles due to the

specific interactions between the components, in this case the electrostatic and steric

interactions between the anionic SDS and zwitterionic1 CAPB.

4.2.1 Experimental Techniques

The experimental techniques used in this chapter include bulk rheology (introduced in

Chapter 2), optical tweezer microrheology (introduced in Chapter 3) and Diffusing Wave

Spectroscopy (DWS), discussed below.

4.2.1.1 Diffusing Wave Spectroscopy (DWS)

Diffusing Wave Spectroscopy (DWS) is an extension of Dynamic Light Scattering (DLS)

to the multiple scattering limit; instead of measuring the photon scatter from single

events, the entire sample is made turbid through the addition of tracer particles, forcing

the incident beam to scatter over many particles [145, 173], as shown in Figure 4.1.

With each individual tracer particle undergoing brownian motion, the ‘speckle’ arising

downstream from the sample contains information on the rheology of the system, but

due to the multiple scattering events, the data is inherently more accurate at short times

than DLS/OT experiments as it is implicitly averaged over many particles/events. This

averaging also presents a problem as any inhomogeneities in the sample will modify the

speckle in such a way that it becomes difficult to interpret.
1Zwitterionic means to have both positive and negative charges, and comes from the German word

zwitter meaning hermaphrodite.
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Figure 4.1: Ray Diagram and example photon path for Diffusive Wave Spectroscopy
(Transmission geometry)

DWS experiments were performed on a custom setup at Unilever R&D, Port Sunlight,

with the optical path as shown in Figure 4.1. Samples were made with 1% vol. 0.5µm

diameter silica particles from Fluka (Order No. 95585, standard deviation ≤0.05µm),

and were then left for 24 hours before being prepared in quartz cells of 2mm and 5mm

thickness (a thicker cell implies more scattering events, however the short-time behaviour

becomes less distinguishable). The quartz cells were then centrifuged at ∼1000rpm for

5 minutes in order to remove air bubbles, and the samples were left to equilibrate for at

least 2 hours. The sample holder was set at 25◦C, and samples were left to equilibrate

in the holder for 10 minutes before experiments were started. Experiments were run
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between 3-5 times for each sample, and back-scattering geometries were tested as well,

but the results were not convincing, therefore all data presented here are from forward-

scattered DWS.

The experiments measure the speckle intensity I over time giving;

g2(τ) =
〈I(t)I(t+ τ)〉t
〈I(t)〉2t

(4.1)

where g2(τ)− 1 is the Intensity Autocorrelation Function (IACF). Using the relation

g2(τ)− 1 =

[∫ ∞

0
P (s)e1/3k2

0〈∆r2(t)〉(s/l∗)ds

]2

(4.2)

where P (s) is the probability density function of the photon path length, the IACF can

be converted into mean-square displacement (MSD), which is then converted into G′

and G′′ (this was performed automatically by the software using the Laplace Transform

method discussed in §3.3.3.1).
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Figure 4.2: Representative Intensity Autocorrelation (left) and Mean-Square Dis-
placement (right) data for 2mm and 5mm DWS sample cells (data are for 0.1 eM
SDS:CAPB WLM system with 1.5% wt. additional NaCl). The solid lines show the
repeats for the 5mm cells and the dash-dotted lines show the repeats for the 2mm cells
. The Ψ point shows where the long-time calculation was fitted incorrectly, and is

therefore where the MSD data is truncated before processing.
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Figure 4.2 shows representative g2 − 1 and 〈∆r2(t)〉 data obtained from these DWS ex-

periments. The data acquisition software used an echo technique to deduce the long-time

behaviour without the length of experiments increasing too much. This implementation

was not quite complete, and therefore a join between ‘normal’ data and long-time data

became apparent in the MSD (although it is present, it is not so obvious in the IACF),

as shown by the Ψ points in Figure 4.2. This data was therefore removed from all

experiments, leaving just the standard DWS results.
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Figure 4.3: Particle size distribution as measured on a Nanosight R© LM20, showing
the ‘500µm’ particles from Fluka were slightly polydisperse with a peak diameter dpeak

of around 440nm. The DWS data was re-calculated accordingly.

After these DWS experiments were performed, it was noticed in Transmission Electron

Microscope (TEM) micrographs that the Fluka particles had a smaller diameter than

reported. Since the TEM samples had been dried and sputter-coated, they may misrep-

resent the true solvated particle size, therefore particle sizing was performed in solution

using a Nanosight R© LM20. The LM20 measures the brownian motion of particles using

reflected laser light, and subsequently calculates the particle size with an error < 1nm.

Figure 4.3 shows the results from this experiment; the particles are slightly polydisperse,

and the peak diameter dpeak ≈ 440nm. This does not invalidate the DWS experiments as
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the IACF was still measured correctly, however the data has been re-processed from the

IACF stage into G′ and G′′ (as described above) with this new value used throughout.

DWS is widely considered to give superior results to other microrheological techniques,

however it is not without its pitfalls. Firstly the added tracer particles may modify the

rheology of the sample, and secondly the particles may be experiencing ‘particle slip’

whereby the local area around a particle may become devoid of micelles, resulting in

the brownian motion not representing bulk rheological behaviour. Consequently DWS

data is usually shifted by a factor of ∼1.5-2 in order to account for particle slip. Since

this shift is fairly arbitrary, and the comparisons performed here are concerned primarily

with the change in behaviour with various additives, the DWS data has not been shifted

and is presented separately from other rheological data.

4.2.2 Chemical Components

Poly(ethylene oxide) (PEO) with MW = 4M is used throughout this chapter, the various

other components are discussed below. These molecules were chosen by Unilever for this

study as they have been shown to be safe for inclusion in personal care products, and

have beneficial properties for these products, as discussed previously.

4.2.2.1 Sodium Dodecyl Sulphate (SDS)

Figure 4.4: 3-dimensional rendering of a Sodium Dodecyl Sulphate (SDS) molecule,
created using Python, BALLView and POV-Ray.
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Table 4.2: Properties of Sodium Dodecyl Sulphate

Property Value
Formula NaC12H25SO4

Molar Mass 288.38 g mol−1

Density 1.01 g cm−3

Canonical Smiles [Na+].CCCCCCCCCCCCOS([O-])(=O)=O

Sodium Dodecyl Sulphate (SDS) is an anionic surfactant used in many personal and

household care products - a 3d rendering is shown in Figure 4.4 and some of its properties

are shown in Table 4.2. In aqueous solution at 25◦C, SDS has been shown to have a

critical micelle concentration (CMC) ≈ 0.0082M [174].

4.2.2.2 Cocamidopropyl Betaine (CAPB)

Figure 4.5: 3-dimensional rendering of a Cocamidopropyl Betaine (CAPB) molecule,
created using Python, BALLView and POV-Ray.

Table 4.3: Properties of Cocamidopropyl Betaine

Property Value
Formula C19H38N2O3

Molar Mass 342.52 g mol−1

Density 1.043 g cm−3 at 25◦C

Canonical Smiles CCCCCCCCCCCC(=O)NCCC[N+](C)(C)CC(=O)[O-]

Cocamidopropyl Betaine (CAPB), a rendering of which is shown in Figure 4.5, is a

surfactant widely used in personal care products [175, 176], and which is derived from

coconut oil; some physico-chemical properties are shown in Table 4.3. Cocamides are



Chapter 4. Wormlike Micelle Rheology and Microrheology 103

coconut oil extracts with an even-number of carbons in their tail, and the head group of

CAPB is trimethylglycine which was historically called ‘betaine’. Trimethylglycine has

the ionic state of (CH3)3N+CH2CO−2 between pH ∼2-8 [177], therefore giving CAPB its

zwitterionic properties.

CAPB is used extensively in this work as it has been shown to have beneficial properties

for personal care products such as moisturising and low allergy rates [178], and thus along

with SDS forms the basic micellar system studied here. CAPB is usually provided as a

solution, for all of the work presented here the initial product was an aqueous solution

of which 30% by volume was CAPB. These solutions also ship with ∼2-3% NaCl, and

therefore in every sample there is a small amount of extra ionic strength.

4.2.2.3 Glydant

Figure 4.6: Computer rendering of a Glydant molecule, created using Python, Bal-
lVIEW and POV-Ray.

Table 4.4: Properties of Glydant

Property Value
Chemical Name 1,3-bis(hydroxymethyl)-5,5-dimethyl-imidazolidine-2,4-dione
Formula C7H12N2O4

Molar Mass 188.18 g mol−1

Density 1.349 g cm−3

Canonical Smiles CC1(C(=O)N(C(=O)N1CO)CO)C
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Glydant R© by Lonza is the trademarked name of a preservative, shown in Figure 4.6 and

some properties are given in Table 4.4, which is used in many personal care products.

As Glydant R© is designed to kill living organisms, it can be toxic to humans in high

concentrations (yet is perfectly safe in the low concentrations found in commercial prod-

ucts), therefore when this preservative was measured out, all work was performed in a

fume cupboard.

4.2.2.4 Nipagin M

Figure 4.7: Computer rendering of a Nipagin M molecule, created using Python,
BallVIEW and POV-Ray.

Table 4.5: Properties of Nipagin M

Property Value
Chemical Name methyl 4-hydroxybenzoate
Formula C8H8O3

Molar Mass 152.14732 g mol−1

Density 1.36 g cm−3

Canonical Smiles COC(=O)C1=CC=C(C=C1)O

The other preservative studied in §4.7 is Nipagin M R© by Clariant, shown in Figure 4.7

and details in Table 4.5. The same precautions were taken as for Glydant.
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4.2.2.5 ‘Jaguar’ Guar Gum Derivative

The polyelectrolyte under investigation in §4.8 is guar hydroxypropyltrimonium chloride

(trade-marked as ‘Jaguar’ by Rhodia), at two different charge densities (CD); Jaguar

C-13-S (CD ∼ 0.8 mEq g−1 [179]), and Jaguar C-17 (CD ∼ 1.6 mEq g−1 [179]). This

polycation is a quaternary derivative of guar gum, and has been shown to have properties

beneficial in hair products such as thickening and conditioning [180, 181, 182].

Due to experimental difficulties in measuring the molecular weight of Jaguar, we are

assuming a value of 1-2M MW from previous experiments performed by Unilever [183].

4.2.3 Sample Preparation

Bulk rheological measurements were made at 20±3◦C using ARES and G2 rheometers

from TA Instruments, fitted with a 2◦ 50mm diameter cone-plate geometry. Experiments

were performed using the protocol described in §2.2.3.

The water soluble polymer poly(ethylene oxide) (PEO) was supplied by Sigma with mean

molecular weight 4×106 amu. Assuming ideal solvent conditions we see from Table 2.2

(p.33) that the radius of gyration rg ≈ 60nm and the overlap concentration c∗ ≈ 0.7%.

At the concentrations used in this study, the pure polymer solution is Newtonian with

effective viscosity of 1.64mPa.s. at 0.1% and 1.64mPa.s. at 0.5% (measured using 50mm

2◦ cone-plate and double-gap geometry on an Anton Paar MCR101 and MCR301 at

20◦C).

The surfactant solutions were prepared by dissolving measured masses of both commercial-

quality surfactants (SDS and CAPB) in distilled water. Mixing was accelerated using
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gentle centrifugation before being left for at least 48 hours to equilibrate. Two eM sur-

factant concentrations were studied, [SDS] = [CAPB] = 0.1M and 0.2M at three salt

concentrations, [NaCl] = 0.0, 1.5 and 3.0% wt. Each of these six combinations were

repeated at three polymer concentrations, [PEO] = 0.0, 0.1 and 0.5% wt. SDS:CAPB

micelles have been studied previously, but at lower concentrations when the micelles are

spherical/rodlike [184].

Table 4.6 (on p.107) shows the extracted and calculated properties of all the measure-

ments performed in this chapter on samples without polyelectrolyte (the polyelectrolyte

results table is in §4.8.3). Here, csurf is the eM surfactant concentration, and cNaCl is

the additional NaCl combined with the ionic strength from the CAPB. These values are

discussed in §2.3.2 (p.26).

4.3 Study: Effect of surfactant concentration on WLM Rhe-

ology

For this study the 0.1eM surfactant solution with 0% additional NaCl and 0% PEO is

compared with the corresponding 0.2eM system, using bulk rheology, DWS and Optical

Tweezer (OT) setups.
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4.3.1 Results from bulk rheology
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Figure 4.8: Left: G′ and G′′ against Frequency for a SDS:CAPB WLM sample at
0.1 eM surfactant concentration. Right: Cole-Cole plot for the same data
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Figure 4.9: Left: G′ and G′′ against frequency for a SDS:CAPB WLM sample at 0.2
eM surfactant concentration. Right: Cole-Cole plot for the same data
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4.3.2 Results from DWS
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Figure 4.10: G′ and G′′ against Frequency for a 0.1eM SDS:CAPB WLM sample
using DWS.
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Figure 4.11: Left: G′ and G′′ against Frequency for a 0.2eM SDS:CAPB WLM
sample using DWS. Right: Cole-Cole plot for the same data (Inset: Close-up of the

terminal region for the same data).
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4.3.3 Results from Optical Tweezers
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Figure 4.12: Optical Tweezer PSD for a SDS:CAPB WLM sample at 0.1 eM surfac-
tant concentration.
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Figure 4.13: Optical Tweezer PSD for a SDS:CAPB WLM sample at 0.2 eM surfac-
tant concentration.

Physical Interpretation and Implications

At low surfactant concentration (0.1eM, Figures 4.8 and 4.10) there is a crossover in G′

and G′′ signifying an element of elasticity from entanglements. However the monotonic

increase in both G′ and G′′ means there is a lack of a defined G′ plateau or G′′ minima
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showing that the system has a range of relaxation times due to a broad distribution of rod-

like micellar lengths. We therefore have τbreak
τrep

� 1, which implies effectively unbreakable,

polydisperse micelles which relax via curvilinear reptation rather than through micelle

scission. In essence, additional surfactant or electrolyte is required to encourage sufficient

micellar growth (with a corresponding increase in the density of entanglements) for this

system to become highly entangled, or even Maxwellian.

On doubling the surfactant molar fractions we find exactly this behaviour (0.2 eM, Fig-

ures 4.8 and 4.11); the plateau in G′ extends over 3 decades, and there is a well-defined

minima in G′′ at f ≈ 2Hz (in the bulk rheology data). The Cole-Cole plots in Figures 4.8

also show evidence of semi-circular behaviour, showing a transformation to a Maxwellian

system. This conversion to an entangled state without added electrolyte could be due

to both the NaCl present in the liquid form of CAPB and the higher concentration of

surfactant.

These surfactant-only solutions show behaviour expected of a model WLM system with

increasing surfactant concentration, providing evidence that despite using industrial com-

ponents the system in this study can be regarded as a ‘model’ WLM system.

Optical Tweezer data from this system is disappointing, however. Even at the lowest

surfactant concentration with no further additives (Figure 4.12) there is no lower ’roll-

off’ frequency present, and the upper ’roll-off’ frequency limits the data to ∼2-300Hz.,

below which there is still considerable noise. As expected, the usable frequency range

decreases as the surfactant concentration is increased (Figure 4.13), and it is therefore

inappropriate to use the OT experimental data in a rheological comparison. This shows

that given the equipment and budget constraints of this project, the network structures

used in some of Unilever’s products are sufficiently viscous as to render OT microrheology
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less useful than either bulk rheology or DWS. However as discussed in Chapter 3, OTs

allow the possibility of studying non-equilibrium behaviour, whereas bulk rheology and

DWS do not. All subsequent studies where the samples are in equilibrium will therefore

concentrate on bulk rheological and DWS microrheological data.

4.4 Study: Effect of NaCl concentration on WLM Rheology

For this study the 0.1 and 0.2eM systems with varying NaCl concentrations are compared

using bulk rheology and DWS.

4.4.1 Results from bulk rheology
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Figure 4.14: Graphs showing the rheological changes in a 0.1 eM SDS:CAPB WLM
system with additional NaCl at 0,1.5 and 3% wt. Left: G′ and G′′ against Frequency.

Right: Cole-Cole plots for the same data
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Figure 4.15: Graphs showing the rheological changes in a 0.2 eM SDS:CAPB WLM
system with additional NaCl at 0,1.5 and 3% wt. Left: G′ and G′′ against Frequency.

Right: Cole-Cole plots for the same data
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4.4.2 Results from DWS
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Figure 4.16: G’, G” vs. ω for 0.1 eM SDS:CAPB, 0% PEO, graphs shown with
increasing concentration of NaCl
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Figure 4.17: G’,G” vs. ω for 0.2 eM SDS:CAPB, 0% PEO, graphs shown with
increasing concentration of NaCl

Physical Interpretation and Implications

For the 0.1eM system (Figures 4.14 and 4.16) we see that the NaCl = 0% system shown

previously transforms into a classic, highly entangled Maxwellian fluid on the addition

of 1.5% NaCl. The crossing point at 0.008Hz (squares in Figure 4.14) gives a single

relaxation time τR ≈ 125s, and the Cole-Cole plot shows perfect semi-circular behaviour.

At NaCl = 3% (triangles in Figure 4.14) the Cole-Cole plot indicates a slightly higher

plateau modulus and a slight ‘flick’ deviation from a semi-circle for G′ > 85Pa, which

could indicate small amounts of micellar branching. At this level of ionic strength τR has

also decreased to ≈ 2.3s, which could be due to branches sliding down the micelle core.

For the 0.2eM system (Figure 4.15), where the NaCl =0% sample already shows entangled

Maxwellian behaviour, we find a maximum in G′ with increasing salt concentration, as

predicted by Dreiss [56]. However, we also find that τR decreases monotonically from
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20s to 4s to 2s with increasing ionic strength. Branching would explain this behaviour,

however the clear semi-circular Cole-Cole plots for NaCl = 0% and 1.5% indicate that

branching has probably not occurred at these concentrations.

With NaCl = 3% both 0.1eM and 0.2eM samples show the flick mentioned above, there-

fore although the number of samples is small here, we see evidence of branching at

electrolyte concentrations above that of the G′ maxima. We can therefore be confident

that this system shows behaviour similar to the literature when increasing the ionic

strength of the solutions.
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Figure 4.18: ξ and le for 0.1 and 0.2eM SDS:CAPB WLM solutions with 0% PEO,
data from Table 4.6

Figure 4.18 shows the correlation length ξ and entanglement length le for 0.1 and 0.2eM

SDS:CAPB WLMs with no additional NaCl (these two quantities are discussed in §2.3.2,

p.26 onwards) - the data is from Table 4.6. This data shows that at 0.1eM both the

entanglement length and the average mesh size of the network structure decrease with

additional ionic strength upto 3% wt NaCl, yet both increase at 0.2eM above ∼ 1.5% wt.

This increase in ξ and le is consistent with the onset of branching discussed above, and

the decrease is a sign that the micelles are lengthening and becoming more entangled.
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4.5 Study: Effect of PEO concentration on WLM Rheology

In this study the 0.1eM and 0.2eM systems with 0% additional NaCl and varying PEO

concentrations are compared using bulk rheology and DWS. As described previously, the

PEO used here has mean MW = 4×106 amu, rg ≈ 60nm and c∗ ≈ 0.7% (values from

Table 2.2, p.33).

4.5.1 Results from bulk rheology
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Figure 4.19: Graphs showing the rheological changes in a 0.1 eM SDS:CAPB WLM
system with additional PEO at 0,0.1 and 0.5% wt. and no additional NaCl Left: G′

and G′′ against Frequency. Right: Cole-Cole plots for the same data
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Figure 4.20: Graphs showing the rheological changes in a 0.2 eM SDS:CAPB WLM
system with additional PEO at 0,0.1 and 0.5% wt. and no additional NaCl Left: G′

and G′′ against Frequency. Right: Cole-Cole plots for the same data
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4.5.2 Results from DWS
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Figure 4.21: G′,G′′ vs. ω for 0.1 eM SDS:CAPB, 0% NaCl, graphs shown with
increasing concentration of PEO
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Figure 4.22: G′,G′′ vs ω for 0.2 eM SDS:CAPB, 0% NaCl, graphs shown with in-
creasing concentration of PEO.

Physical Interpretation and Implications

For the bulk rheology of the 0.1eM system (Figure 4.19) we see that PEO = 0.1% ( cc∗ =

0.14) makes negligible change to the rheological behaviour of the WLM network, from

which I conclude that there is no strong chemical interaction between the polymer and

the other components, and that the existing network is not disrupted. When the polymer

concentration is increased to PEO = 0.5% ( cc∗ = 0.71), τR increases by more than an

order of magnitude (0.2s to 5s) and an accompanying increase is seen in G0, ie. an

increase in elasticity.

It is interesting to note that the corresponding DWS samples (Figure 4.21) do not show

the increase in τR with PEO = 0.5%, or the minima inG′′, with bothG′ andG′′ increasing

monotonically at this polymer concentration. I can only assume that the tracer particles
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added for the DWS measurements are interacting with the PEO, possibly disrupting the

PEO network structure, which has shown an increase in elasticity in Figure 4.19.

Unlike the 0.1eM results, additional PEO = 0.1% at 0.2eM results in significant rheolog-

ical changes (Figure 4.20); τR decreases from ≈ 20s to 16s, G′ decreases from ≈ 200Pa to

140Pa, and G′′min increases slightly. This implies that the WLMs become less entangled

and/or shorter - le
L̄

increases by a factor of 3. As the rheological properties of the PEO

at this concentration are not significant enough to account for the changes in behaviour

alone, there must be interactions between the PEO and surfactant molecules. Surpris-

ingly, the effect seen here is opposite to that for the 0.1eM system, and may indicate

that some surfactant is condensing along the polymer backbone, thereby reducing the

free surfactant molecules that can contribute to the WLM network.
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Figure 4.23: ξ and le for 0.1 and 0.2eM SDS:CAPBWLM solutions with 0% additional
NaCl and 0,0.1 or 0.5% additional PEO 4M. Data from Table 4.6.

Figure 4.23 shows ξ for 0.1 and 0.2eM and le for 0.2eM SDS:CAPB WLMs; in com-

parison with Figure 4.18 (p.114), the PEO has a much smaller effect on the mesh size

and entanglement length than the NaCl. This indicates that the WLMs are probably

becoming shorter, rather than less entangled as discussed above, on the addition of PEO.



Chapter 4. Wormlike Micelle Rheology and Microrheology 118

A less entangled system would show a large increase in both ξ and le; the small changes

shown here show that the surfactant molecules condensing along the polymer backbone

is a more likely explanation for the rheological changes shown in Figures 4.19 and 4.20.

This results in shorter micelles with the network structure maintaining its correlation

length and mesh size.

4.6 Study: Effect of PEO, NaCl and surfactant concentra-

tion on WLM Rheology

In this study the changing rheology of the SDS:CAPB system is investigated using bulk

rheology and DWS whilst varying the NaCl, PEO and surfactant concentrations.

4.6.1 Results from bulk rheology
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Figure 4.24: Graphs showing the rheological changes in a 0.1 eM SDS:CAPB WLM
system with additional PEO at 0, 0.1 and 0.5% wt. and 1.5% wt. additional NaCl.

Left: G′ and G′′ against Frequency. Right: Cole-Cole plots for the same data.
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Figure 4.25: Graphs showing the rheological changes in a 0.1 eM SDS:CAPB WLM
system with additional PEO at 0, 0.1 and 0.5% wt. and 3% wt. additional NaCl. Left:

G′ and G′′ against Frequency. Right: Cole-Cole plots for the same data.
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Figure 4.26: Graphs showing the rheological changes in a 0.2 eM SDS:CAPB WLM
system with additional PEO at 0, 0.1 and 0.5% wt. and 1.5% wt. additional NaCl.

Left: G′ and G′′ against Frequency. Right: Cole-Cole plots for the same data.
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Figure 4.27: Graphs showing the rheological changes in a 0.2 eM SDS:CAPB WLM
system with additional PEO at 0, 0.1 and 0.5% wt. and 3% wt. additional NaCl. Left:

G′ and G′′ against frequency. Right: Cole-Cole plots for the same data.
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4.6.2 Results from DWS

0% PEO

100

101

102

103

104

G
’,
G

”
(P

a)

10−2 100 102 104 106

ω (Hz)

G’

G”

0.1% PEO 0.5% PEO

10−2 100 102 104 106

ω (Hz)

G’

G”

10−2 100 102 104 106

ω (Hz)

G’

G”

Figure 4.28: G′,G′′ against frequency for 0.2 eM SDS:CAPB, 1.5% NaCl, graphs
shown with increasing concentration of PEO.

Physical Interpretation and Implications

0.5% PEO completely changes the rheological behaviour of these samples, which are

already in a highly entangled state due to the additional 1.5% wt. NaCl. Since G0 is

seen to increase along with τR, the modifications to the network structures could be

bridging [185], and therefore a full analysis requires a model which also accounts for the

relaxation time of the transient network. This can be implemented by adding a second

term into Equations 2.11 and 2.12 yielding:

G′(ω) = Gmicelle
τ2

micelleω
2

1 + τ2
micelleω

2
+Gtransient

τ2
transientω

2

1 + τ2
transientω

2
(4.3)

G′′(ω) = Gmicelle
τmicelleω

1 + τ2
micelleω

2
+Gtransient

τtransientω

1 + τ2
transientω

2
(4.4)

which in the spring/dashpot analogy introduced in §2.1 equates to a second spring/dash-

pot pair in parallel with the first.

Figure 4.29 shows the Cole-Cole plots with double-Maxwell fits for the non-Maxwellian

data from Figures 4.25 and 4.27. These fits were made by using the Levenburg-Marquardt

algorithm to apply a least squares fit to Equations 4.3 and 4.4, the code for which is in
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Figure 4.29: Cole-Cole plot showing Experimental data and double Maxwell fit using
Equations 4.3 and 4.4. Both samples are SDS:CAPB micelles with 3% wt. NaCl and
0.5% PEO 4M; the 0.1M data (4) is from Figure 4.25 and the 0.2M data (�) is from

Figure 4.27.

Appendix C. As we can see, the addition of a second relaxation time to the model gives

a good fit to the experimental data, implying that these systems may have a transient

network structure created by the PEO.
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Figure 4.30: ξ, le and L̄ for 0.1eM SDS:CAPB WLMs with 1.5% NaCl and increasing
PEO concentration.

Figure 4.30 shows ξ, le and L̄ for the 0.1 eM WLMs with 1.5% NaCl shown previously

in Figure 4.24. Here we see that the mesh size and entanglement length both increase,

whilst the average length of the micelles L̄ decreases from ∼2800→1200nm with 0.1%
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PEO 4M, and down to ∼380nm with 0.5% PEO 4M. These effects are consistent with

surfactant material condensing onto the polymer backbone, shortening the micelles, and

disrupting the network structure at 0.5% as seen in Figure 4.24.
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Figure 4.31: ξ, le and L̄ for 0.1eM SDS:CAPB WLMs with 3% NaCl and increasing
PEO concentration.

Figure 4.31 shows ξ, le and L̄ for the 0.1eM SDS:CAPB WLMs with 3% additional NaCl

shown previously in Figure 4.25. In contrast to the 1.5% NaCl samples shown above,

the mean micellar length L̄ shows a maxima before decreasing to ∼300nm with 0.5%

PEO, whilst ξ and le both increase. The increase in le is much larger here than seen

previously, showing a higher level of disruption to the micellar network, also shown in

the Cole-Cole plots in Figure 4.25. However, the maxima in L̄ implies that the polymers

may be wrapping around the micelles, encouraging them to lengthen, but as polymer

concentration c → c∗, the network structure is disrupted in much the same way as for

the 1.5% samples.

Figure 4.32 shows ξ, le and L̄ for the 0.2eM WLMs with 1.5% NaCl and increasing PEO

concentration shown previously in Figure 4.26. Here we see a maxima in L̄, first seen in

the 0.1eM 3% NaCl samples in Figure 4.31, however in this case le decreases slightly and ξ

remains roughly constant as the polymer concentration is raised from 0.1→0.5% wt. This
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Figure 4.32: ξ, le and L̄ for 0.2eM SDS:CAPB WLMs with 1.5% NaCl and increasing
PEO concentration.

implies that the micelles are becoming much shorter (to ∼250nm as seen previously), yet

the properties of the network structure appear to be maintained. This is interesting as

in Figure 4.26 we see that G0 decreases by ∼100Pa with 0.1% PEO; this loss of elasticity

would be explained by surfactant material condensing onto the polymer, however the

constant ξ as c→ c∗ (for the PEO) suggests that the polymer may be embedding itself

in the micelles, or wrapping around them, with the corresponding increase in micellar

diameter accounting for the constant mesh size.

4.7 Study: Effect of preservatives on WLM Rheology

Formulations which use biological extracts are prone to encouraging the growth of organ-

isms; common examples of polymeric extracts are Dextran (a branched polysaccharide)

and guar gums such as Jaguar. As a result, many commercial products contain small

amounts of preservative in order to maintain sterility.

In §4.8 a polyelectrolyte derived from guar gum (Jaguar) is added to the micelle network,

and therefore a preservative is required; in order to ascertain the effect of the preservative
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on the micelle network, this section shows the results from a precursor study in which

the rheological changes brought about by Glydant and Nipagin are investigated. The

Nipagin was used at 0.2% wt. and the Glydant was used at 0.06% wt. throughout -

these concentrations were pre-determined by Unilever. These results were all obtained

using an Anton Paar MCR101 rheometer at Nottingham University Sutton Bonington

campus.

4.7.1 Results from bulk rheology

4.7.1.1 Glydant Results
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Figure 4.33: Comparison of 0.1M SDS:CAPB, 0% NaCl WLM with and without
Glydant preservative; Left: G′,G′′ vs Frequency, Right: Cole-Cole plot for the same

data.
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Figure 4.34: Comparison of 0.1M SDS:CAPB, 1.5% NaCl WLM with and without
Glydant preservative; Left: G′,G′′ vs Frequency, Right: Cole-Cole plot for the same

data.
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4.7.1.2 Nipagin M Results
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Figure 4.35: Comparison of 0.1M SDS:CAPB, 0% NaCl WLM with and without
Glydant preservative; Left: G′,G′′ vs Frequency, Right: Cole-Cole plot for the same

data.
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Figure 4.36: Comparison of 0.1M SDS:CAPB, 1.5% NaCl WLM with and without
Glydant preservative; Left: G′,G′′ vs Frequency, Right: Cole-Cole plot for the same

data.

Physical Interpretation and Implications

Figures 4.33 and 4.34 show that at both 0.1 and 0.2eM surfactant concentrations, the

additional Glydant has negligible effect on the WLM network structure. Conversely,

Figures 4.35 and 4.36 show that Nipagin M significantly modifies the WLM rheology,

with the relaxation time τR increasing by an order of magnitude in the 0.1eM sample

and decreasing by an order of magnitude in the 0.2eM system.

This is interesting behaviour in itself, however for the purposes of determining the most

appropriate preservative these results are sufficient to choose Glydant as the preservative

in the polyelectrolyte study.
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4.8 Study: Effect of a polyelectrolyte on WLM Rheology

The microstructures and interactions present in polymer-surfactant systems play an im-

portant role in fields such as personal care products [180, 186], paints [187] and oil

recovery [188]. In personal care products, polymers have traditionally been used as

thickening agents, however the properties of polymers and polyelectrolytes have proven

to be beneficial in other ways, for example as deposition enhancers [189, 190] and to

reduce skin irritation [186, 191].

In polyelectrolyte-WLM systems such as hair products, where dilution during use will

reduce the overall surfactant concentration, a complexation process can occur in which

the system moves from a single-phase into a two-phase region on the phase diagram, so

the product phase separates. This flocculation point is when the active material (silicone,

alcohol or polymer, for example) is most readily adsorbed onto the keratin substrate (hair

fibres), usually with the cationic polyelectrolyte as an adsorption agent [180].

Presented here are the results of investigations into the phase behaviour and rheology

of wormlike micelle (WLM) solutions made from eM mixtures of the surfactants sodium

dodecyl sulphate (SDS) and cocamidopropyl betaine (CAPB) in the presence of either

charged or uncharged polymers; Jaguar and poly(ethylene oxide) (PEO) respectively.

There are two phase boundaries for the polyelectrolyte systems (see Section 4.8.1 below),

above the higher phase boundary the sample is a single phase. This phase boundary is

found for the WLM with Jaguar system for a range of polymer and NaCl concentrations,

and the bulk rheology is compared with samples of WLMs with PEO at similar molar

concentrations to the Jaguar.
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4.8.1 Background

Self-assembled structures of SDS and CAPB have been shown to undergo a sphere-

to-rod transition at low concentrations (∼10mM) [184]. On increasing the surfactant

concentration or on the addition of electrolyte the system becomes Maxwellian, showing

a well-defined plateau in G′ and a defined minima in G′′, whilst at high concentrations

(>3% wt. NaCl), behaviour indicative of branching has been seen [62], this is also shown

in the previous section.

The combination used here of anionic (SDS) and zwitterionic (CAPB) surfactants with

a cationic polyelectrolyte (Jaguar) can be regarded as a model shampoo system [11, 12,

180]. In these model systems, three distinct regions have been observed due to the strong

associative-binding of a polyelectrolyte with an oppositely-charged surfactant [180, 192]:

• At low surfactant concentrations the system remains in a single phase. At a given
surfactant concentration, the reduction in the overall polyelectrolyte charge due to
surfactant-binding will encourage the polymer to form particles (∼100nm [192]),
with a net positive charge.

• At intermediate surfactant concentrations the particles aggregate due to further
surfactant-induced charge reduction and the system phase separates.

• At higher surfactant concentrations, the surfactant-binding reverses the net charge
on the particles, converting the system to a single-phase.

Although the phase separation region has useful properties for hair products, flocculation

increases the turbidity, which is undesirable for commercial shampoo systems. A fine

tuning of the parameters can lead to a system which has desirable properties for the

consumer (rheology, turbidity, foaming), and which, on dilution, performs the required

actions (cleansing, depositing material).

The aims of this study are as follows:

• To determine the upper phase boundary region of SDS:CAPB with Jaguar for
various surfactant, polyelectrolyte and salt concentrations.
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• To measure the changes in the rheological properties of the single-phase system as
the concentration of each component is varied.

• To understand the changes in rheology and network structure present in this WLM
system on the addition of a charged or uncharged polymer.

4.8.2 Methods and Mixing Protocol

4.8.2.1 Sample Preparation

Various mixing protocols were tried until a suitable one was found; all the samples

presented in this work were mixed using the following three-stage process:

• The Jaguar (or PEO, depending on the sample2) was mixed on its own with around

half of the required water. The Jaguar requires around 24-48 hours of low-shear

mixing (�1000rpm) at 50◦C in order to fully dissolve. Low-shear rates were used so

as not to damage the polymer, and this mixing was performed in 50mL centrifuge

tubes with a magnetic stirrer. On contact with water, the slight hydrophobicity

of the Jaguar means that the powder disperses, and requires mechanical mixing

along with heat to dissolve. In the protocols where Jaguar powder was added to

a pre-formed micelle network structure, the polyelectrolyte never fully dissolved,

remaining in visible ‘flocs’.

• The WLM system (SDS, CAPB and Glydant) was mixed separately with the re-

maining water.

• Once both samples had cleared, they were combined and salt was added last, if

required.
2A further set of experiments were also performed which showed that pre-dissolving the PEO in water

before addition to the WLM structure results in no rheological change to the system compared with the
PEO being added later. This pre-dissolving is necessary for the Jaguar, however.
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All samples were centrifuged at 2000rpm for 300 seconds, then left to equilibrate for at

least 24 hours before experiments were performed. Small amounts of the more turbid

samples were taken and centrifuged at 12,500 rpm for 10 minutes. On finding two

samples, one which phase separates and one which remains in a single phase after high-

speed centrifuging, we know the limits of the phase boundary for this system. The phase

boundaries were calculated to 2 d.p. of surfactant concentration.

It should be noted that in previous work using Jaguar [192] the polyelectrolyte was puri-

fied before mixing, however Unilever do not intend to further purify the raw ingredients,

so in this work the Jaguar was used as it came from Rhodia.

4.8.2.2 Rheology Protocol

All rheological measurements were made on an Anton Paar MCR 301 with Peltier Hood.

Oscillatory rheology measurements were performed using the protocol described in §2.2.3.

4.8.2.3 Spectrophotometer Protocol

Spectrophotometer measurements were made on a Beckman Coulter DU Series machine.

A WLM formulation without any additional polymer or salt was used as the calibration

sample for the measurements. Experiments were taken with wavelength λ = 600nm, and

the sample absorption relative to the calibration sample is reported.
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4.8.3 Results, Discussion and Implications

SDS:CAPB Sym- Jaguar PEO 4M csalt Absorp. Floc- G0 τR Maxw-
(eM) bol (% wt.) (% wt.) (% wt.) culated (Pa.s.) (s.) ellian
0.01 ◦ 0.1 (13) 0 1.5 0.049 × N/A N/A N/A
0.02 ◦ 0.1 (13) 0 1.5 0.020 × N/A N/A N/A
0.05 • 0.1 (17) 0 1.5 0.158 X N/A N/A N/A
0.06 • 0.1 (17) 0 1.5 0.049 × 41 7.69 X
0.06 • 0 0 1.5 0.0 × 30 12.5 X
0.06 • 0 0.2 1.5 0.0 × 30 28.5 X
0.06 • 0 0.4 1.5 0.0 × N/A 25.0 ×
0.07 • 0.1 (17) 0 1.5 0.044 × 45 5.0 X
0.08 • 0.1 (17) 0 1.5 0.030 × 60 5.26 X
0.10 • 0.1 (17) 0 1.5 0.01 × 100 10.0 X

0.10 4 0.1 (13) 0 0 0.150 X N/A N/A N/A
0.11 4 0.1 (13) 0 0 0.045 × N/A 1.42 ×
0.11 4 0 0 0 0.0 × N/A 1.66 ×
0.11 4 0 0.2 0 0.0 × N/A 1.0 ×
0.11 4 0 0.4 0 0.0 × N/A 1.11 ×
0.12 4 0.1 (13) 0 0 0.031 × N/A 2.85 ×
0.13 4 0.1 (13) 0 0 0.017 × N/A 4.0 ×
0.15 4 0.1 (13) 0 0 0.02 × 105 9.09 X

0.14 N 0.1 (17) 0 0 0.162 X N/A N/A N/A
0.15 N 0.1 (17) 0 0 0.110 × 150 8.0 X
0.15 N 0 0 0 0.0 × 130 33.3 X
0.15 N 0 0.2 0 0.0 × 140 20 X
0.15 N 0 0.4 0 0.0 × 170 22.2 X
0.16 N 0.1 (17) 0 0 0.051 × 180 10.0 X
0.17 N 0.1 (17) 0 0 0.035 × 190 13.3 X
0.18 N 0.1 (17) 0 0 0.013 × 210 15.87 X

Table 4.7: Results from rheology and spectrophotometry for all samples. The bolder
colours represent those samples which phase separated. csalt is the additional salt

concentration in each sample, excluding the component from the CAPB solution.

Jaguar C-13-S, 1.5% NaCl

Jaguar C-17, 1.5% NaCl

Jaguar C-13-S, 0% NaCl

Jaguar C-17, 0% NaCl

Figure 4.37 shows the flocculation regions specified in Table 4.8.3. Jaguar C-13-S samples

with 1.5% wt. additional NaCl remained clear and colourless down to 0.01 eM surfactant

concentration, and therefore the flocculation region is not specified. These regions are
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Figure 4.37: Phase diagram for SDS:CAPB micelles with and without additional
NaCl. The red regions indicate surfactant and salt combinations in which the Jaguar

polyelectrolyte flocculates.

defined by the upper phase boundaries, and there may exist lower phase boundaries as

described in §4.8.1 but these are not relevant to this study.
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Figure 4.38: Variation of pH with SDS:CAPB surfactant concentration. The white
area represents the pH levels for which CAPB can be considered to have one negative
charge. No buffering agent (such as citric acid) was used in this work in order to avoid

possible effects from the buffer on the WLM network.

Figure 4.38 shows that for all of the rheology data presented here, we can consider CAPB

to be negatively charged.

Figure 4.39 shows the absorption of each sample at a wavelength λ = 600nm, relative to

the absorption of a WLM formulation without Jaguar; the higher the value, the greater
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Figure 4.39: Absorption versus surfactant concentration at 600nm. The red arrows
signify the samples which phase separated.

the turbidity. Samples which phase separated after high-speed centrifuging (12.5k RPM)

are labelled with red arrows. These mark the phase boundary of each system, indicating

that absorption could be used as a quick test of phase behaviour.

4.8.3.1 Phase Boundary: Jaguar C-17 with Salt

Figure 4.40 shows the changing rheology of 0.06M SDS:CAPB with 1.5% wt. NaCl with

additional Jaguar or PEO. This system shows highly entangled viscoelastic behaviour

at these surfactant concentrations; the semi-circular Cole-Cole plots are indicative of a

well-developed Maxwellian system. On the addition of Jaguar C-17, the relaxation time

shortens and the elastic modulus (G0) increases dramatically, however when the Jaguar

is replaced with PEO 4M MW, the modulus remains roughly constant but the Cole-Cole

plots show deviation from Maxwellian behaviour. This is not a disruption to the micellar

network, otherwise G0 would decrease dramatically, so we can assume that at the higher

PEO concentration we have extra relaxation times arising.
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Figure 4.40: Top left: G′,G′′ vs ω, Top right: Cole-Cole plot, Bottom left:
Complex viscosity vs ω. All graphs are for 0.06 eM SDS:CAPB with 1.5% wt. additional
salt. WLM refers to the pure SDS:CAPB micelle system with additional salt only, J17

refers to the samples with 0.1% wt. Jaguar C-17 and the PEO is 4M MW.

The higher PEO concentration sample (blue lines) also becomes gel-like at higher fre-

quencies; the two-decade region where G′ and G′′ are nearly parallel is classic gel-like

behaviour, again indicating a spread of relaxation times.

Physical interpretation and Implications
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Figure 4.41: Left: Data and Fit for G′ and G′′ against Frequency, Right: The same
data in Cole-Cole form, showing the inappropriate nature of a double Maxwell model

for this sample.
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Figure 4.41 shows an application of the double Maxwell model (introduced in §4.6) to

the PEO 0.4% wt. data shown in Figure 4.40. A comparison with the double Maxwell

fits shown in §4.6 shows that this is not an appropriate model for this particular gel-like

sample as a small, discrete number of τR values (in this case two) is far too simplistic for

a gel which is better modelled with a continuous spectrum of relaxations. I can therefore

conclude that in this case the deviation from Maxwellian behaviour is not an indication

of a transient network as shown previously.

Current models for the interaction of surfactant micelles with a polymer additive point to

two behavioural regimes; bridging [185, 193] and mopping-up [11, 12, 180, 194]. Bridging

is defined as the polymer embedding parts of itself in the cores of multiple micelles; this

creates a transient network structure which acts to increase the elasticity of the system

[180]. Mopping-up is when the polymer chains are separate to the micelles, but accrete

surfactant from the micellar network, which acts to shorten the micelles, resulting in

decreased τR and decreased G0.

We can see from the changing rheological behaviour in Figure 4.40 that there is a major

interaction with the PEO, we also know that the PEO is not ‘mopping-up’ the surfactant,

else the behaviour would not resemble an entangled state. We can therefore say with some

certainty that the PEO has formed part of the network structure, most probably through

bridging, therefore maintaining the elasticity whilst creating a spread of relaxation times.

The behaviour of the Jaguar is more difficult to ascertain; Jaguar brings additional ionic

strength (much like the NaCl and CAPB discussed previously), but τR decreases whilst

G0 increases, which is not covered by current theories. One would expect the relaxation

time to decrease along with a corresponding increase in the elasticity if the micelles were



Chapter 4. Wormlike Micelle Rheology and Microrheology 135

branching due to the branches ‘sliding’ down the micellar length, but there are currently

no experimental results showing that a polyelectrolyte can initiate branching in micelles.

The Jaguar is positively charged, and we know that this system is around pH 5 (see Figure

4.38), therefore the CAPB is slightly positively charged. If the Jaguar were mopping-up

the surfactant it would therefore mop-up the SDS preferentially over the CAPB; this

would result in τR and G0 both decreasing, which we can see is not the case as G0

increases substantially. From Equations 2.31 and 2.32, we know that G0 is dominated

by the entanglement lengths; subtracting the SDS would make the micelles charged, and

therefore less flexible, however the entanglement length would increase slightly due to the

extra length of CAPB compared with SDS molecules. If the number of entanglements

remained constant, but the micelles became thicker through CAPB-domination, then the

density of entanglements would decrease. This would result in a corresponding decrease

in the plateau modulus as G0 is proportional to the density of entanglements.

We can therefore be confident that the Jaguar is not mopping-up or bridging, and as a

consequence its effect is not clear, although these results do hint at previously unseen

behaviour in a WLM system with polyelectrolyte.
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4.8.3.2 Phase Boundary: Jaguar C-13-S without Salt
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Figure 4.42: Top left: G′,G′′ vs ω, Top right: Cole-Cole plot, Bottom left:
Complex viscosity vs ω. All graphs are for 0.11 eM SDS:CAPB with no additional salt.

Figure 4.42 shows the rheology of the 0.11 eM SDS:CAPB WLM system with 0.1% addi-

tional Jaguar C-13-S, and additional PEO at 0.2 and 0.4% wt. The 0.11eM SDS:CAPB

samples do not show a highly entangled system; the lack of a plateau in G′ or a well-

defined minima in G′′ shows that the system consists of rod-like micelles rather than

worm-like. It is therefore difficult to discuss relaxation times when there is a lack of

entanglements, but we can see that neither PEO nor Jaguar has a significant effect on

this system.

In previous studies (§4.6,§4.8.3.1) we have shown that polymer bridging between micelles

strengthens the micellar network and therefore increases the elasticity. In this case there

is no network structure to reinforce, and therefore all samples show similar, but not

identical, rheological behaviour.
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4.8.3.3 Phase Boundary: Jaguar C-17 without Salt
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Figure 4.43: Top left: G′,G′′ vs ω, Top right: Cole-Cole plot, Bottom left:
Complex viscosity vs ω. All graphs are for 0.15 eM SDS:CAPB with no additional salt.

Figure 4.43 shows the rheological properties of 0.15 eM SDS:CAPB wormlike micelles

with the same polymer additions as before, with no additional salt. We can see that even

without the extra ionic strength from the NaCl, this system forms an entangled network

structure at these concentrations, signified by the large plateaus in G′, minimas in G′′

and the semi-circular Cole-Cole plots.

The behaviour is akin to the lower concentration system presented in §4.8.3.1 with G0

increasing slightly, yet τR decreasing significantly on the addition of either polymer. This

effect is most marked with the Jaguar, which reduces τR to 1
4 of its initial value, and

therefore has a stronger influence on the system than the PEO at either concentration.

We know that the WLM-only system is not branched at 0.15 eM surfactant concentration,

firstly because the same system is not branched at 0.2 eM (§4.3), and secondly because
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the Cole-Cole plots do not show deviations indicative of branching. As a result we can

assume that there is no branching in the systems with polymer, however branching is

the only known mechanism by which G0 can increase whilst τR decreases. We therefore

cannot interpret this reliably, but again this hints at previously unseen behaviour.

4.8.3.4 Jaguar C-13-S with increasing surfactant Concentration
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Figure 4.44: Top left: G′,G′′ vs ω, Top right: Cole-Cole plot, Bottom left:
Complex viscosity vs ω, Bottom right: Relaxation time vs. Surfactant Conc.. All
graphs are for 0.1% Jaguar C-13-S with no additional salt, and the number in the graph

keys show the equimolar surfactant concentration.

Figure 4.44 shows the transition into a highly entangled WLM system as the relative

surfactant concentration is increased from 0.11 to 0.15 eM SDS:CAPB, but with no

additional NaCl and the polyelectrolyte concentration held constant at 0.1% wt. Only at

0.15 eM SDS:CAPB does the system show Maxwellian behaviour; between 0.11 and 0.15

eM τR increases roughly linearly with surfactant concentration, however G0 is ambiguous

for all samples except 0.15 eM as there is no well-defined G′ plateau or G′′ minima.



Chapter 4. Wormlike Micelle Rheology and Microrheology 139

4.8.3.5 Jaguar C-17 with Increasing Surfactant Concentration
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Figure 4.45: Top left: G′,G′′ vs ω, Top right: Cole-Cole plot, Bottom left:
Complex viscosity vs ω, Bottom right: Relaxation time vs. Surfactant Conc.. All
graphs are for 0.1% Jaguar C-17 with no additional salt, and the number in the graph

keys show the equimolar surfactant concentration.

Figure 4.45 shows the same behaviour as the Jag-13-S system without salt (Figure 4.44);

relaxation time and G0 both increase along with the surfactant concentration. Unlike

the C-13-S system, these samples show an entangled network structure even at the lowest

surfactant concentration.
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4.8.3.6 Jaguar C-17 with NaCl and Increasing Surfactant Concentration
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Figure 4.46: Top left: G′,G′′ vs ω, Top right: Cole-Cole plots of experimental data
(symbols) and single-exponential Maxwell fits (solid lines). Bottom left: Complex
viscosity against Frequency, Inset: Zero-shear viscosity against surfactant concentra-
tion. Bottom right: Relaxation time and plateau modulus against eM surfactant
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Figure 4.46 shows the rheological changes in a SDS:CAPB WLM system with 1.5% wt.

NaCl and 0.1% wt. Jaguar C-17 when the eM surfactant concentration is varied from

0.06 to 0.10. All samples show a highly entangled Maxwellian system with well-defined G′

plateaus over 2-3 decades and semi-circular Cole-Cole plots. Compared with Figures 4.44

and 4.45, the extra ionic strength in this system screens the charges along the micelles

allowing them to elongate and therefore entangle at such a low surfactant concentration.

The top-right graph in Figure 4.46 shows the Cole-Cole experimental data (symbols)

and single-exponential Maxwellian fits (solid lines) - the fitting code can be found in

Appendix B (p.214). All samples show themselves to be very close approximations to an

ideal Maxwell fluid, with only small deviations from the ideal semi-circular fit.
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The behaviour here is abnormal however, as τR and η0 both show a minima with in-

creasing surfactant concentration. A maximum in η0 has been witnessed and explained

in this context as a change from entangled to branched dynamics, whereby the increase

in the end-cap energy EC is counter-balanced by the opposite curvature created during

micellar branching [56]. A minimum however shows exactly the opposite behaviour; on

increasing the surfactant concentration with 0.1% wt. Jaguar C-17 the system initially

loses viscosity before gaining it again, whilst maintaining a highly entangled, Maxwellian

network structure at all times.
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Figure 4.47: Comparison of 0.1M SDS:CAPB WLM 1.5% NaCl with and without
0.1% wt. Jaguar C-17. The WLM only data (black lines) are from a previous WLM
study (Figure 4.24, p.118) and the Jaguar data (blue lines) are the same data from

Figure 4.46 above.

In order to distinguish the polymeric from the micellar effects, we must look at the

rheology of this system alongside that of a pure WLM system, shown in Figure 4.47.

Here we see that 0.1% Jaguar C-17 decreases τR and increases G0, yet G′′min remains

roughly constant. This behaviour could be indicative of branching, however as mentioned

previously there is currently no literature to suggest that a polyelectrolyte could initiate

branching. Flood [195] has reported growth of spherical into rod-like micelles on the

addition of a polyelectrolyte, experiments performed using small-angle neutron scattering
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(SANS) and confirmed using cryo-TEM. This is important as it shows a movement on the

phase diagram, on the addition of a polyelectrolyte, in the same direction as required for a

transition to branching. Khokhlov et al [196] have also speculated that a polyelectrolyte

network could collapse on the addition of an oppositely charged surfactant, exhibiting 3

distinct regimes;

• Low surfactant concentration - no micelles formed, polymer network dominates.

• Intermediate surfactant concentration - micelles form (c > CMC), and the polymer
network collapses due to the loss of osmotic pressure from the surfactant molecules.

• High surfactant concentration - Micelle network dominates.

These regimes result in a minima in viscosity with increasing surfactant concentration,

however we know from Lips et al [184] that eM solutions of SDS and CAPB form rodlike

micelles at ∼0.015 eM, therefore it is unlikely that the minima in τR at ∼0.07 eM is due

to polyelectrolyte network collapse.

It is therefore possible that these results show an entangled WLM system branching on

the addition of a polyelectrolyte, however this would need to be confirmed using cryo-

TEM, and this still does not explain how increasing the eM surfactant concentration

from 0.06 to 0.07 causes τR and η0 to decrease.
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4.8.3.7 Jaguar Charge Density Comparison
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Figure 4.48: Top left: G′,G′′ vs ω, Top right: Cole-Cole plot, Bottom left:
Complex viscosity vs ω, Bottom right: Relaxation time vs. Polymer Conc.. All

graphs are for 0.15 eM SDS:CAPB with no additional salt, and 0.1% Polymer

Figure 4.48 shows the effect that the different charge densities have on a Maxwellian

WLM system; both Jaguars decrease the relaxation time and increase the plateau mod-

ulus. It is interesting to note that the extra charge density of the C-17 Jaguar results in

a lower G0 than the lower charge density C-13-S, yet G′′min remains constant regardless of

Jaguar concentration or charge density. This could also point to polyelectrolyte-induced

branching, as the extra charge density induces more branches, reducing G0 further.
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Figure 4.49: The dynamic power spectrum of 0.1 eM SDS:CAPB, 0% PEO,
1.5%NaCl. The red arrows shows increased particle movements due to the dissolu-

tion.

4.9 Non-equilibrium Optical Tweezer experiment on a model

micelle system

Figure 4.49 shows the evolution of the power spectrum during a 20:1 dilution experiment

of 0.1 eM SDS:CAPB, 0% PEO, 1.5% wt. NaCl. The geometry and experimental

protocol was the same as described in §3.3.4; in Chapter 3 the solutions were semi-dilute

aqueous polymer samples, here the sample being diluted is a living polymer system with

extra ionic strength to create an entangled, Maxwellian system. The bulk rheology of this

pre-diluted sample is shown by the squares in Figure 4.14, and the DWS microrheology

of this pre-diluted sample is shown by the central graph in Figure 4.16. Both of these

techniques show this system to have a highly entangled, viscoelastic network structure,

with no signs of any branching, mopping up or any other deviation from the Maxwell

model.

The shift towards higher frequencies over time, shown by the red arrow on Figure 4.49,

indicates an overall trend towards a less entangled, more fluid state as the sample dilutes.

The most interesting observation about this data is the quasi-regular appearance of
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‘jumps’ in the data, roughly every 20 minutes. These jumps occur much more frequently

that in the dilution of a pure polymer solution (see §3.4.1 and §3.4.2), but are likewise

attributed to local flaking events. The flaking can be seen by eye as small portions of

material detach from the interface, and is presumed to be part of the dissolution process

of wormlike micelles.

Physical interpretation and implications

This flaking raises interesting questions about the use of a WLM network structure in

commercial products. When introduced in Chapter 2, these micelles were called ‘living’

polymers due to their constant scission and recombination processes which continue even

when the bulk system is at rest. When applying a dilution to these micelles, it is easy to

image the scission processes outnumbering recombinations as the extra solvent pervades

the network structure, causing local sections to break from the bulk material. Although

the system must undergo phase changes as it dilutes (these can be visualised in Figure

2.11 on p.27 as being transitions from (c) to (b) and finally (b) to (a)), the results

above suggest that the dilution gradient is not uniform across the sample plane as it

appears to be in polymer solutions.

4.10 Non-equilibrium Optical Tweezer experiment on a mi-

celle and polymer system

Figure 4.50 shows the PSD evolving over time for a 0.2 eM SDS:CAPB WLM sample

with 1.5% NaCl and 0.5% PEO 4M, diluted 20:1 with water with the same geometry and

protocol as before. This sample has twice the surfactant concentration as the previous
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Figure 4.50: The dynamic power spectrum of 0.2 eM SDS:CAPB, 0.5% PEO 4M,
1.5% NaCl.

dilution study (§4.9) along with a long chain polymer at just under the overlap concen-

tration c∗. The combination of higher surfactant concentration and polymer at ∼ c∗

introduces the possibility of bridging, and also means that this sample has the slowest

dissolution rate of all the non-equilibrium OT experiments presented in this work.

As expected, there is a general trend towards a lower level of entanglement, however the

jumps in the data are less severe and less frequent than reported in §4.9 with a lower

surfactant concentration and without additional polymer.

Physical interpretation and implications

The non-equilibrium data shown in Figure 4.50 shows dynamics with characteristics of

both micelles (frequent jumps) and polymers (long periods of stable dissolution). The

bulk rheology for this pre-diluted sample (Figure 4.26) and the DWS microrheology (Fig-

ure 4.28) both show an entangled system where the behaviour deviates from Maxwellian,

presumably through bridging/branching.
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This data in conjunction with the WLM dilution without polymer (§4.9) shows that

either extra surfactant or additional polymer goes some way towards removing the erratic

dissolution behaviour seen previously.
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Figure 4.51: Comparison of the low-frequency (1 Hz.) dynamics for the 300k PEO
(§3.4.2), WLM (§4.9) and WLM w/PEO 4M non-equilibrium OT experiments.

Although a quantitative comparison is difficult due to the apparently stochastic nature

of the jumps and the absence of repeat experiments, a preliminary attempt at comparing

the various non-equilibrium behaviours is shown in Figure 4.51. The PSD value at 1Hz is

plotted over time for the PEO 300k (§3.4.2), WLM only (§4.9) and WLM with PEO 4M

non-equilibrium experiments. The aqueous polymer sample clearly shows very little in

the way of anomalous behaviour in comparison with the 2 micellar samples; its dilution

shows an even upward trend (towards lower viscosity/higher fluidity).
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4.11 Experimental Study on the Dilution of a prototype

Hair Conditioner using Optical Tweezers

After studies in §4.9 and §4.10 showed the ability of OTs to study the rheology of a WLM

and WLM with polymer system in non-equilibrium conditions, a further investigation

was performed using a prototype Unilever conditioner codename HU25.

As a prototype conditioner, it has some additives on top of the surfactants, salt and

polymers studied so far, most notably polydisperse silicone oil droplets which are tradi-

tionally added to hair products to enhance shine. As a result, no tracer particles were

added during this investigation, and the OT was used to trap an oil droplet, for which

the size was determined later. The dilution protocol and equipment was the same as in

all previous non-equilibrium studies.

Figure 4.52: Prototype Hair Conditioner (HU25) before and during dilution

Figure 4.11 shows two screenshots from this investigation; left: at t = 0s. and right: at

t = 1800s. At t = 0 we see that there is a very high concentration of silicone droplets,

which are highly polydisperse, presumably a result of the mixing protocol. For these
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images the exposure level of the camera was fixed, therefore the increased brightness of

the t = 1800 is a qualitative measure of the sample dilution.

Unfortunately these experiments on HU25 did not yield usable data as the high con-

centration of silicone oil droplets resulted in many particles rapidly becoming trapped

in the potential well, and therefore disrupting the Brownian movements of the primary

particle. These secondary droplets can be seen in the t = 1800s image. Any attempt to

reduce the amount of silicone in this sample would modify both the system rheology and

the efficacy of the final product, therefore in order to obtain usable data, I suggest that

a multiple-trap system such as holographic tweezers or AOD-based time-sharing could

be implemented to remove any secondary droplets from the local area.

4.12 Conclusions and Further Work

These results clearly show for the first time that dual-surfactant SDS:CAPB systems

form highly entangled wormlike micellar networks above ∼0.1 eM surfactant concentra-

tion, and that this level can be reduced considerably (to ∼ 0.06 eM) when extra ionic

strength is added, in the form of NaCl, to screen the charges. With saline concen-

trations above 1.5% wt. some samples show evidence of branching in their rheological

behaviour, however rheology data on its own cannot distinguish between branching and

other behaviours, therefore cryo-TEM experiments [197, 198] must be performed in order

to determine the exact behavioural regime. Increasing the number of samples for each

system would also make it easier to draw firm conclusions as to the behaviour of this

system.

The fact that the OT hardware could not provide reliable micro-rheological data is dis-

appointing, however one goal of this research project was to determine the applicability
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of OTs to Unilever’s rheological studies, to which I can conclude that bulk rheology

yields the most reliable data compared with DWS and OT systems. DWS is a promis-

ing technology, and significantly reduces the experimental time, however the necessary

monodisperse scattering particles are expensive, and may modify the system rheology.

On top of this, due to particle slip the Brownian motion of these additional particles

may not represent the bulk rheological properties [199], which is the fundamental as-

sumption of microrheology. The particle slip ‘correction’ that is usually applied is some-

what arbitrary, and therefore I feel that bulk rheology provides the most reliable data

for quantitative comparisons.

With a true interferometric detection setup for the OTs one could improve the temporal

and spatial resolution, however given that DWS covers a much larger frequency range,

and bulk rheology provides reliable data at frequencies which cover τR for all samples,

I feel that the strength of OTs in studies relevant to Unilever is in the ability to study

rheology in non-equilibrium conditions - something which cannot be achieved reliably

with DWS or bulk rheology.

The non-equilibrium experiments performed in §4.9 and §4.10 show that these OT ex-

periments yield interesting results, however the data is difficult to interpret when the

dilution gradient is nonmonotonic. The prototype conditioner study in §4.11 also raises

questions as to the usefulness of these OT hardware setups in studying complete systems;

I conclude that OTs are potentially extremely useful at studying the non-equilibrium rhe-

ology of certain systems, however where there is a high concentration of droplets (such

as in HU25), high-speed video particle tracking microrheology will yield more reliable

data, and in not using a laser is inherently safer than OT experiments.

Table 4.8 shows the conclusions that can reliably be made from the equilibrium studies
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Table 4.8: Conclusions relating to SDS:CAPB micelles with various concentrations
of PEO 4M MW.

PEO Conc. Behaviour Supporting
% wt. Figures
0.1 No significant changes to rheology of system un-

less the sample is on the verge of branching
(0.2eM SDS:CAPB, 1.5%NaCl), in which case
it lowers G0 considerably.

4.19,4.24,4.25,4.26

0.2 Has a small effect on the sample rheology at all
surfactant concentrations, but shows no sign of
gel-like behaviour.

4.40,4.42

0.4 In a low surfactant concentration system
(0.06eM), shows evidence of gel-like behaviour
(spread of multiple τR values). In all other con-
centrations, G0 always increases showing an in-
crease in elasticity consistent with a transient
network.

4.40,4.41,4.42,4.43

0.5 Can completely disrupt the micellar network,
yielding a gel-like system which shows evidence
of multiple relaxation. times

4.19,4.20,4.24,4.25

performed in this chapter. From Table 2.2 we find that the overlap concentration c∗

of PEO 4M MW is ∼0.7%, and therefore aqueous PEO 4M solutions show entangled

viscoelastic behaviour when the concentration approaches this level. It is therefore not

surprising that a Maxwellian micelle network with additional 0.5% PEO 4M ( cc∗ → 1)

shows evidence of having at least one fast and one slow relaxation time (Figure 4.29),

consistent with current bridging theories [185, 193].

A further investigation to study the cause of the Nipagin phenomena may also yield

previously unseen results; Figure 4.35 shows an increase in τR by an order of magnitude,

however with double the surfactant concentration Figure 4.36 shows a decrease in τR of a

similar level. This hints at a strong interaction between Nipagin and either SDS and/or

CAPB, further investigation of which could lead to additional methods of controlling the

viscosity of personal care products.
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Anomalous Jaguar Behaviour - Physical Interpretation and Implications

§4.8.3.6 shows the truly surprising behaviour of a minima in τR and η0 as the surfactant

concentration is increased. A maxima in these values has been witnessed elsewhere [56],

which can be explained by the onset of branching, however from Figure 4.14 we know

that even the highest surfactant concentration sample in §4.8.3.6 shows no evidence of

branching, only classic Maxwellian behaviour. It is interesting to note that even though

τR and η0 show a minima, G0 increases throughout and all samples show well-defined

G′ plateaus, G′′ minimas and Maxwellian Cole-Cole plots. We can therefore say with

some certainty that whatever underlying mechanism is causing this behaviour, it is not

disrupting the network or adding extra relaxation times. We can also rule out the

Khokhlov polyelectrolyte network collapse regime [196], as the minima in η0 is at ∼ 7×

the critical micelle concentration.

It would be extremely interesting to perform cryo-TEM or fluorescence microscopy exper-

iments to confirm whether the polyelectrolyte is inducing branching, something hinted

at by Flood’s work [195], but previously unseen.



5
Bootstrap Droplets

“If your result needs a statistician then you should design a better experiment.”

Nobel Laureate Ernest Rutherford (1871 - 1937)

5.1 Introduction and Chapter Layout

Many important processes require the controlled evaporation of droplets, from ink-jet

printing (drying of sessile colloidal suspensions) [7, 8] to spray cooling [200] and rocket

propulsion engines (combustion of a fine spray) [201, 202] to name just three. The

understanding of physical processes leading to evaporation is therefore of direct industrial

and commercial relevance as well as being of academic interest.

This chapter presents work performed on sessile droplets of various complex fluid systems

during controlled evaporation. Many fields of scientific research form through serendipity,

and this is no exception. Preliminary work in this area was performed by myself in an

attempt to corroborate the skin-buckling theory of Pauchard and Allain [203] (discussed

in §5.1 below) by studying similar systems, and as a simple non-equilibrium system to

study before moving onto dilution. It soon became apparent that the structures created

153
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in these systems did not conform to any previous droplet evaporation theory, and more

in-depth investigations were undertaken.

A variety of aqueous droplets were studied in this work, and a wide range of analytic

techniques were used to measure their physical quantities; this chapter has been ordered

such that all experimental equipment and techniques are introduced first, and the results

from each droplet system are presented second (an overview is shown in Table 5.1). A

theory accounting for the previously unseen results is also presented, and finally plans

for future work and recent developments by the Fairhurst group.

Table 5.1: Results sections in this chapter. Properties for the PEO/PEG at each MW
can be found in Table 2.2 (p.33), and the Experiments column shows the number of
droplet evaporation experiments performed for each system. This indicates the systems
which showed the most novel behaviour, were investigated further, and therefore have

been given the most attention in this chapter.

Section System MW Experiments
§5.3.1 PEO 100,000 >100
§5.3.2 PEG 20,000 >40
§5.3.3 PEG 8,000 4
§5.3.4 PEG 3,350 5
§5.3.5 PEO 300,000 3

5.1.1 Droplet Evaporation Theory

Various model systems have been used in the experimental study of the drying of complex

fluid droplets. Deegan et al investigated the formation of the familiar ‘coffee-ring stain’

using a model of very dilute micro-spheres suspended in water [204]. They concluded

that enhanced evaporation along the contact line, due to a contact angle θ ≤ 90◦, must

be fed by outward flow from the centre of the droplet. Suspended particles are carried

to the periphery in the flow, and deposited at the edge leading to the familiar ring-like

pattern. As well as material transport, this replenishment of solvent at the contact ring

forces the droplet contact line to stay pinned; the result being that deposition occurs



Chapter 5. Bootstrap Droplets 155

primarily in a narrow band around the droplet edge. Recently, Hu and Larson showed

that this ring-formation can be disrupted in the presence of recirculating currents caused

by Marangoni flow [205, 206].

Parisse and Allain investigated the changing profile of droplets of concentrated suspen-

sions as they dry [207], observing a gelled ‘foot’ near the drop edge which progressively

grows inwards. Allain and Pauchard used the model system of the aqueous polymer dex-

tran to investigate the additional complexities that arise as polymer solutions evaporate

[203]. In this case, the increase in polymer concentration at the droplet’s edge, due again

to the outward flux of water, resulted in a phase change; on the surface of the liquid

droplet a glassy skin formed which was flexible and permeable, but also incompressible.

Further evaporation of water within the droplet led to the glassy skin deforming and

buckling, the various shapes of which have been analysed theoretically [208]. Another

model system is that of a mixture of a hydrophobic and a hydrophilic liquid, investigated

by Rowan et al [209]. These droplets initially dried to a flat puddle with a contact line

that was pinned but that rapidly retreated later causing a nearly spherical droplet to

spring from the puddle - an effect driven by an increase in the surface tension as the

hydrophilic component evaporated first, increasing the contact angle.

5.2 Experimental Methods

Experiments were performed using droplets of aqueous solutions of poly(ethylene oxide)

(PEO) / poly(ethylene glycol) (PEG) with average molecular weight (MW) 3,350 - 300k

as detailed in Table 2.2 (p.33).

All samples were mixed carefully by hand in quantities large enough to negate mea-

surement errors (&50mL); mechanical mixing methods were not used (vortex mixer,
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centrifuge or sonicator) to avoid damaging the polymers. Samples were left to equili-

brate for at least 24 hours before use. The droplets were dispensed extremely slowly

using a Hamilton 710 microlitre syringe onto an isopropanol-cleaned TABA 24mm ×

24mm glass slide, and were left to evaporate in ambient conditions. The needle on the

Hamilton syringe was ∼0.2mm internal diameter, which could potentially lead to high

shear rates during dispensation; droplets from the same sample were tested against ones

dispensed using much wider needles, and there were no major differences observed in the

behaviour. I can therefore conclude that this experimental protocol does not damage the

polymers.

5.2.1 Drop Shape Analysis (DSA)

The contact angle, droplet height and base diameter for each droplet were measured

during evaporation using the Krüss DSA system (DSA Model 10 Mk 2). For each mea-

surement, a droplet was dispensed using a Hamilton 710 microlitre syringe onto a glass

microscope slide, previously cleaned with isopropanol to remove dust and grease. The

droplet was then left to evaporate in an observation chamber (measuring 0.6m by 0.75m

by 0.94m) at ambient conditions where the temperature was monitored to within 0.5◦C.

The chamber was sufficiently large that droplet evaporation did not saturate the local

atmosphere. A digital camera and light source placed either side of the droplet in the

chamber were used to record the drying process. Care was taken to place the slide hori-

zontally and to reduce convective air currents around the droplet due to the light source;

two effects which can interfere with the deposition process.

Images of the drying droplet were recorded at 10 second intervals using Krüss Drop Shape

Analysis (DSA) hardware, and analysed using DSA software. At early times when the

droplet is smooth, the profile is fitted using the Young-Laplace equation [210], and values
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for the droplet base diameter, height, volume and contact angle are calculated. Once

deposition has started, this equation no longer describes the surface so only the total

height and maximum width are extracted reliably. In experiments where the mass was

measured, this was performed using a KERN ALJ160-4NM analytic balance and the

values logged using LabView.

The raw images were converted to binary using ImageJ, and profiles were extracted using

the code in Appendix D which was implemented as an ImageJ macro (this code was

written by Kyle Baldwin and is reproduced here for completeness). This code outputs

the x, y co-ordinates for each profile into a series of text files, which were then processed

using the Python code in Appendix E to obtain volume and surface area with calculated

errors. The code in Appendix E performs an implicit numerical integration over the

droplet surface, calculated from the profile, and therefore makes the assumption that

the droplet is axisymmetric at all times, around the highest point. The errors come

from comparing the area or volume contribution from each side of the central axis, eg.

∆A = ALHS −ARHS.

5.2.2 Optical Coherence Tomography

Optical Coherence Tomography (OCT) is an optical imaging technique which uses the

magnitude and time delay of backscattered photons to construct 2d/3d sub-surface im-

ages of objects, even where the sample is visually opaque. OCT has its foundations

in biomedical imaging, as the resolution (on the order of 1-10µm), and ability to non-

invasively image biological tissue in vivo has led to a variety of specialist uses, such as

ocular [211, 212] and arterial [213] to name just two. Tomographs are easily calculated

in real-time and therefore in terms of resolution and penetration, OCT fills a useful gap

between ultrasound and confocal microscopy [214, 215].
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An OCT image (a ‘tomogram’) will visualise differences in refractive index, therefore in

this work OCT is used to show density fluctuations inside the droplet deposits. The

OCT used in this work has a central wavelength of 1325 nm, with a spectral bandwidth

of 100 nm (full-width half-maximum (FWHM)).

5.2.3 Interferometric Surface Profiling

Nanometre precision profilometry studies were performed using a TaicaanR© Xyris 4000

WL (white light) surface profiler. This allowed visualisation of droplet and deposit

surfaces at nm to µm resolution [216, 217]. The Xyris uses an interferometric technique

to vary the position of a lens required to keep the sample in focus at that point. The

system therefore holds the calibration required to convert the lens height into sample

height.

Although the highest spatial resolution is on the order of a nanometre, this level of

precision increases the experimental time considerably, and is therefore inappropriate for

studying the systems during evaporation, but has been used to image the final deposits.

The experiments performed during evaporation were run at a much lower resolution in

order to achieve as many scans as possible in a given time frame.

5.2.4 Particle Tracking Analysis

For some droplet evaporation experiments the glass slides were placed on an inverted

microscope (Nikon TE-2000 S, as used for the OT experiments in §3.2.2.1, with a Nikon

10× objective lens), in order to magnify and image the droplet from below over time.

The clusters present in PEO systems, discussed in §2.4.3, were used as tracer particles

and therefore these experiments required no modifications to the system under study.
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The positions of these clusters were recorded over time using the tracking algorithm by

Sbalzarini [218], implemented as an ImageJ plugin, yielding velocity profiles across a

2d slice of the droplet over time1. Where velocity profiles are shown in this work, they

always represent the slice closest to the substrate.

5.2.5 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) involves measuring the spin relaxation of atoms to

determine the sample composition. A full description of magnetic resonance techniques

is outside the scope of this work, but can be found in references [219] and [220]. MRI is

used here solely as a means of qualitatively comparing concentration fluctuations.

5.2.6 Scanning Electron Microscopy (SEM)

Scanning Electron Microscopy (SEM) involves targeting a focussed beam of high-energy

electrons at a sample; using the secondary electrons created via electron-sample inter-

actions, the nanoscale structure of the sample can be visualised with resolution on the

order of 10nm. Samples must be prepared so that sufficient secondary electrons are

produced in the SEM chamber, which usually involves ‘sputter-coating’ the samples by

depositing a thin layer of fine metallic particles (diameter ≈ 1nm) onto the surface. Many

other measurements other than imaging can be performed by SEM, for example crystal

structure and chemical analysis [221, 222], however in this work SEM is used solely as a

visualisation tool for the droplet deposits.

A JEOL JSM-480A Scanning Electron Microscope was used along with the JEOL soft-

ware for image capture and calibration.
1The depth-of-field of the Nikon 10× objective was ∼10-20µm, with a field of view ∼3mm × 3mm,

therefore although this is a volume it is sufficiently thin to be considered 2-dimensional.
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5.3 Experimental Data of poly(ethylene oxide) (PEO) Droplets

This section reports the results from evaporative drying experiments of PEG/PEO

droplets from 3.35-300k MW; as shown in Table 5.1 the majority of the research time

was spent on the 100k system as this MW showed the most unusual behaviour, the other

MWs are reported here for a slightly wider perspective and to give some qualitative in-

sights into various unreported drying regimes. I will now show representative data from

an evaporating 100k 10% initial weight droplet in order to clarify the terminology used

in this section.

Figure 5.1 shows the droplet profiles on the right, dissected into the four regimes seen

in many of the 20k and 100k MW droplets presented later. Stage 1 is a ‘standard’

pinned drying regime, where the diameter d remains constant and the loss of solvent is

compensated by the contact angle θ and drop height h decreasing linearly with time.

Stage 2 is a ‘de-wetting’ regime in which the contact line de-pins and recedes, leaving

behind a thin film deposit, whilst θ and h both increase - the start of this stage is

signalled by the increase in h and θ. Stage 3 is a ‘bootstrap’ growth stage in which

the droplet appears to lift itself on top of its deposit, forming a conical shape, until the

entire structure is encased in PEO crystals. Stage 4 is the final shrinking stage, where the

conical deposit loses volume from the remaining liquid evaporating away; this is signified

by a constant d and decreasing h.

When the droplet de-pins at the end of Stage 1, the deposit left behind the receding

contact line means that θ and d are no longer defined unambiguously, and therefore on

the lower graph in Figure 5.1 they are shown in red. Where θ and d are shown in this

chapter beyond the end of Stage 1, I have always ignored the thin deposit, and measured

the remaining droplet or bootstrap structure. It should be noted that for some droplets
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Figure 5.1: Drop Height (DH), Base Diameter (BD), contact angle (θ) and mass over
time for a 75 ± 5µL 100k MW PEO 10% wt. initial concentration droplet. The red
data shows θ and BD after the droplet has de-pinned; after Stage 1 the droplet shape
means that these quantities are ambiguous. The blue line shows the definition of th0

-
it is the time at which an extrapolation of the initial decay reaches h = 0. The solid

black line represents the mass of the droplet.
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Stages 2 and 3 can merge together, ie. the de-pinning is not obvious or non-existent, and

therefore in all figures which show droplet height, the grey area represents increasing h

which is Stages 2 and 3 combined.

As in Pauchard’s work, I extrapolate the linear portion of V to intercept the time axis,

and use this as the time the droplet would have taken to reach zero volume t0, had the

growth phenomena not occurred;

t0 = − V0(
∂V
∂t

)
t=0

(5.1)

This t0 value is used to normalise experimental times, thereby compensating for uncon-

trolled variations in temperature and humidity.
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5.3.1 Results from 100,000 MW PEO

Figure 5.2: PEO Concentration against time for 100k MW 75± 5µL droplets

Figure 5.2 shows series of DSA images for various initial concentrations of 75±5µL PEO

100k MW droplets over time. The top row shows the droplets at time t = 0; a point to

notice here is that the contact angle increases with concentration. Moving down each

column, the images show the same droplets evolving over time. Where the droplet profile

deviates from standard ‘pinned’ drying, the backgrounds have been coloured grey, and

follow the 4 stage drying process described above.
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Figure 5.3: Evolution of droplet height over time for the droplets shown in Figure
5.2, with the height of an equal volume pure water droplet shown for comparison.

Figure 5.3 shows the normalised droplet height evolving over time for the same droplets

as shown in Figure 5.2. It is interesting to note that the initial decays of the droplets

with PEO are linear, and almost identical once the initial heights have been normalised,

yet the height decay of the pure water droplet varies around the same gradient - this is

likely due to the ’slip-stick’ process [223].

Figure 5.4: Filmstrip showing the evolution of a 75 ± 5µL 100k MW PEO 40% wt.
initial concentration droplet during Stage 4 final drying. The shrinking of the constant
surface area polymer skin due to evaporation causes the internal pressure to increase. In
some cases this can lead to some liquid phase being expelled from the droplet summit,

which is the weakest/thinnest part of the skin (as it dries last).

Figure 5.4 shows a late time ‘spurting’ effect for the c0 = 40% droplet shown in the

previous two Figures. As the deposit forms during stages 2 and 3, evaporative drying

causes the base structure to shrink which can only add to the growth during stage 3, and

also causes the glass coverslip to bend. During stage 4 when crystals have dried over the

entire surface, this final-stage shrinking will increase the internal pressure which in some

circumstances can lead to this bursting effect at the weakest point. Similar behaviour
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can be seen in the c0 = 30% droplet in Figures 5.26 and 5.2, however the bursting in

Figure 5.26 usually occurs much later in Stage 4. We therefore know that the structures

encapsulate a liquid phase at tmax, and that the structure shrinks during stages 3 and 4.

This brings us onto the physical structure of the deposits.

Physical Properties of the Conical Deposits

Figure 5.5: Low-magnification SEM image of 100k MW c0 = 30% wt droplet deposit.
The concentric rings show that formation of the thin film deposit (Stage 2) occurs in

discrete steps.

Figure 5.5 (a) shows a low magnification SEM image of a c0 = 30% droplet deposit. Solid

PEO is a white powder (or white structure in this case), and therefore imaging surface

details is difficult with optical components; the electron microscope is used here simply

as a visualisation tool, rather than for any magnification or chemical analysis. The peak

of the deposit is towards the top of the image where some lines are seen moving radially

outwards. The prominent concentric rings evident in the lower half of the photo are

predominantly in the thin-film deposit left during Stage 2. This shows that the film is

created and/or deposited in discrete steps, rather than one continuous motion as one

might infer from the DSA data. Figure 5.5 (b) shows a close-up of the side of the conical

deposit on the same droplet. Here we see that the concentric rings continue throughout

the thin film and the deposit structure.
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Figure 5.6: Surface profiler scans of a 100k 30% wt. droplet residue
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Figure 5.6 shows a high- (upper image) and low-resolution (lower image) surface profile

of a c0 = 30% droplet residue taken on a TaicaanR© interferometric profiler. The bottom

image shows a 6mm × 6mm section (at 19µm resolution) of the thin film stage 2 residue

and glass coverslip. The droplet residue is the circular section towards the top of the

image, and the remaining ∼90% of the image shows the glass coverslip. This coverslip

was imaged for two reasons; firstly to ensure that the profilometer gave reasonable results,

and secondly to show the curvature of the coverslip observed for higher concentration

droplets (c0 & 20%). The onset of this curvature occurs during stages 2 and 3, and

can be seen in the purple and blue bands around the middle of the lower image. The

high-resolution (upper) image shows a 0.1998mm × 0.1998mm section from the lower

image (magnified ∼100× at 199nm resolution) .

The fact that the evaporative drying can create a deposit which bends the coverslip shows

that the PEO residue binds strongly to this substrate, yet the onset of the buckling during

Stage 2 shows that it is not driven by the change in shape of the final deposit once the

complete polymer ‘skin’ has formed. In fact, from the instant of deposition, the PEO

crystals shrink in size which not only bends the coverslip, but also acts to squeeze the

remaining liquid phase vertically upwards, enhancing, or possibly creating the growth

mechanism.

Figure 5.7: OCT images of a 100k 20% wt droplet residue.



Chapter 5. Bootstrap Droplets 168

Figure 5.7 shows an OCT tomograph of a c0 = 20% droplet deposit (>72 hours after

Stage 4), created by ‘stitching’ together multiple images. The solid white line on the far

left shows the glass coverslip, and the white hazy area on the right-hand side indicates a

change in refractive index inside the droplet. From this we see that the deposit forms a

thin solid polymer skin, and that the inside of the deposit is hollow.
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Figure 5.8: Deposit thickness measured from OCT images

Figure 5.8 shows the thickness of representative c0 = 10% and 30% droplet deposits

measured using OCT images as shown above. This shows that the Stage 2 deposition

leaves a film ∼ 50µm thick, however this can increase significantly inside the conical

deposit.

Figure 5.9: Filmstrip showing the droplet profile and view from underneath taken
concurrently for a c0 = 10% wt droplet. The images from underneath were taken using

a Nikon TE-2000 Eclipse inverted telescope with a 2× objective lens.
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Figure 5.9 shows the profile and view from underneath the droplet concurrently during

evaporation. Here we confirm that the final deposit is indeed hollow, and that the

deposition does start at the contact line and progress radially inwards.

This section has discussed physical properties of the conical structures; the images in Fig-

ure 5.9 from underneath the droplets show the four distinct stages mentioned throughout

this chapter for a 100k c0 = 10% droplet. Using videos from underneath droplets dur-

ing multiple repeats of this experiment (100k MW PEO, c0 = 10%, V0 = 75µL), the

discussion will now move onto the hydrodynamic flow during evaporation.

Hydrodynamic Flow

Hydrodynamic Flow - Stage 1. During the pinned drying the PEO clusters are

carried by internal currents; the clusters have been tracked using the ImageJ particle

tracking plugin [218].
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Figure 5.10: Particle velocities during Stage 1 pinned drying. The colours represent
different particles which were tracked using ImageJ, and the velocity over a 3-frame
average (0.1 s. averaging time) is shown against the position inside the droplet. The

coloured region on the left represents the area outside the droplet.
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Figure 5.10 shows the 3-frame average velocities of 5 particles near the contact line (shown

by the yellow-green region). The velocities of these particles increase quadratically as

they approach the contact region, but instead of depositing at the contact line, they

‘re-circulate’, implying the existence of a current with similar flux in the direction away

from the droplet edge. This re-circulation has been seen in various sessile droplet systems

before [224, 225], however the similar fluxes in the counter-propagating currents shows

that the evaporation dynamics are not as simple as the Deegan model in this case.

In order for material to be deposited at the contact line there must be a net flux radially

outwards, therefore any inbound flow must exert a lower force on a given particle because

some solvent is lost due to higher evaporation at the contact region. The similar inward

and outward flow velocities of the particles therefore calls into question the applicability

of the Deegan model during Stage 1. In order to confirm whether the concentration

increased at the contact line, an MRI experiment was performed on a 100k c0 = 10%

droplet, in order to visualise the water concentration over time.

Figure 5.11 shows data from this MRI experiment; MRI hardware is typically highly

sensitive to protons, and therefore water molecules are easily studied - the fact that our

bodies are ≈ 2
3 water has therefore made MRI useful in many medical applications. In

order to quantify the water concentration, a complex calibration must be undertaken,

which was not performed here for the following reasons:

• The aim of this experiment was only to assert that the polymer concentration

increases at the droplet edge.

• Local atmosphere inside the narrow MRI sample tube will have quickly saturated

during evaporation, and therefore any quantitative results are not comparable with

other droplet studies.
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Figure 5.11: Images from an MRI experiment on a 100k PEO c0 = 10% wt droplet;
Upper: 3-dimensional droplet section at time t = 0, showing the slices taken by the
equipment, Lower: 2-dimensional images of the same droplet slice (≈ 40µm above the

coverslip) over time.

• The calibration is time-consuming and outside the scope of this experiment.

The upper image in Figure 5.11 indicates how this hardware performs the experiment -

multiple 2d slices are stacked together to form a 3d volume. The lower image shows the

top slice at four times during this experiment - the experimental volume is approximately

6mm × 6mm × 40µm, therefore in the 3d image the z-axes has been exaggerated. The

gradual change of the 2d slices over time from blue to green to red shows a decrease in

water concentration over time, as expected from evaporation. We can also see that the

water concentration at the edge is slightly lower than in the centre at most times during

evaporation. Unfortunately the closed nature of this MRI system made it impossible to

determine the four stages discussed previously, however this data does show qualitatively
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that the relative polymer concentration increases towards the droplet edge, as would be

expected from material transport as per the Deegan model.

Hydrodynamic Flow - Stage 2. As the contact line recedes during Stage 2 (tmin

onwards) the internal flow must change, as the recession will either be caused by cir-

culation reversal ‘pulling’ solvent away from the edge, or the deposition ‘squeezing’ any

remaining aqueous phase inwards.

Figure 5.12: Images from underneath a 100k c0 = 10% droplet at (a) t = tmin, (b)
t = tmin+ 45s, (c) t = tmin+ 90s, (d) t = tmin+ 135s, (e) t = tmin+ 180s. These images
were taken using a Nikon TE-2000 Eclipse inverted telescope with a 10× objective lens.

Figure 5.12 shows the polymer deposit left behind the receding contact ring during Stage

2. The objective lens was placed at the droplet edge and these images show 45 second

intervals from when deposition first takes place. From the raw video of the entire droplet

evaporation, it is obvious that the re-circulatory flow present in Stage 1 ceases at tmin,

however the liquid phase must have some flow present in order to de-pin and increase

the contact angle as shown in the transition from (b)→(c) in Figure 5.9. In order to

investigate the origin of this de-pinning, particle tracking analyses have been performed.

Figure 5.13 shows the raw particle trajectories from an analysis of the video corresponding

with Figure 5.12. Four tracks were chosen due to their consistency (no missing points or

collisions) for further analysis, shown below, labelled α→ δ. An interesting point about

Figure 5.13 is that there were very few tracks picked up in the top half of the video, and

the trajectories which are present are short in comparison with the lower half. We know

from Figure 5.12 that the deposition region moves vertically downwards, and these short

trajectories in the upper half are a sign that the clusters are not moving with sufficient
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α β γ δ
Figure 5.13: Image from Figure 5.12(a) with particle trajectories overlaid. α, β, γ

and δ show the tracks which were chosen for further analysis.

velocity away from the contact line to escape the crystallisation region, presumably due

to an increased viscosity near the contact line.

Figure 5.14 shows the 3-frame mean velocities for the four tracks labelled above as α,

β, γ and δ during the first 80-90 seconds of Stage 3; using raw images such as that in

Figure 3.6 (p.58), a pixel-to-metres calibration was performed to allow calculation of

particle positions and velocities. In all four cases the velocity starts at ∼0.05-0.1µm

s−1 and increases in a linear fashion to ∼0.6µm s−1 over the first 60 seconds before the

velocity drops sharply. This rapid decline in the velocity occurs as the crystallisation

region ‘sweeps up’ the particles, as can be seen by the spherulitic shapes present in the

5th image of each particle track in Figure 5.14. This shows that the particles shown here

were accelerating inwards radially at ∼0.01µm s−2 due to the contact line de-pinning,

however this acceleration was not sufficient to ‘out-run’ the receding contact line. I

presume that either these particles were caught in a turbulent boundary layer near the

coverslip, or there exists a region of higher polymer concentration near the coverslip due
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Figure 5.14: Graphs of particle tracks and images
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to the outwards transport of material in a similar manner to the Deegan model.

Unfortunately for this particle tracking data, η varies with position in the sample (due

to concentration gradients) as well as with time (due to evaporation), and therefore

analysing the drag force on the particles using Stokes’ Law (Equation 3.13) is inappro-

priate.

Figure 5.15: A series of images taken from underneath a 100k MW PEO, c0 = 10%
wt droplet during Stage 2. The decrease in transmission makes the clusters less well-

defined, and given sufficient attenuation particle tracking becomes unfeasible.

Figure 5.15 shows the view from underneath a 100k c0 = 10% droplet during the later

parts of Stage 2 using a 2× objective lens. The loss of transmission as the liquid phase

de-wets (ie. θ increases) makes particle tracking difficult, but qualitatively-speaking

the same general trend of a slow, viscous flow towards the centre is evident, as seen in

Figures 5.12 and 5.14. A potential solution for this would be to ‘seed’ the droplets with

fluorescent particles, thus allowing particle tracking at later stages.

Hydrodynamic flow - Stage 3. Figure 5.16 shows the evolution of an evaporating

100k MW c0 = 10% droplet during Stage 3. Images (a)→(e) are taken at 150s intervals

starting when the PEO crystals are no longer being deposited on the substrate. This

series displays many interesting features; a1 shows the faint ring that appears around

the clusters, b1 shows the increase in transmission throughout the droplet during this

growth phase, and e1 shows the increase in clarity of the conical deposit at long times.

a1 shows the surprising behaviour of a circular (possibly spherical) artefact which orig-

inates from the receding contact line. This artefact then rises as the droplet height
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increases, taking with it the PEO clusters and leaving behind a clear aqueous phase.

This phenomena acts to filter the remaining liquid phase during the Stage 3 growth,

evident from the lack of clusters in (b)→(e).

The increase in transmission from (a)→(b) is difficult to quantify due to natural varia-

tion between experiments, however the peak in transmission coincides with tmax, implying

that the decay in transmission occurs due to crystallisation closing over the top of the

deposit.
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Figure 5.17: Normalised area a
a0

against normalised time t
t0

for 100k PEO droplets
c0 = 10-40% wt

Figure 5.17 shows the normalised area a
a0

for four 100k PEO droplets c0 = 10-40%,

calculated by integrating around the droplet profile using the code in Appendix E. This

confirms that the growth phenomenon in these droplets is different from the Pauchard

model, as a buckling skin model requires a permeable, but constant surface area skin.

Figure 5.18 shows the normalised tmin and ∆t values for some 100k PEO droplets plotted

against c0, and shows that the concentration at tmin can be considered to be csat for all

droplets [226]. It is also interesting to note that ∆t is approximately constant, regardless



Chapter 5. Bootstrap Droplets 178

0

0.25

0.5

0.75

1

1.25

N
o
rm

a
li
se
d
ti
m
e

0 10 20 30 40 50

PEO Concentration (% wt.)

tmin

Th=0

tmax − tmin

Linear fit

Average

y = (1.16− 0.018x)2
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gives a c0-intercept of 50% wt (Equation 5.3).

of c0, in contrast to the 8k droplets shown previously, where ∆t showed a maxima with

increasing c0.

Physical Interpretation and Implications

Figures 5.2 and 5.4 show ‘spurts’ from the top of the conical deposits where c0 & 30%. As

mentioned previously, this shows that the internal phase remains liquid after the structure

has completely formed, however the shrinking that causes this behaviour cannot be from

evaporative loss of this internally-contained fluid. If the loss of volume was from the

encapsulated liquid, then the shrinking would be a reaction to maintain equilibrium

pressure. The fact that the shrinking raises internal pressure sufficiently to induce late

time spurts shows that the volume of trapped liquid must decrease more slowly than the

solid deposit volume.

This raises the question as to what causes the solid deposit to lose volume so quickly. The

spherulites that form these structures contain hydrogen-bound water molecules [227, 228],

which will be lost over time as the spherulites become a pure PEO deposit. We know from
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§2.4 that hydrated PEO can form helices with a corresponding water helix, which acts to

shield the CH2 groups from the solvent. From the MD simulation shown in Figure 2.16

(from [2]) we see that this hydration shield adds considerable volume to each effective

cylinder created by the PEO helix. I therefore hypothesise that the initial spherulitic

structure is a swollen structure which loses volume as the water shield evaporates. In

contrast to the flexible, permeable skins in the Pauchard model [203], as this spherulite-

to-solid transition occurs the overall deposit structure must maintain a lower level of

permeability in order for the internal pressure to rise. Perhaps the evaporation of solvent

occurs from the top layers of the cone first, causing the initial shrinking and increased

pressure, and then diffusive motion of the remaining solvent through the structure causes

the final drying.

Physical Interpretation - Four-stage deposition model.

In §5.3 the four observed stages were introduced to clarify the terminology; these Stages

will now be described more thoroughly in terms of the PEO behaviour, followed by a

discussion of specific predictions.

Stage 1. During this pinned stage the droplet volume, h and θ decrease, however θ

typically remains above the receding contact angle, which was measured to be ≈ 5◦ in

separate experiments. θ < 90◦ ∀ c0 during this stage, therefore we can be confident that

evaporation is greatest at the contact line and is sustained by solvent within the droplet

flowing radially outwards as per the Deegan model [204]. This is confirmed experimen-

tally with the particle tracking of clusters shown in Figures 5.10. This outward solvent

flow must also carry dissolved polymers to the periphery in order for the concentration

there to increase, which is where the similarities with the Deegan model end; both Deegan

and Popov [229] assume that the build up of material at the contact ring does not inhibit
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solvent flow. When the droplet concentration reaches csat, semi-crystalline spherulites

precipitate, inside of which the water molecules are bound through hydrogen-bonding

to the oxygens in the PEO backbone, and therefore are not able to participate in the

outward flow. As a result, the increased contact ring evaporation is unsustainable as the

solvent cannot be replenished, so the contact line de-pins; at this time the droplet has

reached its minimum height hmin with concentration csat.

Stage 2. During Stage 2 the contact line of the remaining liquid retracts, but the

specific reason for this retraction is unclear. It could be driven by the actual contact

angle being less than the equilibrium contact angle θe at csat (we know from Figure 5.2

that θ0 varies with c for some droplets). However, this raises the question of how θ can

decrease past θe during Stage 1 (whilst c is increasing). This retraction could equally be

driven by Marangoni convection; the concentration gradient across the sample at tmin

could easily form a surface tension gradient across the droplet. It has been shown that

Marangoni effects can initiate a re-circulative hydrodynamic flow inside sessile droplets

[205, 206, 225], which would explain how the solvent flow towards the contact ring stops

causing the de-pinning. Unfortunately we have to rule out the Marangoni effect as the

particle tracking experiments show that all flow inside the liquid phase stops at tmin,

presumably due to the viscosity at csat.

Another possibility is that the hydrophobicity of the PEO spherulites, which form at the

contact ring, ‘squeezes’ the remaining liquid phase into a ball. I hypothesise that this is

the method by which the Stage 2 de-pinning occurs, because the thin film deposit left

behind the receding contact line actually forms in a layer above the contact ring as it is

deposited as the liquid retreats from beneath it, as shown in Figure 5.19.

The final possibility for the de-pinning in Stage 2 comes from the increasing surface



Chapter 5. Bootstrap Droplets 181

Figure 5.19: Image of a filtered droplet during Stage 2 de-pinning. Here it is inter-
esting to note that the thin deposit in contact with the coverslip is in focus, yet the
crystallisation region is out of focus. This shows that the spherulitic film forms above
the coverslip and either drops down as the aqueous phase retreats, or ‘squeezes’ the

aqueous phase inwards. Causation is difficult to prove in this case.

area A during this stage; an increase in A will have a corresponding increase in the

surface energy. In fact, the hydrophilic/hydrophobic state of PEO means that it can be

considered a surfactant as it will try to aggregate at interfaces, which in turn acts to lower

the surface tension. Measurements to quantify the surface tension lowering properties of

PEO by Cao and Kim [230] showed a maximal reduction for polymers with MW = 80k;

which is close to the MW of the droplets which exhibit Stage 2 behaviour.

The receding contact line leaves behind a thin layer of dry polymer, similar to the gelled

foot reported in previous studies of dense particle suspensions [207], and is seen to finish

receding when θ ≈ 80◦.

Stage 3. Once θ has reached ≈ 80◦, the spherulites that form at the contact ring (see

Figure 5.19) will be placed on top of the previous deposits because θ is nearly perpendic-

ular to the substrate. Being hydrophobic, they will repel the remaining liquid phase; this
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process continues and the liquid can completely lose contact with the substrate, leaving

behind a solid, hollow structure, as shown in Figure 5.20 below.

Figure 5.20: Filmstrip showing a liquid ball rising up on top of the deposit during
the evaporation of a 75± 5µL 100k MW 10% PEO droplet. The frames were taken 20s

apart.

We know the structures are hollow from the images taken from underneath, the OCT

tomographs and from carefully cutting them open once dried. Stage 3 ends when the

spherulites have completely encapsulated the deposit, halting any further growth, at time

tmax.

The filtering effect seen in Figure 5.16 shows some similarities to the Pauchard skin

model. In order for this filtering phenomena to occur, there must be a permeable,

flexible membrane formed during Stage 2/3 which removes all objects as effectively as a

0.45µm filter (see Figure 2.17 on p.38).

We know from Figure 5.14 that hydrodynamic flow close to the substrate is slower than

the Stage 2 de-wetting transition (ie. the clusters get caught by the deposition region),

which has previously been attributed to inhibition of boundary-layer flow. I hypothesise

that there may be another effect, caused by the flow during Stage 1; the internal flow

according to the Deegan model states that material is transported to the contact region,

however Deegan’s model did not account for the material build-up inhibiting solvent

flow. I suggest that rather than all the polymers being transported to the contact



Chapter 5. Bootstrap Droplets 183

region, there is a gradient of deposition occurring whereby a gel phase forms across the

substrate, which acts to slow the clusters in an identical manner to boundary-layer flow

discussed previously. If this occurs, then as θ → 90◦ during Stage 2, this gel phase

could form a complete encapsulation of the liquid phase (assuming a similar gel-like skin

develops on the surface) which is pulled upwards by further deposition at the contact

line. Thus Stage 3 may involve the formation of a permeable skin, as per the Pauchard

model. That this skin is of the correct size to filter out PEO clusters is a fortuitous

coincidence.

Stage 4. During Stage 4, the solid structure formed during Stage 3 shrinks slowly by up

to 10% in height as the remaining water within the spherulites evaporates. From tmax

onwards the remaining enclosed liquid phase must either evaporate slowly through the

porous spherulite skin, causing a buckling along the lines of the Pauchard model [203],

or will be forced out if the pressure is sufficiently high given the strength of the skin.

Stage 4 ends when the droplet is completely dry. During this stage the forces generated

by the shrinking structure stuck to the coverslip can be strong enough to cause the glass

coverslip to bend upwards, in a similar process to Francis et al [231].

Implications - Predictions of the four-stage deposition model.

The model presented above lends itself to various experimental verifications [226], details

of which are discussed below.

Prediction - Value at minimum height. This model allows for the prediction

of several parameters, such as de-pinning time tmin, bootstrap time tmax, hmax and

concentration. First of all, since the de-pinning signifying the start of Stage 2 occurs when

the first deposition takes place, the model predicts that the minimum height should occur
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at the same concentration for all c0, labelled previously as the saturation concentration

csat.

The linear fit through the normalised tmin data shown in Figure 5.18 gives a csat value

(x-intercept) of 50%, identical to the literature value [81].
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Figure 5.21: Normalised droplet height over time with the calculated droplet concen-
trations at tmin labelled.

Figure 5.21 shows the same data as Figure 5.3 with the concentration at tmin labelled,

calculated from the volume difference ∆v = v0 − vmin. Therefore the measured csat at

tmin (from ∆v), the implied csat (from a fit to tmin) and the literature all corroborate the

first prediction.

Prediction - Value at maximum height. The model also predicts that the con-

centration at the maximum height cmax should be independent of c0. Since the Stage 3

growth is highly asymmetric, and the profile at hmax does not fit any accepted model, an

accurate measurement of cmax is difficult. The concept of cmax is also slightly ambiguous

as the droplet has started precipitating and is therefore in 2 phases. Here I define cmax

as the theoretical concentration if all of the polymer (dissolved and deposited) were in

solution with the remaining solvent (the water held in the conical structure).
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Figure 5.18 (p.178) shows a linear regression fit to the tmin data; by performing the same

fit to the tmax data we can make a prediction for this concept of cmax, from which we

obtain cmax ≈ 70%.

Prediction - Normalised tmin values. Assuming that volume loss continues at its

initial rate, which appears to be valid from Figure 5.1, the normalised tmin values can

be calculated by integrating Equation 5.1 to obtain V (t), and combining with material

conservation:

cmin =
c0V0

Vmin
(5.2)

to give

tmin

t0
= 1− c0

cmin
. (5.3)

Figure 5.18 shows that this equation fits the tmin data well, and re-inforces the first

prediction that cmin = csat. A similar analysis for tmax is inappropriate however because

the assumption about volume loss is no longer valid, as shown in Figure 5.1.

Prediction - hmin(c0). With the single assumption that the droplet always takes the

shape of a spherical cap during Stage 1, its volume V can be written as

V =
1

6
πr3

[
ζ3 + 3ζ

]
(5.4)

where r = d
2 is the base radius and the ratio
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ζ =
h

r
=

tan θ

2
. (5.5)

Using Equations 5.2 and 5.5 we can formulate ζmin in terms of known parameters;

ζ3
min + 3ζmin =

c0

csat

(
ζ3

0 + 3ζ0

)
= 2D (5.6)

where D is constant and the r-terms cancel due to the pinned contact line during Stage

1. The solution to this depressed cubic is shown in Appendix F; ignoring negative square

roots and normalising by ζ0 we obtain an analytical expression for hmin(c0):

hmin

h0
=

ζmin

ζ0

=
1

ζ0

[
1

t
− t
]

(5.7)

where t =
3
√
−D +

√
D2 + 1.

Taking θ0 = 70◦ and csat = 50% we obtain the dashed line in Figure 5.22 (p.187), showing

good agreement with experimental results.

Prediction - Deposit Growth Boundary. Here an argument is made to predict

whether the droplets undergo Stages 2 and 3. Not all droplets form conical structures; if

the receding contact angle θr, measured to be around 5◦ for c0 = 15%, is reached before

csat then the droplet will de-pin without depositing a polymer film. In this case the final

residue is a thin flat disk around the centre of the original droplet footprint. A critical
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Figure 5.22: Normalised hmin and hmax values for a range of initial concentration
values c0. The hmin theory line (· · ·) is a prediction for hmin using Equation 5.7 where

csat = 50% wt.

concentration ccrit can be defined, below which no growth phase is seen, using Equation

5.5 to write θ in terms of ζ :

ccrit = csat

(
ζ3

r + 3ζ

ζ3
0 + 3ζ

)
(5.8)

where ζr = tan θr/2. The initial contact angle θ0 of a droplet can be artificially lowered

by allowing the droplet to equilibrate (and ‘pin’ itself), and then using a pipette to

remove a known volume. On performing this, θ will decrease but d will remain constant.

Where c0 < ccrit the deposit is a thin film/disk and conversely where c0 > ccrit the deposit

is conical after undergoing the four stage growth phenomena described previously, as

indicated in Figure 5.23. This graph shows the results for multiple experiments both

with and without artificial θ reduction. The solid line shows Equation 5.8 using the

previously found values of csat = 50% and θr = 3◦, which shows good agreement with

experimental data.
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Figure 5.23: ‘Phase diagram’ showing whether the final deposit was a flat disk or
conical structure for a range of initial concentrations c0 and initial contact angles θ0.
The solid line shows the theoretical separation of the two behaviours (Equation 5.8).

5.3.2 Results from 20,000 MW PEO

Figure 5.24 shows the evolution of 20k MW PEO droplets at 10-40% wt over time;

the grey areas signify times when the deposition and growth phenomena are apparent -

labelled Sections 2 and 3, discussed below.

Figure 5.25 shows a phenomenon seen occasionally in high concentration (& 50% wt.

PEO) 20k MW droplets; the droplet can form a solid ‘cap’ as well as a solid deposit

around the contact ring, whilst maintaining a liquid phase in the rest of the droplet.

Physical interpretation and implications

With regards to the simultaneous solidification at the contact ring and the cap shown in

Figure 5.25; deposition at the contact line is fully described by the Deegan model [204],

however both Deegan and Popov [229] assume that material build-up does not inhibit

solvent flow. In fact this assumption is valid in the case of coffee-stains as the deposited

colloidal particles are limited to a small band around the periphery. In the systems pre-

sented in this section, however, this assumption is clearly invalid as evaporation occurs
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Figure 5.24: An image chart showing the profiles of various concentration droplets
over time.

Figure 5.25: DSA images from different experiments showing the solid ‘cap’ which
can form during the evaporation of high concentration (&50% wt) 20k PEO droplets.

Both of these droplets had an initial volume of 75 ±5µL.
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whilst the contact line recedes, leaving a thin-film deposit. In this case, the build-up of

polymer material at the contact ring does not allow the solvent lost through evaporation

to be replenished, and therefore undergoes a glass/gel to solid phase transition before

deposition2. As discussed in §2.4.1, PEO/PEG which is not fully dissolved can be hy-

drophobic, therefore a build up in gel or glass phase around the contact ring could easily

prevent solvent flow due to its hydrophobic nature. A second solidification region on the

droplet summit as shown is an extension to the PEO drying mechanism discussed by my-

self [226]. To explain this phenomenon, one can resurrect the Deegan model [204] which

describes the radially outward convection of water inside a sessile drop due to enhanced

evaporation at the contact ring. If this flow should occur in a high-concentration, viscous

system, the replenishment of solvent at the summit due to concentration gradient-driven

diffusion (slow) or hydrodynamic re-circulation (fast) may be less than the rate of solvent

transport radially outwards in accordance with the Deegan model. This could lead to

deposition at the receding contact line in conjunction with phase transitions in the sum-

mit region as shown in Figure 5.25. This hypothesis is difficult to prove using particle

tracking as the droplet must necessarily be viscous enough to be close to crystallisation,

however a sensitive MRI or OCT machine may be able to measure solvent flow in these

conditions.

Figure 5.26: An representative screenshot from a 60% wt. 20k MW PEO droplet
showing the ‘high-pressure bursting’ effect which can occur in droplets which have

solidification regions at the base and summit.

2Although this shows similarities to the buckling skin model, a precursor film was only found in
higher concentration droplets (c0 & 20% wt.).
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The implications of this are that the droplet growth will be inhibited as the remaining

liquid cannot be supported by the contact ring deposit. Solidification from the top and

base of the same droplet also implies that in comparison to the lower concentration

droplets (≤40% PEO) the remaining liquid phase will not only be completely contained

earlier in the evaporation process, but will be under greater pressure when the deposits

go through the final shrinking phase, discussed above. This increased pressure could

explain the occasional ‘burst droplet’ seen during evaporation, as shown in Figure 5.26.

Finally, this bursting can only occur in these systems as a result of a constant surface

area, yet permeable, skin attempting to lose volume faster than the equivalent volume

of solvent can evaporate. If the skin volume loss is driven by solvent evaporation, then

internal pressure would be at equilibrium, which does not allow for the bursting shown

above. Thus the fluids studied here show aspects of both the Deegan model (deposition

at contact ring) as well as the Pauchard and Allain model (buckling polymer skin), yet

neither fully describes these results. This is not a trivial problem to solve theoretically

as a complete model must account for the high-viscosity contact ring inhibiting solvent

flow towards the evaporation region, and must also account for the permeability of the

same polymer skin which drives the buckling.

5.3.3 Results from 8,000 MW PEG

Figure 5.27 shows PEG 8k c0 = 30-60% wt droplets evolving over time. Each column

shows images of a single droplet evolving over time, with the y-position of the image

representing the time t since deposition. The grey areas represent regions of time when

the droplet height was increasing - Stages 2 and 3.
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Figure 5.27: An image chart showing the profiles of 30-60% wt c0 droplets evolving
over time in ambient conditions. All images were taken on the Krüss DSA system

discussed in §5.2.1.

At c0 = 30% wt. this system shows standard droplet drying behaviour with an initial

spherical cap gradually losing solvent through evaporation leaving behind a flat polymer

film. The polymer concentration is sufficient to keep the contact line pinned, and there-

fore the base diameter remains constant throughout, except for an initial ‘equilibration’

period at the start. For c0 & 40%, the droplet height shows a minima, presumably as

a certain concentration/contact angle is reached, after which the growth continues until

only a solid deposit surface remains. After this growth phenomena, the droplet height
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decreases slightly over time as the final trapped solvent is lost.
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Figure 5.28: Normalised height against time for 8k 30-60% c0 droplets.

Figure 5.28 shows the height data against time for the same droplets shown in Figure

5.27 previously. The small amount of noise in these data sets is caused by reflections from

the droplet/deposit surface confusing the height/width algorithm in the DSA software.

Despite the noise there are clear trends evident, discussed in Table 5.2:

Table 5.2: Table explaining the parameters and quantities discussed in this section.

Property Behaviour
h(t) The heights show an initial decrease for all c0, and for c0 &

40% an increase in the height is seen after time tmin.
tmin For droplets where tmin is defined, it is inversely proportional

to c0, ie. less concentrated solutions take longer to reach this
critical point.

tmax The time to reach maximum height after a minima is also
inversely proportional to c0.

hmin The height of the droplet at tmin is proportional to c0.
hmax The height of the droplet at tmax is also proportional to c0,

with c0 = 60% the only droplet which goes above its starting
height h0.

Figure 5.29 shows hmin and hmax against c0 for the PEG 8k MW droplets discussed

previously, normalised by h0. All data shows a linear upwards trend, indicating that

although the growth phenomena is likely to start at a given concentration or contact
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angle, hmax appears to be linearly proportional to c0, although further experiments are

needed to confirm this.
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Figure 5.30: Normalised tmin and tmax values against c0 for the 8k PEG droplets.

Figure 5.30 shows the tmin and tmax values from the 8k PEG droplets shown previously,

normalised by t0 as performed by Pauchard and Allain [203]. Here we see that when the
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slope of the initial decay is taken into account (to remove slight variations in droplet size

and humidity), the tmin values remain in a downward trend with the exception of c0 =

50%, however tmax shows a distinct maxima. This shows that at low concentrations (c0 .

30%), the lack of a growth mechanism means tmax is undefined, yet between 30-40% a

critical point is reached at which the growth can start, signified by the separation of

tmin and tmax values. As c0 is increased further, the gap between tmin and tmax widens,

showing a peak (in this small sample set) at c0 = 50%, yet this gap reduces considerably

as c0 → 60%.

Physical Interpretation and Implications

Although the sample set is small for this 8k MW study, making quantitative analysis

difficult, there are some interesting behaviours present; the maxima in tmax
t0

is counter-

intuitive, for example. One would expect the droplet growth to be initiated by a concen-

tration level cgrowth being reached, therefore droplets with a larger c0 will have a greater

volume at cgrowth. One would therefore expect hmin to be proportional to c0, as shown

in Figure 5.29. This would explain how the 60% droplet grows higher than the others,

however if the growth is solely dependent on concentration, it would be logical to expect

a constant growth rate across all droplet growth regimes. This would result in the larger

growth in the higher c0 droplets taking longer, and tmax − tmin being proportional to c0,

neither of which is seen.

The initial contact angle θ0 could influence the growth, however the variation does not

appear to be significant. I therefore hypothesize that the contact angle at tmin (i.e.

θgrowth) must play a part; the pinned contact line discussed previously implies that a

larger θ value converts into a larger volume, which is necessary for significant growth. A

more in depth experimental study at this MW is necessary to make any firm conclusions.
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It is interesting to note the growth behaviour at c0 = 10% for the 20k MW droplets, in

comparison with the 8k MW data shown in Figures 5.27 and 5.30. From Table 2.1 (p.32)

we find that 8k PEG has an overlap concentration c∗ of 15.44%, whereas for 20k PEG

c∗ = 9.77%. Therefore with the 8k droplets, no growth phenomena are seen at c0 ≈ 2c∗,

yet for 20k droplets growth is seen at c0 ≈ c∗.

This is highly counter-intuitive as c0 clearly affects the drying behaviour, with larger

c0 values leading to higher and faster growth in both 8k and 20k MW droplets. It is

therefore sensible to assume that the concentration at which the polymer coils begin to

overlap would play a part in determining the size and structural integrity of the deposit.

One can only surmise that there are one or more polymer attributes which influence the

growth more strongly than c∗.

The qualitative difference between the image graphs (Figures 5.27, 5.24 and 5.2) are also

notable; as the MW is increased (c∗ decreased) the transmission of the backlight drops

considerably as the clusters scatter more light. This is difficult to quantify from these

pictures as refraction will fluctuate with the spherical or elliptical cap shape, however this

could be performed using a spectrophotometer as in §4.8.2.3. The initial contact angle

θ0 also remains roughly even for the lower MW systems, yet shows a clear dependence

on c0 for 100k MW, indicating the increased hydrophobicity of the 100k systems.

5.3.4 Results from 3,350 MW PEG

Figure 5.31 shows a 75µL 3k MW PEG, c0 = 70% droplet evolving over time, along with

an image of the final dried deposit. The deposit is distinctly heptagonal with a concave

region at the top - in the filmstrip images above you can clearly see the spherical cap

profile evolving into a polyhedral profile.
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Figure 5.31: Upper: Image of the dried droplet deposit from above. Lower: Film-
strip of the 75µL 3k MW PEG droplet, c0 = 70% wt, evolving over time.

α β γ δ

0

0.25

0.5

0.75

1

1.25

h
/h

0
,
d
/
d
0

0 250 500 750 1000 1250 1500

Time (s.)

d/d0

h/h0

Figure 5.32: Normalised height h and base diameter d for a 3,350 MW PEG, c0 =
70% wt droplet. α, β, γ and δ show the four observed stages during the evolution of

this droplet (these stages are distinct from stages 1-4 mentioned previously).
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Figure 5.32 shows the normalised height h
h0

and diameter d
d0

evolving over time for a

representative 3.35k MW PEG droplet, with c0 = 70%. The base diameter remains

almost constant for the entire experiment, except for a short period at the start where

the viscous droplet is settling into its equilibrium position for the given substrate. This

equilibration period is shown as α, during which the height h decreases rapidly and

the base diameter d increases rapidly. The next section (labelled β) where h
h0

shows a

plateau, as does the diameter, is where the step around the contact ring forms (visible

in the second filmstrip image in Figure 5.31) and is indicative of enhanced deposition

at the contact line similar to the Deegan model. γ shows the time period where the

droplet loses height - in this region the droplet buckles into the polyhedral shape shown

above. In contrast to the Pauchard and Allain model of buckling dextran droplets, the

concave region seen in Figure 5.31 means that the droplet loses height during the buckling

process. δ is the final drying regime where the residue shape no longer changes, but the

droplet loses mass as the remaining solvent evaporates.

Figure 5.33: OCT image of 3.35k MW, 60% wt. heptagonal droplet residue

Figure 5.33 shows an OCT image of a 75µL 3k MW c0 = 70% heptagonal-based droplet

residue. The bright white lines towards the lower edges are reflections from the glass

slide, and the twin-peaked white line in the centre indicates the droplet surface in this
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cross-section. The wider grey area below the droplet surface shows where the deposit

is hollow, and therefore shows the thickness of the skin. There is also an obvious ‘step’

between the droplet edge and the glass slide, also visible in the filmstrip in Figure 5.31,

where the polymer has created a thick wall at the contact ring. In this image the concave

region at the top of the droplet is clearly shown, and it is interesting to note that the

deposit is thickest in this region and thinnest towards the sides.

Physical Interpretation and Implications

I postulate that in order for the β plateau phase to occur, the spherulites must have

already formed a layer covering the droplet surface, and that the evaporation contin-

ues throughout this phase. Thus the β phase is similar to the skin buckling model of

Pauchard and Allain [203], whereby a constant surface area skin tries to lose volume due

to continued evaporation. The difference is that in Pauchard’s work the polymer was

dextran, which forms a glassy phase as many sugars do (dextran is a branched polysac-

charide), yet PEG is known to crystallise [232, 233, 234]. These spherulite crystals that

form often have regular polygonal shapes, and therefore in large numbers could induce

macroscopic buckling into a polyhedron such as that shown in Figure 5.31, as opposed

to the axisymmetric cones seen with dextran [203] and modelled numerically [208]. This

could certainly lead to straight edges forming, as seen in various droplets throughout

this chapter.

I see this as analogous to the way in which the ∼ 104.5−109.5◦ angle in a water molecule

directly leads to the macroscopic hexagonal patterns in snowflakes3 [236]; the heptago-

nal base pattern seen here may ultimately be an indicator of the physical structure of

clusters (see §2.4.3) or crystals of 3,350 MW PEG. If the specific shape of the spherulites
3Not only was Johannes Kepler the first person to correctly deduce the forces creating a comet’s tail

(see §3.1), but by comtemplating the origin of a snowflake’s shape he pioneered the study of crystal
structure [235].
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is dictated by the clusters, rather than crystals, then the solvation of PEG through

hydrogen-bonding would make the shape highly temperature-dependent. As discussed

previously, there is also evidence that the hydration level (number of bound solvent

molecules per monomer) depends on the degree of polymerisation N [85], therefore the

exact polyhedral-shape may also be MW-dependent.

This behaviour is subtly different from the growth phenomena exhibited previously, but

more experiments are necessary in order to form any conclusions.

5.3.5 Results from 300k MW PEO Droplets

0

0.25

0.5

0.75

1

N
or
m
a
li
se
d
H
ei
g
h
t

0 1000 2000 3000 4000 5000 6000

Time (s.)

300k 5.1%

Figure 5.34: The height of a 75µL 300k PEO c0 = 5.1% wt droplet evolving over
time.

Figure 5.34 shows h/h0 against time for a 300k c0 = 5.1% droplet. This is representative

of all 300k data, as no growth regime was observed for all c0 < 8% (above this value,

the solutions were too viscous to pipette accurately). Thus 300k MW droplets can be

classed under ‘standard’ pinned drying, leaving a thin residue . This is unexpected as

(from Table 2.1) rg is 9.68 for 100k and 16.77 for 300k, and c∗ is 4.37% for 100k and
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2.52% for 300k; these are relatively small changes to the solution properties, yet the

phenomenological growth has completely disappeared at 300k MW.

I hypothesise that the longer chains of 300k MW are less readily carried to the contact

ring by the evaporative flow, therefore the increase in viscosity at the contact line is

much lower, and cannot inhibit the flow to initiate Stage 2.

5.3.6 Other Droplet Systems

During the course of this work, various other droplet systems were studied during evap-

oration, some of which are outlined below.

PEO with Starch

Starch is known to form extremely hard, yet brittle, structures as it dries. In an attempt

to increase the structural integrity of the PEO deposits 1-4% wt. starch solution (stored

chilled in chloroform) was added to 100k PEO solutions between 10-30% wt. The ad-

ditional starch did not disrupt the growth mechanism, however the late drying (Stage

4) resulted in macroscopic buckling and wrinkling at all concentrations. I assume that

extra structural strength from the starch meant that the Stage 4 shrinking had to induce

buckling or fracture.

PEO with Laponite

Laponite is a clay consisting of thin discs∼ 1nm× 20nm, which is known to create ‘shake-

gels’ whereby the discs form a ‘house of cards’ structure under shear with a relaxation

time that can be measured in hours or days. Laponite is known to interact with PEO by

encouraging the polymer to wrap around the clay discs, creating desirable commercial

properties for these shake-gels [237].
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100k MW PEO droplets with 10% < c0 < 35% and 0.05-10% wt. Laponite were in-

vestigated; at all concentrations of Laponite the growth phenomena were completely

disrupted, and the final deposit was an even, thin polymer film. Further investigation

into this may give the ability to control the deposits more accurately, yet it is interest-

ing that even at such low relative Laponite concentrations (0.05% wt, with 10-35% wt.

PEO) the highly repeatable growth mechanism is foiled.

Dextran at 70k and 500k MW

Pauchard and Allain originally used Dextran, a branched polysaccharide, at 35k and

70k MW when investigating the buckling phenomena [203], and so some experiments

were performed to corroborate their results. In many situations the droplets showed

evidence of Pauchard’s buckling theory, however with higher MW and concentrations

some behaviour similar to the PEO growth presented here was found. It should be noted

that the droplets which buckled exerted significant forces on the coverslips, and at higher

concentrations they can bend the glass sufficiently to break it. This preliminary work has

led to further investigations into the internal forces present during Dextran evaporation

[238].

Polystyrene

Polystyrene droplets4 were investigated at 35k - 200k MW at 10-30% wt. The polystyrene

formed glassy deposits, typically with a small ‘spike’ at the centre, reminiscent of the

Dextran buckling on a much smaller scale. These glassy deposits were clear, and accurate

control of the residue shape, using pressure, temperature or another polymer, could lead

to polystyrene being used as a cheap replacement for glass in small lenses.
4The polystyrene was dissolved in toluene for this work as it is insoluble in water.
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5.4 Conclusions and Further Work

I conclude that the previously unseen droplet growth phenomena presented in this chap-

ter are likely to be driven by the hydrogen bonding-driven solvation discussed in §2.4.1; in

particular the deposit at the contact ring may repel the remaining aqueous phase (due to

its hydrophobicity), resulting in the receding contact line seen in Stage 2 being ‘squeezed’

in by the spherulitic crystals which start to form at tmin. This is supported by the raw

videos which show circulatory flow ceasing at tmin, and by Figure 5.19 which shows that

the crystallisation region exists above the substrate (ie. out of focus) in conjunction

with the particle tracking in Figure 5.14 which shows that the particles are not moving

fast enough to escape the receding contact line. If the receding contact line is driven by

circulation reversal (ie. Marangoni flow), one would expect the particles to move faster

than the contact line - ie. the effect must follow the cause. Even assuming the existence

of a viscous or turbulent boundary layer in the particle tracking experiments, the videos

clearly show re-circulatory flow halting at tmin, therefore I conclude that it is the receding

contact line which ‘squeezes’ the remaining aqueous phase causing θ and h to increase in

Stage 2. In a similar manner, the shrinking deposit causes the buckling shown in Figure

5.6, however this shrinking could also be responsible for ‘squeezing’ the Stage 2 droplet

vertically upwards as deposition continues at the solid-liquid phase boundary, causing

the Stage 3 vertical growth.

Whether this Stage 3 squeezing is sufficient to create all of the growth remains unclear

- one can assert that a contact angle & 90◦ as found at late times in Stage 2 would

encourage any deposition at the contact line to occur on top of previous deposits. This

would naturally lead to a droplet with large θ being raised on top of its own deposit, and

the continual loss of volume would reduce the contact line diameter - these two effects
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occurring simultaneously would logically lead to a conical shape being formed, as has

been seen throughout this chapter.

I feel that a combination of the deposit shrinking, and new deposits being placed on top

of previous ones due to θ & 90◦ is the most likely explanation, and is what leads to a

Stage 3 growth which can reach ≈ 1.8×h0.

The test for this hypothesis is to find an alternative polymer which is predominantly

hydrophobic (or which repels an alternative solvent), but which dissolves due to the

physical properties of the chain facilitating hydrogen-bonding, and subsequently shielding

the hydrophobic sections until the UCST is reached or deposition occurs at csat.

Figure 5.35: Final droplet deposits with increasing MW for initial concentration
c0 ≈ 3c∗. As the MW is increased, the Stage 2 de-pinning becomes more pronounced,
resulting in a narrower ‘cone’, but the growth regime stops abruptly at ≈ 300k MW for

all concentrations.

Figure 5.35 shows the final deposit shapes for 3-300k MW droplets, where c0 ≈ 3c∗

(the overlap concentrations can be found in Table 2.2, p.33). A value of 3c∗ was chosen

arbitrarily for this comparison as I had results for a variety of MWs at this value. Here

we see that as the MW is increased, the Stage 2 de-pinning becomes more pronounced,

which leads to higher θ values, encouraging more vertical growth during the deposition

stage. It is interesting to note that the growth phenomena is not present at 300k MW for

c0 . 8%, resulting in an even, flat disk of polymer deposit. For the growth phenomena to

be driven by evaporation the polymer chains must be easily transported by the internal

flow, therefore one can see how the longer chains (with a corresponding lower diffusion

constant D) will be harder to move. However, this does not explain how the lower MW
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droplets fail to de-pin. To account for this, I propose that this growth mechanism may

also be dependent on a trade-off between particle advection due to flux and brownian

motion-driven diffusion, referred to as the Péclet number:

Pe =
Jx

D
(5.9)

where J is the flux, x is a characteristic length of the system and D is the diffusion

constant. Widjaja and Harris showed using numerical simulations that in systems with

low Péclet numbers, the concentration of suspended particles was greatest at the apex

and lowest at the contact ring [239]. From Equation 5.9, a lower Péclet number could

arise from a higher diffusion constant D, which we would expect from shorter, more

mobile chains. In Figure 5.35 we see that the 3k and 8k MW droplets do not de-pin,

leaving a deposit with approximately the same base diameter as the original droplet. In

the OCT image of a 3k deposit (Figure 5.33) we also see that the deposit is thickest at

the centre and thinnest at the edge - consistent with Widjaja and Harris’ results.

I therefore conclude that the growth mechanism seen here in 20k and 100k MW droplets

is driven by the unusual hydrogen-bonding-driven solvation of the PEG/PEO molecule,

yet the growth is most apparent in systems with larger Péclet numbers, where material

is transported to the contact ring as per the Deegan model. In systems such as the

300k MW PEO shown here, I propose that either the Péclet number is too large due

to the lower diffusivity of longer chains, or the elasticity present from entanglements

between these polymers (shown in Figures 3.27 and 3.28, p.89-90) lowers the mobility of

the molecules sufficiently to prevent the growth phenomena.
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Linear versus Branched polymers

Pauchard’s original work with Dextran showed a permeable, constant surface area skin

forming and buckling as solvent evaporated; although Dextran is a polysaccharide which

undergoes a phase transition into a glassy state, it is possible that this behaviour occurs

due to the different entanglement properties of a branched polymer (Dextran) to a linear

polymer (ie. PEO). It would therefore be interesting to create branched PEO and com-

pare evaporation regimes for droplets with similar molar concentrations. Branched PEO

can be created by chemical processes or by subjecting the linear sample to high velocity

neutrons to initiate cross-linking, both of which were outside the scope of this research.

Taicaan Interferometric Profiler

The high-resolution scan shown in Figure 5.6 clearly shows the deposit structure, shape

and substrate buckling mentioned previously - the Taicaan R© profiler used for this al-

lowed for simple and accurate data acquisition, however the z-axis range was too low for

most of the droplets and the high-resolution scans took too long to visualise the growth

phenomena. With future hardware and software advances this equipment may become

invaluable for droplet evaporation studies, and an investigation into the substrate bend-

ing whilst monitoring the droplet and deposit shapes may yield further information as

to the internal processes during these phenomena.

Currently, I feel that further study of the changing droplet properties during Stages 2

and 3 would be best served using OCT hardware. Although the spatial resolution cannot

match the interferometric profiler, the temporal resolution is ≈ 30Hz for current commer-

cial systems, and one can visualise the PEO clusters in certain situations [240], thereby

allowing the internal flow to be measured simultaneously, which cannot be performed

with the Taicaan profiler.



Chapter 5. Bootstrap Droplets 207

Theoretical Advances

As the experimental results in this chapter and Reference [226] are the first reports of this

PEO droplet evaporation phenomena, there is currently no supporting theory for this

work. It would be useful to extend the theories of Popov [229] and Deegan [204, 241, 242]

to account for a reduction in the evaporative flux J due to increased concentration at the

contact line as a result of material transport. This would have to account for the fact that

a colloidal system such as coffee does not experience reduced J , but some PEO droplets

do. It is also possible that viscoelasticity plays a role in determining the final structure,

especially considering the reduction of the bootstrap effect in higher MW systems.



6
Conclusions and Further Work

“Conclusions arrived at through reasoning have very little or no influence in altering the

course of our lives."

Carlos Casteneda, 1925-1998

“Enough research will tend to support your conclusions."

Arthur Bloch

“I am turned into a sort of machine for observing facts and grinding out conclusions."

Charles Darwin, 1809-1882

6.1 Conclusions

In the course of this research the non-equilibrium behaviour of various polymeric complex

fluid systems (through evaporation and dilution) has been investigated, with an emphasis

on poly(ethylene oxide) due to its commercially-desirable properties.

208
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A safe and easy to use optical tweezer (OT) apparatus has been developed (§3) in or-

der to facilitate the investigation of various systems during dilution or drying. This

OT hardware has been shown to yield information about the non-equilibrium rheology

of single-component polymeric systems (§3.4.1,§3.4.2,§3.4.3), and more complex ‘living’

polymer samples (§4.9,§4.10), which is unobtainable using traditional bulk rheology or

Diffusing Wave Spectroscopy (DWS). This information is difficult to interpret in the

case of the wormlike micelle (WLM) system as the dilution gradient is inhomogeneous,

however this in itself allows a qualitative comparison to be made between systems which

is unfeasible using other methods. Further investigation of WLM and WLM with poly-

mer systems may explain the origin of the WLM dilution behaviour discussed in §4.9

and §4.10, which is crucial to the more commercially-relevant task of controlling and

exploiting the dilution behaviour to improve the efficacy of products.

The advantages of OT systems are limited in scope however, as I have shown that in

equilibrium conditions both bulk rheology and DWS yield more reliable data than the

OT apparatus (§4.3) developed in Chapter 3. Further to this, the arbitrary nature of

corrections to DWS data (§4.2.1.1) leads me to conclude that bulk rheology is still the

most reliable and useful method to study rheological behaviour, although this may change

as microrheological methods are refined.

In the course of comparing equilibrium data from various systems using bulk rheology,

OTs and DWS, I have undertaken an investigation into the changing rheology of a ‘model’

WLM network structure as various components are added with a view to understanding

the behaviour of commercially-viable systems. I have shown that a dual-surfactant (SDS

and CAPB) system will form WLMs given sufficient surfactant concentration, or addi-

tional ionic strength, however CAPB contains a small percentage of NaCl, and therefore
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one must keep in mind that increasing the eM surfactant concentration will simultane-

ously increase the electrolyte level. With 1.5% wt additional NaCl, these WLM systems

show increased elasticity and entanglements consistent with micelle lengthening due to

charge screening; on the addition of 3% wt NaCl, this system shows behaviour indica-

tive of branching at both 0.1 and 0.2 eM surfactant concentrations. These results show

that SDS:CAPB eM samples can be considered ‘model’ WLM systems, and close ap-

proximations of Maxwellian systems on the addition of extra salt or surfactant above

0.1eM.

The effect of an uncharged polymer (PEO 4M MW) on the WLM network structure was

subsequently investigated, and at low concentrations (.0.2% wt. PEO) there was little

to no effect, at intermediate concentrations (.0.4% wt. PEO) there was evidence of

a transient network structure forming, giving a secondary relaxation time, and at high

concentrations (0.5% wt. PEO) a gel-like system was created with behaviour indicative

of multiple relaxation times, although the exact effect was dependent on the surfactant

concentration csurf . PEO is used extensively in home and personal care products as a

viscosifier, so it is important to quantify its effect on a system, and this data gives a prod-

uct designer the ability to modify a product’s feel simply by altering the concentration

of a single, safe component between 0−0.5% wt.

Further to this, the effect of a conditioning polyelectrolyte on the network structure

was studied; its effect was highly dependent on surfactant and electrolyte concentration,

but also hinted at the previously unreported behaviour of the polyelectrolyte initiating

micellar branching. It would be extremely interesting to verify this using cryo-TEM as

described in Chapter 4, as this would lead to a new technique to control the rheology of

commercial products.
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These are useful results for product designers as the samples studied in this work are

close to commercial systems, yet I have shown that they have properties close to ‘model’

systems. Typically commercial products are ‘messy’, due to the multiple components

interacting in ways which are not well understood; this study into SDS:CAPB WLMs

provides evidence that products can be developed whilst maintaining ‘ideal’ rheological

properties.

Droplet Evaporation Investigation

Drying experiments have been performed using the OT apparatus mentioned above (eg.

§3.4.3), however I decided to concentrate on the simpler experimental technique of mon-

itoring sessile droplets in ambient conditions. This investigation has led to us report-

ing a droplet evaporation regime in which the overall surface area increases through a

four-stage deposition process [226], with behavioural elements similar to Deegan’s [204],

Pauchard’s [203] and Widjaja’s [239] models.

In Chapter 5 I hypothesise that the concurrent solidification regions that occur in some

droplets may be due to the lack of re-circulation as a result of their high viscosity. It

would be interesting to measure the flow in these droplets using NMR/MRI to attempt

to determine the underlying reasons why viscosity increases sufficiently to inhibit solvent

replenishment in some systems but not others. This could also be performed by seeding

the droplets with fluorescent spheres to allow for particle tracking over the entire exper-

imental time (for the evaporating droplets). At the moment, particle tracking becomes

unreliable during Stage 2, however adding sufficient spheres to visualise the flow at later

times may affect the behaviour, so magnetic resonance techniques are preferable.
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Poly(ethylene oxide)

Poly(ethylene oxide) (PEO) has been used extensively in this work, and has shown

various behavioural regimes, including the possibility that it makes WLM dilution more

uniform, and that it can make the evaporation of a sessile droplet less uniform. In

Chapter 1 it is mentioned that PEO has apparently contradictory behaviours - this work

has found more behavioural regimes of this molecule which exhibit behaviour not covered

by current theories.

The non-standard solvation mechanism for this droplet certainly gives it unusual proper-

ties, such as an upper critical solubility temperature (UCST), and this hydrogen-bonding

solvation may be the reason for the droplet growth phenomena. Whether this solvation

process is important in the many other properties of PEO remains to be seen, however

it can be concluded that the non-equilibrium behaviour of this one molecule is wide and

varied, and can give apparently contradictory results, therefore a complete theory of

non-equilibrium complex fluids will require extensive further research at the intersection

of physics, chemistry and engineering.



A
Python Code for ETAW Method

�
1 # Author : Dave Willmer , 2008 , MIT Licence
2 from __future__ import with_statement
3 import os
4 from numpy import array , p o l y f i t , zeros , logspace , power , exp , d i f f
5 from pylab import l og l og , show
6
7 def d i r e c tConver s i on (J , t , l inear_t , data_points , fn="convdata" ) :
8 J , t , s torage , l o s s = array ( J ) , array ( t ) , l i s t ( ) , l i s t ( )
9 n0 = 1 ./ p o l y f i t ( x=t [ l i n ea r_t : ] , y=J [ l i nea r_t : ] , deg=1)

10 gdata = ze ro s ( ( data_points+1, 3) )
11 f range = logspace ( s t a r t=−3, stop=3, num=data_points )
12
13 for omega in range (1 , data_points +1):
14 w = power (10 , ( f range [0 ]+( omega∗ f r ange [ 1 ] ) ) )
15 g_star = 1 j ∗w / ( ( J [ 0 ] ∗ 1 j ∗w + exp(−1 j ∗w∗ t [−1])/ n0 [ 0 ] ) + \
16 sum( d i f f ( J )/ d i f f ( t ) ∗ ( exp(−1 j ∗w∗( t [:−1]− t [ 0 ] ) ) − \
17 exp(−1 j ∗w∗( t [ 1 : ] − t [ 0 ] ) ) ) ) )
18 s to rage . append ( (omega , g_star . r e a l ) )
19 l o s s . append ( (omega , g_star . imag ) )
20
21 gp = z ip (∗ s t o rage )
22 gdp = z ip (∗ l o s s )
23 #l o g l o g ( gp [ 0 ] [ 1 : ] , gp [ 1 ] [ 1 : ] )
24 #l o g l o g ( gdp [ 0 ] [ 1 : ] , gdp [ 1 ] [ 1 : ] )
25 #show ()
26 f = open ( fn+" .MODULI. csv " , ’w ’ )
27 for each in range ( l en ( gp [ 0 ] ) ) :
28 f . wr i t e ( s t r ( gp [ 0 ] [ each ])+ ’ , ’+s t r ( gp [ 1 ] [ each ])+ \
29 ’ , ’+s t r ( gdp [ 1 ] [ each ])+ ’ \n ’ )
30 f . c l o s e ( )
31
32 i f __name__ == ’__main__ ’ :
33 f o l d e r = ’ 071218_T2C2_water_on_top_0 . 8W_AOD65. 5 k ’
34 f i l e s = [ x for x in os . l i s t d i r ( f o l d e r ) i f x . endswith ( ’STD. dat ’ ) ]
35
36 for fn in f i l e s :
37 with open ( os . path . j o i n ( f o l d e r , fn ) , ’ r ’ ) as f :
38 d = z ip ( ∗ [ x . r s t r i p ( ’ \n ’ ) . s p l i t ( ’ \ t ’ ) for x in f . r e a d l i n e s ( ) ] )
39 d_0 , d_1 = map( f l o a t , d [ 0 ] ) , map( f l o a t , d [ 1 ] )
40 d i r e c tConver s i on ( array (d_1) , array (d_0) , i n t (1900) , i n t (2000) , fn )
� �
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B
Python Code for Maxwellian Single-Exponential Fit

1 # Author : Dave Willmer , MIT Licence 2009
2 from s c ipy import opt imize
3 from numpy import power
4 import pylab as p
5
6 b06 = r " jaguar /data/ jag17−beta .06− jaguar−study . txt "
7 b07 = r " jaguar /data/ jag17−beta .07− jaguar−study . txt "
8 b08 = r " jaguar /data/ jag17−beta .08− jaguar−study . txt "
9 b10 = r " jaguar /data/ jag17−beta .10− jaguar−study . txt "

10
11 def se lect_columns ( fn , x_col , y_col , headers =1):
12 data = z ip ( ∗ [ q . r s t r i p ( ’ \n ’ ) . r s t r i p ( ’ \ r ’ ) . s p l i t ( ’ \ t ’ )
13 for q in open ( fn , ’ r ’ ) . r e a d l i n e s ( ) [ headers : ] ] )
14 return (map( f l o a t , data [ x_col ] ) , map( f l o a t , data [ y_col ] ) )
15
16 def f it_g_prime (x , Gm, Tm, Gt , Tt ) :
17 return Gm ∗ ( (Tm∗Tm∗power (x , 2 ) ) / (1+(Tm∗Tm∗power (x , 2 ) ) ) )
18
19 def fit_g_double_prime (x , Gm, Tm, Gt , Tt ) :
20 return Gm ∗ ( (Tm∗power (x , 1 ) ) / (1+ (Tm∗Tm∗power (x , 2 ) ) ) )
21
22 gp_x , gp_y = select_columns ( b10 , 1 , 2 , headers=2)
23 gdp_x , gdp_y = select_columns ( b10 , 1 , 3 , headers=2)
24
25 gs s = [ 1 , 1 , 1 , 1 ]
26 gp_fit , gp_cov = opt imize . curve_f i t ( fit_g_prime , gp_x , gp_y , p0=gss )
27 gdp_fit , gdp_cov = opt imize . curve_f i t ( fit_g_double_prime , gdp_x , gdp_y , p0=gss )
28
29 Gm, Tm, Gt , Tt = gp_fit
30 gp_fit_vals = [ fit_g_prime ( val , Gm, Tm, Gt , Tt ) for va l in gp_x ]
31 Gm, Tm, Gt , Tt = gdp_fit
32 gdp_fit_vals = [ fit_g_double_prime ( val , Gm, Tm, Gt , Tt ) for va l in gdp_x ]
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C
Python Code for Double-Maxwell Fit

�
1 #Author : Dave Willmer , MIT Licence 2009
2 from s c ipy import opt imize
3 from numpy import power
4 import pylab as p
5
6 g e l_ f i t = " jaguar /data/peo4x−beta .06− jaguar−study . txt "
7
8 def se lect_columns ( fn , x_col , y_col , headers =1):
9 data = z ip ( ∗ [ q . r s t r i p ( ’ \n ’ ) . r s t r i p ( ’ \ r ’ ) . s p l i t ( ’ \ t ’ )

10 for q in open ( fn , ’ r ’ ) . r e a d l i n e s ( ) [ headers : ] ] )
11 return (map( f l o a t , data [ x_col ] ) , map( f l o a t , data [ y_col ] ) )
12
13 def f it_g_prime (x , Gm, Tm, Gt , Tt ) :
14 return Gm ∗ ( (Tm∗Tm∗power (x , 2 ) ) / (1+(Tm∗Tm∗power (x , 2 ) ) ) ) + \
15 Gt ∗ ( (Tt∗Tt∗power (x , 2 ) ) / (1+(Tt∗Tt∗power (x , 2 ) ) ) )
16
17 def fit_g_double_prime (x , Gm, Tm, Gt , Tt ) :
18 return Gm ∗ ( (Tm∗power (x , 1 ) ) / (1+ (Tm∗Tm∗power (x , 2 ) ) ) ) + \
19 Gt ∗ ( (Tt∗power (x , 1 ) ) / (1+ (Tt∗Tt∗power (x , 2 ) ) ) )
20
21 gp_x , gp_y = select_columns ( ge l_ f i t , 1 , 2 , headers=2)
22 gdp_x , gdp_y = select_columns ( ge l_ f i t , 1 , 3 , headers=2)
23
24 gs s = [ 1 , 1 , 1 0 , 1 0 ]
25 gp_fit , gp_cov = opt imize . curve_f i t ( fit_g_prime , gp_x , gp_y , p0=gss )
26 gdp_fit , gdp_cov = opt imize . curve_f i t ( fit_g_double_prime , gdp_x , gdp_y)
27
28 gp_fit_vals = [ fit_g_prime ( val , ∗ gp_fit ) for va l in gp_x ]
29 gdp_fit_vals = [ fit_g_double_prime ( val , ∗ gdp_fit ) for va l in gdp_x ]
� �
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D
ImageJ Macro for Droplet Profile Extraction

34 base_file_name = " ./8 k/macrod" ;
35 s e t S l i c e ( 1 ) ;
36
37 for ( i =1; i <= nS l i c e s ; i++)
38 {
39 fi le_name=base_file_name+i+" . txt " ;
40 doWand ( 1 , 1 ) ;
41 g e tSe l e c t i onCoo rd ina t e s (x , y ) ;
42 for ( j =5; j<x . length −5; j++)
43 {
44 xave = (x [ j ]+x [ j −1 ] )/2 ;
45 yave = (y [ j ]+y [ j −1 ] )/2 ;
46 F i l e . append ( xave+" , "+yave , f i le_name ) ;
47 }
48
49 run ( "Next S l i c e [ >] " ) ;
50 run ( " S e l e c t None" ) ;
51 }
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E
Python Code for Droplet Profile Calculations

�
1
2 import os
3 import numpy as n
4 import pylab as p
5
6 from numpy import array as n_array , min as n_min , max as n_max, \
7 power as n_power , abs as n_abs , po lyval , p o l y f i t , \
8 sum as n_sum, sq r t as n_sqrt , p i as n_pi
9

10 ######## USER DEFINITIONS BELOW ######
11
12 d i r e c t o r y = ’ /Users /dave/Desktop/image_j_procd/8k60pc/ ’
13 p r e f i x = ’macrod ’
14
15 ######################################
16
17 ’ ’ ’
18
19 Data s t o rage c l a s s
20
21 ’ ’ ’
22
23 class P r o f i l e ( ob j e c t ) :
24 ’ ’ ’ C lass to s t o r e p r o f i l e data and in f o . ’ ’ ’
25 def __init__( s e l f , number ) :
26 s e l f . number = number
27 s e l f . _data = d i c t ( )
28
29 def __getitem__( s e l f , item ) :
30 return s e l f . _data [ item ]
31
32 def set_data ( s e l f , data ) :
33 for k , v in data . i tems ( ) :
34 s e l f . _data [ k ] = v
35
36
37 ’ ’ ’
38
39 Data proce s s ing code .
40
41 ’ ’ ’
42
43 l i s t_o f_p r o f i l e s = l i s t ( )
44 fnames = [ x for x in os . l i s t d i r ( d i r e c t o r y ) i f x . s t a r t sw i t h ( p r e f i x ) ]
45
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46 p . subplot (221)
47 p . t i t l e ( ’ P r o f i l e s ’ )
48 for i in range (1 , l en ( fnames ) ) :
49
50 fn = ’macrod ’+s t r ( i )+ ’ . txt ’
51
52 # read data in t o array
53 with open ( os . path . j o i n ( d i r e c to ry , fn ) , ’ r ’ ) as f :
54 rawdata = f . r e a d l i n e s ( )
55
56 # s p l i t rawdata in t o x− and y−arrays
57 x_data , y_data = z ip ( ∗ [ l i n e . r s t r i p ( ’ \n ’ ) . s p l i t ( ’ , ’ ) \
58 for l i n e in rawdata ] )
59
60 # conver t a l l data in f l o a t ( i s read in as s t r i n g )
61 x_data = map( f l o a t , x_data )
62 y_data = map( f l o a t , y_data )
63
64 # reve r s e y−array as imageJ has 0 ,0 in top− l e f t
65 max_y = max( y_data )
66 y_data_reverse = [max_y−y for y in y_data ]
67
68 # conver t to numpy arrays
69 x_array = n_array ( x_data )
70 y_array = n_array ( y_data_reverse )
71
72 # ge t 8 th order po lynomia l f i t v a l u e s
73 f i t_ c o e f f s = p o l y f i t ( x_array , y_array , 8 )
74 f i t_va lu e s = po lyva l ( f i t_ c o e f f s , x_array )
75
76 # ge t min + max va l u e s wi th i n d i c e s o f po lynomia l f i t
77 temp_values = f i t_va lu e s . t o l i s t ( )
78 max_y, min_y = n_max( f i t_va lu e s ) , n_min( f i t_va lu e s )
79 max_y_index = temp_values . index ( max_y )
80 min_y_index = temp_values . index ( min_y )
81
82 # recen t r e data wi th max in middle
83 x_array −= x_array [ max_y_index ]
84
85 i f not i % 100 :
86 p . p l o t ( x_array , y_array )
87 p . p l o t ( x_array , f i t_va lu e s )
88
89 # ca l c u l a t e parameters
90 p i = n_pi
91 r1 , r2 = x_array [ : −1 ] , x_array [ 1 : ]
92
93 deltaH = n_abs ( y_array [ : −1 ] − y_array [ 1 : ] )
94 sur faceArea = ( p i /2) ∗ n_abs ( r1+r2 ) ∗ \
95 n_sqrt ( n_power ( r1−r2 , 2 ) + n_power ( deltaH , 2 ) )
96 volume = ( pi /6) ∗ deltaH ∗ ( n_power ( r1 , 2 ) \
97 + n_power ( r2 , 2 ) + r1 ∗ r2 )
98 rad iu s = (n_max( x_array ) − n_min( x_array ) ) / 2
99 he ight = max_y − min_y
100 sum_rh_squared = n_power ( radius , 2 ) + \
101 n_power ( height , 2 )
102 areaSpher ica lCap = pi ∗ sum_rh_squared
103 ca l cu la tedArea = n_sum( sur faceArea )
104 pe r centD i f f e r enceArea = n_abs ( areaSpher ica lCap−\
105 ca l cu la tedArea )/ ca l cu la tedArea ∗100
106 volumeSphericalCap = ( p i /6) ∗ he ight ∗ 3 ∗ \
107 sum_rh_squared
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108 calculatedVolume = n_sum( volume )
109 percentDi f f e renceVolume = n_abs ( \
110 volumeSphericalCap−calculatedVolume )/ \
111 calculatedVolume ∗100
112
113 errv1 , e r rv2 = n_sum( volume [ : max_y_index ] ) , \
114 n_sum( volume [max_y_index : ] )
115 e r rv = ( er rv1 − er rv2 ) / 2
116
117 erra1 , e r ra2 = n_sum( sur faceArea [ : max_y_index ] ) , \
118 n_sum( sur faceArea [ max_y_index : ] )
119 e r ra = ( er ra1 − e r ra2 )/2
120
121 data = d i c t ( )
122 data [ ’ deltaH ’ ] = deltaH
123 data [ ’ sur faceArea ’ ] = sur faceArea
124 data [ ’ volume ’ ] = volume
125 data [ ’ r ad iu s ’ ] = rad iu s
126 data [ ’ he ight ’ ] = he ight
127 data [ ’ sum_rh_squared ’ ] = sum_rh_squared
128 data [ ’ areaSpher ica lCap ’ ] = areaSpher ica lCap
129 data [ ’ ca l cu la tedArea ’ ] = ca l cu la tedArea
130 data [ ’ pe r c entD i f f e r enceArea ’ ] = percentD i f f e r enceArea
131 data [ ’ volumeSphericalCap ’ ] = volumeSphericalCap
132 data [ ’ ca lculatedVolume ’ ] = calculatedVolume
133 data [ ’ percentDi f f e renceVolume ’ ] = percentDi f f e renceVolume
134 data [ ’ e r rv1 ’ ] = wonkyv1
135 data [ ’ e r rv2 ’ ] = wonkyv2
136 data [ ’ e r rv ’ ] = wonkyv
137 data [ ’ e r ra1 ’ ] = wonkya1
138 data [ ’ e r ra2 ’ ] = wonkya2
139 data [ ’ e r r a ’ ] = wonkya
140 #data [ ’ f l a tArea ’ ] = f l a tArea
141 #data [ ’ f la tVolume ’ ] = f la tVolume
142
143 p r o f i l e = P r o f i l e ( i )
144 p r o f i l e . set_data ( data )
145 l i s t_ o f_p r o f i l e s . append ( p r o f i l e )
146 del p r o f i l e
147
148
149 p . subplot (222)
150 p . t i t l e ( ’Norm . Volume ’ )
151 v0 = l i s t_ o f_p r o f i l e s [ 0 ] [ ’ ca lculatedVolume ’ ]
152 norm_vol = [ x [ ’ ca lculatedVolume ’ ] / v0 for x in l i s t_ o f_p r o f i l e s ]
153 p . p l o t ( norm_vol )
154
155 p . subplot (223)
156 p . t i t l e ( ’Norm . Height ’ )
157 h0 = l i s t_o f_p r o f i l e s [ 0 ] [ ’ he ight ’ ]
158 norm_height = [ x [ ’ he ight ’ ] / h0 for x in l i s t_ o f_p r o f i l e s ]
159 p . p l o t ( norm_height )
160
161 p . subplot (224)
162 p . t i t l e ( ’Norm . Area ’ )
163 a0 = l i s t_o f_p r o f i l e s [ 0 ] [ ’ ca l cu la tedArea ’ ]
164 norm_area = [ x [ ’ ca l cu la tedArea ’ ] / a0 for x in l i s t_ o f_p r o f i l e s ]
165 p . p l o t ( norm_area )
166
167 p . show ( )
� �



F
Solution of ζmin Depressed Cubic

We start with the unknown ζmin in terms of known parameters

ζ3
min + 3ζmin =

c0

csat

(
ζ3

0 + 3ζ0

)
= 2D, (F.1)

in which D is a constant. We can then use del Ferro’s method [243, 244] to solve for ζmin

by finding s and t where

3st = 3 (F.2)
s3 − t3 = 2D. (F.3)

Solving for s in F.2 and substituting into F.3 gives

1

t3
− t3 = 2D, (F.4)

which multiplied by t3 gives

− t6 − 2Dt3 + 1 = 0

∴ t6 + 2Dt3 − 1 = 0. (F.5)

Treating this as a quadratic in t3 we then obtain

t3 = −2D

2
±
√

(2D)2

4
− (−1)

∴ t =
3

√
−D ±

√
D2 + 1. (F.6)
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