# Genome sequence of the hyperinvasive *Campylobacter jejuni* strains

## **Abiyad Baig**

A thesis submitted in partial fulfilment of the requirements of Nottingham Trent University for the degree of Doctor of Philosophy

November 2012

#### **ABSTRACT**

Campylobacter jejuni is the world's major cause of gastroenteritis in humans. Although motility, toxin production, adhesion and invasion are some of the key factors associated with *C. jejuni* pathogenesis, their mechanism in the disease process remains unclear. The key aim of this project is to study the genetic basis of hyperinvasiveness in a group of six *C. jejuni* strains which have been reported as hyperinvasive into human intestinal cell lines.

Here, genomotyping of the hyperinvasive *C. jejuni* was performed by comparative genomic hybridization (CGH) against four low invasive *C. jejuni* strains. A group of 67 genes were identified as being present or highly divergent/absent in the hyperinvasive versus low invasive *C. jejuni* strains. Of these, nine genes were present and six genes were highly divergent/absent in all hyperinvasive *C. jejuni*. The PCR screening of these 15 genes in nine additional low invasive *C. jejuni* strains showed a significant association with the hyperinvasive phenotype. The majority of identified genes encoded proteins with essential cellular and metabolic functions along with some genes with known virulence related roles. Thus, the hyperinvasive phenotype is characterised by different functional networks rather than a single gene or gene cluster. All strains showed an overall genetic variability and the capsule, lipooligosaccharide, flagellar biosynthesis and restriction modification regions were the most diverse. The hierarchical clustering based on comparative genomic hybridization (CGH) did not group together the hyperinvasive *C. jejuni* as a single group and these strains possessed different MLST profiles.

The hyperinvasive *C. jejuni* strains were shown to contain additional genetic content by pooled suppressive subtractive hybridization (PSSH). Eleven inserts were identified in total which were variably distributed in the hyperinvasive *C. jejuni* strains. Of these four sequences were specific to the hyperinvasive *C. jejuni* as these were absent from all thirteen low invasive *C. jejuni* strains tested. The majority of sequences matched with genes in *Campylobacter* and other bacteria and one sequence had no homology with anything in the databases today. Since, there is no insert identified as present in all the hyperinvasive *C. jejuni* strains it can be suggested that each strain might have evolved a different mechanism for hyperinvasiveness and that this phenotype is a multifactorial process.

C. jejuni 01/10 and 01/51 whole genome sequences identified no unique genetic content in either strain except for a prophage in C. jejuni 01/51. C. jejuni 01/10 was found to contain two prophages. C. jejuni 01/51 has a highly mosaic capsule locus with genes similar to C. jejuni subsp. doylei and C. lari capsular polysaccharide genes. Some genes with homology to the C. jejuni subsp. doylei capsule genes were also identified in C. jejuni 01/10 capsule region. This is evidence of genetic recombination with capsule genes from other pathogenic Campylobacter species which is not reported in the capsule region of other Campylobacter strains sequenced to date. This suggests that the highly diverse capsule in C. jejuni 01/10 and 01/51 is required for the hyperinvasive phenotype in these strains.

This study has provided detailed insight into the genomic structure of the hyperinvasive *C. jejuni* strains and has highlighted genetic factors involved in their hyperinvasive phenotype.

#### **DECLARATIONS**

**Section 1**: This is an original piece of research work carried out by the author in the School of Science and Technology at Nottingham Trent University. The adhesion and invasion profiling of hyperinvasive and low invasive *C. jejuni* strains used in this study was originally reported by Fearnley *et al* (2008) and later re-confirmed by my predecessor post-graduate researcher, Dr Afzal Javed at NTU (Javed., 2009). The phylogeny of hyperinvasive *C. jejuni* 01/51 and 01/10 strains (chapter 6) was performed by Dr Alan McNally at NTU. There is no material contained within this thesis that has been submitted for any other degree, or at any other institution.

This work is an intellectual property of the author, and may also be owned by the research sponsor and/or Nottingham Trent University. You may be allowed to copy up to 5 percent of this work for purposes of private study, or personal, non-commercial research work. Any reuse of the information provided within this document should be referenced fully and appropriately, quoting the author, title, university, degree level and pagination. Queries or requests for any other use, or if a more substantial copy is required, should be directed in the first instance to the author.

#### **Section 2**: Thesis Deposit

I have obtained appropriate third party copyright permission and my thesis can be made publically available online.

YES

If I have agreed (in section 2) to make my thesis publicly available online digitally, I hereby authorise Nottingham Trent University Libraries and Learning Resources to make my thesis available in IRep (The University's Institutional Repository). By doing so, I agree to the following:

#### • Third party copyright material

That I have obtained permission from copyright holders (authors/publishers) in respect of any substantial extracts of third party copyright material that have already been published, which are included within the thesis. Permission obtained specifically includes the right to publish digitally.

#### **ACKNOWLEDGEMENTS**

I would like to thank Almighty Allah for giving me the strength and courage to lead this project to completion. My very many special thanks and highest regards are for my most worthy director of studies, Dr Georgina Manning. She has not only been a great mentor throughout my studies but has also been a fantasic listener. Dr Manning has always been on forefront to provide continuous guidance, encouragement and support during this project. This research work would have not possible without her support and guidance. I would like to thank Dr Alan McNally for being a supportive supervisor and for his generous help with a lot of complex data analysis involved in this project. Dr McNally has always extended his most useful ideas for the progression of this research work. My sincere regards are for Professor Steve Forsythe for being an actively participating supervisor and many interesting discussions in this research.

I am thankful to Professor Ian Connerton of the University of Nottingham for preliminary discussions in the CGH study and Mr Colin Nicholson, the University of Nottingham post-genomics facitlity at the QMC for performing DNA microarray hybridization and for allowing me to work in parallel with him during the experiment. I am grateful to Professor Nadia Chuzhanova, NTU, for performing the statistical analysis of CGH data and overall statistics help in different parts of this study. I would like to thank Dr Chrystala Constantinidou and Mrs Mala Patel (University of Birmingham) for performing genome sequening on my strains and for giving me a chance to experience the next generation sequencing technique in the their genomics lab.

Thanks to my lovely colleagues in the microbiology laboratory and in postgraduate research office for providing a co-operative, comfortable and most enjoyable environment for work. I am thankful to the microbiology preparation room team members for always being supporting and helpful to me.

I would also like to thank my family; Ani, Neena, Nadia and Maman for their patience and support throughout this time demanding research period. I also owe my thanks to Misbah, Umair and Ahmed, and Miquette for their support and for organising most wanted relaxing breaks during my thesis write up period.

This project is funded by the NTU Vice chancellor's sponsorship.

## **CONTENTS**

| ABSTRACTi                                                                |    |
|--------------------------------------------------------------------------|----|
| DECLARATIONSii                                                           |    |
| ACKNOWLEDGEMENTSiii                                                      |    |
| CONTENTS iv                                                              |    |
| LIST OF FIGURESx                                                         |    |
| LIST OF TABLESxiii                                                       |    |
| APPENDIX xiv                                                             |    |
| LIST OF ABBREVIATIONSxv                                                  |    |
| <u>Chapter One</u>                                                       |    |
| INTRODUCTION                                                             | 2  |
| 1.1 Campylobacter species in general                                     | 2  |
| 1.2 History of Campylobacter species                                     | 2  |
| 1.3 Taxonomy of Campylobacter species                                    | 3  |
| 1.4 Isolation and further classification of <i>Campylobacter</i> species | 4  |
| 1.4.1 Isolation and phenotyping                                          |    |
| 1.5 Campylobacteriosis: a disease burden on public health                | 8  |
| 1.6 Campylobacter species sources and transmission of infection          | 9  |
| 1.7 Enteric <i>C. jejuni</i> infection and clinical symptoms             | 10 |
| 1.7.1 Complex disease                                                    | 11 |
| 1.8 Treatment                                                            | 12 |
| 1.9 Host immune response to <i>C. jejuni</i> infections                  | 12 |
| 1.9.1 Innate immune system                                               |    |
| 1.10 Pathogenesis mechanisms of <i>C. jejuni</i> infection               | 17 |
| 1.10.1 Flagella                                                          |    |

| 1.10.3 Adhesion and Invasion                                           | 19 |
|------------------------------------------------------------------------|----|
| 1.10.3.1 Factors influencing adhesion and invasion in <i>C. jejuni</i> | 22 |
| 1.10.4 Translocation                                                   | 27 |
| 1.10.5 Toxin production                                                | 27 |
| 1.10.6 Iron homeostasis.                                               | 28 |
| 1.10.7 Lipopolysaccharide                                              |    |
| 1.10.8 Capsule biosynthesis locus                                      |    |
| 1.10.9 Protein glycosylation systems in <i>Campylobacter</i> species   | 33 |
| 1.11 Project background and key aims of research                       | 35 |
| <u>Chapter Two</u>                                                     |    |
| MATERIALS AND METHODS                                                  | 40 |
| 2.1 Bacterial strains                                                  | 40 |
| 2.2 Primers used in this study                                         | 42 |
| 2.3 Culture media                                                      |    |
| 2.4 Bacterial culture maintenance and growth                           | 47 |
| 2.5 General buffers                                                    | 48 |
| 2.6 DNA extraction procedures                                          | 48 |
| 2.6.1 Genomic DNA extraction                                           | 48 |
| 2.6.2 Plasmid DNA extraction                                           | 49 |
| 2.6.3 Determination of DNA concentration                               | 49 |
| 2.7 Polymerase Chain Reaction                                          | 49 |
| 2.7.1 Standard PCR                                                     | 49 |
| 2.7.2 Colony PCR                                                       | 50 |
| 2.7.3 Agarose gel electrophoresis                                      | 50 |
| 2.7.4 Cloning into pCR 2.1-TOPO® vector                                | 50 |
| 2.7.5 Heat shock transformation of 10F' E. coli cells                  | 52 |
| 2.7.6 Purification of PCR products                                     | 52 |
| 2.8 Multi locus sequence typing (MLST)                                 | 52 |
| 2.9 Serotyping                                                         | 52 |

### **Chapter Three**

| PHENOTYPIC CHARACTERIZATION OF THE HYPERINVASIVE C. JEJUNI                                                                                                                          |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| STRAINS                                                                                                                                                                             | 54 |
| 3.1 INTRODUCTION                                                                                                                                                                    | 54 |
| 3.1.1 <i>C. jejuni</i> virulence factors inside the host                                                                                                                            | 54 |
| 3.1.2 <i>C. jejuni</i> survival in environment                                                                                                                                      |    |
| 3.1.3 <i>In vitro</i> invasion assay related stresses                                                                                                                               |    |
| 3.2 METHODS                                                                                                                                                                         | 56 |
| 3.2.1 Growth curve using viable count method                                                                                                                                        | 56 |
| 3.2.2 Resistance to aeration stress                                                                                                                                                 | 57 |
| 3.2.3 Sensitivity to hydrogen peroxide                                                                                                                                              | 57 |
| 3.2.4 Motility assay                                                                                                                                                                | 58 |
| 3.2.5 Autoagglutination assay                                                                                                                                                       | 58 |
| 3.2.6 Resistance to sodium deoxycholic acid stress                                                                                                                                  | 58 |
| 3.2.7 Biofilm study                                                                                                                                                                 | 59 |
| 3.3 RESULTS AND DISCUSSION                                                                                                                                                          | 60 |
| 3.3.1 Growth rate study of the hyperinvasive and low invasive <i>C. jejuni</i> strains                                                                                              | 60 |
| 3.3.2 Survival of the hyperinvasive and low invasive <i>C. jejuni</i> strains under                                                                                                 |    |
| atmospheric stress                                                                                                                                                                  | 62 |
| 3.3.3 Sensitivity to hydrogen peroxide (H <sub>2</sub> O <sub>2</sub> ) of hyperinvasive and low invasive                                                                           |    |
| C. jejuni strains                                                                                                                                                                   | 65 |
| 3.3.4 Motility profile of hyperinvasive and low invasive <i>C. jejuni</i> strains                                                                                                   | 67 |
| 3.3.5 Autoagglutination activity of hyperinvasive and low invasive <i>C. jejuni</i> strains 3.3.6 Survival of the hyperinvasive and the low invasive <i>C. jejuni</i> strains under | 69 |
| sodium deoxycholic acid stress                                                                                                                                                      | 71 |
| 3.3.7 Biofilm formation in the hyperinvasive and low invasive <i>C. jejuni</i>                                                                                                      |    |
| 3.4 CONCLUSIONS AND FUTURE WORK                                                                                                                                                     | 75 |
| <b>Chapter Four</b>                                                                                                                                                                 |    |
| GENOTYPING OF THE HYPERINVASIVE C. JEJUNI STRAINS BY                                                                                                                                |    |
| COMPARATIVE GENOMIC HYBRIDIZATION (CGH)                                                                                                                                             | 77 |
| 4.1 INTRODUCTION                                                                                                                                                                    | 77 |
| 4.1.1 Comparative Genomic Hybridization as a tool to study phylogeny and                                                                                                            |    |
| diversity                                                                                                                                                                           | 77 |
| 4.2 METHODS                                                                                                                                                                         | 82 |

| 4.2.1 Microarray design and construction 82                                                      |
|--------------------------------------------------------------------------------------------------|
| 4.2.2 Enzymatic labelling of genomic DNA with Cy3 dCTP and Cy5 dCTP and                          |
| hybridization82                                                                                  |
|                                                                                                  |
| 4.2.2.1 Hybridization83                                                                          |
| 4.2.3 Tools for CGH data analysis and hierarchical clustering                                    |
| 4.2.4 Classification of loci specific to the hyperinvasive <i>C. jejuni</i> and further          |
| analysis                                                                                         |
|                                                                                                  |
| 4.3 RESULTS AND DISCUSSION                                                                       |
| 4.3.1 Genomotyping of hyperinvasive C. jejuni using Comparative Genomic                          |
| Hybridization86                                                                                  |
|                                                                                                  |
| 4.3.1.1 Robustness of genomotyping using DNA microarray86                                        |
| 4.3.1.2 Preliminary microarray data analysis                                                     |
| 4.3.2 Phylogenomic clustering of hyperinvasive and low invasive <i>C. jejuni</i> by CGH 90       |
| 4.3.3 Identification of loci specific to hyperinvasive <i>C. jejuni</i> and PCR validation of    |
| CGH results93                                                                                    |
| 4.3.4 Presence of hyperinvasive-associated loci in an addition group of low invasive             |
| C. jejuni isolates                                                                               |
| 4.3.5 Functional importance of hyperinvasive linked loci identified by CGH 100                   |
| 4.3.5.1 Group 1: Genes present in the all hyperinvasive <i>C. jejuni</i> 100                     |
| 4.3.5.2 Group 2: Genes highly divergent/absent in all hyperinvasive                              |
| C. jejuni                                                                                        |
| 4.3.5.3 Important loci present or variable in other groups105                                    |
|                                                                                                  |
| 4.3.6 Distribution of hyperinvasive loci in the pan genome                                       |
| 4.3.7 Variability in the hyperinvasive <i>C. jejuni</i> at the whole genome level based on       |
| CGH data                                                                                         |
| 4.4 SUMMARY AND CONCLUSIONS                                                                      |
| 4.5 LIMITATIONS OF DNA MICROARRAY AND NEXT STEP 114                                              |
|                                                                                                  |
| <u>Chapter Five</u>                                                                              |
| SUPPRESSIVE SUBTRACTIVE HYBRIDIZATION STUDY OF THE                                               |
| HYPERINVASIVE C. JEJUNI STRAINS                                                                  |
| 5.1 INTRODUCTION                                                                                 |
| 5.1.1 Suppressive Subtractive Hybridization as a genomotyping technique                          |
| 5.1.2 Pooled Suppressive Subtractive Hybridization to study hyperinyasive <i>C. jejuni</i> . 117 |

| 5.2 METHODS                                                                                                 | 118 |
|-------------------------------------------------------------------------------------------------------------|-----|
| 5.2.1 Pooled Suppressive Subtractive Hybridization                                                          | 118 |
| 5.2.2 Cloning of PSSH inserts                                                                               |     |
| 5.3 RESULTS AND DISCUSSION                                                                                  | 121 |
| 5.2.1 Decempestion of the driver and testar conomic DNA frequents                                           | 121 |
| 5.3.1 Preparation of the driver and tester genomic DNA fragments                                            |     |
| 5.3.2 Ligation of adaptors 1 and 2R to the fragmented tester genomic DNA                                    |     |
| 5.3.4 Two second sets of subtractive hybridization steps for the selection of tester                        |     |
| specific <i>C. jejuni</i> sequences                                                                         |     |
| 5.3.5 Analysis of successful subtraction of the secondary PCR product                                       |     |
| 5.3.6 Preparation of subtractive hybridization library                                                      |     |
| 5.3.7 Selection of the hyperinvasive <i>C. jejuni</i> specific sequences from subtractive                   |     |
| hybridization libraryspecific sequences from subtractive                                                    |     |
| 5.3.8 Homology of the hyperinvasive <i>C. jejuni</i> specific sequences                                     |     |
| 5.3.9 Genotyping based on PSSH reveals hyperinvasive <i>C. jejuni</i> specific genes                        |     |
| 5.4 CONCLUSIONS AND NEXT STEP                                                                               | 140 |
| Chapter Six WHOLE GENOME SEQUENCING OF <i>C. JEJUNI</i> 01/10 AND 01/51                                     | 142 |
| 6.1 INTRODUCTION                                                                                            |     |
| 6.1.1 Campylobacter genome                                                                                  | 142 |
| 6.1.2 Study aims                                                                                            |     |
| 6.2 METHODS                                                                                                 | 144 |
|                                                                                                             |     |
| 6.2.1 Illumina sequencing                                                                                   |     |
| 6.2.2 Pyrosequencing/454                                                                                    |     |
| 6.2.3 Phylogeny                                                                                             | 148 |
| 6.3 RESULTS AND DISCUSSION                                                                                  | 149 |
| 6.3.1 Genome sequence facts                                                                                 | 149 |
| 6.3.2 Phylogeny                                                                                             | 150 |
| 6.3.3 Prophages/Genomic regions                                                                             | 151 |
| 6.3.3.1 Validation of CGH and PSSH study results in <i>C. jejuni</i> 01/51 and 01/10 whole genome sequences | 52  |
| Seriome sedimenses                                                                                          | _   |
| 6.3.4 <i>C. jejuni</i> capsule region                                                                       | 153 |

| 6.3.4.1 <i>C. jejuni</i> 01/51 capsule                                    | 153 |
|---------------------------------------------------------------------------|-----|
| 6.3.4.2 <i>C. jejuni</i> 01/10 capsule                                    | 155 |
| 6.3.5 Is capsule or LOS is the serodeterminant in <i>C. jejuni</i> 01/51? | 159 |
| 6.4 SUMMARY                                                               | 160 |
| <u>Chapter Seven</u>                                                      |     |
| THESIS DISCUSSION AND FUTURE WORK                                         | 162 |
| <u>Chapter Eight</u>                                                      |     |
| REFERENCES                                                                | 172 |
| APPENDIX                                                                  | 211 |

#### LIST OF FIGURES

- Figure 1.1: A diagrammatic representation of the proposed mechanisms of *C. jejuni* invasion into the epithelial cell lining.
- Figure 1.2: Schematic representation of the capsule region of *C. jejuni*.
- Figure 1.3: Distribution of 113 *C. jejuni* isolates tested for their ability to invade into INT-407 cells compared to the low invasive reference *C. jejuni* strain NCTC 81116.
- Figure 1.4: The proprosed research plan for this project.
- Figure 2.1: The map of pCR 2.1-TOPO® cloning vector (Invitrogen, UK).
- Figure 3.1: The growth curve of the hyperinvasive and the low invasive *C. jejuni* strains.
- Figure 3.2: The resistance to atmospheric air stress study of hyperinvasive and low invasive *C. jejuni*.
- Figure 3.3: The sensitivity to hydrogen peroxide study of the hyperinvasive and the low invasive *C. jejuni* strains.
- Figure 3.4: The comparison of motility zones (millimeters) for the hyperinvasive and low invasive *C. jejuni* strains measured after 48 hours of microaerobic incubation at 37 °C.
- Figure 3.5: The autoagglutination ability of the hyperinvasive and the low invasive *C. jejuni* strains.
- Figure 3.6: The percentage (%) mean biofilm formation of hyperinvasive and low invasive *C. jejuni* isolates at different time intervals.
- Figure 4.1: A histogram comparing the frequency distribution of spots based on their log<sub>2</sub>ratios.
- Figure 4.2: GACK trinary cut off algorithm for gene category assignment for an experimental dataset (*C. jejuni* 01/04).
- Figure 4.3: The hierarchical clustering of hyperinvasive *C. jejuni* and low invasive *C. jejuni* based on CGH along with the MLST profile and Penner (HS) serotype.

- Figure 4.4: PCR validation of CGH data.
- Figure 4.5: Circular diagram of the *C. jejuni/C. coli* pan genome showing the distribution of 67 hyperinvasive-associated loci.
- Figure 4.6: The colour coded diagrammatic representation of the CGH pan genome showing genes slightly or highly divergent/absent in the six hyperinvasive and four low invasive *C. jejuni*.
- Figure 5.1: A diagram illustrating the methodology used for the pooled suppressive subtractive hybridization.
- Figure 5.2: The enzymatically digested genomic DNA of the pool of hyperinvasive *C. jejuni* (tester), low invasive *C. jejuni* (driver) and *E. coli* (control) compared to the undigested genomic DNA of the hyperinvasive and low invasive *C. jejuni*.
- Figure 5.3: The diagram of the adaptor (1 or 2R) ligation to the tester genomic DNA fragment and the primers annealing in PCR reaction for adaptor efficiency testing.
- Figure 5.4 (a): The ligation efficiency testing of *E. coli* (control) and (b) the tester hyperinvasive *C. jejuni*.
- Figure 5.5: The primary and secondary PCR products (a) Control *E. coli* and (b) *C. jejuni*.
- Figure 5.6: The subtraction efficiency of (a) subtracted control *E. coli* (b) unsubtracted control *E. coli* (c) subtracted test hyperinvasive *C. jejuni* and (d) unsubtracted test hyperinvasive *C. jejuni*.
- Figure 5.7: The colony PCR screening of clones to determine the size of sequences inserted into pCR <sup>®</sup> 2.1 TOPO vector.
- Figure 5.8: PCR screening on a 1% (w/v) agarose gel to show the distribution of 11 inserts in the hyperinvasive and low invasive *C. jejuni* strains.
- Figure 6.1: A diagrammatic representation of Illumina sequencing technique.

Figure 6.2: A schematic illustration of 454/pyrosequencing method.

Figure 6.3: Phylogeny of *C. jejuni* 01/10 and 01/51 compared with other *C. jejuni* strains and *C. jejuni* subsp. *doylei* 269.97 based on genome sequence data.

Figure 6.4: The capsule region in *C. jejuni* 01/51.

Figure 6.5: The capsule locus in *C. jejuni* 01/10.

Figure 6.6: A representation of the partial capsule locus in *C. jejuni* NCTC111168 showing heptose and MeOPN biosynthesis genes and transferase encoding genes.

#### LIST OF TABLES

- Table 1.1: Summary of the bacterial factors involved in adhesion and invasion of *C. jejuni*.
- Table 2.1: The bacterial strains used in this study.
- Table 2.2.1: Oligonucleotides used in the Comparative Genomic Hybridization (CGH) study.
- Table 2.2.2: The primer and adaptor sequences used in Pooled Suppressive Subtractive Hybridization (PSSH) study.
- Table 2.2.3: MLST PCR and sequencing primers used in this study.
- Table 3.1: The Minimum Inhibitory Concentration (MIC) of sodium deoxycholic acid for *C. jejuni* isolates.
- Table 4.1a: Genes selected from CGH data as present in all hyperinvasive C. jejuni.
- Table 4.1b: Genes selected from CGH data as absent/highly divergent in all hyperinvasive *C. jejuni*.
- Table 4.2: Summary of PCR screening for the identified genes (Table 4.1a and 4.1b) in the hyperinvasive and low invasive *C. jejuni* strains.
- Table 5.1: The distribution of inserts identified by PSSH in the hyperinvasive and low invasive *C. jejuni* strains by PCR analysis.
- Table 5.2: The inserts identified by PSSH as specifically present in hyperinvasive *C. jejuni* strains "tester" and absent from low invasive *C. jejuni* "driver".
- Table 6.1: The genome features of *C. jejuni* 01/51 and 01/10.
- Table 6.2: CDS in the capsule region of *C. jejuni* 01/51.
- Table 6.3: Genes in the capsule region of *C. jejuni* 01/10.

#### **APPENDIX**

Supplementary table 1: The average linkage distance between clusters as determined by the "Cluster" software.

Supplementary table 2: The  $\log_2$  ratios for all genes on the array for six hyperinvasive and four low invasive *C. jejuni* strains.

Supplementart table 3: GACK trinary cutoffs for all genes on the array for six hyperinvasive and four low invasive *C. jejuni* strains.

Supplementary table 4: Genes present and highly divergent/absent in the hyperinvasive and low invasive *C. jejuni*.

Supplementary table 5: *C. jejuni* 01/51 prophage genes, ORFs with best match in campylobacters other than *C. jejuni* RM1221 and LOS loci identified by BLASTx annotation tool.

Supplementary table 6: *C. jejuni* 01/10 prophage 1 and 2 genes, ORFs with best match in campylobacters other than *C. jejuni* RM1221 and LOS loci identified by BLASTx.

Supplementary figure 1: Detection of 15 genes by PCR analysis identified by CGH.

Supplementary file 1: The analysis run to identify loci specific to the hyperinvasive *C. jejuni* strains.

## LIST OF ABBREVIATIONS

| ATCC    | American Type Culture Collection           |
|---------|--------------------------------------------|
| AFLP    | Amplified fragment length polymorphism     |
| ATP     | Adenosine triphosphate                     |
| BA      | Butzler agar                               |
| BB      | Bolton broth                               |
| BMDCs   | Bone marrow derived murine dendritic cells |
| bp      | Base pair                                  |
| CAPs    | Cationic antimicrobial peptides/proteins   |
| CDS     | Coding sequence                            |
| CDT     | Cytolethal distending toxin                |
| СЕВ     | Campylobacter Enrichment Broth             |
| cfu     | Colony forming unit                        |
| CGH     | Comparative genomic hybridization          |
| Cia     | Campylobacter invasion antigen             |
| CJIE    | Campylobacter jejuni integrated element    |
| CMLP    | Campylobacter Mu like prophage             |
| CPS/CAP | Capsular polysaccharides                   |
| cy-dCTP | Cyanine 2'-deoxycytidine 5'-triphosphate   |
| DCs     | Dendritic cells                            |
| DNA     | Deoxyribonucleic acid                      |
| dNTP    | 2'-deoxynucleoside 5'-triphosphate         |
| EDTA    | Ethylenediamine tetra-acetic acid          |
| ERK     | Extracellular signal regulated kinase      |
| feds    | Flagellar coexpressed determinants         |
| FISH    | Fluorescence In situ Hybridization         |
| fla-SVR | fla-amplified short variable regions       |
| FM      | Flagellar modification                     |

| GBS     | Guillain Barré syndrome                            |
|---------|----------------------------------------------------|
| G+C     | Guanine and cytosine                               |
| HMW     | High molecular weight                              |
| HS      | Heat stable                                        |
| Ig      | Immunoglobulin                                     |
| IL      | Interleukin                                        |
| IPEC    | Intestinal pig epithelial cells                    |
| kbp     | Kilobase pair                                      |
| LB      | Luria-Bertani broth                                |
| LegAm   | Legionaminic acid                                  |
| LOS     | Lipooligosaccharide                                |
| LPS     | Lipopolysaccharides                                |
| MAP     | Mitogen activated protein                          |
| (m)CCDA | (modified) charcoal cefoperazone deoxycholate      |
| MCP     | Methyl-accepting chemotaxis protein                |
| MeOPN   | O-methyl phosphoramidate                           |
| MFS     | Miller Fisher syndrome                             |
| MHA     | Muller Hinton agar                                 |
| МНВ     | Muller Hinton broth                                |
| MLST    | Multi-locus sequence typing                        |
| MOMP    | Major outer membrane protein                       |
| NCTC    | National Collection of Type Cultures               |
| NF-kB   | Nuclear factor-kappa-enhancer of activated B cells |
| OD      | Optical density                                    |
| ORF     | Open reading frame                                 |
| p value | Probability value                                  |
| PAMPs   | Pathogen associated molecular patterns             |
| PB      | Preston broth                                      |
| PBS     | Phosphate buffered saline solution                 |

| PCR   | Polymerase chain reaction                    |
|-------|----------------------------------------------|
| PFGE  | Pulsed-field gel electrophoresis             |
| PseAc | Pseudaminic acid                             |
| PSSH  | Pooled suppressive subtractive hybridization |
| RAPD  | Random amplification polymorphic DNA         |
| RFLP  | Restriction fragment length polymorphism     |
| RM    | Restriction modification                     |
| ROS   | Reactive oxygen species                      |
| rpm   | Revolutions per minute                       |
| rRNA  | Ribosomal ribonucleic acid                   |
| TAE   | Tris/acetate/EDTA                            |
| TLRs  | Toll-like receptors                          |
| sIg   | Secretory immunoglobulin                     |
| σ28   | Sigma factor 28 or fliA (promoter)           |
| σ54   | Sigma factor 54 or rpoN (promoter)           |
| SSH   | Suppressive subtractive hybridization        |
| Tm    | Melting temperature                          |
| v/v   | Volume per volume                            |
| w/v   | Weight per volume                            |

Chapter 1: Introduction

Chapter One

# **INTRODUCTION**

#### INTRODUCTION

#### 1.1 Campylobacter species in general

Campylobacter species are small Gram negative (0.5-5.0 μm long and 0.2-0.8 μm wide), spiral shaped, non-spore forming fermentative bacteria. These bacteria exhibit darting motility due to the presence of unipolar or dipolar flagella. Campylobacter species grow under microaerobic conditions in an atmosphere containing 3-15% CO<sub>2</sub> and 3-5% O<sub>2</sub>. Campylobacter species have a growth temperature range of maximum ~46 °C and minimum 30 °C (Davis and DiRita., 2008). Levin et al (2007) proposed that Campylobacter species should be referred to as "thermotolerant" as they do not represent characteristics of a classic thermophile with a growth temperature of 55 °C. Campylobacter species are known to lack the glycolytic enzyme 6-phosphofructokinase, hence are unable to metabolize carbohydrates. Recently Stahl et al (2011) showed that C. jejuni is able to utilize L-fucose released by intestinal mucin glycoproteins. Campylobacter species use amino acids, mainly serine (Velayudhan et al., 2004), and some organic acids including pyruvate and lactate (Thomas et al., 2011) as carbon sources for energy production.

#### 1.2 History of Campylobacter species

Campylobacter species were described as "Vibrio" like organisms in 1913, causing disease in bovines and ovines (McFadyean and Stockman., 1913, Vandamme et al., 2010). Later Smith and Taylor (1919), isolated spiral shaped bacteria from bovine abortions. These bacteria had similar morphology as described before by McFadyean and Stockman and were named "Vibrio fetus" (Smith and Taylor., 1919). These Vibrio like bacteria from human infections were studied in detail by King (1957). She noticed that although these bacteria were "Vibrio like" they showed growth at much higher temperatures hence they were later called "Vibrio jejuni". Vibrio like organisms were also found in the faeces of pigs suffering from diarrhoea and were known as Vibrio coli (Doyle., 1944).

The first microscopic evidence of *Campylobacter* species came from Escherich (1886) who observed spiral bacteria, simply named "*Cholera infantum*", in the samples taken from colon of infants who died of cholera like disease as well as from stools of infants

suffering from diarrhoea (Escherich., 1886). These bacteria were considered unculturable. It was not until 1963, when Sebald and Veron classified *Campylobacter* as a separate genus based mainly on the small genome size, anaerobic growth and fermentative metabolism. *Campylobacter* were first isolated from stool samples of patients with enteritis by a filtration method (Dekeyser *et al.*, 1972). Later on, *Campylobacter jejuni* and *Campylobacter coli* were also differentiated from each other (Skirrow., 1977). Now, *C. jejuni* and *C. coli* are considered as the major enteric pathogens of humans causing disease in the developing (Coker *et al.*, 2002) and developed world (Altekruse *et al.*, 1998).

#### 1.3 Taxonomy of *Campylobacter* species

Since the first taxonomical classification of the Campylobacter genus by Sebald and Veron in 1963, the genus has undergone considerable changes (On., 2001, Debruyne et al., 2005). The very early classification described four species in the Campylobacter genus including C. jejuni, C. coli, C. fetus and C. sputorum. The diversity in the Campylobacter genus was first defined by studying the 16S rRNA gene sequence in The 16S rRNA gene is highly conserved in bacteria and is of these bacteria. considerable length (~1500 bp) that makes it a useful tool for phylogenomic classification (Man et al., 2010). The study of 16S rRNA gene sequences, fatty acid profiles and flagellar structure defined a genus called Helicobacter that included the formely named C. pylori and C. mustelae (Goodwin et al., 1989). The 16S rRNA sequence divergence also classified the oral anaerobes Wolinella curva and W. recta into the Campylobacter genus (Vandamme et al., 1991). These techniques together with other immunotyping data and whole cell protein profile classified the aero-tolerant campylobacters A. nitrofigilis and A. cryoaerophilus into another genus called Arcobacter (Vandamme et al., 1991 and 1992). Later on, a new bacterial family called Campylobacteraceae was defined that included genera Arcobacter, Campylobacter, Sulfurospirillum and Bacteroides ureolyticus (Vandamme., 2000). Recently, Vandamme et al (2010) studied 26 Bacteroides ureolyticus strains using 16S rRNA and cpn60 gene sequences, amplified fragment length polymorphism and protein profiling. Vandamme et al (2010) reclassified B. ureolyticus as a species in the Campylobacter genus, Campylobacer ureolyticus. The bacterial families Camplobacteraceae Helicobacteraceae are included in the rRNA super-family VI and form a part of the Epsilobacteria or Proteobacteria (Cavalier-Smith., 2002).

The *Campylobacter* genus consists of 20 species and sub-species (Fernández *et al.*, 2008). In the same year, Debruyne *et al* (2008) reported 17 species and 6 sub-species in the *Campylobacter* genus with the number of species in this genus continuously increasing.

C. jejuni, C. coli, C. lari, C. fetus, C. hyointestinalis, C. upsaliensis, C. gracilis, C. showae are some well-known species included in the Campylobacter genus (Debruyne et al., 2005). C. jejuni contains two sub-species, C. jejuni subsp. jejuni and C. jejuni subsp. doylei. C. jejuni subsp. jejuni is present as commensal bacteria in the intestinal tract of domestic and commercial animals and it is also the most common cause of gastroenteritis in humans (Miller et al., 2007) whereas C. jejuni subsp. doylei has only been isolated from human cases of septicaemia and bacteraemia (Lastovica., 2006). Other phenotypic and biochemical characteristics that distinguish C. jejuni subsp. doylei from C. jejuni subsp. jejuni include the inability of C. jejuni subsp. doylei to reduce nitrate, variable growth rate at 42 °C, absence of γ-glutamyl transferase (GGT) and L-arginine arylamidase enzymatic activity and susceptibility to cephalothin (Miller et al., 2007). The two sub-species show significant sequence divergence at the genome level (Parker et al., 2007). The sequence variation at the nap gene locus has been used to develop a multiplex PCR assay for Campylobacter diagnosis at the sub-species level (Miller et al., 2007). Using the readily available genome sequence data for C. jejuni strains, Taboada et al (2012) has reported a highly sensitive comparative genomic fingerprinting method for C. jejuni sub-speciation. This method relies on identifying variability at muliple alleles widely distributed in the assessory gene pool across the whole genome (Taboada et al., 2012).

#### 1.4 Isolation and further classification of Campylobacter species

The first step in detection of *Campylobacter* species is their isolation from samples. Further classification is carried out by phenotyping or genotyping. Some of these methods are discussed below briefly.

#### 1.4.1 Isolation and phenotyping

All *Campylobacter* species except for *C. gracilis* show oxidase activity. This phenotype has been used for the development of selective media containing one or more oxygen scavengers (*i.e.* blood, ferrous ions) with selective antibiotics (Corry *et al.*, 1995). A

number of selective broths including Bolton Broth (BB), *Campylobacter* Enrichment Broth (CEB) and Preston Broth (PB) with oxygen limiting enzyme oxyrase have been successfully used for the isolation of *Campylobacter* species (Abeyta *et al.*, 1997, Baylis *et al.*, 2000). The selective agars *i.e.* Preston, charcoal cefoperazone deoxycholate (CCDA) and Butzler Agar (BA) have been used efficiently for the isolation of *Campylobacter* species. The standard method used at present for the detection of *Campylobacter* species is by plating and enumeration directly on mCCDA. The Bolton Broth (BB) and Muller Hinton Broth (MHB) are used for growth in liquid culture or as an enrichment step (ISO 2006a and 2006b).

Other phenotypes differentiating *Campylobacter* species include catalase activity, growth at 25 °C or 42 °C and resistance to antibiotics including naladixic acid, cephalothin and fluoroquinolones. *C. jejuni* can hydrolyse sodium hippurate, indoxyle acetate and reduces nitrate. *C. coli* are unable to hydrolyse hippurate and it is the lack of this activity that differentiates *C. jejuni* from *C. coli*. Still there are some hippurate negative *C. jejuni* isolates which are deficient of hippurate activity (Koenraad *et al.*, 1995). *C. fetus* is the only member of *Campylobacter* species that can survive in the presence of glycine and can produce hydrogen sulphide (On., 1996). A series of biochemical tests are commercially available as rapid identification kits (e.g. Campy API kits) that can differentiate all *Campylobacter* species (Hoosain and Lastovica., 2009, Reina *et al.*, 1995). Other rapid methods that can detect and confirm *Campylobacter* species include Fluorescence *In situ* Hybridization (FISH) (Lehtola *et al.*, 2006) and latex autoagglutination (Wilma *et al.*, 1992).

Another phenotypic method used to discriminate between *Campylobacter* species is serotyping. The Penner serotyping scheme is the most acceptable and widely used phenotypic scheme for typing of *Campylobacter* species. It differentiates strains based on the soluble heat stable (HS) antigen. In Penner serotyping, a passive haemagglutination reaction is observed by mixing the bacterial cell suspension with different antisera (Penner and Hennessy., 1980). The *C. jejuni* capsular polysaccharides (Karlyshev *et al.*, 2000, Wren *et al.*, 2001) have been shown as the serodeterminant of Penner serotyping. The Penner serotyping scheme contains 48 antisera for *C. jejuni* and 15 antisera for *C. coli* and recognizes 63 serotypes (Penner *et al.*, 1983). The main drawbacks of Penner serotyping are non-typeability of a large number of *Campylobacter* strains compared to modern day genotyping methods and cross reactivity with more than

one antiserum (Cornelius *et al.*, 2010). Another method used for *Campylobacter* species serotyping is called Lior serotyping. It is based on heat labile antigens. It can differentiate between 150 serotypes of *C. jejuni*, *C. coli* and *C. lari* (Lior *et al.*, 1982).

Penner serotyping is generally combined with another typing technique called phage typing for diagnosis of *Campylobacter* species. In phage typing, the phage pattern of an isolate is compared to the profile of other virulent bacteriophage. Two or more strains with identical bacteriophage patterns form a phage type (Frost *et al.*, 1999). Serotyping and phage typing have poor resolution. These techniques have to be combined with advanced molecular typing for epidemiological and surveillance studies (Hopkins *et al.*, 2004).

#### 1.4.2 Genotyping

Molecular typing methods are used for bacterial identification and speciation in both pure and mixed cultures. These techniques are sensitive, rapid and highly discriminatory compared to the conventional phenotypic methods. A number of genotypic methods have been developed for typing of *Campylobacter* species. The advantages and drawbacks of these techniques for *Campylobacter* species typing have been recently reviewed (Ahmed *et al.*, 2012). The pulsed-field gel electrophoresis (PFGE), ribotyping and flagellin gene typing, restricted and amplified chromosomal fragment length polymorphism (RFLP and AFLP) are a few examples of the genotyping techniques (Nielsen *et al.*, 2000).

PFGE is based on digesting the chromosomal DNA with different restriction enzymes *e.g. Sma*I, *Kpn*I and *Sal*I. This digestion generates DNA fragments of variable length. The variation in length of resulting fragments is compared to generate a PFGE profile for the isolate (O'Leary *et al.*, 2011, Gilpin *et al.*, 2006, Peters., 2009). The electrophoresis profiles generated for a large number of strains can be analysed by computerized software (*e.g.* BioNumerics by Applied Maths, Ghent, Belgium). PFGE is a useful technique which successfully discriminates closely related strains but it requires technical expertise (Peters., 2009, Pittenger *et al.*, 2009).

Restricted Fragment Length Polymorphism (RFLP) is a technique that detects variation in a selected locus in the genome e.g. *fla*, *porA*. The flagellin and MOMP are stable but highly genetically diverse regions in *Campylobacter* species (Cody *et al.*, 2009). For example, in *fla*-typing, the *fla* gene is PCR amplified and digested with one or more

restriction enzymes (fla-RFLP) or the PCR product is sequenced using the gene specific primers fla-amplified short variable regions (fla-SVR) (On et al., 2008). Amplified fragment length polymorphism (AFLP) like RFLP involves digesting the genomic DNA with two or more restriction enzymes which are ligated to specific adaptors. These labelled fragments are then PCR amplified using fluorescent labelled primers (On et al., 2008). AFLP has been used as a highly discriminatory and reproducible molecular typing technique used in epidemiological studies (Johnsen et al., 2007, Siemer et al., 2005). Another technique used for typing of Campylobacter species is Random Amplification of Polymorphic DNA (RAPD). This method involves PCR amplification of genomic regions by using one 10-15 bp primer that will produce several fragments of variable lengths in different strains as a result of primer binding at different sites (On et al., 2008). Ribotyping detects variations in the ribosomal DNA genes. The genomic DNA is digested with two enzymes followed by hybridization with probed rRNA specific primers. The characteristic ribosomal pattern of each isolate is then visualised (On et al., 2008). A fully automated ribotyping method is also developed now that has further improved the speed and reproducibility of this method (Pavlic and Griffiths., 2009). However, ribotyping lacks discriminatory ability for *Campylobacter* species (Pavlic and Griffiths., 2009, Ge et al., 2006).

Currently, Multi-locus Sequence Typing (MLST) is frequently used as a genotyping technique to study *Campylobacter* species. MLST is based on studying the DNA sequence variation in *Campylobacter* housekeeping (usually seven) genes. Each sequenced gene is given an arbitrary allele number. The allele number for all the genes are combined to assign a unique sequence type number to each strain. *C. jejuni* has been shown to be diverse and have a weakly clonal structure (Dingle *et al.*, 2002, Manning *et al.*, 2003).

With an increasing number of genome sequences of *Campylobacter* species becoming available, a number of high-throughput genome based typing techniques have been designed. These techniques are based on studying differences between *Campylobacter* strains at the whole genome level. DNA microarray technology is also being developed as a diagnostic tool for use in epidemiological and phylogenetic studies (Marotta *et al.*, 2012, Pittenger *et al.*, 2012, Taboada *et al.*, 2012).

#### 1.5 Campylobacteriosis: a disease burden on public health

Campylobacter species has been identified as a major zoonotic pathogen causing gastroenteritis in humans worldwide. According to the European Centre of Disease Control (ECDC) and European Foods Safety Agency (EFSA) Campylobacter species caused gastroenteritis was most common in the European Union (EU) followed by salmonellosis and yersiniosis in a five years period (EFSA., 2007, 2010a). There were just around 200,000 human cases of campylobacteriosis recorded in 2009 and 2010 (EFSA., 2009 and 2010a). This number represented a 14.2% rise from 2006 which is a significant burden on the economy.

The Foodborne Diseases Active Surveillance Network (FoodNet) of the Centres for Disease Control and Prevention (CDC) estimated that *Campylobacter* species cause approximately 845,000 cases of illness in the USA each year. This number is still an underestimate as a lot of cases remain unreported and undiagnosed (Anonymous., 2010).

Similarly, the number of human cases of campylobacteriosis in the EU is not an actual representation of true disease burden implicated by Campylobacter species. estimated that in EU approximately 2 to 20 million people may get campylobacteriosis per year (EFSA., 2010b). Campylobacter species are the most common cause of foodborne outbreaks in the UK. There were approximately 321,000 human cases of Campylobacter food poisoning, over 15,000 hospitalizations and 76 deaths in England and Wales in 2008. The food poisoning caused by Campylobacter species costs £583 million which represents one third of the cost of foodborne illness in England and Wales in 2008 (http://www.food.gov.uk/multimedia/pdfs/campylobacterstrategy.pdf). In 2010, 62,684 human cases of enteric and non-enteric *Campylobacter* species caused infections were reported in England and Wales. This figure was six times higher than human food poisoning of Salmonella reported in 2010 cases (9133 cases) (http://www.hpa.org.uk/Topics/InfectiousDiseases/). Chicken and related products are the major reservoir in most cases (50-80% of cases) with broiler chickens accounting for 20-30% of these cases (EFSA., 2010b).

Based on the significance of disease burden of *Campylobacter* caused infections in the UK, the government has introduced an "Innovation Strategy for *Campylobacter*" from 2010 through to 2015. The program aims to research ways to control *Campylobacter* species at all levels in the food chain from farms to consumers,

(http://www.food.gov.uk/multimedia/pdfs/campylobacterstrategy.pdf). The European Food Standards Agency has also advised on conducting an active surveillance of campylobacteriosis in all European member states with an emphasis on detecting unreported cases of campylobacteriosis. This surveillance strategy also aims to identify the unknown reservoirs of *Campylobacter* caused infections by advanced molecular techniques.

Huge costs are incured with *Campylobacter* associated infections mainly due to medical costs, long absences of employees from work, expenses incurred as a result of product recalls, legal charges etc. It is estimated that the total costs linked to campylobacteriosis is \$1billion per annum in USA (CAST., 1994). In a surveillance conducted in Netherlands recently, it has been reported that the costs associated with campylobacteriosis is 21 million euros per annum (Havelaar *et al.*, 2005).

#### 1.6 Campylobacter species sources and transmission of infection

Campylobacter species form part of normal flora of wildlife and domestic birds. This may be because of the higher body temperature of avian hosts favours their survival (Skirrow, 1977) and chicken is responsible for harbouring Campylobacter species (Corry and Atabay, 2001). Most cases of campylobacteriosis are related to the consumption of raw or undercooked poultry products or by cross contamination of raw or undercooked foods. Chicken is a rich source of essential proteins and minerals, and requires shorter preparation time compared to cooking pork and beef. These factors influence their popularity and enhance the chances of Campylobacter species related outbreaks (Corry and Atabay, 2001). Among Campylobacter species, C. coli and C. jejuni are the most prevalent in outbreaks. C. jejuni is responsible for 12 times the human cases compared to C. coli in England and Wales (Friedman et al., 2000). C. coli is dominant in free range and organic chickens whereas C. jejuni is mainly isolated from caged chicken breeds (El-Shibiny et al., 2005).

Campylobacter species are present in the intestine of chicken and mainly located in the cecum and colon (Berrang et al., 2001). During slaughter and processing of chicken, the intestine may rupture and bacteria spread all over on the skin and get trapped in skin pores and cracks. Campylobacter species can persist on the carcass under frozen conditions and at 4 °C. Under favourable conditions these bacteria can grow on the skin and can be spread by cross contamination (Chantarapanont et al., 2003). Even under

controlled packaging conditions *Campylobacter* species can persist on chicken skin and can spread by improper handling and storage at the consumer end (Scherer *et al.*, 2006).

Other processed animal meats have been shown to harbour Campylobacter species and these include cattle, sheep, pigs, turkey and ducks (Humphrey et al., 2007). The highest prevalence of Campylobacter species is on pig carcasses, compared to sheep and beef (Nesbakken et al., 2003). This may be because the skin remains on pig carcass during most of the slaughter and processing of meat (Moore et al., 2005). Campylobacter species are present in the digestive tract of healthy cattle (Atabay and Corry., 1998) whereas the lowest prevalence of Campylobacter species is in sheep (Zweifel and Shellfish obtained from water systems contaminated with Stephan., 2004). Campylobacter species is also a major source of dissemination of infection (Wilson and Moore., 1996). The transmission of *Campylobacter* species to the human hosts is also attributed to the consumption of unpasteurised milk and milk products. The cross contamination with animal faeces is the likely cause of transmission of Campylobacter species in milk especially during the milking process (Zilbauer et al., 2008, Hänninen et al., 2000, Shane., 2000). Consumption of untreated water and direct contact with domestic and farm animals are high risk factors for Campylobacter species transmission to humans (Gilpin et al., 2008, Coker et al., 2002, Shane., 2000). Environmental contamination with animal faeces is also a major factor contributing to the transmission of Campylobacter species infection to humans (Ridley et al., 2008). Wills and Murray (1997) reported that *Campylobacter* species were present in large numbers in chicken intestines during summer months (May through to October) and a significant reduction in number was observed in winter months. A similar trend was noticed when chickens were sampled in summer months showing 87-97% of samples tested positive for C. jejuni. In December and in January only 7% and 33% of chickens sampled were positive for *C. jejuni* respectively. This may also correlate with the number of Campylobacter species associated outbreaks in humans and the outbreaks in humans are thought to be seasonal too (Wills and Murray., 1997).

#### 1.7 Enteric *C. jejuni* infection and clinical symptoms

The most common symptoms of *C. jejuni* infections are typical of gastroenteritis. Variability in the clinical symptoms of *C. jejuni* have been reported ranging from watery diarrhoea with no inflammation to mucous containing bloody diarrhoea. The severe

diarrhoeal attack is characterised by abdominal cramps and fever within 48 hours of the initial attack (Zilbauer *et al.*, 2008). The illness is self-limiting and the duration of illness is less than 7 days. Recurrence of illness can be observed in patients with low immune responses (Wassenaar and Blaser., 1999). The incidence of *C. jejuni* infections is very high in immunocompromised people e.g. AIDS patients (Coker *et al.*, 2002). In developing countries, children in early childhood are found to be most susceptible to *C. jejuni* infections because of their undeveloped immune system with the incidence of infection decreases in late childhood (Wassenaar and Blaser., 1999). Asymptomatic *C. jejuni* infections are also more frequently reported in the developing countries where individuals are in close contact with animals and are exposed to bad sanitation conditions (Coker *et al.*, 2002). In contrast, in developed countries only farm and slaughter house workers and consumers of raw milk etc represented asymptomatic carriers of *C. jejuni* (Wassenaar and Blaser., 1999).

#### 1.7.1 Complex disease

A prolonged and life-threatening consequence of *C. jejuni* infection is the development of a neurological disease which is characterized by the ascending paralysis of peripheral and cranial nerves. This disease is called Guillain Barré syndrome. The first case of C. jejuni caused GBS was reported in 1982 as a post infection complication of C. jejuni enteritis (Rhodes and Tattersfield., 1982). Later research showed that C. jejuni produces lipooligosaccharides (LOS) that mimic the gangliosides of the nervous system initiating a host inflammatory immune response against the pathogen that causes nerve damage (Hadden and Gregson., 2001, Moran and Prendergast., 2001, Aspinall et al., 1994). In addition to the nervous system damage other body organs can also get affected and even death occurs in severe cases (Korinthenberg and Monting., 1996). The global GBS incidence rate is between 0.4-4.0 per 100,000 cases annually with more cases reported in infants and elderly patients (McGrogan et al., 2009, Hadden and Gregson., 2001, Asbury and Cornblath., 1990). A recent review of GBS reported cases in the literature associated Campylobacter species with 31% of GBS incidents arising from gastrointestinal infections (Poropatich et al., 2010). The development of GBS is dependent on strain type and fitness of host cells. In some cases, C. jejuni causes Miller Fisher Syndrome (MFS) which is a less severe subtype of GBS. The typical symptoms of MFS include weakness of gait (ataxia), dysfunction of reflexes and defects in eye

movement. Around 5% of GBS cases are of MFS (Hughes and Cornblath., 2005, Govoni and Granieri., 2001).

Recently, *C. jejuni* has been reported to cause endocarditis in patients with artificial heart valve transplants (Dinant *et al.*, 2011) and reactive arthritis (Hannu *et al.*, 2004).

#### 1.8 Treatment

The disease caused by the *Campylobacter* species is generally self-limiting. In case of systemic infections, macrolides (*e.g.* erythromycin), fluoroquinolones (*e.g.* ciprofloxacin) and tetracyclines are used for treatment. The antimicrobial resistance is recognized as a major factor in persistence of *Campylobacter* species caused infections in public health (EFSA., 2012, Moore *et al.*, 2006, McDermott *et al.*, 2005). The antibiotic susceptibility testing methods and the interpretation of test results for *Campylobacter* species vary considerably in different countries which makes it difficult to establish a list of effective antibiotics for treating infections caused by this bacteria (EFSA., 2012).

The most recent EFSA (2012) report indicated that the human clinical *C. jejuni* isolates showed highest frequency of resistance against ciprofloxacin (51.6%) followed by resistance to nalidixic acid (49.8%). Among the human *C. coli* strains, the highest resistance was observed against nalidixic acid (69%) whereas the second highest resistance was reported against ciprofloxacin (66%) (EFSA., 2012).

#### 1.9 Host immune response to *C. jejuni* infections

C. jejuni is a communal organism in chicken gut but causes disease when inside the human intestinal tract. To establish infection in humans C. jejuni has to overcome several host defence mechanisms. These bacteria have to pass through the acidic stomach environment, and when inside the intestinal tract they have to withstand high bile salt concentrations (Dasti et al., 2010). Indeed, the mucin rich mucosal lining acts as a physical barrier for the underlying epithelium against foreign intrusion (Hugdahl et al., 1988). C. jejuni has developed a number of factors to survive these hostile host gut conditions and initiate infection. C. jejuni peptidoglycan cell envelope that maintains the helical corkscrew shape of the bacterial cell contributes to overcoming the mucosal cell lining (Frirdich et al., 2012). A transcriptional study of C. jejuni strains has reported upregulation of flagella, LOS and capsule related genes when in contact with the

intestinal mucosa suggesting a role of these surface structures in penetrating mucus (Tu *et al.*, 2008). The majority of *C. jejuni* strains have developed resistance to the potent effects of bile salts in intestine (Van Deun *et al.*, 2007).

The human body has a specialised immune defence system to provide protection against microbial infection. The human immune system can be broadly divided into the innate immune response and adaptive immune response. The factors and mechanisms of these immune systems in response to the *C. jejuni* infection will be briefly discussed here;

#### 1.9.1 Innate immune system

The innate immune response is the first line of defence that bacteria encounter after entering the human body. When bacteria invade the intestinal mucosa the underlying epithelial cells respond to the bacterial invasion by releasing cytokines, chemokines and antimicrobial peptides. These elements of the innate immune system initiate an inflammatory response by recruiting macrophages and dendritic cells (DCs). *C. jejuni* strains have shown to initiate a pro-inflammatory response in cultured human epithelial cells by the production of cytokines interleukin 8 (IL-8) (Hickey *et al.*, 1999, Mellits *et al.*, 2002, Zheng *et al.*, 2008).

C. jejuni infection leads to the activation of transcription factor NF-kB. The release of NF-kB is coordinated with IL-8 production (Zheng et al., 2008). The NF-kB/rel family of transcription factors forms part of the early immune response to microbial infection and controls transcription of genes encoding for cytokines and chemokines (Silverman and Maniatis., 2001). Using a gnotobiotic IL-10; NF-kB mouse infection model Lippert et al (2009) showed that C. jejuni infection triggered NF-kB transcriptional activity that resulted in rapid recruitment of cytokines in the infected mouse colon. This immune response resulted in rapid and severe inflammatory colitis in the infected animal. In addition, C. jejuni infection promoted NF-kB production initiating cytokine gene expression in bone marrow derived DCs (Lippert et al., 2009). The vertebrates recognise products of microbial infection by specific membrane receptors called TLRs (Toll-like receptors) activating an immune response (Dunne and O'Neill., 2005). There are 10 protein receptors in the TLR family that interact with "pathogen associated molecular patterns" (PAMPs) (Medzhitov., 2001, Schnare et al., 2001). The TLRs work individually or in combination to recognize microbial patterns. The expression of TLRs is tightly regulated to prevent an inappropriate activation of pro-inflammatory response.

When required host cells block TLR activity through expression of TLR-inhibitory protein Tollip (Melmed *et al.*, 2003). The microbial triggers for TLRs include surface polysaccharides such as LOS, capsule, flagellin and DNA (de Zoete *et al.*, 2010). Recently, the sialylated flagellin of *C. jejuni* has been shown as a molecular trigger for activating TLR-4 (Kuijf *et al.*, 2010). Al-Sayeqh *et al* (2010) has reported that the transcription factor NF-kB can directly detect *C. jejuni* infection and does not require other surface proteins including TLRs.

Different types of proinflammatory (IL-1 $\alpha$ , IL-6, IL-8, TNF $\alpha$ ) and anti-inflammatory (TGF-\(\beta\)1, TGF-\(\beta\)2, TGF-\(\beta\)3, IL-4, IL-10) cytokines are recruited as an innate immune response to C. jejuni infection (Bahrami et al., 2011, Hu et al., 2006a). The trigger of C. jejuni invading epithelial cells results in a rapid proinflammatory response as the first line of defence. Once released these cytokines are transported to T-cells where they act as a stimulus for adaptive immunity bridging with innate immunity (Hu et al., 2006b). C. jejuni surface structures, mainly LOS, interact with the TLR-2 receptors present on epithelial cells to activate IL-6 production. IL-8 is released when C. jejuni is recognised by extracellular signal regulated kinase (ERK) and p38 mitogen activated protein (MAP) kinase pathways (Borrmann et al., 2007). More recently Zheng et al (2008) have reported that cytolethal distending toxin was important in IL-8 production. The interaction with host epithelial cells also contributed to IL-8 release (MacCallum et al., 2006, Hickey et al., 1999). MacCallum et al (2006) also showed that the type of infected cell line and C. jejuni strain played a critical role in adhesion/invasion mediated IL-8 response. A recent study showed a C. jejuni mutant in pgp1 (peptidoglycan peptidase 1) was unable to maintain the helical cell shape, was deficient in chick colonization and promoted chemokine IL-8 production in epithelial cells. This suggests that C. jejuni helical shape morphology also contributes to the innate immune response against C. jejuni infection (Frirdich et al., 2012). C. jejuni infection acts as a stimulus for the release of anti-inflammatory IL-4 and IL-10 cytokines. IL-4 and IL-10 have immunoregulatory effects as they prevent tissue damage by terminating the production of the proinflammatory host response. IL-4 has been reported to down regulate the proinflammatory effects by IL-1α, IL-1 β and TNFα chemokines (Bogdan et al., 1993). IL-10 has been shown to provide resistance against infection to the host and plays a critical role in clearing out infection by immunostimulatory activities (Asadullah et al., 2003, Lindsay and Hodgson., 2001). More recently, C. jejuni infection of IL-4 preinfused intestinal pig epithelial cells (IPEC-1) has been shown to change their physiology allowing increased invasion and damaging the paracellular junctions which suggests a link between invasion and IL-4 production (Parthasarathy and Mansfield., 2009). In another study, an IL-10 deficient mouse was orally inoculated with *C. jejuni* 11168 that showed enhanced colonization of colon and development of severe enteritis within 2-35 days of infection. This showed IL-10 to be important in *C. jejuni* gastroenteritis (Mansfield *et al.*, 2007).

The inflammatory response to microbial infection in humans is characterised by the production of neutrophils in the intestine. In cases of severe colitis, neutrophils damage the mucosal structure, migrate across epithelial cells and cause complete dynfunction of the intestine (Anderson et al., 1986). In C. jejuni infected human epithelial cells increased amounts of neutrophils were recruited that move from the basolateral to apical side of the epithelium concentrating in intestinal crypts (Murphy et al., 2011). The cationic antimicrobial peptides/proteins (CAPs) are produced by the host innate immune system in response to the microbial infection (Eckmann., 2004). Defensins and cathelicidins are two example of CAPs frequently recruited in an innate immune response to bacterial infection (Lehrer., 2004). Cathelicidins are secreted by neutrophils targeting at the infected tissue (Iimura et al., 2005). Another cationic antimicrobial peptide, Bactericidal/Permeability Increasing Protein (BPI) is produced in response to neutrophil recruitment and is accumulated in neutrophil vacuoles. BPI mediates killing by interacting with the lipid A structure of LOS in Gram negative bacteria (Weiss., 2003, Eckmann., 2004). An in vitro study with C. jejuni strain 11168 reported enhanced β- defensin production. The bactericidal activity of β-defensins killed bacteria by damaging their cell wall suggesting an important role of defensins in innate immune response (Zilbauer et al., 2005). Recently, a C. jejuni mutant in the waaF gene was deficient in β-defensin production showing that C. jejuni lipooligosaccharides contribute to mediating innate immune protection in human body (Keo et al., 2011). The innate complement system in humans also has an inhibitory and antibacterial response to Campylobacter species infection (Fernández et al., 1995). Capsule polysaccharides in C. jejuni have stimulatory effects on complement based immunity in the human host (Guerry et al., 2012).

#### 1.9.2 Adapted antibody immunity

Adapted or acquired immunity is an essential defence strategy developed by vertebrates against microbial infection. The primary response of adapted immunity to Campylobacter species infection is the secretion of sIgA (immunoglobulin A) in the human gastrointestinal tract. This antibody immune response is dependent on age and geographical location of subjects. The epidemiological evidence of acquired immunity mediated by C. jejuni infection in developing countries showed that campylobacteriosis cases decreased with an increasing age accompanied with milder symptoms to illness. This is because in the developing world infants are frequently exposed to food borne pathogens including Campylobacter species due to the lack of hygiene standards which results in early development of an anti-Campylobacter antibody mediated immune response in early childhood (2-5 years of age). The increasing level of IgA in adults is accompanied by milder and self-limiting C. jejuni disease profile with an overall decrease in the number of C. jejuni mediated illnesses (Tribble et al., 2008). In comparison, in industrialized nations general health conditions and public awareness of food borne infections is better which results in more incidents of Campylobacter enteritis reported in the adult population (Tribble et al., 2007). The epidemiological data obtained from individuals in contact with dairy farms and frequently consuming raw milk showed a lower incidence of C. jejuni mediated diarrhoea compared to people not exposed to raw milk on daily basis (Blaser, et al., 1987). Both a symptomatic and an asymptomatic Campylobacter infection mounted an equally intense Campylobacterspecific IgA antibody response (Tribble et al., 2007). In Campylobacter disease, the adaptive immunity is stimulated by bacterial surface structures including flagellin (Baqar et al., 2008), LOS and capsule polysaccharides (Moran and Prendergast., 2001).

The *C. jejuni* colonization of the chicken gut also mediates an adaptive antibody response that varies with the age of the chicken. In 1-2 week old birds, the levels of maternal derived IgY (Immunoglobulin Y) antibodies are high and this amount levels out just after 3 weeks making chicken flocks more susceptible to colonization by *C. jejuni* (Cawthraw and Newell., 2010). *C. jejuni* surface polysaccharides mainly flagella and the surface expressed CadF adhesin are major stimulants for antibody production in chicken within first three weeks (Shoaf-Sweeney *et al.*, 2008, Cawthraw *et al.*, 2000).

#### 1.10 Pathogenesis mechanisms of *C. jejuni* infection

C. jejuni is a versatile organism. It has developed specialized mechanisms to survive in the environment and to cause pathogenesis in the host. For mediating an enteric or blood infection C. jejuni has to pass through a number of physical and chemical barriers in the host gastrointestinal tract. C. jejuni has to penetrate the mucosal protective layer of the gut, adhere to or/and invade intestinal epithelial cells, survive and multiply inside the cells and in some severe cases migrate into the blood. A brief description of the key virulence associated factors studied in C. jejuni is stated below.

#### 1.10.1 Flagella

Campylobacter species possess one or two polar flagella that make them motile. This motility is essential for colonization of the avian gut and invasion of the mucous layer of the intestine in humans during diarrhoeal infection (Jagannathan and Penn., 2005, Grant et al., 1993, Nachamkin et al., 1993, Morooka et al., 1985). The Campylobacter flagellum is composed of two main homologous units, flagellin A (FlaA) and flagellin B (FlaB). The gene flaA is regulated by σ28 (sigma factor 28) and flaB is regulated by σ54 (sigma factor 54) (Jagannathan and Penn., 2005). In vitro, the role of FlaA in colonization, adherence and invasion of C. jejuni in human intestinal cells has been reported (Wassenaar et al., 1991, Jain et al., 2008). However, the flaB C. jejuni mutant formed flagella with a normal structure and had no influence on virulence (Wassenaar et al., 1991, Guerry., 2007). C. jejuni produces eight different types of proteins when it comes in contact with the host surface (Konkel et al., 2004).

Due to the lack of type III secretion system in *C. jejuni*, the secretion and transport of flagellated and non-flagellated proteins in the host cells is controlled by flagella. The secretion of the key proteins called *Campylobacter* invasion antigen (Cia) that allows the growth of *C. jejuni* in INT-407 cells in serum free medium or in the presence of bile salts was found to be under the control of flagellin signals (Christensen *et al.*, 2009, Ko and Park., 2000). CiaB is an important virulence protein secreted during initial *C. jejuni* infection and is translocated through the intestinal cells. However, the mechanism of this translocation is still unknown (Guerry., 2007, Poly and Guerry., 2008). Recently, a set of four genes called flagellar coexpressed determinants (*feds*) have been identified as a part of the flagellar regulatory system in *C. jejuni*. The transcription of *feds* and *ciaI* are coregulated that in turn is dependent on the expression of *flaA* (Barrero-Tobon and

Hendrixon., 2012). *C. jejuni* flagella are unique structures. Even though these are highly motile, they are not recognised by the Toll-like receptor sites (TLR-5) on human epithelial cells, thereby avoiding the innate host immunity and invade epithelial cells (Andersen-Nissen *et al.*, 2005). Glycosylation of flagella is an essential phenomenon adopted by *C. jejuni* which will be discussed in a later section (Guerry., 2007).

#### 1.10.2 Chemotaxis

Motile bacteria contain a chemosensory system which they use to move towards favourable conditions and away from harmful environments (Lux and Shi., 2004). As a pathogen inside the living host, C. jejuni is attracted towards the glycoprotein mucin of the mucosal lining of epithelial cells, amino acids (e.g. aspartate, serine, cysteine) and other organic salts (citrate, fumarate, malate) (Hugdahl et al., 1988, Baserisalehi and Bahador., 2011). Methyl accepting chemotaxis proteins (MCP) are recognized to sense these chemicals in C. jejuni (Vegge et al., 2009). A mutagenesis study by Hendrixson and DiRita (2004) identified the role of *C. jejuni* methyl accepting chemotaxis receptors (Cj0019c and Cj0262c) in chicken gut colonization. A C. jejuni mutant in cheY, a chemotaxis regulatory gene that controls flagellar rotation, was deficient in chick colonization (Hendrixson and DiRita., 2004) but displayed a hyperinvasive phenotype (Golden and Acheson., 2002). On the contrary, C. jejuni strains with two copies of the cheY gene were unable to cause disease in ferret infection model but successfully colonized the mouse intestine (Yao et al., 1997). In a recent study, the elevated expression of a chemotaxis related gene *cheW* reduced the subcellular translocation of C. jejuni (van Alphen et al., 2008).

It can be proposed that chemotaxis facilitates *C. jejuni* migration to the mucin in intestine but has no role in invasion through the mucosal lining (Konkel *et al.*, 2001). Similarly, mutation in an autoinducer-2 (AI-2) production gene (*luxS*) abolished *in vitro* adherence and colonization of chick hepatoma (LMH) cells (Quinones *et al.*, 2009). In *C. jejuni*, LuxS is an important enzyme of the methyl recycling pathway and produces AI-2 as its meabolic byproduct (Plummer., 2012). Inactivation of chemoreceptor, CetB (Cj1189) in *C. jejuni* completely eliminated their ability to invade cultured human epithelial cell lines (Golden and Acheson., 2002). A transposon mutagenesis study has reported a transposon inserted in a chemoreceptor gene, Cj0952c that together with an adjacent chemotaxis related gene Cj0951c was important in host cell invasion, motility

and chemotaxis response toward formic acid (Tareen *et al.*, 2010). Recently, a tissue culture study using INT-407 cells showed that a *C. jejuni* 81-176 mutant in a chemoreceptor gene *cheR*, resulted in a hyperadherent and hyperinvasive phenotype whereas deletion of another chemoreceptor gene *cheB* was responsible for a non-adherent and non-invasive profile (Kanungpean *et al.*, 2011). The same study reported that a *cheRB* mutant was unable to colonize the chick cecum. Therefore, the research in *Campylobacter* chemotaxis system shows that it not only allows survival of bacteria under environmental stresses but it also has an important role in virulence particularly in host cell interaction.

### 1.10.3 Adhesion and Invasion

C. jejuni interaction with host cells has been studied as a critical process in the mediation of disease in human hosts (Hu and Kopecko., 2008). However, the mechanism that C. jejuni uses for adhesion and invasion is not understood fully. It was suggested that C. jejuni adheres to the epithelial cells before internalization. It was observed that when the bacteria were present in high cell density, the cell shape and flagellar orientation changes which allows bacteria to penetrate the mucus that protects the intestinal epithelium. This process was considered related to the adhesion of C. jejuni to the host cells (Ferrero and Lee., 1988). Everest et al (1992) showed that C. jejuni and C. coli strains were able to adhere to the epithelial cells without invading them afterwards. During binding to the host cells, C. jejuni preferentially associated with the intercellular junctions that would allow bacteria to tanscytose the cell monolayers (Konkel et al., 1992a, Oelschlaeger et al., 1993) and this attachment to the host cell membrane was promoted by centrifugation (DeMelo et al., 1989; Konkel et al., 1992b). However, the colonization studies showed the adhesion of host cells is not an essential step as C. jejuni was successfully able to stay in the intestine after colonizing the mucus suggesting that *C. jejuni* might invade the epithelial cells directly (Lee *et al.*, 1986).

Early research proposed different mechanisms which *C. jejuni* uses to invade host cells but there is no consensus on these mechanisms. Like other invasive pathogens including *Listeria*, *Shigella* and *Salmonella*, *C. jejuni* may invade the host cells in a microfilament dependant manner (DeMelo *et al.*, 1989, Konkel and Joens, 1989; Konkel *et al.*, 1992b) while the other studies found that the invasion remained unaffected in the presence of microfilament inhibitors (Oelschlaeger *et al.*, 1993). This suggested that the entry into

host cells was via a microtubule dependant pathway (Oelschlaeger et al., 1993). During the *C. jejuni* 81-176 invasion process into INT-407 cells, actin filament depolymerisation and polymerisation of microtubule bundles took place in response to the signal transduction from bacterial cells bound to the cell surface. This resulted in the formation of finger like protrusions by the cell surface which engulf bacteria. *C. jejuni* survives within these membrane-bound endosomes which are then transported along the microtubules to the perinuclear region of the cell (Hu et al., 2008). A novel host signal transduction pathway has also been proposed for *C. jejuni* invasion into the differentiated enterocyte like cells (Wooldridge et al., 1996). Wooldridge et al (1996) showed that *Campylobacter* species stimulate a receptor on host cell membrane that interacts with molecules associated with caveolae. This interaction results in a signal transduction event that causes ruffling across the membrane and subsequent actin filament dependent endocytosis of *C. jejuni* (Figure 1.1).

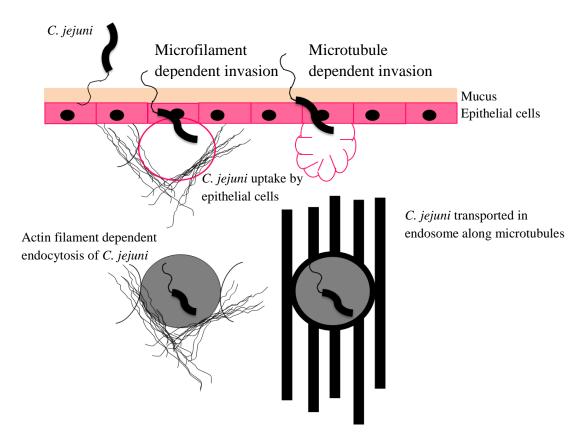



Figure 1.1: A diagrammatic representation of the proposed mechanisms of *C. jejuni* invasion into the epithelial cell lining.

The ability of *C. jejuni* to attach to and invade epithelial cells is generally strongly correlated with severity of clinical symptoms presented (Fauchere *et al.*, 1986). Several studies have used *in vitro* cultured cell lines of human and non-human origin to investigate *C. jejuni* interaction with host cells (Konkel *et al.*, 2001, Ketley., 1997, Prasad *et al.*, 1996, Konkel and Joens., 1989). In addition, *in vivo* animal infection models including primates have been used to study the role of invasion and adhesion in *C. jejuni* pathogenesis (Senior *et al.*, 2011, Yao *et al.*, 1997, Babakhani and Joens., 1993, Russell *et al.*, 1993). All these studies have reported adhesion and invasion as important factors contributing to *C. jejuni* pathogenesis. *C. jejuni*'s ability to adhere to and invade epithelial cells very strongly depends on strain type and the infection model used (for example type of intestinal cell line used) (Prasad *et al.*, 1996, Konkel and Joens., 1989, Newell *et al.*, 1985).

Research has also suggested that clinical human isolates of *C. jejuni* are generally more adherent and invasive than non-clinical isolates. Prasad et al (1996) demonstrated that human isolates are more pathogenic than chicken isolates for their invasion, adhesion and cytotoxin production phenotypes using the human cell lines HeLa and HEp-2 cells as in vitro models. Similar results were reported by Konkel and Joens (1989) for nine clinical and four nonclinical strains of C. jejuni tested for their adherence and invasion to cultured HEp-2 cells. Newell et al (1985) compared two main phenotypes (i.e. adherence and invasion) of C. jejuni environmental isolates and strains obtained from diarrhoea patients to HeLa cells using electron microscopy and immunofluorescence. The authors concluded that the clinical isolates were more invasive than the nonclinical strains. This difference in the invasion potential between the human and animal isolates was also reported by Biswas et al., 2000. A detailed study classified C. jejuni strains isolated from clinical, poultry and environmental sources as hyper, high and low invasive using an *in vitro* invasion assay. It was reported that the hyperinvasive category had a greater proportion of clinical isolates compared to strains from other sources (Fearnley et al., 2008). Based on the above studies it can be suggested that adhesion and invasion are important phenotypes contributing to C. jejuni pathogenesis. In contrast, another research group (van Deun et al., 2007) did not find any difference in the invasion potential among the set of human and poultry isolates investigated. However, C. jejuni adhesion and invasion is a multifactorial process and other bacterial factors that contribute to this phenotype still need investigation.

### 1.10.3.1 Factors influencing adhesion and invasion in C. jejuni

Campylobacter species do not possess a Type III secretion system and other structures including fimbriae or pilli as in other Gram negative bacteria such as Salmonella and E. coli. Instead adherence and invasion of intestinal epithelial cells is mediated by several other bacterial structures. Some of these factors directly influence adhesion and invasion of C. jejuni to the host surface receptors while others play an indirect role in host cell interaction. The role of these host cell interaction factors in C. jejuni pathogenesis has only started to be understood (Hu and Kopecko., 2008, Dasti et al., 2010).

A functional C. jejuni flagellar export apparatus is required for delivery of effector proteins into host epithelial cells. A flagellin protein, FlaC which is structurally homologous to FlaA and FlaB has been shown to support the flagellar export apparatus. FlaC has also been found to have a role in *in vitro* invasion of host epithelial cells (Song et al., 2004). Two Campylobacter invasion antigen (Cia) effector proteins, CiaB with limited homology to SipB of Salmonella species and CiaC with no known similarity to any other proteins that have been characterised (Christensen et al., 2009). An insertion mutation into gene, Cj1242 which was annotated as CiaC in C. jejuni clinical strain F38011 showed defects in motility, adherence and internalization of INT-407 cells (Christensen et al., 2009). In contrast, mutation in ciaB had no effect on the invasion potential of C. jejuni 81-176 in T84 cells (Novik et al., 2010) suggesting that the role of CiaB in invasion is strain and cell line dependant. Another Cia protein called CiaI (Cj1450) has been recently identified in *C. jejuni*. Cial contains an amino terminal type III secretion sequence and is transported via the flagellar type III secretion system into host epithelial cells. A C. jejuni cial mutant was attenuated for survival in cultured INT-407 and HeLa epithelial cells which suggests CiaI might have a role in intracellular survival (Buelow et al., 2011). Not all Cia proteins are known yet nor their exact mechanism in C. jejuni host interaction is fully understood however a C. jejuni strain lacking CiaB secretion ability inhibited secretion of other Cia proteins into the epithelial cells (Ko and Park., 2000).

In bacteria, the main role of  $\sigma$ 28 genes is in the functioning of flagella (Carrillo *et al.*, 2004, Goon *et al.*, 2006, Poly *et al.*, 2007a). However, *C. jejuni* expresses some  $\sigma$ 28 genes that are not important in motility but have been involved in invasion and damage to epithelial cells (Goon *et al.*, 2006, Poly *et al.*, 2007a). A  $\sigma$ 28 dependent gene *fspA* is

expressed as two alleles fspA1 and fspA2 in some C. jejuni strains. FspA1 and FspA2 proteins are not directly involved in C. jejuni invasion however FspA2 has been implicated in apoptosis of INT-407 cells (Poly  $et\ al.$ , 2007a). Another flagella dependent gene with a role in invasion of intestinal epithelial cells is cj0977 (Goon  $et\ al.$ , 2006). At first the Cj0977 protein was shown to be secreted in the cytoplasm. Its secretion was independent of the flagellar export apparatus and had no effect on motility (Goon  $et\ al.$ , 2006). A later study contradicted the initial research and showed a cj0977 mutant to be deficient in motility in a liquid culture and was unable to invade epithelial cells (Novik  $et\ al.$ , 2010). Inactivation of fliS ( $\sigma28$ ) and rpoN ( $\sigma54$ ) resulted in reduced motility and defects in invasion of HeLa cells (Fernando  $et\ al.$ , 2007). A flagellar coexpressed determinant, FedA, together with CiaI has been reported recently to be involved in the invasion of human epithelial cells (Barrero-Tobon and Hendrixson., 2012). Chemotaxis and the glycosylation systems (O and N-linked) also have an important role in influencing the adhesion and invasion phenotypes in C. jejuni and these have been discussed in detail in sections 1.10.2 and 1.10.9 respectively.

Other surface polysaccharides including LOS and capsule have been implicated in adherence and invasion of epithelial cells and in vitro ferret model of infection (Karlyshev et al., 2000, Bacon et al., 2001, Kanpies et al., 2004, Bachtiar et al., 2007, Louwen et al., 2008). An initial study investigated the role of C. jejuni LOS in host cell interaction and internalization. This study showed that the purified extract of LOS promoted adhesion to epithelial cells and this interaction was eliminated with the oxidation of LOS (McSweegan and Walker., 1986). Kanpies et al (2004) reported that a mutant in C. jejuni 81-176 LOS locus lost its ability to invade cultures human epithelial cell lines. Bacon et al (2001) demonstrated the role of C. jejuni 81-176 LOS in invasion and serum resistance using INT-407 cell lines in an in vitro model. Sialylated LOS exposed on the outer surface of *C. jejuni* has been shown to influence invasion (Louwen et al., 2008, Habib et al., 2009). Louwen et al (2008) showed that the mutation in cst-II gene encoding for sialyltranferase in GBS associated C. jejuni strains made them defective in invasion of intestinal epithelial cells. To further investigate the role of LOS in C. jejuni pathogenesis, Marsden et al (2009) showed that a C. jejuni mutant lacking a functional LOS locus was unable to invade Caco-2 cells. Mutations in one aminotransferase encoding gene wlaRG and two glycosyltransferase encoding genes wlaTB and wlaTC in LOS core in C. jejuni 81116 deprived the mutants in their ability to invade in vitro human epithelial cell lines. Moreover, mutants in these three genes

showed reduced immunogenicity and invasion into chick embryonic fibroblasts (Holden *et al.*, 2012). Recently, Javed *et al* (2012) showed that a transposon inserted in a LOS gene, *cj1136*, which encodes for a putative galactosyltransferase in *C. jejuni* NCTC11168 significantly reduced the ability of the mutant *C. jejuni* 01/51 strain to invade into cultured INT-407 and Caco-2 cells. All the above studies strongly support the role of LOS in *C. jejuni* interaction to the human cells.

Campylobacter species contain adhesins or binding factors that are required to adhere and internalize the host epithelium. The CadF (*Campylobacter* adhesion to fibronectin) is an outer membrane protein present in all C. jejuni and C. coli strains and establishes bacterial interaction with the host extracellular fibronectin receptors (Konkel et al., 1997). The cadF gene sequence in C. jejuni has a 39 bp insertion compared to the cadF in C. coli. This sequence difference in the cadF gene resulted in C. jejuni being more adherent and invasive to the INT-407 epithelial cells compared to C. coli strains. Furthermore, isogenic cadF mutant strains showed significantly impaired host cell interaction ability confirming its role in C. jejuni pathogenesis (Krause-Gruszczynska et al., 2007). A recent study reported that C. jejuni fibronectin binding proteins, CadF and FlaA, mediate invasion of host epithelial cells via an epidermal growth factor (EGF) pathway. This process involves activation of C. jejuni cytoskeleton related proteins mainly, P13 kinase, c-Src and focal adhesion kinase (FAK) (Eucker and Konkel., 2012). Two surface exposed lipoprotein adhesins, CapA and JlpA, have been shown to mediate C. jejuni in vitro adhesion to the human epithelial cell lines and in vivo colonization of chicken gut (Ashgar et al., 2007, Jin et al., 2001, Pei and Blaser., 1993).

Campylobacter species contain different periplasmic proteins PEB 1-4 that serve as adhesins (Pei et al., 1991). PEB 1 is a 28-kDa protein and is conserved in *C. jejuni* and *C. coli* strains (Pei and Blaser., 1993, Pei et al., 1991). PEB 1 has immunogenic and immunoprotective properties (Du et al., 2008) and is required for *C. jejuni* binding to HeLa cells (Pei et al., 1998). It is functionally homologous to periplasmic binding proteins from other Gram negative bacteria with a role in glutamate/aspartate transport (Leon-Kempis Mdel et al., 2006, Pei and Blaser., 1993). PEB 1 was detected in culture supernatants by cell fractionation and immunoblotting techniques confirming that PEB1 in *C. jejuni* is a periplasmic associated protein and not an inner or outer membrane protein (Leon-Kempis Mdel et al., 2006). PEB 3 has antigenic properties similar to PEB 1 and shares homology with class 1 pili in *Neisseria meningitidis* and heat-labile

enterotoxin B subunit in *E. coli*, and is required for interaction with intestinal epithelial cells (Pei *et al.*, 1991). PEB 4 is another periplasmic chaperone in *C. jejuni* as antigenic in nature as PEB 1. It is involved in adhesion to INT-407 cells, biofilm formation and mice colonization (Asakura *et al.*, 2007) as well as invasion of cultured human epithelial cells (Kervela *et al.*, 1993). Recently, another periplasmic-binding protein encoding gene, Cj1289, has been identified in *C. jejuni*. This protein is structurally similar to PEB 4 in *C. jejuni* and may have a role in virulence (Kale *et al.*, 2011). HtrA is a periplasmic protein in *C. jejuni* with dual functionality: a chaperone and a protease. HtrA chaperone activity is required for interaction with host epithelial cells and binding to macrophages (Baek *et al.*, 2011a).

Other bacterial factors recently identified that influence adhesion and invasion phenotypes include a *C. jejuni* 11168 antigen encoding gene, *cj0034c*, with a role in invasion of INT-407 epithelial cell lines. Furthermore, mutants in *cj0034c*, *cj0404*, *cj0525c* were reduced in invasion of spleen and liver (Nielsen *et al.*, 2012). Oxidoreductase encoding genes *cj0004c* and *cj0005c* involved in sulphite metabolism in cytoplasm (Tareen *et al.*, 2011), polyphosphate kinase 2 encoding gene (*ppk2*) required for inorganic polyphosphate (poly P) synthesis as an alternate energy source in stress conditions (Gangaiah *et al.*, 2010) are important *C. jejuni* metabolic pathways that influence *C. jejuni* attachment and internalization in *in vitro* tissue culture assays. A formate metabolism related operon (fdhTU) expressed as two alleles *fdhT* and *fdhU* has been recently identified in *C. jejuni* to have a role in internalization of bacterial cells in an *in vitro* colony based assay and by using fluorescence microscopy (Pryjma *et al.*, 2012).

The bacterial factors reported as influencing the adhesion and invasion phenotypes of *C. jejuni* strains are summarized in table 1.1.

Table 1.1: Summary of the bacterial factors influencing adhesion and invasion of *C. jejuni*.

|                               |                                            | Pheno    | ntvne    |                                              |
|-------------------------------|--------------------------------------------|----------|----------|----------------------------------------------|
| Bacterial factor              | Function                                   | Adhesion |          | Reference                                    |
| Flagella                      | Function                                   | Aunesion | Invasion | Reference                                    |
| FlaA                          | Flagellin A                                |          |          | Wassenaar et al., 1991, Jain et al., 2008,   |
| Tax                           | riagemi A                                  |          | V        | Eucker and Konkel., 2012                     |
| FlaC                          | Flagellar export apparatus                 |          | V        | Song et al., 2004                            |
| cj0977                        | Flagellum                                  |          | 2        | Goon et al 2006                              |
| Sigma factors                 | 1 lagenum                                  |          | V        | Goon et at ., 2000                           |
| σ28 (fliS)                    |                                            |          | <b>√</b> | Carrillo et al., 2004, Fernando et al., 2007 |
| σ54 (rpoN)                    | Transcription of flagellar genes           |          | N N      | Fernando <i>et al</i> ., 2007                |
|                               |                                            |          | V        | Fernando et at ., 2007                       |
| Chemotaxis                    | Astolistas and AMA 2) and toolise and      |          | T        | 0-1                                          |
| lwcS                          | Autoinducer-2 (AI-2) producing gene        |          |          | Quinones et al., 2009                        |
|                               | (methyl recycling pathway)                 | √        | 1        | G 11 1 1 1 2002                              |
| CetB                          | Chemoreceptor                              |          | ٧        | Golden and Acheson., 2002                    |
| cj0952c                       | Formic acid chemoreceptor                  | ,        | V        | Tareen et al., 2010                          |
| CheR, CheB                    | Chemoreceptor                              | √        | √        | Kanungpean et al., 2011                      |
| LOS                           |                                            |          | 1        |                                              |
| Cst-II                        | Sialyltranferase                           |          | √        | Louwen et al., 2008                          |
| WlaRG                         | Aminotransferase                           |          | √        | Holden et al ., 2012                         |
| WlaTB, WlaTC                  | Glycosyltranferase                         |          | √        | 1100001 6. 0, 2012                           |
| cj1136                        | Putative galactosyltransferase             |          | √        | Javed et al., 2012                           |
| Periplasmic adhesins          |                                            |          |          |                                              |
| CadF                          | Campylobacter adhesion to fibronectin      |          |          | Krause-Gruszczynska et al ., 2007, Eucker    |
|                               |                                            | √        | √        | and Konkel., 2012                            |
| CapA, JlpA                    | Lipoprotein adhesins                       |          | √        | Asghar et al., 2007                          |
| PEB1                          | Periplasmic adhesins                       | √        |          | Pei et al ., 1998                            |
| PEB 3                         | Periplasmic adriesms                       | √        |          | Pei et al ., 1991                            |
| PEB4                          | Periplasmic chaperone                      | √        | <b>√</b> | Asakura et al., 2007, Kervela et al., 1993   |
| HtrA                          | Periplasmic protein                        | √        |          | Baek et al ., 2011a                          |
| Toxin                         |                                            |          |          |                                              |
| CdtA,CdtC                     | Cytolethal distending toxin (CDT) subunits | √        |          | Lee et al., 2003                             |
| Capsule                       |                                            |          |          |                                              |
| KpsE                          | Capsular polysaccharide ABC transporter    | √        | <b>√</b> | Bachtiar et al .,2007                        |
| JJD26997 1801                 | Capsular polysaccharide biosynthesis       |          | <b>√</b> | Javed et al., 2010                           |
| O-linked glycosylation system |                                            |          |          |                                              |
| PseAc                         | Pseudaminic acid                           | √        | √        | Ewing et al ., 2009                          |
| N-linked glycosylation system |                                            |          |          | , ,                                          |
| PgH                           | General glycosylation pathway protein      | √        | √        | Karlyshev et al., 2004                       |
| PglB                          | Oligosaccharide transferase                | i v      | V        |                                              |
| PgE                           | Putative aminotransferase                  | V        | V        | Szymanski <i>et al</i> ., 2002               |
| cj1121c                       | Aminotransferase                           | i v      | ,        | Vijayakumar et al ., 2006                    |
| Other                         | Primiou district asc                       | ,        |          | Vijayakumai et at ., 2000                    |
| FedA                          | Flagellar coexpressed determinant          |          | <b>√</b> | Barrero-Tobon and Hendrixson., 2012          |
| CiaC                          | Flagellal Coexpressed determinant          | <b>√</b> | V        | Christensen et al., 2009                     |
| Cial                          | Campylobacter invasion antigen (Cia)       | V        | ما       |                                              |
|                               | A-ti                                       |          | N        | Barrero-Tobon and Hendrixson., 2012          |
| cj0034c , cj0404 , cj0525c    | Antigen encoding genes                     | 1        | <b>V</b> | Nielsen et al., 2012                         |
| cj0004c                       | Oxidoreductase                             | 1        | <b>V</b> | Tareen et al., 2011                          |
| cj0005c                       | Sulphite metabolism                        | √        | √        |                                              |
| ppk2                          | Polyphosphate kinase 2 in inorganic        |          | ,        | Gangaiah et al., 2010                        |
|                               | polyphosphate (poly P) synthesis           | √        | √        |                                              |
| FdhTU                         | Formate metabolism                         |          | V        | Pryjma et al., 2012                          |
| feoB                          | Ferrous iron uptake                        |          | √        | Raphael and Joens., 2003                     |

### 1.10.4 Translocation

Campylobacter infections are initiated by interaction of bacteria with the intestinal mucus lining followed by invasion of epithelial cells. Campylobacter strains are also isolated from cases of bacteraemia which suggests the ability of bacteria to cross epithelium into the extra-intestinal locations. C. jejuni are able to translocate through the otherwise impermeable epithelial cell layer by using three reported systems. Campylobacter strains have been observed to translocate by paracellular pathway or paracytosis in which bacteria move through the epithelial cells without invading them via tight junctions between them (Everest et al., 1992, Konkel et al., 1992a, Grant et al., 1993). In the second system, C. jejuni are observed to use specialized intestinal epithelial cells called M-cells to translocate through the epithelial cell layer into the underlying lymphoid tissue (Walker et al., 1988). Finally, the third translocation mechanism called transcellular translocation or transcytosis involves bacterial invasion into the epithelial cells from where they travel through the cytoplasm appearing at the other side (Hu et al., 2008, Brás and Ketley., 1999). Within 60 minutes of postinfection, C. jejuni 81-176 was internalised into endosomes. These bacteria containing endosomes travelled for 8-10 hours from the apical surface to the basolateral surface where they were released by exocytosis (i.e. endosome fusion to the basolateral surface) Hu et al., 2008. The transcellular movement of C. jejuni 81-176 (Hu et al., 2008a) and more recently of C. fetus 11686 (Baker and Graham., 2010) carried on without compromising the integrity of polarized Caco-2 cells monolayer. By contract, a study that infected polarized human colonic HCA-7 cells with *C. jejuni* (Beltinger *et al.*, 2008) observed complete loss of colonic cells integrity and disruption of cellular tight junctions within 6 hours of infection. A modification of transcellular transport called subvasion has been reported in C. jejuni recently where bacteria travel for a few hours at the cell basal layer of infected cells before finally invading the epithelial cells (van Alphen et al., 2008, Pogacar *et al.*, 2010).

### 1.10.5 Toxin production

Campylobacter species are known to produce several toxins but the cytolethal distending toxin (CDT) is the only one studied in detail (Wassenaar and Blaser., 1999). CDT is composed of three subunits Cdt A, B and C. The presence of these protein subunits is necessary for the function of CDT (Pickett *et al.*, 1996). CdtB acts as a nuclease (Lee *et* 

al., 2003) and has shown structural similarity to the DNAase I of the mammalian eukaryotic cells (Lara-Tejero and Galan., 2000). Lee et al (2003) demonstrated that only CdtA and CdtC but not CdtB show close affinity and bind to the HeLa cell surface. This might suggest that CdtB might be transported to the nucleus to digest DNA and kill the cell. CDT causes HeLa and Caco-2 cells to be blocked in the G2 phase during the mitotic cell cycle thus resulting in eventual cell death (Whitehouse et al., 1998). It has been recently reported that C. jejuni survives and multiplies in human monocytes and utilizes CDT to initiate an apoptotic state in cells that leads to the cell death (Hickey et al., 2005). C. jejuni CDT induces the release of the cytokine Interleukin-8 (IL-8) from the intestinal epithelial cells by two mechanisms (Hickey et al., 2000). In the first mechanism, the live C. jejuni cells are needed to adhere and invade the epithelial cells and then induce IL-8 production which is responsible for the proinflammatory response seen in diarrhoeal disease (Hickey et al., 1999). The other mechanism for IL-8 production requires the production of CDT itself and requires the presence of all the three CDT subunits (i.e. CdtA, B and C) (Hickey et al., 2000). This mechanism of CDT activity has been demonstrated by the Hickey group (Hickey et al., 1999, Hickey et al., 2000) in vitro studies using human epithelial cell lines. However, there is no in vivo confirmation of the pathogenicity of CDT inside the human host.

### 1.10.6 Iron homeostasis

Iron is an essential nutrient of bacteria required for the survival in diverse environments. It is also required for electron transport, oxidative stress responses and expression of pathogenic genes (Johnson *et al.*, 2005, McHugh *et al.*, 2003, Bou-Abdallah *et al.*, 2002, Escolar *et al.*, 1999, Mason and Cammack., 1992, Hantke., 1981).

Campylobacter species have evolved an efficient iron uptake, transport and storage system. C. jejuni acquires iron in different ways. The C. jejuni genome sequence contains only one ferrous iron uptake gene feoB (Raphael and Joens., 2003). C. jejuni 81-176 with an inactivated feoB gene showed reduced invasion of INT-407 human epithelial cells and porcine IPEC-1 small intestine cells. C. jejuni NCTC11168 feoB mutants were unable to colonize and persist in the rabbit ileum. Mutants in the feoB gene of C. jejuni NCTC11168, 81-176 and ACTC 43431 were also deficient in colonization of the chick cecum and showed reduced infection in piglet virulence models (Naikare et al., 2006). An outer surface receptor, CfrB has been recently identified in

many *C. jejuni* strains. The CfrB receptor has ~34% similarity with CfrA. The synthesis of the CfrB receptor is essential for ferric iron uptake. A *C. jejuni* mutant in the *cfrB* gene was defective in colonization of the chick intestinal tract (Xu *et al.*, 2010).

When *C. jejuni* is present inside the human or avian host it has to obtain iron from complex molecules including heme, haemoglobin, transferrin and lactoferrin (Palyada *et al.*, 2004). The genes responsible for iron uptake from these compounds are present in two transcriptional sets and are located together upstream of the *ctuA* gene that encodes for an outer membrane receptor (Holmes *et al.*, 2005). The protein, CtuA has a role in promoting chick colonization (Palyada *et al.*, 2004). The loss of the *ctuA* gene does not abolish ferri-lactoferrin transport that suggests alternate processes used by *C. jejuni* for iron uptake inside the host (Miller *et al.*, 2008a).

C. jejuni produces many exogenous siderophores (Guerry et al., 1997, Richardson and Park., 1995, Baig et al., 1986). Among these siderophores, a ferri-enterochelin transport system in C. jejuni consists of a number of outer membrane associated proteins. A periplasmic receptor protein (CfrA), an outer membrane binding protein (CeuE), and an iron transport complex (CeuBCD) (Richardson and Park., 1995). This iron associated transport system is conserved in many C. jejuni and C. coli strains.

C. jejuni contains a ferritin like protein, Cft that has a role in excessive iron storage and survival under oxidative stress conditions (Palyada et al., 2004). In addition to Cft, a single putative bacterioferritin protein (Dps) is present in C. jejuni (Wai et al., 1995). The Dps protein has ~40 iron and oxygen binding sites and has a role in iron storage and protection against hydrogen peroxide damage. Dps expression is observed under both iron excess and depleted conditions (Ishikawa et al., 2003). The piglets inoculated with wild type C. jejuni strains showed upregulation of dps gene with symptoms similar to human campylobacterosis (Theoret et al., 2011). Another gene, Cj0241c, encoding for a probable iron binding protein, has been identified in sequenced C. jejuni strains with putative role in iron storage which also reflects the importance to safeguard bacteria under potent amount of metals including iron (van Vliet et al., 2002).

Iron homeostasis in bacteria is a well observed process which is regulated at the transcriptional level. The transcriptional factor Fur regulates the amount of iron available to bacteria in the form of ferrous ions. *C. jejuni* encodes for two homologous transcriptional regulators (Fur and PerR). PerR, regulates the expression of the enzymes

catalase (KatA) and alkyl hydroperoxidase (AhpC) that have a role in the oxidative stress response (van Vliet *et al.*, 1999). Mutation of the *perR* gene in *C. jejuni* resulted in defects of colonization in the chick intestinal tract (Palyada *et al.*, 2009). Iron metabolism and storage is an essential phenomenon in *C. jejuni* which involves several genes from multiple cellular processes particularly energy metabolism and oxidative stress response systems. The specific role of these genes in iron homeostasis and *C. jejuni* pathogenesis still need characterization.

### 1.10.7 Lipopolysaccharide

C. jejuni like many other Gram negative bacteria, has diverse surface polysaccharide materials of variable length and density that form lipooligosaccharide (LOS) and capsule (Wassenaar and Blaser., 1999, Moran., 1997). These surface structures have a key role in serological identification of C. jejuni and also contribute to its pathogenesis (Zilbauer et al., 2008). LPS are high molecular weight units with an outer core composed of 10-15 repeating oligosaccharide residues. LOS, in contrast, has a low molecular weight and lacks repeating oligosaccharide units in the outer core. Both LOS and LPS are anchored to lipid A on the surface. The lipid A of C. jejuni is an endotoxin (Moran., 1997) which induces an immune response in human hosts (Bax et al., 2011, Heikema et al., 2010, Kuijf et al., 2010). The electron microscopic characterization of C. jejuni lipopolysaccharides (LPS) by Karlyshev et al (2001) demonstrated, for the first time, that the high molecular weight lipopolysaccharides (HMWs) in C. jejuni are capsular polysaccharides (CPS). The outer core of LOS is a highly variable in different C. jejuni strains (Dorrell et al., 2001, Parker et al., 2008). The LOS outer core mimics the human gangliosides as it coated with the sialic acid residues. The structural similarity of LOS to human brain ganglosides develops into the neuropathies called GBS and MFS (Yu et al., 2011, Guerry and Szymanski., 2008, Yuki et al., 1995, Aspinall et al., 1994). The role of bacterial LOS in causing neurological disorders in humans has recently been reviewed (Yuki., 2010). The sialylation of LOS in C. jejuni is responsible for serum resistance by the pathogen against host antigens (Keo et al., 2011, Guerry et al., 2000). Also, sialylated LOS triggers a variety of immune response systems in *in vitro* studies and in mice infection model which showed sialylation to be a complex but essential phenomenon in C. jejuni mediated neurological complications (Huizinga et al., 2012). Recently, Naito et al (2010) showed the importance of the LOS outer core genes (waaF and lgtF) in stress response, intraepithelial survival and pathogenesis of C. jejuni. By generating mutants in the LOS outer core genes these authors were able to show that a fully functional outer core was required to initiate immune response and biofilm formation (Naito *et al.*, 2010). The role of LOS in biofilm formation has also been studied earlier by Corcoran and Moran (2007). Marsden *et al* (2009) showed that deletion of LOS biosynthesis genes (*cj1132c* and *cj1152c*) in *C. jejuni* NCTC11168 resulted in loss of growth and natural transformation of mutants.

### 1.10.8 Capsule biosynthesis locus

Capsule is the high molecular weight polysaccharide surface structure in *C. jejuni* (Karlyshev *et al.*, 2000). The synthesis of capsule polysaccharides is independent of the low molecular weight polysaccharides, LOS and is attached to the bacterial cell surface via phospholipid linkage (Oldfield *et al.*, 2002). The capsular region in *C. jejuni* is composed of conserved *kps* genes which border the central variable region (Figure 1.2).



Figure 1.2: Schematic representation of the capsule region of *C. jejuni*.

The capsule region varies in size between 15 to 34 kbp as the central variable region consists of 11 to 34 ORFs. This variability in the capsule region is reflected in diverse capsular structures in different *C. jejuni* strains (Guerry *et al.*, 2012).

Capsule has antigenic properties and it is the major serodeterminant in the Penner serotyping scheme (Karlyshev *et al.*, 2000). Capsule is a complex and phase variable structure in different *C. jejuni* strains. The *C. jejuni* switches on/off the expression of its capsule which is due to the slip strand mismatching in one or more of the conserved *kps* genes (Guerry and Szymanski., 2008, Karlyshev *et al.*, 2005 a and b, Bacon *et al.*, 2001). *C. jejuni* capsules show variability in sugar molecules and possess other structural extensions that are responsible for different serotypes of *C. jejuni* strains. The structural variability of capsule is associated with the expression of heptoses of unusual configuration (*i.e. altro*, *ido*, *gulo*, *talo*) and O-methyl phosphoramidate (MeOPN) modifications (McNally *et al.*, 2006b and 2007). The capsular structure gets more

complicated by the introduction of a deoxy modification at C-6 position of a polysaccharide chain in addition to a normal heptose sugar (Guerry *et al.*, 2012). For example, the *C. jejuni* strains of serotype complex HS23/36 contain both the *glycero*-D-*altro*-heptose and its complementary 6-deoxy-*altro*-heptose (Aspinall *et al.*, 1993, Kanipes *et al.*, 2006). Similarly, MeOPN can be located on different sugar residues in different CPS structures (Guerry *et al.*, 2012).

Capsule has a role in serum resistance, survival to phagocytic activity and complement mediated immunity (Keo *et al.*, 2011, Guerry and Szymanski., 2008). *C. jejuni* mutants in the capsule polysaccharide transport protein encoding gene (*kpsM*) were more susceptible to the host complement immune system whereas LOS mutant showed sensitivity to the cationic antimicrobial drugs including polymixin B (Keo *et al.*, 2011). A previous study showed that the capsulated *C. jejuni* strains were resistant to killing to by \(\beta\)-defensins 1 and lysozyme activity (Zilbauer *et al.*, 2008). A further study showed that the CPS loci in *C. jejuni* provide resistance to the innate host immunity. Recently, Rose *et al* (2012) showed that only a slight variation in the capsule composition of *C. jejuni* NCTC11168, for example the lack of MeOPN modification, increased cytokine production by bone marrow derived murine dendritic cells (BMDCs). This confirms the role of *C. jejuni* capsule in survival against the host innate immunity.

The capsule has a role in virulence mechanisms including adhesion and invasion of *C. jejuni* (Bachtiar *et al.*, 2007, Bacon *et al.*, 2001). *C. jejuni* mutant in *kpsE* capsule gene in *C. jejuni* 81116 resulted in reduced adhesion and invasion of the mutant however, colonization of the chicken intestine remained unaffected (Bachtiar *et al.*, 2007). The capsular gene mutants in *C. jejuni* also resulted in impaired virulence profile in the ferret disease model (Bacon *et al.*, 2001). A recent study showed that surface related structures, primarily capsular polysaccharides, are subjected to genetic variation in the chicken intestine which is the main reservoir of *C. jejuni* strains (Wilson *et al.*, 2010). These changes may increase the virulence of some *C. jejuni* strains by improving their ability to invade the human intestine (Pope *et al.*, 2007). This provides an interesting link between *C. jejuni* surface polysaccharide, invasion and virulence mechanism.

### 1.10.9 Protein glycosylation systems in Campylobacter species

Glycosylation is a well-known phenomenon in eukaryotes. The study of surface structures for their role in bacterial virulence has also identified glycosylation as a prominent mechanism in prokaryotes. There are two glycosylation systems studied in *Campylobacter* species. The O-linked glycosylation system that glycosylates the flagella (Guerry *et al.*, 2006, McNally *et al.*, 2006a, Goon *et al.*, 2003, Thibault *et al.*, 2001, Doig *et al.*, 1996) and the N-linked glycosylation system that decorates other periplasmic proteins (Linton *et al.*, 2002, Young *et al.*, 2002, Szymanski *et al.*, 1999). The O-linked glycosylation system links the glycans to the hydroxyl oxygen of serine or threonine amino acids in the target flagellin protein. The N-linked glycosylation system modifies asparagine residues on many outer membrane proteins (Szymanski *et al.*, 1999, Szymanski *et al.*, 2003, Szymanski and Wren., 2005).

In Campylobacter species, O-glycan modification is an essential process for flagella synthesis and motility. This post translational modification of flagellins was first identified in C. coli and then this process was studied in C. jejuni and C. coli (Alm et al., 1992, Logan et al., 1989). There are two major O-glycans that modify flagellins in Campylobacter species, both having a similar structure and each composed of similar 9carbon sugars. These saccharides are pseudaminic acid (PseAc) and legionaminic acid (LegAm) (McNally et al., 2007, Schirm et al., 2003, Thibault et al., 2001). The major glycan coating C. jejuni flagellins is PseAc whereas LegAm modifies C. coli flagellins (Young et al., 2007). In C. jejuni the PseAc glycans are synthesized by proteins encoded by several pse genes. It has been reported recently that the PseAc in C. jejuni have a variety of substitutions including an acetamidino, O-acetyl or N-acetylglutamine attachments (Schirm et al., 2005, Thibault et al., 2001). Genome sequence analysis of C. jejuni 81-176 revealed a group of genes encoding for the O-glycosylation system located adjacent to the flagellin synthesis genes and this region was highly variable (Guerry and Szymanski., 2008). The glycosylation at seven specific serine or threonine residues is important for the motility and autoagglutination phenotypes in C. jejuni (Ewing et al., 2009). Since O-glycan coated flagellins are surface exposed they may play a role in promoting interaction between flagella of neighbouring bacteria and facilitate autoagglutination. The two processes; flagellin glycosylation autoagglutination together may also allow survival of bacteria inside the host. C. jejuni 81-176 mutants in PseAc glycans resulted in defects in motility and autoagglutination.

In vitro adhesion and invasion of cultured epithelial cells and virulence in the ferret disease model was decreased (Ewing et al., 2009, Guerry et al., 2006). Another study showed that C. jejuni mutants in LegAm had defects in colonization of chicks (Howard et al., 2009). The glycan coated flagella showed antigenic properties which suggests that the O-linked glycosylation system may have a role in survival in host cells by escaping the host immune responses (Thibault et al., 2001, Guerry., 2007, Young et al., 2007).

The N –linked glycosylation system in *Campylobacter* species is encoded by *pgl* genes. The pgl genes are conserved in C. jejuni and C. coli. The translational products of pgl system are multi-sugar molecules (usually 7 sugars) (Jervis et al., 2012). A number of studies have suggested that the N-linked glycosylation system in C. jejuni is required to mediate host interactions. Mutants in pgl genes were unable to adhere to and invade human epithelial cells and were unsuccessful in colonizing the avian intestinal tract (Kelly et al., 2006, Hendrixson and DiRita., 2004, Karlyshev et al., 2004, Szymanski et al., 2002). Kakuda and DiRita (2006) showed that glycosylation of the periplasmic protein Cj1496c was required for the adherence and invasion of INT-407 cells and colonization of the chicken intestinal tract. Karlyshev et al (2004) reported a pglH C. jejuni mutant with reduced adherence and invasion to Caco-2 cells. mutational inactivation of the glycosylation system genes, oligosaccharide transferase (pglB) and putative aminotransferase (pglE) in C. jejuni 81-176 impaired its ability to adhere and invade INT-407 cells (Szymanski et al., 2002). Another aminotransferase encoding gene, cj1121c which is a glycoprotein of N-linked glycosylation system was reported to be involved in motility and *in vitro* host cell interaction (Vijayakumar *et al.*, 2006).

Currently, over 70 N-linked glycosylation proteins have been identified in *C. jejuni* (Kowarik *et al.*, 2006, Young *et al.*, 2002). The N-linked glycosylation system modifies the VirB10 protein which is encoded on the pVir plasmid in some *C. jejuni* strains (Larsen *et al.*, 2004). VirB10 is homologous to the proteins of T4SS and is involved in DNA transformation (Bacon *et al.*, 2000). The N-linked glycans modify VirB10 at two asparagine residues providing stability to the protein. However, the glycosylation of only one asparagine residue of VirB10 is required for the expression of this protein (Larsen *et al.*, 2004). A recent study suggested that the Pgl system releases free oligosaccharides (fOS) in the periplasmic space. The amount of these fOS produced is

influenced by the salt concentration. This suggests that fOS may provide protection under osmotic stress conditions (Nothaft *et al.*, 2009).

The *C. jejuni* N-linked glycosylation system also influences the host immune system by recognizing specific lectins present on macrophages and some dendritic cells. A *C. jejuni* mutant of *pglA* promoted excessive release of IL-6 (interleukin-6) from human dendritic cells which suggests that the N-linked glycosylation system may function to enable the organism to evade the immune response during infection in human hosts (van Sorge *et al.*, 2009).

### 1.11 Project background and key aims of research

The ability to attach to and internalize the human epithelial cells is an essential phenomenon used by *C. jejuni* to cause an asymptomatic or diarrhoeal disease (Young *et al.*, 2007).

In a recent development to differentiate the adhesion and invasion virulence traits of clinical and non-clinical *C. jejuni* strains, Fearnley *et al* (2008) studied 74 strains of poultry origin and 39 clinical strains isolated from patients with enteritis and bacteraemia. This study categorised the *C. jejuni* strains into three classes; low invasive, highly invasive and hyperinvasive strains using INT407 cell lines, Caco-2 and HT29-Cl.16E mucous secreting cell lines. The invasion potential for these *C. jejuni* strains into INT-407 cells is presented in Figure 1.3.

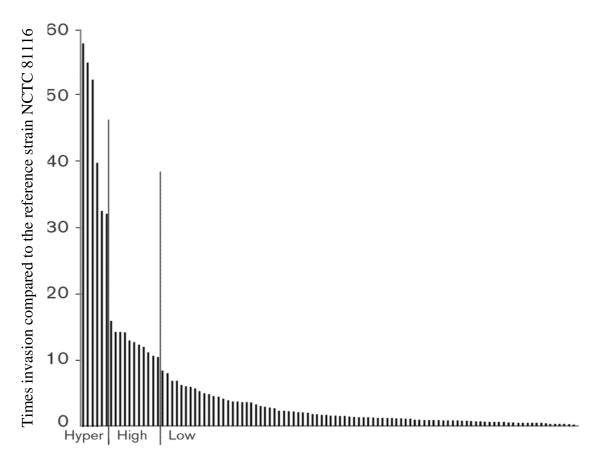



Figure 1.3: Distribution of 113 *C. jejuni* isolates tested for their ability to invade into INT-407 cells compared to the low invasive reference *C. jejuni* strain NCTC 81116. © 2012 Crown copyright.

The hyperinvasive strains were >25 times more invasive compared to the reference strain. The high invasive strains were at least 10 times as invasive and the low invasive *C. jejuni* strains were less than 10 times as invasive as the reference strain (Fearnley *et al.*, 2008).

Six clinical hyperinvasive *C. jejuni* isolates (01/10, 01/35, 01/04, 01/41, 01/51, EX114) were identified in this study which showed significantly higher levels of invasion (>25-fold) into the human intestinal cell lines INT-407 and Caco-2 compared to the low invasive reference *C. jejuni* 81116 (Fearnley *et al.*, 2008).

A hyperinvasive *C. jejuni* strain 01/51 has been characterised in detail by transposon mutagenesis (Javed *et al*, 2010). A transposon mutant library composed of 800 mutants was screened. An initial study identified 26 mutants with high motility and reduced invasiveness which were selected for further investigation. Six genes (*cipA*, *cj0690c*, *cj1136*, *cj1245c*, *cj1305c* amd *cj1539c*) were identified with potential roles in

invasiveness and this was confirmed by targeted mutagenesis, complementation and phenotype studies. These genes with a role in invasiveness were also studied for colonization of the chick gut (Javed *et al*, 2010).

In this PhD project, all six hyperinvasive *C. jejuni* strains identified by Fearnley *et al* (2008) were studied. The initial hypothesis was that this group of stains possesses extra genetic material to make them hyperinvasive. Therefore, this study was designed to investigate the genomic basis of invasiveness in these hyperinvasive *C. jejuni* strains using advanced molecular techniques such as Comparative Genomic Hybridization (CGH), Suppressive Subtractive Hybridization (SSH) and genome sequencing.

The main aims of this project are;

- To determine differences between selected *C. jejuni* hyperinvasive strains compared with low invasive strains at the genomic level.
- To establish the function of genes of interest identified in the hyperinvasive *C. jejuni* strains.
- To relate any genomic variations identified by using the molecular techniques to the phenotypic characteristics of the strains.
- To understand more about how this major human pathogen has evolved based on the knowledge acquired in this study.

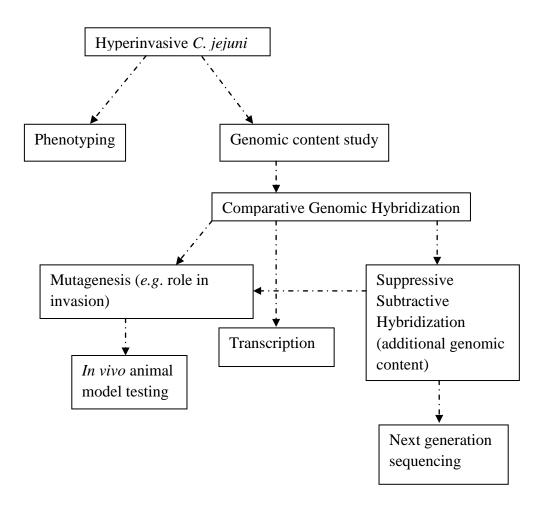



Figure 1.4: The proprosed research plan for this project.

# Chapter Two

# **MATERIALS AND METHODS**

### **MATERIALS AND METHODS**

### 2.1 Bacterial strains

This study employed 24 *Campylobacter jejuni* strains and *Campylobacter coli* RM2228. All *Campylobacter jejuni* isolates used in this study were obtained from the Veterinary Laboratory Agency, Weybridge, UK. *Campylobacter coli* RM2228 was provided by Prof Ian Connerton, University of Nottingham, UK (Table 2.1).

Table 2.1: The bacterial strains used in this study.

| Bacterial strain  | Source         | Isolated from          | Invasion profile* | MLS             | ST        | Reference                     |
|-------------------|----------------|------------------------|-------------------|-----------------|-----------|-------------------------------|
| Dacterial Strain  | Source         | Isolated from          | invasion prome    | Clonal complex  |           | Reference                     |
| 01/10             | Human clinical | Blood                  | Hyperinvasive     | 21              | 21        |                               |
| 01/35             |                | Faecal                 | Hyperinvasive     | 21              | 22        |                               |
| 01/04             | 1              | Blood                  | Hyperinvasive     | 677             | 677       | 1                             |
| 01/41             | 1              | Faecal                 | Hyperinvasive     | 21              | 916       | 1                             |
| 01/51             | 1              | Faecal                 | Hyperinvasive     | 21              | 21        | 1                             |
| EX114             | 1              | Environment (Puddle    | Hyperinvasive     | 682             | 914       | -                             |
| L2117             |                | isolate from outside a | Trypermivasive    | 002             | 714       |                               |
|                   |                | boiler house in South  |                   |                 |           |                               |
|                   |                | East of England)       |                   |                 |           |                               |
| 01/30             | 1              | East of England)       | Low invasive      | 45              | 45        | Fearnley <i>et al</i> ., 2008 |
| 01/30             | 1              |                        | Low invasive      | 22              | 22        | rearmey er ar ., 2000         |
| 01/46             | -              |                        | Low invasive      | 21              | 21        | -                             |
| 01/46             | -              |                        | Low invasive      | 21              | 53        | -                             |
| 01/44             | -              |                        | Low invasive      | 21              | 21        | -                             |
|                   | -              |                        |                   | 508             | 508       | -                             |
| 01/05<br>01/08    | -              |                        | Low invasive      | 61              | 61        | -                             |
| 01/08             | -              |                        | Low invasive      | 45              | 137       | -                             |
|                   | -              |                        | Low invasive      |                 |           | -                             |
| 01/36             | -              |                        |                   | 354             | 324<br>21 | 1                             |
| C2/3              | -              |                        | Low invasive      | 21              | 21        |                               |
|                   |                |                        |                   |                 |           | Fearnley et al., 2008         |
| 01/46             |                |                        | Low invasive      | 21              | 21        | MLST-this study               |
|                   |                |                        |                   |                 |           | Fearnley et al., 2008         |
| 01/44             |                |                        | Low invasive      | 21              | 21        | MLST-this study               |
| C12/11            | Poultry        |                        | Low invasive      | 658             | 908       |                               |
| C27/14            | 1 outry        |                        | Low invasive      | 257             | 257       | -                             |
| C69/2             | -              |                        | Low invasive      | 443             | 393       | Fearnley et al., 2008         |
| C110/4            | 1              |                        | Low invasive      | 433             | 433       | -                             |
| 81116             | Human          |                        | Low invasive      | 283             | 267       | Isolated from patient         |
| 81110             | Tuman          |                        | Low livasive      | 203             | 207       | suffering with                |
|                   |                |                        |                   |                 |           | diarrhoea from a              |
|                   |                |                        |                   |                 |           | water-borne                   |
|                   |                |                        |                   |                 |           | outbreak in                   |
|                   |                |                        |                   |                 |           | 1981(Palmer et al.,           |
|                   |                |                        |                   |                 |           | 1983)                         |
| RM1221            | Poultry        | Chicken carcass        | Not known         | 354             | 354       | This is a fully genome        |
| KIVITZZI          | roun y         | Chicken carcass        | Not known         | 334             | 334       | sequenced C. jejuni           |
|                   |                |                        |                   |                 |           | strain (Fouts et al.,         |
|                   |                |                        |                   |                 |           | 2005)                         |
| C. coli RM2228    | Poultry        | Chicken                | Not known         | 828             | 1063      | This is the first             |
| C. con Kivi2228   | roun y         | Chicken                | Not known         | 828             | 1003      | genome sequenced              |
|                   |                |                        |                   |                 |           | C. coli (Fouts et al.,        |
|                   |                |                        |                   |                 |           | 2005)                         |
| E. coli TOP10F'** | NT-+1:1-1-     | Iib                    | NI-+ 1            | NT-41'41-1-     |           |                               |
| E. con TOPIUF     | Not applicable | invitrogen, UK.        | Not known         | Not applicatble |           | FL {lacIq Tn10                |
|                   |                |                        |                   |                 |           | (TetR)} mcrA f¢(mrr           |
|                   |                |                        |                   |                 |           | hsdRMS-mcrBC)                 |
|                   |                |                        |                   |                 |           | f380lacZf¢M15                 |
|                   |                |                        |                   |                 |           | f¢lacf'74                     |
|                   |                |                        |                   |                 |           | recA1araD139                  |
|                   |                |                        |                   |                 |           | f¢(ara-leu)7697 galU          |
|                   |                |                        |                   |                 |           | galK rpsL (StrR)              |
|                   |                |                        |                   |                 |           | endA1 nupG                    |
|                   |                |                        |                   |                 |           |                               |

<sup>\*</sup>Invasive phenotype is based on the *in vitro* invasion potential of isolates tested using INT-407 cells. Hyperinvasive *C. jejuni* strains showed 25X invasiveness whereas the low invasive *C. jejuni* corresponded to 10X invasion potential compared to the reference *C. jejuni* 81116. \*\* The *E. coli* competent cells for cloning used in the pooled suppressive subtractive hybridization study.

### 2.2 Primers used in this study

All primers used in this study were purchased from Eurofins (MWG operon, UK) and are shown in the tables 2.2.1, 2.2.2 and 2.2.3.

Table 2.2.1: Oligonucleotides used in the Comparative Genomic Hybridization (CGH) study.

|                 |          |                        |                          | Expected     |  |
|-----------------|----------|------------------------|--------------------------|--------------|--|
|                 |          |                        |                          | product size |  |
| Oligonucleotide | Gene     | Tm*(°C)                | Sequence (5' to 3')      | (bp)         |  |
| modA F          | modA     | 52                     | TTAAAAGAATTTGAAGAAAAATT  |              |  |
| modA R          |          | 52                     | TTCAAAGGCTAATTTTTATC     | 750          |  |
| metF F          | metF     | 52                     | GAGCAAATTTGGATCAATC      |              |  |
| metF R          |          | 52                     | TTAGCTTTAATGCTTTTTGG     | 1005         |  |
| CJ_10000868 F   | CJE0669  | 58                     | CACTTCCCCCTTGACTGG       |              |  |
| CJ_10000868 R   |          | 58                     | GGAGAAGTCCACACAGAAG      | 490          |  |
| CJ_10000908 F   | CJE0838  | 60                     | GTATAGTAGGGCAAAATATTGC   |              |  |
| CJ_10000908 R   |          | 62                     | CCAATAACTTTTCCAGCTTGTG   | 369          |  |
| his S F         | hisS     | 48                     | GTAGGAGAAAGT TCTGA       |              |  |
| his S R         |          | 48                     | ACAAACTTTACCATTTTTG      | 1120         |  |
| Pro C F         | proC     | 40                     | ATTAATCTTGATAATAAT       |              |  |
| Pro C R         |          | 44                     | CAGCATTAGCAATGC          | 575          |  |
| CJ_10001541 F   | CJE0320  | 52                     | CTTTTAAATCAAGATGGGG      |              |  |
| CJ_10001541 R   |          | 50 CACAAGATCTTTTTACATC |                          | 507          |  |
| aat F           | aat      | 52                     | 52 GGAGAAAAA ATCAGTGATG  |              |  |
| aat R           | 1        | 48                     | CCCATAAATTCTAAATGTT      | 535          |  |
| CCOA0033 F      | CCOA0033 | 54                     | GCTAAACTTGTATAGATTGG     |              |  |
| CCOA0033 R      | ]        | 52                     | CTAGCCCATGCA AGTTC       | 390          |  |
| opCcV F         | CJE1112  | 60                     | GCAGGATCTTTTATTGATACAC   |              |  |
| opCcV R         | ]        | 62                     | CCTATATATAAACCATCTTCCATG |              |  |
| CJ_10001535 F   | CJE0801  | 48                     | CGGAGTGTTTTTAATGC        |              |  |
| CJ_10001535 R   | ]        | 49                     | GGTGTGATAAAATTCAGG       | 490          |  |
| opCcV609 F      | CJE0315  | 50                     | GAAGCT TTTGTGCATGG       |              |  |
| opCcV609 R      | ]        | 54                     | CATAATCACTCTTGCTTCC      | 750          |  |
| tgt F           | tgt      | 52                     | GCCTTTTCAAAACAAAGC       |              |  |
| tgt R           | ]        | 50                     | CATGATCGTTGATAAATTC      | 950          |  |
| CJE1128 F       | CJE1128  | 56                     | CATGCTACCTACACATTTAG     |              |  |
| CJE1128 R       | ]        | 58                     | GGAGTCTTTCCA ACACCAC     | 230          |  |
| CJE0731 F       | CJE0731  | 56                     |                          |              |  |
| СЈЕ0731 R       |          | 58                     | GTTGCCATATTAAACATTAAATG  | 1700         |  |

Tm\*(°C) is the melting temperature of oligonucleotides. These genes were selected for PCR screening as they were found as present (Table 4.1a) or absent/highly divergent (Table 4.1b) in the hyperinvasive *C. jejuni* strains (Chapter 4). The PCR primers were designed based on the conserved sequence of genes in all sequenced *Campylobacter* 

species strains publically available of Campybd (http://www.xbase.ac.uk/campydb/) and NCBI (http://www.ncbi.nlm.nih.gov/genome/campylobacter/) unless otherwise stated.

Table 2.2.2: The primer and adaptor sequences used in Pooled Suppressive Subtractive Hybridization (PSSH) study.

| Oligonucleotide | Insert/gene                                                    | Sequence (5' to 3')        | Tm*(°C) | Expected product size (bp) |  |
|-----------------|----------------------------------------------------------------|----------------------------|---------|----------------------------|--|
| C1-bioF-2F      | bioF-2 (8-amino-7-oxononanoate                                 |                            | 64      | 941                        |  |
| C1 bioF-2 R     | synthase)                                                      | GCACAGTAGGTTCTTTTATAGC     | 62      |                            |  |
| C2 Res mod F    | Restriction modification system                                | GACGCAGCAGAGTATAAAC        | 56      | 1400                       |  |
| C2 Res mod R    | 1                                                              | CACTTAGCTCTTGCTCAG         | 54      | 1                          |  |
| C5-ThiG F       | thiG (thiazole synthase)                                       | GGCAAATACGAGTTTGATTCAAG    | 64      | 700                        |  |
| C5-ThiG R       | 1 ` ` ` ` ` `                                                  | GTTAATGGAGAACTGCTTTAGC     | 62      |                            |  |
| C6-P kinase F   | Polyphosphate kinase                                           | CGCGAACTTTCTTGGCTTCGC      | 66      | 1450                       |  |
| C6-P kinase R   | 1                                                              | GAAGCTAAGTGCGTTGCACGAC     | 68      | 1                          |  |
| C8-lysC F       | lysC (aspartokinase)                                           | GTGGAACAAGCGTTGGAACAC 64   |         | 950                        |  |
| C8-lysC R       |                                                                | GCTCTAACTGCAAGTTCTCCG      | 64      | ]                          |  |
| C9-mem lipo F   | Membrane-associated lipoprotein                                | CATTAGAGGTATCCCAAGATG      | 60      | 735                        |  |
| C9-mem lipo R   |                                                                | GGTGCGGGCCTCTTCGC          | 60      |                            |  |
| C10-Ferredox F  | Ferredoxin                                                     | CTATTGCTTGTGGTTCTTGTATTG   | 64      | 225                        |  |
| C10-Ferredox R  | 1                                                              | CAAAAACTGGAGTGTCCCCAC      | 64      | 1                          |  |
| C11-Tri ester F | Tributyrin esterase                                            | CAAACTTCTAGTGTTGTTACACG    | 64      | 235                        |  |
| C11-Tri ester R |                                                                | GATCGTTTCAGTATCATCGGG      | 62      |                            |  |
| C13-Put reg F   | Putative two component regulator                               | GCCTATTATGGATGGACTGG       | 60      | 445                        |  |
| C13-Put reg R   |                                                                | CTTCACCCACTTTATCTCTTAC     | 62      |                            |  |
| C14-MuSo1 F     | Prophage MuSo1                                                 | GAATAGCAAAAGCCCAAGCGG      | 64      | 760                        |  |
| C14-MuSo1 R     |                                                                | CACTTCTACTTTTCCTAATGTAAC   | 64      |                            |  |
| C15-GDP dehyd F | Putative GDP-mannose 4,6                                       | CAGGATTTACAGGGCAAGTTG      | 62      | 750                        |  |
| C15-GDP dehyd R | dehydratase                                                    | CTTCAGGAAGTTTAAAAGGCTTC    | 62      |                            |  |
| C20-CJE1142 F   | Hypothetical protein CJE1142                                   | GATGATGATATAGATAAACCTTATG  | 64      | 740                        |  |
| C20-CJE1142 R   |                                                                | CCACCTGCTTTAATGATAACAC     | 64      |                            |  |
| C21-flaA F      | flaA (Flagellin subunit A)                                     | CACCAATGTTGCAGCTTTAAATGC   | 68      | 1620                       |  |
| C21-flaA R      |                                                                | CTGAACAGAATTAGCCTGTGCC     | 66      |                            |  |
| C22-fkbM F      | FkbM family methyltransferase                                  | GACCTTTACCTTTTATACTTGC     | 60      | 740                        |  |
| C22-fkbM R      |                                                                | CAGGATCTGCTTTGTAAATAGC     | 62      |                            |  |
| C23-Esterase F  | Esterase (Clostridium                                          | CAATATCCAAAAGCGTATGCGC     | 64      | 445                        |  |
| C23-Esterase R  | lentocellum DSM 5427)                                          | CACCAAACACATCTTGATAATAG    | 62      |                            |  |
| C25-C8J 1243 F  | Hypothetical protein (C8J_1243)                                | CGATTCTTGTGATGATGTAGAAC    | 64      | 1100                       |  |
| C25-C8J 1243 R  |                                                                | GATCCCTACAAGGATAAGAGATG    | 66      |                            |  |
| C27-Dom prot F  | Conserved domain protein                                       | GCTTTAAACCTTAGCCTCTTTG     | 62      | 645                        |  |
| C27- Dom prot R |                                                                | GATTAATCAAAGCATCATAATACC   | 62      |                            |  |
| C28-Phage pro F | Phage uncharacterized protein                                  | CAAATGAACAAAAGCACGAAAACAC  | 68      | 1680                       |  |
| C28-Phage pro R |                                                                | CTTATTCTTGAAACAGAGTTAAAATG | 66      |                            |  |
| C29-unknown 1F  | Unknown 1                                                      | CCTATAGGTATCCATAGAAAAG     | 60      | 235                        |  |
| C29-unknown 1R  |                                                                | GGTCTACTGGTATTTATTTCAC     | 60      |                            |  |
| C32-DNA dom F   | Restriction modification system                                | GCAGGTCTGGAGAGAAGAAC       | 64      | 690                        |  |
| C32-DNA dom R   | DNA specificity domain-containing CTAATACTTTCAGTTTTCTGCTTTC 66 |                            | 66      |                            |  |
| C33-S trans F   | Putative sugar transferase                                     | GTTATGATTGACTTTAGTCATCAAAG | 66      | 1690                       |  |
| C33-S trans R   | (Campylobacter jejuni subsp.<br>jejuni IA3902)                 | GAAGCTACTATATCTGGACGATG    | 66      |                            |  |

Continuous

Table 2.2.2: The primer and adaptor sequences used in Pooled Suppressive Subtractive Hybridization (PSSH) study.

| Oligonucleotide                          | Insert/gene name                                                         | Sequence (5' to 3')                | Tm*(°C) | Expected product size (bp) |
|------------------------------------------|--------------------------------------------------------------------------|------------------------------------|---------|----------------------------|
| C34-Thi syn F                            | Thiazole synthase thiG (C. jejuni                                        | GGCAAATACGAGTTTGATTCAAGA           | 66      | 741                        |
| C34-Thi syn R                            | subsp. doylei 269.97)                                                    | GGAGAACTTGCTTTAGCCTCG              | 64      |                            |
| C37-50S F                                | 50S ribosomal protein                                                    | CGCAAAATGATGAAAGGGCG               | 60      | 375                        |
| C37-50S R                                |                                                                          | CAGTATATTTCATTTTGGCTCTC            | 62      |                            |
| C38-Unknown 2F                           | Unknown 2                                                                | CCTATAGGTATCCATAGAAGAG             | 62      | 229                        |
| C38-Unknown 2R                           |                                                                          | GAGAATTAAAATGAATTATGGAAC           | 60      |                            |
| C39-Put mem F                            | Putative membrane protein                                                | GAACAAAGACAAATCATAGAAGAAG          | 66      | 1699                       |
| C39-Put mem R                            | GTATGGTATATAGTATGTTTAGCAC                                                |                                    | 66      |                            |
| C40- S kinase F                          | Sensor histidine kinase                                                  | CTTAGAAAGTCTTATAGAACAAAC           | 62      | 763                        |
| C40- S kinase R                          |                                                                          | CACTTTGAAAACTTAACTCTCC             | 60      |                            |
| C41-Hypo pro F                           | Conserved hypothetical protein                                           | GGAAGGGATGATGGATTTGG               | 60      | 1678                       |
| C41-Hypo pro R                           | 7                                                                        | CAAACCACAACATAATATATCC             | 58      | 1                          |
| C42-Nic Tran F                           | Nicotinate<br>phosphoribosyltransferase                                  | CTT CTT TAG CCT TGC TTT GTG        | 60      | 1374                       |
| C42-Nic Tran R                           |                                                                          | GTT TAG GCG AGA GTT TTA CTT C      | 62      | 1                          |
| C43-ISHa1675 F                           | ISHa1675 transposase B                                                   | GTG CAG TAA AAT ATA GAA TTT ATC C  | 64      | 574                        |
| C43-ISHa1675 R                           | 1 -                                                                      | CTT CTT GCT TCA ACG ATA GAT AG     | T AG 64 |                            |
| C44-Cj8486 F                             | Hypothetical protein                                                     | CAT CTT TCA CAT ACA GAT CTT G      | 60      | 890                        |
| C44-cj8486 R                             | Cj8486_0894c and CJE0961                                                 | GCT TTT AAT TAA ATC AAT AAT TTG AG | 62      |                            |
| C45-CCO0105 F                            | Hypothetical protein CCO0105                                             | GAT GCT TGA AAA TCT AAT AGC AC     | 62      | 144                        |
| C45-CCO0105 R                            | 1                                                                        | CAC AAA TAC CCA TAA AGA TGA G      |         | 1                          |
| C50-flaB F                               | flaB (Flagellin subunit B)                                               | GGA TAA ACA CCA ACA TCG GTG        | 62      | 1610                       |
| C50-flaB R                               | CAT TTT GCT GCA CTG CAT TAG C                                            |                                    | 64      | ]                          |
| C51-C8J0142 F                            | Hypothetical protein C8J_0142                                            | CAT CTT TGT TTG CTT TAG TAG        | 56      | 625                        |
| C51-C8J0142 R                            |                                                                          | CAA AGA AAT AGG CTC TAT CAC        | 58      |                            |
| C52-murD F                               | murD (UDP-N-                                                             | CAC TTT TTG GAT ACG GAA AAA CC     | 64      | 1180                       |
| C52-murD R                               | acetylmuramoylalanineD- glutamate ligase)  CTT TAA AGA CTT TTC CAC GCT C |                                    | 62      |                            |
| C54-tet F                                | tet (tetracycline)                                                       | CGATCTTGTTGATAAAGATAACG            | 62      | 730                        |
| C54-tet R                                | 1 ` ´ ´                                                                  | GTTAAGGAATATAATTAGATTCAG           |         | 1                          |
| C56-Met chem F                           | Methyl- accepting chemotaxis CAAAGACTTGATAAACATAGTTC                     |                                    | 60      | 1710                       |
| C56-Met chem R                           | 1                                                                        | GAGTTTAGAGGCACCATTTAG              | 60      | 1                          |
| C57-Phage tail F                         | Phage tail fibre protein GTCTTAATAGGAGGATTGGGAG                          |                                    | 64      | 250                        |
| C57-Phage tail R GGGCAGGTCTAAATACATATTTG |                                                                          | 64                                 | 1       |                            |

Continuous

Table 2.2.2: The primer and adaptor sequences used in Pooled Suppressive Subtractive Hybridization (PSSH) study.

| Oligonucleotide  | Insert/gene name                                                                            | Sequence (5' to 3')                                                        | Tm*(°C)           | Expected product size (bp) |
|------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------|----------------------------|
| C62-Put S tran F | Putative sugar transferase<br>(Campylobacter jejuni subsp.<br>jejuni CG8486)                | CGTAGTTATCCCAATCTATAATG                                                    | 62                | 1210                       |
| C62-Put S tran R |                                                                                             | CGAGTAAGAACATAACCTATTC                                                     | 60                |                            |
| M13 F(-20)       | Sequencing primers for PCR ® 2.1 TOPO cloning vector (Invitrogen                            | 5'-GTAAAACGACGGCCAG-3'                                                     | Not<br>applicable | Dependent<br>on cloned     |
| M13 R            | UK)                                                                                         | 5'-CAGGAAACAGCTATGAC-3'                                                    |                   | sequence<br>size           |
| 16S rRNA F       | C. jejuni (MWG, Eurofins, UK)                                                               | 5'-AATCTAATGGCTTAACCATTA-3'                                                | 54                | 852                        |
| 16S rRNA R       |                                                                                             | 5'-GTAACTAGTTTAGTATTCCGG-3'                                                | 58                |                            |
| Adaptor 1        |                                                                                             | 5'-CTAATACGACTCACTATAGGGC<br>tcgagcggccgcccgggcaggt-3'<br>3'-GGCCCGTCCA-5' | Not a             | pplicable                  |
| Adaptor 2R       | CLONE-TECH PCR <sup>TM</sup> -Select<br>Bacterial Genome Subtraction kit<br>(Clonetech, UK) | 5'-CTAATACGACTCACTATAGGGC<br>agcgtggtcgcgggccgaggt-3'<br>3'-GCCGGCTCCA-5'  |                   |                            |
| PCR primer 1     | (Conferent, OK)                                                                             | 5'-CTAATACGACTCACTATAGGGC-3'                                               | 66                | Not<br>applicable          |
| Nested primer 1  |                                                                                             | 5'-tcgagcggccgcccgggcaggt-3'                                               | 68                | Not                        |
| Nested primer 2R |                                                                                             | 5'-agcgtggtcgcgggccgaggt-3'                                                | 68                | applicable                 |

\*Tm (°C) represents the melting temperature. Where the gene was present in more than one *Campylobacter* species strain with sequences publically available on Campydb (<a href="http://www.xbase.ac.uk/campydb/">http://www.xbase.ac.uk/campydb/</a>) and NCBI

(http://www.ncbi.nlm.nih.gov/genome/campylobacter/), the PCR primers were designed based on conserved sequence of the gene in these strains. In case of gene present in other bacteria the PCR primer pair was designed based on the sequence in respective strain only. For the unknown inserts 1 and 2, the primers were designed from the insert sequence.

Table 2.2.3: MLST PCR and sequencing primers used in this study.

|                       | PCR primers                  | Sequencing primers         |  |  |  |
|-----------------------|------------------------------|----------------------------|--|--|--|
| Gene                  | Sequence (5' to 3')          |                            |  |  |  |
| aspA F                | A1 AAAGCTGCAGCTATGGC         | S3 CCAACTGCAAGATGCTGTACC   |  |  |  |
| aspartate             | A3 ATGAGGTTTATTATGGAGTGC     |                            |  |  |  |
|                       | A9 AGTACTAATGATGCTTATCC*     |                            |  |  |  |
| aspA R                | A2 AAGCGCAATATCAGCCACTC      | S6 TTCATTTGCGGTAATACCATC   |  |  |  |
|                       | A4 CCTCTTTGGCTATAGAAGCTG     |                            |  |  |  |
|                       | A10 ATTTCATCAATTTGTTCTTTGC*  |                            |  |  |  |
| glnA F                | A1 TAGGAACTTGGCATCATATTACC   | S1 GCTCAATTCATGGATGGC      |  |  |  |
| glutamine synthetase  |                              | S3 CATGCAATCAATGAAGAAAC*   |  |  |  |
| glnA R                | A2 TTGGACGAGCTTCTACTGGC      | S4 GCATACCATTGCCATTATCTCCG |  |  |  |
| _                     |                              | S6 TTCCATAAGCTCATATGAAC*   |  |  |  |
| gltA F                | A1 GGGCTTGACTTCTACAGCTACTTG  | S1 GTGGCTATCCTATAGAGTGGC   |  |  |  |
| citrate synthase      |                              | S3 CTTATATTGATGGAGAAAATGG* |  |  |  |
| gltA R                | A2 CCAAATAAAGTTGTCTTGGACGG   | S6 CCAAAGCGCACCAATACCTG*   |  |  |  |
|                       |                              | S8 TGCTATACAGGCATAAGGATG   |  |  |  |
| glyA F                | A1GAGTTAGAGCGTCAATGTGAAGG    | S3 AGCTAATCAAGGTGTTTATGCGG |  |  |  |
| serine hydroxy methyl |                              | S5 GCTAATCAAGGTGTTTATAT**  |  |  |  |
| transferase           |                              | S7 AGCCTAATTCAGGTTCTCAA**  |  |  |  |
| glyA R                | A2 AAACCTCTGGCAGTAAGGGC      | S4 AGGTGATTATCCGTTCCATCGC  |  |  |  |
| tkt F                 | A1 TTTAAGTGCTGATATGGTGC      | S1 TGCACCTTTGGGCTTAGC      |  |  |  |
| transketolase         | A3 GCAAACTCAGGACACCCAGG*     | S5 GCTTAGCAGATATTTTAAGTG   |  |  |  |
| tkt R                 | A4 CATAGCGTGTTCTCTGATACC     | S4 ACTTCTTCACCCAAAGGTGCG   |  |  |  |
|                       | A6 AAAGCATTGTTAATGGCTGC*     | S6 AAGCCTGCTTGTTCTTTGGC    |  |  |  |
| pgm F                 | A1 TTGGAACTGATGGAGTTCG       | S3 GCTTATAAGGTAGCACCTACTG  |  |  |  |
| phospho glucomutase   | A3 TCAGGGCTTACTTCTATAGG      | S5 GGTTTTAGATGTGGCTCATG*   |  |  |  |
|                       | A7 TACTAATAATATCTTAGTAGG*    |                            |  |  |  |
| pgm R                 | A2AAGAGCTTAATATCTCTGGCTTCTAG | S2 TCCAGAATAGCGAAATAAGG*   |  |  |  |
|                       | A4 AGCTTAATATCTCTGGCTTC      |                            |  |  |  |
|                       | A8 CACAACATTTTTCATTTCTTTTTC* |                            |  |  |  |
| uncA F                | A3 AAAGCTGATGAGATCACTTC      | S3 AAAGTACAGTGGCACAAGTGG*  |  |  |  |
| ATP synthase alpha    | A7 ATGGACTTAAGAATATTATGGC*   | S5 TGTTGCAATTGGTCAAAAGC    |  |  |  |
| subunit               |                              |                            |  |  |  |
| uncA R                | A2 GCTAAGCGGAGAATAAGGTGG     | S4 TGCCTCATCTAAATCACTAGC*  |  |  |  |
|                       | A4 ATTCTTTGTCCACGTTCAAG      | ]                          |  |  |  |
|                       | A8 ATAAATTCCATCTTCAAATTCC*   | ]                          |  |  |  |

The *C. jejuni* MLST primers were sourced from pubmlst.org/campylobacter/. PCR primer pairs amplify ~1kb internal region of each gene. Sequencing primers are nested inside the PCR primers and sequence ~600 bases region. Alternate primers are provided for some genes. \* represent preferred primers with best results. \*\* are primers designed by Jonas Waldenström (Lund University, Sweden) and work best for the wild bird isolates. The melting temperature Tm (°C) for the MLST PCR primers was 50 °C.

### 2.3 Culture media

All culture media were obtained from Oxoid (Basingstoke, Hampshire, UK). The media were prepared in distilled water and sterilised by autoclaving at 121 °C, 15 psi for 15 minutes. The media plates were stored at 4 °C and were used within two weeks of preparation.

mCCDA (modified *Campylobacter* Blood free selective agar base)
 mCCDA was prepared in Duran bottles by weighing out 22.75 g of mCCDA agar powder dissolved in 500 ml of deionised distilled water.

Composition: nutrient broth no. 2 (25 g), amphotericin B (10 mg), bacteriological charcoal (4 g), cefoperazone (33 mg), casein hydrolysate (3 g), sodium deoxycholate (1 g), ferrous sulfate (250 mg), sodium pyruvate (250 mg), agar (12 g) added to deionized water (1 L).

• Mueller Hinton Broth\* (MHB)

MHB was prepared in Duran bottles by weighing out 21 g of MHB dissolved in 1 L of deionized distilled water.

• Mueller-Hinton Agar\* (MHA)

Thirty eight grammes of MHA was dissolved in 1 L of distilled water.

\*composed of beef, dehydrated infusion from 300 g, starch 1.5 g, casein hydrolysate 17.5 g and agar 17.0 g per litre.

### 2.4 Bacterial culture maintenance and growth

All *Campylobacter* stocks were maintained at -80 °C as 1ml aliquots in 20% glycerol MHB.

The *Campylobacter* stocks from the -80 °C freezer were routinely sub-cultured on mCCDA (modified *Campylobacter* Blood free selective agar base) grown for 48 hours at 37 °C in microaerobic atmosphere (10% CO<sub>2</sub>, 5% O<sub>2</sub>, 85% N<sub>2</sub> by vol) in anaerobic jars containing a CampyGen<sup>®</sup> pack to generate an anaerobic atmosphere or in an anaerobic workstation (Don Whitley scientific, UK).

The *E. coli* TOP10F' competent cells were grown on Luria Bertani (LB) agar plates incubated at 37 °C for 16-20 hours.

### 2.5 General buffers

 0.1 M Phosphate buffered saline (PBS) and 1 M Tris-Chloride buffer (Sigma-Aldrich UK)

PBS and 10 mM Tris-Cl buffer were purchased as a sterile ready to use product. The 1 M Tris-Cl buffer was diluted to 10 mM concentration in distilled water for use in genomic DNA extraction procedure.

• 50X Tris-acetate-EDTA buffer (TAE)

50X TAE buffer was purchased from National Diagnostics, England. It was diluted in distilled water to obtain 1X TAE buffer.

### 2.6 DNA extraction procedures

### 2.6.1 Genomic DNA extraction

The Qiagen genomic DNA extraction kit (Midi) and Qiagen genomic kit 100/G, (Qiagen, Crawley, UK) were used for the genomic DNA preparation following the manufacturer's instructions. It was critical to have high quality DNA for all molecular procedures used in this study. The following main steps were amended in the Qiagen genomic extraction procedure;

- To ensure the complete degradation of proteins and nucleases, proteinase K (3-15 units/mg) (Sigma-Aldrich, UK) was used at a concentration of 20 mg/ml and the duration of incubation was extended to 120 minutes at 37 °C.
- It was also important that the DNA was washed three times with 500  $\mu$ l of 70% (v/v) ethanol to ensure complete removal of buffer salts.
- After the wash with 70% (v/v) ethanol the genomic DNA pellet was dried for 15 minutes. It was important not to over dry the DNA pellet to ensure complete solubilisation in the rehydration buffer (i.e, 10 mM Tris-Cl buffer/distilled sterile water). For CGH and Illumina genome sequencing the genomic DNA was eluted in 10 mM Tris-Cl buffer whereas for the PSSH plasmid DNA sequencing and genome sequencing by pyrosequencing/454 the genomic DNA was dissolved in distilled sterile water.

### 2.6.2 Plasmid DNA extraction

Plasmid DNA extraction was carried out using QIAprep spin miniprep kit (Qiagen, Crawley, UK) as instructed by the manufacturer. Briefly, a single *E. coli* colony containing plasmid was picked and grown in 5ml LB broth supplemented with antibiotics (50 μg/ml kanamycin or ampicillin) for 16-18 hours with shaking at 37 °C. The bacterial pellet was re-suspended in 250 μl of buffer P1 followed by the cell lysis by addition of 250 μl of buffer P2. Buffer N3 (350 μl) was added and mixed to allow precipitation of genomic DNA and cell proteins. The suspension was applied to the silica column provided with the kit and centrifuged at 14,000×g to allow the genomic DNA to bind to the column and any precipitated proteins were removed. The column was washed with wash buffer PE and the plasmid DNA was eluted in 50 μl of water.

### 2.6.3 Determination of DNA concentration

The concentration and purity of plasmid and genomic DNA was determined by a NanoDrop® ND-1000 UV-Vis spectrophotometer (NanoDrop Technologies, USA) prior to use in molecular techniques. For double stranded DNA, one microliter of the sample was used to record the concentration at a wavelength of 260 nm. For purified DNA, the desired 260:280 ratio reflecting protein contamination was 1.8-1.9 and 260:230 ratio (hydrocarbon contamination) was 2.0. Both the plasmid and genomic DNA were kept frozen at -20 °C.

### 2.7 Polymerase Chain Reaction

### 2.7.1 Standard PCR

Each PCR reaction was carried out in either 50  $\mu$ l, 30  $\mu$ l or 25  $\mu$ l volumes. Each PCR reaction mix contained 5X Green GoTaq<sup>®</sup> flexi PCR buffer (1X final concentration), MgCl<sub>2</sub> (25 mM) (1.0-4.0 mM final concentration), GoTaq<sup>®</sup> DNA polymerase 5 u/ $\mu$ l (1.25 u final concentration) (Promega, Southampton, UK), 0.7 mM dNTPs (Sigma-Aldrich, UK), 5  $\mu$ M of each forward and reverse primer (Eurofins, MWG) and 15-25 ng of DNA template. Initial DNA denaturation was carried out at 94 °C for 5 minutes, followed by 30 cycles of denaturation at 94 °C for 45 sec, annealing for 45 sec based on the melting temperature (Tm°C) of the primers and extension was carried out for 1-2

minutes at 72 °C. A final extension step was performed at 72 °C for 5-10 minutes. The PCR product was visualised by agarose gel electrophoresis as stated later (section 2.7.3).

### 2.7.2 Colony PCR

A loopful of freshly grown bacteria was suspended in 300  $\mu$ l of sterile distilled water. The suspension was boiled to 100 °C for 10 minutes to lyse the cells. The suspension was centrifuged at 15,500 rpm for 5 minutes and 1  $\mu$ l of the supernatant was used in the PCR procedure as explained in section 2.7.1.

### 2.7.3 Agarose gel electrophoresis

DNA fragments were analysed on 1-1.5% w/v agarose gels containing SYBR<sup>®</sup> Safe DNA gel stain (10,000X) (1× final concentration) (Invitrogen, UK) prepared in 1×TAE buffer. The sample (10  $\mu$ l) was mixed with 2  $\mu$ l of 6×loading buffer (Promega, Southampton, UK) before loading on the gel. A 1 kbp or 100 bp DNA ladder (Promega, UK) was used as the DNA marker and 250 ng of the marker was loaded on the gel. The agarose gel was electrophoresed in a Mini Sub<sup>®</sup> Cell GT tank submerged in 1×TAE and at 90-100 V. The DNA bands were visualised under ultra-violet light using InGenius® gel documentation system (Syngene, UK).

### 2.7.4 Cloning into pCR 2.1-TOPO® vector

The pCR 2.1-TOPO® vector was used for cloning PSSH secondary PCR products which comes a part of TOPO TA Cloning® kit (Invitrogen, UK). This vector contains single 3′-thymidine (T) overhangs that bind with a single deoxyadenosine (A) residues added to the 3′ ends of PCR products by *Taq* polymerase activity. It contains ampicillin and kanamycin resistance genes for antibiotics screening. It has M13 forward and reverse primers binding sites for sequencing and contains several restriction sites including *Eco*R I, *Hind* III and *Bam*H I with endonuclease activity that can be used to determine the size of cloned PCR product.

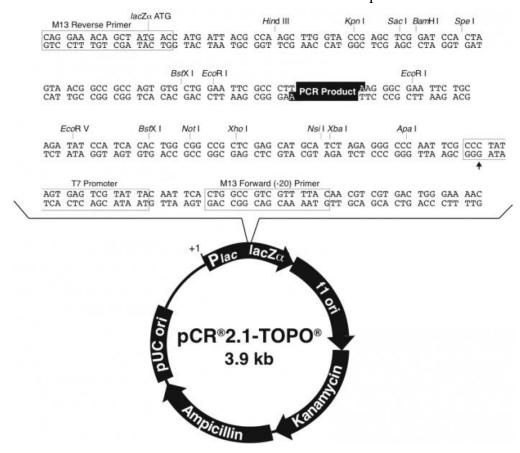



Figure 2.1: The map of pCR 2.1-TOPO® cloning vector (Invitrogen, UK).

Cloning was performed as described in the manufacturer's manual. Briefly, a reaction mixture was prepared containing 0.5-4 µl of fresh PCR product, 1 µl of salt solution made upto a total volume of 5 µl of sterile distilled water. To this 1 µl of pCR 2.1-TOPO® vector was added making up the total reaction mixture volume to 6 µl. After gently mixing the reaction mixture, it was incubated for 30 minutes at the room temperature (22-23 °C). The ligation mixture was used to transform 10F' E. coli chemically competent cells. The clones with inserts were selected by blue white 40 100 screening using mg/ml X-gal, mM**IPTG** (isopropyl-beta-Dthiogalactopyranoside) (Invitrogen, UK) and antibiotics 50 µg/ml kanamycin (Sigma-Aldrich, UK) or 50 µg/ml ampicillin (Sigma-Aldrich, UK) in LB agar plates which were incubated for 16-18 hours at 37 °C. After incubation, the light blue or white colonies were picked up and sub-cultured onto the fresh LB plates supplemented with 50 µg/ml ampicillin or 50 µg/ml kanamycin.

### 2.7.5 Heat shock transformation of 10F' E. coli cells

Two microliters of the ligation reaction mix was added to one 50 µl vial of One Shot<sup>®</sup> TOPO 10F'chemically competent *E. coli* cells (Invitrogen, UK) and incubated on ice for 30 minutes. The cells were heat shocked for 30 seconds at 42 °C followed by recovery in 250 µl of S.O.C medium (provided with the kit) with shaking (200 rpm) for one hour at 37 °C. The cells were plated onto antibiotic (ampicillin or kanamycin) supplemented LB plates. These plates were incubated overnight and transformed *E. coli* cells were selected.

### 2.7.6 Purification of PCR products

The PCR products were purified using QIAquick PCR purification kit (Qiagen, Crawley, UK) to get rid of excess nucleotides, primers and DNA polymerase and salts. The cleanup was carried out as per the manufacturer's instructions. Briefly, the PCR product was mixed with a loading buffer PB and applied to a silica spin column provided with the kit. The column was centrifuged at 14,000×g followed by two washes with wash buffer PE and the purified product was eluted in 50 µl of distilled water.

### 2.8 Multi locus sequence typing (MLST)

MLST was carried out as described previously by Dingle *et al.*, 2001. Briefly, seven *C. jejuni* housekeeping genes *aspA*, *glnA*, *gltA*, *glyA*, *pgm*, *tkt*, *uncA* were amplified by PCR (2.7.1) using the gene specific PCR primer listed in the table 2.2.3. Each PCR product was purified as stated in section 2.7.6. A 400-500 bp fragment of each gene was sequenced (Source Bioscience, UK) using a separate set of sequencing primers (Table 2.2.3). Based on the sequencing data each strain was assigned an allele number, sequence type (ST) and clonal complex (CC) from the *Campylobacter* MLST database (http://pubmlst.org/campylobacter/).

### 2.9 Serotyping

Six hyperinvasive and four low invasive *C. jejuni* strains were serotyped by using soluble heat-stable (HS) antigenic Penner serotyping scheme with a panel of 66 O antisera (Penner *et al.*, 1983). The serotyping was performed by Dr Judith Richardson at the *Campylobacter* reference unit, Health Protection Agency (HPA), Colindale, UK.

## Chapter Three

# PHENOTYPIC CHARACTERIZATION OF THE HYPERINVASIVE C. JEJUNI STRAINS

# PHENOTYPIC CHARACTERIZATION OF THE HYPERINVASIVE C. JEJUNI STRAINS

### 3.1 INTRODUCTION

Enteric pathogens that cause disease in humans including *C. jejuni* often have to survive in the environment as well as inside the human host. *C. jejuni* have evolved mechanisms that allow survival under both conditions.

### 3.1.1 C. jejuni virulence factors inside the host

C. jejuni have a wide host range and are present in cattle, wild birds, poultry, pigs, cattle, dogs, cats, mink, rabbit and insects (Fitzgerald and Nachamkin., 2007, Humphrey et al., 2007). These bacteria are commensal in chicken and the contaminated chicken carcasses during slaughtering process are the major source of transmission of C. jejuni inside humans. C. jejuni prefer to grow under microaerobic conditions. The optimum human body temperature (37°C) and reduced oxygen conditions inside human gut offer suitable conditions for C. jejuni growth (Humphrey et al., 2007).

During the infection process inside the human host, C. jejuni encounters the host immune system which provides defence against any pathogen attacks (Wooldridge and Ketley., 1997). The innate immune response to C. jejuni infection recruits macrophages and dendritic cells (DCs) initiating an inflammatory response at the site of infection (Hickey et al., 1999, Mellits et al., 2002, Zheng et al., 2008). Inside the macrophages, other defence mechanisms are also active such as oxidative products, nutrient limitation and acidic pH which have detrimental effects on C. jejuni survival (De Melo et al., 1989, Day et al., 2000). These reactive oxygen molecules including hydrogen peroxide, superoxides and halogenated oxygen molecules target ribosomal RNA, nucleic acid and protein structures resulting in prompt death of bacteria (Baillon et al., 1999). Research has suggested that Campylobacters are generally killed within 24 to 48 hours of entering the human phagocytes (Wassenaar et al., 1997). On the contrary, the increasing number of enteric infections by C. jejuni indicates that they have developed mechanisms for survival under unfavourable environmental conditions (Mihaljevic et al., 2007, Day et al., 2000, Baillon et al., 1999). Some of these survival mechanisms reported include transition from a viable to a viable-nonculturable state and transformation from spiral to

coccal form in which bacteria are present in a dormant state (Kelly *et al.*, 2001, Harvey and Leach., 1998). A number of stress related response systems have been related to pathogenesis in *C. jejuni*. These include global stress responses under *spoT* dependent stringent response that play a role in aerotolerance and survival in the stationary phase. The stringent response system has also been found to control some key pathogenesis mechanisms in *C. jejuni* including adhesion, invasion and intracellular survival (Gaynor *et al.*, 2005)

### 3.1.2 C. jejuni survival in environment

C. jejuni are widely dispersed in a variety of environments. C. jejuni are frequently isolated from food and exist as planktonic form in rivers, lakes, streams and soil (Luechtefeld et al., 1982, Harvey and Leach., 1998, Baillon et al., 1999, Kelly et al., 2001, Martinez-Rodriguez et al., 2004, Mihaljevic et al., 2007, Kaakoush et al., 2007). Poultry farms and slaughter houses are the major sources of Campylobacter species contamination (Humphrey et al., 2007, Havelaar et al., 2007). Also, campylobacters are frequently isolated from domestic kitchens and catering environments where they appear to stick to the work surfaces (Humphrey et al., 2007). In these environments, C. jejuni has to withstand stresses such as atmospheric oxygen pressure, temperature and nutrition variations (Day et al., 2000, Mihaljevic et al., 2007). C. jejuni has shown to form biofilm on insert surfaces including food products (Sulaeman et al., 2010). The aerobic conditions have been found to enhance biofilm formation ability of some C. jejuni isolates which may suggest biofilm formation as a useful adaptation for the environmental survival of these bacteria (Reuter et al., 2010).

### 3.1.3 In vitro invasion assay related stresses

Adhesion to host epithelial cells is a critical step in *C. jejuni* pathogenesis that involves several adhesins present on the bacterial surface (e.g. flagella, lipooligosaccharides and capsule). These adherent bacteria may invade the host epithelial cells and develop an infection. Adhesion and invasion have been studied as important events in *C. jejuni* enteritis in a number of *in vitro* assays using human and non-human epithelial cell lines (Konkel *et al.*, 2001). These studies have used human intestinal cells (INT407) and human colon cells (Caco-2) to study adhesion and invasion of *C. jejuni* and *C. coli* (Everest *et al.*, 1992, Konkel *et al.*, 1997, Fearnley *et al.*, 2008). A clear relationship

exists between the intensity of the *Campylobacter* disease severity and the adhesion and invasion potential of strains to the epithelial cells (Russell *et al.*, 1993). *In vitro*, gentamicin protection invasion assays have been used to determine the bacterial invasion potential using these intestinal cell lines (Elsinghorst, 1994). During this assay, cells are exposed to different environmental stresses that affect the survival of bacteria while invading epithelial cells. Reactive oxygen molecules are released as the product of oxidative metabolism in eukaryotic cells that may affect the survival of invading bacteria.

In this study, the hyperinvasive and low invasive C. jejuni strains were tested for their growth rate, stresses encountered during the invasion assays (normal air pressure, hydrogen peroxide ( $H_2O_2$ ) stress and motility) and other virulence related phenotypes such as autoagglutination activity, the ability to survive under sodium deoxycholic acid stress and biofilm formation. The aims of this study were;

- To determine if there were any other phenotypic characteristics that distinguished the hyperinvasive *C. jejuni* from the low invasive *C. jejuni* strains.
- To investigate the effects of a number of stresses that the organism would experience during *in vitro* invasion assays and to confirm that the differences seen were due to the hyperinvasion rather than the stresses.

### 3.2 METHODS

### 3.2.1 Growth curve using viable count method

The growth rate of the hyperinvasive and low invasive *C. jejuni* strains was determined. For this study, bacteria were grown on modified *Campylobacter* Blood free selective agar base (mCCDA) plates (Oxoid, UK) for 48 hours under microaerobic conditions at 37 °C. The growth from the plate was harvested using a cotton swab in 2.5 ml of sterile Phosphate Buffered Saline (PBS). A two ml volume of this suspension was used to inoculate 200 ml of pre-warmed MH broth (Oxoid, UK). A 2 ml sample was carefully removed from the above broth at time zero for viable count. The bacterial broth was then sealed in a gas jar containing a CampyGen gas pack (Oxoid, UK) and incubated with shaking (180 rpm) at 37 °C. The growth rate readings were taken during the late log phase, stationary and death phase. At time intervals 16, 20, 24, 28, 48 hours, 2 ml samples were carefully removed from the broth, serially diluted, and plated onto pre-

dried mCCDA plates. The plates were microaerobically incubated at 37 °C for 24-48 hours. After incubation *C. jejuni* colonies were identified and counted to determine the viable count.

### 3.2.2 Resistance to aeration stress

During the invasion assay, the bacterial cells are exposed to a variety of atmospheric air stress conditions. For this assay, the bacterial strain grown as stated above was resuspended in 2.5 ml of sterile PBS. The pre-warmed MH broth (200 ml) was inoculated with 2 ml of the bacterial suspension. The broth was microaerobically incubated at 37 °C in gas jars with a CampyGen pack with constant agitation at 180 rpm for 24 hours. After overnight incubation when the cell density would be in the order of approx 10<sup>8</sup>-10<sup>9</sup> cfu/ml, the gas pack was removed and a time zero reading was taken and the bacterial culture was exposed to atmospheric oxygen stress by gentle shaking at 180 rpm at 37 °C. Samples were removed at hourly intervals for 6 hours. The samples were serially diluted and plated onto mCCDA plates for viable counts.

### 3.2.3 Sensitivity to hydrogen peroxide

The bacterial cells are exposed to the toxic effects of free oxygen radicals released by the eukaryotic cells during an invasion assay. For the assay, the bacterial growth from mCCDA plate grown under microaerobic conditions at 37 °C for 48 hours was used to prepare bacterial cell suspension in 2.5 ml of sterile PBS. The pre-warmed MH broth (200 ml) was inoculated with 2 ml of this bacterial suspension. The bacterial broth was incubated in anaerobic gas jars containing CampyGen pack with shaking at 180rpm at 37 °C for 24 hours. After overnight incubation (approx 10<sup>8</sup>-10<sup>9</sup> cfu/ml), a time zero reading was taken for viable count after which 0.36 μl of 30% H<sub>2</sub>O<sub>2</sub> was added to the broth to give a final concentration of 0.5 mM (calculation given below). After the addition of H<sub>2</sub>O<sub>2</sub>, samples were taken out at time intervals 20, 40, 60, 80, 100, 120 minutes of exposure which were serially diluted and cfu/ml calculated.

### Calculation of H<sub>2</sub>O<sub>2</sub> concentration

The formula used for calculating molarity of 30%  $H_2O_2$  for use in hydrogen peroxide sensitivity assay is given below;

Molarity =  $\underline{\text{percentage} \times \text{density} \times 1000}$  $100 \times \text{Mol. weight}$ 

The molarity calculated for 30% H<sub>2</sub>O<sub>2</sub> was 9.7 M.

For use in the hydrogen peroxide assay, a fresh stock solution of 9.7 mM  $H_2O_2$  was prepared each time by diluting 30%  $H_2O_2$  1000 folds in sterile distilled water (10  $\mu$ l of 30%  $H_2O_2$  added to 10 ml of sterile distilled water). Required concentration of 0.5 mM was made by diluting 52  $\mu$ l of 9.7 mM  $H_2O_2$  stock solution in 950  $\mu$ l of MH broth.

### 3.2.4 Motility assay

The *C. jejuni* cell suspension was prepared by harvesting bacterial growth from mCCDA plates grown for 48 hours under microaerobic conditions at 37 °C in sterile PBS. The optical density at 600 nm was adjusted to approximately 1.0 for each bacterial suspension. An aliquot of 0.1 µl of this bacterial cell suspension was used to inoculate 0.4% (w/v) MH agar plates. The plates were incubated microaerobically at 37 °C for 24 to 48 hours. After incubation the diameter of the zone of growth was measured in millimetres.

### 3.2.5 Autoagglutination assay

The autoagglutination assay was followed as described by Golden and Acheson (2002). The autoagglutination ability of the hyperinvasive and low invasive *C. jejuni* strains was measured by harvesting the bacterial growth from 48 hours grown mCCDA plates in sterile PBS. The absorbance at 600 nm of this bacterial suspension was adjusted to approximately 1.0. Two millilitres of this bacterial suspension was transferred to sterile glass test tubes (10 x 75 mm) and incubated undisturbed at 37 °C for 24 hours under microaerobic conditions. After incubation, 1ml of the supernatant was carefully pipetted out from the test tubes and the absorbance at 600 nm was recorded again. Autoagglutination ability was calculated as the difference between the absorbance (600 nm) measured after 24 hours and the absorbance taken at the start of incubation.

### 3.2.6 Resistance to sodium deoxycholic acid stress

The survival ability of hyperinvasive and low invasive *C. jejuni* strains under sodium deoxycholic acid stress was measured. A stock solution (50 mg/ml) of sodium

deoxycholic acid (≥ 98% purity) (Sigma-Aldrich, USA) was prepared in sterile distilled water. This stock solution was used to prepare a series of concentrations of sodium deoxycholic acid in mCCDA from 1-16 mg/ml. The *C. jejuni* suspension was prepared by harvesting growth from a 48 hour grown mCCDA plate into 2.5 ml of sterile PBS. This bacterial suspension was diluted 1000 folds in sterile PBS. Five microlitres of the diluted suspension was spotted onto mCCDA plates containing different concentrations of sodium deoxycholic acid. Plates were incubated for 48 hours at 37 °C under microaerobic conditions. After incubation, the presence or absence of *C. jejuni* growth on each tested concentration was observed and the Minimum Inhibitory Concentration (MIC) of sodium deoxycholic acid was recorded.

### 3.2.7 Biofilm study

*C. jejuni* grown on mCCDA plate for 48 hours under microaerobic conditions at 37 °C was used to inoculate 2.5 ml of sterile PBS. This bacterial suspension was diluted 1000 fold in MH broth. Aliquots of 150 μl of 1000 fold diluted bacterial stock suspension and MH broth only (control) were added in the allocated columns of a 96 well micro-titre plate. The plate was placed in a plastic box containing a CampyGen pack sealed with a lid and autoclave tape to ensure microaerobic conditions. The plate was incubated without shaking at 37 °C for 2, 5 and 7 days to allow the biofilm to grow. After incubation at specified time intervals, the contents of the micro-titre plate were emptied and each well was washed twice with 200 μl of deionised water.

All inoculated wells of the micro-titre plate were stained with 200 µl of 0.01% (v/v) crystal violet dye (Biomérieux, Marcy l'Etoile, France) and left at room temperature for 15 minutes. The crystal violet dye was discarded and the plate was washed twice with deionised sterile water to remove excess dye. One hundred and fifty microliters of 70% ethanol was added to each well for 15 minutes at room temperature to solubilise the stain. The optical density of each well was read at 540 nm using a micro-titre plate reader.

### Calculation of biofilm formed

The optical density reading for each well of 96 well plate was used to calculate the average  $OD_{540 \text{ nm}}$  and amount of biofilm formed by it as follows,

Biofilm formed = OD  $_{(540 \text{ nm})}$  of strain investigated (test) – OD  $_{(540 \text{ nm})}$  of MH broth only (control)

### 3.3 RESULTS AND DISCUSSION

The growth profile of six hyperinvasive (01/10, 01/35, 01/04, 01/41, 01/51, EX114) and six low invasive *C. jejuni* strains (01/30, 01/32, 01/46, 01/39, 01/44, 81116) was performed. All *C. jejuni* strains were also tested for the invasion assays related stresses (atmospheric oxygen, hydrogen peroxide, motility) and other virulence related phenotypes (autoagglutination, survival in sodium deoxycholic acid stress and biofilm formation). It was determined if the hyperinvasive *C. jejuni* strains could be distinguished from the low invasive strains based on these phenotypes. Also, to find if the invasion phenotype observed for these *C. jejuni* strains was not due to the stresses encountered by them during the invasion assays.

### 3.3.1 Growth rate study of the hyperinvasive and low invasive C. jejuni strains

The ability of *C. jejuni* strains to grow in nutrient broth (MH broth) was compared to determine if the differences observed in their invasion profile was not due to any variation in their growth rate. To achieve this, the growth profile of the hyperinvasive *C. jejuni* strains was compared with low invasive strains in MH broth overtime. A representative graph of triplicate growth experiments is shown (Figure 3.1). The readings were taken during the log phase because in invasion assays *C. jejuni* inoculums are taken from the exponential growth phase. Hu and Kopecko (1999) showed that *C. jejuni* in exponential growth phase showed maximum invasion of INT 407 cells.

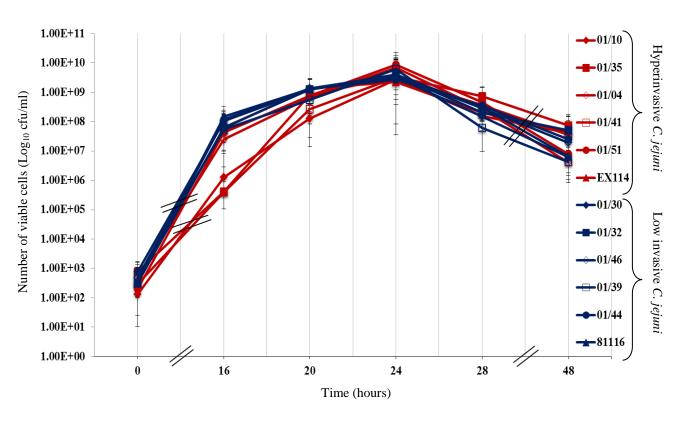



Figure 3.1: The growth curve of the hyperinvasive and the low invasive *C. jejuni* strains.

The growth rate of the hyperinvasive *C. jejuni* (01/10, 01/35, 01/04, 01/41, 01/51, EX114) and low invasive *C. jejuni* strains (01/30, 01/32, 01/46, 01/39, 01/44, 81116) was determined in MH broth and readings were taken at different time intervals up to 48 hours and the viable count determined. The error bars represent 95% +/- CI in triplicate experiments.

It was observed from figure 3.1 that all the *C. jejuni* strains exhibited normal growth in late exponential phase under microaerobic conditions at 37 °C. The majority of *C. jejuni* strains reached  $10^7$ - $10^8$  cfu/ml after 16 hours of growth. Interestingly, after the same growth time the hyperinvasive *C. jejuni* 01/10, 01/35 and 01/41 showed  $10^5$ - $10^6$  cfu/ml. This suggests that these strains might be slow in adjusting to the growth medium compared to the other strains. This growth rate variation in early log phase is not an influencing factor to invasion as all the strains showed progressive growth up to 24 hours ( $\sim 10^9$  cfu/ml). This was followed by a rapid decline in growth up to 48 hours. Generally, the growth profile of bacteria is divided into four phases. During the initial lag phase bacteria adjust to the new environment of the growth medium which is

followed by the exponential growth or log phase. The bacteria then enter into a prolonged stationary phase and finally the death phase. The *C. jejuni* strains studied here did not show a classic stationary phase. The lack of a stationary phase in *C. jejuni* strains has been reported in previous studies (Kelly *et al.*, 2001).

Ideally the growth study should be performed in MHA/MHB biphasic medium as it has been used as a preferred medium in invasion assays in previous studies (Hu and Kopecko., 1999, Gaynor *et al.*, 2004, Kakuda and DiRita., 2006). Recently, Javed *et al* (2010) reported that the hyperinvasive *C. jejuni* 01/51 showed same growth rate in both the MH broth and Mueller-Hinton agar/Mueller Hinton broth (MHA/MHB) biphasic medium. This suggests that the MH broth can also be used to find growth phases over time for *C. jejuni* strains for use in the invasion assay. This experiment showed that the inoculum taken from 24 hours grown *C. jejuni* cultures were suitable for use in invasion assays. Javed *et al* (2010) selected a 22 hours grown *C. jejuni* 01/51 culture in (MHA/MHB) biphasic medium for use in the invasion assay.

There was no distinct grouping of the hyperinvasive *C. jejuni* strains separate from the low invasive strains in this experiment.

# 3.3.2 Survival of the hyperinvasive and low invasive C. jejuni strains under atmospheric stress

C. jejuni are microaerobic bacteria that cannot survive under normal atmospheric pressure (Luechtefeld et al., 1982, Ketley., 1997, Mihaljevic et al., 2007). Recently, Kaakoush et al (2007) defined C. jejuni as an obligate microaerophile. Cold temperature treatment and exposure to aeration are considered as the control measures for eliminating C. jejuni from poultry (Kelana and Griffiths., 2003). Also, during in vitro assays C. jejuni are exposed to a number of stresses. For example, during gentamicin protection invasion assay after the epithelial cell monolayers are infected with bacteria they are incubated under 5% (v/v) CO<sub>2</sub> to allow bacteria to invade cells. C. jejuni are exposed to the atmospheric oxygen when cell monolayers are washed with PBS and later treated with gentamicin to remove any external bacteria that have not invaded the cells. Finally, the epithelial cells are treated with a detergent, Triton-X100 to lyse the cells. All these stresses could introduce bias in invasion assays. In this study, the hyperinvasive and the low invasive C. jejuni strains were exposed to the atmospheric air stress for a period of upto 6 hours in MH broth with constant shaking at 180 rpm at 37

°C. A representative graph of triplicate experiments showing survival of strains under atmospheric air stress is presented in figure 3.2.

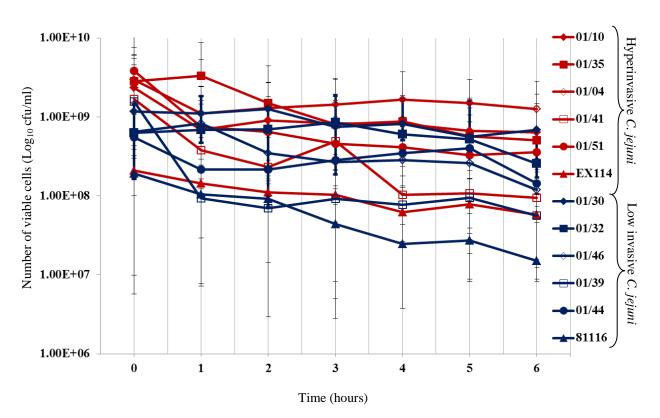



Figure 3.2: The resistance to atmospheric air stress study of hyperinvasive and low invasive *C. jejuni*.

Response of the hyperinvasive *C. jejuni* (01/10, 01/35, 01/04, 01/41, 01/51, EX114) and low invasive *C. jejuni* strains (01/30, 01/32, 01/46, 01/39, 01/44, 81116) to aeration stress was performed by exposing the *C. jejuni*, grown cultures in MH broth, to atmospheric air and samples were taken at hourly intervals up to 6 hours and the viable cell count determined. The error bars represent 95% +/-CI in triplicate assays.

Ideally, this experiment should be performed in the tissue culture medium and 5% (v/v) CO<sub>2</sub> rather than full atmospheric to evaluate the actual effects of these conditions on bacteria during gentamicin protection assay but the aim of this study was not to use *C. jejuni* strains in invasion assays as the invasion phenotype of these strains was already characterized by Fearnley *et al* (2008). It would be interesting to assess if the hyperinvasive *C. jejuni* would behave differently from the low invasive *C. jejuni* strains in response to the normal atmospheric air. Figure 3.2 showed that both the hyperinvasive and the low invasive *C. jejuni* strains survived upto 6 hours of air exposure but showed variability in their response to air stress. However, no grouping of

the hyperinvasive *C. jejuni* separate from the low invasive strains was observed based on their response pattern to atmospheric stress. After one hour of atmospheric exposure there was an initial drop in the viable cell number observed for the hyperinvasive *C. jejuni* 01/10, 01/51, 01/41 and the low invasive *C. jejuni* strain 01/39. This reduction was most prominent for *C. jejuni* 01/39 where the number of viable cells decreased by one log. This initial drop in the viable cell numbers may be the time required by these strains to adjust to the air stress and turn on their atmospheric response system. The other *C. jejuni* strains where this reduction in viable cell counts was not seen may reflect that they are more stable strains and adapt better to the atmospheric stress. The *C. jejuni* cultures grown for upto 6 hours but under microaerobic conditions would be a useful control for the aeration stress study but it was not performed.

The survival of all C. jejuni isolates in this study under the normal atmospheric air suggests the aerobic adaptation of C. jejuni strains. In a previous study, C. jejuni were exposed to air for 2-3 days on blood agar. After this prolonged air exposure the bacteria were sub-cultured and grew normally under air. This aerobic adaptation of C. jejuni was accompanied by the change in cell morphology to coccid shape and changes in the expression pattern of some outer membrane proteins suggesting that C. jejuni adapts to aerobic metabolism when outside the host body such as in food and farm environments (Jones et al., 1993). Later, Harvey and Leach (1998) also reported that C. jejuni avoids oxidative damage by cell surface changes as reflected in the coccal cell morphology. Another study investigated the use of aeration stress as a control measure for reducing the number of *C. jejuni* in poultry semen (Cole et al., 2004b). Cole et al (2004b) reported that aeration was unable to reduce C. jejuni from poultry semen samples suggesting that they survived in air. C. jejuni cultures grown in MH broth for 24 hours with the maximum cell density of  $10^8 - 10^9$  cfu/ml were selected for this aeration stress The high bacterial cell density might facilitate microaerophilic bacteria to withstand the aeration stress. In addition, in the liquid bacteriological media the solubility of oxygen is relatively low with nutrient rich conditions that might provide favourable conditions for the bacteria to survive. C. jejuni strains have been reported previously to show marked resistance when exposed to air in high cell densities (Kelly., 2005, Mohammad et al., 2005, Kaakoush et al., 2007) and in liquid growth media (Mohammad et al., 2005).

# 3.3.3 Sensitivity to hydrogen peroxide $(H_2O_2)$ of hyperinvasive and low invasive C, jejuni strains

Inside the eukaryotic cells, *C. jejuni* are exposed to the reactive oxygen species released as bi-products of aerobic respiration such as superoxides and hydrogen peroxide. Hydrogen peroxide acts as a bactericidal agent reacting with reduced iron, products of the nitric oxide synthase activity, to form toxic intermediates including hypochlorous ions, hydroxyl radicals, hydroxide anions and nitrogen dioxide (Day *et al.*, 2000).

The hyperinvasive and the low invasive C. jejuni strains were tested to determine if the two groups of strains showed same level of response to hydrogen peroxide stress. C. jejuni strains were exposed to 0.5 mM hydrogen peroxide solution in MH broth and the number of surviving bacteria was determined every 20 minutes for up to 120 minutes. All the C. jejuni strains survived exposure to 0.5 mM hydrogen peroxide with viable cells recovered after 120 minutes exposure. A representative graph of triplicate experiments showing response of each strain to 0.5 mM hydrogen peroxide is plotted (Figure 3.3). The low invasive C. jejuni 01/39, however, showed a 6 log reduction in viable cell count after 120 minutes which suggest that this strain was relatively sensitive to 0.5 mM  $H_2O_2$  stress. There was no grouping of the hyperinvasive separating them from the low invasive C. jejuni strains based on their response to 0.5 mM  $H_2O_2$ .

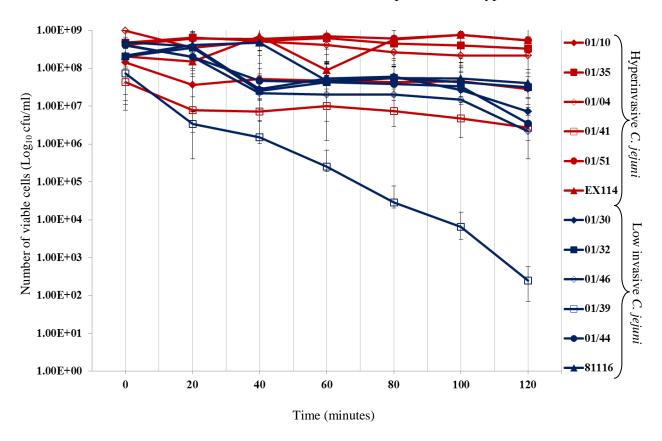



Figure 3.3: The sensitivity to hydrogen peroxide study of the hyperinvasive and the low invasive *C. jejuni* strains.

The hyperinvasive (01/10, 01/35, 01/04, 01/41, 01/51, EX114) and low invasive *C. jejuni* (01/30, 01/32, 01/46, 01/39, 01/44, 81116) strains were grown for 24 hours in MH broth and exposed to 0.5 mM  $H_2O_2$ . The samples were taken at different time intervals up to 120 minutes for viable counts and the response of hyperinvasive and low invasive *C. jejuni* strains to 0.5 mM hydrogen peroxide was studied. The error bars represent 95% +/-CI in triplicate assays.

In a previous report, the *C. jejuni* strains were reported as resistant to 1 mM hydrogen peroxide over a sixty minutes exposure period which is in agreement with our results (Day *et al.*, 2000). This resistance was attributed to the protective activity of catalase which is encoded by the *katA* gene (van Vliet *et al.*, 1999, Day *et al.*, 2000). The *C. jejuni* strains with catalase activity degraded H<sub>2</sub>O<sub>2</sub> allowing them to survive the oxygen burst inside macrophages (Day *et al.*, 2000). An ankyrin containing protein, Cj1386 (Flint *et al.*, 2012) located downstream to KatA regulon allows intracellular survival of *C. jejuni* by trafflicking heme to catalase. All the hyperinvasive and low invasive *C. jejuni* strains used in this study were tested for the catalase activity. Catalase test was performed by dipping a small bacterial colony on a plastic loop into 30% H<sub>2</sub>O<sub>2</sub>

solution and the release of bubbles showed catalase activity. All the *C. jejuni* strains were positive for catalase activity including *C. jejuni* 01/39 which showed a dramatic reduction in viable cells when exposed to 0.5 mM H<sub>2</sub>O<sub>2</sub> for 120 minutes. This suggests that the relative sensitivity of *C. jejuni* 01/39 to H<sub>2</sub>O<sub>2</sub> may be related to the oxygen stress response systems in *C. jejuni* other than catalase. Iron dismutase reductases (SodB) in *C. jejuni* have been reported to provide oxygen resistance (Pesci *et al.*, 1994) that allowed intracellular survival of *C. jejuni* in INT407 cell lines. Baillon *et al* (1999) reported an iron containing hydroperoxide reductase (AhpC) that provides aerotolerance and resistance to oxidative stress in *C. jejuni*. Studies by Ishikawa *et al* (2003) demonstrated the activity of an iron based protein (Dps) that confers resistance to *C. jejuni* against the toxic effects of hydrogen peroxide by scavenging free iron particles present inside cells. In contrast, Velayudhan *et al* (2004) and Wainwright *et al* (2005) have attributed the strict microaerophilic nature of *C. jejuni* to the presence of active oxygen sensitive enzymes in *C. jejuni* such as L-serine dehydratase and rubredoxin oxidoreductase.

### 3.3.4 Motility profile of hyperinvasive and low invasive C. jejuni strains

The flagellar motility in *C. jejuni* has been proved as a key virulence factor involved *in vivo* invasion of the human intestinal cell line models (Morooka *et al.*, 1985, Grant *et al.*, 1993, Guerry., 2007). Motility is responsible for the invasion and internalisation of *C. jejuni* (Grant *et al.*, 1993) but not the only factor required for *C. jejuni* pathogenesis (Wassenaar *et al.*, 1991). The motility profile of the hyperinvasive and low invasive *C. jejuni* strains was tested to determine if the reduced invasion potential of the low invasive *C. jejuni* strains (Fearnley *et al.*, 2008) was due to the reduced motility of these strains. The *C. jejuni* strains showed a lot of variability in motility profile when observed after 48 hours of microaerobic incubation at 37 °C (Figure 3.4).

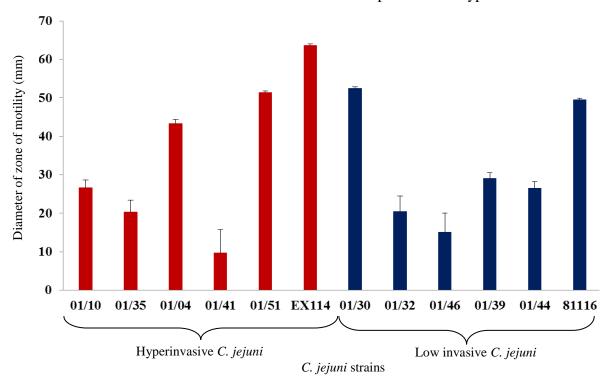



Figure 3.4: The comparison of motility zones (millimeters) for the hyperinvasive and low invasive *C. jejuni* strains measured after 48 hours of microaerobic incubation at 37°C.

The motility profile of the hyperinvasive *C. jejuni* (01/10, 01/35, 01/04, 01/41, 01/51, EX114) and low invasive *C. jejuni* (01/30, 01/32, 01/46, 01/39, 01/44, 81116) was measured as the growth zone diameters in millimetres after 48 hours of microaerobic incubation. The error bars indicate 95% CI in triplicate experiments.

Among the hyperinvasive *C. jejuni* strains, EX114 was most motile followed by *C. jejuni* 01/51 and 01/04 whereas 01/41 showed lowest motility. Within the low invasive *C. jejuni* strains, 01/30 and 81116 displayed highest motility while 01/46 had reduced motility. In addition, there was no clear grouping of the hyperinvasive *C. jejuni* strains as a distinct group based on the motility phenotype. Fearnley *et al.*, 2008 tested motility for the hyperinvasive *C. jejuni* EX114 and the low invasive 81116 using semisolid media. Both strains showed a diameter of growth zones varying between 50-58 mm and were classed as fully motile. The average diameter of growth zones recorded in our study for *C. jejuni* EX114 and 81116 was 64 mm and 50 mm respectively which is very similar to those reported by Fearnley *et al* (2008).

### 3.3.5 Autoagglutination activity of hyperinvasive and low invasive C. jejuni strains

The autoagglutination (AAG) activity has been recognised as a key virulence factor responsible for the host cell interaction in many Gram negative pathogenic bacteria (Misawa and Blaser., 2000) particularly in the *C. jejuni* closely related bacteria *Helicobacter pylori* (Cole *et al.*, 2004a). Autoagglutination activity in *C. jejuni* has also been reported in the literature (Golden and Acheson., 2002, Misawa and Blaser., 2000, Guerry *et al.*, 2006). In this study, most of the *C. jejuni* strains autoagglutinated (AAG) after undisturbed microaerobic incubation at 37 °C for 24 hours except for the low the invasive *C. jejuni* strains 01/39 and 81116 (Figure 3.5). The AAG activity of the low invasive *C. jejuni* 01/39 and 81116 was significantly lower (*p*=0.000384 and 0.000689 respectively) when compared against the low invasive *C. jejuni* 01/46 which showed highest autoagglutination activity in this study. However, there was no grouping of the hyperinvasive *C. jejuni* strains based on AAG phenotype.

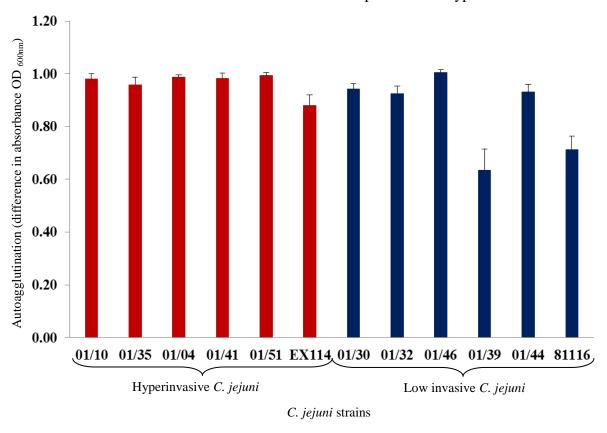



Figure 3.5: The autoagglutination ability of the hyperinvasive and the low invasive *C. jejuni* strains.

The ability to autoagglutinate in the hyperinvasive *C. jejuni* (01/10, 01/35, 01/04, 01/41, 01/51, EX114) and low invasive *C. jejuni* strains (01/30, 01/32, 01/46, 01/39, 01/44, 81116) was determined by measuring the difference in absorbance at  $OD_{600nm}$  of *C. jejuni* cultures incubated overnight at 37 °C. The error bars show 95% CI in triplicate experiments. The statistical significance was calculated by using the Student's T-test (p=0.001) (Microsoft<sup>®</sup> Excel 2010).

The autoagglutination (AAG) characteristic of *C. jejuni* strains has been found to have an essential role in bacterial adherence to INT407 cell lines, hence linked to *C. jejuni* virulence (Misawa and Blaser., 2000). Misawa and Blaser (2000) and Guerry (2007) also reported that intact flagella were required for autoagglutination in *C. jejuni* and the aflagellate mutants of *C. jejuni* lack autoagglutination ability. In this study, the hyperinvasive *C. jejuni* 01/41 showed reduced motility (Figure 3.4) but retained high levels of autoagglutination (Figure 3.5). A similar trend was observed for the hyperinvasive *C. jejuni* 01/35, and the low invasive *C. jejuni* strains 01/32 and 01/46. By contrast, the hyperinvasive *C. jejuni* (01/51 and EX114) and the low invasive *C. jejuni* strain 01/30 showed high motility profile (figure 3.4) and high AAG activity.

The low invasive *C. jejuni* strain 81116 was fully motile but displayed lower level of AAG activity. This suggests that the findings of Misawa and Blaser (2000) and Guerry (2007) could not be truly compared with the autoagglutination and motility experiment results recorded in this study.

# 3.3.6 Survival of the hyperinvasive and the low invasive C. jejuni strains under sodium deoxycholic acid stress

Enteric pathogens are exposed to a number of antimicrobial agents in the intestine including bile salts and gastric acid. *C. jejuni* have been found to be resistant against the damaging effects of bile salts (Raphael *et al.*, 2005). The sensitivity of the hyperinvasive and low invasive *C. jejuni* strains to bile salts was tested at a range of concentrations from 16 mg/ml to 1 mg/ml of sodium deoxycholic acid. All the hyperinvasive and low invasive *C. jejuni* isolates studied exhibited similar levels of resistance to sodium deoxycholic acid with all strains showing Minimum Inhibitory Concentration (MIC) at 7.5 mg/ml except for the hyperinvasive *C. jejuni* 01/04 that showed inhibition at a lower concentration of 2 mg/ml (Table 3.1). There was no grouping of the hyperinvasive *C. jejuni* separate from the low invasive *C. jejuni* strains based on their response to sodium deoxycholic acid stress.

| C. jejuni strain | Invasion<br>profile | Threshold inhibitory sodium deoxycholic acid concentration (mg/ml) n=3 |
|------------------|---------------------|------------------------------------------------------------------------|
| 01_10            | Hyperinvasive       | 7.5                                                                    |
| 01_35            |                     | 7.5                                                                    |
| 01_04            |                     | 2                                                                      |
| 01_41            |                     | 7.5                                                                    |
| 01_51            |                     | 7.5                                                                    |
| EX114            |                     | 7.5                                                                    |
| 01_30            | Low invasive        | 7.5                                                                    |
| 01_32            |                     | 7.5                                                                    |
| 01_46            |                     | 7.5                                                                    |
| 01_39            |                     | 7.5                                                                    |
| 01_44            |                     | 7.5                                                                    |
| 81116            |                     | 7.5                                                                    |

Table 3.1: The Minimum Inhibitory Concentration (MIC) of sodium deoxycholic acid for *C. jejuni* isolates.

The response of hyperinvasive (01/10, 01/35, 01/04, 01/41, 01/51, EX114) and low invasive *C. jejuni* (01/30, 01/32, 01/46, 01/39, 01/44, 81116) strains to the sodium deoxycholic acid stress was investigated. The concentrations of sodium deoxycholic acid tested ranged between 16 mg/ml to 1 mg/ml. The assay was performed in triplicate.

All the *C. jejuni* strains used in our study were human clinical isolates except the hyperinvasive *C. jejuni* EX114 (Table 2.1) which is an environmental isolate. A previous study reported that the clinical *C. jejuni* isolates were more resistant to sodium deoxycholate stress than the poultry isolates. The clinical *C. jejuni* isolates survived under a much higher concentration (16 mg/ml) of sodium deoxycholate (Van Deun *et al.*, 2007). In contract, our study showed that the human clinical *C. jejuni* isolates were more sensitive at a much lower concentration of sodium deoxyxholic acid. This suggests that the response of *C. jejuni* strains to bile salts in the human intestine is not dependant on source of strain isolation. Also, the growth of majority of *C. jejuni* strains was inhibited at the same sodium deoxycholic acid concentration showing that this phenotype does not influence invasion.

### 3.3.7 Biofilm formation in the hyperinvasive and low invasive C. jejuni

A bacterial biofilm is a stable and complex structure formed on a living or non-living surface with different cohesive forces strengthened by exopolysaccharides (EPS) (Shirtliff *et al.*, 2002, Dunne., 2002). The first step in biofilm formation is the "primary adhesion" of bacteria to any surface (biotic or abiotic). The primary adhesion is a reversible attachment of bacteria to a surface that requires the surface to be suitable for bacterial attachment and growth termed "surface conditioning". The final step in biofilm formation called "secondary adhesion" which is the anchoring or irreversible locking phase of bacterial attachment to the surface. As the stage of secondary adhesion progresses, other planktonic microorganisms and materials in the surrounding environment can also stick to surface bound bacteria forming an aggregate on the substratum. Once the process of irreversible attachment of bacteria completes the overall density and complexity of the bacterial community may start to increase forming mature biofilm. At some point, when the biofilm reaches a critical mass, a dynamic equilibrium is reached at which the cells in closest contact with the surface closest to the

substratum begin to die due to the lack of nutrients or perfusion, pH changes, oxygen or an accumulation of a toxic by-product (Shirtliff *et al.*, 2002).

The biofilm formation in *C. jejuni* has been reported (Joshua *et al.*, 2006, Kalmokoff *et al.*, 2006, Reeser *et al.*, 2007). Joshua *et al* (2006) reported three forms of biofilm formed by *C. jejuni* in liquid media *i.e.* attachment to the glass surfaces, unattached clumps (flocs) formation, pellicle formation at the liquid gas interface. *C. jejuni* biofilm formation on a variety of other abiotic surfaces such as polyvinyl chloride plastic, acrylonitrile butadiene etc has also been shown (Resser *et al.*, 2007). The biofilm mode of life provides resistance to bacteria under stress conditions such as the antimicrobial agents, oxygen and nutritional pressures (Joshua *et al.*, 2006, Kalmokoff *et al.*, 2006). Motility (Joshua *et al.*, 2006, Kalmokoff *et al.*, 2006, Reeser *et al.*, 2007) and quorum sensing (Reeser *et al.*, 2007) influenced biofilm phenotype in *C. jejuni*. The molecular analysis of *C. jejuni* biofilm revealed upregulation of genes responsible for stress control, protein synthesis, catabolism and energy generation (Kalmokoff *et al.*, 2006).

In this study, the hyperinvasive and low invasive *C. jejuni* strains were allowed to form biofilm in 96 well plastic tissue culture plates undisturbed under microaerobic conditions at 37 °C and the amount of biofilm formed was studied at different time intervals (Figure 3.6). The biofilm formation potential of the hyperinvasive and the low invasive *C. jejuni* strains was very variable with no grouping of the hyperinvasive *C. jejuni* strains separate from the low invasive *C. jejuni* strains.

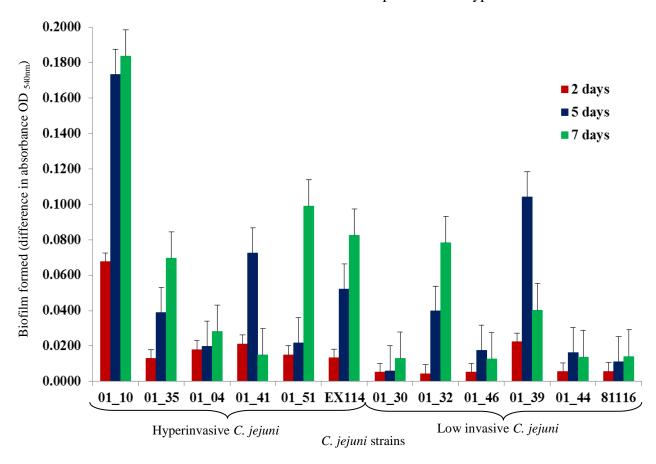



Figure 3.6: The percentage (%) mean biofilm formation of hyperinvasive and low invasive *C. jejuni* isolates at different time intervals.

The biofilm formation ability of the hyperinvasive (01/10, 01/35, 01/04, 01/41, 01/51, EX114) and low invasive *C. jejuni* strains (01/30, 01/32, 01/46, 01/39, 01/44, 81116) was investigated. The error bars indicate 95% CI in triplicate experiments.

After 2 days of static microaerobic incubation at 37 °C the hyperinvasive *C. jejuni* 01/10 was the only strain which formed a lot of biofilm while the other strains showed only very low levels of biofilm formation. This suggests that the majority of *C. jejuni* strains were in early stages of biofilm development after 2 days. The biofilm formation progressed for all *C. jejuni* strains to 5 days of undisturbed microaerobic incubation. The low invasive *C. jejuni* 01/39 showed the highest increase in the amount of biofilm formed followed by *C. jejuni* 01/10 and *C. jejuni* 01/41 compared to other strains after 5 days period.

There was no link between the motility phenotype (Joshua *et al.*, 2006, Kalmokoff *et al.*, 2006, Reeser *et al.*, 2007) and the amount of biofilm formed in our study as *C. jejuni* 01/41 showed remarkably reduced motility (Figure 3.4) but still formed biofilm.

Similarly, *C. jejuni* 01/10 and *C. jejuni* 01/39 were only moderately motile but showed high amount of biofilm formed. After 7 days of microaerobic incubation, 4 out of 12 *C. jejuni* strains (01/41, 01/46, 01/39, 01/44) showed a decrease in the amount of biofilm whereas the rest of strains continued to form biofilm. This might suggest that the bacterial cells reached dynamic equilibrium in the mature biofilm (Shirtliff *et al.*, 2002) and began to die and detached themselves which was evident by the decrease in the amount of biofilm formed for some *C. jejuni* strains. Also, this experiment suggested that the *C. jejuni* strains achieved biofilm maturity at different times.

### 3.4 CONCLUSIONS AND FUTURE WORK

The hyperinvasive and the selected low invasive C. jejuni strains were tested in the invasion assays related stress factors (response to atmospheric air,  $H_2O_2$  and motility) and the other virulence related phenotypes (autoagglutination, sodium deoxycholic acid stress and biofilm formation). All the C. jejuni investigated survived the atmospheric air and  $H_2O_2$  stress. All the C. jejuni strains showed high level of variability in their motility and there was no distinct grouping of the hyperinvasive C. jejuni separate from the low invasive C. jejuni strains based on these phenotypes. All the C. jejuni strains showed variable autoagglutination activity, sodium deoxycholic acid stress response and biofilm formation ability. In addition, the hyperinvasive C. jejuni could not be distinguished from the low invasive group of C. jejuni strains based on any of the virulence phenotypes tested.

It seems therefore that this group of strains share only the hyperinvasive phenotype and it was hypothesised that the difference in invasion potential between the hyperinvasive and the low invasive *C. jejuni* strains reported by Fearnley *et al* (2008) might be due to the differences at their genome level. Therefore, as the next step in this project the six hyperinvasive *C. jejuni* strains were compared with a selected group of the low invasive *C. jejuni* strains using comparative genomic hybridization (CGH). Some future work may also involve actually investigating the mechanism of *C. jejuni* uptake and survival within the host cells.

## Chapter Four

# GENOTYPING OF THE HYPERINVASIVE C. JEJUNI STRAINS BY COMPARATIVE GENOMIC HYBRIDIZATION (CGH)

# GENOTYPING OF THE HYPERINVASIVE C. JEJUNI STRAINS BY COMPARATIVE GENOMIC HYBRIDIZATION (CGH)

### 4.1 INTRODUCTION

The previously defined group of six clinical hyperinvasive *C. jejuni* strains with the hyperinvasive phenotype were compared at the genome level using DNA microarray with four low invasive clinical *C. jejuni*. This comparative phylogenomics study was performed to find whether the hyperinvasive *C. jejuni* strains form a cluster separate from the low invasive strains based on their genomic content as well as to identify any genomic regions conserved or variable between the two groups.

### 4.1.1 Comparative Genomic Hybridization as a tool to study phylogeny and diversity

Comparative Genomic Hybridization (CGH) is a DNA microarray based technique used to compare a test genome with a control genome, affixed on a microscopic slide-sized glass support, to find genomic content present or absent in the test genome. Comparative genomics using DNA microarrays have been used to study relatedness and differences between different bacterial populations and some examples are discussed below. CGH has been used to study genomic content differences between 42 isolates of *Helicobacter pylori* causing a number of chronic conditions in humans including peptic ulcer, gastric cancer or gastritis and other complex diseases that are linked to virulence gene clusters including the cag pathogenicity island (PAI). This study identified genes uniquely associated with gastroduodenal diseases. One thousand and nineteen genes were found to be present in all isolates, with 341 genes being variable. The most variable genes linked with gastritis, duodenal ulcer, or gastric cancers were present in Pathogenicity Zones (PZs) and the cag PAI. (Romo-Gonzalez *et al.*, 2009).

In another study, CGH was used to find genomic diversity amongst *Cronobacter* species including *C. sakazakii*, *C. malonaticus* and *C. turicensis*. This study identified *Cronobacter* species specific genes and genes related to *Cronobacter* isolates from outbreaks in neonatal intensive care units. Genes associated with copper and silver resistance, those encoding for multidrug efflux pumps and many adhesins were reported

(Kucerova *et al.*, 2010). This study used the GACK algorithm, trinary cut off for determining present and divergent genes (Kim *et al.*, 2002) and phylogenomic analysis was performed by using "Cluster" software (Eisen *et al.*, 1998). Interstrain genomic polymorphisms associated with *P. gingivalis* were investigated by comparing the known invasive *P. gingivalis* strain to the non-invasive *P. gingivalis* strain by DNA microarray. Several accessory genes with functions encoding for lipoproteins, capsular biosynthesis, regulatory and immunoreactive proteins, and transport of metabolites were divergent in the non-invasive strain suggesting that gene loss was indicative of the *P. gingivalis* non-invasive phenotype (Dolgilevich *et al.*, 2011).

DNA microarrays have been used to study phylogeny and genetic diversity of *C. jejuni* strains based on host association, disease profile and virulence related phenotypes (Quiñones *et al.*, 2008, Parker *et al.*, 2006, Champion *et al.*, 2005, Pearson *et al.*, 2003, Dorrell *et al.*, 2001). *C. jejuni* strains with a variety of Penner serotypes were studied using CGH to define the structure of the *C. jejuni* genome and to find genomic similarities between them (Dorrell *et al.*, 2001). DNA microarrays separated the functional core comprising essential genes from the dispensable genes that make up the accessory genome. This study found 1,300 out of 1,654 genes were part of the core genome and at least 21% of the genes were dispensable as they were missing in one or more of the strains studied. The conserved genes mainly encoded for metabolism, cellular, regulatory and biosynthetic processes. The accessory genome was dominated by virulence related genes including flagellar modification genes, lipo-oligosaccharide and capsule encoding genes. CGH data did not cluster strains based on the Penner serotypes suggesting that the genome similarity between strains from the same serotype may not be enough to cluster them together (Dorrell *et al.*, 2001).

Another study, investigated the genomic diversity in 18 *C. jejuni* strains isolated from a variety of sources (Pearson *et al.*, 2003). This study identified 7 regions of immense variability between the strains studied which were called the plasticity regions (PRs). PR1 to PR7 made up 50% of the variable genome content of the strains. PR1 consisted of genes required for using alternative electron acceptors for respiration that may provide a selective advantage to strains in oxygen depleted conditions. PR2, PR3, and PR7 were dominated by genes encoding outer membrane and periplasmic proteins and

many hypothetical genes with putative functions that may explain the phenotypic variation and survival of strains in different environments. PR4, PR5, and PR6 contained genes involved in the synthesis part of the flagellin glycosylation locus. Pearson *et al* (2003) defined a dynamic cut off algorithm similar to the GACK matrix (Kim *et al.*, 2002) to determine present or divergent genes.

Due to the highly diverse nature of the *C. jejuni* genome and the advantage of CGH in the absence of genome sequencing the use of CGH as a genomotyping tool did expand. A large scale CGH study exploited a collection of CGH data from three previous small scale *C. jejuni* microarray studies (Leonard *et al.*, 2004, Pearson *et al.*,2003, Dorrell *et al.*, 2001) and integrated it with additional DNA microarray analysis performed on 51 *C. jejuni* strains isolated from food and clinical sources (Taboada *et al.*, 2004). This CGH meta-analysis of 97 *C. jejuni* strains showed that the newly investigated *C. jejuni* strains contain the majority of the genes which were reported as part of the accessory gene pool in previous studies, suggesting that the *C. jejuni* core genome was expanding (Taboada *et al.*, 2004).

Another study used DNA microarrays to investigate the GBS and enteritis associated *C. jejuni* isolates with an aim to identify genetic markers of GBS. However, this study could not identify any GBS specific genetic markers (Leonard *et al.*, 2004). A shot gun DNA microarray technique comparing sequenced *C. jejuni* NCTC11168 with the, at that time unsequenced *C. jejuni* 81-176 genome, identified several *C. jejuni* 81-176 specific genes that were dispersed in conserved and accessory parts of the genome (Poly *et al.*, 2005).

A comparative phylogenomics study combined with Bayesian-based statistical analysis was used to study phylogeny of *C. jejuni* strains from humans, chicken, bovines, ovines and the environment. Out of 111 *C. jejuni* isolates studied, 70 strains were isolated form patients with gastroenteritis, septicaemia, GBS and from asymptomatic carriers. The aim of this study was to find if strains clustered together based on host sources and disease severity in human hosts. The Bayesian analysis revealed two distinct clades a "livestock" clade and a "nonlivestock" clade with further clusters of environmental isolates (Champion *et al.*, 2005). Interestingly, the majority of the human isolates were part of the nonlivestock clade proposing that most *C. jejuni* infections came from nonlivestock sources. Several genes (Cj1321 to Cj1326) within the flagellin

glycosylation locus were associated with strains in the livestock cluster (Champion *et al.*, 2005).

The genomic diversity in a collection of *C. jejuni* and *C. coli* strains from clinical and veterinary sources was investigated using a *C. jejuni* RM1221 and *C. jejuni* NCTC11168 pan array (Parker *et al.*, 2006). The *C. jejuni* and *C. coli* populations investigated showed genomic diversity in four *C. jejuni* RM1221 integrated mobile genomic islands (CJIEs). An additional 18 regions of diversity were also identified containing lipooligosaccharide and capsule biosynthesis genes (Parker *et al.*, 2006). Later, Parker *et al.*, (2007) used CGH to study genomic diversity at the *C. jejuni* subspecies level. The *C. jejuni* subsp. *jejuni* and *C. jejuni* subsp. *doylei* formed separate clusters and showed immense genomic diversity between them based on the two techniques used. *C. jejuni* subsp. *doylei* unique gene clusters mainly related to metabolism, transport and pathogenesis were identified that were absent from *C. jejuni* subsp. *jejuni* (Parker *et al.*, 2007).

A 70-mer oligonucleotide array was used to find similarities and differences between closely related (based on similar PFGE profile) chicken and human clinical isolates. CGH grouped isolates in the same way as defined by PFGE. Also, the chicken and human clinical C. *jejuni* isolates did not cluster according to source by CGH (Rodin *et al.*, 2008).

C. jejuni clinical strains with different disease severities were compared using DNA microarrays to see if gene markers associated with different disease outcomes could be identified. It was shown that C. jejuni strains from patients with neurological disorders like Guillain Barré syndrome and Miller Fisher syndromes clustered separately from enteritis associated C. jejuni isolates (Quinones et al., 2008). Large mobile genetic islands mainly characterized by prophage genes were dominant in strains causing neuropathies (Quinones et al., 2008). Recently, DNA microarray analysis was used to study the role of genetic diversity in the disease profile of three C. jejuni human disease isolates (11168, 33292 and 81-176) and genetically marked variants of these strains. The data showed immense genetic variability in three gene clusters associated with the synthesis and modification of capsule, flagella and lipooligosaccharide (Wilson et al., 2010).

CGH was used to study population dynamics of *C. coli* strains from poultry, environment and human clinical cases. *C. coli* isolated from diverse sources clustered based on the host species and CGH identified host associated genes showing host adaptation. The clustering of *C. coli* strains from diverse sources was attributed to origin from a common ancestor and molecular events like lateral gene transfer (Lang *et al.*, 2010).

Another CGH study was performed on 80 *C. jejuni* isolates from diverse sources representing a variety of clonal complexes to show the association of clonal complexes with isolation source. This study identified a clade of water/wildlife associated *C. jejuni* strains separate from the human food chain isolates. Nine regions of divergence were found unique to this clade of strains suggesting a trend towards niche adaptation. These gene clusters were part of the accessory genome and included the virulence related cytolethal distending toxin (*cdt*) genes (Hepworth *et al.*, 2011).

All above studies signify the importance of DNA microarray as a powerful molecular tool to study phylogeny and diversity between *C. jejuni* strains. The strains have been distinguished based on disease profile and transmission source at the sub-species level. Most studies reported that the flagellar modification genes, capsule biosynthesis loci, and LOS were the most variable regions. Here, we have used CGH to compare six hyperinvasive *C. jejuni* strains with four low invasive *C. jejuni* identified by Fearnley *et al* (2008).

The aim of this study was to:

- (i) Determine the phylogenomic relationship between hyperinvasive and low invasive *C. jejuni* strains at the whole genome level using hierarchical clustering of CGH data.
- (ii) Identify gene/gene clusters specific to the hyperinvasive *C. jejuni* that may distinguish them from low invasive *C. jejuni* and explain the hyperinvasive phenotype of this unique group of hyperinvasive *C. jejuni*.

### **4.2 METHODS**

### 4.2.1 Microarray design and construction

The *C. jejuni/C. coli* pan array used here was designed based on 1884 annotated coding sequences (CDSs) from the fully genome sequenced *C. jejuni* RM1221, additional CDSs from *C. jejuni* NCTC11168 and *C. jejuni* 81-176. Genes unique to *C. coli* RM2228, ORFs from the *C. jejuni* 81-176 pTet plasmid and *C. coli* pCC31 plasmid were also represented on the array. This represented a total of 2,628 annotated CDSs on the pan array. The pan array was constructed as described elsewhere (John *et al.*, 2011).

# 4.2.2 Enzymatic labelling of genomic DNA with Cy3 dCTP and Cy5 dCTP and hybridization

Three micrograms of the control (*C. jejuni* RM1221) and test genomic DNA (Hyperinvasive/low invasive *C. jejuni*) was prepared as described in section 2.6.1. The reference and test genomic DNA was enzymatically labelled with fluorescent dyes Cy5-dCTP and Cy3-dCTP (Amersham, GE healthcare) respectively by following the protocol described in detail by Dorrell *et al* (2001). A brief protocol is given below;

- One microgram of the genomic DNA from test *C. jejuni* strain was mixed with the random primers (Promega, UK) at a concentration of 3 μg/μl and volume was made up to 41.5 μl with sterile distilled water in a PCR tube.
- The reaction mix was heated at 95 °C in thermocycler for 5 minutes and then snap cooled on ice.
- Five microliters of 10X buffer (part of random primers, Promega, UK), 5
  μl of dNTP mix (5 mM each dATP, dGTP And dTTP, 2 nm dCTP, SigmaAldrich, UK), 1.5 μl of Cy3-dCTP (25 nmol) (Amersham, GE healthcare;
  catalogue number PA55021) and 1 μl of DNA polymerase I large klenow
  fragment, exonuclease minus (Promega, UK; catalogue no; M2181) were
  added to the above reaction mix.
- The labelling reaction mix was incubated at 37 °C for 90 minutes.
- The above procedure was carried out for the labelling of reference *C. jejuni* genomic DNA (section 2.5) replacing Cy3-dCTP with Cy5-dCTP (25 nmol) (Amersham, GE healthcare; catalogue number PA53021).

### 4.2.2.1 Hybridization

Each enzymatic labelling reaction was purified using MinElute PCR purification kit (Qiagen, Crawley, UK) as stated in the kit's instruction manual. Each labelled test and control genomic DNA was mixed together in a maximum reaction volume of 4.5 µl (0.5 µg of genomic DNA concentration). The hybridization was carried out at the University of Nottingham, post genomics facility at the Queen's Medical Centre (Nottingham, UK). The hybridization procedure was followed as detail in detail previously (John *et al.*, 2011). Each array image was obtained as a .gps file and the layout of oligonucleotides on the array was presented as .gal file.

### 4.2.3 Tools for CGH data analysis and hierarchical clustering

Each microarray image was analysed using Gene pix pro 6 software (Molecular Devices Corporation, Sunnyvale, CA). Any anomalous spots with low signal intensities or too high or low background noise on the array were identified. Gene pix pro 6 computed several ratio quantities each of which contained different information for each spot on the array. Among these, an important parameter called the "log<sub>2</sub>ratio" for each spot was calculated. Log<sub>2</sub>ratio is the base two logarithm of ratio of median intensities i.e. log<sub>2</sub>ratio of median intensity at 532 nm (Cy3-test strain)/ ratio of median intensity at 635 nm (Cy5-reference strain). The ratio of medians is the ratio of the background subtracted median pixel intensity at the second wavelength (532 nm) to the background subtracted median pixel intensity at the first wavelength (635 nm). The log base two transform is a simple and quicker way of presenting differences between two conditions (for example, present and absent/divergent genes in this study). The data for each spot on the array was corrected by normalization by using the global normalization method in which the image and result were normalized together. By default, the mean of the ratio of medians used for normalization was set to 1.0. This deleted any ratio values less than 0.1 or greater than 10 as well as any spots that were flagged as bad spots. The results for each complete image were generated as Gene pix results (.gpr) file. This file contained general information about the image acquisition and analysis as well as the numerical data generated from each spot on the array (Molecular Devices Corporation, Sunnyvale, CA). The numerical data in .gps file was converted into text delimited (.dat) file and imported into the statistical software, SPSS 17.0 (IBM SPSS Statistics, IBM

Corporation). This program was used for further data rearrangement and to check the smoothness of the array data by plotting histograms. All the unnormalized bad spots were removed from data. Furthermore, any control spots on the array were checked to confirm the successful hybridization and image analysis. Finally, a file (.SPSS) which only contained unique oligo IDs, gene name and log2ratios for all the normalized and perfect spots was generated. This file was converted into a text delimited file (.dat) for use in "GACK" software (Kim *et al.*, 2002) which assigned genes into present and absent/divergent categories. The GACK analysis program selected a dynamic cut off value based on shape of the signal strength for each spot to be classified as present or divergent (Kim *et al.*, 2002). This was done by calculating the Estimated Probability of Presence (EPP) value for each spot on the array based on its log2ratio. GACK calculated EPP by dividing the normal (expected) distribution curve log2ratio values where all the spots on the array have worked against the actual (observed) log2ratio distribution values for all spots on the array.

### %EPP=100x (normal expected value/observed value)

The trinary cut off method was used at a %EPP cut off 1 set to 0 and %EPP cut off 2 set to 100. Under these parameters, the genes with 0% or 100% EPP were assigned into highly divergent/absent and present categories respectively. Any genes with EPP between 0% and 100% were classed into an uncertain category. These uncertain genes represent the class of genes that could not be assigned into present or highly divergent/absent categories with high confidence therefore they were called slightly divergent genes. Trinary output (.cdt) file containing the cut off values for all genes as binary numbers was generated with present genes designated as 1, slightly divergent genes designated as 0 and highly divergent/absent genes designated as -1 (Kim et al., 2002). Phylogenomic analysis was performed by "Cluster" software (Eisen et al., 1998). The GACK trinary file was converted to text delimited (.dat) format by using SPSS statistical software and imported to Cluster. Using "Cluster" software, the Pearson Correlation coefficient was applied with correlation centered selected as the similarity metrics to establish relationship between strains. The Pearson Correlation between any two series of numbers  $x = (x_1, x_2, \dots, x_n)$  and  $y = (y_1, y_2, \dots, y_n)$  is defined by the equation below;

$$r = \frac{1}{n} \sum_{i=1}^{n} \left( \frac{x_i - \overline{x}}{\sigma_x} \right) \left( \frac{y_i - \overline{y}}{\sigma_y} \right)$$

where  $\overline{x}$  represents the average values in x and  $\sigma_x$  is the standard deviation of these values. If x and y values were plotted as curves then r shows how similar the shapes of the two curves are.

The Pearson correlation is always between 1 and -1 where 1 represents that that the two series are identical, 0 indicates that they are completely uncorrelated and -1 means that they are perfectly opposite (Eisen *et al.*, 1998).

For hierarchical clustering, an agglomerative clustering method was used based on the average linkage clustering algorithm by Sokal and Michener (1958). This process performed repeated clustering cycles joining the true items (genes) or pseudo-items (groups of genes) with the smallest distance between them by a branch/node of a tree whereby the length of the branch represented the distance between them. The whole process was repeated for whole dataset replacing items with computed distances by new items until one item remained. The average distance between joining nodes is generated as (.atr) output file (Appendix: supplementary table 1). The clustering along with the average linkage distance between clusters was visualised by "Tree view" software (Eisen *et al.*, 1998) (Figure 4.3).

### 4.2.4 Classification of loci specific to the hyperinvasive C. jejuni and further analysis

Further mining of CGH data was performed by Professor Nadia Chuzhanova (Physics and Maths department, NTU) through personal communication. This analysis was carried out by using the Delphi 7 object-oriented programming language. The analysis run is included in appendix, supplementary file 1. The aim was to find genes present or absent/highly divergent in all *C. jejuni* strains in one group compared against the other group (*e.g.* genes present in all the six hyperinvasive *C. jejuni* strains and absent/highly divergent from the four low invasive *C. jejuni* strains studied by CGH and vice versa). If there were n number of *C. jejuni* strains in the hyperinvasive group and k number of *C. jejuni* strains in the low invasive group then the criteria was defined as follow:

• If a gene was present in all n strains and absent/highly divergent from all k strains.

Various other criteria were tried with the following being successful:

- (1) if a gene was present in all n strains and absent/highly divergent in k-1 strains.
- (2) if a gene was absent/highly divergent in all n strains and present in k-1 strains.
- (3) if a gene was present in all k strains and absent/highly divergent in n-1 strains.
- (4) if a gene was absent/highly divergent in all k strains and present in n-1 strains.
- (5) if a gene was present in n-1 strains and absent/highly divergent from k-1 strains.
- (6) if a gene was absent/highly divergent in n-1 strains and present in k-1 strains.

Artemis software from <a href="http://www.sanger.ac.uk/resources/software/artemis/">http://www.sanger.ac.uk/resources/software/artemis/</a> (Rutherford et al., 2000) was used to produce circular diagrams of the pan array to compare the variability between strains based on the CGH data.

### 4.3 RESULTS AND DISCUSSION

# 4.3.1 Genomotyping of hyperinvasive C. jejuni using Comparative Genomic Hybridization

The six hyperinvasive *C. jejuni* (01/10, 01/35, 01/04, 01/41, 01/51, EX114) and four selected low invasive *C. jejuni* (01/30, 01/32, 01/46, 01/39) strains (Fearnley *et al.*, 2008) were studied by using comparative genomic hybridization (CGH). Each of the test *C. jejuni* strain and the control strain, *C. jejuni* RM1221, was hybridized on the *C. jejuni* /*C. coli* pan DNA microarray. Each hybridization was performed in triplicate. Each gene was represented by duplicate synthetic oligonucleotides on the array.

### 4.3.1.1 Robustness of genomotyping using DNA microarray

After data processing and thorough filtration using Gene pix pro 6 software (Molecular Devices Corporation, Sunnyvale, CA) and SPSS 17.0 (IBM SPSS Statistics, IBM Corporation) the normalized log<sub>2</sub>ratio values (base two logarithm of ratio of median intensities) were also used to generate histograms to check the quality of each array. A histogram comparing the log<sub>2</sub>ratio values for all the normalized spots for one array

experiment of *C. jejuni* 01/41 has been presented as an example to demonstrate the robustness of our DNA microarray data (Figure 4.1). Using SPSS 17.0 (IBM SPSS Statistics, IBM Corporation), the log<sub>2</sub>ratio values for each strain from three independent array experiments was averaged (Appendix: supplementary table 2) for calculating the GACK trinary cutoffs.

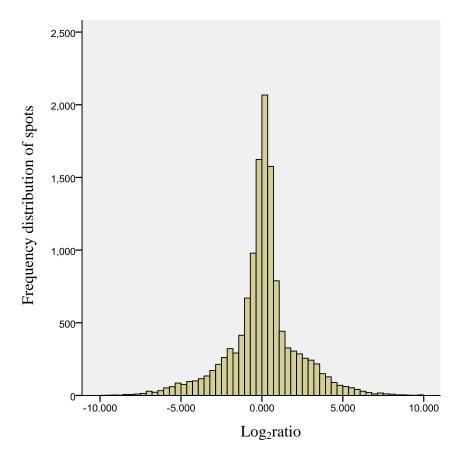



Figure 4.1: A histogram comparing the frequency distribution of spots based on their log<sub>2</sub>ratios.

The data showed a smooth and tight peak representing miminal technical error associated with the microarray experiment that could occur due to inefficient samples labelling and failure of proper hybridisation. It is important to note that a histogram is only an indicative of overall array quality based on the ratios but doesnot provide information about the individual genes. The associated detailed information of signal strength for each spot is analysed to have complete confidence in data quality.

### 4.3.1.2 Preliminary microarray data analysis

For phylogenomic comparisons, the normalized log<sub>2</sub> ratios for each spot on the array were applied to the most strict values of the trinary cut off matrix in GACK software (available at http://falkow.stanford.edu/) to classify genes as present or absent/highly divergent (Kim et al., 2002). The GACK cut off algorithm has been developed as an improved analytical method for determining the presence or divergence of genes applied to C. jejuni and H. pylori genomotyping data (Kim et al., 2002). GACK assigns a gene into present or divergent category irrespective of any normalization. Unlike constant cut off values used in empirical methods, GACK generates an independent cut off for each experimental dataset. Thus GACK provides more confidence in gene category assignment. Since each gene is represented twice on the array, SPSS 17.0 (IBM SPSS Statistics, IBM Corporation) was used to determine an average presence/absence category for each gene (Appendix: supplementary table 3). The dataset from one C. jejuni 01/41 array experiment has been presented as an example to demonstrate trinary cut off as the best method for identification of divergent genes using "Estimated Probability of Present genes (EPP)" values (Figure 4.2).

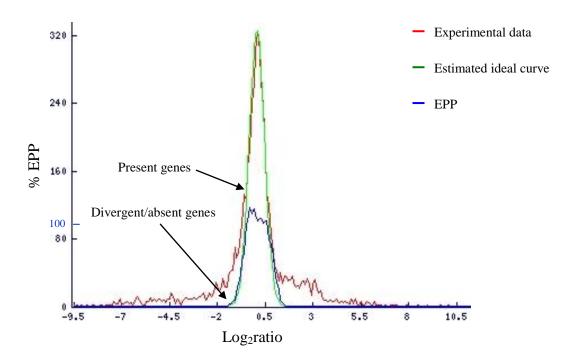



Figure 4.2: GACK trinary cut off algorithm for gene category assignment for an experimental dataset (*C. jejuni* 01/04).

The observed  $\log_2$  ratio values from one *C. jejuni* 01/41 array experiment compared against the ideal curve  $\log_2$  ratio values and EPP for each gene determined by GACK trinary cut-off. The EPP is 0% at  $\log_2$  ratio of ~ -1.5 and 100% at ~ -1.4.

The majority of the distribution of observed normalized hybridization data overlapped the normal distribution of data as expected. The observed distribution tailed off to 0% EPP ( $\log_2$  ratio  $\sim -1.5$ ) where highly divergent genes existed. The increase of EPP to 100% ( $\log_2$  ratio  $\sim -1.4$ ) subsequently increased the expected probability towards present genes. The transition region between 0% EPP and 100% EPP (*i.e.*  $\log_2$  ratio of  $\sim -1.5$  and  $\sim -1.4$ ) contained slightly divergent genes. Other studies phylogenomically comparing the human clinical *C. jejuni* isolates derived from different sources and their disease profile have successfully validated GACK software for classifying genes into present or divergent categories (Champion *et al.*, 2005, Poly *et al.*, 2004, Pearson *et al.*, 2003). For example in the study by Champion *et al* (2005) the classification of genes into present and divergent categories was validated by an empirical cut off determination that produced a very similar list of present and divergent genes. Based on the successful application of GACK analysis, only GACK cut offs were used for assigning genes present or divergent status in this study.

Using the CGH data, the core genome was determined by calculating the total number of genes present in all test *C. jejuni* strains studied by CGH. This was calculated as follows;

Core genome (%) = Number of CDSs present in all test *C. jejuni* strains ×100

Total number of functional reference CDSs on array

There were 623 (23.7%) functional CDSs in the core genome that mainly consisted of genes involved in essential regulatory, cellular and metabolic functions. The remaining genes formed the accessory genome as they were variable between the strains. The accessory genome mainly comprised of CDSs associated with capsule, LOS, flagellar and restriction modification systems. For selection of genes specific to the hyperinvasive *C. jejuni* strains only present and highly divergent genes were considered to have absolute confidence in selection.

### 4.3.2 Phylogenomic clustering of hyperinvasive and low invasive C. jejuni by CGH

Based on CGH data, the phylogenomic relationship was established between the hyperinvasive and low invasive *C. jejuni* strains by using "Cluster" software that performed a Pearson correlation average linkage clustering by comparing the present and highly divergent/absent genes. The hyperinvasive and low invasive *C. jejuni* strains were also compared based on their MLST profiles (Figure 4.3).

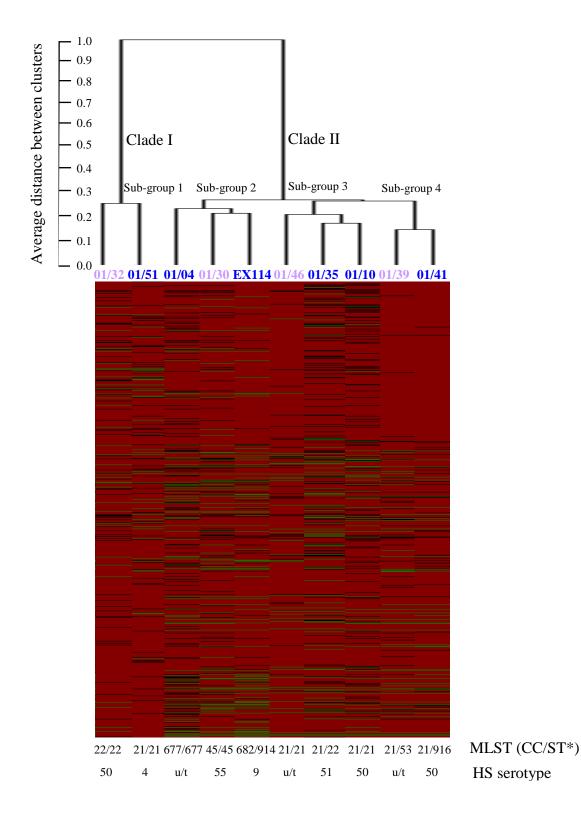



Figure 4.3: The hierarchical clustering of hyperinvasive *C. jejuni* and low invasive *C. jejuni* based on CGH along with the MLST profile and Penner (HS) serotype. The heat map respresenting present and highly divergent/absent genes in all *C. jejuni* isolates across the whole genome with genes arranged in ascending order.

\*CC = Clonal Complex and ST = Sequence Type; u/t = untypeable Hyperinvasive *C. jejuni* = blue; Low invasive *C. jejuni* = purple; Genes present = red; Genes highly divergent/absent = green and Genes slightly divergent = black

The phylogenomic clustering of six hyperinvasive and four low invasive *C. jejuni* strains examined in CGH study was performed using "Cluster" software (Eisen *et al.*, 1998). *C. jejuni* isolates formed two distinct clades (I and II) based on the genome similarity between them and there was no distinct grouping of the hyperinvasive *C. jejuni* isolates as a separate cluster from the low invasive *C. jejuni*. Clade I had only one subgroup 1 and Clade II was subdivided into three sub groups 2, 3 and 4. Clade I clustered two strains in sub group 1; low invasive *C. jejuni* 01/32 and a hyperinvasive *C. jejuni* 01/51. Clade II clustered eight strains which were sub divided into three sub groups. The subgroup 2 showed the hyperinvasive *C. jejuni* EX114 linked to the low invasive *C. jejuni* 01/30 and both of these strains were related to the hyperinvasive *C. jejuni* 01/04. The third sub-group represented two hyperinvasive *C. jejuni* 01/10 and 01/35 that clustered together and were very closely related to a low invasive *C. jejuni* 01/46. Finally, the sub-group 4 was composed of the low invasive *C. jejuni* isolate 01/39 and the hyperinvasive *C. jejuni* 01/41.

All the hyperinvasive *C. jejuni* strains showed different MLST profiles. The *C. jejuni* strains in subgroups 3 and 4 in Clade II belonged to the clonal complex 21 but there was no grouping based on sequence type. All the other subgroups possessed mixed MLST types. The clonal complex 21 is one of the largest *C. jejuni* clonal complexes containing strains from human, animal and environmental sources (Manning *et al.*, 2003, Dingle *et al.*, 2001, Best *et al.*, 2004). *C. jejuni* 01/51 was the only strain in clade I which belonged to ST 21 complex therefore the association between clade II and ST 21 complex is not absolute. Similarly, there was no common Penner (HS) serotype amongst all the hyperinvasive *C. jejuni* strains. Indeed HS50 was shared between the

hyperinvasive and low invasive *C. jejuni* strains. Three strains were not successfully serotyped which may be due to the age of bacterial culture or antisera (Mckay *et al.*, 2001).

Taboada et al (2007) investigated the relationship between neuropathogenic and enteritis causing C. jejuni strains using CGH. In agreement with our findings, Taboada et al (2007) also could not identify distinct clustering associated with different disease profiles and reported great levels of genomic similarity between them. In a later investigation, Taboada et al (2008) compared 32 South African C. jejuni strains associated with enteritis, Guillain-Barré or Miller Fisher syndromes using CGH and MLST. This study argued that MLST is a useful but limited technique as it considers variation in few housekeeping genes and does not account for variation across the whole genome as represented by DNA microarray (Taboada et al., 2008). In a phylogenomics study, Champion et al (2005) reported results similar to our CGH study with no clustering of the 111 clinical isolates based on the disease symptom. In contrast, the same study identified distinct clusters based on the source of transmission. A partial grouping was observed based on MLST profiles of C. jejuni strains studied. The phylogenetic analysis of *C. jejuni* strains from a variety of disease profiles showed that strains with asymptomatic carriage, diarrhoea, bloody diarrhoea, vomiting, septicaemia, and GBS did not cluster as distinct clonal groups. However, six environmental C. jejuni isolates clustered as a separate clonal group (Champion et al., 2005). In another study, C. jejuni strains selected based on Penner serotypes were compared by CGH. The C. jejuni strains with similar Penner serotypes could not be clustered together by CGH suggesting that the C. jejuni strains with the same serotype were otherwise variable based on the whole genome content (Dorrell et al., 2001).

It is also important to note here that the *C. jejuni* strains studied in this project were not selected based on MLST or HS serotype but on the invasion phenotype hence, complete association of strains based on MLST type or Penner HS serotype was not expected. The fact that only four low invasive *C. jejuni* strains have been selected for phylogenomic comparison which could be a limiting factor to emphasize on the genetic similarities and differences identified in the hyperinvasive group of *C. jejuni*.

The failure of hyperinvasive *C. jejuni* to form a distinct clade by CGH might reflect the characteristic invasion profile of these strains to be associated with subtle changes in number of genes at the nucleotide level that would not be detected using DNA microarrays (Malik-Kale *et al.*, 2007). It can be argued that the variation in a phenotype may not necessarily be reflected in the genome content of *C. jejuni*. It may be stimulated by the expression of gene (s) belonging to one or more functional pathways (Konkel *et al.*, 1990). In addition, the host factors may also significantly contribute to the *C. jejuni* virulence phenotypes (Taboada *et al.*, 2007).

# 4.3.3 Identification of loci specific to hyperinvasive C. jejuni and PCR validation of CGH results

The CGH data was further analysed to identify gene/s present in all six hyperinvasive *C. jejuni* strains and absent/highly divergent form the low invasive group of *C. jejuni* strains, and vice versa that might explain the hyperinvasive phenotype of these strains. The analysis performed is described in section 4.2.4. There was no such combination of conserved or variable genes found in all the hyperinvasive *C. jejuni* compared to the low invasive *C. jejuni* strains.

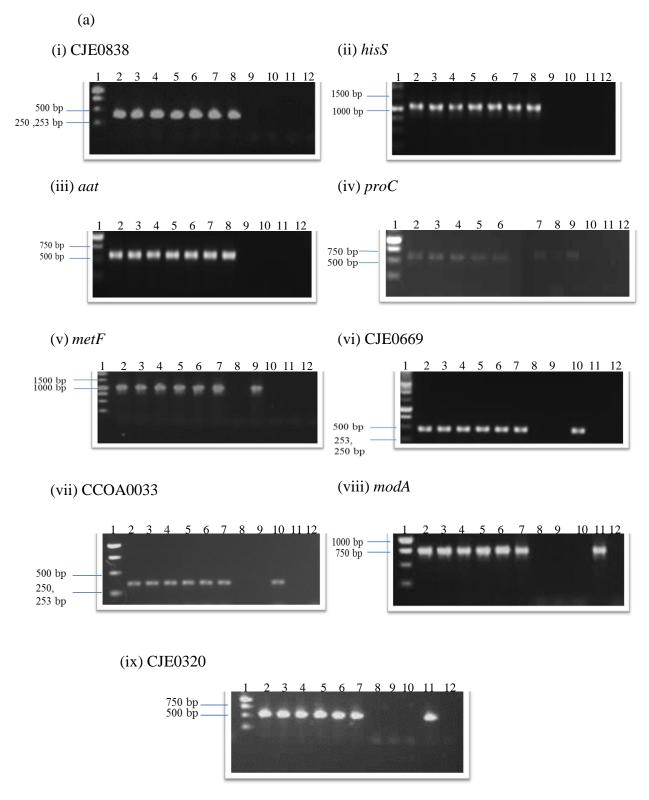
The selection was extended to find present or divergent genes in the majority of hyperinvasive *C. jejuni* strains (section 4.2.4), which identified 67 genes. These genes were classified into six groups based on their presence or divergence in the hyperinvasive *C. jejuni* strains. Only Groups 1 and 2 are presented here in tables 4.1a and 4.1b. The presence or variability of genes in these two groups was further validated by PCR (Figures 4.4a and 4.4b). The primers and expected amplicon sizes are listed in table 2.2.1. The rest of genes arranged in four groups (3, 4, 5 and 6) are provided in the supplementary table 4 in the appendix.

Table 4.1a: Genes selected from CGH data as present in all hyperinvasive C. jejuni.

| Commonweignment   Commonweignment   Hyperiuvssive C. jojuni   Lov-invasive C. jojuni   NOTCILISS   Codi RN12238   Codi RN122 |            |                         |                |       |        |          |          |   | -       |         |           |         |                           |                      |                          |                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------|----------------|-------|--------|----------|----------|---|---------|---------|-----------|---------|---------------------------|----------------------|--------------------------|--------------------------|
| Cheen name in the perina sire C. jojuni and Ol. 10 0.35   Ol. 04   Ol. 31   Ol. 32   Ol. 45   Ol. 30   Ol. 32   Ol. 46   Ol. 30   Ol. 30 |            |                         |                |       |        |          |          |   |         |         |           |         |                           |                      |                          | COG functional           |
| CFE0548   CFE0 |            | Gene name/number        | r              |       | Hype   | invasive | C. jejun | i |         | Low-inv | rasive C. | jejuni  |                           | Role/function        |                          | grouping                 |
| CLEOR38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1: Genes p | resent in all hyperinva |                | 01_10 | 1 35 0 | 1_04 0   | 1_41 01  |   | 114 01  | 30 01   | 32 01 4   | 16 01 3 | 9 C. jejuni NCTC11168     | C. jejuni RM1221     |                          | Fouts et al., 2005       |
| CEOR33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NCTC 11.   | C. jejuni RM1221        | C. coli RM2228 |       |        |          |          |   |         |         |           |         |                           |                      |                          |                          |
| Miss (CJE0856)   Miss (CCO0821)   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | CJE0838                 |                | 1     | 1      | 1        | 1        | 1 | 1       | 1 -     |           |         |                           | hypothetical protein |                          | Hypothetical             |
| his CLE 155   his CCC 00821)   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                         |                |       |        |          |          |   |         |         |           |         |                           | histidyl-tRNA        | histidyl-tRNA            |                          |
| Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 765c)      | hisS(CJE0856)           | hisS(CC00821)  | 1     | 1      | 1        | 1        | 1 | 1       | 1       |           |         | histidyl-tRNA synthetase  | synthetase           | synthetase               | Translation              |
| aar (CJE1252)   aar (CCO1187)   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                         |                |       |        |          |          |   |         |         |           |         | putative                  | l                    | leucyl/phenylalanyl-     | Posttranslational        |
| Automotive and CCE1252)   Automotive CCE12121)   Automotive CCE121210   Automotive Automotive CCE121210   Automotive A |            |                         |                |       |        |          |          |   |         |         |           |         | leucyl/phenylalanyl-tRNA- |                      | tRNAprotein              | modification, protein    |
| Parallel   Parallel  | (109)      | aat (CJE1252)           | aat (CC01187)  | 1     | 1      | 1        | 1        | 1 | 1       | 1       |           |         | -protein                  |                      | transferase              | turnover, chaperones     |
| proC (CJE1219)         proC (CCO1150)         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                         |                |       |        |          |          |   |         |         |           |         |                           | pyrroline-5-         |                          |                          |
| proC (CE1219)         proC (CE1219)         proC (CC01150)         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                         |                |       |        |          |          |   |         |         |           |         | putative pyrroline-5-     | carboxylate          | pyrroline-5-carboxylate  | Amino acid transport and |
| Meth/CLE1336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | j1076)     | proC(CJE1219)           | proC(CC01150)  | 1     | 1      | 1        | -        | 1 | 1       | -       | 1 -1      |         | carboxylate reductase     | reductase            | reductase                | metabolism               |
| meth/CJE1366         meth/CDE1336         meth/CDE1336         meth/CDE1336         methylenetetrallydrofolate olate reductase           CJE0669          1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                         |                |       |        |          |          |   |         |         |           |         | 5,10-                     |                      | 5,10-                    |                          |
| metF (CE1336)         metF (CC01273)         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 </td <td></td> <td>methylenetetrahydrofolate</td> <td>methylenetetrahydrof</td> <td>methylenetetrahydrofol</td> <td>Amino acid transport and</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                         |                |       |        |          |          |   |         |         |           |         | methylenetetrahydrofolate | methylenetetrahydrof | methylenetetrahydrofol   | Amino acid transport and |
| CJE0669                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1202)      | metF (CJE1336)          | metF (CC01273) | 1     | 1      | 1        | 1        | 1 | 1       | 1       | 1 -1      |         | reductase                 | olate reductase      | ate reductase            | metabolism               |
| CJE0669                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                         | CCOA0033       | 1     | 1      | 1        | 1        | 1 | 1 -     | 1 -     | 1 1       | -1      | *****                     |                      | hypothetical protein     | Hypothetical             |
| CJE0669          1         1         1         1         1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                         |                |       |        |          |          |   |         |         |           |         | putative integral         |                      |                          |                          |
| modA (CJE0348)         modA (CCO0388)         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | C)E0669                 |                | 1     | 1      | 1        | 1        | 1 | 1       |         | 1 1       | -1      | membrane protein          | hypothetical protein |                          | Hypothetical             |
| modA (CJE0348)         modA (CCO0388)         1         1         1         1         1         -1         -1         -1         -1         1         binding lipoprotein         periplasmic           CJE0320         CCO0340         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                         |                |       |        |          |          |   |         |         |           |         |                           | molybdenum ABC       |                          |                          |
| modA (CJE0348)         modA (CC00388)         1         1         1         1         -1         -1         -1         -1         -1         1         periplasmic           CJE0320         CC00340         1         1         1         1         1         1         1         1         1         1         1         AhpCTsa family                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                         |                |       |        |          |          |   |         |         |           |         | putative molybdate-       |                      | molybdenum ABC           |                          |
| CC00340 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (30303c)   | mod4 (CJE0348)          | mod4 (CC00388) | 1     | 1      | 1        | 1        | 1 | 1       | 1 -     | 1 -1      | 1       | binding lipoprotein       | periplasmic          | transporter, periplasmic | Transport and metabolism |
| CC00340 1 1 1 1 1 -1 -1 -1 1 homolog AtpC/Tsa family homolog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                         |                |       |        |          |          |   |         |         |           |         | bacterioferritin          |                      | bacterioferritin         | Posttranslational        |
| CC00340 1 1 1 1 1 1 -1 -1 1 homolog AhpC/Tsa family homolog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                         |                |       |        |          |          |   |         |         |           |         | comigratory protein       | antioxidant,         | comigratory protein      | modification, protein    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | CJE0320                 | CC00340        | -     | -      | -        | 1        | - | <u></u> |         |           |         | homolog                   |                      | homolog                  | turnover, chaperones     |

1=present;-1=absent/highly divergent

Group 1 contains 9 genes present in all hyperinvasive C. jejuni and absent/highly divergent from three of four of low invasive C. jejuni.


Table 4.1b: Genes selected from CGH data as absent/highly divergent in all hyperinvasive C. jejuni.

| COG functional                                 | grouping              | Fouts et al ., 2005                                                                       |                                                               | Hypothetical                              |                   | Probable cell         | wall/membrane biogenesis     | Posttranslational | modification, protein   | turnover, chaperones |                  | Translation                              | Hypothetical                              |          | Replication, recombination | and repair |   |
|------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------|-------------------|-----------------------|------------------------------|-------------------|-------------------------|----------------------|------------------|------------------------------------------|-------------------------------------------|----------|----------------------------|------------|---|
|                                                |                       |                                                                                           |                                                               |                                           | probable integral | membrane protein Prol |                              | Post              | probable proteinase mod | Cj0701 turn          | queuine tRNA-    | ribosyltransferase Trar                  |                                           |          | Rep                        | and and    |   |
|                                                | Role/function         | C. jejuni RM1221 C.                                                                       |                                                               | hypothetical protein hypothetical protein | ud                | Ü                     | hypothetical protein Cj0266c |                   | peptidase, U32 pr       | family Cj            | queuine tRNA- qu | ribosyltransferase rib                   | hypothetical protein hypothetical protein | type III | restriction/modificati     | on enzyme, |   |
|                                                |                       | EX114 01_30 01_32 01_46 01_39 C. jejuni NCTC11168 C. jejuni RM1221 C. coli RM2228         |                                                               |                                           |                   | putative integral     | membrane protein             |                   |                         | putative protease    | queuine tRNA-    | <ul> <li>1 ribosyltransferase</li> </ul> |                                           |          |                            |            |   |
| Hyperinvasive C. jejuni Low-invasive C. jejuni | juni                  | 1 39                                                                                      |                                                               | -                                         |                   |                       | 1                            |                   |                         | 1                    |                  | -1                                       | -1                                        |          |                            | 7          | ١ |
|                                                | C. jeju               | ] 46 (                                                                                    |                                                               | 1                                         |                   |                       | 1                            |                   |                         | -1                   |                  | 1                                        | 1                                         |          |                            | -          | ١ |
|                                                | w-invasiv             | 1 32 (                                                                                    |                                                               | 1                                         |                   |                       | 1                            |                   |                         | 1                    |                  | 1                                        | 1                                         |          |                            | -          | ١ |
|                                                | Low-                  | 1_30 (                                                                                    |                                                               | -                                         |                   |                       | -                            |                   |                         | 1                    |                  | 1                                        | 1                                         |          |                            | -          | ı |
|                                                |                       | X114 (                                                                                    |                                                               | -1                                        |                   |                       | -1                           |                   |                         | -1                   |                  | -1                                       | -1                                        |          |                            | -1         | l |
|                                                | mi                    |                                                                                           |                                                               | ij                                        |                   |                       | -                            |                   |                         | -1                   |                  | -1                                       | -1                                        |          |                            | -1         | ı |
|                                                | Hyperinvasive C. jeju | 01_41 (                                                                                   |                                                               | -1                                        |                   |                       | -1                           |                   |                         | -1                   |                  | -1                                       | -1                                        |          |                            | -1         | ١ |
|                                                |                       | 01_04                                                                                     |                                                               | ij                                        |                   |                       | -                            |                   |                         | -1                   |                  | -1                                       | -1                                        |          |                            | -          | 1 |
|                                                |                       | 01_35                                                                                     |                                                               | ij                                        |                   |                       | -                            |                   |                         | -1                   |                  | -1                                       | -1                                        |          |                            | -1         |   |
|                                                |                       | 01_10                                                                                     |                                                               | -                                         |                   |                       | -                            |                   |                         | -1                   |                  | -1                                       | -1                                        |          |                            | -1         |   |
|                                                |                       | n all hyperinvasive                                                                       | vasive C. <i>jejuni</i>                                       | CCOA0144                                  |                   |                       | CC00335                      |                   |                         | CC00767              |                  | tgt (CCO1072)                            |                                           |          |                            |            |   |
|                                                | Gene name/number      | GROUP 2: Genes highly divergent/absent in all hyperinvasive 01_10 01_35 01_04 01_41 01_51 | C. jejunt and present in three of four low invasive C. jejunt | CE1112                                    |                   |                       | CJE0315                      |                   |                         | CJE0801              |                  | tgt (CJE1090)                            | CJE1128                                   |          |                            | CJE0731    |   |
|                                                |                       | GROUP 2: Genes h                                                                          | C. Jejuni and presen                                          |                                           |                   |                       | Cj0266c                      |                   |                         | Cj0701               |                  | tgt (Cj1010)                             |                                           |          |                            |            |   |

1=present;-1=absent/highly divergent

Group 2 consists of 6 genes highly divergent/absent in all hyperinvasive C. jejuni and present in three of four low invasive C. jejuni.

PCR screening of genes listed in group 1 and 2 (Table 4.1a and 4.1b) further validated their presence and absence in the hyperinvasive and low invasive *C. jejuni* isolates.



Continouous

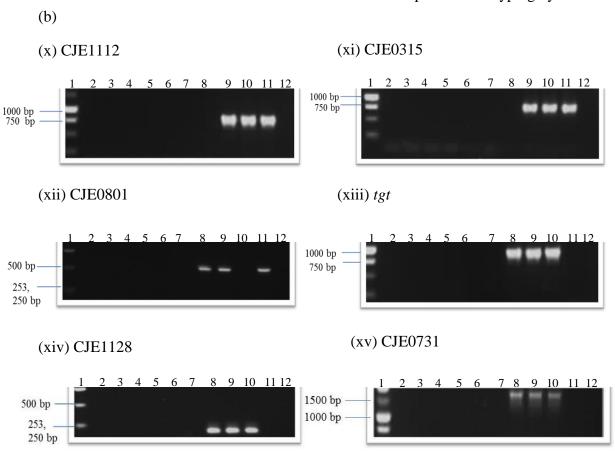



Figure: 4.4: PCR validation of CGH data.

(a) PCR verification of genes present in all hyperinvasive *C. jejuni* and highly divergent from three of four low invasive *C. jejuni* (Group 1, table 4.1a). (i) CJE0838 (ii) *hisS* (iii) *aat* (iv) *proC* (v) *metF* (vi) CJE0669 (vii) CCOA0033 (viii) *modA* (ix) CJE0320. (b) Six genes included in group 2 (Table 4.1b) were found as highly divergent in all hyperinvasive and low invasive *C. jejuni* with an exception of one low invasive *C. jejuni* strain in each case. (x) CJE1112 (xi) CJE0315 (xii) CJE0801 (xiii) *tgt* (xiv) CJE1128 (xv) CJE0731.

Each gel was loaded: Lane 1; 1 kbp DNA marker (Promega, UK); (lanes 2-7); hyperinvasive *C. jejuni* strains 01/10, 01/35, 01/04, 01/41, 01/51, EX114. Lanes (8-11); low invasive *C. jejuni* strains 01/30, 01/32, 01/46, 01/39. Lane 12; negative control.

# 4.3.4 Presence of hyperinvasive-associated loci in an additional group of low invasive C. jejuni isolates

To investigate the presence of the identified genes amongst a wider group of strains PCR screening on additional 9 low invasive *C. jejuni* strains was conducted (Table 4.2).

0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.000 01 10 01 35 01 04 01 41 01 51 EX114 01 30 01 32 01 46 01 39 01 05 01 08 01 11 01 36 C2/3 C12/11 C27/14 C69/2 C110/4 p-value\* 0.000 0.000 0.517 0.00 0.011 0.001 Table 4.2: Summary of PCR screening for the identified genes (Table 4.1a and 4.1b) in the hyperinvasive and low invasive Low invasive C. jejuni PCR profile of hyperinvasive and low invasive C. jejuni + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Hyperinvasive C. jejuni + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Gene name/number in C. jejuni RM1221 GROUP 2: Genes highly divergent/absent GROUP 1: Genes present in all modA (CJE0348) metF(C)E1336) proC(CE1219) hisS (CJE0856) aat (CJE1252) tgt (CIE1090) CCOA0033 in all hyperinvasive C. jejuni C)E0669 C)E1128 CJE0838 CE1112 CJE0315 CJE0320 CJE0801 CJE0731 C. jejuni strains. hyperinvasive C. jejuni

+=present, - =absent

\*Chi-square, Fisher's exact test was performed to determine if the presence or absence of identified genes in the hyperinvasive group of C. jejuni strains was statistically significant. Significance level =1% (p=0.01) Table 4.2 (group 1) showed that most of the additional low invasive *C. jejuni* isolates were negative for genes present in all hyperinvasive *C. jejuni*. In group 1, six genes (CJE0838, *hisS*, *proC*, CCOA0033, CJE0669 and CJE0320) were highly divergent in 1/13 low invasive *C. jejuni* isolates. Among the additional *C. jejuni* strains PCR screened, *C. jejuni* 01/05 was the only isolate positive for three genes *i.e. aat*, *metF* and *modA* followed by *C. jejuni* 01/08 that was positive for *modA* only.

For the genes in group 2, the majority of the additional low invasive *C. jejuni* strains possessed these genes. PCR analysis showed that four genes (CJE1112, CJE0315, CJE0801 and *tgt*) were present in a total of 12/13 low invasive *C. jejuni*. Additionally, all the 9 additional low invasive *C. jejuni* strains were negative by PCR for CJE0731 whereas, three low invasive *C. jejuni* (C27/14, C69/2, C110/4) strains showed negative results for CJE1128 in this group.

PCR screening of 9 additional low invasive *C. jejuni* isolates for genes present or highly divergent in all hyperinvasive *C. jejuni* (group 1 and group 2, Table 4.1a and 4.1b) showed a strong statistical correlation (p=0.01 at 1% significance level) between the presence and absence of these genes in the hyperinvasive *C. jejuni* for 13/15 genes. CJE1128 (hypothetical protein) (p=0.011) and CJE0731 (type III restriction modification enzyme) (0.517) were the two exceptions. This result suggests that although the genes in group 1 and 2 are not part of the same functional group or pathway these genes could be considered as genetic markers for the hyperinvasive phenotype. Previously, a cluster of six genes (*cj1321-cj1326*) in the O-linked glycosylation locus were identified, using parsimony based algorithm, as characteristic of chicken/livestock campylobacters. This gene cluster present in 16/17 isolates, was identified in an additional six chicken isolates that were not tested in the original study confirming that these genes: *cj1321* to *cj1326*, were genetic markers for livestock/chicken isolates (Champion *et al.*, 2005).

### 4.3.5 Functional importance of hyperinvasive linked loci identified by CGH

The phylogenomics study identified 67 genes which belonged to different functional categories. The functional significance of the presence or absence of these genes in the hyperinvasive *C. jejuni* strains, particularly for the genes listed in group 1 and 2 (Table 4.1a and 4.1b) is discussed below;

### 4.3.5.1 Group 1: Genes present in the all hyperinvasive C. jejuni

Group 1 had nine genes present in all hyperinvasive C. jejuni strains but highly divergent in the majority of the low invasive C. jejuni (Table 4.2). Important metabolic genes including carboxylate reductase and methyltetrahydrofolate reductase, tRNA synthesis genes i.e. histidyl-tRNA synthase and leucyl/phenylalanyl tRNA synthase formed this group. Metabolic and biosynthetic and DNA and RNA processing genes have been reported as an integral part of the C. jejuni core genome (Parker et al., 2006, Pearson et al., 2003, Dorrell et al., 2001). The conservation of these genes may confer increased survival chances for bacteria especially in the hostile environment inside the human host. A histidyl tRNA synthetase encoding gene (hisS-CJE0856) was present in all hyperinvasive C. jejuni strains. In C. jejuni RM1221, hisS is a 1,227 bp (408 amino acids) long gene. Histidyl tRNA synthetase (HisRS) is an enzyme which is composed of a small peptide chain of about 420-550 amino acids. HisRS has important catalytic properties in several regulatory mechanisms of cell metabolism. HisRS is responsible for synthesizing histidyl-transfer RNA, which is important for inserting histidine into protein structures. HisRS has been found to act as an antigen responsible for causing autoimmune diseases in humans such as rheumatic arthritis or myositis (Freist et al., 1999). Using comparative phylogenomics Aklujkar and Lovely (2010) showed that the attenuation of hisS resulted in physiological changes in Pelobacter carbinolicus by altering its iron III reduction pathway.

Another gene in Group 1, which was found to be present in all the hyperinvasive *C. jejuni*, is *aat* (CJE1252 in *C. jejuni* RM1221). It is a 648 bp long gene. It encodes for a Leucyl/phenylalanyl-tRNA protein transferase and contains 415 amino acids. The role of *aat* is to transfer a Leucine or Phenylalanine to the N terminal of Arginine or Lysine containing proteins to allow their breakdown (Shrader *et al.*, 1993). The function of *aat* in *C. jejuni* pathogenesis is not yet characterised.

A metabolic gene present in all hyperinvasive C. jejuni strains and highly divergent in the majority of low invasive C. jejuni is proC (CJE1219 in C. jejuni RM1221), encoding for pyrroline-5-carboxylate synthase. CJE1219 is 732 bp (199 amino acids) in size in C. jejuni RM1221. This is a key enzyme of proline metabolism involved in the synthesis of L-proline and ornithine. Proline has a well-studied function related to maintaining redox balance under osmotic stress in several bacteria (Perez-Arellano et al., 2010). Previously, in a transposon mutagenesis study of hyperinvasive C. jejuni 01/51, a transposon was inserted in a metabolic gene putA (Cj1503c in C. jejuni NCTC11168) encoding for a putative proline dehydrogenase/delta-1-pyrroline-5carboxylate dehydrogenase, an enzyme involved in the oxidation of proline into glutamate. The transposon inserted in putA reduced invasion of the C. jejuni 01/51 mutant into INT-407 and Caco2 cells (Javed et al., 2010). Another metabolic gene in Group 1, is metF (CJE1336 in C. jejuni RM1221). CJE1336 is a 849 bp long gene and encodes 282 amino acids. In C. jejuni RM1221, metF encodes for a metabolic enzyme 5, 10-methylenetetrahydrofolate reductase. This protein is a flavoprotein that catalyses the conversion of 5-methyltetrahydrofolate to 5, 10-methylenetetrahydrofolate.

The presence of genes related to metabolic and regulatory pathways in hyperinvasive C. jejuni might reflect that the hyperinvasive C. jejuni do not have well characterised pathogenicity factors as in other enteric pathogens like E. coli and Salmonella enterica but are opportunistic pathogens. In 1988, Stanley Falkow devised the molecular version of Koch's postulates by defining the "virulence factor" in a pathogen and stated that a virulence factor must be present in a pathogenic strain and absent from the nonpathogenic strain. Pallen and Wren (2007) argued that the definition of virulence factors cannot be strict as many bacteria adapt to different functions in different conditions. For example, the uropathogenic E. coli lives in the human intestine but acts as a pathogen in the human bladder. Similarly, the enterohaemorrhagic E. coli is commensal in bovine intestine but causes disease when inside the human gut (Pallen and Wren., 2007). Likewise, C. jejuni is commensal in chickens and a pathogen in humans. Thus, the C. jejuni infection in humans is a multifactorial mechanism that results from the requirement of bacteria to survive inside the human host. In a recent study, Hofreuter et al (2008) reported that the subtle genomic changes in C. jejuni metabolic pathways significantly influenced their ability to utilize nutrients and colonize specific host tissues. This suggests that the metabolic diversity is an important factor in this organism in defining host specificity.

A molybdenum ABC transporter gene, modA (CJE0348 in C. jejuni RM1221) was present in all hyperinvasive C. jejuni strains but highly divergent in 10/13 of the low invasive C. jejuni isolates studied. CJE0348 is a 750 bp (249 amino acids) in size in C. jejuni RM1221. The putative molybdenum ABC transporter binding protein (modA) is a part of molybdenum transport apparatus modC CJE0345 (Cj0300c), B CJE0346 (Cj0301c) and A CJE0348 (Cj0302) and it is present in the hypervariable Plasticity Region (PR) 1 (Pearson et al., 2003) and Plasticity Region (PR) 2 (Dorrell et al., 2001) in C. jejuni strains identified in comparative phylogenomics studies (Pearson et al., 2003, Dorrell et al., 2001). Molybdenum has been shown to have a role in nitrate metabolism by the catalytic activity of a flavoprotein enzyme, nitrate reductase, enabling nitrate to act as a terminal electron acceptor in place of oxygen under oxygen deficient conditions in Campylobacter (Sellars et al., 2002, Pearson et al., 2003). microarray studies based on NCTC11168 as the reference strain (Parker et al., 2006) showed that the C. jejuni RM1221 and other investigated C. jejuni strains were diverse in the molybdenum ABC transport region. However, in the current study this region was present in all hyperinvasive C. jejuni strains which may reflect the increased fitness of these strains compared to the low invasive C. jejuni to allow survival in diverse ecological niches and utilize a variety of metabolic resources.

Another gene, CJE0320 (in *C. jejuni* RM1221) is present in all hyperinvasive *C. jejuni* and highly divergent in the majority of low invasive *C. jejuni*. The size of this gene is 456 bp (151 amino acids). In *C. jejuni* RM1221, CJE0320 is annotated as peroxiredoxin enzyme in the antioxidant/AhpCTCA family. Cj0271 and CCO0340 are the homologues of this gene in *C. jejuni* NCTC11168 and *C. coli* RM2228 respectively. In *C. jejuni* NCTC11168, Cj0271 has been shown to have a role in reducing hydrogen and organic peroxides, thus conferring resistance under oxidative stress conditions (Atack *et al.*, 2008).

Interestingly, *modA* and CJE0320 have related functions and their presence in the hyperinvasive *C. jejuni* strains in this study may provide advantage under oxidative stress conditions.

In group 1, three genes (CCOA0033 in *C. coli* RM2228, CJE0838 and CJE0669 in *C. jejuni* RM1221) with a putative role were present in all the hyperinvasive *C. jejuni* strains. CCOA0033 is a 213 bp gene encoding 70 amino acids. CJE0838 and CJE0669 are 957 bp (318 amino acids) and 207 bp (68 amino acids) in size respectively. Fouts *et* 

al (2005) identified several hypothetical genes in the genome sequences of different *Campylobacter* strains. These genes add to the genomic diversity of this organism.

A periplasmic membrane encoding gene lolA (CJE1021 in RM1221) (Group 5; supplementary table 4) was present in five hyperinvasive C. jejuni and three low invasive C. jejuni strains except and highly divergent in C. jejuni 01/04 and the low invasive C. jejuni strain 01/32. Two other genes (Cj0544, Cj0151c in NCTC11168) with a predicted role as a periplasmic protein were also included in group 5. The homologues of these genes in C. jejuni RM1221 (i.e. CJE0648 and CJE0147) have no function characterized. In C. jejuni, outer membrane proteins have been found to play a role in virulence in particular in the adherence and invasion of intestinal epithelial cells. The role of surface exposed proteins including, major outer membrane proteins (MOMP-PorA), JlpA, PEB1a, Campylobacter adhesion to fibronectin (CadF) and FlpA in adherence and internalization of cultured epithelial cells in known in C. jejuni (Jin et al., 2001, Pei et al., 1998, Monteville et al., 2003, Krause-Gruszczynska et al., 2007, Flanagan et al., 2009). The function of these genes is not characterised yet in the C. jejuni strains studied here but taking into account the importance of outer membrane proteins in host cell interaction, these genes may have a potential role in virulence in particular invasion of hyperinvasive *C. jejuni* strains.

### 4.3.5.2 Group 2: Genes highly divergent/absent in all hyperinvasive C. jejuni

Based on CGH data, a second group of six genes were identified as divergent in all hyperinvasive *C. jejuni* but present in most of the low invasive *C. jejuni* strains studied (Table 4.2). It can be argued that in the case of this group the presence of genes in the low invasive *C. jejuni* strains may be responsible in reducing the invasion potential of these strains. The process of gene loss or genome decay is evident in some bacterial pathogens. The best examples where the pathogens have lost genes to acquire smaller genomes in order to adapt to the specialised host niches are *Yersinia pestis* and *S. enterica* servar Typhi (Pallen and Wren., 2007).

A hypothetical protein (CJE0315) was found to be highly divergent in all hyperinvasive *C. jejuni* and present in 12/13 low invasive *C. jejuni* (01/32, 01/46, 01/39) but highly divergent in low invasive *C. jejuni* 01/30. In *C. jejuni* RM1221, this gene is a 510bp long and the translated protein contains 169 amino acids. In NCTC11168 and *C. coli* RM2228, this gene is annotated as a putative integral membrane protein (*i.e.* Cj0266c

and CCO0335 respectively). There are other membrane associated protein encoding genes found to be absent from the majority of the hyperinvasive *C. jejuni* strains. For example, a membrane protein encoding gene (CJE0989) annotated as SCO1/SenC family protein in *C. jejuni* RM1221 (Group 3; supplementary table 4) and a porin domain protein CJE1165 in *C. jejuni* RM1221 (Group 6; supplementary table 4) characterised as a probable periplasmic protein were highly divergent from the majority of the hyperinvasive *C. jejuni* strains but present in the most of the low invasive *C. jejuni*. This may suggest that these genes may not have a role in invasion phenotype of the hyperinvasive group of *C. jejuni* strains.

Another gene highly divergent in all hyperinvasive C. jejuni strains is CJE0801. This gene is a 1,254 bp (417 amino acids) long and has similarity to peptidase U32, in RM1221. The role of this peptidase in *C. jejuni* pathogenesis is not known. Periplasmic proteases are an important part of the cell envelope of Gram negative bacteria as they provide resistance against extracellular stresses including oxygen and temperature fluctuations. CJE0801 belongs to the functional category of post-translational modification, protein turn over, chaperone. In C. jejuni, a periplasmic protease HtrA, has been shown to provide protection against heat and oxidative stress conditions in C. jejuni (Baek et al., 2011b). Recently, the role of a peptidoglycan peptidase (pgp1) in C. jejuni virulence has been characterised using C. jejuni 81-176 as the model organism (Frirdich et al., 2012). In C. jejuni 81-176, has been shown to be involved in maintaining the helical cell shape and in other virulence phenotypes mainly altered innate immune response, motility and biofilm formation (Frirdich et al., 2012). Since, CJE0801 was missing from all the hyperinvasive C. jejuni strains; this may suggest that this gene may be involved in supressing invasion in the low invasive *C. jejuni* strains.

A tRNA processing and modification gene, queuine tRNA ribosyltransferase (*tgt*) (CJE1090 in *C. jejuni* RM1221) was highly divergent/absent from all hyperinvasive *C. jejuni* but present in all low invasive strains except *C. jejuni* 01/39. In *C. jejuni* RM1221, CJE1090 is 1,122 bp in size and encodes a 373 amino acids polypeptides. The function of *tgt* in the bacterial translational process is to catalyse the incorporation of queuine which is a hyper-modified base in the wobble position of the anticodon of tRNAs by an exchange reaction with guanine (Fouts *et al.*, 2005).

A type III restriction/modification enzyme encoding gene CJE0731 in *C. jejuni* RM1221 was found to be highly divergent in all hyperinvasive *C. jejuni* strains and present in

only three low invasive C. jejuni (01/30, 01/32, 01/46). CJE0731 in C. jejuni RM1221 is 2,028 bp (675 amino /acids) in size. In contrast, a type I restriction enzyme M protein (Cj1553c-hsdM) was found to be present in majority of hyperinvasive C. jejuni strains except in C. jejuni 01/51 and highly divergent from three low invasive C. jejuni strains but present in low invasive C. jejuni 01/30 (Group 5, supplementary table 4). Restriction modification regions (RM) are variable regions in the C. jejuni genome. There are different types of RM systems characterised in C. jejuni strains referred to as type I, II and III. C. jejuni strains have characteristic RM regions that show strain to strain variation. The diversity seen in the RM systems in C. jejuni might reflect it as hotspot for horizontal gene transfer like within other variable regions in the *C. jejuni* genome including CAP, LOS and FM regions (Miller et al., 2005). For example, C. jejuni 81-176 has its unique type I restriction modification system which is absent from C. jejuni RM1221 and NCTC11168 (Hofreuter et al., 2006). Another C. jejuni strain, ATCC43431, has all restriction modification systems as present in C. jejuni NCTC11168 and also contains additional complements of RM systems (Poly et al., 2004). Previously, RM regions have been reported as highly divergent in NCTC11168 (Cj0625–Cj0629) and RM1221 (CJE0731 and CJE0732) in a number of *C. jejuni* strains studied by DNA microarray (Parker et al., 2006, Dorrell et al., 2001). This reflects that RM systems are dispensable in C. jejuni and may not necessarily influence virulence but are required to generate diversity in genomes.

### 4.3.5.3 Important loci present or variable in other groups

Flagellar biosynthesis loci have been well studied virulence determinants in *C. jejuni* (Duong and Konkel., 2009, Rodin *et al.*, 2008, Parker *et al.*, 2006, Champion *et al.*, 2005, Pearson *et al.*, 2003, Dorrell *et al.*, 2001). In our study, the flagellar basal-hook body protein (*fliE*) was present in five hyperinvasive *C. jejuni* but highly divergent in the hyperinvasive *C. jejuni* 01/51 (Group 5; supplementary table 4). This flagella gene, *fliE* was highly divergent in three of four low invasive *C. jejuni*. However, *C. jejuni* 01/51 exhibited fully motile profile in our study (section 3.4.5). Based on the importance of flagella in *C. jejuni* virulence and survival inside the human host and its fully motile phenotype (Grant *et al.*, 1993, Nachamkin *et al.*, 1993, Morooka *et al.*, 1985) it may be argued that the divergence of *fliE* in *C. jejuni* 01/51 might only be the sequence variation rather than the absence of gene. It would be interesting to re-confirm the absence of *fliE* in *C. jejuni* 01/51 by PCR or to be more precise by Southern blotting.

Two genes (cfrA; CJE0847 and ceuB; CJE1541) encoding for ferric receptor and iron transport permease proteins respectively were also identified in this study (Group 5; supplementary table 4). These genes were present in five of six hyperinvasive C. jejuni strains and highly divergent from three of four low invasive C. jejuni. The iron receptor, CfrA and CeuB are important components of the ferric enterobactin transport system in many C. jejuni strains. These receptors have a high affinity for iron and scavenge iron molecules from inside the gastrointestinal tract by forming ferric enterobactin complex which are transported through the bacterial periplasmic membrane (Zeng et al., 2009). The role of cfrA and ceuB genes in iron uptake system and in chicken colonization has been well investigated in C. jejuni (Stintzi et al., 2008, Palyada et al., 2004. A mutant in the cfrA gene, completely abolished enterobactin mediated transport and chicken colonization potential compared to the parent strain where the colonization was recorded to  $10^7$  cfu/ml of caecal content (Palyada *et al.*, 2004). Recently, another ferric enterobactin receptor, CfrB was identified in Campylobacter with a role in iron acquisition and chicken colonization. This study showed that inactivation of the cfrB gene greatly reduced colonization of the chicken intestine (Xu et al., 2010).

Another important gene CCO0783 (arsC) in C. coli RM2228 encoding for arsenic resistance has been found as present in the majority of hyperinvasive C. jejuni and absent/highly divergent from the majority of low invasive C. jejuni strain (Group 5; supplementary table 4). Arsenic is a naturally present toxic metalloid which is an additive in poultry feed. Poultry being the main reservoir of Campylobacter species the isolates have developed marked arsenic resistance. A well characterised arsenic resistance gene arsC in C. jejuni encodes for an arsenate reductase that converts arsenate into arsenite (Wang et al., 2009). A previous study used Suppressive Subtractive Hybridization to show the presence of arsC in C. jejuni NCTC11168 and absence from C. jejuni 81116 (Ahmed et al., 2002). In the recently sequenced C. jejuni RM1221 four genes with three of them similar to ars genes have been identified (Fouts et al., 2005). These ars genes have homologues in other sequenced C. jejuni strains including C. jejuni NCTC11168 (Parkhill et al., 2000) and C. jejuni 81-176 (Hofreuter et al., 2006). Wang et al (2009) has characterised ars operon in C. jejuni RM1221 and found a number of clinical C. jejuni isolates to show very high levels of arsenic resistance. The presence of arsC in most of the hyperinvasive C. jejuni and absence in majority of low invasive might signify increased fitness of hyperinvasive C. jejuni in the environment compared to the low invasive *C. jejuni*.

Another gene CJE1310 in C. jejuni RM1221 encoding for twin-arginine translocation protein (TatA/E) was found to be present in 5 hyperinvasive C. jejuni except in C. jejuni 01/35. This gene was found as absent/highly divergent in 3 low invasive C. jejuni but present in low invasive C. jejuni 01/30 (Group 5, supplementary table 4). In bacteria, the twin-arginine translocase (TAT) secretion system has a role in identifying partially or fully folded proteins and transports them across the cytoplasmic membrane. With an increasing number of C. jejuni genome sequences becoming available a number of TAT related genes are being identified (Rajashekara et al., 2009). A knockout mutant in tatC was found to be deficient in virulence related phenotypes including biofilm formation, motility, flagella synthesis, increased antimicrobial resistance and survival under environmental stresses (Rajashekara et al., 2009). Rajashekara et al (2009) also showed the importance of tatC in chicken colonization. The presence of a twin-arginine related gene in the majority of hyperinvasive C. jejuni and absence in most of the low invasive C. jejuni might contribute to the improved stress responses and virulence related traits in the hyperinvasive C. jejuni. It would be interesting to characterize the role of this gene in all hyperinvasive *C. jejuni*.

A DNA methyltransferase encoding gene CJE1077 (*gidB*) was identified as highly divergent/absent in 5 hyperinvasive *C. jejuni* but present in hyperinvasive *C. jejuni* EX114. This gene was highly divergent in 3/4 low invasive *C. jejuni* (Group 6, supplementary table 4). In a recent study, a gene Cj1461 encoding for a putative DNA methyltransferase was found to have a role in the regulation of virulence in *C. jejuni* (Kim *et al*, 2008). In that study, a mutant in Cj1461 showed reduced adhesion and motility, but increased invasion. CJE1077 (*gidB*) may have a potential role in *C. jejuni* virulence but it has not been characterised as yet.

It is important to analyse the sequence of genes which are identified as being present in the majority of hyperinvasive *C. jejuni* and in one low invasive *C. jejuni* strain or vice versa to account for any gene sequence variation which cannot be detected by the DNA microarray or PCR.

In summary, CGH identified genes of diverse functions. The majority of genes have functions related to the essential cellular and metabolic pathways. Some other genes with role in virulence are also identified. The genes identified as being present and highly divergent/absent in all the hyperinvasive *C. jejuni* strains are the markers of hyperinvasion phenotype as being statistically associated with this group of strains.

### 4.3.6 Distribution of hyperinvasive loci in the pan genome

The 67 genes identified as present or highly divergent in the hyperinvasive *C. jejuni* strains compared against the low invasive *C. jejuni* and vice versa were classified into six groups (Table 4.1a and 4.1b, and supplementary table 4 in appendix). The distribution of these 67 loci was plotted on the pan genome to see whether any of the selected genes were present in the same operon or functionally identical clusters (Figure 4.5).

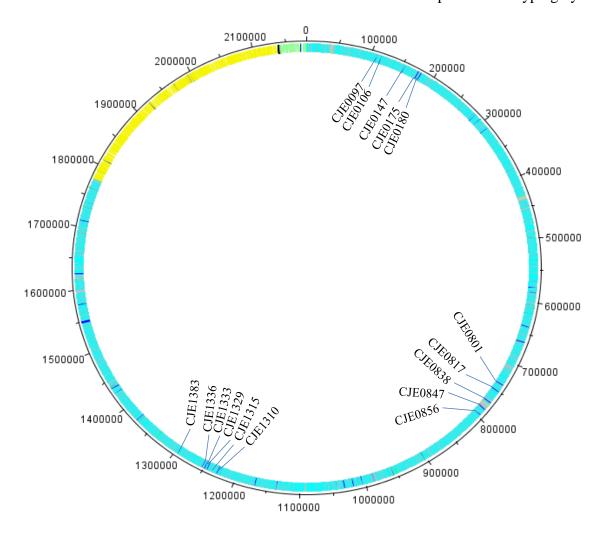



Figure 4.5: Circular diagram of the *C. jejuni/C. coli* pan genome showing the distribution of 67 hyperinvasive-associated loci. The region on the pan genome starting from mark '0' and coloured sky blue represents the *C. jejuni* RM1221 genome. The yellow region shows additional genes present in *C. coli* RM2228. The light green and black regions are the loci unique to *C. jejuni* 81-176 and *C. jejuni* 11168 respectively. The selected 67 CDSs (Table 4.1a and 4.1b, and supplementary table 4 in appendix) that were conserved or highly divergent in the hyperinvasive compared to the low invasive *C. jejuni* in this phylogenomics study are highlighted in a dark blue colour. This diagram was generated using the Artemis genome viewing tool (Rutherford *et al.*, 2000). The representative position of some loci which are present close to each other on the pan genome is also shown.

Overall, the majority of 67 genes were randomly distributed across the pan genome. None of the genes belonged to the same operon. The figure 4.5 showed that the genes, CJE0097, CJE0106, CJE0147, CJE0175, *purN* (CJE0180), are present close together

between 100,000 bp and 200,000 bp positions on the pan genome but these genes are not adjacent or functionally identical. Similarly, a group of five genes (CJE0801, CJE0817, CJE0838, *cfrA* (CJE0847) and *hisS* (CJE0856) are present between 700,000 bp and 800,000 bp locations and 6 genes (CJE1310, *tsf* (CJE1315), CJE1329, CJE1333, *metF* (CJE1336) and CJE1383) are located between 120,0000 bp and130,0000 bp positions on the pan genome. All the genes within these clusters are not part of the same functional category. The phylogenomic analysis of hyperinvasive *C. jejuni* strains indicates that the hyperinvasive phenotype may not be defined by the presence or absence of gene clusters of one particular functional group. This unique phenotype may be a function of genes of different cellular pathways.

# 4.3.7 Variability in the hyperinvasive C. jejuni at the whole genome level based on CGH data

Given that no obvious clusters of the previously identified 67 loci were found it was decided to see the overall diversity in the hyperinvasive and low invasive *C. jejuni* strains and to identify genomic regions that were hotspots for diversity (Figure 4.6).

Chapter 4: Genotyping by CGH

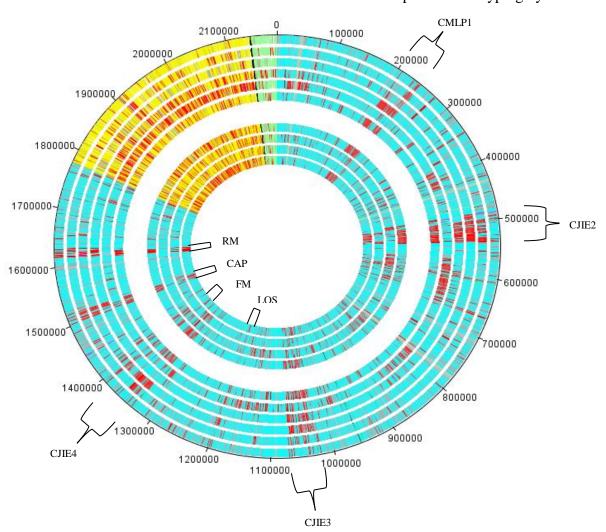



Figure 4.6: The colour coded diagrammatic representation of the CGH pan genome showing genes slightly or highly divergent/absent in the six hyperinvasive and four low invasive *C. jejuni*. The *C. jejuni* RM1221 genome on the pan array is coded sky blue. The genes unique to other *C. jejuni* sequenced strains and *C. coli* RM2228 are added to the end of *C. jejuni* RM1221 sequence and include the unique *C. coli* RM2228 CDS (Yellow), unique *C. jejuni* 11168 CDS (Black) and *C. jejuni* 81-176 CDS (Green). The outer six circles (outwards to inwards) represent hyperinvasive *C. jejuni* strains in the order of *C. jejuni* 01/10, 01/35, 01/04, 01/41, 01/51, EX114 followed by four low invasive *C. jejuni* strains, 01/30, 01/32, 01/46, 01/39. Slightly divergent genes are coloured grey and highly divergent genes are red as identified by CGH for each *C. jejuni* strain. CMLP (*Campylobacter* Mu like prophage), CJIE 2, 3, 4 (*Campylobacter jejuni* integrated element), LOS (Lipooligosacccharide), FM (Flagellar modification), CAP (Capsule polysaccharide), RM (Restriction modification) regions in *C. jejuni* RM1221 are labelled.

Our results showed that both groups of *C. jejuni* strains were very diverse irrespective of their invasion phenotype. In the majority of C. jejuni strains investigated by CGH, the most variability appeared in the C. jejuni RM1221 specific prophages and other mobile genetic integrated regions including CMLP1, CJIE2, CJIE3, CJIE4 (Fouts et al., 2005). Virulence related surface structures in C. jejuni including capsular polysaccharides (CAP) and lipo-oligosaccharides (LOS), Restriction Modification (RM) and Flagellar Modification (FM) regions were also variable amongst most strains (Figure 4.6). The result is not surprising as these regions showed a great degree of variation in other C. jejuni strains with different phenotypes, originating from a variety of sources and disease profiles (Parker et al., 2006, Pearson et al., 2003, Dorrell et al., 2001). Pearson et al (2003) studied genomic diversity in 18 C. jejuni isolates from a variety of sources using a NCTC11168 DNA microarray. This study identified seven hypervariable genomic regions called Plasticity Regions (PR). Most C. jejuni strains were highly divergent in PR5 and 6 which included capsule, LOS biosynthesis and flagella modification genes (Pearson et al., 2003). In the other phylogenomics study by Parker et al (2006) a collection of 67 C. jejuni and 12 C. coli strains were studied using a C. jejuni NCTC11168 and RM1221 combined array. This study showed that the majority of the strains investigated were lacking/highly divergent in the unique C. jejuni RM1221 CJIEs. These tested strains were also highly variable in the capsule and LOS regions (Parker et al., 2006).

C. jejuni and C. coli are closely related species with the majority of genes common in the core and dispensable part of their pan genome. Still the two species contain unique sets of genes that define them as separate species (Lefebure et al., 2010). This variation was clearly shown in all C. jejuni strains (Figure 4.6) whereby there are many of the C. coli specific genes (yellow) that are highly divergent in the C. jejuni strains tested here. This also shows a clear advantage of a C. jejuni and C. coli pan array used in the comparative study over a single genome based arrays used in previous DNA microarray studies (Dorrell et al., 2001, Pearson et al., 2003) as it covers diversity across the Campylobacter genus.

The diversity seen in figure 4.6 agrees with the phylogenomic clustering of the six hyperinvasive and four low invasive *C. jejuni* strains (Figure 4.3). The hyperinvasive *C. jejuni* 01/10 and *C. jejuni* 01/35 were most similar to the reference strains on the pan array with the least number of divergent genes *i.e.* (522 and 550 respectively). The most

diverse across the *C. jejuni*/ *C. coli* pan genome was *C. jejuni* 01/51 with 859 divergent genes. The hyperinvasive *C. jejuni* 01/10 possessed some of the loci in CMLP1 and the genes in other *C. jejuni* RM1221 characteristic genomic islands also appeared to be present in this strain. Similarly, most genes in the LOS and FM regions were found to be similar to those present in the reference *C. jejuni* RM1221, whereas, some genes in the CPS region and the RM locus were highly divergent from *C. jejuni* RM1221 (Figure 4.6).

Interestingly, unlike the majority of other *C. jejuni* strains investigated in this phylogenomics study it appears that the *C. jejuni* RM1221 integrated genetic elements CMLP1, CJIE2 and RM region were present in the hyperinvasive *C. jejuni* 01/51. The LOS and FM loci appeared to be highly divergent from those found in *C. jejuni* RM1221. Some genes, including the *kps* genes, in the capsule region of *C. jejuni* RM1221 were also found to be present in *C. jejuni* 01/51. In a previous study, using a *C. jejuni* NCTC11168 based DNA microarray the capsule locus of *C. jejuni* 01/51 was reported as absent (Dr Georgina Manning; personal communication).

### 4.4 SUMMARY AND CONCLUSIONS

The comparative phylogenomics study of six hyperinvasive compared against four low invasive C. jejuni strains showed that the hyperinvasive C. jejuni did not form a distinct cluster separate from the low invasive C. jejuni. There was no gene or gene cluster present or highly divergent/absent in all hyperinvasive C. jejuni. However, a number of genes were found to be statistically associated with the hyperinvasion phenotype either by being present or absent from the majority of these strains. These represented genes from a variety of functional categories including genes involved in cellular and metabolic functions, some pathogenesis loci and several genes encoding for hypothetical proteins. Among these, nine genes were present and six genes were absent/highly divergent in all six hyperinvasive C. jejuni. PCR screening showed the distribution of these 15 genes in an additional population of 9 low invasive C. jejuni strains. This confirmed that the presence or absence of these 15 genes as a genetic marker for the hyperinvasive C. jejuni. This DNA microarray study showed that all 10 C. jejuni strains showed great diversity at the whole genome level irrespective of their invasion phenotype. The most variable regions in the majority of C. jejuni strains were CMLP1, CJIE 2, 3, 4 characteristic of C. jejuni RM1221 and C. jejuni virulence associated

regions like flagellar modification, restriction modification, lipooligosaccharide and capsule. Based on this comparative phylogenomics study it is possible to conclude that the hyperinvasive phenotype is a multifactorial function involving genes from a variety of pathways. Genes involved in essential cellular process that form a part of the core genome may have key a role in the hyperinvasive phenotype in addition to the known *C. jejuni* pathogenesis related loci. Additionally, each of the hyperinvasive *C. jejuni* may use different mechanisms resulting in the hyperinvasive phenotype rather than same gene/gene clusters or pathways.

### 4.5 LIMITATIONS OF DNA MICROARRAY AND NEXT STEP

A major drawback of CGH is that the array is based on the genomic content of already sequenced genomes limiting the information generated to the variation of genes compared to the reference genomes for the phylogenomic comparisons. In addition, DNA microarray does not take into account point mutations, deletions and genomic rearrangements. Also, lack of representation of promoter regions and non-translated RNAs are some other limitations to this approach (Champion *et al.*, 2005, Pearson *et al.*, 2003). This suggests that the *C. jejuni* strains investigated might contain additional genomic content that could not be picked up in DNA microarray. A quantitative bias is introduced by using all genes on the array for analysis. A number of false positive or negative genes can be detected. To eliminate these will require further validation by alternate screening methods like PCR.

To address the drawbacks of CGH and inverstigate the additional genomic content present in the hyperinvasive *C. jejuni* a Pooled Suppressive Subtractive Hybridization (PSSH) technique was performed (Gerrish *et al.*, 2010). The aim of PSSH was to identify any genomic regions that were unique to the pool of six hyperinvasive *C. jejuni* strains compared against the four low invasive *C. jejuni*. This approach will be discussed in the next chapter.

## Chapter Five

# SUPPRESSIVE SUBTRACTIVE HYBRIDIZATION STUDY OF THE HYPERINVASIVE C. JEJUNI STRAINS

# SUPPRESSIVE SUBTRACTIVE HYBRIDIZATION STUDY OF THE HYPERINVASIVE C. JEJUNI STRAINS

### 5.1 INTRODUCTION

After the phylogenomic comparison performed using CGH discussed in the previous chapter, the hyperinvasive *C. jejuni* strains were further investigated at the genome content level by using a technique called Suppressive Subtractive Hybridization (SSH). The main objective of this study was to find genomic regions unique to the hyperinvasive *C. jejuni* strains that were absent from the low invasive *C. jejuni*. It was assumed that these genomic regions are common in all the hyperinvasive *C. jejuni* strains and would be linked to their hyperinvasive phenotype.

### 5.1.1 Suppressive Subtractive Hybridization as a genomotyping technique

Suppressive Subtractive hybridization is a method to identify unique genomic regions present in one strain (the tester) but absent from the reference strain (the driver) (Agron et al., 2002, Ahmed et al., 2002). SSH complements the DNA microarray by providing additional information about the genomic structure of the test organism. Whole genome sequencing projects of a large number of strains can be costly and very time consuming. In the absence of genome sequences, SSH can be a good technique to a study closely related strains at the genome level. SSH can easily identify unique genomic regions of about 10-50kb in size and any false positive sequences can be deleted by PCR analysis. SSH has identified genomic variability in C. jejuni strains with different colonisation potentials (Ahmed et al., 2002). In that study, C. jejuni strain 81116, with relatively good chicken colonization potential was compared with C. jejuni NCTC11168 by subtractive hybridization to find unique genomic regions in C. jejuni 81116 that would account for the difference in colonization potential seen between the two strains. Two hybridization cycles identified 24 clones containing sequences present in 81116 and absent from NCTC11168. Some sequences had similarities with other C. jejuni strains while the majority were orthologous to other bacteria. The majority of sequences were found to have functions related to the restriction modification enzymes, arsenic resistance genes, cytochrome c oxidase III, dTDP glucose 4, 6 dehydratase, gamma glutamyl transpeptidase and abortive phage resistance genes (Ahmed et al., 2002). In

another study, SSH has been used to identify the virulence markers in clinical H. pylori isolates from children with peptic ulcers (Oleastro et al., 2006). That study identified two genes with putative roles as an outer membrane protein and in lipooligosaccharide biosynthesis to be associated with peptic ulcer disease in children. Another study used SSH to explore the genomic diversity between C. jejuni strains from diverse sources including rabbit, cattle and wild birds representing different MLST clonal complexes (Hepworth et al., 2007). Here the majority (97%) of SSH inserts identified had similarities with other C. jejuni. These inserts mainly encoded for metabolic genes and they were variably distributed among different clonal complexes. However there was no correlation found with the source of strain isolation suggesting that horizontal gene transfer was a rare event between the MLST types studied (Hepworth et al., 2007). Using suppressive subtractive hybridization, a number of virulence associated genomic regions have been found in Escherichia coli (Dai et al., 2010). This study compared an avian associated pathogenic E. coli (APEC) with the human uropathogenic E. coli to identify genomic regions that would differentiate the two pathotypes. Twenty eight genes were identified that were present in the APEC but absent from the UPEC strain. A genetic marker for adhesion unique to the APEC strain was found. This gene encoded for a putative autotransporter that lead to a 124 kDa adhesive protein that showed high levels of adhesion in vitro in chicken fibroblast cell lines (Dai et al., 2010). In a recent study, enterohaemorrhagic E. coli (EHEC) strains of serotype O26 from a young calf and a human diarrheal patient were investigated by SSH with an aim to identify genomic markers for host preference. The genomic markers associated with host specificity were not found but a number of pathogenicity islands not associated with the EHEC strains were present in the EHEC bovine strain (Bardiau et al., 2012). In all above studies, SSH was used to compare one strain with another strain in a single experiment.

### 5.1.2 Pooled Suppressive Subtractive Hybridization to study hyperinvasive C. jejuni

A new SSH technique called Pooled Suppressive Subtractive Hybridization (PSSH) has been developed and validated recently (Gerrish *et al.*, 2010). This method involves genomic DNA comparisons of sets of phenotypically related strains with a reference strain in a single experiment. The inserts identified can be related to the specific strains by PCR screening. Gerrish *et al* (2010) have successfully used PSSH to screen multiple clinical *Staphylococcus aureus* isolates with different levels of disease severity identifying unique genes specific to strains in each pool creating a signature profile for

the strains. In this study, the six hyperinvasive *C. jejuni* strains were pooled together as the tester and hybridized against a pool of four low invasive *C. jejuni* (driver) that were previously investigated in the comparative phylogenomic study.

### **5.2 METHODS**

### 5.2.1 Pooled Suppressive Subtractive Hybridization

Suppressive Subtractive Hybridization was carried out by using the CLONE-TECH PCRTM-Select Bacterial Genome Subtraction kit (Clonetech, UK) according to manufacturer's instructions. Briefly, the genomic DNA from C. jejuni strains was prepared as stated in the genomic DNA extraction procedure in section 2.6.1. The genomic DNA (2 µg) of all six hyperinvasive C. jejuni strains (01/10, 01/35, 01/04, 01/41, 01/51, EX114) was mixed together as a "tester" and the genomic DNA (2 µg) of the four low invasive C. jejuni strains (01/30, 01/32, 01/46, 01/39) was pooled together as a "driver". Both tester and driver genomic DNA was enzymatically fragmented with AluI and DraI to create blunt ended fragments of size 0.1 to 2.0 kbp. The fragmented tester DNA was divided into two aliquots each ligated to a different adaptor (1 or 2R). The adaptor was ligated to the 5'end of each strand of the double stranded DNA. The first hybridization was carried out by denaturing each aliquot of the adaptor ligated tester DNA and mixing separately with an excess of heat-denatured driver DNA. This hybridization step was carried out at 63 °C for 1.5 hours. In the second hybridization, the two adaptor-ligated aliquots were mixed with more freshly denatured driver DNA and incubated overnight at 63 °C. The two sets of hybridizations allowed tester DNA to hybridize with the driver DNA or if tester specific, to itself. The tester specific DNA was amplified by primary and secondary PCR cycles. The first set of subtractive hybridization was carried out at 63 °C as recommended by the manufacturer. For C. jejuni SSH, Ahmed et al (2002) repeated the second subtractive hybridization step once by using 10µl of secondary PCR product with a hybridization temperature of 61 °C. It ensured efficient subtraction by reducing the number of driver specific sequences. In this study, the secondary hybridization step was carried out twice as recommended by Ahmed et al (2002) since a pooled C. jejuni sample was used in SSH here. A flow diagram illustrates the PSSH procedure followed (Figure 5.1).

### Chapter 5: Suppressive subtractive hybridization

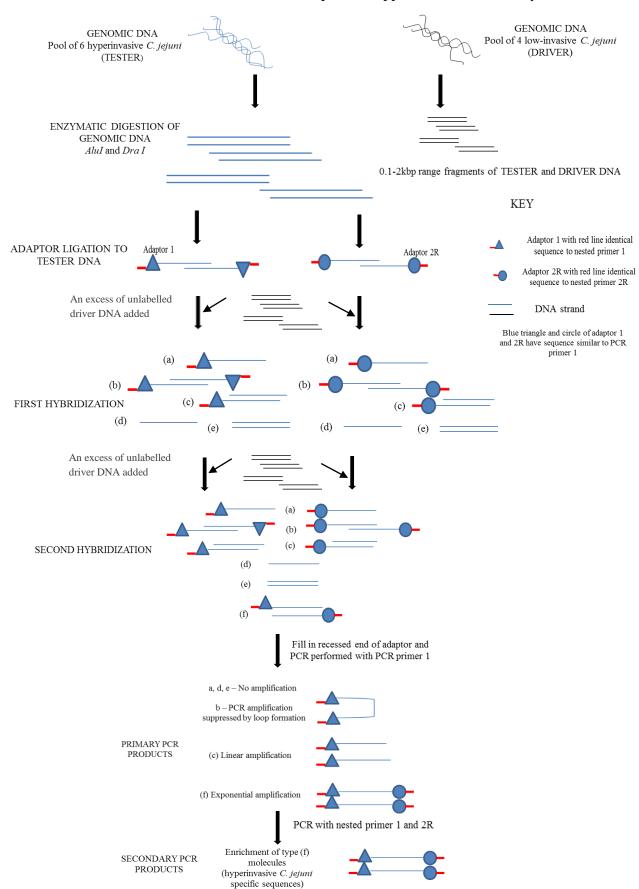



Figure 5.1: A diagram illustrating the methodology used for the pooled suppressive subtractive hybridization.

The enzymatically digested tester DNA of pool of 6 hyperinvasive *C. jejuni* strains was subdivided into two sections. Each aliquot was ligated to separate adaptor. During the first hybridization each aliquot was mixed with an excess of freshly denatured drive DNA (pool of 4 low invasive *C. jejuni*). The two aliquots were mixed in the second hybridization with the addition of more denatured driver DNA. During primer PCR, primer 1 amplified the DNA sequences specific to the tester DNA and absent from driver DNA (f molecules). The type f molecules were further enriched in the secondary PCR reaction using nested primers 1 and 2R.

The regions common between the diver and tester genomic DNA hybridized to produce type c molecules. Tester specific DNA fragments formed hybrids with the complementary tester specific DNA (molecules b & f). Similarly, homologous driver specific DNA fragments annealed with complementary driver specific DNA fragments In addition, single stranded tester and driver molecules were also produced (molecules a & d). Two sets of suppression PCR reactions were carried out to amplify and select tester specific sequences. During primary PCR, the adaptors (1 and 2R) at the 5' end of the dsDNA were duplicated onto the 3' end of the opposite strand. Primer 1 was used to exponentially amplify dsDNA fragments with both adaptors, 1 and 2R, at either end (molecule f). The dsDNA with adaptor attached at one end only (type c molecules) underwent linear amplification. The dsDNA molecules with only one type of adaptor (molecules b) at both ends were not amplified due to binding of complementary adaptor sequence. The driver specific sequences were not amplified as there was no adaptor attached to them (molecules a, d & e). Secondary PCR was performed using nested primers 1 and 2. These primers were specific to the adaptors 1 and 2R sequences and therefore exponentially amplified the type f molecules. The secondary PCR product was rich with the tester specific sequences.

### 5.2.2 Cloning of PSSH inserts

The secondary PCR amplicons were ligated into the pCR <sup>®</sup> 2.1 TOPO vector using TOPO TA Cloning <sup>®</sup> kit (Invitrogen, UK). The pCR <sup>®</sup> 2.1 TOPO vector with the insert was cloned in 10F' *E. coli* chemically competent cells as recommended by the manufacturer. The successfully transformed bacteria were selected by using antibiotic(s) and blue white screening. The procedures for cloning and transformation of 10F' *E. coli* cells (Table 2.1) are briefly discussed in section 2.7.4. The plasmid DNA was extracted

from each clone containing the insert by using QIAprep spin miniprep kit (Qiagen, Crawley, UK) (2.6.2). The plasmid DNA was sequenced by single read sequencing using M13 reverse primers (Eurofins, MWG, UK). The similarity of the sequences to the known bacterial genome sequences was performed by using BLASTn and BLASTx searches at the National Centre of Biotechnology Information (NCBI) website. PCR screening was carried out by standard PCR protocol (section 2.7.1) to determine the distribution of these hyperinvasive specific sequences in all six hyperinvasive *C. jejuni* strains. An additional population of 9 low invasive *C. jejuni* strains was also analysed by PCR for the presence or absence of these hyperinvasive *C. jejuni* specific sequences. Details of all primers used in the PCR screen are listed in Table 2.2.2.

### **5.3 RESULTS AND DISCUSSION**

### 5.3.1 Preparation of the driver and tester genomic DNA fragments

Genomic DNA of all 6 hyperinvasive *C. jejuni* strains as a pooled sample "tester" and 4 low invasive *C. jejuni* strains mixed together as "driver" was partially digested with *Alu*I and *Dra*I enzymes. This enzymatic digestion successfully generated small DNA fragments in the size range of 0.1-2 kbp (Figure 5.2).

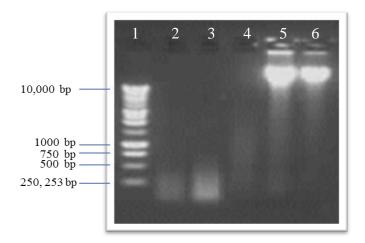



Figure 5.2: The enzymatically digested genomic DNA of the pool of hyperinvasive *C. jejuni* (tester), low invasive *C. jejuni* (driver) and *E. coli* (control) compared to the undigested genomic DNA of the hyperinvasive and low invasive *C. jejuni*.

Lane 1: 1 kbp DNA marker (Promega, UK). The *Alu*I and *Dra*I digested genomic DNA of "tester" *C. jejuni* (lane 2) and "driver" *C. jejuni* (lane 3). The control *E. coli* genomic DNA was digested with *Rsa*I (lane 4). The undigested genomic DNA of "tester" *C. jejuni* (lane 5) and "driver" *C. jejuni* (lane 6) was run as a control to determine the success of enzymatic digestion. The PCR products are analysed on a 2% (w/v) agarose gel.

### 5.3.2 Ligation of adaptors 1 and 2R to the fragmented tester genomic DNA

After the enzymatic digestion of the genomic DNA, the relevant adaptor (1 or 2R) was then ligated to blunt tester fragments via a blunt ended reaction (section 5.2.1) which occurs between two ds DNA fragments. Therefore, because the 5'ends of the adaptor are unphosphorylated, the adaptor can only ligate via its 3'end to the 5'end of the tester DNA fragment and so only one strand of the adaptor anneals to generate the tester fragments below;



Figure 5.3: The diagram of the adaptor (1 or 2R) ligation to the tester genomic DNA fragment and the primers annealing in PCR reaction for adaptor efficiency testing.

The efficiency of ligation of adaptors to the genomic DNA was tested by PCR amplification (Figure 5.4).

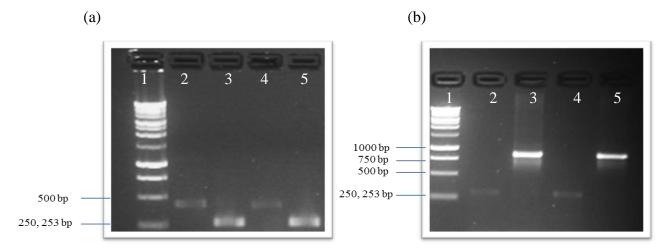



Figure 5.4 (a): The ligation efficiency testing of *E. coli* (control) and (b) the tester hyperinvasive *C. jejuni*.

(a) Lanes 2 and 4 contain the control *E. coli* (tester) genomic DNA PCR products amplified by using 23S RNA forward and reverse primers. The partially digested genomic DNA of the control *E. coli* (tester) ligated to adaptor 1 (lane 3) and 2R (lane 5) was amplified by using PCR 1 and 23S RNA forward primers. (b) Adaptor 1 and 2R ligated to the partially digested *C. jejuni* "tester" genomic DNA was amplified using PCR 1 and 16S rRNA forward primers (lanes 2 and 4 respectively). The tester genomic DNA of *C. jejuni* was amplified by using 16S rRNA forward and reverse primers (lanes 3 and 5 respectively). Lane 1: 1 kbp DNA marker (Promega, UK). The PCR products were analysed on a 1% (w/v) agarose gel.

PCR amplification using PCR primer 1 specific to the sequence of adaptor 1 and 2R, and 16S rRNA forward primer for the tester *C. jejuni* as a template generated an ~ 290 bp PCR product. A similar size PCR product was produced when amplification was performed for the adaptor ligated control *E. coli* (tester) using PCR 1 and 23S RNA forward primers. This suggests that the enzymatic digestion (5.3.1) produced the DNA fragments of the expected size range of 0.1-2 kbp however, a larger proportion of smaller sized DNA fragment were generated compared to the larger fragments. An expected band of 852 bp was produced by using 16S rRNA forward and reverse primers

for the undigested *C. jejuni* tester genomic DNA and 374 bp for the control *E. coli* tester genomic DNA with 23S RNA forward and reverse primers.

The brightness of the adaptor ligated DNA fragment band was very similar to the 16S rRNA product band (Figure 5.4b). This suggests that a high proportion of the adaptor ligated DNA fragments was generated that would ensure efficient hybridization.

### 5.3.3 Subtractive Hybridization I and II

The suppressive subtractive hybridization procedure was followed as previously described in detail (Ahmed *et al.*, 2002). Briefly, 1 and 2R adaptor ligated tester DNA aliquots and the driver DNA (without adaptors) were heat denatured. Two sets of hybridization reactions were carried out at 63 °C. During the first hybridization step, each aliquot of the adaptor ligated tester DNA was mixed separately with an excess of the freshly denatured driver DNA. This step allowed homologous tester and driver DNA fragments to form hybrids. During the second hybridization the 1 and 2R adaptor ligated aliquots were mixed together with an addition of fresh driver DNA. This allowed annealing of any leftover homologous tester and driver DNA fragments. In this step, adaptor 1 ligated tester specific DNA fragments formed homologues with the adaptor 2R ligated tester specific DNA fragments. During hybridization, a range of other molecules were also produced that are shown in figure 5.1.

# 5.3.4 Two second sets of subtractive hybridization steps for the selection of tester specific C. jejuni sequences

The subtractive hybridization was repeated twice at a lower temperature of 61 °C to enhance the efficiency of subtraction as recommended by Ahmed *et al* (2002). This ensured selection of sequences unique to the hyperinvasive *C. jejuni*. During this step, 10 µl of the secondary PCR product was used as a tester which was heat denatured and mixed with an excess of freshly denatured driver DNA. Two hybridizations were performed as before followed by primary and secondary PCRs. The products of primary and secondary PCR were checked by gel electrophoresis. The primary PCR product showed a smear whereas the secondary PCR product had more distinct bands (Figure 5.5). This showed that secondary PCR product was enriched with tester specific sequences containing products of different sizes.

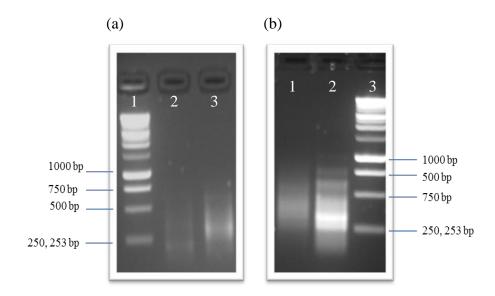



Figure 5.5: The primary and secondary PCR products (a) Control *E. coli* and (b) *C. jejuni*.

(a) Lane 1: 1 kbp DNA marker (Promega, UK), lane 2: primary PCR product of subtracted sample, lane 3: secondary PCR product of subtracted sample. (b) Lane 1: primary and lane 2 secondary PCR product of subtracted sample, lane 3: 1 kbp DNA marker (Promega, UK). The PCR products are analysed on a 2% (w/v) agarose gel.

### 5.3.5 Analysis of successful subtraction of the secondary PCR product

To further show that the secondary PCR product is enriched with tester *C. jejuni* sequences a validation PCR was performed comparing the loss of a housekeeping gene in the subtracted sample and conservation of this gene in the unsubtracted sample. The PCR analysis was performed with the subtracted control *E. coli* sample after subtractive hybridizations performed at 63 °C compared with the unsubtracted sample using the 23S RNA forward and reverse primers (Figure 5.6 a and b). The PCR screening of the subtracted test *C. jejuni* sample after two sets of subtractive hybridization at 61 °C was carried out using 16S rRNA primers which was compared against the unsubtracted sample (Figure 5.6 c and d).

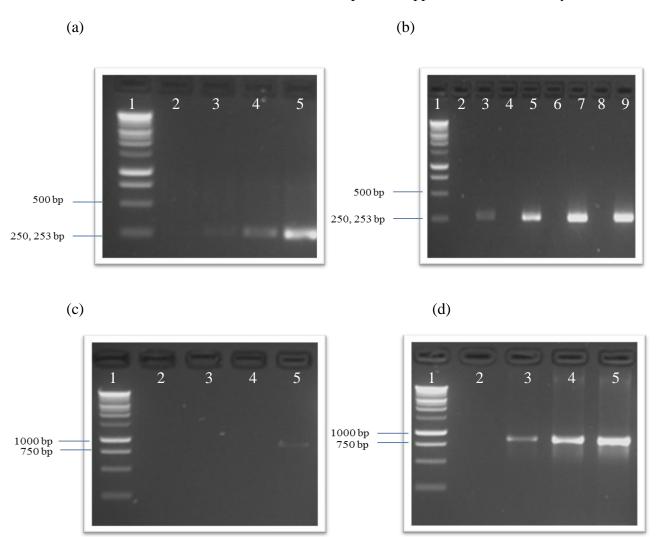



Figure 5.6: The subtraction efficiency of (a) subtracted control *E. coli* (b) unsubtracted control *E. coli* (c) subtracted test hyperinvasive *C. jejuni* and (d) unsubtracted test hyperinvasive *C. jejuni*.

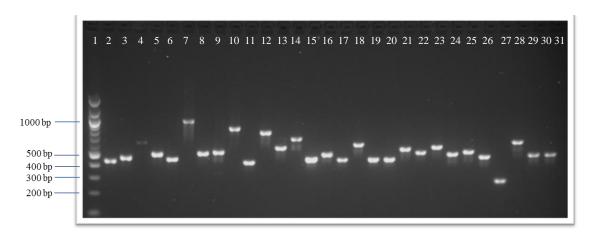
Each gel was loaded: Lane 1; 1 kbp DNA marker (Promega, UK); (a) (lanes 2, 3, 4, 5); subtracted sample after 18, 21, 24, 27 PCR amplification cycles respectively; (b) (lanes 3, 5, 7 and 9); unsubtracted sample after 18, 21, 24, 27 cycles respectively; (lanes 2, 4, 6, 8); Blank; (c) (Lanes 2, 3, 4, 5); PCR products after 18, 21, 24 and 27 amplification cycles respectively (d) (Lanes 2, 3, 4, 5); PCR products after 18, 21, 24 and 27 amplification cycles respectively. The PCR products were analysed on a 2% (w/v) agarose gel.

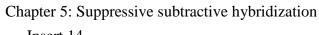
For the subtracted test *C. jejuni* sample, there was no product seen after 18, 21 and 24 cycles for the subtracted sample whereas a faint band was seen after 27 cycles. For the unsubtracted *C. jejuni* sample on the other hand, no band was observed after 18 cycles

with a faint band observed after 21 cycles that got brighter after 24 and 27 cycles. This result showed that two cycles of subtractive hybridization at a lower annealing temperature proved to be a successful step when studying groups of strains as "tester" in a single subtractive hybridization experiment. This reduced the number of tester and driver homologous sequences thus improving the efficiency of subtractive hybridization.

#### 5.3.6 Preparation of subtractive hybridization library

The secondary PCR products were ligated into pCR <sup>®</sup> 2.1 TOPO vector using TOPO TA Cloning <sup>®</sup> kit (Invitrogen, UK) and transformed into 10F' *E. coli* chemically competent cells. This technique produced 102 colonies of which 62 colonies had inserts. The size of inserts was determined by colony PCR using M13 forward and reverse primers followed by analysis on a 1% (w/v) agarose gel. An example gel picture is shown here (Figure 5.7).





Figure 5.7: The colony PCR screening of clones to determine the size of sequences inserted into pCR <sup>®</sup> 2.1 TOPO vector.

The clones 1-29 (lanes 2-30) showed insert sizes in the range of 300-1000 bp. Lane 1:1 kbp DNA marker (Promega, UK). Lane 31: negative control.

Each clone generated a PCR product more than 200 bp in size. Therefore, all inserts were sequenced.

# 5.3.7 Selection of the hyperinvasive C. jejuni specific sequences from subtractive hybridization library

Sequence similarity carried out using *Campylobacter* specific database (<a href="www.campydb">www.campydb</a>) and BLAST searches at NCBI genome bank (<a href="www.blast.ncbi.nlm.nih.gov/Blast.cgi">www.blast.ncbi.nlm.nih.gov/Blast.cgi</a>) identified 38 out of 62 inserts as duplicates. This showed a limitation of the subtractive hybridization technique where inserts that are in more abundance get amplified (Gerrish *et al.*, 2010). Only one representative of the duplicate insert was further analysed. PCR analysis of the remaining 24 inserts identified 11/24 inserts as specific to one or more hyperinvasive *C. jejuni* strains and absent from all low invasive *C. jejuni* strains used as driver. The rest of the 13 inserts were false positives (*i.e.* inserts present in one or more of the low invasive *C. jejuni* strains used as driver). PCR screening also showed the distribution of inserts in an additional 9 low invasive *C. jejuni* strains that was not used in PSSH (Figure 5.8). The PCR analysis results are summarized in table 5.1.



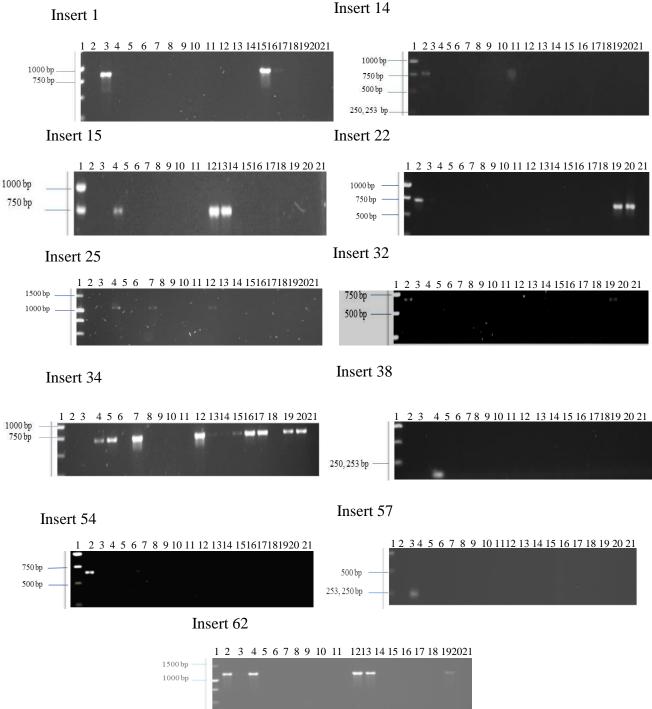



Figure 5.8: PCR screening on a 1% (w/v) agarose gel to show the distribution of 11 inserts in the hyperinvasive and low invasive *C. jejuni* strains.

Lane 1:1 kbp DNA marker (Promega, UK). Lane 2-7; hyperinvasive *C. jejuni* strains 01/10, 01/35, 01/04, 01/41, 01/51, EX114. Lanes 8-20; low invasive *C. jejuni* strains 01/30, 01/32, 01/46, 01/39, 01/05, 01/08, 01/11, 01/36, C2/3, C12/11, C27/14, C69/2, C110/4. Lane 21:negative control. The primers used in PCR screening and the expected product band size are listed in table 2.2.2.

Table 5.1: The distribution of inserts identified by PSSH in the hyperinvasive and low invasive C. jejuni strains by PCR analysis.

|         |       |                                            |                         |                | D     | istributi | Distribution of PSSH | SH inse | rts in the | inserts in the hyperinvasive and low-invasive C. jejuni by PCR | vasive a | nd low- | invasiv | e C. jeju              | ni by P | CR     |        |       |       |        |         |                                                                                                                                                                                                   |
|---------|-------|--------------------------------------------|-------------------------|----------------|-------|-----------|----------------------|---------|------------|----------------------------------------------------------------|----------|---------|---------|------------------------|---------|--------|--------|-------|-------|--------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |       | Hypei                                      | Hyperinvasive C. jejuni | e <i>C. je</i> | juni  |           | Total-2              |         |            |                                                                |          | L       | ow inva | Low invasive C. jejuni | iejuni  |        |        |       |       |        |         |                                                                                                                                                                                                   |
| Insert  | 01_10 | Insert 01_10 01_35 01_04 01_41 01_51 EX114 | 1 04 0                  | 1 41           | 01_51 | EX114     |                      | 01_30*  | 01_32*     | 01_46*                                                         | 01_39*   | 01 05   | 01 08   | 01_11                  | 1_36 C  | 2_3 CI | 2_11 c | 27_14 | 7 692 | 2110_4 | Total-3 | $01\_30^* \mid 01\_32^* \mid 01\_46^* \mid 01\_39^* \mid 01\_05 \mid 01\_05 \mid 01\_11 \mid 01\_36 \mid C2\_3 \mid C12\_11 \mid C27\_14 \mid C69\_2 \mid C110\_4 \mid Total-3 \mid p-value^{**}$ |
| 1       | ,     | +                                          | -                       |                |       | -         | 1                    |         |            |                                                                |          |         | -       |                        | ) +     | (+)    |        |       |       | -      | 2       | 1.000                                                                                                                                                                                             |
| 14      | +     | ,                                          | -                       |                |       | -         | 1                    |         |            |                                                                |          |         | -       |                        | -       | -      |        |       |       | -      | 0       | 0.316                                                                                                                                                                                             |
| 15      |       |                                            | +                       |                | -     | -         | 1                    | -       |            |                                                                |          | +       | +       | -                      | -       | _      | -      | -     |       | -      | 2       | 1.000                                                                                                                                                                                             |
| 22      | +     | ,                                          | -                       |                |       | -         | 1                    |         |            |                                                                |          |         | -       | -                      | -       | -      |        |       | +     | +      | 2       | 1.000                                                                                                                                                                                             |
| 25      | •     | •                                          | +                       |                | -     | +         | 2                    | -       |            |                                                                | •        | +       | -       | -                      | -       | -      | -      | -     |       | -      | 1       | 0.222                                                                                                                                                                                             |
| 32      | +     |                                            | -                       |                |       | -         | 1                    | -       |            |                                                                |          |         | -       |                        | -       | -      | -      |       | +     | -      | 1       | 0.544                                                                                                                                                                                             |
| 34      |       |                                            | +                       | +              |       | +         | 3                    | -       |            |                                                                |          | +       | (+)     | (+)                    | (+)     | +      | +      |       | +     | +      | 8       | 0.506                                                                                                                                                                                             |
| 38      | ,     |                                            | +                       |                |       | -         | 1                    |         |            |                                                                |          |         |         |                        |         |        | -      |       |       | -      | 0       | 0.316                                                                                                                                                                                             |
| 54      | +     | -                                          | -                       |                |       | -         | 1                    | -       |            |                                                                | -        |         | -       | -                      | -       | -      | -      | -     |       | -      | 0       | 0.316                                                                                                                                                                                             |
| 57      |       | +                                          | -                       |                |       | -         | 1                    |         |            |                                                                |          |         |         |                        |         |        | _      |       |       |        | 0       | 0.316                                                                                                                                                                                             |
| 62      | +     | -                                          | +                       | -              |       | -         | 2                    | -       | -          |                                                                | -        | +       | +       | -                      | -       | -      | -      |       | (+)   | -      | 3       | 0.520                                                                                                                                                                                             |
| Total-1 | 5     | 2                                          | 5                       | 1              | 0     | 2         |                      |         | 0          |                                                                |          | 4       | 3       | 1                      | 2       | 2      | 1      | 0     | 4     | 2      |         |                                                                                                                                                                                                   |

+=present, - =absent; (+) =partially present (a feint band seen on the gel).

\*=The low invasive C. jejuni strains used as "driver" in PSSH experiment.

Total-1=Total number inserts present in each hyperinvasive/low invasive C. jejuni strain. Total-2: Total number of hyperinvasive C. jejuni strains positive for each insert. Total-3: Total number of low invasive C. jejuni strains positive for each insert.

\*\*Chi-square, Fisher's exact test was performed to determine if the genes detected in the hyperinvasive group of C. jejuni strains was statistically significant. Significance level = 1% (p=0.01). The presence of inserts in the hyperinvasive *C. jejuni* strains and their absence from the 13 low invasive *C. jejuni* strains was not statistically significant (Table 5.1). There was no sequence present in all hyperinvasive *C. jejuni*. Eight inserts were specific to only one hyperinvasive *C. jejuni* strain (inserts; 1, 4, 15, 22, 32, 38, 54, 57). Inserts 25 and 62 were present in two hyperinvasive *C. jejuni* whereas insert 34 was found in 3/6 hyperinvasive *C. jejuni* strains. All the inserts were absent from the low invasive *C. jejuni* strains used in the PSSH. This suggests that the pooled suppressive subtractive hybridization technique can successfully detect the sequences specific to strains studied together as a group rather than one to one strain comparison as in a DNA microarray and single SSH experiments. In addition, PSSH can even detect sequences specific to a single strain in a tester pool of several strains. These sequences might be small in size or present in small quantities. Thus, PSSH is sensitive, cost effective and time efficient modification of subtractive hybridization (Gerrish *et al.*, 2010).

To complement the CGH data; the prevalence of these 11 inserts was screened by PCR in an additional 9 low invasive *C. jejuni* strains which were not a part of PSSH experiment (Table 5.1). The PCR screening showed that 4 inserts (14, 38, 54, and 57) were absent from all additional low-invasive strains tested, hence specific to the hyperinvasive *C. jejuni*. Six inserts were present in up to three of the low invasive *C. jejuni* strains. Insert 34 was most widely prevalent in the additionally screened low invasive *C. jejuni* strains as it was present in 8/9 of the strains. After the identification of tester specific inserts by PSSH, a standard PCR reaction or Southern hybridization (Ahmed *et al.*, 2002) can be used to determine the distribution of inserts in a larger population of strains. This prevents the need of repeating individual subtractions thus reducing chances of error due to multiple sets of experiments and more confidence of dataset.

Interestingly, 5/11 inserts were present in the hyperinvasive *C. jejuni* 01/04 and *C. jejuni* 01/10 with no insert detected in *C. jejuni* 01/51. The PCR profile of the non-PSSH tested low invasive *C. jejuni* population showed that *C. jejuni* 01/05 and C69/2 were positive for greatest number of inserts (4/11) and *C. jejuni* C27/14 did not show presence of any of the 11 inserts (Table 5.1).

#### 5.3.8 Homology of the hyperinvasive C. jejuni specific sequences

The predicted amino acid similarity based on BLAST searches was between 89-100 % for all the inserts (Table 5.2).

Table 5.2: The inserts identified by PSSH as specifically present in hyperinvasive *C. jejuni* strains "tester" and absent from low invasive *C. jejuni* "driver".

|              |           |                                          |                               | Query coverage | Predicted amino acids |
|--------------|-----------|------------------------------------------|-------------------------------|----------------|-----------------------|
| Insert/Clone | Size (bp) | Predicted protein similarity             | Closest match                 | (%)            | similarity (%)        |
| 1            | 154       | 8-amino-7-oxononanoate                   | bioF-2 (C. coli RM2228)       | 72             | 98                    |
|              |           |                                          | C. jejuni subsp. jejuni       |                |                       |
|              |           |                                          | 260.94/ ICDCCJ07001_672       |                |                       |
|              |           |                                          | (C. jejuni subsp. jejuni      |                |                       |
| 14           | 191       | Prophage MuSo1, F protein, putative      | ICDCCJ07001)                  | 76             | 100                   |
|              |           |                                          | C. jejuni subsp. jejuni       |                |                       |
|              |           |                                          | 260.94/ ICDCCJ07001_1357      |                |                       |
|              |           |                                          | (C. jejuni subsp. jejuni      |                |                       |
| 15           | 238       | GDP mannose 4,6 dehydratase              | ICDCCJ07001)                  | 86             | 93                    |
|              |           |                                          | JJD26997_1251 C. jejuni       |                |                       |
| 22           | 312       | FkbM family methyltranferase             | subsp. doylei 269.97          | 86             | 96                    |
|              |           |                                          | C8J_1243(C. jejuni subsp.     |                |                       |
| 25           | 214       | Hypothetical protein                     | jejuni 81116)                 | 82             | 95                    |
|              |           | Restriction modification system DNA      | Helicobacter canadensis       |                |                       |
| 32           | 756       | specificity domain containing protein    | MIT 98-5491                   | 81             | 89                    |
|              |           |                                          | thiG (C. jejuni subsp. doylei |                |                       |
| 34           | 213       | Thiazole synthase                        | 269.97)                       | 80             | 100                   |
| 38           | 229       | No similarity found                      |                               |                |                       |
|              |           |                                          | tet (O/W/32/O)                |                |                       |
|              |           |                                          | Streptococcus gallolyticus    |                |                       |
|              |           |                                          | subsp. gallolyticus ATCC      |                |                       |
| 54           | 791       | Putative tetracycline resistance protein | BAA-2069 plasmid pSGG1        | 56             | 97                    |
|              |           |                                          | BAV0033 (Bordetella avium     |                |                       |
| 57           | 282       | Phage tail fibre protein                 | 197N)                         | 63             | 35                    |
|              |           |                                          | (C. jejuni subsp. jejuni      |                |                       |
| 62           | 235       | Putative sugar transferase               | CG8486)                       | 84             | 97                    |

Predicted protein similarity and closest match show the function/role of the best match for the insert in publically available microbial genome sequences.

Query coverage percentage is the length of each insert used by BLASTx search to find similarity in the sequence database.

The percentage predicted amino acid similarity between the query sequence (insert) and its best protein match in the genome sequence database.

Out of 11 inserts, 4 inserts (14, 38, 54 and 57) were only present in the hyperinvasive *C. jejuni* and absent from the low invasive *C. jejuni* strains. Seven inserts had sequence similarities within the *Campylobacter* genus. Four of 11 inserts (14, 15, 25, and 62) were similar to other *C. jejuni* subsp. *jejuni* strains and 2 inserts (22, 34) were similar to

the *C. jejuni* subsp. *doylei* whilst one insert (insert 1) was similar in the *C. coli* genome. Three inserts (32, 54 and 57) were similar to other bacteria. One insert (insert 38) had no sequence similarity to the available sequences in the genome databases searched.

#### 5.3.9 Genotyping based on PSSH reveals hyperinvasive C. jejuni specific genes

Using a pool of six hyperinvasive *C. jejuni* as tester and a group of four low invasive *C. jejuni* a suppressive hybridization study was performed. A variety of genes were identified in this study as specifically present in one or more of the six hyperinvasive *C. jejuni* in the pooled SSH study compared to the low invasive *C. jejuni*. The majority of inserts have homologues found in the *Campylobacter* genus. This may be because the number of *Campylobacter* strains that have been sequenced has rapidly increased providing more information about the genomic structure and diversity exhibited by this pathogen (Fouts *et al.*, 2005).

The genes identified in the PSSH study will be discussed below.

#### Insert 1

Genomic subtractive hybridization identified insert 1 to have similarity to a gene, *bioF*-2 encoding for 8-amino-7-oxononanoate synthase in *C. coli* RM2228 (Table 5.2).

PCR screening showed that insert 1 was present in only one hyperinvasive *C. jejuni* 01/35 and two non-PSSH low invasive *C. jejuni* (*i.e.* 01/36, C2/3) (summary Table 5.1). The PCR product was seen as a bright band in the low invasive *C. jejuni* 01/36 after 30 amplification cycles whereas only a faint band was observed for *C. jejuni* C2/3 after the same number of cycles (Figure 5.8). This might suggest that *bio-F2* may have a variable sequence in this strain. By contrast, our CGH study (chapter 4) showed that *bioF-2* gene was present in 4/6 hyperinvasive (*C. jejuni* 01/35, 01/04, 01/41 and EX114) whilst slightly divergent in the hyperinvasive *C. jejuni* 01/51. CGH data also showed that *bioF-2* was present in the low invasive *C. jejuni* 01/30 and 01/46 but highly divergent in the low invasive *C. jejuni* 01/32 and 01/39. Unlike for PSSH, where the distribution of each insert in *C. jejuni* strains was determined by PCR the CGH result for this gene was not validated by PCR. BioF-2 is an enzyme involved in biotin biosynthesis. It catalyses the decarboxylation of amino acids by condensation between amino acid and acetyl-coA producing 8-amino-7-

oxononanoate as an important subtrate in biotin production (Alexeev et al., 1998). BioF-2 is an important metabolic enzyme in *C. jejuni* (Fouts *et al.*, 2005). The detection of metabolic gene as a genetic marker by the genomic subtractive hybridization in a hyperinvasive C. jejuni may suggest the role of metabolic pathways in the hyperinvasive The metabolic core of C. jejuni is generally considered stable. The phenotype. horizontal transfer of metabolism related genes showed that these genes are under selective pressure and confer advantage to pathogenic bacteria in disease process inside the host cells. The similarity of insert 1 to the gene bioF-2 in C. jejuni sister species, C. coli validates recent research findings that C. jejuni and C. coli are more closely related species to each other than to other member of the Campylobacter genus (Fouts et al., 2005). Still there is enough genomic variation in two species allowing the transfer of genomic material between them. There is also emerging scientific evidence of convergence of C. jejuni and C. coli genomes resulting in the evolution of conserved core genomes which is attributed to several epidemiological and ecological factors including human activity (Sheppard et al., 2008) which further supports our findings.

#### Insert 14

Insert 14, showed similarity to the prophage MuSo1, F protein, with putative similarity in *C. jejuni subsp. jejuni* ICDCCJ07001 and 260.94 (Table 5.2). This insert was present in the hyperinvasive *C. jejuni* 01/10 and absent from the PSSH and PCR screened low invasive *C. jejuni* strains (Figure 5.8 and Table 5.1).

Bacteriophage are the vehicle of horizontal gene transfer that contribute to diversity in the bacterial genome and may carry genes that contribute to the virulence in bacterial pathogens. Examples include emergence of bacterial pathogens including *E. coli* O157 and *V. cholerae* (Canchaya *et al.*, 2004). *E. coli* O157, an important human pathogen contains two lambdoid prophages that encode for Shiga-like toxins (Stx) which is a major virulence factor for this strain (Wagner *et al.*, 2002). There is an evidence of presence of prophages and insertion elements (IS) in *Campylobacter* species (Fouts *et al.*, 2005). A *Campylobacter* Mu-like phage (CMLP1) in *C. jejuni* RM1221 genome is located upstream of *argC* locus and encodes for proteins with resemblance to the bacteriophage Mu and other Mu-like prophage proteins. CMLP1 in *C. jejuni* does not contain any virulence determinants but may contribute towards pathogenicity by changing the function of other virulence related genes. Other mobile genetic elements in

C. jejuni RM1221 include Campylobacter Integrated Elements (CJIEs 2, 3 and 4) scattered along the genome. These integrated elements are absent from the first genome sequenced C. jejuni NCTC11168. C. jejuni RM1221 like genetic elements are conserved in several other C. jejuni and C. coli strains but show a high level of diversity (Parker et al., 2006, Clark and Ng., 2008). The prophages showed high levels of recombination resulting in mosaic pattern of distribution of these prophages in C. jejuni strains. The detailed sequence analyses of CMLP 1 from different C. jejuni strains showed homology to the bacteriophage characteristic of enteric pathogens that are known to be responsible for a number of virulence phenotypes including host specificity (Clark and Ng., 2008). C. jejuni ICDCCJ07001 is a GBS associated strain isolated from a GBS outbreak in North China in 2007. This strain contains C. jejuni RM1221 characteristic CMLP1 but in the reverse orientation. The CMLP1 in C. jejuni ICDCCJ07001 is inducible but is not known to contain any virulence related genes (Zhang et al., 2010). To date, there is no biological evidence to prove the role of these prophage genes in virulence of the hyperinvasive C. jejuni strains.

#### Insert 57

A phage tail fibre protein I (insert 57) in Bordetella avium 197N (Table 5.2) has been identified only in the hyperinvasive C. jejuni 01/35 and absent from all low invasive C. jejuni strains (Table 5.1 and Figure 5.8). Bordetella avium is a pathogenic bacteria of wild and domesticated birds mainly commercially raised turkeys. It is the causative agent of bordetellosis, a respiratory illness in avian species (Sebaihia et al., 2006). B. avium 197N is a well-studied sequenced strain of this avian pathogen. B. avium 197N contains three prophages namely prophage A (BAV0391-BAV0433), prophage B (BAV1280-BAV1342) and the third prophage (BAV1423-BAV1482). Prophage A has genes encoding for a well-known phenomenon in *Bordetella* species known as switching tropism (Sebaihia et al., 2006). Tropism switching activity determines the specificity of bacterial receptors to the host surface. However, in B. avium 197N most of the internal region responsible for tropism (BAV0416-BAV0430) is missing and the transcriptase responsible for tropism switch over is also absent (Sebaihia et al., 2006). The insert found in the hyperinvasive C. jejuni 01/35 with similarity to the phage tail fibre protein, (BAV0033) in B. avium 197N is a part of prophage A. Since, poultry is the common host for B. avium and C. jejuni, the transfer of genes encoded on mobile genetic elements is expected which may contribute to the diversity in genome.

#### Insert 15 and 62

A sequence (insert 15) identified by PSSH was only found in the hyperinvasive *C. jejuni* 01/04. In the non-PSSH low invasive *C. jejuni* strains analysed by PCR, insert 15 was detected in *C. jejuni* 01/05 and 01/08 (Figure 5.8 and Table 5.1). This insert showed similarity to GDP mannose 4, 6 dehydratase in *C. jejuni* 260.94 and ICDCCJ07001 (Table 5.2). The gene ICDCCJ07001\_1357 is the part of *C. jejuni* ICDCCJ07001 capsule locus.

The product of gene *dmhA* (GDP mannose 4, 6 dehydratase) is an enzyme responsible for the conversion of heptose to deoxyheptose. It is located in the variable region of CPS loci of many *C. jejuni* strains (Karlyshev *et al.*, 2005a, Poly *et al.*, 2011). Karlyshev *et al* (2005a) found *dmhA* in the caspule locus of many *C. jejuni* strains, fully functional in some strains but variable in other *C. jejuni* strains. *C. jejuni* ICDCCJ07001 is a GBS associated clinical isolate. It is very similar to another sequenced GBS causing *C. jejuni* strain 260.94. Both strains have the Penner serotype (HS41) and share sequence similarity in their capsule region (Zhang *et al.*, 2010).

Another insert 62, showed similarity to a putative sugar transferase in *C. jejuni* 8486 (Table 5.2). PCR analysis showed that this insert was present in two hyperinvasive *C. jejuni* 01/10 and 01/04. Among the additional low invasive *C. jejuni* strains screened by PCR, this insert was present in *C. jejuni* 01/05 and 01/08. A faint band was also seen in low invasive *C. jejuni* C69/2 (Figure 5.8 and Table 5.1). Putative sugar transferase is a sugar biosynthesis gene present in the *C. jejuni* CPS region (Poly *et al.*, 2011). *C. jejuni* CG8486 is a human clinical isolate from a soldier presenting symptoms of bloody diarrhoea. The CAP locus in *C. jejuni* GC8486 is a 26kbp region and belongs to the Penner serotype (HS4). The CAP locus in *C. jejuni* CG8486 is similar in size to the CAP region in *C. jejuni* 81-176 but smaller than in *C. jejuni* NCTC11168. The *C. jejuni* CG8486 CAP locus encodes for sugar transferases already known in the capsule locus of *C. jejuni* strains (Poly *et al.*, 2007b).

The capsule locus in *C. jejuni* is composed of a highly variable central region enclosed by the conserved *kps* genes on either side. Due to the variability in middle capsular region it is responsible for the generation of diverse polysaccharide structures in different *C. jejuni* strains. These diverse capsule structures assigns strains to different

Penner serotypes (Dorrell *et al.*, 2001, Pearson *et al.*, 2003, Karlyshev *et al.*, 2005a and b, Poly *et al.*, 2011). The strains within the same Penner serotype complexes are found to have similar CPS region (Karlyshev *et al.*, 2005a and b, Poly *et al.*, 2011). In contrast to the reports of above authors the Penner serotype of the hyperinvasive *C. jejuni* 01/10 is HS50 whereas *C. jejuni* 01/04 is not known (data discussed in chapter 4). The capsule biosynthesis genes in the hyperinvasive *C. jejuni* strains identified here with the best match to other *C. jejuni* CPS genes may suggest a mosaic pattern of distribution of the variable capsular genes in *C. jejuni* (Poly *et al.*, 2011). As the CPS regions are known to be variable amongst strains which is likely the reason that by using SSH approach these kinds of strain-specific genes are detected. The surface capsular structures in *C. jejuni* are known to contribute to pathogenesis mainly, adhesion and invasion of host cells and serum resistance (Bacon *et al.*, 2001, Guerry *et al.*, 2002). Hence, the role of capsule in the hyperinvasive phenotype of *C. jejuni* strains studied here cannot be neglected.

#### Inserts 22 and 34

Inserts 22 and insert 34 showed maximum similarity to the FkbM family methyltransferase and thiazole synthase (*thiG*) in *C. jejuni* subsp. *doylei* respectively (Table 5.2). Insert 22 was present the hyperinvasive *C. jejuni* 01/10. The low invasive *C. jejuni* C69/2 and C110/4 were also positive for insert 22. Insert 34, was found to be present in the hyperinvasive *C. jejuni* 01/04, 01/41 and EX114 (Table 5.1). Among the additional low invasive *C. jejuni* strains insert 34 was present in *C. jejuni* 01/05, C2/3, C12/11, C69/2, C110/4 seen as bright bands on the agarose gel (Figure 5.8). There were feint bands detected in the low invasive *C. jejuni* 01/08, 01/11, 01/36 that may represent polymorphic gene in these strains.

The similarity of inserts 22 and 34 in *C. jejuni* subsp. *doylei* suggests that the two species (*i.e. C. jejuni* subsp. *jejuni* and *C. jejuni* subsp. *doylei*) frequently exchange genetic material. This is in contrast to the findings by Parker *et al* (2007) who reported these two subspecies of *C. jejuni* as highly divergent from each other using MLST and a DNA microarray based comparative genomics based indexing (CGI).

DNA methyltransferases are diversely present in bacteria and usually form a part of R-M systems in bacteria (Dale and Park., 2004). They are responsible for the methylation of  $N^6$  position in adenine and  $N^4$  and  $C^5$  position in cytosine in bacteria (Wion and

Casadesús., 2006. Like the variable CPS genes, DNA methyltransferases encoding genes are likely to be identified in SSH screening as they are variably distributed among the *C. jejuni* strains. Recently, the role of a DNA methyltransferase encoded by the gene Cj1461 in *C. jejuni* virulence has been demonstrated. This DNA methyltransferase influenced adherence, invasion and motility in *C. jejuni* 81-176 (Kim *et al.*, 2008). Having known the role of DNA methyltransferase in virulence it would be interesting to study the role of FkbM family methyltransferase in invasion and other virulence traits in the hyperinvasive *C. jejuni* 01/10.

Thiazole synthase is an important enzyme of thiazole biosynthesis. In *E. coli* and other anaerobic bacteria the components of this enzyme; ThiH, ThiG, ThiS and ThiF are essential for thiamine biosynthesis process. During this process an intermediate product, dehydroglycine is produced which is taken up by ThiG to be used for thiazole cyclization process (Kriek *et al.*, 2007).

#### Insert 32

Insert 32 was similar to the Restriction modification system DNA specificity domaincontaining protein in *H. canadensis* MIT 98-5491 (Table 5.2). PCR screening showed the presence of this insert in the hyperinvasive C. jejuni 01/10. Among the low invasive C. jejuni strains not a part of PSSH experiment, insert 32 was only present in the low invasive C. jejuni C69/2 (Figure 5.8 and Table 5.1). The restriction modification systems in bacteria are defence systems against the foreign DNA especially introduced by the lytic and lysogenic bacteriophage. Different types of RM systems are present in bacteria called type I, II, II and IV. The type I RM system in a number of C. jejuni strains has been studied in detail (Miller et al., 2005). There are few type II and III RM systems in sequenced genomes of C. jejuni NCTC11168, C. jejuni RM1221, C. coli RM2228 and C. lari RM2100 (Fouts et al., 2005). H. hepaticus ATCC 51449 is like other Campylobacter species strains in RM systems with only few RM system genes. In contrast, C. upsaliensis RM3195 genome has DNA sequences encoding for adenosine and cytosine DNA-methyltransferases in addition to a putative type II and III RM systems (Fouts et al., 2005) hence, similar to H. pylori that has three to four type I R-M systems (Miller et al., 2005). The restriction modification systems have shown extensive diversity based on the origin of strains (Parker et al., 2007, Ahmed et al., 2002, Dorrell et al., 2001). A putative RM DNA sequence in the hyperinvasive C. jejuni from *Helicobacter* species may contribute to enhanced resistance against the foreign DNA making this strain more stable inside the host and in outside environment.

#### 5.3.9.7 Insert 54

Insert 54, showed match with a putative tetracycline resistance gene tet (O/W/32/O) in Streptococcus gallolyticus subsp. gallolyticus ATCC BAA-2069 plasmid pSGG1 (Table 5.2). This insert was only present in the hyperinvasive C. jejuni 01/10 (Figure 5.8 and Table 5.1). Antibiotic resistance among C. jejuni strains is highly prevalent and is a major threat to human health (Pratt and Korolik., 2005). There are a number of tetracycline resistance genes that are either chromosomally encoded or located on a plasmid (Roberts., 2005). In Campylobacter species tetO gene is mainly responsible for tetracycline resistance (Pratt and Korolik., 2005). This gene encodes for a Tet(O) protein that protects the ribosome from the damaging effects of tetracycline (Roberts., Natural transformation allows transfer of antibiotics resistance between 2005). Campylobacter species in a mixed population (Jeon et al., 2008). A self-transmissible plasmid pIP1433 in C. coli BM2509 carries tetO gene and transfer of this gene is evident in the streptococcus and enterococcus species causing high levels of tetracycline resistance in these organisms (Zilhao et al., 1988). A recent study has shown the transfer of antibiotic resistance between C. jejuni and H. pylori strains by conjugation (Oyarzabal et al., 2007). This suggests that C. jejuni is capable of uptaking antibiotics resistance genes from other organisms. The identification of insert in the hyperinvasive C. jejuni 01/10 with similarity to tetO from S. gallolyticus subsp. gallolyticus ATCC BAA-2069 plasmid pSGG1 may suggest it to be a stable strain with added tetracycline resistance. The increased antibiotic resistance would allow improved survival inside the human host. It would be interesting to know how antibiotic resistance would influence the invasion phenotype in this hyperinvasive *C. jejuni* strain.

#### Insert 25

Insert 25 was found in the hyperinvasive *C. jejuni* 01/04 and EX114. PCR analysis showed that this insert was present in the low invasive *C. jejuni* 01/05 (Figure 5.8 and Table 5.1). The similarity of insert 25 to the hypothetical gene in the *C. jejuni* 81116

(Table 5.2) highlights the fact that a large proportion of *C. jejuni* genome is functionally uncharacterized and these regions of unknown function add to the genome diversity.

#### Insert 38

One sequence detected in only *C. jejuni* 01/04 (Figure 5.8 and Table 5.1) has no similarity found in the genome databases searches (Table 5.2). The identification of such functionally uncharacterised sequences may suggest that the hyperinvasive *C. jejuni* strains have sufficient variation in their genome.

Such broad range of inserts recovered from PSSH with similarity to within and between species genomic regions and to other organisms suggests that hyperinvasive *C. jejuni* strains have a striking ability to diversify by accepting genomic materials from other sources to evolve as versatile human pathogens.

#### 5.4 CONCLUSIONS AND NEXT STEP

The pooled suppressive subtracted hybridization study compared 6 hyperinvasive *C. jejuni* as a tester with a group of 4 low invasive *C. jejuni* strains as a driver. This technique identified 11 sequences specific to the hyperinvasive *C. jejuni* that were absent from the low invasive *C. jejuni* strains. There was no insert common in all the hyperinvasive *C. jejuni* strains. All inserts were present in one or more hyperinvasive *C. jejuni* strains and were variably distributed in the additional low invasive *C. jejuni* strains only screened by PCR. This suggests that the sequences identified may just represent the strain specific genes rather than the hyperinvasive *C. jejuni* specific genes. The detected sequences had a range of functions with inter and intra species homology and similarity with other bacteria. This proved that the hyperinvasive *C. jejuni* are a diverse group of strains. Both the DNA microarray and subtractive hybridization showed that the hyperinvasive *C. jejuni* 01/51 was least variable. These two hyperinvasive strains were selected for further analysis by the next generation genome sequencing.

## Chapter Six

# WHOLE GENOME SEQUENCING OF C. JEJUNI 01/10 AND 01/51

### WHOLE GENOME SEQUENCING OF C. JEJUNI 01/10 AND 01/51

#### **6.1 INTRODUCTION**

Genome sequencing has become a tool in providing detailed insight into the genomic diversity and evolution of bacteria. The genomic structure of two hyperinvasive *C. jejuni* strains (01/10 and 01/51) was studied in greater depth by using whole genome sequencing.

#### 6.1.1 Campylobacter genome

The first Campylobacter genome to be sequenced was C. jejuni NCTC11168 was sequenced in 2000. The sequencing data revealed that C. jejuni 11168 has a 1.6 Mb genome containing 1,641,481 base pairs with 30.6% G+C content and represented an AT rich genome. The genes in the genome encoded for 1,654 proteins and 54 stable types of RNA (Parkhill et al., 2000). Later, re-annotation and reanalysis of NCTC11168 genome sequencing data reduced the predicted protein sequences from 1,654 to 1,643. The functional categories were revised and new information for several coding sequences was added which was not reported before (Gundogdu et al., 2007). The C. jejuni 11168 genome is unique as it does not contain large inserts or prophage sequences and very few sequence repeats. There are hypervariable regions present marked by homopolymeric repeats and low G+C content compared to the whole genome (Parkhill et al., 2000). Most of the hypervariable sequences encode for surface structures such as LOS, capsule, flagellar biosynthesis and the glycosylation locus (Miller, 2008). Later another C. jejuni isolate was sequenced and compared with non-C. jejuni isolates. C. jejuni RM1221 has a large size genome (1.8 Mb) compared to C. jejuni 11168. It contains one Campylobacter Mu-like prophage (CMLP1) and three insertion elements and some additional capsule biosynthesis genes that are absent from C. jejuni NCTC11168. C. jejuni NCTC11168 and C. jejuni RM1221 were more closely related to C. coli than to C. lari and C. upsaliensis (Fouts et al., 2005). Other C. jejuni strains fully genome sequenced and characterised include C. jejuni 81-176 (Hofreuter et al., 2006), 81116 (Pearson et al., 2007), CG8486 (Poly et al., 2007b), M1 (Friis et al., 2010), ICDCCJ07001 (Zhang et al., 2010) and S3 (Cooper et al., 2011). The genome of C. jejuni subsp. doylei has been sequenced and contains 2,037 genes with 251

pseudogenes (Parker et al., 2007). Strain to strain variation is observed based on the genome sequence data. The genome sequence of human clinical isolates NCTC11168, 81-176 and CG8486 have 1,474 conserved genes. C. jejuni 81-176 contains 35 unique genes, CG8486 shows 38 unique genes and C. jejuni NCTC11168 has 8 unique genes (Champion et al., 2008). A DNA microarray comparison showed that several C. jejuni strains were highly variable compared to the reference strain NCTC11168. Seven hypervariable plasticity (PR1-PR7) regions were identified in the genome of C. jejuni strains examined that consisted of 50% of the variable gene pool (Pearson et al., 2003). Some Campylobacter strains contain plasmids. For example, pVir and pTet plasmids are present in C. jejuni 81-176 (Batchelor et al., 2004, Bacon et al., 2000) and the pVir plasmid has a role in pathogenesis (Champion et al., 2008). The number of Campylobacter strains sequenced is ever increasing. To date, 15 Campylobacter strains have been full genome sequenced consisting of 11 C. jejuni strains (including C. jejuni subsp. doylei 269.97) and 4 non-C. jejuni strains. There are also a number of on-going Campylobacter genome projects. Whole genome sequencing has become a crucial technique providing useful information about the differences in their virulence potential and host specificity of campylobacters.

#### 6.1.2 Study aims

The CGH study of the hyperinvasive *C. jejuni* showed that *C. jejuni* 01/10 and *C. jejuni* 01/51 were the most variable strains when compared to the reference strains. Similarly, the PSSH comparison of the hyperinvasive *C. jejuni* strains identified most additional sequences in *C. jejuni* 01/10 whereas none of the inserts were present in *C. jejuni* 01/51. Additionally, *C. jejuni* 01/51 has been studied in detail by insertional mutagenesis which identified several genes with potential roles in hyperinvasion of this strain (Javed *et al.*, 2010). It was observed using DNA microarray technology that *C. jejuni* 01/51 lacked some capsule biosynthesis genes which are present in many other *C. jejuni* strains (Dr Georgina Manning; personal communication) and the CGH data in this project showed that this strain possesses the *kps* and some other capsule genes similar to those present in *C. jejuni* RM1221. Based on these studies and available resources *C. jejuni* 01/10 and *C. jejuni* 01/51 were selected for sequencing using next generation sequencing techniques. *C. jejuni* 01/51 was genome sequenced using two methods; pyrosequencing/454 and Illumina sequencing. *C. jejuni* 01/10 was genome sequenced

only by Illumina sequencing. The genome sequence data mining was performed with the following key aims;

- Identify additional genomic content unique to the hyperinvasive *C. jejuni* 01/51 and *C. jejuni* 01/10
- Annotate potential CDS to classify gene function and associate any relationship to the hyperinvasive phenotype exhibited by these strains.
- Phylogenomic comparison of the hyperinvasive *C. jejuni* compared with other available genome sequenced *C. jejuni* strains.

#### **6.2 METHODS**

The genomic DNA of *C. jejuni* 01/51 and 01/10 was prepared by using the Qiagen genomic DNA extraction kit. The method followed is discussed in material and methods chapter 2 (section 2.6.1).

#### 6.2.1 Illumina sequencing

The Illumina sequencing was performed by the genome sequence facility at the University of Exeter, Exeter, UK (Figure 6.1).

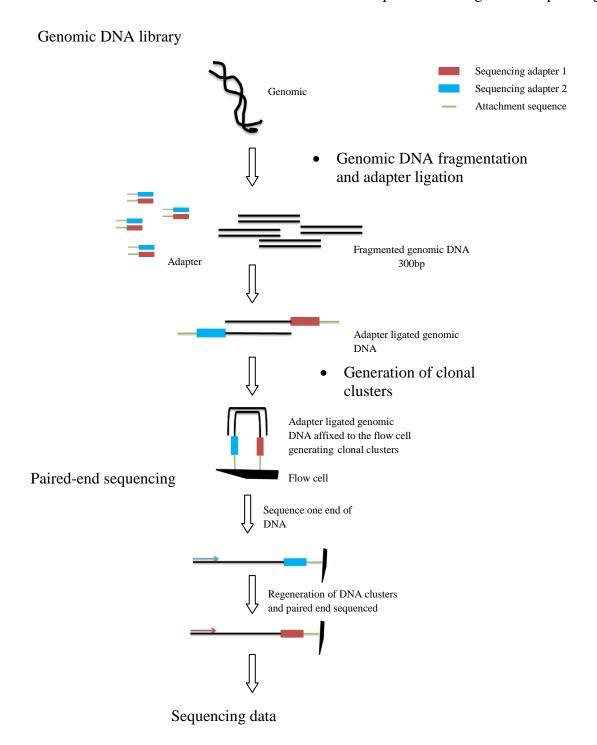



Figure 6.1: A diagrammatic representation of Illumina sequencing technique.

In this sequencing method, the genomic DNA was fragmented by shearing generating 300bp size fragments using the Tru-Seq Genomic library preparation kit. Multiplex PCR was than performed using 6 bp index sequences into a single lane. The genomic DNA fragments were sequenced using paired end 72 bp read lengths on an Illumina GAIIx sequencer using SCS software (v 2.8) (Figure 6.1).

The raw sequence data for *C. jejuni* 01/51 and 01/10 was provided in 72 and 75 contigs respectively. *De novo* assembly was performed using the velvet assembly program (v 1.0.18) (Zerbino and Birney., 2008). The annotation of the reference strain *C. jejuni* RM1221 was transferred onto the un-annotated query sequence using the Rapid Annotation Transfer Tool (RATT) (Otto *et al.*, 2011). GLIMMER (v 3.02) (Salzberg *et al.*, 1998) prediction was used to identify ORFs which were unique to the sequenced genome. These ORFs were annotated by Campydb and the NCBI BLASTx tools.

#### 6.2.2 Pyrosequencing/454

Pyrosequencing of *C. jejuni* 01/51 and genome assembly was performed by Dr Chrystala Constantinidou in the genome sequence facility at the University of Birmingham (Figure 6.2).

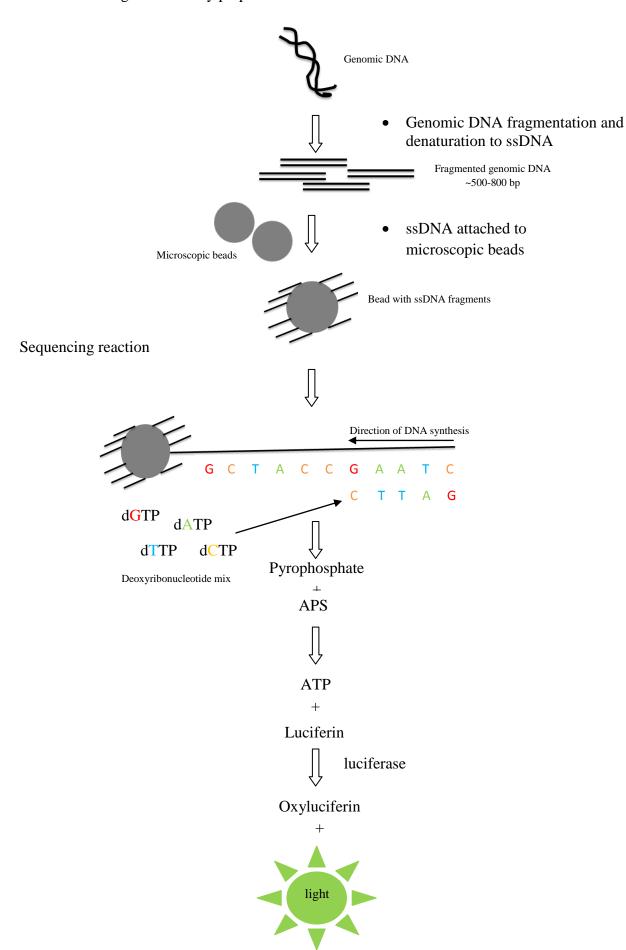



Figure 6.2: A schematic illustration of 454/pyrosequencing method.

*C. jejuni* 01/51 genomic DNA was sheared into single stranded DNA fragments of 500-800 bp in length. A single end DNA library was prepared following the general library preparation method. The GS FLX Titanium general DNA library kit was used to generate DNA template with amplification and sequencing adaptors. Emulsion PCR was performed for the enrichment of DNA template and the resulting library was sequenced by using the GS FLX Titanium platform (Figure 6.2).

The 454 sequencing performed 12x coverage of the *C. jejuni* 01/51 genome. The contigs were assembled using Newbler (v 2.5) (<a href="http://454.com/products/analysis-software/index.asp">http://454.com/products/analysis-software/index.asp</a>) mapped against the reference *C. jejuni* RM1221. The assembled genome sequence (.embl) of *C. jejuni* 01/51 was provided. An ACT (Carver *et al.*, 2005) comparison sequence file of *C. jejuni* 01/51 and RM1221 was also provided.

The Illumina and 454 sequence data for *C. jejuni* 01/51 was combined using MIRA (v 3.4) (Chevreux *et al.*, 1999). Any un-annotated genomic regions identified at this stage were annotated using Campydb and NCBI BLASTx searches. Features of the sequenced data were analysed using Artemis (Rutherford *et al.*, 2000). The combined *C. jejuni* 01/51 assembly was compared with *C. jejuni* 01/10 Illumina sequence using the Annotation Comparison Tool (ACT) (Carver *et al.*, 2005).

Dr Alan McNally (NTU) assembled *C. jejuni* 01/10 Illumina sequencing data, and performed the combined assembly on *C. jejuni* 01/51 and 01/10 sequences.

#### 6.2.3 Phylogeny

Whole genome phylogeny was performed using the assembled 01/51 and 01/10 genomes and 11 publicly available *C. jejuni* genome sequences (including *C. jejuni* subsp. *doylei* 269.97). Whole genome alignments were performed using Mugsy (Angiuoli., 2011), and the core genome extracted from the resulting alignment using a pipeline developed by Jason Sahl (Sahl., 2012) and adapted by Alan McNally. The concatenated core genome alignment was used to create a maximum likelihood phylogeny with RaxML (Stamatakis., 2005) implementing 100 bootstraps. The resulting tree was visualised and edited using Figtree.

#### 6.3 RESULTS AND DISCUSSION

Two hyperinvasive *C. jejuni* strains (*C. jejuni* 01/10 and 01/51) were genome sequenced and analysed to determine if the two strains contain any additional genomic content that may be the signature for their hyperinvasive phenotype.

#### 6.3.1 Genome sequence facts

The combined assembly of pryosequencing and Illumina sequencing data for *C. jejuni* 01/51 showed that the genome of *C. jejuni* 01/51 is a single circular chromosome of 1,617,079 bp in length with an average G+C content of 30.45% (Table 6.1). Illumina sequencing of *C. jejuni* 01/10 genome identified it as a single circular chromosome with a genome size of 1,677,053 bp and G+C ratio of 30.49%. Other key characteristics of genomes are in table 6.1 below;

Table 6.1: The genome features of *C. jejuni* 01/51 and 01/10.

| Genome features of two <i>C. jejuni</i> genomes | C. jejuni 01/51* | C. jejuni 01/10** |
|-------------------------------------------------|------------------|-------------------|
| Chromosome size (bp)                            | 1,617,079        | 1,677,053         |
| Number of contigs                               | 72               | 75                |
| N50 contig length                               | 103,524          | 120,479           |
| G+C content                                     | 30.45%           | 30.49%            |
| Number of genes (without pseudo)                | 1,739            | 1,724             |
| Genes with function                             | 1,378            | 1,385             |
| Hypothetical genes (including conserved)        | 361              | 339               |
| Genes with unknown function                     | 0                | 0                 |
| Phage/genomic islands                           | 1                | 2                 |
| Plasmids                                        | 0                | 0                 |
| Restriction/Modification system                 | 8                | 8                 |
| Virulence related genes                         |                  |                   |
| cadF                                            | 1                | 1                 |
| jlpA                                            | 1                | 1                 |
| 43-kDa MOMP                                     | 1                | 1                 |
| Fibronectin binding proteins                    | 3                | 3                 |
| Two component regulator systems                 | 19               | 17                |
| Response regulator                              | 11               | 10                |
| Sensor histidine kinase                         | 8                | 7                 |
| Membrane associated proteins                    | 77               | 72                |

<sup>\*</sup>features based on Illumina/454 combined assembly

<sup>\*\*</sup> features based on Illumina sequencing

#### 6.3.2 Phylogeny

A phylogenetic comparison of the whole genome sequence of the hyperinvasive *C. jejuni* 01/51 and 01/10 was made with other published complete *C. jejuni* and *C. jejuni* subsp. *doylei* 269.97 genome sequences (Figure 6.3).

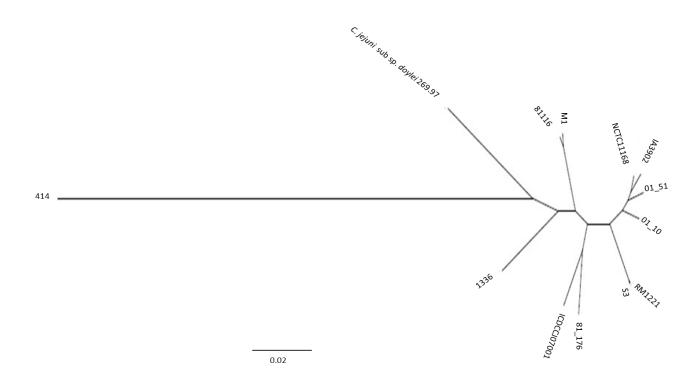



Figure 6.3: Phylogeny of *C. jejuni* 01/10 and 01/51 compared with other *C. jejuni* strains and *C. jejuni* subsp. *doylei* 269.97 based on genome sequence data.

The bar scale at the bottom represents the number of nucleotide substitutions.

Based on the genome sequence data, *C. jejuni* 01/10 and *C. jejuni* 01/51 formed a cluster with *C. jejuni* NCTC11168 and *C. jejuni* IA3902 suggesting that the genome composition of these strains is very similar. The human clinical isolate *C. jejuni* NCTC11168 has a chromosome size of 1,641,481 bp (Parkhill *et al.*, 2000) which is smaller in size compared to the *C. jejuni* chicken isolate RM1221 which is interrupted by four prophages/insertion sequences and some additional capsule loci in its genome (Fouts *et al.*, 2005). *C. jejuni* IA3902 is a pathogenic strain responsible for causing ovine abortion cases in sheep in USA with a chromosome size of 1,672,219 bp (Burrough *et al.*, 2009). The chromosome size of these strains is comparable to that of *C. jejuni* 01/51 and 01/10 respectively. The phylogenomic clustering of *C. jejuni* 01/10

and 01/51 close together reflected that these two hyperinvasive *C. jejuni* strains have a similar genomic content.

#### 6.3.3 Prophages/Genomic regions

When compared against the reference *C. jejuni* RM1221 genome both hyperinvasive *C. jejuni* strains lacked the four *C. jejuni* RM1221 characteristic prophages /genomic islands. Prophages are the vehicle of horizontal or lateral gene transfer. These may carry genes that provide a selective advantage to bacteria for survival in diverse environments and may have a role in virulence (Fouts *et al.*, 2005). *C. jejuni* 01/51 contains only one small prophage of 5,031 bp containing 6 ORFs with similarity to a replication domain protein in *Vibrio chloreae* species and genes with hypothetical function in *Halomonas* strain GFAJ-1 (Phung *et al.*, 2012) (Appendix: supplementary table 5).

In *C. jejuni* 01/10, two prophages were inserted in the genome (Appendix: supplementary table 6). Prophage 1 is 10,297 bp in size containing 7 ORFs with functional homology to phage related integrases and nucleases. Prophage 2 is large 28,602 bp in size and it is composed of 33 ORFs. The majority of these ORFs shared identity with phage structural proteins including prophage basal plate and tail assembly proteins. Additionally, ORFs with homology to nucleases and several hypothetical proteins were also present within this prophage. A few ORFs showed similarity to the genes from *C. jejuni* RM1221 Mu-like prophage (CMLP1) which may suggest that the role of these prophages in these strains is similar. The role of *C. jejuni* RM1221 prophage in *C. jejuni* pathogenesis is not known (Fouts *et al.*, 2005) however recently it was showed that the presence of *dns* (extracellular deoxyribonuclease) in the *C. jejuni* RM1221 Mu-like prophage inhibits natural transformation in *C. jejuni* strains (Gaasbeek *et al.*, 2010). The activation of these prophages and their role in the hyperinvasive virulence trait of these strains cannot be demonstrated at this stage.

*C. jejuni* 01/51 and 01/10 genomes do not contain any unique genes that are not present in other campylobacters. Some ORFs which showed best matches to members of the *Campylobacter* genus other than *C. jejuni* RM1221 mainly *C. jejuni* subspecies are listed in the supplementary tables 4 (*C. jejuni* 01/51) and 5 (*C. jejuni* 01/10) in the appendix. The LOS biosynthesis region for *C. jejuni* 01/51 and 01/10 are also listed (Appendix: supplementary tables 4 and 5 respectively). Other genes with membrane associated

functions, restriction modification systems and hypothetical roles were mainly identified.

6.3.3.1 Validation of CGH and PSSH study results in C. jejuni 01/51 and 01/10 whole genome sequences

Based on the results of CGH study, 522 and 859 divergent genes were identified in *C. jejuni* 01/10 and 01/51 respectively compared with the reference *C. jejuni/C.coli* genes on the pan array. This indicated that *C. jejuni* 01/10 was most similar and *C. jejuni* 01/51 was most divergent from the reference genes on the array compared with other *C. jejuni* strains investigated in the CGH study (section 4.3.7). The whole genome sequencing showed 337 genes to be absent from *C. jejuni* 01/10 and 313 genes were indicated as absent from *C. jejuni* 01/51 when mapped against the reference *C. jejuni* RM1221.

In agreement with the CGH findings, the whole genome sequence of *C. jejuni* 01/10 validated that some capsule and LOS genes homologous to those present in *C. jejuni* RM1221 were identified in the capsule and LOS regions of this strain. The capsule region of *C. jejuni* 01/10 is discussed later (Table 6.3; section 6.3.4) and the LOS region is listed in the supplementary table 6 in appendix. Unlike CGH data, however, the whole genome sequencing showed that *C. jejuni* RM1221 characteristic CJIE 2, 3 and 4 were absent from *C. jejuni* 01/10.

Both the CGH and whole genome sequencing showed that CJIE3 and 4 which are present in *C. jejuni* RM1221 were absent from *C. jejuni* 01/51 genome. In contrast to CGH data, the whole genome sequencing showed that *C. jejuni* RM1221 characteristic CMLP1, CJIE2 were missing from *C. jejuni* 01/51 genome. Interestingly, the whole genome sequencing did not identify any *C. jejuni* RM1221 homologous capsular genes in this strain. The capsule region of *C. jejuni* 01/51 (Table 6.2) is discussed in detail in section 6.3.4. The genome sequence of *C. jejuni* 01/51 showed that the LOS region possessed several LOS genes similar to those present in the LOS locus of *C. jejuni* RM1221 (Appendix: supplementary table 5). Based on the whole genome sequencing, mainly the hypothetical genes present in *C. jejuni* RM1221 were absent from *C. jejuni* 01/10 and 01/51.

The PSSH study identified five sequences (14, 22, 32, 54 and 62) to be present in the hyperinvasive *C. jejuni* strain 01/10 (Table 5.1; section 5.3.7). The whole genome sequencing verified 3/5 of these sequences (14, 22 and 54) in *C. jejuni* 01/10 (Appendix: supplementary table 6). It can be argued that the two sequences (32 and 62) which could not be detected in the genome sequence may not be sequenced as the Illumina sequence represents the draft genome sequence of this strain. In *C. jejuni* 01/51, none of the PSSH identified sequences were present (Table 5.1; section 5.3.7).

#### 6.3.4 C. jejuni capsule region

Capsule polysaccharides regions are known to be hypervariable in *Campylobacter* species (Fouts *et al.*, 2005, Dorrell *et al.*, 2001) and so the CPS regions of both 01/10 and 01/51 were studied in some detail.

#### 6.3.4.1 C. jejuni 01/51 capsule

Based on 454 and Illumina genome sequencing, *C. jejuni* 01/51 was found to have a diverse capsule region (Figure 6.4).

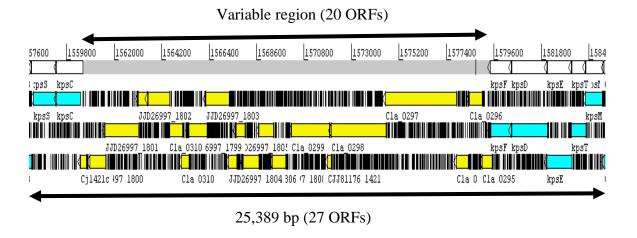



Figure 6.4: The capsule region in *C. jejuni* 01/51.

The ORFs in the capsular central variable region are yellow and the bordering *kps* genes are skyblue.

The capsule in *C. jejuni* 01/51 is a 25,389 bp region containing 27 ORFs. It is composed of a unique central variable region (20 genes) bordered by conserved *kps* genes encoding for the capsule polysaccharide export proteins.

The majority of genes in the variable region share similarity with *C. jejuni* subsp. *doylei* (9/27) and *C. lari* (9/27) capsule genes (Table 6.2) annotated here as JJD26997 and Cla respectively.

Table 6.2: CDS in the capsule region of *C. jejuni* 01/51.

|           | Gene             |                                                                                                    |
|-----------|------------------|----------------------------------------------------------------------------------------------------|
| Locus tag | homolog/ortholog | Function                                                                                           |
| kpsS      | CJE1600          | capsule polysaccharide export protein KpsS [Campylobacter jejuni RM1221]                           |
| kpsC      | CJE1601          | capsule polysaccharide export protein KpsC [Campylobacter jejuni RM1221]                           |
|           |                  | capsular polysaccharide biosynthesis heptosyltransferase [Campylobacter jejuni subsp. jejuni       |
|           | CJ1421c          | NCTC11168]                                                                                         |
|           | JJD26997_1800    | nucleoside-diphosphate-sugar pyrophosphorylase [Campylobacter jejuni subsp. doylei 269.97]         |
|           | JJD26997_1801    | capsular polysaccharide biosynthesis protein [Campylobacter jejuni subsp. doylei 269.97]           |
|           | JJD26997_1802    | capsular polysaccharide biosynthesis protein, putative [Campylobacter jejuni subsp. doylei 269.97] |
|           | Cla_0310         | capsular polysaccharide biosynthesis protein, putative [Campylobacter lari RM2100]                 |
|           | Cla_0310         | capsular polysaccharide biosynthesis protein, putative [Campylobacter lari RM2100]                 |
|           | Cla_0310         | capsular polysaccharide biosynthesis protein, putative [Campylobacter lari RM2100]                 |
|           | JJD26997_1799    | hypothetical protein [Campylobacter jejuni subsp. doylei 269.97]                                   |
|           | JJD26997_1803    | hypothetical protein [Campylobacter jejuni subsp. doylei 269.97]                                   |
|           | JJD26997_1804    | conserved domain protein [Campylobacter jejuni subsp. doylei 269.97]                               |
|           | JJD26997_1806    | conserved hypothetical protein [Campylobacter jejuni subsp. doylei 269.97]                         |
|           | JJD26997_1807    | HAD-superfamily hydrolase [Campylobacter jejuni subsp. doylei 269.97]                              |
|           | JJD26997_1808    | hypothetical protein [Campylobacter jejuni subsp. doylei 269.97]                                   |
|           | Cla_0299         | putative sugar transferase [Campylobacter lari RM2100]                                             |
|           | CJJ81176_1421    | putative sugar transferase [Campylobacter jejuni subsp. jejuni 81-176]                             |
|           | Cla_0298         | hypothetical protein [Campylobacter lari RM2100]                                                   |
|           | Cla_0297         | putative glycosyltransferase [Campylobacter lari RM2100]                                           |
|           | Cla_0296         | conserved hypothetical protein [Campylobacter lari RM2100]                                         |
|           | Cla_0296         | conserved hypothetical protein [Campylobacter lari RM2100]                                         |
|           | Cla_0295         | putative glycerol-3-phosphate cytidyltransferase [Campylobacter lari RM2100]                       |
| kpsF      | CJE1617          | rabinose-5-phosphate isomerase [Campylobacter jejuni RM1221]                                       |
|           |                  | capsular polysaccharide ABC transporter, periplasmic polysaccharide-binding protein [Campylobacter |
| kpsD      | CJE1618          | jejuni RM1221]                                                                                     |
| kpsE      | CJE1619          | capsular polysaccharide ABC transporter [Campylobacter jejuni RM1221]                              |
| kpsT      | CJE1620          | capsular polysaccharide ABC transporter, ATP-binding protein [Campylobacter jejuni RM1221]         |
| kpsM      | CJE1621          | capsular polysaccharide ABC transporter, permease protein [Campylobacter jejuni RM1221]            |

#### 6.3.4.2 C. jejuni 01/10 capsule

The complete capsule region in *C. jejuni* 01/10 is 35,448 bp in size and contains 29 ORFs (Figure 6.5). Of these 29 ORFs, seven are conserved *kps* genes enclosing the central variable region consisting of 22 ORFs.

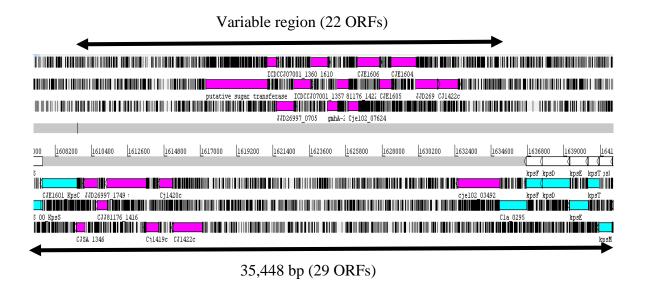



Figure 6.5: The capsule locus in *C. jejuni* 01/10.

The CDS in the central variable capsular region are pink and the surrounding *kps* genes are skyblue.

The CDS in the capsule region of *C. jejuni* 01/10 are listed in table 6.3.

Table 6.3: Genes in the capsule region of *C. jejuni* 01/10.

|           | Gene             |                                                                                                    |
|-----------|------------------|----------------------------------------------------------------------------------------------------|
| Locus tag | homolog/ortholog | Function                                                                                           |
| kpsS      | СЈЕ1600          | capsule polysaccharide export protein KpsS [Campylobacter jejuni RM1221]                           |
| kpsC      | СЉЕ1601          | capsule polysaccharide export protein KpsC [Campylobacter jejuni RM1221]                           |
|           | CJSA_1346        | cysC adenylylsulfate kinase [Campylobacter jejuni subsp. jejuni IA3902]                            |
|           | JJD26997_1749    | putative sugar-1-phosphate nucleotidyltransferase [Campylobacter jejuni subsp. doylei 269.97]      |
|           | CJJ81176_1416    | class I glutamine amidotransferase, putative [Campylobacter jejuni subsp. jejuni 81-176]           |
|           | CJ1418c          | hypothetical protein [Campylobacter jejuni subsp. jejuni NCTC11168]                                |
|           | CJ1419c          | methyltransferase [Campylobacter jejuni subsp. jejuni NCTC11168]                                   |
|           | CJ1420c          | methyltransferase [Campylobacter jejuni subsp. jejuni NCTC11168]                                   |
|           | CJ1422c          | sugar transferase [Campylobacter jejuni subsp. jejuni NCTC11168]                                   |
|           | putative sugar   | Campylobacter jejuni subsp. jejuni LMG 23218                                                       |
|           | transferase      |                                                                                                    |
|           | ICDCCJ07001_1360 | dTDP-6-deoxy-D-xylo-4-hexulose-3,5-epimerase [Campylobacter jejuni subsp. jejuni ICDCCJ07001]      |
|           | JJD26997_0705    | GDP-fucose synthetase [ Campylobacter jejuni subsp. doylei 269.97]                                 |
|           | ICDCCJ07001_1357 | GDP-mannose 4,6-dehydratase [Campylobacter jejuni subsp. jejuni ICDCCJ07001]                       |
|           | СЈЕ1610          | capsular biosynthesis sugar kinase [Campylobacter jejuni RM1221]                                   |
|           | gmhA-2           | phosphoheptose isomerase [Campylobacter jejuni RM1221]                                             |
|           | CJJ81176_1422    | capsular biosynthesis nucleotidyltransferase, putative [Campylobacter jejuni subsp. jejuni 81-176] |
|           | Cje102_07624     | hypothetical protein [Campylobacter jejuni subsp. jejuni LMG 23218]                                |
|           | СЈЕ1606          | haloacid dehalogenase-like hydrolase [Campylobacter jejuni RM1221]                                 |
|           | СЈЕ1605          | capsular polysaccharide biosynthesis protein [Campylobacter jejuni RM1221]                         |
|           | СЈЕ1604          | capsular polysaccharide biosynthesis protein [Campylobacter jejuni RM1221]                         |
|           | JJD26997_1797    | alpha-2,3-sialyltransferase [Campylobacter jejuni subsp. doylei 269.97]                            |
|           | CJ1422c          | sugar transferase [Campylobacter jejuni subsp. jejuni NCTC11168]                                   |
|           | Cje102_03492     | hypothetical protein [Campylobacter jejuni subsp. jejuni LMG 23218]                                |
|           | Cla_0295         | putative glycerol-3-phosphate cytidyltransferase [Campylobacter lari RM2100]                       |
| kpsF      | СЈЕ1617          | rabinose-5-phosphate isomerase [Campylobacter jejuni RM1221]                                       |
|           |                  | capsular polysaccharide ABC transporter, periplasmic polysaccharide-binding protein [Campylobacter |
| kpsD      | СЈЕ1618          | jejuni RM1221]                                                                                     |
| kpsE      | СЈЕ1619          | capsular polysaccharide ABC transporter [Campylobacter jejuni RM1221]                              |
| kpsT      | CJE1620          | capsular polysaccharide ABC transporter, ATP-binding protein [Campylobacter jejuni RM1221]         |
| kpsM      | СЈЕ1621          | capsular polysaccharide ABC transporter, permease protein [Campylobacter jejuni RM1221]            |

The majority of genes (25/29) in the capsule region were homologous to other *C. jejuni* capsule genes however, the CPS region in *C. jejuni* 01/10 was also found to contain three genes with similarity to *C. jejuni* subsp. *doylei* capsule genes (JJD26997\_1749, JJD26997\_0705 and JJD26997\_1797) and one gene showed homology to *C. lari* CPS gene (Cla\_0295). This *C. lari* homologous capsule gene was also present in the *C. jejuni* 01/51 capsule region. However, the level of interspecies similarity of genes in *C. jejuni* 01/10 CPS region was not as seen in the case of *C. jejuni* 01/51.

C. lari is found in wild birds, particularly seagulls (Glunder and Petermann., 1989). It is frequently isolated from freshwater, seawater and shellfish (Rosef et al., 2008). Unlike C. jejuni and C. coli which are isolated from human gastroenteritis cases only a limited number of C. lari isolates are associated with human illness (Miller et al., 2008b), however there are reports of C. lari causing severe bacteraemia in humans (Werno et al., 2002, Godreuil et al., 2000). C. lari RM2100 is a human clinical isolate (Fouts et al.,

2005, Miller *et al.*, 2008b). Based on its genome sequence, ~ 90% of the genome content of this strain is similar to other *Campylobacter* species (Fouts *et al.*, 2005, Miller *et al.*, 2008b). Similarly, *C. jejuni* subsp. *doylei* is more frequently isolated from blood cultures than stool samples (Parker *et al.*, 2007).

The homology of genes within the capsule region of the hyperinvasive *C. jejuni* 01/51 and *C. jejuni* 01/10 to *C. lari* and *C. jejuni* subsp. *doylei* capsule genes makes it a novel region as this interspecies mosaicism in the capsule locus has not been reported in other sequenced *C. jejuni* strains. This mosaic pattern of genes in the capsule region suggests that homologous recombination is an active phenomenon in this region which has resulted in these two hyperinvasive *C. jejuni* strains acquiring genes from other pathogenic *Campylobacter* subspecies. The presence of capsule genes from *C. lari* and *C. jejuni* subsp. *doyeli* in hyperinvasive *C. jejuni* 01/10 and 01/51 strains is a common genetic signature of these two CPS regions which has not been observed in other campylobacters and perhaps this trait is the determinant of hyperinvasivess in these strains. Furthermore, JJD26997\_1801 in the *C. jejuni* 01/51 CPS region with similarity to the *C. jejuni* subsp. *doylei* capsule gene (Table 6.2) was also previously identified by transposon mutagenesis study of *C. jejuni* 01/51 and a mutant in this gene resulted in reduced invasion in INT-407 and Caco-2 epithelial cells (Javed *et al.*, 2010) confirming the role of capsule in the hyperinvasive phenotype of *C. jejuni* 01/51.

It is important to validate the role of capsule in the hyperinvasive profile of *C. jejuni* 01/10 by mutagenesis. The Cla\_0295 homologous gene encoding for a putative glycerol-3-phosphate cytidyltransferase in *C. lari* RM2100 is the best candidate for mutagenesis study as a homologue of this gene was also identified in *C. jejuni* 01/51 CPS region.

Interestingly, some genes were identified in multiple copies. For example, three copies of the Cla\_0310 orthologous genes encoding for a putative polysaccharide biosynthesis protein and two copies of genes encoding for the conserved hypothetical proteins (Cla\_0296) were identified in the CPS region of *C. jejuni* 01/51. Similarly, the capsule locus in *C. jejuni* 01/10 possesses two copies of a sugar transferase encoding gene, Cj1422c. Previous studies on *C. jejuni* capsule regions have reported that gene duplication is commonly observed in the CPS region of *C. jejuni* strains which adds to the variability in this region (Karlyshev *et al.*, 2005a, Guerry *et al.*, 2012, Parker and

Huynh., 2012). These multiple copies of genes may provide selective advantage to bacteria in survival inside the host and disease profile (Fouts *et al.*, 2005). An additional 11 capsule polysaccharide genes were identified in *C. jejuni* 01/51 which were not a part of the capsule region but were randomly distributed in the chromosome (supplementary table 5). Of these eight genes (*kpsS*, *kpsC*, CJSA\_1346, JJD26997\_1749, CJJ81176\_1416, Cj1418c, Cj1419c, Cj1420c) were present clustered together. This also shows that *C. jejuni* 01/51 has two copies of some of the *kps* gene homologues. The other three genes (CJSA\_1363 and CJSA\_1352) and CJSA\_1357 were located separately. This random distribution of capsule genes has also been observed in CPS regions for *C. jejuni* strains of different Penner serotypes (Parker and Huynh., 2012) and was reported in the *C. upsaliensis* capsule locus (Fouts *et al.*, 2005). Unlike in *C. jejuni* 01/51, no additional CPS genes outside the capsule region could be identified in *C. jejuni* 01/10.

It have been reported that despite the variability in the central CPS region some capsular genes are conserved in many *C. jejuni* strains. These include the heptose biosynthesis genes (*hddC*, *gmhA*, *hddA*) and the genes encoding for O-methyl phosphoramidate (MeOPN) capsular modifications (Guerry *et al.*, 2012). In *C. jejuni* NCTC11168, four genes (Cj1415c-Cj1418c) have been reported to be involved in MeOPN synthesis and these genes are highly conserved in other *C. jejuni* strains. Also, two genes Cj1419c and Cj1420c with a role in methyl transferases were always found adjacent to the MeOPN synthesis genes (McNally *et al.*, 2007). Two transferases encoding genes Cj1421c and Cj1422c present in *C. jejuni* NCTC11168 are responsible for adding MeOPN to two different sugars in a HS2 serotype CPS (McNally *et al.*, 2007) (Figure 6.6).

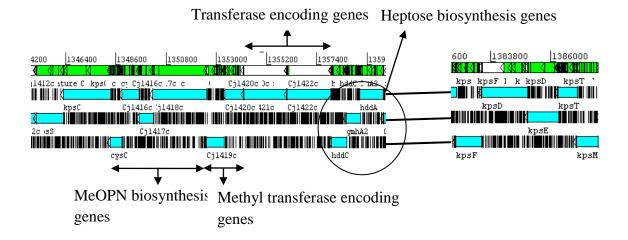



Figure 6.6: A representation of the partial capsule locus in *C. jejuni* NCTC111168 showing heptose and MeOPN biosynthesis genes and transferase encoding genes.

In *C. jejuni* 01/51 CPS region, the *hddC*, *gmhA*, *hddA* homologous gene cluster was not identified. *C. jejuni* 01/10 contains a *gmhA-2* homologous gene in its CPS locus. Parker and Huynh (2012) have also observed that these heptose synthesis genes were missing from *C. jejuni* subsp. *jejuni* IA3902. Additionally, one MeOPN synthesis gene homolog (Cj1418c) was identified within the *C. jejuni* 01/10 CPS region and as a part of the *C. jejuni* 01/51 additional capsule genes with the methyl transferases encoding genes (Cj1419c-Cj1420c) present adjacent to it. In *C. jejuni* 01/51, the ORFs with similarity to the two transferases (Cj1421c and Cj1422c) were not present and *C. jejuni* 01/10 contains two copies of Cj1422c homologous gene.

Further analysis of the capsule locus does need to be done.

#### 6.3.5 Is capsule or LOS the serodeterminant in C. jejuni 01/51?

Capsule is considered as the serodeterminant in Penner HS serotyping of *C. jejuni* strains (Karlyshev *et al.*, 2000) and in this study *C. jejuni* 01/51 was identified as serotype HS4 (section 4.3.2 and Figure 4.3 in chapter 4).

The nucleotide sequence of the capsule locus of other HS4 serotype *C. jejuni* strains (Poly *et al.*, 2011) was compared with the capsule sequence of *C. jejuni* 01/51 but no similarity was observed. Interestingly a mutant in capsule gene, JJD26997\_1801 (Javed *et al.*, 2010) and a mutant in a LOS gene (*cj1136*) (Javed *et al.*, 2012) in *C. jejuni* 01/51

were also serotyped as part of this study. The capsule gene (JJD26997\_1801) mutant retained the serotype of the wild type strain whereas the mutant in the LOS gene (*cj1136*) gene altered the serotype of the mutant to HS50. This may suggest that LOS and not the capsule is responsible for serotype specificity in this strain.

It would be useful to confirm the above observation in *C. jejuni* 01/10 generating mutants in LOS and capsule genes.

#### **6.4 SUMMARY**

In summary, the phylogeny based on the whole genome sequence of the hyperinvasive C. jejuni 01/10 and 01/51 grouped them together. There was no unique genomic content present in these strains except for a prophage in C. jejuni 01/51. Two prophages were found in C. jejuni 01/10. The capsule region was the most diverse region but was different between the two strains. The capsule loci in C. jejuni 01/51 and 01/10 CPS region showed homology with the C. jejuni subsp. doylei and C. lari capsule genes. This mosaicism in the capsule region containing genes with homology to other Campylobacter species has not been reported in other C. jejuni strains. This shows that the capsule region in hyperinvasive C. jejuni 01/51 and 01/10 is a hotspot for homologous recombination and that this mosaicism in the capsule region may be a marker for hyperinvasion in C. jejuni. Some capsular genes were present in multiple copies in the capsule region of C. jejuni 01/51 and 01/10 with a few capsule genes also identified outside the CPS region in C. jejuni 01/51. C. jejuni 01/51 is serotype HS4 but its capsule sequence is different from other HS4 serotype C. jejuni strains. A capsule gene, JJD26997\_1801, mutant in C. jejuni 01/51 did not change the serotype whereas a LOS gene, cj1136, mutant changed the serotype of the mutant suggesting that LOS is the serodeterminant in *C. jejuni* 01/51.

## Chapter Seven

# THESIS DISCUSSION AND FUTURE WORK

#### THESIS DISCUSSION AND FUTURE WORK

C. jejuni is an enteric pathogen and it is the major cause of campylobacteriosis worldwide. The molecular mechanisms underlying C. jejuni pathogenesis are still being investigated. Some key factors that have been studied to be associated with the C. jejuni pathogenesis include motility, chemotaxis, toxin production and invasion (Young et al., 2007, Dasti et al., 2010). C. jejuni has been shown to successfully invade the epithelial cells in *in vitro* assays in several studies (Fauchere *et al.*, 1986, Konkel and Joens., 1989, DeMelo et al., 1989, Everest et al., 1992). Usually the severity of clinical symptoms is related to the ability of C. jejuni isolates to invade the intestinal epithelial cells (Konkel et al., 2001). Recently, an invasion study of C. jejuni isolated from different sources grouped together six strains based on their hyperinvasive phenotype (Fearnley et al., 2008). One of these hyperinvasive C. jejuni strains, 01/51, was investigated further by transposon mutagenesis and a number of genes were identified with potential roles in invasion (Javed et al., 2010). In this research project, all the hyperinvasive C. jejuni strains identified by Fearnley et al (2008) were studied at the genome content level to identify any common basis of hyperinvasiveness in this group of strains. genome based study, CGH, PSSH and next generation genome sequencing methods have been used.

In the preliminary part of this research project all the hyperinvasive *C. jejuni* strains were tested in *in vitro* assays of environmental stress that the bacteria are exposed to during invasion assays (*i.e.* growth rate, survival in atmospheric air and hydrogen peroxide stress, and motility) and a few other virulence related factors (*i.e.* autoagglutination, sodium deoxycholic acid stress and biofilm formation). Motility is an important virulence phenotype in *C. jejuni* and loss of flagella has been shown to result in reduced invasion of intestinal epithelial cells in several studies (Grant *et al.*, 1993, Wassenaar *et al.*, 1991). Reactive oxygen species (ROS) are produced as toxic molecules inside macrophages to kill intracellular pathogens by damaging the essential cellular components including nucleic acids, lipids and proteins (Jamieson, 1998). To circumvent the harmful effects of ROS, *C. jejuni* has evolved several protective enzymes *e.g.* catalase and superoxide dismutase (De Melo *et al.*, 1989, Day *et al.*, 2000). During the invasion assays, bacteria are exposed to a number of stress factors including 5% (v/v) CO<sub>2</sub>, atmospheric air and Triton X-100. Also, the radical oxygen molecules are

produced as a byproduct of oxidative metabolism in the actively growing tissue culture cells. In this study, all the *C. jejuni* strains showed a similar pattern of growth in the exponential phase (section 3.3.1). In addition, all the *C. jejuni* strains survived the atmospheric air and hydrogen peroxide stresses and displayed high levels of variation in motility (sections 3.3.2 to 3.3.4). For the other virulence related phenotypes studied, strain to strain variation was evident with no grouping of the hyperinvasive *C. jejuni* strains (sections 3.3.5 to 3.3.7) and so at this point it seemed that the only phenotype relating these strains to each other was their hyperinvasiveness.

Since the six hyperinvasive strains appeared to be significantly more invasive than the other strains tested at the time (Fearnley et al., 2008) it was hypothesized that they possessed extra/novel DNA that was related to this phenotype. Several studies have successfully used DNA microarrays to highlight similarities and differences at the gene content level that may account for the observed phenotypic variation between C. jejuni strains (Quiñones et al., 2008, Parker et al., 2006, Champion et al., 2005, Pearson et al., 2003, Dorrell et al., 2001). In this study, the hyperinvasive C. jejuni strains were compared with a group of four low invasive C. jejuni strains by using CGH. The objective was to determine if the hyperinvasive C. jejuni strains would group together as a distinct group based on their genomic content and also to identify similar regions of variability between these strains. The hierarchical clustering based on CGH did not group the hyperinvasive C. jejuni strains together. The hyperinvasive C. jejuni strains exhibited different MLST and HS serotype profiles (section 4.3.2). Further analysis of the CGH data identified 67 genes which were present or variable in the majority of the hyperinvasive C. jejuni compared with the low invasive C. jejuni strains (section 4.3.3) and appendix: supplementary table 4). Group 1 consisted of 9 genes that were present in all the hyperinvasive C. jejuni strains and highly divergent/absent from the majority of Similarly, group 2 possessed 6 genes that were highly low invasive strains. divergent/absent from the all the hyperinvasive C. jejuni and present in most of the low invasive C. jejuni strains (section 4.3.3). Since only 4 low invasive C. jejuni strains were studied by using CGH an additional 9 low invasive C. jejuni strains were screened by PCR for the genes identified in groups 1 and 2 (section 4.3.4). The PCR analysis further validated the CGH data and showed a statistically significant association between presence or absence of 13/15 genes (except for CJE1128 and CJE0731) in the

hyperinvasion phenotype. Hence, these genes may be considered as putative markers of hyperinvasiveness.

Further characterisation of these genes is required.

The majority of genes identified in the CGH study belonged to different functional categories (section 4.3.5). These genes were not located in the same operon and were randomly distributed in the pan genome (section 4.3.6). Group 1 was dominated by the metabolic genes (proC and metF and modA) as well as posttranslational modification, protein turnover, and chaperone encoding genes (aat and CJE0320). In group 2, genes encoding for proteins involved in translation and posttranslational functions (tgt and CJE0801), cell membrane biogenesis (CJE0315) and nucleic acid replication and repair (CJE0731) were identified. In addition both groups (1 and 2) contained genes with hypothetical roles. Overall the other groups (Appendix: supplementary table 4) also represented functional groups including the iron transport system (CfrA; CJE0347 and CeuB; CJE1541), arsenic resistance encoding gene (arsC) and the twin-arginine translocase (TAT) secretion system (CJE1310). This suggests that the genes involved in essential cellular and metabolic functions are important in defining the hyperinvasive phenotype. Additionally, this unique phenotype is characterised by genes from different cellular networks rather than by gene(s) belonging to a single functional category. Subtle genetic changes in the nucleotide sequence of a gene introduced by point mutation, addition/deletion or substitution of a single nucleotide may account for the observed variation in phenotype (Malik-Kale et al., 2007). These changes cannot be identified by DNA microarrays and whole genome sequencing will be required to observe them. However, genome sequencing for a large number of strains can be expensive; hence, the importance of DNA microarrays cannot be neglected. It is also important to consider the host factors that contribute to an infection process which further complicates the strain to strain phenotype variations (Taboada et al., 2007). The increased invasiveness observed in in vitro cultured cell lines may not be due to differences in genetic content but due to expression or regulation differences in single or multiple genes (Konkel et al., 1990). Therefore, it would be interesting to compare the full sequences of genes identified in the CGH study as present in both hyperinvasive and low invasive strains (Appendix: supplementary table 4) to identify more subtle differences contributed by single nucleotide changes in the gene sequence. Also, it is possible that those genes identified as being present in all the hyperinvasive C. jejuni and only one of the low invasive C. jejuni strains (Group 1: section 4.3.3) are not expressed in that low invasive *C. jejuni* strain which can be tested by transcriptional analysis of these genes and this work is currently being undertaken by others in the laboratory.

The majority of *C. jejuni* strains showed genomic diversity, mainly in surface related structures, including the LOS, CPS and flagella biosynthesis loci as well as in the restriction modification (RM) systems (section 4.3.7). This strain to strain variation has been observed in other studies (Dorrell *et al.*, 2001, Pearson *et al.*, 2003, Parker *et al.*, 2006). It was also interesting to note that *C. jejuni* 01/10 was most similar to the reference genes on the array whereas *C. jejuni* 01/51 was the most diverse hyperinvasive *C. jejuni* strain.

Since DNA microarray analysis only provides comparison with the reference genes on the array, the hyperinvasive C. jejuni strains were also studied by using pooled suppressive subtractive hybridization (PSSH) (Gerrish et al., 2010) to identify any additional genomic content that the hyperinvasive C. jejuni strains commonly share which may account for their hyperinvasive phenotype. In this technique, the genomic DNA of all the hyperinvasive C. jejuni strains was pooled together as "tester" and hybridized against a pool of four low invasive C. jejuni strains "driver". Eleven sequences were identified in total and validated by PCR analysis as being absent from all the four low invasive driver C. jejuni strains (section 5.3.7). PCR screening also showed the distribution of the 11 identified sequences in the hyperinvasive C. jejuni strains and in an additional 9 low invasive C. jejuni strains that were not used in the PSSH experiment. Each sequence was found to be present in one or more hyperinvasive C. jejuni strains but none of them were present in all hyperinvasive strains. These sequences were variably distributed in the non-PSSH tested low invasive strains. Four sequences (14, 38, 54, and 57) were only identified in the hyperinvasive C. jejuni strains as these sequences were also absent from the PCR analysed 9 low invasive C. jejuni However, these sequences cannot be associated with the hyperinvasive strains. phenotype and likely only represent strain specific sequences. None of the identified sequences were present in C. jejuni 01/51 whereas C. jejuni 01/10 was positive for most (5/11) inserts.

The 11 identified inserts showed homology with genes in other *Campylobacter* strains and from other bacteria (section 5.3.8). Insert 14 showed similarity to a prophage

MuSo1, F protein in *C. jejuni subsp. jejuni* ICDCCJ07001 and 260.94. Inserts 54 and 57 were homologous to a putative tetracycline resistance gene *tet* (O/W/32/O) in *Streptococcus gallolyticus* subsp. *gallolyticus* ATCC BAA-2069 plasmid pSGG1 and the phage tail fibre protein I in *Bordetella avium* 197N respectively. Most genome sequenced *Campylobacter* strains contain characteristic prophages which contribute to the genetic diversity and stability of bacterial genomes (Fouts *et al.*, 2005). Insert 38 had no known sequence match in the genome sequence databases searched and many represent strain specific DNA. Therefore, the identification of prophage-related sequences is expected in the hyperinvasive *C. jejuni* strains.

The role of these genes in invasiveness can be studied by mutagenesis. The PSSH method can successfully identify additional genomic content in the tester strains but it is a complicated and time-consuming method (Ahmed *et al.*, 2002, Hepworth *et al.*, 2007).

Based on the results of CGH and PSSH studies, the genomic structure of two hyperinvasive C. jejuni strains was studied further by whole genome sequencing. High through-put genome sequencing is the most reliable method to study genetic content variations and to identify pathogenesis associated in C. jejuni strains (Fouts et al., 2005, Hofreuter et al., 2006, Pearson et al., 2007, Poly et al., 2007b, Friis et al., 2010, Zhang et al., 2010). The hyperinvasive C. jejuni 01/51 strain was sequenced by using 454/pyrosequencing and Illumina sequencing methods and the genome sequences by the two methods were combined whereas for the hyperinvasive C. jejuni 01/10 the sequencing was performed just by using the Illumina sequencing. The genomes of C. jejuni 01/51 and C. jejuni 01/10 are 1,617,079 bp and 1,677,053 bp in sizes respectively (section 6.3.1). The phylogenomic clustering compared with all eleven published complete C. jejuni and C. jejuni subsp. doylei 269.97 genome sequences clustered the two hyperinvasive C. jejuni strains together suggesting that their genomic content is more similar to each other than to the other strains in the database (section 6.3.2). Genome sequencing of the other 4 hyperinvasive C. jejuni strains (Fearnley et al., 2008) would be helpful in studying the genomic diversity and evolution of these strains. The genome sequences of both strains identified strain specific sequences with gene similarities within the Campylobacter genus suggesting that these strains do not contain unique sequences. The only exception was of a prophage identified in the C. jejuni 01/51 that showed similarity with genes from V. chloreae and Halomonas species. Two prophages were identified in C. jejuni 01/10 which showed similarity with

the other *Campylobacter* prophage related genes (section 6.3.3). The capsule region of the two genome sequenced hyperinvasive C. jejuni strains was highly diverse (section 6.3.4). In the hyperinvasive C. jejuni strain 01/51, the CPS region was found to be 25,389 bp in size and the hyperinvasive C. jejuni 01/10 possessed a larger (35,448 bp) CPS region. The majority of genes in C. jejuni 01/51 capsule region showed similarity with the C. lari and C. jejuni subsp. doylei capsule genes. The capsule region in C. jejuni 01/10 contains most genes showing homology with other C. jejuni strains, however three genes with similarity to the C. jejuni subsp. doylei capsule genes and one C. lari capsule gene homologue were also identified in the C. jejuni 01/10 CPS region. This mosaic pattern of gene distribution in the capsule region sharing homology with other Campylobacter species capsule genes has not been reported previously in C. jejuni. It can be suggested that the capsule region in the two genome sequenced hyperinvasive C. jejuni strains is highly recombinagenic and may be the signature for the hyperinvasive phenotype in these strains. Furthermore, a mutant in a capsule gene (JJD26997 1801) in C. jejuni 01/51 resulted in reduced invasion in INT-407 and Caco-2 (Javed et al., 2010) proposing the role of this gene in the hyperinvasive phenotype of C. jejuni 01/51. The homologue of the Cla\_0295 capsule gene in C. lari RM2100 was present in both the C. jejuni 01/10 and 01/51 CPS regions and mutants in this gene should be tested in invasion studies to confirm the role of capsule in hyperinvasiveness. The structural analysis of the C. jejuni 01/51 and 01/10 capsules will further support the genome sequence data.

There were additional capsule genes identified as randomly scattered in the genome of *C. jejuni* 01/51 that were not a part of the capsular region. This was also observed by Parker and Huynh (2012) in capsules of *C. jejuni* strains of different Penner serotypes. Also, gene duplication was noted in the capsule region of *C. jejuni* 01/51 and 01/10 which has been reported in other *Campylobacter* strains (Karlyshev *et al.*, 2005a, Fouts *et al.*, 2005, Parker and Huynh., 2012).

The capsule has been considered as the serodeterminant in the Penner serotyping scheme (Karlyshev *et al.*, 2000). *C. jejuni* 01/51 and 01/10 were serotyped as HS4 and HS50 respectively (section 4.3.2 and Figure 4.3; chapter 4). Poly *et al* (2011) recently suggested that the capsule region of *C. jejuni* strains within the same serotype is conserved. Contrary to this, a sequence comparison of the *C. jejuni* 01/51 CPS region with a HS4 *C. jejuni* strain did not show any homology between them. This suggests

that in *C. jejuni* 01/51 other outer surface structures (LOS or flagella) are being recognised in HS serotyping instead of the capsule. It would also be useful to compare the capsule sequence of *C. jejuni* 01/10 with other HS50 *C. jejuni* strains to validate the association between serotype and the capsule in this hyperinvasive strain.

To further investigate if the LOS is responsible for Penner serotype specificity mutants in a LOS gene (*cj1136*) and a capsule gene (JJD26997\_1801) in *C. jejuni* 01/51 (Javed *et al.*, 2012) were serotyped (section 6.3.5). The LOS gene (*cj1136*) mutant changed the serotype to HS50 whereas the mutant in the capsule gene, with homology to JJD26997\_1801, in *C. jejuni* 01/51 (Javed *et al.*, 2010) remained the same as the wild type strain which supports the fact that the capsule is not being recognised in serotyping and the LOS is the serodeterminant instead.

In summary, the phenotypic characterization of the C. jejuni strains in virulence related assays showed variation among strains with no grouping of the hyperinvasive C. jejuni as a distinct group. It therefore indicates that these strains share only the hyperinvasive phenotype which strengthens the approach to look for the underlying genetic components responsible for this uniquely shared phenotype. It also confirmed that the differences in the invasion potential of the C. jejuni strains was not due to the reduced growth and motility or inability to survive under atmospheric air and reactive oxygen stresses. The phylogenomic clustering based on the CGH data could not cluster the hyperinvasive C. jejuni strains as a separate group away from low invasive strains. In total, 67 genes were identified as present or missing from the hyperinvasive C. jejuni strains. Genes related to essential cellular functions were mainly identified along with some characterized virulence related loci. All the C. jejuni strains showed genome diversity in the LOS, capsule, RM and flagella biosynthesis regions. Two groups of genes were identified; with group 1 containing 9 genes present in all the hyperinvasive C. jejuni strains and group 2 with 6 genes which were highly divergent/absent from all the hyperinvasive C. jejuni strains. The genes were markers for hyperinvasion as a strong association was seen between their presence and absence and the hyperinvasive phenotype. The PSSH, identified 11 sequences which were variably distributed in the hyperinvasive C. jejuni and 9 non-PSSH tested low invasive C. jejuni strains. From these, 4/11 inserts were hyperinvasive C. jejuni specific but these were not present in all the hyperinvasive strains. The pyrosequencing/Illumina genome sequences of the hyperinvasive C. jejuni 01/10 and 01/51 did not identify any sequences unique to these

strains that were not present in the other sequenced *Campylobacter* strains except for a prophage in *C. jejuni* 01/51. A novel CPS region was characterised in *C. jejuni* 01/51 and 01/10 possessing loci with similarity to the *C. jejuni* subsp. *doylei* and *C. lari* capsule genes which is evident of interspecies homologous gene transfer in the capsule confirming the role of capsule in the hyperinvasive phenotype of these strains. It would be interesting to characterize the CPS regions in other four hyperinvasive *C. jejuni* strains to further validate the association between capsule and hyperinvasiveness. *C. jejuni* 01/51 was serotyped as HS4 but its capsule sequence was different from HS4 serotyped *C. jejuni* strains and the capsule gene mutant in *C. jejuni* 01/51 did not change its serotype suggesting that the capsule is not recognised during serotyping. However, the changed serotype of a LOS mutant in *C. jejuni* 01/51 suggests that LOS is the serodeterminant. This study represents a complex analysis of the genome of a phenotypically identical group of *C. jejuni* strains and has provided insight into the genetic basis for hyperinvasion.

## What next in this project?

The transcriptional study of genes identified by CGH as present in all hyperinvasive *C. jejuni* and highly divergent from the majority of low invasive *C. jejuni* strains will show whether these genes are only expressed in the hyperinvasive group of strains and may account for the hyperinvasive phenotype of these strains. Since genes of different functional categories have been identified in the CGH and PSSH studies, it would be interesting to study the link/communication between different cellular networks and their role in hyperinvasion. The CGH and PSSH identified loci should be investigated further by mutagenesis and *in vitro* invasion assays. These genes are also the potential markers for studying the mechanism of *C. jejuni* uptake and survival into host cells.

The whole genome sequences of the hyperinvasive *C. jejuni* 01/10 and 01/51 should be compared in more detail with the sequenced *C. jejuni* strains other than *C. jejuni* RM1221. The remaining four hyperinvasive *C. jejuni* strains (01/35, 01/04, 01/41 and EX114) should be whole genome sequenced and the genome sequences of all six hyperinvasive *C. jejuni* strains should be compared. It would be interesting to observe if all the hyperinvasive *C. jejuni* strains share the mosaic pattern of interspecies gene distribution in their CPS regions. The comparison with CPS regions of some of the low invasive *C. jejuni* stains would also be a useful control as this will validate the role of capsule in hyperinvasiveness. The invasion profile of the majority of sequenced

*C. jejuni* strains is unknown. It would be useful to screen these strains in invasion assays to see if more strains possess the hyperinvasive phenotype.

Chapter 8: References

Chapter Eight

## **REFERENCES**

## REFERENCES

Abeyta, C., Trost, P.A., Bark, D.H., Hunt, J.M., Kaysnet, C.A., and Wekell, M.M. (1997). The use of bacterial membrane fractions for the detection of *Campylobacter* species in shellfish. *J.Rapid.Methods.Autom.Microbiol.* **5**:223-247.

Agron, P.G., Macht, M., Radnedge, L., Skowronski, E.W., Miller, W., and AndErsen, G.L. (2002). Use of subtractive hybridization for comprehensive surveys of prokaryotic genome differences. *FEMS Microbiol.Lett.* **211**:175-182.

Ahmed, I.H., Manning, G., Wassenaar, T.M., Cawthraw, S., and Newell, D.G. (2002). Identification of genetic differences between two *Campylobacter jejuni* strains with different colonization potentials. *Microbiol.* **148**:1203-1212.

Ahmed, M.U., Dunn, L., and Ivanova, E.P. (2012). Evaluation of current molecular approaches for genotyping of *Campylobacter jejuni* strains. *Foodborne Pathog.Dis.* **9**:375-385.

Aklujkar, M., and Lovley, D.R. (2010). Interference with histidyl-tRNA synthetase by a CRISPR spacer sequence as a factor in the evolution of *Pelobacter carbinolicus*. *BMC Evol.Biol*. **10**(1):230.

Alexeev, D., Alexeeva, M., Baxter, R.L., Campopiano, D.J., Webster, S.P., and Sawyer, L. (1998). The crystal structure of 8-amino-7-oxononanoate synthase: a bacterial PLP-dependent, acyl-CoA-condensing enzyme. *J.Mol.Biol.* **284**:401-419.

Alm, R.A., Guerry, P., Power, M.E., and Trust, T.J. (1992). Variation in antigenicity and molecular weight of *Campylobacter coli* VC167 flagellin in different genetic backgrounds. *J.Bacteriol.* **174**:4230-4238.

Al-Sayeqh, A.F., Loughlin, M.F., Dillon, E., Mellits, K.H., and Connerton, I.F. (2010). *Campylobacter jejuni* activates NF-kappaB independently of TLR2, TLR4, Nod1 and Nod2 receptors. *Microb.Pathog.* **49**:294-304.

Altekruse, S.F., Swerdlow, D.L, and Stern, N.J. (1998). Microbial food borne pathogens. *Campylobacter jejuni. Vet.Clin.North.Am.Food.Animal.Prac.* **14**:31-40.

Andersen-Nissen, E., Smith, K.D., Strobe, K.L., Barrett, S.L., Cookson, B.T., Logan, S.M., and Aderem, A. (2005). Evasion of Toll-like receptor 5 by flagellated bacteria. *Proc.Natl.Acad.Sci.U.S.A.* **102**:9247-9252.

Anderson, J.B., Tanner, A.H., and Brodribb, A.J. (1986). Toxic megacolon due to *Campylobacter* colitis. *Int.J.Colorectal Dis.* **1**:58-59.

Angiuoli, S.V., Dunning, H.J.C., Salzberg, S.L., and Tettelin, H. (2011). Improving pangenome annotation using whole genome multiple alignment. BMC Bioinformatics. **30**;12:272.

Anonymous. (2010). Preliminary FoodNet Data on the incidence of infection with pathogens transmitted commonly through food in 10 states (2009). *Weekly MMWR*. April 16, 2010/59(14); 418–422. Available at: http://www.foodconsumer. org/newsite/Nutrition/foodborne\_illnesses\_on\_the\_decline\_15041008 53.html.

Asadullah, K., Sterry, W., and Volk, H.D. (2003). Interleukin-10 therapy--review of a new approach. *Pharmacol.Rev.* **55**:241-269.

Asakura, H., Yamasaki, M., Yamamoto, S., and Igimi, S. (2007). Deletion of peb4 gene impairs cell adhesion and biofilm formation in *Campylobacter jejuni*. *FEMS Microbiol.Lett.* **275**:278-285.

Asbury, A.K., and Cornblath, D.R. (1990). Assessment of current diagnostic criteria for Guillain-Barre syndrome. *Ann.Neurol.* **27 Suppl**: S21-4.

Ashgar, S.S., Oldfield, N.J., Wooldridge, K.G., Jones, M.A., Irving, G.J., Turner, D.P., and Ala'Aldeen, D.A. (2007). CapA, an autotransporter protein of *Campylobacter jejuni*, mediates association with human epithelial cells and colonization of the chicken gut. *J.Bacteriol.* **189**:1856-1865.

Aspinall, G.O., Fujimoto, S., McDonald, A.G., Pang, H., Kurjanczyk, L.A., and Penner, J.L. (1994). Lipopolysaccharides from *Campylobacter jejuni* associated with Guillain-Barre syndrome patients mimic human gangliosides in structure. *Infect.Immun.* **62**:2122-2125.

Aspinall, G.O., McDonald, A.G., Pang, H., Kurjanczyk, L. A., Penner, J.L. (1993). An antigenic polysaccharide from *Campylobacter coli* serotype O:30. Structure of a teichoic acid-like antigenic polysaccharide with the lipopolysaccharide. *J.Biol.Chem.* **268**:18321-18329.

Atabay, H.I., and Corry, J.E. (1998). The isolation and prevalence of campylobacters from dairy cattle using a variety of methods. *J.Appl.Microbiol.* **84**:733-740.

Atack, J.M., Harvey, P., Jones, M.A., and Kelly, D.J. (2008). The *Campylobacter jejuni* thiol peroxidases Tpx and Bcp both contribute to aerotolerance and peroxide-mediated stress resistance but have distinct substrate specificities. *J.Bacteriol.* **190**:5279-5290.

Babakhani, F.K., and Joens, L.A. (1993). Primary swine intestinal cells as a model for studying *Campylobacter jejuni* invasiveness. *Infect.Immun.* **61**:2723-2726.

Bachtiar, B.M., Coloe, P.J., and Fry, B.N. (2007). Knockout mutagenesis of the kpsE gene of *Campylobacter jejuni* 81116 and its involvement in bacterium-host interactions. *FEMS Immunol. Med.Microbiol.* **49**:149-154.

Bacon, D.J., Alm, R.A., Burr, D.H., Hu, L., Kopecko, D.J., Ewing, C.P., Trust, T.J., and Guerry, P. (2000). Involvement of a plasmid in virulence of *Campylobacter jejuni* 81-176. *Infect.Immun.* **68**:4384-4390.

- Bacon, D.J., Szymanski, C.M., Burr, D.H., Silver, R.P., Alm, R.A., and Guerry, P. (2001). A phase-variable capsule is involved in virulence of *Campylobacter jejuni* 81-176. *Mol.Microbiol.* **40**:769-777.
- Baek, K.T., Vegge, C.S., and Brondsted, L. (2011a). HtrA chaperone activity contributes to host cell binding in *Campylobacter jejuni*. *Gut Pathog*. **3**:13.
- Baek, K.T., Vegge, C.S., Skorko-Glonek, J., and Brondsted, L. (2011b). Different contributions of HtrA protease and chaperone activities to *Campylobacter jejuni* stress tolerance and physiology. *Appl.Environ.Microbiol.* **77**:57-66.
- Bahrami, B., Macfarlane, S., and Macfarlane, G.T. (2011). Induction of cytokine formation by human intestinal bacteria in gut epithelial cell lines. *J.Appl.Microbiol.* **110**:353-363.
- Baig, B.H., Wachsmuth, I.K., and Morris, G.K. (1986). Utilization of exogenous siderophores by *Campylobacter* species. *J.Clin.Microbiol.* **23**:431-433.
- Baillon, M.L., van Vliet, A.H., Ketley, J.M., Constantinidou, C., and Penn, C.W. (1999). An iron-regulated alkyl hydroperoxide reductase (AhpC) confers aerotolerance and oxidative stress resistance to the microaerophilic pathogen *Campylobacter jejuni. J.Bacteriol.* **181**:4798-4804.
- Baker, N.T. and Graham, L.L. (2010). *Campylobacter* fetus translocation across Caco-2 cell monolayers. *Microb.Pathog.* **49**:260-272.
- Balbontin, R., Rowley, G., Pucciarelli, M.G., Lopez-Garrido, J., Wormstone, Y., Lucchini, S., Garcia-Del Portillo, F., Hinton, J.C., and Casadesus, J. (2006). DNA adenine methylation regulates virulence gene expression in Salmonella enterica serovar Typhimurium. *J.Bacteriol.* **188**:8160-8168.
- Baqar, S., Applebee, L.A., Gilliland, T.C., Jr., Lee, L.H., Porter, C.K., and Guerry, P. (2008). Immunogenicity and protective efficacy of recombinant *Campylobacter jejuni* flagellum-secreted proteins in mice. *Infect.Immun.* **76**:3170-3175.
- Bardiau, M., Taminiau, B., Duprez, J.N., Labrozzo, S., and Mainil, J.G. (2012). Comparison between a bovine and a human enterohaemorrhagic Escherichia coli strain of serogroup O26 by suppressive subtractive hybridization reveals the presence of atypical factors in EHEC and EPEC strains. *FEMS Microbiol.Lett.* **330**:132-139.
- Barrero-Tobon, A.M., and Hendrixson, D.R. (2012). Identification and analysis of flagellar coexpressed determinants (Feds) of *Campylobacter jejuni* involved in colonization. *Mol.Microbiol.* **84**:352-369.
- Baserisalehi, M., and Bahador, N. (2011). Chemotactic behavior of *Campylobacter* spp. in function of different temperatures (37 degrees C and 42 degrees C). *Anaerobe*. **17**:459-462.

Batchelor, R.A., Pearson, B.M., Friis, L.M., Guerry, P., and Wells, J.M. (2004). Nucleotide sequences and comparison of two large conjugative plasmids from different *Campylobacter* species. *Microbiology*. **150**:3507-3517.

Bax, M., Kuijf, M.L., Heikema, A.P., van Rijs, W., Bruijns, S.C., Garcia-Vallejo, J.J., Crocker, P.R., Jacobs, B.C., van Vliet, S.J., and Van Kooyk, Y. (2011). *Campylobacter jejuni* lipooligosaccharides modulate dendritic cell-mediated T cell polarization in a sialic acid linkage-dependent manner. *Infect.Immun.* **79**:2681-2689.

Baylis, C. L., MacPhee, S. A., Martin, K. W., Humphrey, T. J, and Betts, R. P. (2000). Comparison of three enrichment media for the isolation of *Campylobacter* spp. from foods. *J. Appl.Microbiol.* **89**:884-891.

Beltinger, J., del Buono, J., Skelly, M.M., Thornley, J., Spiller, R.C., Stack, W.A., and Hawkey, C.J. (2008). Disruption of colonic barrier function and induction of mediator release by strains of *Campylobacter jejuni* that invade epithelial cells. *World J.Gastroenterol.* **14**:7345-7352.

Berrang, M.E., Buhr, R.J., Cason, J.A., and Dickens, J.A. (2001). Broiler carcass contamination with *Campylobacter* from feaces during de-feathering. *J.Food.Prot.* **64**:2063-2066.

Best, E.L., Fox, A.J., Frost, J.A., and Bolton, F.J. (2004). Identification of *Campylobacter jejuni* Multilocus Sequence Type ST-21 Clonal Complex by Single-Nucleotide Polymorphism Analysis. *J.Clin.Micro.* **42**:2836-2839

Biswas, D., Itoh, K., and Sasakawa, C. (2000). Uptake pathways of clinical and healthy animal isolates of *Campylobacter jejuni* into INT-407 cells. *FEMS Immunol.Med.Microbiol.* **29**:203-211.

Blaser, M.J., Sazie, E., and Williams, L.P., Jr. (1987). The influence of immunity on raw milk--associated *Campylobacter* infection. *JAMA*. **257**:43-46.

Bogdan, C., and Nathan, C. (1993). Modulation of macrophage function by transforming growth factor beta, interleukin-4, and interleukin-10. *Ann.N.Y.Acad.Sci.* **685**:713-739.

Borrmann, E., Berndt, A., Hanel, I., and Kohler, H. (2007). *Campylobacter*-induced interleukin-8 responses in human intestinal epithelial cells and primary intestinal chick cells. *Vet.Microbiol.* **124**:115-124.

Bou-Abdallah, F., Lewin, A.C., Le Brun, N.E., Moore, G.R., and Chasteen, N.D. (2002). Iron detoxification properties of Escherichia coli bacterioferritin. Attenuation of oxyradical chemistry. *J.Biol.Chem.* **277**:37064-37069.

Bras, A.M., and Ketley, J.M. (1999). Transcellular translocation of *Campylobacter jejuni* across human polarised epithelial monolayers. *FEMS Microbiol.Lett.* **179**:209-215.

Buelow, D.R., Christensen, J.E., Neal-McKinney, J.M., and Konkel, M.E. (2011). *Campylobacter jejuni* survival within human epithelial cells is enhanced by the secreted protein Cial. *Mol.Microbiol.* **80**:1296-1312.

Burrough, E.R., Sahin, O., Plummer, P.J., Zhang, Q., and Yaeger, M.J. (2009). Pathogenicity of an emergent, ovine abortifacient *Campylobacter jejuni* clone orally inoculated into pregnant guinea pigs. *Am.J.Vet.Res.* **70**:1269-1276.

Canchaya, C., Fournous, G., and Brussow, H. (2004). The impact of prophages on bacterial chromosomes. *Mol.Microbiol.* **53**:9-18.

Carrillo, C.D., Taboada, E., Nash, J.H., Lanthier, P., Kelly, J., Lau, P.C., Verhulp, R., Mykytczuk, O., Sy, J., Findlay, W.A., Amoako, K., Gomis, S., Willson, P., Austin, J.W., Potter, A., Babiuk, L., Allan, B., and Szymanski, C.M. (2004). Genome-wide expression analyses of *Campylobacter jejuni* NCTC11168 reveals coordinate regulation of motility and virulence by flhA. *J.Biol.Chem.* **279**:20327-20338.

Carver, T.J., Rutherford, K.M., Berriman, M., Rajand Ream, M.A., Barrell, B.G., and Parkhill, J. (2005). ACT: the Artemis Comparison Tool. *Bioinformatics*. **21**:3422-3423.

CAST. (1994). Foodborne Pathogens: Risk and Consequences. Task Force Report No.122. The Council for Agricultural Science and Technology, Iowa Sate University, Ames, IA.

Cavalier-Smith, T. (2002). The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. *Int. J. Sys. Evol. Microbiol.* **52**:7-76.

Cawthraw, S.A., Lind, L., Kaijser, B., and Newell, D.G. (2000). Antibodies, directed towards *Campylobacter jejuni* antigens, in sera from poultry abattoir workers. *Clin.Exp.Immunol.* **122**:55-60.

Cawthraw, S.A., and Newell, D.G. (2010). Investigation of the presence and protective effects of maternal antibodies against *Campylobacter jejuni* in chickens. *Avian Dis.* **54**:86-93.

Champion, O.L., Gaunt, M.W., Gundogdu, O., Elmi, A., Witney, A.A., Hinds, J., Dorrell, N., and Wren, B.W. (2005). Comparative phylogenomics of the food-borne pathogen *Campylobacter jejuni* reveals genetic markers predictive of infection source. *Proc.Natl.Acad.Sci.U.S.A.* **102**:16043-16048.

Champion, O.L., Al-Jaberi, S., Stabler, R.A., and Wren, B.W. (2008). Comparative genomic of *Campylobacter jejuni*. In *Campylobacter*. Nachamkin, I., Szymanski, C.M. and Blaser, M.J. (eds). Washington, DC: ASM Press, pp.63-95.

Chantarapanont, W.,Berrang, M., and Frank, J.F. (2003). Direct microscopic observation and viability determination of *Campylobacter jejuni* on chicken skin. *J.Food.Prot*. **66**:2222-2230.

Chevreux, B., Wetter, T., and Suhai, S. (1999). Genome sequence assembly using trace signals and additional sequence information. In German Conference on Bioinformatics, pp. 45-56.

Christensen, J.E., Pacheco, S.A., and Konkel, M.E. (2009). Identification of a *Campylobacter jejuni*-secreted protein required for maximal invasion of host cells. *Mol.Microbiol.* **73**:650-662.

Clark, G.C., and Ng, Lai-King. (2008). Sequence variability of Campylobacter temperate bacteriophages. *BMC Microbiol.* **8**.49

Cody, A.J., Maiden, M.J., and Dingle, K.E. (2009). Genetic diversity and stability of the porA allele as a genetic marker in human *Campylobacter* infection. *Microbiology*. **155**:4145-4154.

Coker, A.O., Isokpehi, R.D., Thomas, B.N., Amisu, K.O., and Obi, C.L. (2002). Human *Campylobacter*iosis in developing countries. *Emerg.Infect.Dis.* **8**:237-244.

Cole, S.P., Harwood, J., Lee, R., She, R., and Guiney, D.G. (2004a). Characterization of monospecies biofilm formation by *Helicobacter pylori*. *J.Bacteriol*. **186**:3124-3132.

Cole, K., Donoghue, A.M., Blore, P.J., Holliman, J.S., Cox, N.A., Musgrove, M.T., and Donoghue, D.J. (2004b). Effects of aeration and storage temperature on *Campylobacter* concentrations in poultry semen. *Poult.Sci.* **83**:1734-1738.

Cooper, K.K., Cooper, M.A., Zuccolo, A., Law, B., and Joens, L.A. (2011). Complete genome sequence of *Campylobacter jejuni* strain S3. *J.Bacteriol.* **193**:1491-1492.

Corcoran, A.T., and Moran, A.P. (2007). Influence of growth conditions on diverse polysaccharide production by *Campylobacter jejuni*. *FEMS Immunol.Med.Microbiol*. **49**:124-132.

Cornelius, A.J., Gilpin, B., Carter, P., Nicol, C., and On, S.L. (2010). Comparison of PCR binary typing (P-BIT), a new approach to epidemiological subtyping of *Campylobacter jejuni*, with serotyping, pulsed-field gel electrophoresis, and multilocus sequence typing methods. *Appl.Environ.Microbiol.* **76**:1533-1544.

Corry, J.E.L., Post, D.E., Colin, P, and Laisney, M.J. (1995). Culture media for the isolation of campylobacters. *Int.J.FoodMicrobiol.* **26**:43-76.

Corry, J.E.L., and Atabay, H.I. (2001). Poultry as a source of *Campylobacter* and related organisms. *J.Appl.Microbiol.* **90**:96S-114S.

Dai, J., Wang, S., Guerlebeck, D., Laturnus, C., Guenther, S., Shi, Z., Lu, C., and Ewers, C. (2010). Suppression subtractive hybridization identifies an autotransporter adhesin gene of E. coli IMT5155 specifically associated with avian pathogenic Escherichia coli (APEC). *BMC Microbiol.* **10**:236.

Dale, J.W., and Park, S. (2004). Molecular genetics of bacteria. 4th ed. John Wiley & Sons Inc., Chichester, UK.

Dasti, J.I., Tareen, A.M., Lugert, R., Zautner, A.E., and Gross, U. (2010). *Campylobacter jejuni*: a brief overview on pathogenicity-associated factors and disease-mediating mechanisms. *Int.J.Med.Microbiol.***3 00**:205-211.

Davis, L., and DiRita, V. (2008). Growth and laboratory maintenance of *Campylobacter jejuni*. *Curr.Protoc.Microbiol*. **Chapter 8**:Unit 8A.1.1-8A.1.7.

Day, W.A., Jr., Sajecki, J.L., Pitts, T.M., and Joens, L.A. (2000). Role of catalase in *Campylobacter jejuni* intracellular survival. *Infect.Immun.* **68**:6337-6345.

Debruyne, L., Gevers, D, and Vandamme, P. (2005). Taxonomy of the family Campylobacteraceae. In *Campylobacter*. Nachamkin, I and Blaser, M.J. (eds). 3<sup>rd</sup> Edn. Washington, DC: ASM, pp.3–27

Debruyne, L., Samyn, E., De Brand T, E., Vand Enberg, O., Heyndrickx, M., and Vand Amme, P. (2008). Comparative performance of different PCR assays for the identification of *Campylobacter jejuni* and *Campylobacter coli*. *Res.Microbiol*. **159**:88-93.

Dekeyser, P., Gossuin-Detrain, M., Butzler, J.P., and Sternon, J. (1972). Acute enteritis due to related vibrio: first positive stool cultures. *J.Infect.Dis.* **125**:390-392.

De Melo, M.A., Gabbiani, G., and Pechere, J.C. (1989). Cellular events and intracellular survival of *Campylobacter jejuni* during infection of HEp-2 cells. *Infect.Immun*. **57**:2214-2222.

de Zoete, M.R., Keestra, A.M., Roszczenko, P., and Van Putten, J.P. (2010). Activation of human and chicken toll-like receptors by *Campylobacter* spp. *Infect.Immun.* **78**:1229-1238.

Dinant, S., Schurink, C.A., Deckers, J.W., and Severin, J.A. (2011). Aortic homograft endocarditis caused by *Campylobacter jejuni*. *J.Clin.Microbiol.* **49**:4016-4017.

Dingle, K.E., Colles, F.M., Ure, R., Wagenaar, J.A., Duim, B., Bolton, F.J., Fox, A.J., Wareing, D.R., and Maiden, M.C. (2002). Molecular characterization of *Campylobacter jejuni* clones: a basis for epidemiologic investigation. *Emerg.Infect.Dis.* **8**:949-955.

Dingle, K.E., Colles, F.M., Wareing, D.R., Ure, R., Fox, A.J., Bolton, F.E., Bootsma, H.J., Willems, R.J., Urwin, R., and Maiden, M.C. (2001). Multilocus sequence typing system for *Campylobacter jejuni*. *J.Clin.Microbiol*. **39**:14-23.

Doig, P., Kinsella, N., Guerry, P., and Trust, T.J. (1996). Characterization of a post-translational modification of *Campylobacter* flagellin: identification of a sero-specific glycosyl moiety. *Mol.Microbiol.* **19**:379-387.

Dolgilevich, S., Rafferty, B., Luchinskaya, D., and Kozarov, E. (2011). Genomic comparison of invasive and rare non-invasive strains reveals Porphyromonas gingivalis genetic polymorphisms. *J.Oral Microbiol.* **3**:10.3402/jom.v3i0.5764.

Dorrell, N., Champion, O.L., and Wren, B.W. (2002). Microarray analysis of *Campylobacter jejuni*: to the guts of the problem! *Comp.Funct.Genomics*. **3**:338-341.

Dorrell, N., Mangan, J.A., Laing, K.G., Hinds, J., Linton, D., Al-Ghusein, H., Barrell, B.G., Parkhill, J., Stoker, N.G., Karlyshev, A.V., Butcher, P.D., and Wren, B.W. (2001). Whole genome comparison of *Campylobacter jejuni* human isolates using a low-cost microarray reveals extensive genetic diversity. *Genome Res.* **11**:1706-1715.

Doyle, L. (1944). A vibrio associated with swine dysentery. Am.J. Vet. Res. 5:3-5

Du, L.F., Li, Z.J., Tang, X.Y., Huang, J.Q., and Sun, W.B. (2008). Immunogenicity and immunoprotection of recombinant PEB1 in *Campylobacter-jejuni*-infected mice. *World J.Gastroenterol.* **14**:6244-6248.

Dunne, A., and O'Neill, L.A. (2005). Adaptor usage and Toll-like receptor signaling specificity. *FEBS Lett.* **579**:3330-3335.

Duong, T., and Konkel, M.E. (2009). Comparative studies of *Campylobacter jejuni* genomic diversity reveal the importance of core and dispensable genes in the biology of this enigmatic food-borne pathogen. *Curr.Opin.Biotechnol.* **20**:158-165.

Eckmann, L. (2004). Innate immunity and mucosal bacterial interactions in the intestine. *Curr.Opin.Gastroenterol.* **20**:82-88.

EFSA. (2007). The community summary report on trends and sources of zoonoses, zoonotic agents, antimicrobial resistance and foodborne outbreaks in the European Union in 2006. *EFSA J.* **130**:130-155.

EFSA. (2009). The community summary report on trends and sources of zoonoses and zoonotic agents in the European Union in 2007. *EFSA J.* **223**:223-440.

EFSA. (2010a). The community summary report on trends and sources of zoonoses, zoonotic agents and foodborne outbreaks in the European Union in 2008. *EFSA J.* **8**:1496-1906.

EFSA. (2010b). Scientific opinion on quantification of the risk posed by broiler meat to human campylobacteriosis in the EU. *EFSA J.* **8**:1437-1526.

EFSA, (2012). The European Union Summary Report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2010. *EFSA J.* 10 (3):2598.

Eisen, M.B., Spellman, P.T., Brown, P.O., and Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. *Proc.Natl.Acad.Sci.U.S.A.* **95**:14863-14868.

El-Shibiny, A., Connerton, P.L., and Connerton, I.F. (2005). Enumeration and diversity of campylobacters and bacteriophages isolated during the rearing cycles of free-range and organic chickens. *Appl.Environ.Microbiol.* **71**:1259-1266.

Elsinghorst, E.A. (1994). Measurement of invasion by gentamicin resistance. *Methods Enzymol.* **236**:405-420.

Escherich, T. (1886). Beitrage zur Kenntniss der Darmbacterien. III. Ueber das Vorkommen von Vibrionen in Darmcanal und den Stuhlgangen der Sauglinge. (Articles adding to the knowledge of intestinal bacteria. III. On the existence of vibrios in the intestines and faeces of babies). *Münchener.Med.Wochenschrift*. **33**:815-817.

Escolar, L., Perez-Martin, J., and De Lorenzo, V. (1999). Opening the iron box: transcriptional metalloregulation by the Fur protein. *J.Bacteriol.* **181**:6223-6229.

Eucker, T.P., and Konkel, M.E. (2012). The cooperative action of bacterial fibronectin-binding proteins and secreted proteins promote maximal *Campylobacter jejuni* invasion of host cells by stimulating membrane ruffling. *Cell.Microbiol.* **14**:226-238.

Everest, P.H., Goossens, H., Butzler, J.P., Lloyd, D., Knutton, S., Ketley, J.M., and Williams, P.H. (1992). Differentiated Caco-2 cells as a model for enteric invasion by *Campylobacter jejuni* and *C. coli. J.Med.Microbiol.* **37**:319-325.

Ewing, C.P., Reishcheva, E., and Guerry, P. (2009). Functional characterization of flagellin glycosylation in *Campylobacter jejuni* 81-176. *J.Bacteriol.* **191**:7086-7093.

Falkow, S. (1988). Molecular Koch's postulates applied to microbial pathogenicity. *Rev. Infect.Dis.* **10** (**suppl. 2**): S274–S276.

Fauchere, J.L., Rosenau, A., Veron, M., Moyen, E.N., Richard, S., and Pfister, A. (1986). Association with HeLa cells of *Campylobacter jejuni* and *Campylobacter* coli isolated from human feces. *Infect.Immun.* **54**:283-287.

Fearnley, C., Manning, G., Bagnall, M., Javed, M.A., Wassenaar, T.M., and Newell, D.G. (2008). Identification of hyperinvasive *Campylobacter jejuni* strains isolated from poultry and human clinical sources. *J.Med.Microbiol.* **57**:570-580.

Fernandez, H., Giusti, G., and Bertoglio, J.C. (1995). Effect of the complement system on the sensitivity of *Campylobacter jejuni* and *Campylobacter* coli to human blood serum. *Braz.J.Med.Biol.Res.* **28**:227-229.

Fernández, V., Villanueva, MP and García, A. (2008). Occurrence of campylobacter species in healthy well-nourished and malnourished children. *Braz.J.Med.Biol.* **39**:56-58.

Fernando, U., Biswas, D., Allan, B., Willson, P., and Potter, A.A. (2007). Influence of *Campylobacter jejuni* fliA, rpoN and flgK genes on colonization of the chicken gut. *Int.J.Food Microbiol.* **118**:194-200.

Ferrero, R. L., and Lee, A. (1988). Motility of *Campylobacter jejuni* in a viscous environment: comparison with conventional rod shaped bacteria. *Gen Microbiol*. **134**:53-59.

Fitzgerald, C., and Nachamkin, I. (2007). *Campylobacter* and *Arcobacter*. In Manual of Clinical Microbiology. Murray, P.R. (eds). 9th ed. Washington DC: ASM Press, pp.933-946.

Flanagan, R.C., Neal-McKinney, J.M., Dhillon, A.S., Miller, W.G., and Konkel, M.E. (2009). Examination of *Campylobacter jejuni* putative adhesins leads to the identification of a new protein, designated FlpA, required for chicken colonization. *Infect.Immun.* **77**:2399-2407.

Flint, A., Sun, Y.Q., and Stintzi, A. (2012). Cj1386 is an ankyrin-containing protein involved in heme trafficking to catalase in *Campylobacter jejuni*. *J.Bacteriol*. **194**:334-345.

Fouts, D.E., Mongodin, E.F., Mand Rell, R.E., Miller, W.G., Rasko, D.A., Ravel, J., Brinkac, L.M., DeBoy, R.T., Parker, C.T., Daugherty, S.C., Dodson, R.J., Durkin, A.S., Madupu, R., Sullivan, S.A., Shetty, J.U., Ayodeji, M.A., Shvartsbeyn, A., Schatz, M.C., Badger, J.H., Fraser, C.M., and Nelson, K.E. (2005). Major structural differences and novel potential virulence mechanisms from the genomes of multiple *Campylobacter* species. *PLoS Biol.* **3**:e15.

Freist, W., Verhey, J.F., Ruhlmann, A., Gauss, D.H., and Arnez, J.G. (1999). HistidyltRNA synthetase. *Biol. Chem.* **380**:623-646.

Friedman, C.R., Neimann, J., Wegener, H. C., and Tauxe, R.V. (2000). Epidemiology of *Campylobacter jejuni* infections in the United States and other industrialized nations. In *Campylobacter*. Nachamkin, I. and Blaser, M.J. (eds). 2<sup>nd</sup> edn. Washington, DC: ASM press, pp.121-138.

Friis, C., Wassenaar, T.M., Javed, M.A., Snipen, L., Lagesen, K., Hallin, P.F., Newell, D.G., Toszeghy, M., Ridley, A., Manning, G., and Ussery, D.W. (2010). Genomic characterization of *Campylobacter jejuni* strain M1. *PLoS One*. 5:e12253.

Frirdich, E., Biboy, J., Adams, C., Lee, J., Ellermeier, J., Gielda, L.D., Dirita, V.J., Girardin, S.E., Vollmer, W., and Gaynor, E.C. (2012). Peptidoglycan-Modifying Enzyme Pgp1 Is Required for Helical Cell Shape and Pathogenicity Traits in *Campylobacter jejuni*. *PLoS Pathog*. **8**:e1002602.

Frost, J.A., Kramer, J.M., and Gilland Ers, S.A. (1999). Phage typing of *Campylobacter jejuni* and *Campylobacter* coli and its use as an adjunct to serotyping. *Epidemiol.Infect.* **123**:47-55.

Gaasbeek, E.J., Wagenaar, J.A., Guilhabert, M.R., van Putten, J.P., Parker, C.T., and Van der Wal, F.J. (2010). Nucleases encoded by the integrated elements CJIE2

and CJIE4 inhibit natural transformation of *Campylobacter jejuni*. *J.Bacteriol*. **192**:936-941.

Gangaiah, D., Liu, Z., Arcos, J., Kassem, I.I., Sanad, Y., Torrelles, J.B., and Rajashekara, G. (2010). Polyphosphate kinase 2: a novel determinant of stress responses and pathogenesis in *Campylobacter jejuni*. *PLoS One*. **5**:e12142.

Gaynor, E.C., Cawthraw, S., Manning, G., MacKichan, J.K., Falkow, S., and Newell, D.G. (2004). The genome-sequenced variant of *Campylobacter jejuni* NCTC11168 and the original clonal clinical isolate differ markedly in colonization, gene expression, and virulence-associated phenotypes. *J.Bacteriol.* **186**:503-517.

Gaynor, E.C., Wells, D.H., MacKichan, J.K., and Falkow, S. (2005). The *Campylobacter jejuni* stringent response controls specific stress survival and virulence-associated phenotypes. *Mol.Microbiol.* **56**:8-27.

Ge, B., Girard, W., Zhao, S., Friedman, S., Gaines, S.A., and Meng, J. (2006). Genotyping of *Campylobacter* spp. from retail meats by pulsed-field gel electrophoresis and ribotyping. *J.Appl.Microbiol.* **100**:175-184.

Gerrish, R.S., Gill, A.L., Fowler, V.G., and Gill, S.R. (2010). Development of pooled suppression subtractive hybridization to analyze the pangenome of *Staphylococcus aureus*. *J.Microbiol.Methods*. **81**:56-60.

Gilpin, B., Cornelius, A., Robson, B., Boxall, N., Ferguson, A., Nicol, C., and Henderson, T. (2006). Application of pulsed-field gel electrophoresis to identify potential outbreaks of *Campylobacter*iosis in New Zealand. *J.Clin.Microbiol.* **44**:406-412.

Gilpin, B.J., Scholes, P., Robson, B., and Savill, M.G. (2008). The transmission of thermotolerant *Campylobacter* spp. to people living or working on dairy farms in New Zealand. *Zoonoses Public.Health.* **55**:352-360.

Glunder, G and Petermann, S. (1989). The occurrence and characterization of *Campylobacter* spp. in silver gulls (Larus argentatus), three-toed gulls (Rissa tridactyla) and house sparrows (Passer domesticus). *Zentralbl.Veterinarmed.B.* **36**:123-130.

Godreuil, S., Maslin, J., Morillon, M., Sagui, E., De Pina, J.J., and Martet, G. (2000). *Campylobacter lari* bacteremia (letter). *Presse Med.* **29**:1603.

Golden, N.J. and Acheson, D.W. (2002). Identification of motility and autoagglutination *Campylobacter jejuni* mutants by rand Om transposon mutagenesis. *Infect.Immun*. **70**:1761-1771.

Goodwin, C.S., McConnell, W., McCulloch, R.K., McCullough, C., Hill, R., Bronsdon, M.A., and Kasper, G. (1989). Cellular fatty acid composition of *Campylobacter* pylori from primates and ferrets compared with those of other *Campylobacters*. *J.Clin.Microbiol.* **27**:938-943.

- Goon, S., Ewing, C.P., Lorenzo, M., Pattarini, D., Majam, G., and Guerry, P. (2006). A sigma28-regulated nonflagella gene contributes to virulence of *Campylobacter jejuni* 81-176. *Infect.Immun.* **74**:769-772.
- Goon, S., Kelly, J.F., Logan, S.M., Ewing, C.P., and Guerry, P. (2003). Pseudaminic acid, the major modification on *Campylobacter* flagellin, is synthesized via the Cj1293 gene. *Mol.Microbiol.* **50**:659-671.
- Govoni, V., and Granieri, E. (2001). Epidemiology of the Guillain-Barre syndrome. *Curr.Opin.Neurol.* **14**:605-613.
- Grant, C.C., Konkel, M.E., Cieplak, W., Jr., and Tompkins, L.S. (1993). Role of flagella in adherence, internalization, and translocation of *Campylobacter jejuni* in nonpolarized and polarized epithelial cell cultures. *Infect.Immun.* **61**:1764-1771.
- Guerry, P. (2007). *Campylobacter* flagella: not just for motility. *Trends Microbiol.* **15**:456-461.
- Guerry, P., Ewing, C.P., Hickey, T.E., Prendergast, M.M., and Moran, A.P. (2000). Sialylation of lipooligosaccharide cores affects immunogenicity and serum resistance of *Campylobacter jejuni*. *Infect.Immun.* **68**:6656-6662.
- Guerry, P., Ewing, C.P., Schirm, M., Lorenzo, M., Kelly, J., Pattarini, D., Majam, G., Thibault, P., and Logan, S. (2006). Changes in flagellin glycosylation affect *Campylobacter* autoagglutination and virulence. *Mol.Microbiol* .**60**:299-311.
- Guerry, P., Perez-Casal, J., Yao, R., McVeigh, A., and Trust, T.J. (1997). A genetic locus involved in iron utilization unique to some *Campylobacter* strains. *J.Bacteriol*. **179**:3997-4002.
- Guerry, P., Poly, F., Riddle, M., Maue, A.C., Chen, Y.H., and Monteiro, M.A. (2012). *Campylobacter* polysaccharide capsules: virulence and vaccines. *Front.Cell.Infect.Microbiol.* **2**:7.
- Guerry, P., and Szymanski, C.M. (2008). *Campylobacter* sugars sticking out. *Trends Microbiol.* **16**:428-435.
- Guerry, P., Szymanski, C.M., Prendergast, M.M., Hickey, T.E., Ewing, C.P., Pattarini, D.L., and Moran, A.P. (2002). Phase variation of *Campylobacter jejuni* 81-176 lipooligosaccharide affects ganglioside mimicry and invasiveness in vitro. *Infect.Immun*. **70**:787-793.
- Gundogdu, O., Bentley, S.D., Holden, M.T., Parkhill, J., Dorrell, N., and Wren, B.W. (2007). Re-annotation and re-analysis of the *Campylobacter jejuni* NCTC11168 genome sequence. *BMC Genomics*. **8**:162.
- Habib, I., Louwen, R., Uyttendaele, M., Houf, K., Vand Enberg, O., Nieuwenhuis, E.E., Miller, W.G., van Belkum, A., and De Zutter, L. (2009). Correlation between genotypic diversity, lipooligosaccharide gene locus class variation, and caco-2 cell

invasion potential of *Campylobacter jejuni* isolates from chicken meat and humans: contribution to virulotyping. *Appl.Environ.Microbiol.* **75**:4277-4288.

Hadden, R.D., and Gregson, N.A. (2001). Guillain--Barre syndrome and *Campylobacter jejuni* infection. *Symp.Ser.Soc.Appl.Microbiol.* **30**:145S-54S.

Hänninen, M.L., Perko-Mäkelä, P., Pitkälä, and Rautelin, H. (2000). A three-year study of *Campylobacter jejuni* genotypes in humans with domestically acquires infections and in chicken samples from the Helsiniki area. *J.Clini.Microbiol.* **38**:1998-2000.

Hannu, T., Kauppi, M., Tuomala, M., Laaksonen, I., Klemets, P., and Kuusi, M. (2004). Reactive arthritis following an outbreak of *Campylobacter jejuni* infection. *J.Rheumatol.* **31**:528-530.

Hantke, K. (1981). Regulation of ferric iron transport in Escherichia coli K12: isolation of a constitutive mutant. *Mol.Gen.Genet.* **182**:288-292.

Harvey, P., and Leach, S. (1998). Analysis of coccal cell formation by *Campylobacter jejuni* using continuous culture techniques, and the importance of oxidative stress. *J.Appl.Microbiol.* **85**:398-404.

Havelaar, A.H., Mangen, M.J., de Koeijer, A.A., Bogaardt, M.J., Evers, E.G., Jacobs-Reitsma, W.F., van Pelt, W., Wagenaar, J.A., de Wit, G.A., van der Zee, H., and Nauta, M.J. (2007). Effectiveness and efficiency of controlling *Campylobacter* on broiler chicken meat. *Risk Anal.* 27:831-844.

Havelaar, A.H., Nauta, M.J., Mangen, M. J.J., de Koeijer, A.G., Bogaardt, M. J., Evers, E.G., Jacobs-Reitsma, W.F., van Pelt, W., Wagenaar, J.A., de Wit, G.A., and van der Zee, H. (2005). Costs and Benefits of Controlling *Campylobacter* in the Netherlands; Integrating Risk Analysis, Epidemiology and Economics. RIVM report250911009/2005. Available at:

http://www.rivm.nl/bibliotheek/rapporten/250911009.pdf.

Heikema, A.P., Bergman, M.P., Richards, H., Crocker, P.R., Gilbert, M., Samsom, J.N., van Wamel, W.J., Endtz, H.P., and Van Belkum, A. (2010). Characterization of the specific interaction between sialoadhesin and sialylated *Campylobacter jejuni* lipooligosaccharides. *Infect.Immun.* **78**:3237-3246.

Hendrixson, D.R. and DiRita, V.J. (2004). Identification of *Campylobacter jejuni* genes involved in commensal colonization of the chick gastrointestinal tract. *Mol.Microbiol.* **52**:471-484.

Hepworth, P.J., Leatherbarrow, H., Hart, C.A., and Winstanley, C. (2007). Use of suppression subtractive hybridisation to extend our knowledge of genome diversity in *Campylobacter jejuni. BMC Genomics.* **8**:110.

Hepworth, P.J., Ashelford, K.E., Hinds, J., Gould, K.A., Witney, A.A., Williams, N.J., Leatherbarrow, H., French, N.P., Birtles, R.J., Mendonca, C., Dorrell. N, Wren B.W.,

Wigley, P., Hall, N., and Winstanley, C. (2011). Genomic variations define divergence of water/wildlife-associated *Campylobacter jejuni* niche specialists from common clonal complexes. *Environ Microbiol.* **6**:1549-60.

Hickey, T.E., Baqar, S., Bourgeois, A.L., Ewing, C.P., and Guerry, P. (1999). *Campylobacter jejuni*-stimulated secretion of interleukin-8 by INT407 cells. *Infect.Immun.* **67**:88-93.

Hickey, T.E., Majam, G., and Guerry, P. (2005). Intracellular survival of *Campylobacter jejuni* in human monocytic cells and induction of apoptotic death by cytholethal distending toxin. *Infect.Immun.* **73**:5194-5197.

Hickey, T.E., McVeigh, A.L., Scott, D.A., Michielutti, R.E., Bixby, A., Carroll, S.A., Bourgeois, A.L., and Guerry, P. (2000). *Campylobacter jejuni* cytolethal distending toxin mediates release of interleukin-8 from intestinal epithelial cells. *Infect.Immun.* **68**:6535-6541.

Hofreuter, D., Novik, V., and Galan, J.E. (2008). Metabolic diversity in *Campylobacter jejuni* enhances specific tissue colonization. *Cell.Host Microbe*. **4**:425-433.

Hofreuter, D., Tsai, J., Watson, R.O., Novik, V., Altman, B., Benitez, M., Clark, C., Perbost, C., Jarvie, T., Du, L., and Galan, J.E. (2006). Unique features of a highly pathogenic *Campylobacter jejuni* strain. *Infect.Immun.* **74**:4694-4707.

Holden, K.M., Gilbert, M., Coloe, P.J., Li, J., and Fry, B.N. (2012). The role of WlaRG, WlaTB and WlaTC in lipooligosaccharide synthesis by *Campylobacter jejuni* strain 81116. *Microb.Pathog.* **52**:344-352.

Holmes, K., Mulholland, F., Pearson, B.M., Pin, C., McNicholl-Kennedy, J., Ketley, J.M., and Wells, J.M. (2005). *Campylobacter jejuni* gene expression in response to iron limitation and the role of Fur. *Microbiology*. **151**:243-257.

Hoosain, N.and Lastovica, A.J. (2009). An evaluation of the Oxoid Biochemical Identification System Campy rapid screening test for *Campylobacter* aceae and Helicobacter spp. *Lett.Appl.Microbiol.* **48**:675-679.

Hopkins, K.L., Desai, M., Frost, J.A., Stanley, J., and Logan, J.M. (2004). Fluorescent amplified fragment length polymorphism genotyping of *Campylobacter jejuni* and *Campylobacter* coli strains and its relationship with host specificity, serotyping, and phage typing. *J.Clin.Microbiol.* **42**:229-235.

Howard, S.L., Jagannathan, A., Soo, E.C., Hui, J.P., Aubry, A.J., Ahmed, I., Karlyshev, A., Kelly, J.F., Jones, M.A., Stevens, M.P., Logan, S.M., and Wren, B.W. (2009). *Campylobacter jejuni* glycosylation island important in cell charge, legionaminic acid biosynthesis, and colonization of chickens. *Infect.Immun.* **77**:2544-2556.

- Hu, L., Bray, M.D., Osorio, M., and Kopecko, D.J. (2006a). *Campylobacter jejuni* induces maturation and cytokine production in human dendritic cells. *Infect.Immun*. **74**:2697-2705.
- Hu, L., McDaniel, J.P., and Kopecko, D.J. (2006b). Signal transduction events involved in human epithelial cell invasion by *Campylobacter jejuni* 81-176. *Microb.Pathog*. **40**:91-100.
- Hu, L., Tall, B.D., Curtis, S.K., and Kopecko, D.J. (2008). Enhanced microscopic definition of *Campylobacter jejuni* 81-176 adherence to, invasion of, translocation across, and exocytosis from polarized human intestinal Caco-2 cells. *Infect.Immun*. **76**:5294-5304.
- Hu, L., and Kopecko, D.J. (2008). Cell biology of human host cell entry by *Campylobacter jejuni*. In *Campylobacter*. Nachamkin, I., Szymanski, C.M. and Blaser, M.J. (eds). Washington, DC: ASM Press, pp.297-313.
- Hu, L., and Kopecko, D.J. (1999). *Campylobacter jejuni* 81-176 associates with microtubules and dynein during invasion of human intestinal cells. *Infect.Immun*. **67**:4171-4182.
- Hugdahl, M.B., Beery, J.T., and Doyle, M.P. (1988). Chemotactic behavior of *Campylobacter jejuni*. *Infect.Immun*. **56**:1560-1566.
- Hughes, R.A.and Cornblath, D.R. (2005). Guillain-Barre syndrome. *Lancet.* **366**:1653-1666.
- Huizinga, R., Easton, A.S., Donachie, A.M., Guthrie, J., van Rijs, W., Heikema, A., Boon, L., Samsom, J.N., Jacobs, B.C., Willison, H.J., and Goodyear, C.S. (2012). Sialylation of *Campylobacter jejuni* lipo-oligosaccharides: impact on phagocytosis and cytokine production in mice. *PLoS One.* 7:e34416.
- Humphrey, T., O'Brien, S., and Madsen, M. (2007). *Campylobacters* as zoonotic pathogens: a food production perspective. *Int.J. Food Microbiol.* **117**:237-257.
- Iimura, M., Gallo, R.L., Hase, K., Miyamoto, Y., Eckmann, L., and Kagnoff, M.F. (2005). Cathelicidin mediates innate intestinal defense against colonization with epithelial adherent bacterial pathogens. *J.Immunol.* **174**:4901-4907.
- Ishikawa, T., Mizunoe, Y., Kawabata, S., Takade, A., Harada, M., Wai, S.N., and Yoshida, S. (2003). The iron-binding protein Dps confers hydrogen peroxide stress resistance to *Campylobacter jejuni*. *J.Bacteriol*. **185**:1010-1017.
- ISO. (2006a).Microbiology of Food and Animal Feeding Stuffs Horizontal Method for Detection and Enumeration of *Campylobacter* spp. Part 1: Detection Method. Geneva: International Organization for Standardization. [ISO 10272-1:2006].

ISO. (2006b). Microbiology of Food and Animal Feeding Stuffs - Horizontal Method for Detection and Enumeration of *Campylobacter* spp. Part 2: Colony Count Technique. Geneva: International Organization for Standardization. [ISO/TS 10272- 2:2006].

Jacobsen, A., Hendriksen, R.S., Aaresturp, F.M., Ussery, D.W., and Friis, C. (2011). The *Salmonella enterica* pan-genome. *Microb.Ecol.* **62**:487-504.

Jagannathan, A., and Penn, C. (2005). Motility. In *Campylobacter. Mol. Cell. Biol.* Ketley J.M. and Konkel, M.E. (eds). Norfolk, Horizon Bioscience, pp.331-347.

Jain, D., Prasad, K.N., Sinha, S., and Husain, N. (2008). Differences in virulence attributes between cytolethal distending toxin positive and negative *Campylobacter jejuni* strains. *J. Med. Microbiology*. 57: 267-272

Jamieson, D.J. (1998). Oxidative stress responses of the yeast *Saccharomyces cerevisiae*. *Yeast.* **14**:1511-1527.

Javed, M.A. (2009). Hyperinvasiveness in the major food-borne pathogen *Campylobacter jejuni*. PhD thesis. Nottingham Trent University

Javed, M.A., Cawthraw, S.A., Baig, A., Li, J., McNally, A., Oldfield, N.J., Newell, D.G., and Manning, G. (2012). Cj1136 is required for lipooligosaccharide biosynthesis, hyperinvasion, and chick colonization by *Campylobacter jejuni*. *Infect.Immun*. **80**:2361-2370.

Javed, M.A., Grant, A.J., Bagnall, M.C., Maskell, D.J., Newell, D.G., and Manning, G. (2010). Transposon mutagenesis in a hyper-invasive clinical isolate of *Campylobacter jejuni* reveals a number of genes with potential roles in invasion. *Microbiol.* **156**:1134-1143.

Jeon, B., Muraoka, W., Sahin, O., and Zhang, Q. (2008). Role of Cj1211 in natural transformation and transfer of antibiotic resistance determinants in *Campylobacter jejuni*. *Antimicrob*. *Agents Chemother*. **52**:2699-2708.

Jervis, A.J., Butler, J.A., Lawson, A.J., Langdon, R., Wren, B.W., and Linton, D. (2012). Characterization of the structurally diverse N-linked glycans of *Campylobacter* species. *J.Bacteriol.* **194**:2355-2362.

Jin, S., Joe, A., Lynett, J., Hani, E.K., Sherman, P., and Chan, V.L. (2001). JlpA, a novel surface-exposed lipoprotein specific to *Campylobacter jejuni*, mediates adherence to host epithelial cells. *Mol.Microbiol.* **39**:1225-1236.

John, A., Connerton, P.L., Cummings, N., and Connerton, I.F. (2011). Profound differences in the transcriptome of *Campylobacter jejuni* grown in two different, widely used, microaerobic atmospheres. *Res.Microbiol.* **162**:410-418.

Johnsen, G., Kruse, H., and Hofshagen, M. (2007). Genotyping of thermotolerant *Campylobacter* from poultry slaughterhouse by amplified fragment length polymorphism. *J.Appl.Microbiol.* **103**:271-279.

Johnson, D.C., Dean, D.R., Smith, A.D., and Johnson, M.K. (2005). Structure, function, and formation of biological iron-sulfur clusters. *Annu.Rev.Biochem.* **74**:247-281.

Jones, D.M., Sutcliffe, E.M., Rios, R., Fox, A.J., and Curry, A. (1993). *Campylobacter jejuni* adapts to aerobic metabolism in the environment. *J.Med.Microbiol.* **38**:145-150.

Joshua, G.W., Guthrie-Irons, C., Karlyshev, A.V., and Wren, B.W. (2006). Biofilm formation in *Campylobacter jejuni*. *Microbiology*. **152**:387-396.

Kaakoush, N.O., Miller, W.G., De Reuse, H., and Mendz, G.L. (2007). Oxygen requirement and tolerance of *Campylobacter jejuni*. *Res.Microbiol.* **158**:644-650.

Kakuda, T.and DiRita, V.J. (2006). Cj1496c encodes a *Campylobacter jejuni* glycoprotein that influences invasion of human epithelial cells and colonization of the chick gastrointestinal tract. *Infect.Immun.* **74**:4715-4723.

Kale, A., Phansopa, C., Suwannachart, C., Craven, C.J., Rafferty, J.B., and Kelly, D.J. (2011). The virulence factor PEB4 (Cj0596) and the periplasmic protein Cj1289 are two structurally related SurA-like chaperones in the human pathogen *Campylobacter jejuni*. *J.Biol.Chem.* **286**:21254-21265.

Kalmokoff, M., Lanthier, P., Tremblay, T.L., Foss, M., Lau, P.C., Sand Ers, G., Austin, J., Kelly, J., and Szymanski, C.M. (2006). Proteomic analysis of *Campylobacter jejuni* 11168 biofilms reveals a role for the motility complex in biofilm formation. *J.Bacteriol*. **188**:4312-4320.

Kanipes, M.I., Holder, L.C., Corcoran, A.T., Moran, A.P., and Guerry, P. (2004). A deep-rough mutant of *Campylobacter jejuni* 81-176 is noninvasive for intestinal epithelial cells. *Infect.Immun.* **72**:2452-2455.

Kanipes, M.I., Akelatis, A., Guerry, P., Monteiro, M.A. (2006). Mutation of waaC encoding heptosyl transferase I in *Campylobacter jejuni* 81-176 affects the structure of both lipooligosaccharide and capsular carbohydrate. *J.Bacteriol.* **188**:3273–3279. doi: 10.1128/JB.188.9.3273-3279.2006.

Kanungpean, D., Kakuda, T., and Takai, S. (2011). Participation of CheR and CheB in the chemosensory response of *Campylobacter jejuni*. *Microbiology*. **157**:1279-1289.

Karlyshev, A.V., Everest, P., Linton, D., Cawthraw, S., Newell, D.G., and Wren, B.W. (2004). The *Campylobacter jejuni* general glycosylation system is important for attachment to human epithelial cells and in the colonization of chicks. *Microbiology*. **150**:1957-1964.

Karlyshev, A.V., Champion, O.L., Churcher, C., Brisson, J.R., Jarrell, H.C., Gilbert, M., Brochu, D., St Michael, F., Li, J., Wakarchuk, W.W., Goodhead, I., Sand Ers, M., Stevens, K., White, B., Parkhill, J., Wren, B.W., and Szymanski, C.M. (2005a). Analysis of *Campylobacter jejuni* capsular loci reveals multiple

mechanisms for the generation of structural diversity and the ability to form complex heptoses. *Mol.Microbiol.* **55**:90-103.

Karlyshev, A.V., Ketley, J.M., and Wren, B.W. (2005b). The *Campylobacter jejuni* glycome. *FEMS Microbiol.Rev.* **29**:377-390.

Karlyshev, A.V., Linton, D., Gregson, N.A., Lastovica, A.J., and Wren, B.W. (2000). Genetic and biochemical evidence of a *Campylobacter jejuni* capsular polysaccharide that accounts for Penner serotype specificity. *Mol.Microbiol.* **35**:529-541.

Karlyshev, A.V., McCrossan, M.V, and Wren, B.W. (2001). Demonstration of polysaccharide capsule in *Campylobacter jejuni* using electron microscopy. *Infection and Immunity*. **69**:5921-5924.

Kelana, L.C. and Griffiths, M.W. (2003). Growth of autobioluminescent *Campylobacter jejuni* in response to various environmental conditions. *J. Food Prot.* **66**:1190-1197.

Kelly, A.F., Park, S.F., Bovill, R., and Mackey, B.M. (2001). Survival of *Campylobacter jejuni* during stationary phase: evidence for the absence of a phenotypic stationary-phase response. *Appl.Environ.Microbiol.* **67**:2248-2254.

Kelly, J., Jarrell, H., Millar, L., Tessier, L., Fiori, L.M., Lau, P.C., Allan, B., and Szymanski, C.M. (2006). Biosynthesis of the N-linked glycan in *Campylobacter jejuni* and addition onto protein through block transfer. *J.Bacteriol.* **188**:2427-2434.

Kelly, D.J. (2005). Metabolism, electron transport and bioenergetics of *Campylobacter jejuni*: implications of understanding life in gut and survival in the environment. In *Campylobacter*: molecular and cellular biology. Ketley, J.M. and Konkel, M.E. (eds). Norfolk, UK: Horizon Biosciences, pp.275-292.

Keo, T., Collins, J., Kunwar, P., Blaser, M.J., and Iovine, N.M. (2011). *Campylobacter* capsule and lipooligosaccharide confer resistance to serum and cationic antimicrobials. *Virulence*. **2**:30-40.

Kervella, M., Pages, J.M., Pei, Z., Grollier, G., Blaser, M.J., and Fauchere, J.L. (1993). Isolation and characterization of two *Campylobacter* glycine-extracted proteins that bind to HeLa cell membranes. *Infect.Immun.* **61**:3440-3448.

Ketley, J.M. (1997). Pathogenesis of enteric infection by *Campylobacter*. *Microbiology*. **143** (**Pt 1**):5-21.

Kim, C.C., Joyce, E.A., Chan, K., and Falkow, S. (2002). Improved analytical methods for microarray-based genome-composition analysis. *Genome Biol.* **3**:RESEARCH0065.

Kim, J.S., Li, J., Barnes, I.H., Baltzegar, D.A., Pajaniappan, M., Cullen, T.W., Trent, M.S., Burns, C.M., and Thompson, S.A. (2008). Role of the *Campylobacter jejuni* Cj1461 DNA methyltransferase in regulating virulence characteristics. *J.Bacteriol*. **190**:6524-6529.

King, E. (1957). Human infections with *Vibrio fetus* and a closely related vibrio. *J.Infect.Dis.* **101**:119-128.

Ko, M., and Park, C. (2000). H-NS-Dependent regulation of flagellar synthesis is mediated by a LysR family protein. *J.Bacteriol.* **182**:4670-4672.

Koenraad, P.M., Jacobs-Reitsma, W.F., van der Laan, T., Beumer, R.R, and Rombouts, F.M. (1995). Antibiotic susceptibility of *Campylobacter* isolates from sewage and poultry abattoir drain water. *Epidemiol.Infect.* **115**:475-483.

Konkel, M.E., Babakhani, F., and Joens, L.A. (1990). Invasion-related antigens of *Campylobacter jejuni*. *J.Infect.Dis.* **162**:888-895.

Konkel, M.E., Garvis, S.G., Tipton, S.L., And Erson, D.E., Jr., and Cieplak, W., Jr. (1997). Identification and molecular cloning of a gene encoding a fibronectin-binding protein (CadF) from *Campylobacter jejuni*. *Mol.Microbiol*. **24**:953-963.

Konkel, M.E., Mead, D.J., Hayes, S.F., and Cieplak, W., Jr. (1992a). Translocation of *Campylobacter jejuni* across human polarized epithelial cell monolayer cultures. *J.Infect.Dis.* **166**:308-315.

Konkel, M.E., Hayes, S.F., Joens, L.A., and Cieplak, W., Jr. (1992b). Characteristics of the internalization and intracellular survival of *Campylobacter jejuni* in human epithelial cell cultures. *Microb.Pathog.* **13**:357-370.

Konkel, M.E., and Joens, L.A. (1989). Adhesion to and invasion of HEp-2 cells by *Campylobacter* spp. *Infect.Immun.* **57**:2984-2990.

Konkel, M.E., Klena, J.D., Rivera-Amill, V., Monteville, M.R., Biswas, D., Raphael, B., and Mickelson, J. (2004). Secretion of virulence proteins from *Campylobacter jejuni* is dependent on a functional flagellar export apparatus. *J.Bacteriol.* **186**:3296-3303.

Konkel, M.E., Monteville, M.R., Rivera-Amill, V., and Joens, L.A. (2001). The pathogenesis of *Campylobacter jejuni*-mediated enteritis. *Curr.Issues Intest Microbiol.* **2**:55-71.

Korinthenberg, R.and Monting, J.S. (1996). Natural history and treatment effects in Guillain-Barre syndrome: a multicentre study. *Arch.Dis. Child.* **74**:281-287.

Kowarik, M., Young, N.M., Numao, S., Schulz, B.L., Hug, I., Callewaert, N., Mills, D.C., Watson, D.C., Hernand Ez, M., Kelly, J.F., Wacker, M., and Aebi, M. (2006). Definition of the bacterial N-glycosylation site consensus sequence. *EMBO J.* **25**:1957-1966.

Krause-Gruszczynska, M., van Alphen, L.B., Oyarzabal, O.A., Alter, T., Hanel, I., Schliephake, A., Konig, W., van Putten, J.P., Konkel, M.E., and Backert, S. (2007). Expression patterns and role of the CadF protein in *Campylobacter jejuni* and *Campylobacter coli*. *FEMS Microbiol.Lett.* **274**:9-16.

- Kriek, M., Martins, F., Leonardi, R., Fairhurst, S.A., Lowe, D.J., and Roach, P.L. (2007). Thiazole synthase from Escherichia coli: an investigation of the substrates and purified proteins required for activity in vitro. *J.Biol.Chem.* **282**:17413-17423.
- Kucerova, E., Clifton, S.W., Xia, X.Q., Long, F., Porwollik, S., Fulton, L., Fronick, C., Minx, P., Kyung, K., Warren, W., Fulton, R., Feng, D., Wollam, A., Shah, N., Bhonagiri, V., Nash, W.E., Hallsworth-Pepin, K., Wilson, R.K., McClelland, M., and Forsythe, S.J. (2010). Genome sequence of Cronobacter sakazakii BAA-894 and comparative genomic hybridization analysis with other Cronobacter species. *PLoS One*. **5**:e9556.
- Kuijf, M.L., Samsom, J.N., van Rijs, W., Bax, M., Huizinga, R., Heikema, A.P., van Doorn, P.A., van Belkum, A., van Kooyk, Y., Burgers, P.C., Luider, T.M., Endtz, H.P., Nieuwenhuis, E.E., and Jacobs, B.C. (2010). TLR4-mediated sensing of *Campylobacter jejuni* by dendritic cells is determined by sialylation. *J.Immunol*. **185**:748-755.
- Lang, P., Lefebure, T., Wang, W., Pavinski Bitar, P., Meinersmann, R.J., Kaya, K., and Stanhope, M.J. (2010). Expand Ed multilocus sequence typing and comparative genomic hybridization of *Campylobacter* coli isolates from multiple hosts. *Appl.Environ.Microbiol.* **76**:1913-1925.
- Lara-Tejero, M., and Galan, J.E. (2000). A bacterial toxin that controls cell cycle progression as a deoxyribonuclease I-like protein. *Science*. **290**:354-357.
- Larsen, J.C., Szymanski, C., and Guerry, P. (2004). N-linked protein glycosylation is required for full competence in *Campylobacter jejuni* 81-176. *J.Bacteriol.* **186**:6508-6514.
- Lastovica, A.J. (2006). Isolation and clinical relevance of emergent *Campylobacter* spp. Proceedings of "*Emerging Campylobacter spp. in the food chain, CAMPYCHECK*" held at Croke Park Conference Centre, Dublin. February 8th 2006.
- Lee, A., O'Rourke, J.L., Barrington, P.J., and Trust, T.J. (1986). Mucus colonization as a determinant of pathogenicity in intestinal infection by *Campylobacter jejuni*: a mouse cecal model. *Infect.Immun.* **51**:536-546.
- Lee, R.B., Hassane, D.C., Cottle, D.L., and Pickett, C.L. (2003). Interactions of *Campylobacter jejuni* cytolethal distending toxin subunits CdtA and CdtC with HeLa cells. *Infect.Immun.* **71**:4883-4890.
- Lefebure, T., Bitar, P.D., Suzuki, H., and Stanhope, M.J. (2010). Evolutionary dynamics of complete *Campylobacter* pan-genomes and the bacterial species concept. *Genome Biol. Evol.* **2**:646-655.
- Lehrer, R.I. (2004). Primate defensins. Nat. Rev. Microbiol. 2:727-738.

Lehtola, M.J., Pitkanen, T., Miebach, L, and Miettinen, I.T. (2006). Survival of *Campylobacter jejuni* in potable water biofilms: a comparative study with different detection methods. *WaterSci.Technol.* **54**:57-61.

Leonard, E.E., 2nd., Tompkins, L.S., Falkow, S., and Nachamkin, I. (2004). Comparison of *Campylobacter jejuni* isolates implicated in Guillain-Barre syndrome and strains that cause enteritis by a DNA microarray. *Infect.Immun.* **72**:1199-1203.

Leon-Kempis Mdel, R., Guccione, E., Mulholland, F., Williamson, M.P., and Kelly, D.J. (2006). The *Campylobacter jejuni* PEB1a adhesin is an aspartate/glutamate-binding protein of an ABC transporter essential for microaerobic growth on dicarboxylic amino acids. *Mol.Microbiol.* **60**:1262-1275.

Levin, R.E. (2007). *Campylobacter jejuni*: a review of its characteristics, pathogenicity, ecology, distribution, subspecies characterization and molecular methods of detection. *Food Biotechnol.* **21**:271–347.

Lindsay, J.O., and Hodgson, H.J. (2001). Review article: the immunoregulatory cytokine interleukin-10--a therapy for Crohn's disease? *Aliment.Pharmacol.Ther.* **15**:1709-1716.

Linton, D., Allan, E., Karlyshev, A.V., Cronshaw, A.D., and Wren, B.W. (2002). Identification of N-acetylgalactosamine-containing glycoproteins PEB3 and CgpA in *Campylobacter jejuni*. *Mol.Microbiol*. **43**:497-508.

Lior, H., Woodward, D.L., Edgar, J.A., Laroche, L.J., and Gill, P. (1982). Serotyping of *Campylobacter jejuni* by slide agglutination based on heat-labile antigenic factors. *J.Clin.Microbiol.* **15**:761-768.

Lippert, E., Karrasch, T., Sun, X., Allard, B., Herfarth, H.H., Threadgill, D., and Jobin, C. (2009). Gnotobiotic IL-10; NF-kappaB mice develop rapid and severe colitis following *Campylobacter jejuni* infection. *PLoS One.* **4**:e7413.

Logan, S.M., Trust, T.J., and Guerry, P. (1989). Evidence for posttranslational modification and gene duplication of *Campylobacter* flagellin. *J.Bacteriol.* **171**:3031-3038.

Louwen, R., Heikema, A., van Belkum, A., Ott, A., Gilbert, M., Ang, W., Endtz, H.P., Bergman, M.P., and Nieuwenhuis, E.E. (2008). The sialylated lipooligosaccharide outer core in *Campylobacter jejuni* is an important determinant for epithelial cell invasion. *Infect.Immun.* **76**:4431-4438.

Luechtefeld, N.W., Reller, L.B., Blaser, M.J., and Wang, W.L. (1982). Comparison of atmospheres of incubation for primary isolation of *Campylobacter* fetus subsp. *jejuni* from animal specimens: 5% oxygen versus cand Le jar. *J.Clin.Microbiol.* **15**:53-57.

Lux, R., and Shi, W. (2004). Chemotaxis-guided movements in bacteria. *Crit.Rev.Oral Biol.Med.* **15**:207-220.

MacCallum, A.J., Harris, D., Haddock, G., and Everest, P.H. (2006). *Campylobacter jejuni*-infected human epithelial cell lines vary in their ability to secrete interleukin-8 compared to in vitro-infected primary human intestinal tissue. *Microbiology*. **152**:3661-3665.

Malik-Kale, P., Raphael, B.H., Parker, C.T., Joens, L.A., Klena, J.D., Quinones, B., Keech, A.M., and Konkel, M.E. (2007). Characterization of genetically matched isolates of *Campylobacter jejuni* reveals that mutations in genes involved in flagellar biosynthesis alter the organism's virulence potential. *Appl.Environ.Microbiol.* **73**:3123-3136.

Man, S.M., Kaakoush, N.O., Octavia, S., and Mitchell, H. (2010). The internal transcribed spacer region, a new tool for use in species differentiation and delineation of systematic relationships within the *Campylobacter* genus. *Appl.Environ.Microbiol.* **76**:3071-3081.

Manning, G., Dowson, C.G., Bagnall, M.C., Ahmed, I.H., West, M., and Newell, D.G. (2003). Multilocus sequence typing for comparison of veterinary and human isolates of *Campylobacter jejuni*. *Appl.Environ.Microbiol*. **69**:6370-6379.

Mansfield, L.S., Bell, J.A., Wilson, D.L., Murphy, A.J., Elsheikha, H.M., Rathinam, V.A., Fierro, B.R., Linz, J.E., and Young, V.B. (2007). C57BL/6 and congenic interleukin-10-deficient mice can serve as models of *Campylobacter jejuni* colonization and enteritis. *Infect.Immun.* **75**:1099-1115.

Marotta, F., Zilli, K., Tonelli, A., Sacchini, L., Alessiani, A., Migliorati, G., and Di Giannatale, E. (2012). Detection and Genotyping of *Campylobacter jejuni* and *Campylobacter* coli by Use of DNA Oligonucleotide Arrays. *Mol.Biotechnol*.

Marsden, G.L., Li, J., Everest, P.H., Lawson, A.J., and Ketley, J.M. (2009). Creation of a large deletion mutant of *Campylobacter jejuni* reveals that the lipooligosaccharide gene cluster is not required for viability. *J.Bacteriol.* **191**:2392-2399.

Martinez-Rodriguez, A., Kelly, A.F., Park, S.F., and Mackey, B.M. (2004). Emergence of variants with altered survival properties in stationary phase cultures of *Campylobacter jejuni*. *Int.J.Food Microbiol*. **90**:321-329.

Mason, J.R., and Cammack, R. (1992). The electron-transport proteins of hydroxylating bacterial dioxygenases. *Annu.Rev.Microbiol.* **46**:277-305.

McDermott, P.F., Bodeis-Jones, S.M., Fritsche, T.R., Jones, R.N., Walker, R. D., and The Campylobacter Susceptibility Testing Group. (2005). Broth microdilution susceptibility testing of *Campylobacter jejuni* and the determination of quality control ranges for fourteen antimicrobial agents. *J.Clin.Microbiol.* **43**:6136-6138.

McFadyean, J., and Stockman, S. (1913). Report of the Departmental Committee appointed by the Board of Agriculture and Fisheries to inquire into Epizootic Abortion.III. Abortion in Sheep. London: HMSO.

McGrogan, A., Madle, G.C., Seaman, H.E., and De Vries, C.S. (2009). The epidemiology of Guillain-Barre syndrome worldwide. A systematic literature review. *Neuroepidemiology*. **32**:150-163.

McHugh, J.P., Rodriguez-Quinones, F., Abdul-Tehrani, H., Svistunenko, D.A., Poole, R.K., Cooper, C.E., and And Rews, S.C. (2003). Global iron-dependent gene regulation in Escherichia coli. A new mechanism for iron homeostasis. *J.Biol.Chem.* **278**:29478-29486.

McKay, D., Fletcher, J., Cooper, P., and Thomson-Carter, F.M. (2001). Comparison of two methods for serotyping *Campylobacter* spp. *J.Clin.Microbiol.* **39**:1917-1921.

McNally, D.J., Hui, J.P., Aubry, A.J., Mui, K.K., Guerry, P., Brisson, J.R., Logan, S.M., and Soo, E.C. (2006a). Functional characterization of the flagellar glycosylation locus in *Campylobacter jejuni* 81-176 using a focused metabolomics approach. *J.Biol.Chem.* **281**:18489-18498.

McNally, D.J., Jarrell, H.C., Khieu, N.H., Li, J., Vinogradov, E., Whitfield, D.M., Szymanski, C.M., and Brisson, J.R. (2006b). The HS:19 serostrain of *Campylobacter jejuni* has a hyaluronic acid-type capsular polysaccharide with a nonstoichiometric sorbose branch and O-methyl phosphoramidate group. *FEBS J.* **273**:3975-3989.

McNally, D.J., Lamoureux, M.P., Karlyshev, A.V., Fiori, L.M., Li, J., Thacker, G., Coleman, R.A., Khieu, N.H., Wren, B.W., Brisson, J.R., Jarrell, H.C., and Szymanski, C.M. (2007). Commonality and biosynthesis of the O-methyl phosphoramidate capsule modification in *Campylobacter jejuni*. *J.Biol.Chem.* **2 82**:28566-28576.

McSweegan, E., and Walker, R.I. (1986). Identification and characterization of two *Campylobacter jejuni* adhesins for cellular and mucous substrates. *Infect.Immun*. **53**:141-148.

Medzhitov, R. (2001). Toll-like receptors and innate immunity. *Nat.Rev.Immunol*. **1**:135-145.

Mellits, K.H., Mullen, J., Wand, M., Armbruster, G., Patel, A., Connerton, P.L., Skelly, M., and Connerton, I.F. (2002). Activation of the transcription factor NF-kappaB by *Campylobacter jejuni. Microbiology.* **148**:2753-2763.

Melmed, G., Thomas, L.S., Lee, N., Tesfay, S.Y., Lukasek, K., Michelsen, K.S., Zhou, Y., Hu, B., Arditi, M., and Abreu, M.T. (2003). Human intestinal epithelial cells are broadly unresponsive to Toll-like receptor 2-dependent bacterial ligand S: implications for host-microbial interactions in the gut. *J.Immunol.* **170**:1406-1415.

Mihaljevic, R.R., Sikic, M., Klancnik, A., Brumini, G., Mozina, S.S., and Abram, M. (2007). Environmental stress factors affecting survival and virulence of *Campylobacter jejuni*. *Microb.Pathog.* **43**:120-125.

Miller, W.G., Parker, C.T., Heath, S., and Lastovica, A.J. (2007). Identification of genomic differences between *Campylobacter jejuni* subsp. *jejuni* and *C. jejuni* subsp. doylei at the nap locus leads to the development of a C. *jejuni* subspeciation multiplex PCR method. *BMC Microbiol*. **7**:11.

Miller, W.G., Pearson, B.M., Wells, J.M., Parker, C.T., Kapitonov, V.V., and Mand Rell, R.E. (2005). Diversity within the *Campylobacter jejuni* type I restriction-modification loci. *Microbiol.* **151**:337-351.

Miller, C.E., Rock, J.D., Ridley, K.A., Williams, P.H., and Ketley, J.M. (2008a). Utilization of lactoferrin-bound and transferrin-bound iron by *Campylobacter jejuni*. *J.Bacteriol*. **190**:1900-1911.

Miller, W.G., Wang, G., Binnewies, T.T., and Parker, C.T. (2008b). The complete genome sequence and analysis of the human pathogen *Campylobacter lari*. *Foodborne Pathog.Dis.* **5**:371-386.

Miller, W.G. (2008). Comparative genomics of *Campylobacter* species other than *Campylobacter jejuni*. In *Campylobacter*. Nachamkin, I., Szymanski, C.M. and Blaser, M.J. (eds). Washington, DC: ASM Press, pp.73-95.

Misawa, N., and Blaser, M.J. (2000). Detection and characterization of autoagglutination activity by *Campylobacter jejuni*. *Infect.Immun*. **68**:6168-6175.

Mohammed, K.A., Miles, R.J., and Halablab, M.A. (2005). Simple method to grow enteric *Campylobacters* in unsupplemented liquid medium without the need for microaerophilic kits. *J.Microbiol.Methods.* **61**:273-276.

Monteville, M.R., Yoon, J.E., and Konkel, M.E. (2003). Maximal adherence and invasion of INT 407 cells by *Campylobacter jejuni* requires the CadF outer-membrane protein and microfilament reorganization. *Microbiology*. **149**:153-165.

Moore, J.E., Corcoran, D., Dooley, J. S. G., Fanning, S., Lucey, B., Matsuda, M., McDowell, D.A., Mégraud, F., Millar, B.C., O'Mahony, R., O'Riordan, L., O'Rourke, M., Rao, J. R., Rooney, J., Sails, A., and Whyte, P. (2005). *Campylobacter* – Article review. *Vet. Res.* **36**: 351-382.

Moore, J., Barton, M., Blair, I., Corcoran, D., Dooley, J., Fanning, S., Kempf, I., Lastovica, A., Lowery, C., and Seal, B. (2006). The epidemiology of antibiotic resistance in *Campylobacter* spp. *Microbes.Infect.* **8**:1955–1966.

Moran, A.P. (1997). Structure and conserved characteristics of *Campylobacter jejuni* lipopolysaccharides. *J.Infect.Dis.* **176 Suppl 2**:S115-21.

Moran, A.P., and Prendergast, M.M. (2001). Molecular mimicry in *Campylobacter jejuni* and Helicobacter pylori lipopolysaccharides: contribution of gastrointestinal infections to autoimmunity. *J.Autoimmun.* **16**:241-256.

Morooka, T., Umeda, A., and Amako, K. (1985). Motility as an intestinal colonization factor for *Campylobacter jejuni*. *J.Gen.Microbiol*. **131**:1973-1980.

Murphy, H., Cogan, T., and Humphrey, T. (2011). Direction of neutrophil movements by *Campylobacter*-infected intestinal epithelium. *Microbes Infect.* **13**:42-48.

Nachamkin, I., Yang, X.H., and Stern, N.J. (1993). Role of *Campylobacter jejuni* flagella as colonization factors for three-day-old chicks: analysis with flagellar mutants. *Appl.Environ.Microbiol.* **59**:1269-1273.

Naikare, H., Palyada, K., Panciera, R., Marlow, D., and Stintzi, A. (2006). Major role for FeoB in *Campylobacter jejuni* ferrous iron acquisition, gut colonization, and intracellular survival. *Infect.Immun.* **74**:5433-5444.

Naito, M., Frirdich, E., Fields, J.A., Pryjma, M., Li, J., Cameron, A., Gilbert, M., Thompson, S.A., and Gaynor, E.C. (2010). Effects of sequential *Campylobacter jejuni* 81-176 lipooligosaccharide core truncations on biofilm formation, stress survival, and pathogenesis. *J.Bacteriol.* **192**:2182-2192.

Nesbakken, T., Eckner, K., Hoidal, H. K., and Rotterud, O. (2003). Occurrence of *Yersinia enterocolitica* and *Campylobacter* spp. in slaughter pigs and consequences form eat inspection, slaughtering and dressing procedures. *Int.J.FoodMicrobiol.* **80**:231-240.

Newell, D.G., McBride, H., and Dolby, J.M. (1985). Investigations on the role of flagella in the colonization of infant mice with *Campylobacter jejuni* and attachment of *Campylobacter jejuni* to human epithelial cell lines. *J.Hyg.(Lond)*. **95**:217-227.

Nielsen, E.M., Engberg, J., Fussing, V., Petersen, L., Brogren, C.H., and On, S.L. (2000). Evaluation of phenotypic and genotypic methods for subtyping *Campylobacter jejuni* isolates from humans, poultry, and cattle. *J.Clin.Microbiol.* **38**:3800-3810.

Nielsen, L.N., Luijkx, T.A., Vegge, C.S., Johnsen, C.K., Nuijten, P., Wren, B.W., Ingmer, H., and Krogfelt, K.A. (2012). Identification of immunogenic and virulence-associated *Campylobacter jejuni* proteins. *Clin. Vaccine Immunol.* **19**:113-119.

Nothaft, H., Liu, X., McNally, D.J., Li, J., and Szymanski, C.M. (2009). Study of free oligosaccharides derived from the bacterial N-glycosylation pathway. *Proc.Natl.Acad.Sci.U.S.A.* **106**:15019-15024.

Novik, V., Hofreuter, D., and Galan, J.E. (2010). Identification of *Campylobacter jejuni* genes involved in its interaction with epithelial cells. *Infect.Immun.* **78**:3540-3553.

Oelschlaeger, T.A., Guerry, P., and Kopecko, D.J. (1993). Unusual microtubule-dependent endocytosis mechanisms triggered by *Campylobacter jejuni* and *Citrobacter freundii*. *Proc.Natl.Acad.Sci.U.S.A.* **90**:6884-6888.

Oldfield, N.J., Moran, A.P., Millar, L.A., Prendergast, M.M., and Ketley, J.M. (2002). Characterization of the *Campylobacter jejuni* heptosyltransferase II gene,

waaF, provides genetic evidence that extracellular polysaccharide is lipid A core independent. *J.Bacteriol.* **184**:2100-2107.

O'Leary, A.M., Whyte, P., Madden, R.H., Cormican, M., Moore, J.E., Mc Namara, E., Mc Gill, K., Kelly, L., Cowley, D., Moran, L., Scates, P., Collins, J.D., and Carroll, C.V. (2011). Pulsed field gel electrophoresis typing of human and retail foodstuff *Campylobacters*: an Irish perspective. *Food Microbiol.* **28**:426-433.

Oleastro, M., Monteiro, L., Lehours, P., Megraud, F., and Menard, A. (2006). Identification of markers for Helicobacter pylori strains isolated from children with peptic ulcer disease by suppressive subtractive hybridization. *Infect.Immun.* **74**:4064-4074.

On, S.L.W. (2001). Taxonomy of *Campylobacter*, *Arcobacter*, *Helicobacter* and related bacteria: current status, future prospects and immediate concerns. *J.Appl.Microbiol*. **90**:1S-15S.

On, S.L. (1996). Identification methods for *Campylobacters*, helicobacters, and related organisms. *Clin.Microbiol.Rev.* **9**:405-422.

On, S.L.W., McCarthy, N., Miller, W.G., and Gilpin, B. J. (2008). Molecular epidemiology of *Campylobacter* species. Nachamkin, I., Szymanski, C.M. and Blaser, M.J. (eds). Washington, DC: ASM Press, pp.191-211.

Otto, T.D., Dillon, G.P., Degrave, W.S., and Berriman, M. (2011). RATT: Rapid Annotation Transfer Tool. *Nucleic Acids Res.* **39**:e57.

Oyarzabal, O.A., Rad, R., and Backert, S. (2007). Conjugative transfer of chromosomally encoded antibiotic resistance from Helicobacter pylori to *Campylobacter jejuni*. *J.Clin.Microbiol*. **45**:402-408.

Pallen, M.J and Wren, B.W. (2007). Bacterial pathogenomics. Nature reviews. **449**: doi:10.1038/nature06248.

Palmer, S.R., Gully, P.R., White, J.M., Pearson, A.D., Sucking, W.G., Jones, D.M., Rawes, J.C.L., and Penner, J.L. (1983). Water-borne outbreak of *Campylobacter* gastroenteritis. *Lancet*. **i**: 287-290.

Palyada, K., Sun, Y.Q., Flint, A., Butcher, J., Naikare, H., and Stintzi, A. (2009). Characterization of the oxidative stress stimulon and PerR regulon of *Campylobacter jejuni*. *BMC Genomics*. **10**:481.

Palyada, K., Threadgill, D., and Stintzi, A. (2004). Iron acquisition and regulation in *Campylobacter jejuni*. *J.Bacteriol*. **186**:4714-4729.

Parker, C.T., Gilbert, M., Yuki, N., Endtz, H.P., and Mand Rell, R.E. (2008). Characterization of lipooligosaccharide-biosynthetic loci of *Campylobacter jejuni* reveals new lipooligosaccharide classes: evidence of mosaic organizations. *J.Bacteriol.* **190**:5681-5689.

- Parker, C.T., Miller, W.G., Horn, S.T., and Lastovica, A.J. (2007). Common genomic features of *Campylobacter jejuni* subsp. doylei strains distinguish them from C. *jejuni* subsp. *jejuni*. *BMC Microbiol*. **7**:50.
- Parker, C.T., Quinones, B., Miller, W.G., Horn, S.T., and Mand Rell, R.E. (2006). Comparative genomic analysis of *Campylobacter jejuni* strains reveals diversity due to genomic elements similar to those present in C. *jejuni* strain RM1221. *J.Clin.Microbiol.* **44**:4125-4135.
- Parker, C.T, and Huynh, S. (2012). The draft genome sequences of 56 *C. jejuni* and *C. coli* strains. *USDA ARS, Produce Safety and Microbiology Unit, 800 Buchanan St. Albany, CA 94170 USA.*
- Parkhill, J., Wren, B.W., Mungall, K., Ketley, J.M., Churcher, C., Basham, D., Chillingworth, T., Davies, R.M., Feltwell, T., Holroyd, S., Jagels, K., Karlyshev, A.V., Moule, S., Pallen, M.J., Penn, C.W., Quail, M.A., Rajand Ream, M.A., Rutherford, K.M., van Vliet, A.H., Whitehead, S., and Barrell, B.G. (2000). The genome sequence of the food-borne pathogen *Campylobacter jejuni* reveals hypervariable sequences. *Nature*. **403**:665-668.
- Parthasarathy, G., and Mansfield, L.S. (2009). Recombinant interleukin-4 enhances *Campylobacter jejuni* invasion of intestinal pig epithelial cells (IPEC-1). *Microb.Pathog.* **47**:38-46.
- Pavlic, M., and Griffiths, M.W. (2009). Principles, applications, and limitations of automated ribotyping as a rapid method in food safety. *Foodborne Pathog.Dis.* **6**:1047-1055.
- Pearson, B.M., Gaskin, D.J., Segers, R.P., Wells, J.M., Nuijten, P.J., and Van Vliet, A.H. (2007). The complete genome sequence of *Campylobacter jejuni* strain 81116 (NCTC11828). *J.Bacteriol.* **189**:8402-8403.
- Pearson, B.M., Pin, C., Wright, J., I'Anson, K., Humphrey, T., and Wells, J.M. (2003). Comparative genome analysis of *Campylobacter jejuni* using whole genome DNA microarrays. *FEBS Lett.* **554**:224-230.
- Pei, Z.and Blaser, M.J. (1993). PEB1, the major cell-binding factor of *Campylobacter jejuni*, is a homolog of the binding component in gram-negative nutrient transport systems. *J.Biol.Chem.* **268**:18717-18725.
- Pei, Z., Burucoa, C., Grignon, B., Baqar, S., Huang, X.Z., Kopecko, D.J., Bourgeois, A.L., Fauchere, J.L., and Blaser, M.J. (1998). Mutation in the peb1A locus of *Campylobacter jejuni* reduces interactions with epithelial cells and intestinal colonization of mice. *Infect.Immun.* **66**:938-943.
- Pei, Z.H., Ellison, R.T., 3rd., and Blaser, M.J. (1991). Identification, purification, and characterization of major antigenic proteins of *Campylobacter jejuni*. *J.Biol.Chem*. **266**:16363-16369.

Penner, J.L., Hennessy, J.N., and Congi, R.V. (1983). Serotyping of *Campylobacter jejuni* and *Campylobacter* coli on the basis of thermostable antigens. *Eur.J.Clin.Microbiol.* **2**:378-383.

Penner, J.L., and Hennessy, J.N. (1980). Passive hemagglutination technique for serotyping *Campylobacter fetus* subsp. *jejuni* on the basis of soluble heat-stable antigens. *J. Clin.Microbiol.***12:**732-737.

Perez-Arellano, I., Carmona-Alvarez, F., Martinez, A.I., Rodriguez-Diaz, J., and Cervera, J. (2010). Pyrroline-5-carboxylate synthase and proline biosynthesis: from osmotolerance to rare metabolic disease. *Protein Sci.* **19**:372-382.

Pesci, E.C., Cottle, D.L., and Pickett, C.L. (1994). Genetic, enzymatic, and pathogenic studies of the iron superoxide dismutase of *Campylobacter jejuni*. *Infect.Immun*. **62**:2687-2694.

Peters, T.M. (2009). Pulsed-field gel electrophoresis for molecular epidemiology of food pathogens. *Methods Mol.Biol.* **551**:59-70.

Phung le, T., Silver, S., Trimble, W.L., and Gilbert, J.A. (2012). Draft genome of halomonas species strain GFAJ-1 (ATCC BAA-2256). *J.Bacteriol.* **194**:1835-1836.

Pickett, C.L., Pesci, E.C., Cottle, D.L., Russell, G., Erdem, A.N., and Zeytin, H. (1996). Prevalence of cytolethal distending toxin production in *Campylobacter jejuni* and relatedness of *Campylobacter* sp. cdtB gene. *Infect.Immun.* **64**:2070-2078.

Pittenger, L.G., Englen, M.D., Parker, C.T., Frye, J.G., Quinones, B., Horn, S.T., Son, I., Fedorka-Cray, P.J., and Harrison, M.A. (2009). Genotyping *Campylobacter jejuni* by comparative genome indexing: an evaluation with pulsed-field gel electrophoresis and flaA SVR sequencing. *Foodborne Pathog.Dis.* **6**:337-349.

Pittenger, L.G., Frye, J.G., McNerney, V., Reeves, J., Haro, J., Fedorka-Cray, P.J., Harrison, M.A., and Englen, M.D. (2012). Analysis of *Campylobacter jejuni* wholegenome DNA microarrays: significance of prophage and hypervariable regions for discriminating isolates. *Foodborne Pathog.Dis.* **9**:473-479.

Plummer, P.J. (2012). LuxS and quorum-sensing in *Campylobacter*. *Front.Cell.Infect.Microbiol.* **2**:22.

Pogacar, M.S., Klancnik, A., Mozina, S.S., and Cencic, A. (2010). Attachment, invasion, and translocation of *Campylobacter jejuni* in pig small-intestinal epithelial cells. *Foodborne Pathog.Dis.* **7**:589-595.

Poly, F., Ewing, C., Goon, S., Hickey, T.E., Rockabrand, D., Majam, G., Lee, L., Phan, J., Savarino, N.J., and Guerry, P. (2007a). Heterogeneity of a *Campylobacter jejuni* protein that is secreted through the flagellar filament. *Infect.Immun.* **75**:3859-3867.

- Poly, F., Read, T., Tribble, D.R., Baqar, S., Lorenzo, M., and Guerry, P. (2007b). Genome sequence of a clinical isolate of *Campylobacter jejuni* from Thailand. *Infect.Immun.* **75**:3425-3433.
- Poly, F., Serichatalergs, O., Schulman, M., Ju, J., Cates, C.N., Kanipes, M., Mason, C., and Guerry, P. (2011). Discrimination of major capsular types of *Campylobacter jejuni* by multiplex PCR. *J.Clin.Microbiol.* **49**:1750-1757.
- Poly, F., Threadgill, D., and Stintzi, A. (2005). Genomic diversity in *Campylobacter jejuni*: identification of C. *jejuni* 81-176-specific genes. *J.Clin.Microbiol.* **43**:2330-2338.
- Poly, F., Threadgill, D., and Stintzi, A. (2004). Identification of *Campylobacter jejuni* ATCC 43431-specific genes by whole microbial genome comparisons. *J.Bacteriol*. **186**:4781-4795.
- Poly, F., and Guerry, P. (2008). Pathogenesis of *Campylobacter*. *Curr Opin.Gastroenterol*. 24:27-31.
- Pope, C., Wilson, J., Taboada, E.N., Mackinnon, J., Felipe Alves, C.A., Nash, J.H., Rahn, K., and Tannock, G.W. (2007). Epidemiology, relative invasive ability, molecular characterization, and competitive performance of *Campylobacter jejuni* strains in the chicken gut. *Appl.Environ.Microbiol.* **73**:7959-7966.
- Poropatich, K.O., Walker, C.L., and Black, R.E. (2010). Quantifying the association between *Campylobacter* infection and Guillain-Barre syndrome: a systematic review. *J.Health Popul.Nutr.* **28**:545-552.
- Prasad, K.N., Dhole, T.N., and Ayyagari, A. (1996). Adherence, invasion and cytotoxin assay of *Campylobacter jejuni* in HeLa and HEp-2 cells. *J.Diarrhoeal Dis.Res.* **14**:255-259.
- Pratt, A., and Korolik, V. (2005). Tetracycline resistance of Australian *Campylobacter jejuni* and *Campylobacter* coli isolates. *J.Antimicrob.Chemother.* **55**:452-460.
- Pryjma, M., Apel, D., Huynh, S., Parker, C.T., and Gaynor, E.C. (2012). FdhTU-Modulated Formate Dehydrogenase Expression and Electron Donor Availability Enhance Recovery of *Campylobacter jejuni* following Host Cell Infection. *J.Bacteriol*. **194**:3803-3813.
- Quinones, B., Guilhabert, M.R., Miller, W.G., Mand Rell, R.E., Lastovica, A.J., and Parker, C.T. (2008). Comparative genomic analysis of clinical strains of *Campylobacter jejuni* from South Africa. *PLoS One.* **3**:e2015.
- Quinones, B., Miller, W.G., Bates, A.H., and Mand Rell, R.E. (2009). Autoinducer-2 production in *Campylobacter jejuni* contributes to chicken colonization. *Appl.Environ.Microbiol.* **75**:281-285.

Rajashekara, G., Drozd, M., Gangaiah, D., Jeon, B., Liu, Z., and Zhang, Q. (2009). Functional characterization of the twin-arginine translocation system in *Campylobacter jejuni*. *Foodborne Pathog.Dis.* **6**:935-945.

Raphael, B.H., and Joens, L.A. (2003). FeoB is not required for ferrous iron uptake in *Campylobacter jejuni*. *Can.J.Microbiol*. **49**:727-731.

Raphael, B.H., Pereira, S., Flom, G.A., Zhang, Q., Ketley, J.M., and Konkel, M.E. (2005). The *Campylobacter jejuni* response regulator, CbrR, modulates sodium deoxycholate resistance and chicken colonization. *J.Bacteriol.* **187**:3662-3670.

Reeser, R.J., Medler, R.T., Billington, S.J., Jost, B.H., and Joens, L.A. (2007). Characterization of *Campylobacter jejuni* biofilms under defined growth conditions. *Appl.Environ.Microbiol.* **73**:1908-1913.

Reina, J., Ros, M.J., and Serra, A. (1995). Evaluation of the API-campy system in the biochemical identification of hippurate negative *Campylobacter* strains isolated from faeces. *J.Clin.Pathol.* **48**:683-685.

Reuter, M., Mallett, A., Pearson, B.M., and Van Vliet, A.H. (2010). Biofilm formation by *Campylobacter jejuni* is increased under aerobic conditions. *Appl.Environ.Microbiol.* **76**:2122-2128.

Rhodes, K.M., and Tattersfield, A.E. (1982). Guillain-Barre syndrome associated with *Campylobacter* infection. *Br.Med.J.*(*Clin.Res.Ed*). **285**:173-174.

Richardson, P.T., and Park, S.F. (1995). Enterochelin acquisition in *Campylobacter coli*: characterization of components of a binding-protein-dependent transport system. *Microbiology.* **141** ( **Pt 12**):3181-3191.

Ridley, A.M., Allen, V.M., Sharma, M., Harris, J.A., and Newell, D.G. (2008). Real-time PCR approach for detection of environmental sources of *Campylobacter* strains colonizing broiler flocks. *Appl.Environ.Microbiol.* **74**:2492-2504.

Roberts, M.C. (2005). Update on acquired tetracycline resistance genes. *FEMS Microbiol.Lett.* **245**:195-203.

Rodin, S., And Ersson, A.F., Wirta, V., Eriksson, L., Ljungstrom, M., Bjorkholm, B., Lindmark, H., and Engstrand, L. (2008). Performance of a 70-mer oligonucleotide microarray for genotyping of *Campylobacter jejuni*. *BMC Microbiol*. **8**:73.

Romo-Gonzalez, C., Salama, N.R., Burgeno-Ferreira, J., Ponce-Castaneda, V., Lazcano-Ponce, E., Camorlinga-Ponce, M., and Torres, J. (2009). Differences in genome content among *Helicobacter pylori* isolates from patients with gastritis, duodenal ulcer, or gastric cancer reveal novel disease-associated genes. *Infect.Immun.* **77**:2201-2211.

Rose, A., Kay. E., Wren, B.W., and Dallman, M.J. (2012). The *Campylobacter jejuni* NCTC 11168 capsule prevents excessive cytokine production by dendritic cells. *Med.Microbiol. Immunol.* **201**:137-144.

Rosef, O., Rettedal, G., and Lageide, L. (2001). Thermophilic *Campylobacters* in surface water: a potential risk of *Campylobacter*iosis. *Int.J.Environ.Health Res.* **11**:321-327.

Russell, R.G., O'Donnoghue, M., Blake, D.C., Jr., Zulty, J., and DeTolla, L.J. (1993). Early colonic damage and invasion of *Campylobacter jejuni* in experimentally challenged infant Macaca mulatta. *J.Infect.Dis.* **168**:210-215.

Rutherford, K., Parkhill, J., Crook, J., Horsnell, T., Rice, P., Rajand Ream, M.A., and Barrell, B. (2000). Artemis: sequence visualization and annotation. *Bioinformatics*. **16**:944-945.

Sahl, J.W., Matalka, M.N., and Rasko, D.A. (2012). Phylomark, a tool to identify conserved phylogenetic markers from whole-genome alignments. *Appl.Environ.Microbiol.* **78**(14):4884-92.

Salzberg, S.L., Delcher, A.L., Kasif, S., and White, O. (1998). Microbial gene identification using interpolated Markov models. *Nucleic Acids Res.* **26**:544-548.

Scherer, K., Bartelta, E., Sommerfelda, C., and Hildebrandt, G. (2006). Comparison of different sampling techniques and enumeration methods for the isolation and quantification of *Campylobacter* spp. in raw retail chicken legs. *Int.J.FoodMicrobiol*. **108**:115-119.

Schirm, M., Schoenhofen, I.C., Logan, S.M., Waldron, K.C., and Thibault, P. (2005). Identification of unusual bacterial glycosylation by tand Em mass spectrometry analyses of intact proteins. *Anal. Chem.* **77**:7774-7782.

Schirm, M., Soo, E.C., Aubry, A.J., Austin, J., Thibault, P., and Logan, S.M. (2003). Structural, genetic and functional characterization of the flagellin glycosylation process in *Helicobacter pylori*. *Mol.Microbiol*. **48**:1579-1592.

Schnare, M., Barton, G.M., Holt, A.C., Takeda, K., Akira, S., and Medzhitov, R. (2001). Toll-like receptors control activation of adaptive immune responses. *Nat.Immunol.* **2**:947-950.

Sebaihia, M., Preston, A., Maskell, D.J., Kuzmiak, H., Connell, T.D., King, N.D., Orndorff, P.E., Miyamoto, D.M., Thomson, N.R., Harris, D., Goble, A., Lord, A., Murphy, L., Quail, M.A., Rutter, S., Squares, R., Squares, S., Woodward, J., Parkhill, J., and Temple, L.M. (2006). Comparison of the genome sequence of the poultry pathogen *Bordetella avium* with those of *B. bronchiseptica*, *B. pertussis*, and *B. parapertussis* reveals extensive diversity in surface structures associated with host interaction. *J.Bacteriol.* **188**:6002-6015.

Sebald, M., and Véron, M. (1963). Teneur en bases de l'AND et classification des vibrions. *Ann.Inst.Pasteur.* **105**:897-910.

Sellars, M.J., Hall, S.J., and Kelly, D.J. (2002). Growth of *Campylobacter jejuni* supported by respiration of fumarate, nitrate, nitrite, trimethylamine-N-oxide, or dimethyl sulfoxide requires oxygen. *J.Bacteriol.* **184**:4187-4196.

Senior, N.J., Bagnall, M.C., Champion, O.L., Reynolds, S.E., La Ragione, R.M., Woodward, M.J., Salguero, F.J., and Titball, R.W. (2011). Galleria mellonella as an infection model for *Campylobacter jejuni* virulence. *J.Med.Microbiol.* **60**:661-669.

Shane, S.M. (2000). *Campylobacter* infection of commercial poultry. *Rev.Sci.Tech.* **19**:376-395.

Sheppard, S.K., McCarthy, N.D., Falush, D., and Maiden, M.C. (2008). Convergence of *Campylobacter* species: implications for bacterial evolution. *Science*. **320**:237-239.

Shirtliff, M.E., Mader, J.T., and Camper, A.K. (2002). Molecular interactions in biofilms. *Chem. Biol.* **9**:859-871.

Shoaf-Sweeney, K.D., Larson, C.L., Tang, X., and Konkel, M.E. (2008). Identification of *Campylobacter jejuni* proteins recognized by maternal antibodies of chickens. *Appl.Environ.Microbiol.* **74**:6867-6875.

Shrader, T.E., Tobias, J.W., and Varshavsky, A. (1993). The N-end rule in Escherichia coli: cloning and analysis of the leucyl, phenylalanyl-tRNA-protein transferase gene aat. *J.Bacteriol.* **175**:4364-4374.

Siemer, B.L., Nielsen, E.M., and On, S.L. (2005). Identification and molecular epidemiology of *Campylobacter* coli isolates from human gastroenteritis, food, and animal sources by amplified fragment length polymorphism analysis and Penner serotyping. *Appl.Environ.Microbiol* .**71**:1953-1958.

Silverman, N.and Maniatis, T. (2001). NF-kappaB signaling pathways in mammalian and insect innate immunity. *Genes Dev.* **15**:2321-2342.

Skirrow, M.B. (1977). Campylobacter enteritis: a"new" disease. Br.Med.J. 2:9-11.

Smith, T., and Taylor, M.S. (1919). Some morphological and biological characters of *Spirilla* (*Vibrio foetus* n.sp.) associated with disease of fetal membranes in cattle. *J.Exp.Med.* **30**:299-311.

Sokal, R.R., and Michener, C.D. (1958). A statistical method for evaluating systemic relationships. *University of Kansas science Bulletin*. **38**. 1409-1438.

Song, Y.C., Jin, S., Louie, H., Ng, D., Lau, R., Zhang, Y., Weerasekera, R., Al Rashid, S., Ward, L.A., Der, S.D., and Chan, V.L. (2004). FlaC, a protein of *Campylobacter jejuni* TGH9011 (ATCC43431) secreted through the flagellar apparatus, binds epithelial cells and influences cell invasion. *Mol.Microbiol.* **53**:541-553.

Stahl, M., Friis, L.M., Nothaft, H., Liu, X., Li, J., Szymanski, C.M., and Stintzi, A. (2011). L-fucose utilization provides *Campylobacter jejuni* with a competitive advantage. *Proc.Natl.Acad.Sci.U.S.A.* **108**:7194-7199.

Stamatakis, A., Ludwig, T., and Meier, H. (2005). RAxML-II: a program for sequential, parallel and distributed inference of large phylogenetic trees. *Concurr.Comput.Prac.Exp.* **17**: 1705-1723.

Stanley, F. (1988). Molecular Koch postulates applied to microbial pathogenicity. Microbial Surfaces: Determinants of Virulence and Host Responsiveness. In Reviews of Infectious Diseases. (Vol. 10, Supplement. 2). Oxford Uni Press, pp.S274:S276.

Stintzi, A., V. Vliet, A.H.M., and Ketley, J.M. (2008). Iron Metabolism, Transport, and Regulation. In *Campylobacter*. Nachamkin, I., Szymanski, C.M. and Blaser, M.J. (eds). Washington, DC: ASM Press, pp.591-610.

Sulaeman, S., Le Bihan, G., Rossero, A., Federighi, M., De, E., and Tresse, O. (2010). Comparison between the biofilm initiation of *Campylobacter jejuni* and *Campylobacter* coli strains to an inert surface using BioFilm Ring Test. *J.Appl.Microbiol.* **108**:1303-1312.

Szymanski, C.M., Burr, D.H., and Guerry, P. (2002). *Campylobacter* protein glycosylation affects host cell interactions. *Infect.Immun.* **70**:2242-2244.

Szymanski, C.M., Michael, F.S., Jarrell, H.C., Li, J., Gilbert, M., Larocque, S., Vinogradov, E., and Brisson, J.R. (2003). Detection of conserved N-linked glycans and phase-variable lipooligosaccharides and capsules from *Campylobacter* cells by mass spectrometry and high resolution magic angle spinning NMR spectroscopy. *J.Biol.Chem.* **278**:24509-24520.

Szymanski, C.M., and Wren, B.W. (2005). Protein glycosylation in bacterial mucosal pathogens. *Nat.Rev.Microbiol* .**3**:225-237.

Szymanski, C.M., Yao, R., Ewing, C.P., Trust, T.J., and Guerry, P. (1999). Evidence for a system of general protein glycosylation in *Campylobacter jejuni*. *Mol.Microbiol*. **32**:1022-1030.

Taboada, E.N., Acedillo, R.R., Carrillo, C.D., Findlay, W.A., Medeiros, D.T., Mykytczuk, O.L., Roberts, M.J., Valencia, C.A., Farber, J.M., and Nash, J.H. (2004). Large-scale comparative genomics meta-analysis of *Campylobacter jejuni* isolates reveals low level of genome plasticity. *J.Clin.Microbiol.* **42**:4566-4576.

Taboada, E.N., Mackinnon, J.M., Luebbert, C.C., Gannon, V.P., Nash, J.H., and Rahn, K. (2008). Comparative genomic assessment of Multi-Locus Sequence Typing: rapid accumulation of genomic heterogeneity among clonal isolates of *Campylobacter jejuni*. *BMC Evol.Biol*. **8**:229.

- Taboada, E.N., Ross, S.L., Mutschall, S.K., Mackinnon, J.M., Roberts, M.J., Buchanan, C.J., Kruczkiewicz, P., Jokinen, C.C., Thomas, J.E., Nash, J.H., Gannon, V.P., Marshall, B., Pollari, F., and Clark, C.G. (2012). Development and validation of a comparative genomic fingerprinting method for high-resolution genotyping of *Campylobacter jejuni*. *J.Clin.Microbiol.* **50**:788-797.
- Taboada, E.N., van Belkum, A., Yuki, N., Acedillo, R.R., Godschalk, P.C., Koga, M., Endtz, H.P., Gilbert, M., and Nash, J.H. (2007). Comparative genomic analysis of *Campylobacter jejuni* associated with Guillain-Barre and Miller Fisher syndromes: neuropathogenic and enteritis-associated isolates can share high levels of genomic similarity. *BMC Genomics*. **8**:359.
- Tareen, A.M., Dasti, J.I., Zautner, A.E., Gross, U., and Lugert, R. (2011). Sulphite: cytochrome c oxidoreductase deficiency in *Campylobacter jejuni* reduces motility, host cell adherence and invasion. *Microbiology*. **157**:1776-1785.
- Tareen, A.M., Dasti, J.I., Zautner, A.E., Gross, U., and Lugert, R. (2010). *Campylobacter jejuni* proteins Cj0952c and Cj0951c affect chemotactic behaviour towards formic acid and are important for invasion of host cells. *Microbiology*. **156**:3123-3135.
- Theoret, J.R., Cooper, K.K., Glock, R.D., and Joens, L.A. (2011). A *Campylobacter jejuni* Dps homolog has a role in intracellular survival and in the development of *Campylobacter*osis in neonate piglets. *Foodborne Pathog.Dis.* **8**:1263-1268.
- Thibault, P., Logan, S.M., Kelly, J.F., Brisson, J.R., Ewing, C.P., Trust, T.J., and Guerry, P. (2001). Identification of the carbohydrate moieties and glycosylation motifs in *Campylobacter jejuni* flagellin. *J.Biol.Chem.* **276**:34862-34870.
- Thomas, M.T., Shepherd, M., Poole, R.K., van Vliet, A.H., Kelly, D.J., and Pearson, B.M. (2011). Two respiratory enzyme systems in *Campylobacter jejuni* NCTC11168 contribute to growth on L-lactate. *Environ.Microbiol.* **13**:48-61.
- Tribble, D.R., Sand Ers, J.W., Pang, L.W., Mason, C., Pitarangsi, C., Baqar, S., Armstrong, A., Hshieh, P., Fox, A., Maley, E.A., Lebron, C., Faix, D.J., Lawler, J.V., Nayak, G., Lewis, M., Bodhidatta, L., and Scott, D.A. (2007). Traveler's diarrhea in Thailand: rand Omized, double-blind trial comparing single-dose and 3-day azithromycin-based regimens with a 3-day levofloxacin regimen. *Clin.Infect.Dis.* **44**:338-346.
- Tribble, D.R., Baqar, S., and Thompson, S.A. (2008). Development of a human vaccine. In *Campylobacter*. Nachamkin, I., Szymanski, C.M. and Blaser, M.J. (eds). Washington, DC: ASM Press, pp.429-444.
- Tu, Q.V., McGuckin, M.A., and Mendz, G.L. (2008). *Campylobacter jejuni* response to human mucin MUC2: modulation of colonization and pathogenicity determinants. *J.Med.Microbiol.* **57**:795-802.

van Alphen, L.B., Bleumink-Pluym, N.M., Rochat, K.D., van Balkom, B.W., Wosten, M.M., and Van Putten, J.P. (2008). Active migration into the subcellular space precedes *Campylobacter jejuni* invasion of epithelial cells. *Cell.Microbiol.* **10**:53-66.

Van Deun, K., Haesebrouck, F., Heyndrickx, M., Favoreel, H., Dewulf, J., Ceelen, L., Dumez, L., Messens, W., Leleu, S., Van Immerseel, F., Ducatelle, R., and Pasmans, F. (2007). Virulence properties of *Campylobacter jejuni* isolates of poultry and human origin. *J.Med.Microbiol.* **56**:1284-1289.

van Sorge, N.M., Bleumink, N.M., van Vliet, S.J., Saeland, E., van der Pol, W.L., van Kooyk, Y., and Van Putten, J.P. (2009). N-glycosylated proteins and distinct lipooligosaccharide glycoforms of *Campylobacter jejuni* target the human C-type lectin receptor MGL. *Cell.Microbiol.* **11**:1768-1781.

van Vliet, A.H., Baillon, M.L., Penn, C.W., and Ketley, J.M. (1999). *Campylobacter jejuni* contains two fur homologs: characterization of iron-responsive regulation of peroxide stress defense genes by the PerR repressor. *J.Bacteriol.* **181**:6371-6376.

van Vliet, A.H., Ketley, J.M., Park, S.F., and Penn, C.W. (2002). The role of iron in *Campylobacter* gene regulation, metabolism and oxidative stress defense. *FEMS Microbiol.Rev.* **26**:173-186.

Vandamme, P., Debruyne, L., De Brand T, E., and Falsen, E. (2010). Reclassification of Bacteroides ureolyticus as *Campylobacter* ureolyticus comb. nov., and emended description of the genus *Campylobacter*. *Int.J.Syst.Evol.Microbiol.* **60**:2016-2022.

Vandamme, P. (2000). Taxonomy of the family Campylobacteraceae. In: Campylobacter. Nachamkin, I. and Blaser, M.J. (2<sup>nd</sup> eds). Washington, DC: ASM Press, pp.3-26.

Vandamme, P., Falsen, E., Rossau, R., Hoste, B., Segers, P., Tytgat, R., and De Ley, J. (1991). Revision of *Campylobacter*, *Helicobacter*, and *Wolinella* taxonomy: emendation of generic descriptions and proposal of *Arcobacter* gen. nov. *Int.J.Syst.Bacteriol.* **41**:88-103.

Vandamme, P., Vancanneyt, M., Pot, B., Mels, L., Hoste, B., Dewettinck, D., Vlaes, L., van den Borre, C., Higgins, R., and Hommez, J. (1992). Polyphasic taxonomic study of the emended genus *Arcobacter* with *Arcobacter butzleri* comb. *nov*. and *Arcobacter skirrowii* sp. nov., an aerotolerant bacterium isolated from veterinary specimens. *Int.J.Syst.Bacteriol.* **42**:344-356.

Vegge, C.S., Brondsted, L., Li, Y.P., Bang, D.D., and Ingmer, H. (2009). Energy taxis drives *Campylobacter jejuni* toward the most favorable conditions for growth. *Appl.Environ.Microbiol.* **75**:5308-5314.

Velayudhan, J., Jones, M.A., Barrow, P.A., and Kelly, D.J. (2004). L-serine catabolism via an oxygen-labile L-serine dehydratase is essential for colonization of the avian gut by *Campylobacter jejuni*. *Infect.Immun*. **72**:260-268.

Vijayakumar, S., Merkx-Jacques, A., Ratnayake, D.B., Gryski, I., Obhi, R.K., Houle, S., Dozois, C.M., and Creuzenet, C. (2006). Cj1121c, a novel UDP-4-keto-6-deoxy-GlcNAc C-4 aminotransferase essential for protein glycosylation and virulence in *Campylobacter jejuni*. *J.Biol.Chem.* **281**:27733-27743.

Wagner, P.L., Livny, J., Neely, M.N., Acheson, D.W., Friedman, D.I., and Waldor, M.K. (2002). Bacteriophage control of Shiga toxin 1 production and release by *Escherichia coli. Mol.Microbiol.* **44**:957-970.

Wai, S.N., Takata, T., Takade, A., Hamasaki, N., and Amako, K. (1995). Purification and characterization of ferritin from *Campylobacter jejuni*. *Arch.Microbiol.* **164**:1-6.

Wainwright, L.M., Elvers, K.T., Park, S.F., and Poole, R.K. (2005). A truncated haemoglobin implicated in oxygen metabolism by the microaerophilic food-borne pathogen *Campylobacter jejuni*. *Microbiol*. **151**:4079-4091.

Walker, R.I., Schmauder-Chock, E.A., Parker, J.L., and Burr, D. (1988). Selective association and transport of *Campylobacter jejuni* through M cells of rabbit Peyer's patches. *Can.J.Microbiol.* **34**:1142-1147.

Wang, L., Jeon, B., Sahin, O., and Zhang, Q. (2009). Identification of an arsenic resistance and arsenic-sensing system in *Campylobacter jejuni*. *Appl.Environ.Microbiol*. **75**:5064-5073.

Wassenaar, T.M., and Blaser, M.J. (1999). Pathophysiology of *Campylobacter jejuni* infections of humans. *Microbes Infect*. **1**:1023-1033.

Wassenaar, T.M., Bleumink-Pluym, N.M., and Van der Zeijst, B.A. (1991). Inactivation of *Campylobacter jejuni* flagellin genes by homologous recombination demonstrates that flaA but not flaB is required for invasion. *EMBO J.* **10**:2055-2061.

Wassenaar, T.M., Engelskirchen, M., Park, S., and Lastovica, A. (1997). Differential uptake and killing potential of *Campylobacter jejuni* by human peripheral monocytes/macrophages. *Med.Microbiol.Immunol.* **186**:139-144.

Weiss, J. (2003). Bactericidal/permeability-increasing protein (BPI) and lipopolysaccharide-binding protein (LBP): structure, function and regulation in host defence against Gram-negative bacteria. *Biochem.Soc.Trans.* **31**:785-790.

Werno, A.M., Klena, J.D., Shaw, G.M., and Murdoch, D.R. (2002). Fatal case of *Campylobacter* lari prosthetic joint infection and bacteremia in an immunocompetent patient. *J.Clin.Microbiol.* **40**:1053-1055.

Whitehouse, C.A., Balbo, P.B., Pesci, E.C., Cottle, D.L., Mirabito, P.M., and Pickett, C.L. (1998). *Campylobacter jejuni* cytolethal distending toxin causes a G2-phase cell cycle block. *Infect.Immun* .**66**:1934-1940.

Wilma, C., Hazeleger, R.R., Beumer, F.D, and Rombouts, F.M. (1992). The use of latex agglutination tests for determining *Campylobacter* species. *Lett.Appl.Microbiol.* **14**:181-184.

Wills, W.L., and Murray, C. (1997). *Campylobacter jejuni* seasonal recovery observations of retail market broilers. *Poult.Sci.* **76**: 314–317.

Wilson, D.L., Rathinam, V.A., Qi, W., Wick, L.M., Land Graf, J., Bell, J.A., Plovanich-Jones, A., Parrish, J., Finley, R.L., Mansfield, L.S., and Linz, J.E. (2010). Genetic diversity in *Campylobacter jejuni* is associated with differential colonization of broiler chickens and C57BL/6J IL10-deficient mice. *Microbiol.* **156**:2046-2057.

Wilson, I.G., and Moore, J.E. (1996). Presence of *Salmonella* spp. and *Campylobacter* spp. in shellfish. *Epidemol.Infect.* **116**:147-153.

Wion, D.and Casadesus, J. (2006). N6-methyl-adenine: an epigenetic signal for DNA-protein interactions. *Nat.Rev.Microbiol.* **4**:183-192.

Wooldridge, K.G., and Ketley, J.M. (1997). *Campylobacter*-host cell interactions. *Trends Microbiol.* 5:96-102.

Wooldridge, K.G., Williams, P.H., and Ketley, J.M. (1996). Host signal transduction and endocytosis of *Campylobacter jejuni*. *Microb.Pathog*. 21:299-305.

Wren, B.W., Linton, D., Dorrell, N., and Karlyshev, A.V. (2001). Post genome analysis of *Campylobacter jejuni*. *Symp.Ser.Soc.Appl.Microbiol*. **30**:36S-44S.

Xu, F., Zeng, X., Haigh, R.D., Ketley, J.M., and Lin, J. (2010). Identification and characterization of a new ferric enterobactin receptor, CfrB, in *Campylobacter*. *J.Bacteriol.* **192**:4425-4435.

Yao, R., Burr, D.H., and Guerry, P. (1997). CheY-mediated modulation of *Campylobacter jejuni* virulence. *Mol.Microbiol.* **23**:1021-1031.

Young, K.T., Davis, L.M., and Dirita, V.J. (2007). *Campylobacter jejuni*: molecular biology and pathogenesis. *Nat.Rev.Microbiol.* **5**:665-679.

Young, N.M., Brisson, J.R., Kelly, J., Watson, D.C., Tessier, L., Lanthier, P.H., Jarrell, H.C., Cadotte, N., St Michael, F., Aberg, E., and Szymanski, C.M. (2002). Structure of the N-linked glycan present on multiple glycoproteins in the Gram-negative bacterium, *Campylobacter jejuni. J.Biol.Chem.* **277**:42530-42539.

Yu, R.K., Ariga, T., Usuki, S., and Kaida, K. (2011). Pathological roles of ganglioside mimicry in Guillain-Barre syndrome and related neuropathies. *Adv.Exp.Med.Biol.* **705**:349-365.

Yuki, N., Manda, S., Tai, T., Takahashi, M., Saito, K., Tsujino, Y, and Taki, T. (1995). Ganglioside-like epitopes of lipopolysaccharides from *Camplobacter jejuni* (PEN19) in

three isolates from patients with Guillain-Barré syndrome. *J.Neuro.Sciences.* **130**:112-116.

Yuki, N. (2010). Human gangliosides and bacterial lipo-oligosaccharides in the development of autoimmune neuropathies. *Methods Mol.Biol.* **600**:51-65.

Zeng, X., Xu, F., and Lin, J. (2009). Molecular, antigenic, and functional characteristics of ferric enterobactin receptor CfrA in *Campylobacter jejuni*. *Infect.Immun*. **77**:5437-5448.

Zerbino, D.R., and Birney, E. (2008). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. *Genome Res.* **18**:821-829.

Zhang, M., He, L., Li, Q., Sun, H., Gu, Y., You, Y., Meng, F., and Zhang, J. (2010). Genomic characterization of the Guillain-Barre syndrome-associated *Campylobacter jejuni* ICDCCJ07001 Isolate. *PLoS One.* **5**:e15060.

Zheng, J., Meng, J., Zhao, S., Singh, R., and Song, W. (2008). *Campylobacter*-induced interleukin-8 secretion in polarized human intestinal epithelial cells requires *Campylobacter*-secreted cytolethal distending toxin- and Toll-like receptor-mediated activation of NF-kappaB. *Infect.Immun.* **76**:4498-4508.

Zilbauer, M., Dorrell, N., Boughan, P.K., Harris, A., Wren, B.W., Klein, N.J., and Bajaj-Elliott, M. (2005). Intestinal innate immunity to *Campylobacter jejuni* results in induction of bactericidal human beta-defensins 2 and 3. *Infect.Immun.* **73**:7281-7289.

Zilbauer, M., Dorrell, N., Wren, B.W., and Bajaj-Elliott, M. (2008). *Campylobacter jejuni*-mediated disease pathogenesis: an update. *Trans.R.Soc.Trop.Med.Hyg.* **102**:123-129.

Zilhao, R., Papadopoulou, B., and Courvalin, P. (1988). Occurrence of the *Campylobacter* resistance gene tetO in *Enterococcus* and *Streptococcus* spp. *Antimicrob.Agents Chemother.* **32**:1793-1796.

Zweifel, M.A.Z., and Stephan, R. (2004). Prevalence and characteristics of Shiga toxin-producing *Escherichia coli*, *Salmonella* spp. and *Campylobacter* spp. isolated from slaughtered sheep in Switzerland. *Int.J.Food.Microbiol.* **92**:45-53.

# **APPENDIX**

### **APPENDIX**

Supplementary table 1: The average linkage distance between clusters as determined by the "Cluster" software.

| NODE1X | ARRY7X | ARRY3X | 0.95513916015625 |
|--------|--------|--------|------------------|
| NODE2X | ARRY6X | NODE1X | 0.90911865234375 |
| NODE3X | ARRY0X | NODE2X | 0.8590087890625  |
| NODE4X | ARRY1X | NODE3X | 0.8590087890625  |
| NODE5X | ARRY8X | ARRY5X | 0.8580322265625  |
| NODE6X | NODE4X | NODE5X | 0.8580322265625  |
| NODE7X | ARRY2X | NODE6X | 0.85394287109375 |
| NODE8X | ARRY9X | ARRY4X | 0.836669921875   |
| NODE9X | NODE7X | NODE8X | 0.836669921875   |

Note: The Pearson correlation (centered) was used as the similarity metrics for performing clustering (Eisen *et al.*, 1998).

Supplementary table 2: The log 2 ratios \*for all genes on the array for six hyperinvasive and four low invasive *C. jejuni* strains.

|             |                    |                        | Hyperinvais        | sve C. jejuni      |                    |                    | Low invasive C. jejuni |                    |                        |                        |  |
|-------------|--------------------|------------------------|--------------------|--------------------|--------------------|--------------------|------------------------|--------------------|------------------------|------------------------|--|
| Oligo_ID    | C. jejuni<br>01_10 | <i>C. jejuni</i> 01_35 | C. jejuni<br>01/04 | C. jejuni<br>01/41 | C. jejuni<br>01/51 | C. jejuni<br>EX114 | C. jejuni<br>01/30     | C. jejuni<br>01/32 | <i>C. jejuni</i> 01/46 | <i>C. jejuni</i> 01/39 |  |
| CJ_10000002 | -0.1               | 0.3                    | 0.5                | -0.1               | 0                  | 0                  | 0                      | -0.1               | 0.1                    | 0                      |  |
| CJ_10000005 | -1.1               | 1.2                    | 0.2                | 0.3                | -0.2               | 0.1                | 0.1                    | -0.4               | 0.3                    | 0.2                    |  |
| CJ_10000007 | -0.3               | 0.2                    | 0                  | 0.1                | 0.2                | 0                  | 0                      | -0.1               | -0.3                   | 0                      |  |
| CJ_10000008 | -0.1               | -0.2                   | 0.6                | 0.1                | 0.1                | 0.1                | -0.1                   | 0                  | -0.2                   | 0                      |  |
| CJ_10000009 | -0.2               | -0.6                   | -0.8               | 0.1                | -0.1               | -2                 | -0.1                   | 0.1                | 0.9                    | -0.9                   |  |
| CJ_10000010 | -0.2               | -0.1                   | 0.4                | 0.2                | 0                  | 0.1                | 0.2                    | -0.2               | -0.2                   | 0.2                    |  |
| CJ_10000011 | -0.5               | -0.1                   | -0.2               | 0                  | 0                  | -1.6               | -0.1                   | 0                  | 0.2                    | 0                      |  |
| CJ_10000013 | -0.4               | 0                      | 0.4                | 0                  | -0.1               | 0.1                | -0.1                   | 0.1                | 0                      | 0                      |  |
| CJ_10000014 | 0.1                | 0.5                    | -0.2               | 0.1                | 0                  | 0.1                | 0                      | -0.2               | 0.2                    | 0.1                    |  |
| CJ_10000015 | 2.2                | 2.5                    | 3.1                | 0.8                | -1.9               | 1.4                | 2.4                    | -0.5               | 1.1                    | 1                      |  |
| CJ_10000016 | 0.2                | 0.2                    | 0.7                | 0.4                | 0.1                | 0                  | 0.1                    | 0                  | -0.1                   | 0.1                    |  |
| CJ_10000017 | 2.8                | 3.8                    | 0.5                | 1.1                | -1.8               | 0.3                | 1                      | -1                 | 1.5                    | 1.8                    |  |
| CJ_10000018 | -1.6               | -0.4                   | -0.9               | -0.2               | -0.4               | -0.1               | -0.1                   | 0.1                | 0.1                    | 0.2                    |  |

| CJ_10000020 | 3.3  | 4.3  | 1.9  | 1.1  | -1.6 | 5.6 | 1.6  | -1.8 | 1.2  | 2    |
|-------------|------|------|------|------|------|-----|------|------|------|------|
| CJ_10000022 | -0.6 | 0    | -0.1 | 0.1  | 0    | 0   | -0.1 | 0    | -0.1 | 0    |
| CJ_10000023 | 0.6  | -0.4 | 0    | 0.1  | -1   | 0   | 1.5  | 0.8  | 0.2  | 0    |
| CJ_10000024 | -0.7 | 1.6  | 1.6  | 0    | -0.1 | 0.1 | -0.2 | 0    | -0.8 | -0.1 |
| CJ_10000026 | 0.1  | 0.2  | 1    | 0.1  | 0.3  | 0.1 | 0.1  | -0.1 | -0.4 | -0.1 |
| CJ_10000028 | -0.3 | -2   | 0.2  | 0.2  | 0.1  | 0.1 | 0    | -0.4 | -0.2 | -0.3 |
| CJ_10000031 | 0.3  | -0.2 | 0.7  | 0.1  | 0.1  | 0.1 | 0.1  | 0    | -0.1 | 0.1  |
| CJ_10000033 | -2.2 | -2.3 | 0.6  | -0.1 | -0.3 | 0.2 | -0.1 | -0.1 | 0.8  | 0    |
| CJ_10000035 | 2.4  | 3    | 1.2  | 0.7  | -1.1 | 1.1 | 0.8  | -0.8 | 1    | 1    |
| CJ_10000036 | 1.2  | 0.7  | -0.2 | 0.5  | -0.8 | 0.5 | 0.5  | 0.1  | 0.1  | 0.3  |
| CJ_10000043 | -0.5 | -0.1 | 0.4  | 0    | -0.1 | 0.2 | 0    | 0    | 0    | 0.1  |
| CJ_10000044 | 2.2  | 2.1  | 1.4  | 0.6  | -0.7 | 0.2 | -0.1 | -1.3 | 0.3  | 0.7  |
| CJ_10000045 | 0.1  | -1.1 | 0.5  | 0.3  | 0.1  | 0.1 | 0.2  | 0.2  | 0    | 0    |
| CJ_10000046 | -0.2 | -0.1 | 0.7  | 0.2  | 0    | 0.1 | 0.2  | 0.1  | -0.3 | 0    |
| CJ_10000047 | -1.7 | -0.1 | -0.1 | 0.2  | -0.3 | 0.5 | 0.1  | 0    | 0.1  | 0.3  |
| CJ_10000050 | -0.7 | -0.5 | 0.3  | 0.1  | 0    | 0.3 | 0.1  | 0    | 0    | 0.1  |
| CJ_10000052 | -1.4 | -0.8 | -0.9 | 0    | 0    | 0.3 | 0    | -0.2 | -0.3 | 0    |

| CJ_10000053 | -2   | -0.1 | -0.9 | 0   | 0    | 0.2  | -0.2 | 0    | -0.1 | 0    |
|-------------|------|------|------|-----|------|------|------|------|------|------|
| CJ_10000054 | -0.5 | -0.4 | 0.7  | 0   | -0.1 | 0.3  | 0    | 0    | -1.2 | 0.1  |
| CJ_10000055 | -0.5 | -0.3 | -1.2 | 0   | 0.1  | 0    | -0.1 | -0.2 | -0.1 | 0.1  |
| CJ_10000056 | -2   | 1.1  | 0    | 0.5 | -0.3 | 0    | 0.2  | -0.2 | -0.3 | 0.3  |
| CJ_10000058 | -0.5 | 0    | -0.2 | 0.2 | 0.1  | -0.1 | -0.1 | -0.2 | -0.2 | 0.1  |
| CJ_10000059 | -0.6 | 0.5  | 0.5  | 0.1 | -0.1 | 0.4  | 0.1  | -0.2 | 0.4  | 0.2  |
| CJ_10000061 | -1.1 | 1.6  | 0.6  | 0.2 | -0.3 | 0.4  | -0.1 | -0.4 | 0.1  | 0.3  |
| CJ_10000062 | -1.1 | -0.3 | 0.6  | 0.2 | 0    | 0.2  | 0    | -0.2 | 0.2  | 0.1  |
| CJ_10000063 | 0.1  | 0.1  | 0    | 0.1 | 0    | 0.1  | 0.1  | 0.3  | 0.5  | 0    |
| CJ_10000064 | 0.5  | 0.4  | 0.5  | 0.1 | -0.3 | 0.4  | 0    | -0.3 | 0    | 0.2  |
| CJ_10000065 | 0.1  | 0.2  | 0.3  | 0.2 | 0.1  | 0.2  | -0.2 | -0.1 | -0.1 | 0.1  |
| CJ_10000066 | -0.6 | -0.4 | -0.2 | 0.2 | -0.2 | 0.1  | 0    | 0    | 0    | 0    |
| CJ_10000067 | 0    | 0    | 0.2  | 0.2 | -0.1 | 0.3  | 0    | -0.1 | 0    | 0.2  |
| CJ_10000068 | 0.5  | 1.1  | -0.8 | 0.3 | -0.5 | -0.4 | -0.4 | -0.3 | 0.4  | 0.4  |
| CJ_10000069 | -0.8 | -0.3 | 0.4  | 0.2 | 0    | 0.2  | 0.1  | 0    | -0.1 | 0.1  |
| CJ_10000070 | 2.6  | 1.1  | 0.9  | 0.4 | -0.9 | 0.4  | 0.4  | -0.2 | 0.3  | 0.6  |
| CJ_10000071 | 0.1  | 0.2  | 0.5  | 0.2 | 0.3  | 0    | 0.1  | 0    | -0.1 | -0.1 |

| CJ_10000073 | -1.3 | -1.3 | -0.2 | 0.2 | 0.3  | 0.1  | 0.1  | 0.1  | -0.8 | -0.2 |
|-------------|------|------|------|-----|------|------|------|------|------|------|
| CJ_10000074 | -0.2 | 0.1  | 0.4  | 0.2 | 0.3  | 0.1  | 0    | 0    | 0    | -0.1 |
| CJ_10000075 | 0.2  | -0.9 | 0.5  | 0.1 | 0.3  | -0.1 | 0.1  | 0.2  | -0.5 | -0.2 |
| CJ_10000077 | -0.3 | -0.2 | 0.6  | 0.2 | 0.1  | 0.2  | 0.2  | -0.1 | -0.1 | 0.1  |
| CJ_10000078 | -0.2 | -1.4 | 1.3  | 0.1 | 0.1  | -0.1 | 0.2  | 0    | -0.1 | -0.1 |
| CJ_10000080 | 0.3  | 0.3  | 0.8  | 0.2 | 0.2  | 0.1  | 0.2  | 0    | -0.1 | 0.1  |
| CJ_10000082 | 0.6  | 0.3  | 0.3  | 0.3 | 0.2  | 0.2  | 0.2  | -0.1 | 0    | 0.1  |
| CJ_10000083 | 0    | 0    | 0.5  | 0.2 | 0.1  | 0.1  | 0    | -0.1 | -0.1 | 0    |
| CJ_10000084 | 0.4  | -0.6 | 0.4  | 0.3 | 0    | 0.1  | 0.1  | 0.1  | 0.2  | -0.1 |
| CJ_10000085 | -0.1 | 0.2  | 0.7  | 0.2 | 0.1  | 0.1  | 0.1  | 0    | 0    | 0    |
| CJ_10000086 | -0.5 | -0.1 | 0.4  | 0.3 | 0.1  | 0.3  | 0.2  | 0.1  | 0.1  | 0.1  |
| CJ_10000087 | -0.9 | -1.4 | 1    | 0.2 | -0.1 | 0    | 0.2  | 0    | 0    | 0    |
| CJ_10000088 | 0.1  | 0    | 0.8  | 0.2 | 0.1  | -0.1 | 0.1  | 0    | -0.1 | 0    |
| CJ_10000089 | 0.1  | 0    | 0.4  | 0.2 | 0.2  | 0.1  | 0.1  | 0    | -0.2 | 0    |
| CJ_10000091 | -0.4 | -0.7 | 0.5  | 0.2 | 0.1  | 0.2  | 0.2  | 0.1  | -0.1 | 0    |
| CJ_10000092 | -0.2 | 0.1  | 0.1  | 0.2 | 0.1  | 0    | 0    | 0.1  | -0.1 | 0    |
| CJ_10000095 | 0.1  | 0.2  | -1   | 0.2 | 0    | -0.7 | -0.9 | -1.2 | -0.1 | 0.1  |

| CJ_10000100 | -0.9 | 0.1  | -4.4 | 0.1 | -0.9 | -3.2 | -3.4 | -1.8 | -0.2 | 0    |
|-------------|------|------|------|-----|------|------|------|------|------|------|
| CJ_10000102 | 0.5  | 0.3  | -0.3 | 0.2 | -0.3 | 0.2  | 0.1  | -0.7 | 0.3  | 0.4  |
| CJ_10000103 | -0.3 | 0.2  | 0.4  | 0.2 | -1.4 | 0.1  | 0.1  | 0    | -0.1 | 0    |
| CJ_10000104 | 0.2  | -0.2 | 0.6  | 0.1 | 0    | 0.3  | 0.1  | -0.1 | 0.5  | 0    |
| CJ_10000105 | 0.4  | -0.3 | 1.3  | 0.2 | 0.2  | 0.3  | 0.3  | 0    | -0.2 | 0    |
| CJ_10000106 | -0.7 | -0.3 | 0.3  | 0.2 | 0.1  | 0.2  | -0.1 | 0.2  | -0.3 | 0    |
| CJ_10000107 | 0.4  | -0.3 | 0.4  | 0.1 | -0.1 | 0.2  | 0.2  | -0.1 | 0.3  | -0.1 |
| CJ_10000110 | -1.9 | -1.2 | -1.1 | 0   | 0    | 0    | -0.4 | -0.4 | 0.1  | -0.1 |
| CJ_10000112 | 0.9  | 0.5  | 0.7  | 0.3 | 0    | 0.4  | 0.3  | 0    | 0.2  | 0.3  |
| CJ_10000113 | -0.1 | -0.3 | 0.5  | 0.1 | -0.1 | 0.1  | 0.2  | 0.1  | 0    | 0    |
| CJ_10000114 | 0.1  | 0.2  | 0    | 0.2 | -0.1 | 0.2  | 0.1  | -0.1 | -0.1 | 0.1  |
| CJ_10000115 | 0.2  | 0.4  | 0.7  | 0.4 | 0.2  | 0.1  | 0.2  | 0.1  | -0.1 | 0.1  |
| CJ_10000116 | 0    | -0.1 | 0.6  | 0.2 | 0    | 0.1  | 0.3  | 0.1  | 0    | 0    |
| CJ_10000117 | 1    | 1    | 0.2  | 0.3 | -0.3 | 0.3  | 0.4  | -0.1 | 0.1  | 0.4  |
| CJ_10000118 | -0.7 | -0.4 | 0.1  | 0.1 | 0.1  | 0.2  | 0.3  | 0.2  | -0.3 | 0    |
| CJ_10000120 | -0.4 | -0.9 | 0.7  | 0.2 | 0.1  | 0.1  | 0.1  | -0.1 | 0    | 0    |
| CJ_10000121 | 0.2  | 0.2  | 0.7  | 0.2 | -0.1 | 0.1  | 0.1  | -0.1 | -0.1 | -0.1 |

| CJ_10000123 | -0.5 | -1.6 | -0.1 | 0.1 | 0    | -0.2 | 0.2  | 0    | -0.3 | 0.1  |
|-------------|------|------|------|-----|------|------|------|------|------|------|
| CJ_10000125 | 0.8  | -0.4 | 1.3  | 0.2 | 0.1  | 0.1  | 0.2  | 0.2  | -0.1 | 0.2  |
| CJ_10000126 | -0.2 | 0.2  | 0.3  | 0.1 | -0.1 | 0.2  | 0.1  | -0.1 | 0.1  | 0.1  |
| CJ_10000128 | 0.3  | -1   | 0.9  | 0.2 | 0.1  | -0.4 | 0.1  | 0.1  | 0    | 0.1  |
| CJ_10000129 | -0.1 | 0    | 0.1  | 0.2 | 0.2  | 0    | -0.2 | -0.3 | -0.1 | 0    |
| CJ_10000131 | 0.1  | -0.1 | 0.2  | 0.1 | -0.2 | 0.1  | 0.1  | -0.1 | 0.1  | -0.1 |
| CJ_10000132 | -0.6 | -0.3 | 0.4  | 0.1 | 0    | 0.2  | -0.4 | -0.1 | -0.2 | 0    |
| CJ_10000135 | 1.2  | 1.2  | 0.5  | 0.1 | -0.4 | 0.4  | 0.3  | -0.1 | 0.3  | 0.5  |
| CJ_10000136 | -0.9 | 0    | 0    | 0.2 | -0.1 | 0.3  | 0.1  | 0    | 0.1  | 0.2  |
| CJ_10000137 | -0.9 | 0.1  | -0.3 | 0   | -0.3 | 0    | 0    | -0.1 | 0.2  | 0.1  |
| CJ_10000138 | -0.4 | 0.1  | 0    | 0.3 | 0.1  | 0.2  | 0.1  | -0.1 | 0.1  | 0.1  |
| CJ_10000139 | -0.8 | -0.1 | 0.5  | 0.2 | 0    | 0.4  | 0.2  | 0    | 0    | 0.2  |
| CJ_10000140 | -0.1 | 0    | 0.5  | 0.2 | 0    | 0.1  | 0.1  | 0    | -0.2 | -0.1 |
| CJ_10000141 | 0.4  | 0.3  | 0.6  | 0.1 | 0.2  | 0    | 0.2  | 0.1  | -0.1 | 0    |
| CJ_10000142 | 0.6  | 0.2  | 0.5  | 0.1 | 0.1  | 0.3  | 0.2  | 0    | -0.1 | 0.1  |
| CJ_10000143 | -0.4 | -0.6 | 0    | 0   | 0    | 0.3  | 0    | 0.1  | 0.3  | 0    |
| CJ_10000144 | -2.5 | -1.7 | -2.5 | 0   | 0    | 0.1  | -0.1 | -0.2 | -0.1 | 0.1  |

| CJ_10000145 | 0.4  | 0.8  | -1.4 | 0.1  | 0.9  | 0.5 | 0.1  | 0    | 0.2  | 0.1  |
|-------------|------|------|------|------|------|-----|------|------|------|------|
| CJ_10000146 | -0.4 | -1.3 | -2.4 | -0.1 | -0.3 | 0.2 | 0.1  | 0    | 0.5  | 0    |
| CJ_10000147 | -1   | 0.4  | -0.1 | 0.2  | -0.1 | 0.4 | -0.3 | -0.1 | 0    | 0.2  |
| CJ_10000148 | -1.1 | -0.5 | -0.3 | 0.1  | 1.2  | 0.1 | -0.2 | 0.1  | -0.3 | -0.1 |
| CJ_10000149 | -2   | -0.2 | 0.7  | 0.1  | 0.1  | 0.1 | 0.1  | -0.2 | 0.1  | 0    |
| CJ_10000150 | -0.4 | -0.2 | 0.4  | 0    | 0    | 0.2 | 0    | -0.2 | 0    | 0    |
| CJ_10000151 | 0.2  | 0.3  | 0.6  | 0.2  | -0.4 | 0.1 | 0    | -0.2 | -0.1 | 0.1  |
| CJ_10000152 | -0.5 | -0.3 | 0.3  | 0    | 0    | 0   | 0    | -0.1 | 0.2  | 0    |
| CJ_10000153 | -0.3 | -0.1 | 0.4  | 0.1  | 0    | 0.1 | 0.1  | 0    | 0    | -0.1 |
| CJ_10000154 | -0.2 | 0.1  | 0.4  | 0.2  | 0.5  | 0.3 | -0.1 | 0    | 0.5  | 0.1  |
| CJ_10000155 | 0    | -0.7 | 0.8  | 0.1  | -0.1 | 0.2 | 0.2  | 0.2  | 0    | 0    |
| CJ_10000156 | -0.2 | -0.6 | 0.2  | 0.1  | -0.4 | 0.3 | 0    | 0    | -0.1 | 0.1  |
| CJ_10000157 | -0.5 | -0.2 | 0.7  | 0.1  | 0.1  | 0.1 | 0.1  | -0.1 | 0.2  | 0    |
| CJ_10000158 | -2.1 | -0.4 | 0    | 0.1  | -0.1 | 0.1 | -0.1 | -0.3 | -0.1 | 0    |
| CJ_10000159 | 0    | -0.1 | 0.4  | 0.2  | 0.1  | 0.2 | 0.1  | -0.1 | -0.1 | 0.1  |
| CJ_10000160 | -0.2 | 0.2  | 0.6  | 0.3  | 0    | 0.2 | 0.1  | 0    | -0.1 | 0.2  |
| CJ_10000162 | -0.2 | -0.2 | 0.2  | 0.2  | 0.2  | 0.2 | 0.1  | 0    | 0    | 0    |

| CJ_10000163 | -0.2 | -0.1 | 0.2  | 0.2  | 0.1  | 0.2  | 0.1  | 0    | -0.1 | 0   |
|-------------|------|------|------|------|------|------|------|------|------|-----|
| CJ_10000164 | 1.5  | 1.3  | 1.1  | 0.2  | -0.2 | 0    | 0.3  | 0.2  | 0.2  | 0   |
| CJ_10000165 | -0.1 | -0.4 | 0.6  | 0.2  | 0    | 0.3  | 0    | 0.2  | 0    | 0.1 |
| CJ_10000166 | -0.2 | 0.2  | 0.5  | 0.2  | 0.2  | 0.1  | 0    | 0    | -0.1 | 0.1 |
| CJ_10000168 | 0.7  | 0.7  | 0.5  | 0.3  | 0.1  | 0.3  | 0.2  | 0    | 0.1  | 0   |
| CJ_10000169 | 0.1  | 0.6  | 0    | 0.2  | 0.4  | 0.2  | 0    | -0.1 | 0.2  | 0.1 |
| CJ_10000170 | 1.4  | 0.1  | 1.3  | 0.5  | -0.3 | 0.4  | 0.3  | -0.3 | 0.7  | 0.6 |
| CJ_10000171 | -0.6 | 0.3  | 0.1  | 0.1  | 0    | 0.4  | 0    | -0.1 | -0.1 | 0.1 |
| CJ_10000172 | -0.9 | 0.1  | -0.2 | 0.1  | -0.5 | 0.2  | 0    | -0.1 | 0.1  | 0   |
| CJ_10000173 | -0.5 | -0.9 | 0.1  | 0    | -0.2 | 0.2  | 0    | -0.3 | -0.1 | 0.1 |
| CJ_10000174 | -0.5 | -0.5 | 0    | 0.1  | 0.1  | 0.2  | -0.1 | 0    | -0.1 | 0   |
| CJ_10000175 | -0.7 | -0.6 | 0.4  | 0.2  | 0.5  | 0.3  | 0    | -0.1 | 0    | 0.1 |
| CJ_10000176 | -0.6 | -0.1 | -0.1 | -0.1 | -0.3 | -0.1 | -0.1 | 0    | 0.3  | 0.1 |
| CJ_10000177 | 0.1  | -0.3 | -0.2 | 0.1  | 0    | -0.2 | -0.5 | -0.2 | 0.1  | 0.1 |
| CJ_10000179 | -0.9 | -0.5 | 0    | 0.1  | -0.1 | 0.2  | 0.1  | -0.1 | 0.1  | 0   |
| CJ_10000180 | 0.6  | 0.1  | -0.1 | 0.1  | -0.4 | 0.4  | 0.1  | -0.1 | -0.2 | 0.1 |
| CJ_10000181 | -0.6 | -0.1 | -0.4 | 0.1  | 0    | 0.2  | -0.1 | -0.1 | 0    | 0.1 |

| CJ_10000183 | 1    | 0.4  | 0.6  | 0.2  | -0.3 | 0.4  | 0.5  | 0    | 0.2  | 0.4  |
|-------------|------|------|------|------|------|------|------|------|------|------|
| CJ_10000184 | -0.2 | -0.1 | 0.3  | 0.3  | 0.1  | 0.1  | 0.1  | -0.2 | -0.3 | 0.2  |
| CJ_10000185 | -1.6 | -0.7 | -1   | 0.1  | 0.1  | 0.2  | 0    | 0    | 0.1  | 0    |
| CJ_10000186 | 0    | -1.5 | -0.9 | -0.3 | 0    | -0.2 | -0.5 | -0.1 | -0.3 | -0.4 |
| CJ_10000187 | 0.1  | 0.1  | 0.4  | 0.2  | 0.2  | 0.2  | 0.1  | 0    | 0    | 0.1  |
| CJ_10000188 | 0.3  | 0.1  | -5.8 | 0.2  | -0.4 | -1.5 | -0.2 | -1.2 | 0.4  | 0.1  |
| CJ_10000189 | 0    | 0    | -0.2 | 0.1  | -0.1 | -0.1 | -0.5 | -0.6 | 0    | 0.1  |
| CJ_10000190 | -0.6 | -0.1 | -0.2 | 0.2  | 0.1  | 0    | -0.2 | 0.1  | 0    | 0    |
| CJ_10000191 | 0    | -0.3 | 0.8  | 0.2  | 0.1  | 0    | 0    | 0.1  | 0    | 0    |
| CJ_10000193 | -0.8 | -1.2 | 1    | 0.2  | -0.2 | 0.4  | 0.3  | 0.1  | 0.3  | 0.1  |
| CJ_10000196 | 0.1  | -0.4 | 0.3  | 0    | 0.1  | 0.1  | 0    | 0.1  | -0.1 | -0.2 |
| CJ_10000200 | 0.4  | 0.1  | 0.7  | 0.1  | 0    | 0.1  | 0.1  | -0.2 | 0    | 0.1  |
| CJ_10000204 | 0.2  | 0    | -0.9 | 0    | -0.2 | 0    | -0.3 | 0.1  | 0.1  | 0.1  |
| CJ_10000210 | 0    | 0.1  | 0.3  | 0.1  | 0.2  | 0.2  | 0.1  | 0.2  | -0.1 | 0    |
| CJ_10000213 | 0.7  | 0.2  | 0.8  | 0.3  | 0.1  | 0.2  | 0.3  | 0.2  | -0.2 | 0    |
| CJ_10000214 | 0.5  | -0.6 | 0.6  | 0.1  | -0.1 | 0.1  | 0    | -0.5 | 0.2  | -0.1 |
| CJ_10000215 | -0.1 | 0    | 0.9  | 0.1  | 0    | 0.3  | 0    | 0    | 0    | 0    |

| CJ_10000216 | -0.6 | -0.2 | 0.1  | 0.2 | 0.1  | 0.2  | -0.2 | 0    | -0.1 | 0.1  |
|-------------|------|------|------|-----|------|------|------|------|------|------|
| CJ_10000217 | -1.1 | -0.3 | -0.1 | 0   | 0    | 0.3  | 0    | 0    | 0.4  | -0.1 |
| CJ_10000218 | -1   | -0.2 | -0.4 | 0.1 | -0.1 | 0.2  | -0.1 | -0.2 | 0    | 0.1  |
| CJ_10000219 | -0.4 | 0    | 0.3  | 0.1 | 0.1  | 0.2  | -0.1 | -0.1 | 0    | 0    |
| CJ_10000220 | -0.2 | -0.6 | 0.2  | 0.1 | -0.1 | 0    | 0    | -0.2 | 0    | 0    |
| CJ_10000221 | -0.1 | 0.1  | 0.5  | 0.1 | 0    | 0.2  | 0.1  | 0    | 0    | 0.1  |
| CJ_10000222 | -1.8 | 0    | -0.1 | 0.1 | 0    | 0.3  | -0.1 | 0    | 0    | 0.1  |
| CJ_10000223 | 0    | 0.3  | 0    | 0   | -0.2 | 0.2  | 0    | 0    | 0.2  | 0.1  |
| CJ_10000224 | -0.4 | -0.1 | 0.4  | 0.1 | 0.1  | 0.2  | 0    | -0.1 | 0    | 0    |
| CJ_10000225 | -1.1 | 0.9  | -0.3 | 0.3 | -0.1 | 0.4  | 0.2  | -0.1 | -0.1 | 0.2  |
| CJ_10000228 | -0.4 | -0.1 | -0.7 | 0.1 | 0    | 0.3  | 0    | 0.1  | 0.1  | 0.1  |
| CJ_10000230 | -0.2 | 0.1  | 0.2  | 0.8 | -0.2 | -0.1 | 0    | 0.5  | 0.1  | 0.9  |
| CJ_10000231 | -1.1 | -0.2 | 0    | 0.2 | 0.2  | 0.1  | -0.1 | 0.1  | 0    | 0    |
| CJ_10000232 | -0.1 | 0.1  | 0.5  | 0.3 | 0.1  | 0    | -0.3 | 0.2  | -0.4 | -0.3 |
| CJ_10000234 | 0.2  | 0.2  | 0.3  | 0.2 | 0    | 0.1  | 0    | 0    | 0.2  | 0.1  |
| CJ_10000235 | 0    | -0.1 | 0    | 0.2 | 0    | 0    | -0.2 | 0.1  | 0    | 0    |
| CJ_10000236 | 0.2  | 0    | -0.3 | 0.2 | 0.1  | -1.7 | -0.2 | 0.1  | -0.3 | -0.1 |

| CJ_10000237 | -0.8 | -0.4 | -0.3 | 0.1 | 0    | 0.2 | 0    | 0    | -0.1 | 0.1  |
|-------------|------|------|------|-----|------|-----|------|------|------|------|
| CJ_10000238 | -0.7 | -1.3 | -0.2 | 0   | -0.2 | 0.4 | 0    | -0.1 | 0.3  | 0.2  |
| CJ_10000239 | -1.3 | -1   | -0.4 | 0.2 | -0.1 | 0.3 | -0.1 | -0.2 | -0.1 | 0.1  |
| CJ_10000240 | -1.3 | -0.3 | -0.7 | 0.1 | 0    | 0.3 | -0.2 | 0    | 0.3  | 0.2  |
| CJ_10000241 | -0.2 | -0.1 | 0.6  | 0   | 0    | 0.1 | 0.1  | 0.1  | 0.1  | -0.1 |
| CJ_10000242 | -2.9 | -0.2 | 0    | 0.1 | 0.1  | 0.1 | -0.1 | -0.3 | -0.1 | 0.1  |
| CJ_10000243 | -1   | -0.2 | -0.2 | 0.1 | 0    | 0.2 | 0    | -0.1 | 0    | 0.1  |
| CJ_10000244 | -0.3 | -0.1 | 0.4  | 0   | -0.1 | 0.2 | 0    | 0    | -0.2 | 0.1  |
| CJ_10000245 | -0.7 | 0.3  | 0    | 0.1 | 0.2  | 0.1 | -0.2 | 0    | 0.2  | 0.1  |
| CJ_10000246 | -0.6 | -0.2 | 0.2  | 0.2 | 0.2  | 0.2 | 0    | 0    | -0.1 | 0.1  |
| CJ_10000247 | 0.4  | 0.4  | 0.5  | 0.1 | 0    | 0   | 0.2  | 0    | 0    | 0.1  |
| CJ_10000248 | 0.3  | 0.2  | 0.6  | 0.2 | -0.1 | 0.1 | 0.2  | 0    | 0    | 0.1  |
| CJ_10000249 | -0.6 | -0.2 | -0.2 | 0.1 | 0    | 0.1 | -0.1 | 0    | 0    | 0    |
| CJ_10000252 | -0.6 | -0.2 | 0.3  | 0   | 0    | 0.3 | 0.1  | 0.1  | -0.2 | 0    |
| CJ_10000254 | 0.4  | -1   | 0.5  | 0.4 | 0.1  | 0   | -0.1 | -0.2 | -0.1 | 0.1  |
| CJ_10000255 | 0.2  | 0.3  | 0.3  | 0.2 | 0    | 0.1 | 0.2  | 0    | 0.1  | 0    |
| CJ_10000256 | 0.3  | -0.2 | 0.3  | 0.2 | 0.3  | 0   | 0    | 0.2  | -0.3 | -0.1 |

| CJ_10000257 | 0    | 0.2  | 0.2  | 0.1  | -0.1 | 0    | -0.7 | 0    | 0.1  | 0    |
|-------------|------|------|------|------|------|------|------|------|------|------|
| CJ_10000258 | -0.1 | 0    | 0.1  | 0.2  | 0    | 0.3  | 0    | 0    | -0.3 | 0    |
| CJ_10000259 | 0.8  | 0.3  | 0.8  | 0    | 0.1  | 0    | 0.3  | 0.1  | 0.1  | 0    |
| CJ_10000260 | 0.6  | -0.2 | -0.2 | 0.2  | 0    | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  |
| CJ_10000261 | -0.4 | 0.2  | 0.2  | 0.1  | 0.1  | 0.1  | 0    | 0.1  | -0.1 | 0    |
| CJ_10000262 | 0.1  | -0.7 | 0.9  | -0.2 | 0.1  | -0.1 | 0.1  | 0.1  | 0    | -0.2 |
| CJ_10000263 | 0    | 0.2  | 0.3  | 0.1  | -0.1 | 0.3  | 0.1  | 0    | 0    | 0.1  |
| CJ_10000264 | 0.7  | 0.2  | 0.5  | 0.3  | 0.2  | 0    | 0    | -0.1 | -0.2 | 0.1  |
| CJ_10000265 | -0.1 | 0.4  | 1    | 0.1  | -0.2 | 0.1  | 0.2  | -0.1 | 0    | 0.2  |
| CJ_10000267 | -0.1 | 0.1  | 0.5  | 0.2  | 0.1  | 0.1  | 0    | -0.2 | 0    | 0    |
| CJ_10000268 | 0.7  | 0.8  | 0.2  | 0.1  | -0.2 | 0.1  | 0.1  | 0    | 0.1  | 0.1  |
| CJ_10000269 | 0    | 0    | 0.7  | 0.2  | 0.1  | 0.2  | 0.1  | -0.3 | 0    | 0.1  |
| CJ_10000270 | 0.7  | 0.3  | 0.9  | 0.2  | 0    | 0.2  | 0.1  | 0    | -0.1 | 0.1  |
| CJ_10000271 | -0.8 | -0.2 | 0.4  | 0.3  | -0.1 | 0.1  | 0.2  | 0.1  | 0.1  | 0    |
| CJ_10000272 | -0.1 | -0.2 | 0.5  | 0.2  | 0.1  | 0.1  | 0.2  | -0.3 | -0.1 | 0.1  |
| CJ_10000273 | 0.5  | 0.2  | 0.6  | 0.1  | 0    | 0.2  | 0.2  | 0    | -0.1 | -0.1 |
| CJ_10000276 | -0.5 | -0.2 | -0.2 | 0    | 0    | 0.3  | 0.1  | 0    | 0    | 0.1  |

| CJ_10000278 | -0.1 | 0.4  | 0    | 1   | 0.2  | 0.1  | 0.2  | -0.1 | 0    | -0.1 |
|-------------|------|------|------|-----|------|------|------|------|------|------|
| CJ_10000279 | -0.2 | -0.1 | 0    | 0.1 | 0.1  | 0.1  | -0.1 | 0.1  | -0.1 | 0    |
| CJ_10000280 | -1   | -0.7 | 0.1  | 0.2 | 0.2  | -0.1 | -0.3 | 0.3  | -0.6 | -0.1 |
| CJ_10000281 | 5.6  | 1.3  | -0.1 | 1.2 | 0.1  | -0.9 | 1.9  | 1.7  | 2.7  | -1.3 |
| CJ_10000282 | -0.2 | -0.8 | 0.4  | 0.1 | 0.4  | 0.2  | 0    | 0.3  | 0    | 0    |
| CJ_10000284 | 0.5  | -0.6 | 0    | 0.1 | 0.4  | -0.4 | 0    | 0.1  | -0.2 | -0.1 |
| CJ_10000285 | -0.6 | -0.1 | -0.2 | 0   | 0    | 0.1  | -0.1 | 0.1  | 0    | 0    |
| CJ_10000286 | -0.3 | 0.6  | 0.9  | 0.2 | 0.1  | 0.1  | 0.1  | -0.1 | -0.2 | 0    |
| CJ_10000287 | -0.5 | -0.2 | 0.1  | 0.1 | 0    | 0.1  | 0    | -0.1 | -0.1 | 0    |
| CJ_10000288 | 0.2  | -0.6 | 1.4  | 0.1 | 0    | 0    | 0    | 0.1  | 0.2  | -0.1 |
| CJ_10000289 | -0.1 | 0.1  | 0.7  | 0.3 | 0.2  | 0.1  | 0    | 0    | 0    | 0.1  |
| CJ_10000290 | 1    | 0.5  | 0.5  | 0.4 | -0.1 | 0.3  | 0.2  | -0.2 | 0    | 0.2  |
| CJ_10000291 | -0.4 | -0.7 | 0.6  | 0.2 | -0.1 | 0.1  | 0.1  | 0.1  | 0    | -0.1 |
| CJ_10000292 | -1.7 | -0.9 | -0.5 | 0.1 | -0.1 | 0.5  | 0.1  | 0.1  | 0.4  | 0.1  |
| CJ_10000293 | 3    | 2.4  | 3.1  | 0.9 | -0.7 | 0.8  | 1.3  | -0.4 | 0.7  | 0.8  |
| CJ_10000294 | -0.7 | -0.6 | 0.2  | 0.1 | -0.1 | -0.1 | 0    | 0.1  | -0.4 | 0.1  |
| CJ_10000295 | 0.1  | -0.1 | 0.6  | 0.1 | -0.1 | 0.1  | 0    | 0    | 0.1  | 0    |

| CJ_10000296 | -2.1 | -1.2 | -0.1 | 0.1  | 0.2  | 0.3 | 0    | 0.1  | -0.2 | 0    |
|-------------|------|------|------|------|------|-----|------|------|------|------|
| CJ_10000297 | -0.7 | -0.5 | 0.2  | 0.1  | -0.1 | 0.1 | 0    | 0    | -0.1 | -0.1 |
| CJ_10000298 | -0.6 | 0.2  | 0.2  | -0.2 | -0.3 | 0.2 | 0.1  | 0    | 0.3  | 0    |
| CJ_10000299 | 0.5  | -0.1 | -0.8 | 0    | -0.2 | 0.1 | -0.2 | 0    | 0.4  | 0.1  |
| CJ_10000302 | -0.8 | -0.2 | -0.8 | -1.7 | 0    | 0.1 | -0.4 | 1.2  | -0.1 | -1.5 |
| CJ_10000304 | 0.4  | 0.5  | -0.1 | 0.2  | 0.1  | 0.2 | -0.1 | -0.2 | -0.1 | 0    |
| CJ_10000305 | -0.6 | 0    | -0.6 | -1.3 | 0    | 0.1 | -0.1 | 1.4  | 0    | -1.3 |
| CJ_10000307 | 0.3  | -0.3 | 0.4  | 0.2  | 0.2  | 0.1 | 0.2  | 0.3  | -0.3 | -0.1 |
| CJ_10000308 | -0.8 | -0.6 | -0.1 | 0.1  | 0.2  | 0   | -0.7 | -0.1 | -0.2 | 0    |
| CJ_10000310 | -0.2 | -0.2 | 1.2  | 0.2  | 0.1  | 0.2 | -0.1 | -0.2 | -0.2 | 0.1  |
| CJ_10000311 | -0.4 | -0.3 | 0    | 0.2  | 0.1  | 0.3 | -0.2 | 0    | 0    | 0.1  |
| CJ_10000312 | -0.1 | -0.3 | 1    | 0.2  | 0.1  | 0.1 | 0    | 0    | -0.1 | -0.1 |
| CJ_10000313 | -3.9 | -2.5 | 0.3  | 0.1  | -0.1 | 0.2 | 0.1  | -0.2 | -0.1 | 0    |
| CJ_10000314 | 0.1  | 0.1  | 0.3  | 0.2  | -0.1 | 0.2 | 0    | -0.2 | -0.1 | 0.1  |
| CJ_10000316 | -0.1 | -0.1 | 0.6  | 0.1  | -0.1 | 0.1 | 0    | -0.1 | -0.2 | -0.1 |
| CJ_10000317 | -0.7 | 0.5  | 0.3  | 0.3  | -0.2 | 0.1 | 0    | -0.6 | -0.1 | 0.1  |
| CJ_10000318 | 1.2  | 0.4  | 1.2  | 0.2  | -0.2 | 0.2 | 0.3  | -0.1 | 0.2  | 0.1  |

| CJ_10000319 | 0.1  | 0.3  | 0.2  | 0.1 | -0.1 | 0.2  | 0.1  | 0    | 0.1  | 0    |
|-------------|------|------|------|-----|------|------|------|------|------|------|
| CJ_10000320 | -0.6 | 0.1  | -2   | 0   | -0.2 | -1.2 | 0    | 0    | 0    | 0.1  |
| CJ_10000322 | -0.4 | -0.2 | 0.1  | 0.1 | -0.1 | 0.1  | -0.1 | -0.4 | 0    | 0    |
| CJ_10000323 | -1.8 | -0.7 | 0.2  | 0   | -0.1 | 0.2  | -0.2 | 0.2  | -0.4 | 0    |
| CJ_10000325 | -0.1 | 0    | 0.3  | 0.1 | 0.1  | 0.1  | 0.2  | 0.1  | 0    | 0    |
| CJ_10000326 | -1.6 | -0.3 | -0.2 | 0   | -0.1 | 0.2  | 0    | 0    | 0.1  | 0.1  |
| CJ_10000328 | 0.4  | 0.6  | -0.2 | 0.1 | -0.1 | 0.2  | 0.1  | 0.3  | -0.1 | -0.1 |
| CJ_10000329 | -0.3 | 0.3  | 0.5  | 0.2 | 0.2  | 0.1  | 0.1  | 0.2  | -0.3 | 0    |
| CJ_10000331 | 0.9  | -0.1 | -0.2 | 0.2 | 0    | -0.9 | -0.1 | 0.1  | -0.3 | -0.1 |
| CJ_10000332 | -0.2 | -0.3 | -0.2 | 0.1 | 0    | 0.5  | -0.1 | -0.1 | 0.2  | 0.1  |
| CJ_10000334 | -0.8 | -0.4 | 0.9  | 0   | -0.2 | 0.2  | 0.1  | 0    | -0.2 | 0    |
| CJ_10000335 | -1.3 | -0.4 | -0.7 | 0.2 | 0.1  | 0.3  | -0.2 | 0    | 0.4  | 0.1  |
| CJ_10000336 | -0.1 | -1.9 | 1    | 0.1 | 0    | 0.1  | 0    | -0.1 | 0.3  | -0.1 |
| CJ_10000337 | -0.1 | -0.2 | 0.6  | 0.2 | 0.1  | 0.1  | 0.1  | 0    | -0.1 | 0    |
| CJ_10000340 | -3.2 | -0.1 | 0.1  | 0.1 | -0.3 | 0.2  | -0.1 | 0    | 0.1  | 0.1  |
| CJ_10000341 | 0    | -0.2 | 0.6  | 0.1 | 0    | 0.2  | 0.1  | 0    | 0    | 0    |
| CJ_10000342 | -0.7 | -0.5 | -0.1 | 0   | -0.2 | 0.2  | 0    | 0    | 0    | 0    |

| CJ_10000343 | -0.2 | -0.2 | 0.4  | 0.2  | 0.1  | 0.2  | -0.1 | -0.1 | 0    | 0.1  |
|-------------|------|------|------|------|------|------|------|------|------|------|
| CJ_10000344 | -0.2 | -0.1 | 0.3  | 0.1  | 0.1  | 0.1  | 0    | 0    | -0.1 | 0.1  |
| CJ_10000347 | -0.4 | -0.2 | 0.3  | 0.1  | 0    | 0.2  | 0.1  | 0.1  | -0.2 | 0    |
| CJ_10000349 | -0.8 | -0.3 | 0.4  | 0.1  | 0    | 0.2  | 0.1  | 0.1  | 0.1  | 0    |
| CJ_10000350 | -1.6 | -1   | -0.7 | 0.1  | 0    | 0.1  | -0.2 | -0.8 | 0.1  | 0.1  |
| CJ_10000352 | -0.7 | 0.1  | 0.6  | 0.1  | 0.1  | 0.2  | 0.3  | 0.2  | -0.2 | 0    |
| CJ_10000353 | -0.4 | -0.1 | -0.3 | 0.1  | -0.1 | 0.2  | 0    | 0.1  | 0.1  | 0.1  |
| CJ_10000354 | -0.7 | -0.1 | 0.2  | 0.3  | 0.1  | 0.1  | 0    | 0.2  | -0.3 | -0.1 |
| CJ_10000355 | 0.3  | -0.4 | 0.4  | 0.1  | 0    | 0.1  | 0.1  | 0    | 0    | -0.1 |
| CJ_10000356 | 0.1  | 0    | -0.2 | 0.1  | 0.1  | 0.1  | -0.1 | 0    | -0.1 | -0.1 |
| CJ_10000357 | -0.4 | -0.9 | 0.4  | -0.1 | 0.1  | -0.2 | 0    | 0    | -0.1 | -0.2 |
| CJ_10000358 | -1.6 | -0.2 | 0.3  | 0.1  | 0.4  | 0.1  | -0.3 | 0    | -0.2 | 0    |
| CJ_10000359 | -0.1 | -0.1 | 0.3  | 0.1  | 0    | 0.3  | 0.1  | 0    | 0    | 0.2  |
| CJ_10000361 | -0.4 | 0.1  | 0.6  | 0.2  | 0    | 0.2  | 0    | -0.1 | -0.1 | 0    |
| CJ_10000362 | -0.4 | 0    | -0.8 | 0.2  | 0.1  | 0.2  | 0.1  | 0    | 0.1  | 0.1  |
| CJ_10000364 | -0.1 | 0.2  | -0.2 | 0.1  | -0.4 | 0.4  | 0.2  | -0.1 | 0.1  | 0.2  |
| CJ_10000365 | 0.5  | 0    | 0.5  | 0.3  | 0.1  | 0.2  | 0.2  | 0    | 0    | 0    |

| CJ_10000367 | 0.2  | 0.3  | 0.3  | 0.2  | -0.1 | 0.2  | 0.2  | 0    | -0.1 | 0.1  |
|-------------|------|------|------|------|------|------|------|------|------|------|
| CJ_10000368 | 0.7  | 0.1  | 0.4  | 0.1  | 0    | 0.1  | 0.2  | -0.2 | 0.1  | 0    |
| CJ_10000370 | 0    | -0.3 | 0.3  | 0.3  | 0    | 0.1  | 0.1  | 0.1  | -0.1 | -0.1 |
| CJ_10000373 | 0.3  | 0.3  | 0    | 0.2  | 1    | -0.5 | -0.2 | 0.1  | -0.1 | -0.1 |
| CJ_10000374 | 2.3  | 1.6  | 0.9  | 0.4  | -0.4 | 0.4  | 0.5  | -0.1 | 0.2  | 0.2  |
| CJ_10000376 | -0.9 | -0.4 | -0.3 | 0.2  | 0.1  | 0.2  | 0    | 0.3  | -0.1 | 0    |
| CJ_10000377 | 2    | 2.5  | 2.5  | 0.7  | -1   | 1.7  | 1.6  | -0.6 | 0.7  | 0.9  |
| CJ_10000379 | -0.5 | -1.3 | 0.3  | 0.1  | 0.1  | 0.2  | 0    | 0.2  | -0.3 | 0    |
| CJ_10000381 | -1   | -1   | -0.1 | 0.2  | 0    | 0.3  | -0.2 | -0.2 | 0    | 0    |
| CJ_10000382 | -0.5 | 0.3  | 0.2  | 0.1  | -0.2 | 0.3  | 0.2  | 0    | 0    | 0.2  |
| CJ_10000383 | -0.3 | -0.2 | 0.1  | -0.1 | -0.1 | 0.2  | 0    | -0.3 | -0.2 | -0.1 |
| CJ_10000384 | -1.2 | 0.7  | -0.1 | 0.1  | -0.3 | 0.2  | 0.1  | -0.3 | 0.1  | 0.1  |
| CJ_10000385 | -0.2 | 0    | 0.4  | 0.2  | 0    | 0.1  | -0.2 | -0.3 | 0    | 0    |
| CJ_10000386 | -0.7 | -0.7 | 0.5  | 0.1  | 0    | 0.1  | 0    | 0    | -1.5 | 0    |
| CJ_10000387 | 1    | 1.8  | 0.7  | 0.3  | -1   | 0.5  | 0.6  | -0.1 | 0.3  | 0.3  |
| CJ_10000388 | -0.3 | 0    | 0.1  | 0.2  | 0.1  | 0.3  | -0.1 | -0.1 | -0.1 | 0    |
| CJ_10000389 | -0.4 | -1.6 | 0    | 0    | 0.2  | 0.1  | -0.1 | 0.2  | 0.4  | 0    |

| CJ_10000390 | 0.1  | 0.2  | 1.9  | -0.1 | 0    | 0.1 | -0.1 | -0.2 | -0.3 | 0.4  |
|-------------|------|------|------|------|------|-----|------|------|------|------|
| CJ_10000391 | 0    | 0    | 0.6  | 0    | 0    | 0.2 | 0    | -0.1 | -0.1 | 0.1  |
| CJ_10000393 | -0.5 | -0.1 | 0.2  | 0.2  | -0.2 | 0.2 | 0    | 0    | 0    | 0    |
| CJ_10000394 | -0.6 | 0    | -0.2 | 0.1  | -0.1 | 0.3 | 0.1  | 0    | 0    | 0.1  |
| CJ_10000395 | -1.4 | 0    | -0.4 | -0.2 | -0.3 | 0.3 | -0.1 | 0.1  | 0.4  | 0    |
| CJ_10000396 | -0.5 | 0    | 0.3  | 0.1  | -0.3 | 0.3 | 0.2  | 0    | 0    | 0.2  |
| CJ_10000397 | -0.1 | 0.1  | 0.4  | 0.1  | -0.1 | 0.2 | 0.1  | 0    | -0.1 | 0.1  |
| CJ_10000398 | -0.9 | -0.3 | -0.2 | -0.1 | -0.1 | 0.1 | -0.2 | 0.1  | 0.1  | -0.1 |
| CJ_10000399 | 0    | 0.1  | 0.8  | 0    | -0.2 | 0   | 0    | -0.1 | 0.3  | 0.1  |
| CJ_10000400 | -0.8 | -0.6 | -1.8 | 0.2  | -0.2 | 0.3 | -1.1 | -0.6 | 0    | 0.2  |
| CJ_10000401 | 0.2  | 0.2  | 0.7  | 0.1  | -0.2 | 0.1 | 0.1  | 0.1  | -0.1 | 0    |
| CJ_10000402 | 0    | 0.7  | -0.1 | 0.1  | -0.2 | 0.3 | 0.1  | 0    | 0.2  | 0.2  |
| CJ_10000403 | -0.3 | 0.4  | -0.1 | 0.2  | -0.1 | 0.3 | 0    | 0    | 0.1  | 0    |
| CJ_10000404 | 0.2  | -0.1 | -0.6 | 0    | -0.4 | 0.3 | 0    | 0.2  | -0.1 | 0    |
| CJ_10000405 | 0.3  | 0.5  | 0.3  | 0.2  | 0.6  | 0   | 0.1  | 0    | -0.2 | 0.1  |
| CJ_10000406 | -0.9 | -0.3 | -0.6 | 0    | 0    | 0.2 | 0    | 0.1  | 0    | 0.1  |
| CJ_10000407 | -0.2 | -0.3 | 0.2  | 0.1  | -0.1 | 0.2 | 0    | 0    | 0.1  | -0.1 |

| CJ_10000408 | -0.7 | 0.3  | 1    | 0.1  | 0.2  | 0    | 0.1  | 0    | -0.1 | -0.1 |
|-------------|------|------|------|------|------|------|------|------|------|------|
| CJ_10000409 | 0.2  | 0.5  | 0.4  | 0.2  | 0.3  | 0    | -0.1 | -0.1 | 0.1  | -0.1 |
| CJ_10000410 | 0    | 0.6  | 0.4  | 0.1  | 0    | 0.2  | 0    | 0    | 0.1  | 0    |
| CJ_10000411 | 0.3  | -0.1 | 0.5  | 0    | -0.1 | 0    | 0.1  | 0    | -0.2 | 0    |
| CJ_10000412 | -0.1 | -0.1 | 0.4  | 0.1  | 0.1  | 0.1  | 0    | 0    | -0.1 | 0    |
| CJ_10000413 | -0.1 | -0.5 | -0.2 | 0    | 0    | 0.1  | 0    | 0.1  | 0.5  | 0.1  |
| CJ_10000414 | -0.8 | 0    | -0.5 | -0.1 | 0    | 0.3  | 0    | 0    | 0.1  | 0    |
| CJ_10000415 | -0.7 | 0    | 0.1  | 0.2  | 0.1  | 0.2  | 0    | 0    | 0.1  | 0.2  |
| CJ_10000417 | -1.1 | -0.5 | 0    | 0.2  | -0.2 | 0.4  | 0    | 0.1  | -0.2 | 0.2  |
| CJ_10000418 | -0.5 | -0.4 | -0.5 | 0.1  | 0    | 0.2  | 0    | -0.1 | -0.2 | 0.1  |
| CJ_10000419 | -1   | -0.6 | -2   | 0.1  | -0.4 | -0.3 | -0.3 | -1.2 | -0.1 | 0.1  |
| CJ_10000420 | -0.3 | -0.1 | 0.1  | 0.2  | -0.2 | 0.1  | 0    | 0    | 0    | 0    |
| CJ_10000421 | -0.4 | -0.2 | 0    | 0.2  | 0.1  | 0.2  | 0.2  | 0    | -0.1 | 0.1  |
| CJ_10000422 | -0.3 | 0.1  | -0.1 | 0    | -0.3 | 0.1  | -0.1 | 0.1  | 0    | 0    |
| CJ_10000423 | -0.1 | 0.3  | 0.1  | 0.1  | -0.1 | 0.3  | 0.1  | -0.1 | -0.1 | 0.1  |
| CJ_10000424 | -0.4 | -0.1 | -0.4 | 0    | -0.1 | 0.1  | -0.1 | 0    | 0    | 0    |
| CJ_10000425 | -0.9 | 0.1  | 0.1  | 0.2  | -0.3 | 0    | 0    | -0.1 | 0.6  | 0.3  |

| CJ_10000426 | 0    | 0    | 0.1  | 0.1 | 0    | 0.1  | 0.1  | 0    | -0.1 | 0.1  |
|-------------|------|------|------|-----|------|------|------|------|------|------|
| CJ_10000427 | -0.3 | 0.2  | -0.4 | 0   | -0.2 | 0.3  | -0.2 | -0.1 | 0    | 0.1  |
| CJ_10000428 | 0    | -2   | 0.4  | 0.1 | 0.1  | 0.2  | 0    | 0    | -0.9 | 0    |
| CJ_10000429 | -0.1 | -0.7 | -0.2 | 0.2 | 0.1  | 0.2  | 0.1  | -0.1 | -0.3 | 0.1  |
| CJ_10000430 | -0.4 | -0.1 | 0.2  | 0.1 | -0.1 | 0.3  | 0    | -0.1 | 0.2  | 0.2  |
| CJ_10000433 | -0.2 | 0.1  | 0.2  | 0.1 | 0.1  | 0.2  | -0.1 | -0.1 | 0    | 0    |
| CJ_10000434 | 0.6  | -0.5 | 0.8  | 0.2 | 0.2  | 0    | 0    | 0    | 0.3  | 0    |
| CJ_10000435 | -0.3 | -0.1 | -0.1 | 0.1 | 0.1  | 0.2  | -0.2 | -0.2 | 0    | 0    |
| CJ_10000436 | -0.1 | 0.7  | 0.9  | 0.1 | 0    | 0    | 0.1  | -0.1 | 0    | 0.2  |
| CJ_10000437 | 0.5  | 0.9  | 1.1  | 0.3 | 0    | 0.1  | 0.1  | 0.1  | 0.2  | -0.1 |
| CJ_10000438 | -0.8 | 0.2  | -1.2 | 0   | 0.1  | -0.1 | -0.1 | -0.3 | -0.9 | -0.2 |
| CJ_10000439 | 0.1  | 0.5  | 0.8  | 0.2 | 0    | 0.2  | 0.1  | 0    | 0.2  | 0.2  |
| CJ_10000441 | 0.2  | 0.6  | 0.6  | 0.3 | -0.4 | 0.3  | 0.3  | 0    | 0.2  | 0.1  |
| CJ_10000442 | -0.5 | 0    | -0.1 | 0.1 | 0    | 0.2  | 0    | 0    | 0    | 0.1  |
| CJ_10000444 | 0    | 0.6  | 0.7  | 0.2 | -0.3 | 0.2  | 0.3  | -0.2 | 0.1  | 0.1  |
| CJ_10000445 | -0.1 | 0    | -0.2 | 0.1 | 0    | 0.2  | -0.1 | -0.2 | 0.1  | 0.1  |
| CJ_10000446 | -2.6 | -1.2 | 0.2  | 0.1 | 0    | 0.1  | 0    | -0.2 | 0.5  | 0    |

| CJ_10000447 | 0.1  | 0.8  | 0.6  | 0.3  | -0.1 | 0.1 | 0.2  | -0.1 | 0    | 0    |
|-------------|------|------|------|------|------|-----|------|------|------|------|
| CJ_10000448 | 0.7  | 0.8  | 0.6  | 0.3  | -0.1 | 0.1 | 0.1  | 0    | 0.2  | 0    |
| CJ_10000450 | -0.1 | 1.1  | 1.2  | 0.4  | -0.3 | 0.3 | 0.3  | 0    | 0.1  | 0.2  |
| CJ_10000451 | -0.3 | 0.1  | -0.1 | 0    | 0    | 0.1 | -0.2 | -0.3 | 0.1  | 0.1  |
| CJ_10000452 | 0.2  | -0.2 | -0.1 | 0.1  | 0    | 0.1 | 0.1  | 0.1  | -2.3 | -0.1 |
| CJ_10000453 | -0.4 | -0.2 | -0.1 | 0.1  | 0    | 0   | -0.1 | -0.1 | 0    | 0    |
| CJ_10000454 | -0.5 | 0.1  | 0.3  | 0.2  | 0.1  | 0.2 | 0.1  | 0    | -0.4 | 0    |
| CJ_10000455 | -0.4 | -0.6 | 0.4  | -0.1 | -0.2 | 0.2 | -0.1 | 0    | -0.2 | 0    |
| CJ_10000456 | -1.2 | -0.3 | -0.7 | 0.1  | 0    | 0.3 | 0    | 0    | 0.2  | 0    |
| CJ_10000457 | 0    | -0.1 | 0.2  | 0.2  | 0.1  | 0.2 | -0.1 | -0.1 | 0    | 0    |
| CJ_10000458 | 0.7  | 0.5  | 1.3  | 0.3  | 0    | 0.3 | 0    | -0.1 | -0.1 | 0.1  |
| CJ_10000459 | 0.1  | 0.3  | 0    | 0.1  | 0.1  | 0.2 | -0.1 | 0.1  | 0    | 0    |
| CJ_10000465 | 3.2  | 4.2  | 0.7  | -0.1 | -0.8 | 0.9 | 1.5  | -1.9 | 1.1  | -0.2 |
| CJ_10000466 | -0.4 | -0.3 | -0.1 | 0.2  | 0.1  | 0.2 | -0.1 | -0.2 | 0    | 0    |
| CJ_10000467 | 3.9  | 3    | 0.1  | -0.2 | -1.4 | 1.2 | 3.7  | 0.5  | 0.2  | -0.1 |
| CJ_10000468 | 0.4  | 0.3  | 0.3  | 0.2  | -0.2 | 0.2 | 0.3  | 0    | 0    | 0.2  |
| CJ_10000470 | -0.5 | -0.1 | 0.2  | 0.2  | -0.2 | 0.1 | 0.2  | 0    | 0.2  | 0.1  |

| CJ_10000471 | -0.1 | 0.2  | 0.4  | 0.2  | 0    | 0.1  | 0.1  | 0    | 0    | 0    |
|-------------|------|------|------|------|------|------|------|------|------|------|
| CJ_10000472 | -0.8 | -0.1 | 0    | 0    | -0.3 | 0.2  | 0.1  | 0    | 0    | 0.1  |
| CJ_10000473 | 1.1  | 0.4  | 0.5  | 0.4  | 0.1  | -0.4 | 0    | 0.1  | 0    | -0.1 |
| CJ_10000474 | 0.7  | -0.9 | -0.7 | 0.2  | 0.1  | -0.7 | 0    | 0.1  | 0.1  | 0    |
| CJ_10000475 | 0.2  | 0    | 0.3  | 0.2  | 0.1  | 0.1  | -0.1 | -0.1 | 0.1  | 0.2  |
| CJ_10000476 | -0.6 | -1.4 | 0.8  | 0.1  | 0    | 0.2  | 0.4  | 0    | 0    | 0.1  |
| CJ_10000477 | 0.3  | 0.3  | 0.6  | 0.2  | 1.2  | 0.1  | 0    | 0.1  | 0    | 0    |
| CJ_10000478 | 0    | -0.7 | -0.2 | -0.1 | 0    | 0.1  | -0.2 | -0.1 | -0.3 | 0    |
| CJ_10000479 | -0.5 | -0.3 | -0.4 | 0    | 0    | 0.2  | 0    | 0    | 0    | 0    |
| CJ_10000480 | -1.2 | -0.5 | -0.7 | 0.1  | 0.5  | 0.3  | -0.1 | 0    | 0    | 0    |
| CJ_10000481 | 0.2  | -0.4 | 0.6  | 0.1  | 0.2  | 0.1  | 0.1  | 0.1  | -0.1 | 0    |
| CJ_10000482 | 1.4  | 1.2  | 0    | 0.2  | 0    | 0.1  | 1.7  | 1.5  | 1.5  | 0    |
| CJ_10000484 | -0.1 | -0.7 | 0.1  | 0    | 0.2  | 0.3  | 0.1  | 0    | -0.2 | 0    |
| CJ_10000485 | 0.1  | -0.1 | 0.5  | 0    | 0.3  | 0.1  | 0    | 0.1  | -0.1 | 0    |
| CJ_10000486 | -0.2 | -0.3 | 0.2  | 0.2  | 0    | 0.2  | 0.1  | 0    | -0.1 | 0.1  |
| CJ_10000487 | -0.2 | -1   | 0.5  | 0.3  | 0    | 0    | 0.1  | -0.1 | -0.1 | 0.1  |
| CJ_10000488 | 0.7  | -0.3 | 1.1  | 0.2  | 0    | 0.2  | 0.1  | 0    | -0.2 | 0.2  |

| CJ_10000489 | -0.4 | -0.2 | -0.2 | 0.2  | 0    | 0.2  | 0    | -0.1 | -0.1 | 0    |
|-------------|------|------|------|------|------|------|------|------|------|------|
| CJ_10000490 | -0.5 | -0.4 | -4.2 | 0.1  | 0.1  | -1.3 | -1.7 | -1.1 | 0    | 0    |
| CJ_10000491 | 0.1  | -0.1 | 0.5  | 0.1  | 0    | 0.2  | 0    | 0    | -0.1 | 0.1  |
| CJ_10000492 | -0.5 | -0.3 | 0.5  | 0    | -0.1 | 0.3  | -0.1 | -0.2 | 0    | 0.1  |
| CJ_10000494 | -0.8 | -0.3 | -0.5 | 0    | -0.2 | 0.3  | 0    | -0.1 | 0    | 0.2  |
| CJ_10000495 | -0.2 | -0.1 | 0.1  | 0.1  | 0    | 0.2  | 0    | 0    | -0.2 | 0.1  |
| CJ_10000496 | -0.1 | 0.1  | 0    | -0.1 | -0.2 | 0.3  | 0    | -0.1 | 0.3  | 0.1  |
| CJ_10000497 | -0.4 | 0    | 0.1  | 0.1  | -0.1 | 0.2  | 0.1  | 0    | -0.1 | 0.2  |
| CJ_10000498 | 0.1  | -0.1 | 0.1  | 0.1  | 0.2  | 0.1  | -0.1 | 0    | 0.1  | 0.1  |
| CJ_10000507 | -0.2 | -0.5 | -0.1 | 0.1  | -1.7 | 0.2  | -0.1 | 0    | -0.2 | 0    |
| CJ_10000508 | 0    | -1.1 | 0.4  | 0    | 0    | 0.3  | 0    | -0.1 | -0.1 | 0    |
| CJ_10000509 | -0.1 | 0    | 0.4  | 0.1  | 0.2  | 0    | 0.1  | -0.2 | -0.1 | 0    |
| CJ_10000510 | 0.2  | 0    | 0.3  | 0.2  | 0.2  | 0.1  | 0.1  | 0.1  | 0    | 0.2  |
| CJ_10000511 | -0.5 | -0.1 | 0.3  | 0.2  | -0.2 | 0.3  | 0.2  | -0.1 | -0.2 | 0    |
| CJ_10000512 | -0.4 | -0.1 | -0.1 | 0.2  | 0    | 0.2  | 0.1  | 0.1  | -0.2 | 0.1  |
| CJ_10000513 | 0.1  | 0.1  | 0.1  | 0.2  | 0    | 0.1  | 0    | -0.1 | -0.1 | 0    |
| CJ_10000514 | 0    | -0.1 | 0.2  | 0.3  | 0.1  | 0    | 0.2  | 0    | 0    | -0.1 |

| CJ_10000515 | -2.5 | 0.2  | 0.2  | 0.2  | 0    | 0.2  | 0.1  | -0.2 | 0    | -0.1 |
|-------------|------|------|------|------|------|------|------|------|------|------|
| CJ_10000516 | 0.1  | 0    | 0.4  | 0.1  | 0.1  | 0.1  | -0.4 | -0.1 | -0.1 | 0    |
| CJ_10000517 | 0.2  | 0    | 0.8  | 0.3  | 0.2  | 0    | 0.2  | 0    | -0.2 | 0    |
| CJ_10000518 | 0.9  | 0.4  | 0.2  | 0.2  | -0.2 | 0.2  | 0.1  | 0    | 0    | 0    |
| CJ_10000519 | -1   | -0.1 | -0.4 | 0.2  | 0    | 0.2  | 0    | 0    | 0    | 0.1  |
| CJ_10000520 | -0.7 | 0.1  | 0.5  | 0    | 0    | 0.3  | 0.2  | 0.2  | -0.1 | -0.1 |
| CJ_10000522 | -0.4 | 0.1  | 0.1  | 0.1  | -0.1 | 0.1  | -0.1 | -0.2 | 0    | 0.1  |
| CJ_10000526 | -0.4 | -0.1 | 0.1  | 0    | -0.1 | 0.1  | -0.1 | -0.1 | 0    | -0.1 |
| CJ_10000528 | -0.5 | 0    | -0.1 | 0.2  | 0.8  | 0.2  | -0.2 | 0    | -0.1 | -0.1 |
| CJ_10000534 | 2.6  | 2.9  | 1.4  | 2    | 0.6  | -0.8 | -1.4 | -1.4 | 2.9  | 4.1  |
| CJ_10000538 | -0.8 | -0.6 | 0.1  | 0.1  | 0    | 0.2  | -0.1 | -0.1 | -0.1 | -0.1 |
| CJ_10000539 | -0.5 | 0.1  | 0    | 0.1  | 0    | 0.1  | 0    | 0.1  | 0.1  | 0.1  |
| CJ_10000540 | 2.5  | -2.2 | 2    | 0.5  | 0    | 0.6  | 0.6  | -0.1 | 0.4  | 0.5  |
| CJ_10000541 | 0.1  | -0.2 | -0.1 | 0    | -0.1 | 0    | -0.1 | 0    | 0    | 0.2  |
| CJ_10000543 | 0    | 0.2  | -0.3 | -0.4 | 1    | 0.3  | 0.1  | 1.2  | 0.2  | -0.5 |
| CJ_10000544 | -2.1 | -1   | -1.2 | 0.1  | 0    | -1   | 0.2  | -0.2 | 0    | 0    |
| CJ_10000545 | 0.3  | 0    | 0.1  | 0.1  | -0.1 | 0.2  | -0.1 | 0    | 0    | 0.2  |

| CJ_10000546 | -0.1 | 0    | -0.3 | 0.2  | 0.2  | 0.2 | 0.1  | 0    | 0.1  | 0.1  |
|-------------|------|------|------|------|------|-----|------|------|------|------|
| CJ_10000547 | -0.6 | -0.7 | -0.5 | 0.1  | 0.2  | 0.2 | 0.2  | -0.1 | -0.4 | 0.1  |
| CJ_10000548 | -0.4 | 0    | 0.4  | 0.2  | 0.1  | 0.2 | 0    | -0.3 | 0.2  | 0.1  |
| CJ_10000549 | -0.6 | -0.1 | -0.1 | 0.2  | -0.3 | 0.1 | -0.3 | -0.4 | 0.1  | -0.2 |
| CJ_10000550 | 0    | 0    | 0.3  | 0.1  | 0.1  | 0   | 0    | -0.1 | 0.1  | 0    |
| CJ_10000551 | -0.6 | -0.3 | -0.1 | 0.1  | -0.1 | 0.3 | -0.1 | -0.1 | 0.3  | 0.1  |
| CJ_10000552 | 1.7  | 0    | 0.4  | 0.1  | 0.9  | 0   | -0.7 | 0.1  | 0    | -0.1 |
| CJ_10000555 | 0.2  | 1.3  | 0.2  | 0.4  | -0.6 | 0   | 0.1  | 1.1  | 1.9  | 0    |
| CJ_10000557 | -1.1 | 0.2  | -0.5 | 0.7  | -0.1 | 0.2 | -0.1 | -0.8 | 0.8  | 0.7  |
| CJ_10000564 | 0.2  | -0.3 | -0.1 | 0.1  | 0.1  | 0.2 | 0.1  | -0.1 | -0.1 | 0.1  |
| CJ_10000565 | 0.3  | 0    | -0.1 | 0.1  | -0.1 | 0.2 | 0.1  | 0    | 0.3  | 0.1  |
| CJ_10000566 | -0.2 | 0    | 0.2  | 0.2  | 0    | 0.1 | 0.1  | -0.1 | 0    | 0.2  |
| CJ_10000567 | -0.2 | -0.2 | -0.4 | 0.1  | 0.1  | 0.2 | 0.1  | 0.1  | 0.1  | 0.2  |
| CJ_10000568 | -0.1 | -0.2 | 0.3  | 0.1  | 0    | 0.1 | 0.1  | 0    | 0    | 0.1  |
| CJ_10000569 | 0    | 0.3  | 0.4  | -0.1 | -0.2 | 0.2 | 0    | -0.2 | 0.2  | 0.2  |
| CJ_10000570 | -0.2 | 0.1  | 0.2  | 0.1  | 0.1  | 0.2 | 0.1  | 0    | -0.1 | 0.2  |
| CJ_10000571 | -0.5 | -0.3 | 0.1  | 0    | 0    | 0   | 0    | -0.2 | -0.1 | 0    |

| CJ_10000572 | -0.1 | 0    | 0    | 0.1  | 0    | 0.3  | 0    | 0.1  | -0.1 | 0   |
|-------------|------|------|------|------|------|------|------|------|------|-----|
| CJ_10000573 | 0.2  | 0.2  | 0.2  | 0.1  | -0.2 | 0    | -0.3 | -0.1 | 0    | 0   |
| CJ_10000574 | -1.5 | -2.5 | -0.2 | 0    | 0    | 0.1  | -0.1 | 0    | 0    | 0.1 |
| CJ_10000575 | 0.2  | 0.2  | 0    | 0.3  | 0    | 0    | -0.2 | -0.1 | -0.1 | 0.1 |
| CJ_10000576 | 0.1  | -0.1 | 0.2  | 0    | -0.1 | 0.1  | 0.1  | 0.2  | 0.1  | 0.1 |
| CJ_10000578 | 0.2  | 0.2  | 0.2  | 0.1  | 0.2  | 0.1  | -0.2 | 0    | -0.1 | 0.1 |
| CJ_10000579 | -0.1 | 0.1  | 0.7  | 0.2  | 0.1  | 0.2  | 0    | -0.1 | -0.1 | 0.1 |
| CJ_10000580 | 0.1  | 0.2  | 0.6  | 0.1  | 0.1  | 0.1  | 0.1  | -0.1 | -0.2 | 0.1 |
| CJ_10000581 | -0.4 | 0.3  | 0.2  | 0.1  | 0    | 0.2  | -0.1 | -0.1 | -0.1 | 0.1 |
| CJ_10000582 | -0.4 | -0.4 | 0.3  | 0.1  | 0.4  | -0.2 | 0.2  | 0.3  | -0.9 | 0   |
| CJ_10000583 | -0.7 | -0.4 | -0.2 | 0    | 0.1  | -0.1 | 0.1  | 0.4  | -0.6 | 0   |
| CJ_10000584 | -0.1 | -0.1 | -0.8 | 0.1  | 0.1  | -0.5 | -0.5 | -0.3 | -0.2 | 0   |
| CJ_10000586 | 0.4  | -0.2 | 0.4  | 0.3  | 0.3  | -0.1 | 0    | -0.4 | -0.4 | 0   |
| CJ_10000587 | 0.9  | -0.2 | 0.2  | 0.4  | 0    | 0.3  | 0.2  | 0.1  | 0    | 0.1 |
| CJ_10000589 | 0.5  | -0.1 | -1.3 | -0.1 | -0.2 | 0.1  | -0.1 | 0.5  | -0.1 | 0   |
| CJ_10000590 | -0.6 | -0.1 | -0.5 | 0.1  | 0    | 0.1  | -0.1 | -0.1 | 0.2  | 0   |
| CJ_10000591 | -0.1 | -0.5 | -0.1 | 0.2  | -0.4 | 0.1  | 0    | -0.8 | -0.4 | 0   |

| CJ_10000592 | -0.1 | 0    | -0.2 | 0.2 | -0.1 | 0.4 | 1.3  | 0.4  | 0.7  | 0.5 |
|-------------|------|------|------|-----|------|-----|------|------|------|-----|
| CJ_10000593 | -0.1 | 0    | -0.3 | 0   | 0.1  | 0.3 | 0.1  | -0.1 | 0    | 0.1 |
| CJ_10000594 | -0.3 | -0.2 | 0.3  | 0.1 | 0    | 0.2 | 0.1  | 0    | -0.2 | 0   |
| CJ_10000595 | -1   | -0.5 | 0.2  | 0   | 0    | 0.2 | 0    | -0.3 | 0.1  | 0   |
| CJ_10000596 | -0.4 | -0.2 | 0.2  | 0.1 | 0    | 0.2 | 0.1  | 0    | 0    | 0.2 |
| CJ_10000597 | 0.3  | 0.4  | 0.7  | 0.1 | 0    | 0   | 0    | 0    | 0.1  | 0   |
| CJ_10000598 | -0.6 | -0.2 | -0.6 | 0.2 | -0.1 | 0.2 | -0.2 | -0.3 | 0.2  | 0   |
| CJ_10000599 | -0.4 | -0.1 | -0.4 | 0.1 | 0.1  | 0.2 | 0    | 0    | -0.2 | 0.2 |
| CJ_10000600 | -0.2 | -0.3 | -0.1 | 0.1 | -0.1 | 0.2 | 0.1  | -0.1 | 0.1  | 0   |
| CJ_10000601 | -0.7 | -0.3 | -0.3 | 0   | 0    | 0.3 | 0    | -0.1 | 0.1  | 0.1 |
| CJ_10000602 | 0.1  | 0    | 0    | 0.2 | 0    | 0   | -0.1 | -0.1 | 0    | 0.1 |
| CJ_10000603 | -0.1 | 0.1  | -0.8 | 0.1 | -0.1 | 0.2 | 0    | 0    | 0.2  | 0.1 |
| CJ_10000604 | -0.3 | -0.1 | -0.2 | 0   | -0.1 | 0.2 | -0.1 | -0.1 | 0.2  | 0.1 |
| CJ_10000605 | -0.2 | 0.1  | -0.2 | 0.1 | 0    | 0.1 | -0.1 | -0.1 | 0    | 0.1 |
| CJ_10000606 | 0.1  | -0.4 | -0.3 | 0.2 | 0    | 0.1 | -1   | -0.2 | -0.4 | 0   |
| CJ_10000607 | -0.2 | -0.1 | 0.4  | 0.3 | 0.1  | 0.1 | -0.1 | 0.2  | 0    | 0   |
| CJ_10000608 | -0.4 | -0.2 | -0.2 | 0.1 | 0.1  | 0.2 | 0    | 0.1  | -0.1 | 0.1 |

| CJ_10000609 | -0.2 | 0    | -0.4 | 0   | -0.1 | 0    | 0    | -0.1 | 0    | 0   |
|-------------|------|------|------|-----|------|------|------|------|------|-----|
| CJ_10000610 | 0.1  | -0.3 | 0.4  | 0.2 | 0.2  | 0.1  | 0    | -0.1 | -0.2 | 0   |
| CJ_10000611 | 0.1  | -0.1 | 0.1  | 0.2 | 0.1  | 0.1  | 0    | 0.2  | -0.4 | 0   |
| CJ_10000614 | 0    | 5.2  | -0.2 | 0.2 | 0    | 0.1  | 0    | 0.2  | 0.1  | 0   |
| CJ_10000615 | -0.2 | -0.3 | 0.2  | 0   | -0.3 | 0.3  | 0    | 0.1  | -0.1 | 0.1 |
| CJ_10000616 | 0.3  | -0.3 | 0    | 0.3 | -0.3 | 0.5  | 0.4  | 0.2  | 0.4  | 0   |
| CJ_10000617 | 0    | 0.1  | 0.2  | 0.1 | 0    | 0.2  | 0.1  | 0.1  | 0    | 0.1 |
| CJ_10000618 | -0.2 | -0.2 | -0.5 | 0.2 | -0.2 | -0.1 | 0.1  | -0.2 | -0.3 | 0.1 |
| CJ_10000619 | -0.1 | 0.2  | -0.2 | 0.2 | 0.1  | 0.1  | 0.2  | -0.1 | 0.2  | 0.1 |
| CJ_10000620 | -0.1 | 0    | 0    | 0.1 | 0    | 0.3  | 0    | 0.1  | -0.2 | 0   |
| CJ_10000621 | -0.4 | -0.2 | -0.3 | 0   | -0.3 | 0.4  | 0.1  | 0.1  | 0.3  | 0.2 |
| CJ_10000622 | 0.1  | 0.2  | 0    | 0.1 | -0.1 | 0.2  | 0.1  | 0    | 0    | 0.1 |
| CJ_10000625 | 3.4  | 3.8  | 0.8  | 1.2 | -1.6 | 1.3  | -0.1 | -0.9 | 1.1  | 1.4 |
| CJ_10000626 | 1.9  | 2.4  | 0.3  | 0.8 | -0.6 | 0.8  | 0.1  | -0.5 | 0.8  | 0.7 |
| CJ_10000627 | -0.4 | -0.3 | 0.2  | 0   | 0    | 0.1  | 0    | 0    | 0.1  | 0   |
| CJ_10000628 | -0.1 | -0.2 | 0    | 0.1 | 0    | -0.1 | -0.1 | 0    | 0    | 0.1 |
| CJ_10000629 | 0.2  | 0.4  | 0.4  | 0.1 | 0.1  | 0.2  | 0.1  | -0.2 | -0.1 | 0.1 |

| CJ_10000630 | 0    | 0.3  | 1.2  | 0.3 | 0.4  | -0.2 | 0    | 0.3  | -0.3 | 0.2  |
|-------------|------|------|------|-----|------|------|------|------|------|------|
| CJ_10000631 | 0.1  | 0.1  | 0.3  | 0.2 | 0.2  | -0.1 | 0.1  | 0.1  | -0.3 | -0.1 |
| CJ_10000632 | 0.5  | 0.1  | 0.1  | 0   | 0    | 0.2  | -0.3 | 0    | -0.2 | 0.1  |
| CJ_10000633 | -1.1 | -0.2 | -2.2 | 0.4 | 0.1  | 0    | -0.2 | -0.3 | 0.1  | -0.2 |
| CJ_10000634 | -0.5 | -0.3 | -0.8 | 0.1 | 0    | -0.1 | -0.2 | 0.2  | 0.1  | 0    |
| CJ_10000635 | 0.1  | -0.2 | -0.3 | 0.2 | 0.1  | 0.2  | -0.1 | 0.1  | -0.2 | 0    |
| CJ_10000637 | 0.1  | -0.4 | 0.2  | 0   | 0.1  | 0.3  | 0.3  | 0    | 0    | 0.1  |
| CJ_10000639 | -0.3 | -0.5 | -1.1 | 0   | -0.2 | -0.2 | -0.1 | 0.3  | -0.7 | 0.1  |
| CJ_10000640 | 0.1  | 0.2  | -2.2 | 0.5 | 0.1  | -0.3 | -1.2 | -2.2 | 0.1  | 0    |
| CJ_10000641 | 0.2  | 0.1  | 0.2  | 0.1 | -0.1 | 0.2  | 0    | 0    | 0    | 0.1  |
| CJ_10000642 | -0.2 | 0    | 0.2  | 0.2 | 0.1  | 0.3  | 0.2  | 0    | 0    | 0.3  |
| CJ_10000643 | 0.4  | 0.3  | -0.4 | 0.3 | -0.2 | 0.5  | 0.2  | -0.2 | 0    | 0.3  |
| CJ_10000644 | -0.4 | -0.1 | -0.7 | 0.1 | 0    | 0.2  | -0.3 | 0    | -0.1 | 0    |
| CJ_10000645 | 0.2  | 0.4  | 0.2  | 0   | -0.3 | 0.2  | 0    | 0.2  | 0.3  | 0.2  |
| CJ_10000646 | 0.1  | 0.2  | -0.3 | 0.3 | -0.2 | 0.3  | 0    | -0.3 | 0    | 0.3  |
| CJ_10000647 | -0.4 | 0.5  | -0.8 | 0.2 | -0.1 | 0.2  | -0.1 | -0.3 | 0.2  | 0.2  |
| CJ_10000648 | 0.4  | 0.2  | 0.7  | 0.1 | 0.1  | 0.2  | 0.1  | 0    | -0.1 | 0.1  |

| CJ_10000649 | -0.4 | 0.3  | -0.1 | 0.2  | -0.2 | 0.3  | 0.1  | 0    | 0    | 0.3  |
|-------------|------|------|------|------|------|------|------|------|------|------|
| CJ_10000650 | -0.7 | 0.3  | 0    | 0.2  | 0.2  | 0    | -0.2 | -0.2 | 0    | 0    |
| CJ_10000651 | -0.3 | -0.3 | -0.2 | 0.1  | 0    | 0.1  | 0    | -0.2 | 0.2  | 0    |
| CJ_10000652 | -0.4 | 0.3  | -0.2 | 0.1  | -0.2 | 0.2  | 0    | -0.2 | 0.3  | 0.1  |
| CJ_10000653 | 0    | 0.2  | 0.2  | 0.1  | 0    | 0.2  | 0.1  | -0.1 | 0.1  | 0.1  |
| CJ_10000655 | -0.1 | -0.4 | -0.7 | 0    | 0.1  | 0.3  | 0.1  | -0.2 | 0    | -0.1 |
| CJ_10000656 | -0.1 | -0.2 | -2.9 | 0.2  | 0.2  | -1.4 | -1.2 | -1.1 | -0.2 | -0.1 |
| CJ_10000657 | 0.2  | -0.2 | 0.5  | 0.1  | 0.1  | -0.3 | -1.2 | 0.4  | -2   | -0.5 |
| CJ_10000658 | 0.1  | 0.1  | 0.2  | 0    | 0.1  | 0    | 0    | -0.6 | -0.2 | -0.2 |
| CJ_10000659 | 0.1  | 0    | 0.1  | 0.2  | 0    | 0.2  | 0    | 0.1  | 0    | 0    |
| CJ_10000660 | 0.7  | -1.3 | -0.5 | -0.3 | -0.1 | 0    | 0.8  | 0.3  | -0.7 | -0.4 |
| CJ_10000661 | -0.2 | 0.2  | 0    | 0.2  | 0    | 0.3  | 0.6  | 0.5  | -0.1 | 0    |
| CJ_10000662 | 1    | 0.8  | 0.2  | 0.3  | -0.2 | 0.1  | 0.1  | -0.3 | 0.1  | 0.2  |
| CJ_10000663 | -0.3 | 0.5  | 0    | 0.1  | -0.3 | 0    | 0.2  | 0.2  | 0    | 0    |
| CJ_10000664 | 0.1  | 0.4  | 0.4  | 0.3  | 0.1  | 0.1  | 0.1  | 0    | 0    | 0.1  |
| CJ_10000665 | -0.2 | -0.3 | 0    | 0.1  | 0.1  | 0.2  | 0.1  | 0    | -0.1 | 0    |
| CJ_10000666 | 0.1  | -0.1 | 0.5  | 0.3  | 0    | 0.2  | 0.2  | 0    | -0.1 | 0.1  |

| CJ_10000667 | -0.4 | -0.1 | 0.1  | 0.1 | 0.1  | 0.2 | 0.1  | -0.1 | 0.1  | 0.2  |
|-------------|------|------|------|-----|------|-----|------|------|------|------|
| CJ_10000668 | -1.1 | -0.5 | 0.4  | 0.1 | -0.1 | 0.1 | 0.1  | 0    | 0.1  | 0    |
| CJ_10000669 | -0.1 | -0.1 | 0.3  | 0.1 | -0.1 | 0.3 | 0.1  | 0    | 0.1  | 0.1  |
| CJ_10000670 | -0.4 | -0.2 | -0.2 | 0.2 | 0.1  | 0.2 | -0.1 | -0.1 | 0    | 0.1  |
| CJ_10000671 | -2.3 | -1.3 | -0.8 | 0.1 | -0.2 | 0.3 | -0.1 | 0.1  | 0.3  | 0    |
| CJ_10000672 | -0.8 | -0.1 | -0.7 | 0.1 | -0.1 | 0.2 | -0.1 | 0    | 0.3  | 0.1  |
| CJ_10000673 | -0.1 | 0    | 0    | 0.1 | 0    | 0.2 | 0.1  | 0    | -0.1 | 0.2  |
| CJ_10000675 | -0.2 | 0.3  | -0.2 | 0.1 | -0.2 | 0.5 | 0    | -0.1 | 0.1  | 0.2  |
| CJ_10000676 | 0    | 0    | 0.4  | 0   | 0.2  | 0.1 | 0.1  | 0.2  | -0.1 | 0    |
| CJ_10000677 | 0.2  | 0    | 0.5  | 0.2 | 0.2  | 0   | 0.1  | 0    | -0.1 | 0.1  |
| CJ_10000678 | -0.5 | -0.5 | -0.1 | 0.1 | 0    | 0.1 | 0.1  | 0    | 0    | 0    |
| CJ_10000679 | -0.5 | -0.6 | 0.1  | 0.1 | 0.2  | 0.2 | 0.1  | 0.4  | -0.1 | 0    |
| CJ_10000680 | -1.1 | -0.4 | 0.3  | 0.1 | 0.2  | 0.1 | 0.2  | 0.2  | -0.3 | -0.1 |
| CJ_10000681 | 0    | -0.1 | 0.4  | 0   | 0    | 0.1 | 0.1  | 0.1  | -0.3 | 0    |
| CJ_10000682 | 0.3  | -0.5 | 0.3  | 0   | 0.1  | 0.1 | 0.1  | 0.2  | -0.1 | 0    |
| CJ_10000683 | -0.5 | 0    | -0.2 | 0.1 | 0    | 0.2 | 0.1  | 0    | -0.1 | 0    |
| CJ_10000684 | -0.2 | -0.1 | -0.2 | 0   | -0.2 | 0.2 | 0    | 0.1  | 0    | 0    |

| CJ_10000685 | -0.1 | 0.1  | -0.1 | 0   | -0.1 | 0.2  | -0.1 | 0.1  | -0.1 | 0    |
|-------------|------|------|------|-----|------|------|------|------|------|------|
| CJ_10000686 | -0.7 | -0.4 | 0.2  | 0   | 0    | 0.2  | 0.1  | 0.1  | -0.1 | 0.1  |
| CJ_10000687 | 0.2  | -0.1 | 0.3  | 0.1 | 0    | 0.1  | 0.1  | 0    | -0.1 | 0    |
| CJ_10000688 | -0.3 | -0.3 | -0.1 | 0   | -0.1 | 0.2  | -0.1 | 0    | 0    | 0.1  |
| CJ_10000689 | 0.3  | 0    | 0    | 0.1 | 0.2  | 0    | 0    | 0.1  | 0    | 0    |
| CJ_10000690 | 1.9  | 1.1  | 1.3  | 0.4 | -0.4 | 0.3  | 0.3  | -0.2 | 0.2  | 0.4  |
| CJ_10000691 | 0.9  | 0.5  | 0.1  | 0.2 | 0    | -0.1 | 0.1  | -0.3 | 0.1  | 0.2  |
| CJ_10000692 | -0.8 | -0.9 | 0.2  | 0.1 | 0.1  | 0.1  | -0.1 | 0.2  | -0.3 | -0.1 |
| CJ_10000693 | 0.3  | 0.1  | 0.5  | 0.3 | 0.2  | 0.1  | 0.1  | 0    | 0    | 0.1  |
| CJ_10000694 | 0.3  | 0.4  | 0.1  | 0.3 | 0.1  | 0.2  | 0.1  | -0.1 | 0.2  | 0.1  |
| CJ_10000695 | 0.1  | 0.1  | 0.3  | 0.2 | 0    | 0    | -0.2 | 0.1  | 0.1  | 0    |
| CJ_10000696 | 0.3  | 0.3  | 0.6  | 0.2 | 0.1  | 0    | 0.1  | 0    | -0.1 | 0    |
| CJ_10000697 | -0.3 | 0    | -0.2 | 0   | 0    | 0.2  | 0    | 0    | 0    | 0.1  |
| CJ_10000698 | 0    | -0.6 | 0.3  | 0.1 | 0.1  | 0    | -0.1 | 0    | 0    | 0    |
| CJ_10000699 | 1.1  | 1.2  | 0.2  | 0.3 | -0.7 | 0.5  | 0.4  | -0.7 | 0.6  | 0.5  |
| CJ_10000700 | -0.4 | 0.1  | -0.1 | 0.2 | -0.1 | 0.4  | 0.2  | -0.2 | 0.2  | 0.4  |
| CJ_10000701 | -1.2 | -0.5 | -0.4 | 0.1 | -0.1 | 0.2  | -0.1 | 0.1  | -0.2 | 0.1  |

| CJ_10000702 | 0    | 0    | 0.5  | 0.3  | 0.1  | 0.1  | -0.1 | 0.1  | 0    | 0    |
|-------------|------|------|------|------|------|------|------|------|------|------|
| CJ_10000703 | -0.4 | 0.1  | 0.4  | 0.1  | 0.2  | 0.2  | 0    | 0    | -0.1 | 0    |
| CJ_10000704 | -1.4 | -0.4 | -0.3 | 0.2  | -0.1 | 0.1  | 0    | 0    | 0    | 0    |
| CJ_10000705 | -1.4 | -0.4 | -0.1 | -0.1 | 0    | 0.1  | 0    | 0    | -0.1 | 0    |
| CJ_10000706 | -1.6 | 0    | -0.6 | 0.2  | 0.1  | -0.1 | -0.1 | 0    | 0    | 0.1  |
| CJ_10000708 | 0.3  | -0.2 | 0    | 0.2  | 0.3  | 0.2  | 0.2  | -0.2 | -0.1 | -0.1 |
| CJ_10000709 | -0.9 | -0.1 | -0.4 | 0.3  | 0.2  | 0    | -0.2 | 0    | -0.1 | -0.1 |
| CJ_10000710 | -0.4 | -0.2 | -0.2 | 0.2  | 0    | 0.2  | -0.2 | -0.2 | 0    | 0.2  |
| CJ_10000711 | -0.4 | 0    | -0.1 | 0.2  | -0.2 | 0.2  | 0    | -0.1 | 0    | 0.2  |
| CJ_10000712 | -0.1 | 0.1  | -0.8 | 0.1  | -0.1 | -0.1 | -0.2 | -0.5 | 0.1  | 0.1  |
| CJ_10000713 | -1.6 | -0.4 | -4.2 | 0.1  | -0.1 | -1   | 0    | 0.1  | 0.4  | 0.1  |
| CJ_10000714 | -0.8 | -0.1 | -0.5 | 0.1  | -0.2 | 0.4  | 0    | 0    | 0.1  | 0.3  |
| CJ_10000715 | -0.3 | 0    | -2.9 | 0.1  | -0.2 | -1   | 0.1  | -0.2 | 0.1  | 0.2  |
| CJ_10000716 | -0.4 | -0.4 | 0.5  | 0.3  | -0.2 | 0.2  | 0.2  | 0    | 0    | 0    |
| CJ_10000717 | -0.5 | 0    | 0    | 0.1  | 0.1  | 0    | 0    | 0.1  | 0    | 0    |
| CJ_10000718 | -0.1 | 0.5  | 0.3  | 0.1  | -0.1 | 0.2  | 0.2  | -0.1 | 0.2  | 0.2  |
| CJ_10000719 | 0.1  | -0.8 | 0.9  | 0    | 0    | 0    | 0.1  | 0    | -0.1 | -0.1 |

| CJ_10000720 | -0.1 | 0.2  | 0    | 0    | -0.1 | 0.3  | -0.1 | -0.1 | -0.1 | 0.2  |
|-------------|------|------|------|------|------|------|------|------|------|------|
| CJ_10000721 | 0.4  | 0.5  | 0.7  | 0.3  | 0.1  | 0.1  | 0.2  | 0    | 0.1  | 0.1  |
| CJ_10000722 | -0.2 | 0.5  | 0.3  | 0.1  | -0.2 | 0.2  | -0.1 | 0    | 0.5  | 0.1  |
| CJ_10000723 | 0.3  | -2   | 0.5  | 0    | 0    | 0.1  | 0    | 0    | -0.1 | 0.1  |
| CJ_10000724 | 0.1  | -0.1 | 0.7  | 0.1  | 0.3  | 0.1  | -0.1 | 0.1  | -0.2 | 0    |
| CJ_10000725 | 1.7  | 2    | 2.3  | 0.2  | -0.5 | 0.5  | 1.1  | -0.5 | 0.7  | 0.6  |
| CJ_10000726 | -0.1 | -0.1 | -0.3 | 0.1  | -0.1 | 0.2  | 0    | 0.1  | -0.2 | 0    |
| CJ_10000727 | 0.8  | 0.2  | -1.8 | 0.2  | 0    | -2.9 | -0.4 | -0.2 | -0.2 | 0.2  |
| CJ_10000729 | -0.5 | -0.3 | -0.3 | -0.1 | 0.1  | 0.1  | -0.1 | 0.1  | -0.2 | -0.1 |
| CJ_10000730 | -0.8 | -0.3 | 0    | 0.2  | 0.3  | 0.1  | -0.1 | 0.1  | -0.2 | 0    |
| CJ_10000731 | 0.4  | 0.4  | 0.6  | 0.4  | -0.3 | 0.2  | 0.2  | 0.1  | 0    | 0.1  |
| CJ_10000732 | -0.1 | 0.2  | -0.1 | 0.2  | 0    | -0.2 | -0.9 | -0.7 | 0.1  | 0    |
| CJ_10000733 | -0.9 | 0.1  | -0.2 | 0.1  | 0    | 0.3  | 0    | -0.2 | -0.1 | 0.1  |
| CJ_10000734 | -1   | -1   | -0.1 | 0    | -0.1 | 0.2  | 0.1  | 0.1  | -0.1 | 0    |
| CJ_10000735 | -0.2 | 0.1  | 0.6  | 0.3  | 0.1  | 0.2  | 0.1  | 0.1  | -0.1 | 0.1  |
| CJ_10000736 | -0.1 | -0.2 | 0.1  | 0.3  | 0.1  | 0.2  | 0    | 0    | -0.1 | 0    |
| CJ_10000737 | 0.2  | -0.2 | 0.7  | 0.2  | 0    | 0.1  | 0.2  | 0.1  | 0.8  | 0.1  |

| CJ_10000738 | 0.1  | 0.1  | -0.1 | 0.2  | 0    | 0    | 0.1  | 0.1  | 0    | 0.1  |
|-------------|------|------|------|------|------|------|------|------|------|------|
| CJ_10000739 | -0.6 | -0.1 | 0    | 0.1  | 0    | 0.3  | 0.2  | -0.1 | 0    | 0.2  |
| CJ_10000740 | -0.3 | 0.1  | 0.8  | 0.1  | -0.1 | 0.3  | 0.2  | 0    | 0    | 0.1  |
| CJ_10000741 | -0.1 | 0.6  | 0.2  | 0.1  | -0.2 | 0    | 0.2  | -0.1 | 0.2  | 0.2  |
| CJ_10000742 | -0.8 | 0.3  | 0.4  | 0    | 0    | -0.5 | -0.8 | -0.9 | 0    | 0.2  |
| CJ_10000743 | -0.3 | 0.2  | 0.1  | 0    | 0.1  | 0    | -0.3 | -0.2 | -0.3 | 0    |
| CJ_10000744 | 0.4  | 0.8  | 0.5  | 0.1  | 0    | 0.1  | 0.1  | 0    | 0    | 0.1  |
| CJ_10000745 | -0.1 | -0.1 | 0.2  | 0.1  | 0.2  | 0.1  | -0.1 | 0.1  | -0.3 | 0.1  |
| CJ_10000746 | 0    | -0.1 | 0.2  | 0.1  | 0    | 0.1  | -0.1 | -0.1 | 0    | 0    |
| CJ_10000747 | -0.2 | -0.1 | -0.3 | 0.1  | -0.1 | 0.2  | -0.2 | -0.2 | 0.1  | 0.1  |
| CJ_10000748 | 0.2  | 0.4  | 0    | 0.2  | -0.1 | 0.3  | 0.1  | -0.1 | 0.1  | 0.2  |
| CJ_10000749 | 0    | 0.1  | 0.2  | 0.1  | -0.1 | 0.1  | -0.2 | -0.1 | -0.2 | 0.1  |
| CJ_10000750 | -0.6 | -0.2 | -0.3 | 0    | 0    | 0.1  | 0    | 0.2  | -0.1 | 0    |
| CJ_10000751 | -0.2 | -0.2 | -0.2 | 0.1  | 0    | 0.2  | 0    | 0.1  | 0    | 0.1  |
| CJ_10000753 | 2.1  | 1.4  | 0    | -0.1 | -0.1 | 1.1  | 0.3  | -1.4 | 1.1  | -0.4 |
| CJ_10000757 | 0.4  | 0.6  | -0.4 | 0.2  | -0.4 | 0.3  | -0.1 | -0.1 | 0.2  | 0.3  |
| CJ_10000758 | -1   | -0.8 | 0.3  | 0.2  | 0    | 0.2  | 0.1  | 0.1  | -0.1 | 0.1  |

| CJ_10000759 | -0.1 | 0    | 0.1  | 0.1 | -0.1 | 0.2  | 0    | 0    | 0    | 0.1  |
|-------------|------|------|------|-----|------|------|------|------|------|------|
| CJ_10000760 | 0    | 0.1  | 0.2  | 0.2 | -0.1 | 0.3  | 0.1  | 0    | -0.1 | 0.1  |
| CJ_10000765 | -0.8 | -0.1 | 0.1  | 0.4 | 0.3  | 0.5  | -0.1 | 0.1  | 0.1  | 0.2  |
| CJ_10000786 | -0.1 | -5.2 | -0.4 | 0.3 | 1    | -0.2 | -0.5 | 0.4  | -0.3 | 0.1  |
| CJ_10000790 | 0    | 0.2  | 0.1  | 0.3 | 0.1  | 0    | -0.5 | -0.1 | -0.2 | 0.2  |
| CJ_10000791 | 0.6  | -0.4 | 0.4  | 0.2 | 0.1  | 0.1  | -0.3 | 0.2  | 0    | 0    |
| CJ_10000794 | -0.2 | 0.6  | 0.8  | 0.4 | -0.1 | 0.3  | 0.3  | 0    | -0.1 | 0.2  |
| CJ_10000806 | -0.1 | -0.1 | 0    | 0.1 | -0.1 | 0.4  | 0.1  | 0.1  | 0.2  | 0    |
| CJ_10000816 | -0.7 | 1.3  | 1.5  | 0.5 | -0.1 | 0.1  | 0.1  | 0.8  | 0    | 0.4  |
| CJ_10000819 | 1.5  | 1    | 2    | 0.5 | 0    | 0.3  | 0    | 1.1  | -0.2 | 0.1  |
| CJ_10000822 | 0.3  | 0.3  | 0    | 0.2 | 0    | 0.3  | -0.1 | 0    | 0    | 0.1  |
| CJ_10000825 | 2.8  | 2.5  | 1.6  | 0.8 | -0.8 | 0.1  | 0.7  | -0.7 | 0.6  | 0.8  |
| CJ_10000826 | 3    | 2.7  | 0.8  | 0.1 | -1.5 | -0.2 | 0.5  | 0.6  | 0.9  | 0    |
| CJ_10000828 | -0.1 | 1.2  | 1.1  | 0.1 | 0.2  | 0.1  | 0    | 0.7  | 0.2  | -0.1 |
| CJ_10000842 | 0    | -0.4 | 0    | 0.2 | 0.3  | 0.2  | -0.2 | 0    | -0.2 | 0.1  |
| CJ_10000846 | 1.2  | 0.7  | 1.6  | 1   | 0.5  | 0.7  | 0.1  | 0.4  | 1.2  | -0.1 |
| CJ_10000847 | 2.8  | 0.3  | -0.9 | 0.1 | 0    | -1.1 | -0.3 | 1.5  | 1.8  | -1.5 |

| CJ_10000875 | 3.3  | 4    | 2.9  | 0.9 | -1.5 | 1.1  | 1.3  | -0.9 | 1    | 1.4  |
|-------------|------|------|------|-----|------|------|------|------|------|------|
| CJ_10000880 | 1.4  | 1.3  | 3.4  | 1.6 | -3   | 2.8  | 1.5  | 0.5  | 2.2  | 0.9  |
| CJ_10000885 | -0.7 | 0.1  | 0    | 0.3 | -0.2 | -0.1 | -0.5 | -0.8 | 0.7  | 0.5  |
| CJ_10000897 | -0.6 | 0.9  | 2.6  | 0.5 | -1   | 0.1  | 0.3  | 0.2  | 1.5  | 1    |
| CJ_10000914 | 0.1  | 0.1  | -0.8 | 0.2 | 0.2  | -0.2 | -0.3 | 0.3  | 0.1  | 0.1  |
| CJ_10000933 | 0    | -1.8 | 1.4  | 0.3 | -0.3 | 0.2  | 0    | 0    | 0.5  | 0.3  |
| CJ_10000937 | 0.5  | 1.1  | 0.9  | 0.4 | -0.3 | 0.2  | 0    | -0.5 | 0.3  | 0.4  |
| CJ_10000938 | 0.3  | 0.2  | 0.2  | 0.2 | -1.5 | 0.3  | 0    | -0.1 | -0.1 | 0.1  |
| CJ_10000960 | -0.1 | 0.2  | -0.1 | 0.1 | -0.2 | 0.4  | 0.1  | 0    | 0.1  | 0.2  |
| CJ_10000970 | -2.5 | -0.6 | -1.1 | 0.2 | 0.1  | -0.2 | -0.6 | 0.2  | 0.2  | 0.2  |
| CJ_10000981 | 0.5  | 0.2  | 0.6  | 0.4 | 0.1  | 0.2  | 0    | 0    | 0    | 0    |
| CJ_10000982 | 0.3  | 0    | -0.2 | 0.1 | 0.1  | -0.1 | -0.3 | -0.3 | 0    | 0    |
| CJ_10000983 | 1.5  | -0.1 | 1.1  | 0.5 | 0    | 0.2  | 0.7  | 0.2  | 0.3  | 0.3  |
| CJ_10000991 | -0.3 | -0.2 | 0.3  | 0.4 | 0.3  | 0.2  | 0    | 0.6  | 0    | -0.1 |
| CJ_10000992 | -0.2 | 0.3  | 0.3  | 0.2 | 0.2  | 0    | 0.1  | 0    | -0.2 | -0.1 |
| CJ_10000995 | 0.6  | 0.3  | 0.7  | 0.1 | 0.2  | -0.1 | 0.3  | 0.1  | -0.2 | -0.2 |
| CJ_10000996 | 0.3  | 0.2  | 0.4  | 0.1 | 0.1  | 0.2  | 0    | 0.1  | -0.1 | -0.1 |

| CJ_10000997 | 0.3  | 0.5  | 0.2  | 0.3 | 0    | 0.1 | -0.1 | 0.3  | 0    | 0.2 |
|-------------|------|------|------|-----|------|-----|------|------|------|-----|
| CJ_10001000 | -0.1 | -0.1 | -0.1 | 0.2 | 0    | 0.1 | 0    | -0.1 | 0.2  | 0.1 |
| CJ_10001006 | -0.2 | 0.3  | -0.3 | 0.3 | 0.1  | 0.1 | -0.1 | -0.4 | -0.1 | 0.1 |
| CJ_10001008 | 0.4  | 0.3  | 0.5  | 0.1 | -0.1 | 0.2 | 0.1  | 0    | 0    | 0.1 |
| CJ_10001009 | 1.1  | 1.4  | 1.7  | 0.4 | -0.3 | 0.4 | 0.3  | 0.5  | 0.3  | 0.6 |
| CJ_10001011 | 0.4  | 0.7  | 0.3  | 0.4 | 0    | 0.2 | -0.2 | 0    | 0.1  | 0.3 |
| CJ_10001014 | 0.2  | 0.5  | 0.8  | 0.2 | 0.1  | 0.2 | 0.1  | 0.5  | 0    | 0.1 |
| CJ_10001017 | -1.2 | -0.7 | 0.4  | 0.2 | 0.3  | 0.2 | -0.1 | 0.4  | -0.3 | 0   |
| CJ_10001018 | -0.1 | 0.1  | 0.1  | 0   | 0    | 0.2 | 0    | 0.1  | -0.1 | 0.1 |
| CJ_10001019 | -0.2 | -0.4 | -0.8 | 0.2 | -0.1 | 0.1 | 0    | 0.6  | 0    | 0.3 |
| CJ_10001029 | -0.7 | 0    | 0.6  | 0.3 | 0    | 0.2 | 0.1  | 0.3  | 0.1  | 0   |
| CJ_10001030 | 0.5  | 0.5  | 0.2  | 0   | 0    | 0   | 0    | 0    | -0.1 | 0   |
| CJ_10001032 | 0    | -0.1 | 0.1  | 0.2 | -0.1 | 0.1 | 0    | -0.1 | 0.1  | 0.2 |
| CJ_10001033 | 0.1  | -0.4 | 0.4  | 0.1 | 0    | 0.2 | 0    | -0.1 | 0    | 0   |
| CJ_10001045 | -0.6 | -0.5 | 0    | 0.2 | 0.2  | 0.1 | -0.2 | 0.6  | -0.1 | 0.1 |
| CJ_10001047 | -1.3 | -0.3 | 0.1  | 0.1 | 0.1  | 0.3 | 0    | 0.1  | -0.3 | 0.1 |
| CJ_10001055 | -0.4 | -0.1 | -0.2 | 0.2 | -0.1 | 0.4 | -0.1 | -0.2 | 0.2  | 0.1 |

| CJ_10001061 | -0.7 | -0.1 | -0.5 | 0.3 | 0.1  | 0.3  | 0    | 0.1  | 0.1  | -0.1 |
|-------------|------|------|------|-----|------|------|------|------|------|------|
| CJ_10001062 | 1.7  | 1.2  | 1.1  | 0.6 | 0    | 0.4  | 0.4  | 0    | 0    | 0.2  |
| CJ_10001066 | 3.9  | 0.9  | 0.8  | 0   | -0.1 | 0.4  | 0.6  | 0.6  | 0.1  | -0.1 |
| CJ_10001074 | 0.5  | 0.5  | 0.1  | 0.2 | 0.2  | 0    | 0.1  | 0    | -0.1 | -0.1 |
| CJ_10001075 | 0.2  | 0.2  | 0.8  | 0.2 | 0    | 0.1  | 0.1  | 0.1  | 0.1  | 0    |
| CJ_10001082 | -0.1 | 0.5  | 0.7  | 0.5 | 0    | 0.1  | -0.1 | 0.3  | 0.3  | 0.1  |
| CJ_10001101 | -0.2 | 0.4  | 0    | 0.3 | -0.1 | 0.3  | 0.1  | -0.1 | 0.1  | 0.1  |
| CJ_10001104 | 2.4  | 1.6  | 1.3  | 0.2 | -0.3 | 0.9  | 1.3  | 1    | 0.7  | 0.9  |
| CJ_10001107 | 2.7  | 2.4  | 1.7  | 1   | -1.3 | 1    | 0.9  | -0.8 | 0.8  | 1    |
| CJ_10001109 | 0.2  | 0    | 0.3  | 0.1 | 0.1  | 0.1  | 0.1  | 0    | -0.2 | -0.1 |
| CJ_10001112 | 0    | -0.1 | 0.1  | 0.1 | 0.1  | 0.2  | 0.1  | 0.2  | -0.1 | -0.2 |
| CJ_10001122 | 2.1  | 1.4  | 0.8  | 0.3 | -0.4 | -0.7 | 0    | 0.3  | 0.2  | 0.2  |
| CJ_10001128 | -0.5 | -0.2 | -0.9 | 0.1 | 0    | 0    | 0    | 0    | 0.1  | 0.1  |
| CJ_10001136 | -0.9 | -0.1 | 0.3  | 0.1 | 0    | 0.1  | 0.4  | 0.1  | 0.1  | -0.1 |
| CJ_10001141 | -0.4 | -0.5 | -0.2 | 0.1 | 0.1  | 0.1  | 0    | -0.1 | -0.1 | 0.1  |
| CJ_10001142 | 0.5  | 0.4  | 0.7  | 0.1 | 0.1  | 0.1  | 0.1  | 0    | -0.1 | -0.1 |
| CJ_10001144 | 0    | -0.1 | 0.5  | 0   | 0.2  | 0.1  | 0.1  | -0.1 | -0.2 | 0.1  |

| CJ_10001145 | -0.1 | 0.1  | 0.2  | 0.1  | 0.2  | 0.2  | 0    | -0.1 | 0    | 0    |
|-------------|------|------|------|------|------|------|------|------|------|------|
| CJ_10001146 | -0.2 | 0.1  | 0    | -0.1 | -0.1 | 0.1  | -0.2 | 0    | 0.4  | -0.1 |
| CJ_10001148 | 0.2  | 0.3  | 0.4  | 0.1  | 0.1  | 0.2  | -0.1 | -0.1 | -0.2 | -0.1 |
| CJ_10001149 | 0.5  | 0.4  | 0.6  | 0.2  | 0.1  | 0    | 0.1  | -0.2 | 1.5  | 0    |
| CJ_10001150 | 0.1  | 0.1  | 0.4  | 0    | 0    | 0.2  | 0    | 0    | 0    | 0    |
| CJ_10001151 | 0.2  | 0.2  | 0.5  | 0.1  | 0.1  | 0    | 0    | 0    | -0.1 | 0    |
| CJ_10001152 | 1.5  | 1.8  | 0    | 0.2  | -0.8 | 0.3  | 0.2  | -0.2 | 0.5  | 0.2  |
| CJ_10001153 | -0.5 | 0.1  | -0.4 | 0.1  | 0    | 0.1  | 0    | 0    | 0.1  | 0    |
| CJ_10001154 | 0    | 0    | 0.1  | 0    | 0    | 0.1  | 0    | -0.1 | 0    | -0.1 |
| CJ_10001155 | 1.9  | 2.1  | 1.2  | 0.3  | -0.7 | 0.3  | 0.4  | -0.3 | 0.6  | 0.2  |
| CJ_10001157 | -0.3 | 0.2  | -0.1 | 0    | -0.1 | 0.2  | 0.1  | 0    | 0    | 0.1  |
| CJ_10001158 | 0.6  | 0.9  | -2   | 0.1  | -0.4 | -1.8 | -2.9 | -0.4 | -0.5 | 0    |
| CJ_10001161 | -0.2 | 0.2  | 0    | 0.1  | 0    | 0.3  | -0.1 | -0.3 | 0    | 0    |
| CJ_10001162 | 0.3  | 0    | 0.4  | 0    | -0.1 | 0.2  | 0    | 0    | 0    | 0.1  |
| CJ_10001164 | -0.3 | 0    | -0.2 | 0    | -0.1 | 0.2  | 0    | -0.1 | 0.2  | 0.1  |
| CJ_10001166 | -0.2 | 0.1  | -0.4 | 0.1  | 0    | 0.1  | -0.3 | -0.4 | 0    | 0    |
| CJ_10001168 | -0.4 | -0.6 | -0.5 | -0.1 | 0.1  | 0.2  | -0.1 | 0    | 0.2  | 0.2  |

| CJ_10001169 | -0.3 | 0.6  | -0.1 | 0.1 | -0.2 | 0.3  | 0    | -0.2 | 0.3  | 0.1 |
|-------------|------|------|------|-----|------|------|------|------|------|-----|
| CJ_10001170 | -0.4 | -0.7 | 0.4  | 0.2 | -0.2 | 0.5  | -0.1 | -0.1 | 0.7  | 0.3 |
| CJ_10001171 | -0.5 | 0.5  | 0.3  | 0   | 0    | -0.2 | 0.1  | 0    | -0.1 | 0.1 |
| CJ_10001172 | 0.1  | -0.2 | 0.1  | 0.1 | 0.2  | 0    | 0    | 0    | -0.1 | 0.1 |
| CJ_10001173 | -0.3 | -0.3 | -0.2 | 0   | 0.1  | -0.2 | -0.2 | -0.2 | 1.7  | 0   |
| CJ_10001174 | 0.2  | 0.2  | 0.7  | 0.2 | 0.2  | 0.1  | 0.1  | 0    | 0    | 0.1 |
| CJ_10001175 | 0    | 0.2  | 0.4  | 0.1 | 0    | 0.2  | 0    | 0    | 0    | 0   |
| CJ_10001176 | 0.4  | 0    | -0.2 | 0.1 | 0.1  | -1.4 | 1.4  | 1.5  | 0.8  | 0   |
| CJ_10001177 | 0    | 0.1  | 0.2  | 0.1 | -0.2 | 0.2  | 0.1  | 0    | 0    | 0   |
| CJ_10001178 | 0.3  | -0.1 | 0.5  | 0.1 | 0.1  | 0.1  | 0    | -0.1 | 0.1  | 0   |
| CJ_10001179 | -0.5 | 0    | -0.7 | 0.1 | 0    | 0.1  | -0.1 | 0.1  | -0.1 | 0   |
| CJ_10001180 | -0.1 | -0.1 | -0.4 | 0.1 | 0    | 0.1  | 0    | 0    | -0.1 | 0   |
| CJ_10001181 | -0.2 | 0.2  | -0.1 | 0.1 | -0.1 | 0.2  | 0    | 0    | 0.1  | 0.1 |
| CJ_10001182 | -0.3 | 0.4  | 0.6  | 0.1 | -0.2 | 0.2  | 0.1  | 0    | 0.1  | 0   |
| CJ_10001183 | 0    | -0.2 | 0.1  | 0.1 | 0    | 0.1  | 0    | 0.1  | 0    | 0.1 |
| CJ_10001186 | 0    | 0    | 0.1  | 0.1 | -0.1 | 0.2  | 0.1  | 0    | 0    | 0   |
| CJ_10001188 | -0.7 | -0.9 | -0.1 | 0   | -0.1 | 0.2  | 0    | 0    | 0.2  | 0.1 |

| CJ_10001189 | 0.3  | 0.1  | 0.1  | -0.1 | -0.2 | 0.2  | 0.1  | -0.1 | 0    | 0.2  |
|-------------|------|------|------|------|------|------|------|------|------|------|
| CJ_10001191 | -0.1 | 0.2  | -1.2 | 0    | -0.1 | 0.2  | 0    | -0.2 | 0    | -0.1 |
| CJ_10001192 | -1.5 | -0.2 | 0.5  | 0    | 0    | 0.3  | 0    | 0.1  | 0    | 0.1  |
| CJ_10001193 | -0.7 | -0.3 | 0.4  | 0.1  | 0    | 0.3  | 0    | 0    | 0    | 0    |
| CJ_10001195 | -0.5 | -0.1 | 0.1  | -0.1 | -0.1 | 0.2  | -0.2 | -0.1 | 0.2  | 0    |
| CJ_10001196 | -0.5 | 0.4  | -0.5 | 0.3  | -0.2 | -0.5 | 0.2  | -0.2 | 0.3  | 0.2  |
| CJ_10001198 | -0.9 | 2.8  | 0.3  | 0.8  | -1.1 | 0.1  | 0    | -1.7 | -0.2 | 0.8  |
| CJ_10001199 | 0    | -0.2 | 0.5  | 0.3  | 0.2  | 0.2  | -0.1 | 0.2  | 0    | 0.2  |
| CJ_10001201 | -0.7 | -0.2 | 0    | 0.1  | -0.5 | 0.3  | 0    | 0.1  | 0.2  | 0.1  |
| CJ_10001206 | 0.1  | 0.2  | 0    | 0.1  | -0.1 | -0.1 | -0.1 | 0.2  | 0.1  | -0.1 |
| CJ_10001207 | -0.7 | 0.4  | -0.8 | 0    | -0.3 | 0.2  | 0    | -0.3 | 0.2  | 0.1  |
| CJ_10001208 | 2.9  | 2.6  | 1.5  | 0.8  | -0.8 | 0.8  | 1    | -0.6 | 0.6  | 0.9  |
| CJ_10001210 | 0.3  | 0.2  | 0.4  | 0.1  | -0.2 | 0.2  | 0    | -0.2 | 0.1  | 0.1  |
| CJ_10001211 | -0.4 | 1.1  | 3.6  | 0.3  | -0.7 | 0.5  | 1.1  | 0.5  | 0    | 0.4  |
| CJ_10001213 | 0.2  | 0.5  | 0.4  | 0.1  | 0    | 0.1  | 0.1  | 0    | 0.1  | 0.1  |
| CJ_10001214 | -0.4 | 0.1  | 0.3  | 0.1  | 0    | 0.3  | 0.1  | -0.2 | 0    | 0    |
| CJ_10001216 | 0.2  | 0    | 0.3  | 0.1  | 0.3  | 0.1  | 0.1  | 0    | -0.1 | 0.1  |

| CJ_10001217 | 0.4  | 0.4  | 0.5  | 0.2  | 0.3  | 0    | 0.1  | 0    | 0   | 0.1 |
|-------------|------|------|------|------|------|------|------|------|-----|-----|
| CJ_10001218 | -0.3 | 0.2  | 0.4  | 0    | 0    | 0.2  | 0    | 0    | 1.3 | 0   |
| CJ_10001220 | -0.7 | -0.3 | 0.1  | 0.2  | 0.2  | 0.4  | 0.1  | 0    | 0   | 0.1 |
| CJ_10001222 | 0.3  | 0    | 0.6  | 0    | 0    | 0.2  | -0.1 | -0.2 | 0   | 0   |
| CJ_10001223 | -0.5 | -0.5 | 0.1  | -0.1 | 0    | 0.2  | 0.2  | -0.1 | 0.1 | 0.1 |
| CJ_10001224 | 0    | -0.3 | 0.1  | 0.2  | 0    | 0.1  | 0.1  | 0    | 0.2 | 0.1 |
| CJ_10001225 | -0.4 | -0.2 | -0.3 | 0.4  | 0.3  | 0.1  | 0    | 0.1  | 0   | 0.1 |
| CJ_10001226 | 0    | 1    | 0.2  | 0.3  | -0.6 | 0.2  | 0.1  | -0.5 | 0.4 | 0.3 |
| CJ_10001227 | 0    | -0.2 | -1.7 | 0.2  | -0.1 | 0    | 0.1  | -0.1 | 0.1 | 0   |
| CJ_10001228 | 0.1  | 0.1  | 0.3  | 0.1  | -0.1 | 0.2  | 0    | 0.1  | 0   | 0   |
| CJ_10001229 | 1.6  | 1.4  | 0.6  | 0.3  | -0.8 | 0.4  | -0.2 | -0.7 | 0.2 | 0.3 |
| CJ_10001230 | 1.1  | 0.6  | 0    | 0    | -0.3 | 0.2  | 0.1  | 0    | 0.3 | 0.1 |
| CJ_10001231 | -0.2 | 0.1  | -0.1 | 0.1  | -0.1 | -0.1 | 0    | 0    | 0.1 | 0   |
| CJ_10001232 | 0.4  | 0.3  | 0.3  | 0.1  | 0    | 0.1  | 0.2  | -0.1 | 0   | 0.1 |
| CJ_10001233 | 1.3  | 1.3  | 0.2  | 0.2  | -0.5 | 0.3  | 0.3  | -0.3 | 0.3 | 0.1 |
| CJ_10001234 | 0    | -0.3 | 0.8  | 0.3  | 0.1  | 0.1  | -0.1 | 0.7  | 0   | 0.1 |
| CJ_10001235 | 0    | 0.1  | -0.3 | 0.1  | 0    | 0    | -0.1 | -0.1 | 0.1 | 0   |

| CJ_10001236 | 0.5  | 0.5  | -1.2 | 0    | -0.3 | -0.2 | 0.2  | 0    | 0.1  | 0    |
|-------------|------|------|------|------|------|------|------|------|------|------|
| CJ_10001239 | -0.3 | -0.2 | 0.4  | 0    | 0    | 0.2  | 0.1  | -0.3 | 0.2  | 0.1  |
| CJ_10001241 | 0.1  | 0.9  | 0.1  | 0.3  | 0    | -0.1 | -0.1 | -0.3 | -0.4 | 0.1  |
| CJ_10001243 | 3.1  | 2.9  | 3.1  | 1    | 0.2  | 1.5  | 0.8  | -0.7 | 1.1  | 1.1  |
| CJ_10001244 | -2.4 | 0    | -0.9 | 0    | 0    | -0.8 | -0.2 | -0.1 | 0    | 0.1  |
| CJ_10001246 | -0.1 | -0.2 | 0.4  | 0    | -0.9 | 0    | -0.1 | 0.1  | -0.2 | 0    |
| CJ_10001249 | -0.5 | -0.1 | -0.5 | 0    | -0.1 | 0.2  | -0.1 | -0.1 | 0    | 0    |
| CJ_10001250 | -0.1 | 0    | -0.2 | 0    | -0.1 | 0.1  | 0    | 0.1  | -0.2 | -0.1 |
| CJ_10001251 | -1.4 | 0.2  | -0.9 | 0.1  | -0.1 | 0.1  | -0.2 | -0.1 | 0    | 0    |
| CJ_10001252 | -0.3 | 0.3  | -0.5 | 0.1  | -0.1 | 0.1  | -0.1 | -0.2 | 0.1  | 0.1  |
| CJ_10001254 | -0.1 | 0.2  | -1.4 | -1.1 | 0    | -0.6 | 0    | 1.2  | 0    | -1.4 |
| CJ_10001256 | 0.3  | 0.3  | 0.4  | 0    | -0.1 | 0.1  | 0    | 0    | 0.1  | 0    |
| CJ_10001257 | -0.8 | 0    | -0.8 | -0.2 | -0.1 | 0.2  | 0    | -0.1 | 0.4  | -0.1 |
| CJ_10001258 | 0.8  | 0.6  | -0.2 | -0.2 | 0.4  | -0.3 | -0.5 | 0.7  | -0.1 | -0.5 |
| CJ_10001259 | -0.2 | -0.1 | -0.8 | -0.1 | 0    | 0.2  | -0.1 | 0    | 0.1  | 0    |
| CJ_10001260 | 0    | 0.1  | 0.5  | 0    | -0.2 | 0.4  | 0.1  | -0.1 | 0    | 0.2  |
| CJ_10001265 | -0.6 | -0.1 | -1.2 | -0.4 | 0    | 0    | -0.5 | 0    | 0.4  | -0.2 |

| CJ_10001266 | -0.5 | -0.2 | -0.2 | 0.1  | 0.1  | 0.2  | -0.1 | -0.1 | 0.2  | 0.1  |
|-------------|------|------|------|------|------|------|------|------|------|------|
| CJ_10001268 | 0.3  | -0.3 | 0.8  | 0.1  | 0.2  | 0.1  | 0.1  | -0.1 | 0    | -0.1 |
| CJ_10001269 | 0.9  | 0.7  | 0.3  | 0.4  | -0.1 | 0.2  | 0.1  | -0.5 | 0.2  | 0.2  |
| CJ_10001271 | 0.9  | 0.1  | 0.4  | -0.1 | -0.1 | 0.1  | 0    | 0.3  | 0    | 0    |
| CJ_10001272 | 0.2  | 0    | -0.1 | 0.1  | -0.2 | 0.3  | 0.2  | -0.2 | 0    | 0.2  |
| CJ_10001273 | 0    | 0.1  | 0.2  | 0    | -0.1 | 0.2  | 0.2  | 0    | -0.2 | 0.1  |
| CJ_10001274 | 0.1  | 0.3  | -5.1 | 0.1  | -0.2 | -1.7 | 0.1  | -0.1 | 0.2  | 0    |
| CJ_10001275 | -0.1 | 0    | -0.4 | 0.1  | 0    | 0.1  | -0.1 | -0.2 | 0    | 0.1  |
| CJ_10001279 | 2.5  | 2.2  | 0.9  | 0.7  | -1   | 0.7  | 0.9  | -0.6 | 1    | 0.8  |
| CJ_10001280 | 0.1  | 0.3  | -4.1 | 0.1  | -0.1 | -0.9 | -1.7 | -1.1 | 0.1  | 0    |
| CJ_10001281 | -0.5 | -0.1 | -0.7 | 0    | -0.1 | 0.2  | -2.4 | -0.1 | 0.1  | -0.1 |
| CJ_10001283 | 4.7  | 4.5  | -0.8 | 1.6  | -1.5 | 1.7  | 0.2  | -1.2 | 2.3  | 1.5  |
| CJ_10001284 | 0.2  | 0.8  | 0.7  | 0.1  | -0.1 | 0.3  | 0.1  | -0.3 | 0.2  | 0.1  |
| CJ_10001285 | 0.4  | 0.2  | 0.4  | 0.1  | 0.2  | 0.2  | 0.1  | 0    | 0    | 0.1  |
| CJ_10001286 | -0.1 | 0    | 0.1  | -0.1 | 0.1  | 0.2  | 0.1  | -0.2 | 0.2  | 0    |
| CJ_10001287 | -0.3 | -0.1 | 0.4  | 0    | 0.1  | 0.1  | 0    | -0.2 | 0    | 0.1  |
| CJ_10001288 | -0.4 | 0    | -0.6 | -0.1 | 0.2  | 0.1  | 0    | 0.2  | 0.3  | 0.1  |

| CJ_10001289 | -0.6 | 0.6  | 0.4  | -0.1 | -0.2 | 0.3  | 0.2  | 0.1  | 0.5  | 0.1  |
|-------------|------|------|------|------|------|------|------|------|------|------|
| CJ_10001290 | 0.3  | 0.3  | 0.3  | 0.2  | 0.1  | 0.2  | 0.1  | -0.1 | -0.1 | 0.1  |
| CJ_10001292 | -0.7 | 0.4  | 0.2  | 0.1  | -0.1 | 0.2  | 0.1  | -0.3 | 0.2  | 0.1  |
| CJ_10001293 | 0.2  | 0.2  | 0.4  | 0.1  | 0.1  | 0.1  | 0.1  | -0.1 | 0    | 0    |
| CJ_10001294 | -0.1 | -0.2 | 0.1  | 0    | -0.8 | -1.3 | 0    | 0    | -0.1 | 0    |
| CJ_10001295 | 0.9  | 0.1  | 0.5  | 0.1  | 0    | 0.3  | 0.2  | 0    | -0.2 | 0    |
| CJ_10001296 | 0    | 0.1  | -0.1 | 0    | -0.1 | 0.1  | 0.1  | 0    | 0    | 0    |
| CJ_10001297 | 2.9  | 2.8  | 1.2  | 0.9  | -1.2 | 1.1  | 1.4  | -0.1 | 0.9  | 1.2  |
| CJ_10001298 | 0.8  | 0.6  | 0.8  | 0.2  | 0    | 0    | 0.2  | 0    | 0    | -0.1 |
| CJ_10001299 | 0.4  | 0.2  | 0.4  | 0.1  | -0.1 | 0.1  | 0.2  | 0    | 0    | 0    |
| CJ_10001300 | 0.4  | 0.4  | 0.4  | 0.1  | 0.1  | 0    | 0.1  | 0    | 0.1  | -0.1 |
| CJ_10001301 | 0.3  | 0.2  | 0.1  | 0.1  | 0    | 0    | -0.1 | 0    | 0.1  | 0    |
| CJ_10001302 | 1.6  | 1.3  | 1    | 0.1  | -0.6 | 0.3  | 0.5  | -0.3 | 0    | 0.4  |
| CJ_10001303 | 0    | 0    | -0.3 | 0    | -0.1 | -0.1 | 0    | -0.1 | 0.1  | 0.1  |
| CJ_10001304 | -0.7 | -0.1 | -0.8 | 0    | -0.3 | 0.1  | -0.9 | 0    | -1.2 | 0    |
| CJ_10001305 | 0.3  | 0.5  | -0.4 | -0.1 | -0.2 | 0.2  | -0.1 | -0.1 | 0.1  | -0.1 |
| CJ_10001308 | -0.1 | -0.2 | 0.1  | 0.1  | 0.1  | 0.1  | 0    | 0    | 0.1  | 0    |

| CJ_10001309 | 0.1  | 0.2  | -5.2 | 0.2  | 0.2  | 0.1 | 0    | -1.6 | 0    | 0.1  |
|-------------|------|------|------|------|------|-----|------|------|------|------|
| CJ_10001310 | -0.2 | 0.1  | 0.1  | 0.1  | 0.2  | 0.1 | 0    | -0.1 | 0.1  | 0    |
| CJ_10001311 | 0.3  | 0.3  | 0.5  | 0.2  | 0.1  | 0.2 | 0.1  | 0    | 0.1  | 0.1  |
| CJ_10001312 | 0    | -0.4 | 0    | 0    | 0.2  | 0   | -0.1 | 0    | -0.1 | -0.1 |
| CJ_10001314 | 0.8  | 1.5  | 0.5  | 0.5  | -0.5 | 0.4 | 0.3  | -0.8 | 0.4  | 0.6  |
| CJ_10001315 | 0    | 0.3  | 0.4  | 0.2  | -1   | 0.2 | -0.1 | -0.3 | 0.1  | 0.1  |
| CJ_10001316 | 0.2  | -0.1 | 0.9  | 0    | 0.2  | 0.1 | -0.3 | -0.2 | -0.1 | 0    |
| CJ_10001317 | 0    | -0.1 | 0    | 0.1  | 0.1  | 0.1 | 0    | -0.1 | 0.1  | 0.1  |
| CJ_10001318 | 0.1  | 0.1  | 0.2  | 0.1  | -0.4 | 0   | -0.1 | 0    | 0    | 0    |
| CJ_10001319 | 0.3  | 0.1  | 0.3  | 0.1  | 0    | 0.1 | 0.1  | -0.2 | 0    | 0    |
| CJ_10001320 | -0.8 | -0.1 | -0.7 | -0.1 | -0.4 | 0.2 | -0.1 | 0    | 0.3  | 0.1  |
| CJ_10001322 | -0.7 | -0.4 | 0.1  | 0.1  | 0    | 0   | 0    | 0.1  | 0    | 0.1  |
| CJ_10001323 | -0.2 | 0    | -0.2 | 0    | -0.1 | 0.1 | -0.1 | -0.2 | -0.1 | 0    |
| CJ_10001324 | 0.6  | 0.5  | 0.3  | 0.2  | -0.1 | 0.2 | 0.2  | -0.1 | 0.1  | 0.1  |
| CJ_10001325 | -0.1 | 0.1  | -1.8 | 0.1  | -0.3 | 0.2 | 0    | 0    | 0.1  | 0.1  |
| CJ_10001327 | 0.5  | 0    | 0.2  | 0.1  | 0    | 0.1 | 0.2  | -0.1 | -0.1 | 0.1  |
| CJ_10001328 | 0    | -0.1 | 0.2  | 0.1  | 0    | 0.2 | -0.1 | 0    | -0.2 | -0.1 |

| CJ_10001329 | 0.5  | 0.1  | 0.4  | 0   | 0    | 0    | 0   | 0    | 0    | -0.1 |
|-------------|------|------|------|-----|------|------|-----|------|------|------|
| CJ_10001330 | -0.2 | -0.1 | -0.1 | 0   | 0    | 0    | 0.1 | -0.2 | -0.1 | -0.1 |
| CJ_10001332 | -0.4 | -0.1 | -6.7 | 0   | -0.1 | 0    | 0   | -2.1 | -0.1 | 0.1  |
| CJ_10001333 | 1.2  | 1    | 1.1  | 0.2 | -0.2 | 0.2  | 0.3 | -0.1 | 0.1  | 0.1  |
| CJ_10001334 | 0.2  | 0.2  | 0.3  | 0.1 | 0.1  | 0.1  | 0.1 | -0.1 | 0.1  | 0    |
| CJ_10001335 | 0.3  | 0.1  | 0.5  | 0.1 | -0.1 | 0.1  | 0.1 | 0    | 0    | 0.1  |
| CJ_10001336 | 6    | 7.2  | -0.1 | 1.3 | -2.6 | -0.4 | 1.9 | 1.1  | 7.1  | 0.4  |
| CJ_10001337 | 0    | -0.1 | 0.1  | 0   | 0    | 0.1  | 0.1 | 0    | 0    | 0    |
| CJ_10001338 | 0.1  | 0    | 0.4  | 0   | 0    | 0    | 0.1 | 0    | -0.1 | -0.1 |
| CJ_10001340 | 0.4  | 0.1  | 0.4  | 0.2 | 0.2  | -0.1 | 0.1 | 0    | -0.2 | 0    |
| CJ_10001341 | -0.1 | 0.2  | 0.1  | 0.1 | 0    | 0.2  | 0   | 0    | 0.1  | 0    |
| CJ_10001347 | -0.2 | 0    | -7.1 | 0.1 | 0    | 0.2  | 0   | -2.3 | 0    | 0    |
| CJ_10001350 | 0.8  | 0.5  | 0.5  | 0.1 | 0.1  | 0    | 0.2 | 0    | 0    | 0    |
| CJ_10001352 | 0.2  | -0.3 | 0    | 0   | 0.1  | 0.1  | 0.2 | 0.2  | -0.2 | 0    |
| CJ_10001353 | 0    | 0    | -0.1 | 0.1 | -0.1 | 0.2  | 0.1 | 0    | 0.1  | 0    |
| CJ_10001354 | 0.6  | 0.4  | 0.6  | 0.2 | 0    | 0.1  | 0.2 | 0.1  | 0    | 0    |
| CJ_10001355 | 0    | 0    | 0.2  | 0.2 | 0.1  | 0.2  | 0   | 0.1  | 0    | 0.1  |

| CJ_10001356 | -0.5 | -0.3 | -0.2 | 0.1  | 0    | 0.2  | -0.1 | -0.1 | 0.1  | 0    |
|-------------|------|------|------|------|------|------|------|------|------|------|
| CJ_10001357 | 0.3  | 0.3  | 0.2  | 0    | -0.1 | 0    | -0.1 | -0.1 | 0.1  | 0    |
| CJ_10001358 | -0.3 | 0    | -0.2 | 0    | -0.1 | 0.2  | -0.1 | -0.1 | 0    | 0    |
| CJ_10001359 | 0.3  | 0.1  | 0.2  | 0.2  | 0.2  | 0    | 0.1  | 0    | -0.2 | 0    |
| CJ_10001360 | 0    | 0.1  | 0.3  | -0.1 | -0.2 | 0.2  | 0    | 0    | 0.3  | 0    |
| CJ_10001361 | 0.1  | 0.1  | 0    | 0    | -0.1 | 0.2  | 0.1  | -0.1 | 0.1  | 0    |
| CJ_10001362 | 0.3  | 0.3  | 0.5  | 0.1  | 0    | 0.2  | 0.1  | 0    | 0    | 0    |
| CJ_10001363 | 0.2  | 0.1  | 0.4  | 0    | -0.1 | 0.2  | 0    | -0.1 | 0.1  | 0    |
| CJ_10001365 | 0    | 0.1  | 0.1  | 0.1  | 0    | 0.1  | 0    | 0    | 0    | -0.1 |
| CJ_10001367 | -0.1 | -0.1 | 0    | 0    | 0    | 0.2  | -0.1 | 0    | 0    | 0.1  |
| CJ_10001370 | 0.1  | -0.5 | 0.1  | -0.1 | -0.2 | 0.1  | 0.1  | 0    | 0    | -0.1 |
| CJ_10001371 | -1.1 | 1.2  | -0.4 | 0.6  | -0.5 | 0.7  | -0.2 | -1   | 0.5  | 0.6  |
| CJ_10001372 | 0.2  | -0.1 | 0.2  | 0.1  | 0.1  | -0.1 | -0.1 | 0.4  | -0.2 | -0.2 |
| CJ_10001374 | -0.1 | 0.1  | -3.4 | 0.1  | -0.2 | 0.1  | 0    | -1.3 | 0    | 0.1  |
| CJ_10001375 | 0.4  | 0.2  | 0.3  | 0    | -0.1 | 0.1  | 0.1  | 0.1  | -0.1 | -0.1 |
| CJ_10001376 | 0.3  | 0.3  | 0.4  | 0    | 0    | 0.2  | 0    | 0.1  | -0.1 | -0.1 |
| CJ_10001377 | -0.2 | 0.1  | -0.4 | 0.2  | -0.2 | 0.1  | 0    | 0    | 0.2  | 0.2  |

| CJ_10001378 | 0.2  | 0    | 0.1  | 0.1 | 0.1  | -0.1 | 0.1  | 0.1  | 0    | -0.1 |
|-------------|------|------|------|-----|------|------|------|------|------|------|
| CJ_10001379 | -0.1 | 0.1  | 0.2  | 0.1 | 0    | 0.1  | 0.1  | -0.5 | 0.1  | 0    |
| CJ_10001380 | 0    | 0.2  | 0.1  | 0.1 | 0.1  | -1.4 | 0    | -0.1 | 0.1  | 0    |
| CJ_10001381 | -0.2 | 0    | -0.2 | 0   | 0    | 0    | -0.1 | 0    | 0.1  | -0.1 |
| CJ_10001382 | 0.2  | 0.3  | 0.3  | 0.2 | 0    | -1.4 | 0    | -0.1 | 0    | 0    |
| CJ_10001383 | -0.4 | -0.2 | -0.2 | 0.2 | 0    | 0.2  | -0.1 | -0.2 | 0.2  | 0.2  |
| CJ_10001384 | 0.5  | 0.3  | 0.6  | 0   | 0    | 0.1  | 0    | 0    | 0    | 0    |
| CJ_10001385 | 0.4  | 0.3  | 0.1  | 0   | 0    | 0    | 0    | 0    | 0    | 0    |
| CJ_10001386 | 0.6  | 0.5  | 0.6  | 0.2 | 0    | 0.3  | 0.2  | -0.1 | 0    | 0    |
| CJ_10001389 | 0    | 0    | -0.2 | 0.2 | 0.2  | 0    | -0.2 | -0.1 | -0.1 | -0.1 |
| CJ_10001390 | -0.3 | 0.2  | 0.3  | 0.1 | 0.1  | 0.3  | 0.1  | 0.9  | -0.1 | -0.1 |
| CJ_10001391 | -1.9 | 0.5  | -0.7 | 0.8 | 0.2  | 0.8  | -0.1 | 0.5  | 0.6  | 0.7  |
| CJ_10001393 | 0.3  | -0.1 | -0.3 | 0.4 | 0.1  | 0    | 0.2  | 0.3  | 0    | 0    |
| CJ_10001395 | -0.1 | -0.1 | 0.1  | 0   | 0.1  | 0.2  | 0    | 0    | -0.2 | 0    |
| CJ_10001396 | 0.4  | 0.4  | 0.4  | 0   | 0    | -0.2 | 0.2  | -0.1 | 0    | -0.2 |
| CJ_10001398 | 0.3  | 0.4  | -0.4 | 0.2 | -0.1 | -0.1 | -0.1 | -0.2 | 0.1  | -0.1 |
| CJ_10001399 | 0.3  | 0.1  | 0.5  | 0.1 | 0.1  | -0.6 | -0.1 | 0.1  | -0.3 | -0.1 |

| CJ_10001401 | -0.4 | 0.2  | 0.3  | 0.1 | 0.2  | 0    | -0.1 | 0.2  | -0.1 | -0.2 |
|-------------|------|------|------|-----|------|------|------|------|------|------|
| CJ_10001402 | -0.2 | 0.2  | 0.2  | 0.1 | 0    | 0.1  | 0.1  | -0.2 | 0    | -0.1 |
| CJ_10001403 | 0.1  | 0.1  | 0.2  | 0.2 | -0.1 | 0.1  | 0.1  | 0.3  | 0    | 0.2  |
| CJ_10001404 | -0.4 | -0.4 | -0.5 | 0   | 0.1  | -0.1 | 0    | -0.2 | 0    | 0    |
| CJ_10001405 | 0    | -0.4 | 0.3  | 0   | 0    | 0.1  | 0.1  | 0    | -0.2 | 0    |
| CJ_10001406 | 0.1  | 0    | 0.2  | 0.1 | 0.1  | 0    | 0.1  | 0    | -0.1 | 0    |
| CJ_10001407 | 0    | 0    | 0    | 0.1 | 0.1  | 0.1  | 0    | 0    | -0.1 | 0    |
| CJ_10001409 | 0.2  | 0.3  | 0.5  | 0.1 | -0.1 | 0.1  | 0.2  | -0.1 | -0.1 | 0.1  |
| CJ_10001411 | 0.1  | 0.1  | -0.1 | 0   | -0.1 | 0    | 0    | 0    | -0.1 | 0    |
| CJ_10001412 | -1.1 | 0.2  | 0.1  | 0.1 | -0.1 | 0.2  | 0.1  | -0.1 | 0.1  | 0.1  |
| CJ_10001413 | 0.4  | 0.2  | 0.3  | 0.1 | 0.1  | -0.2 | 0    | -0.1 | -0.1 | 0    |
| CJ_10001415 | -0.1 | -0.2 | 0    | 0   | -0.1 | 0.1  | -0.1 | 0.1  | -0.1 | 0    |
| CJ_10001416 | -0.3 | -0.1 | 0.2  | 0.2 | 0    | 0.1  | -0.1 | 0.1  | -0.1 | -0.1 |
| CJ_10001417 | -0.4 | -0.1 | -0.1 | 0.1 | 0.1  | 0.1  | -0.2 | 0.2  | -0.2 | 0    |
| CJ_10001418 | 0.4  | 0.2  | 0.5  | 0.2 | 0.1  | 0.1  | 0.1  | 0.2  | -0.1 | -0.1 |
| CJ_10001420 | -0.3 | 0    | 0    | 0   | 0.1  | 0.1  | 0.2  | 0.2  | -0.2 | 0    |
| CJ_10001421 | 0.3  | 0    | 0.2  | 0.1 | 0.1  | 0    | 0.2  | 0.2  | -0.2 | -0.1 |

| CJ_10001423 | 1.2  | 0.7  | 0.3  | 0.1  | -0.1 | 0.1  | 0.1  | 0.1  | -0.1 | -0.1 |
|-------------|------|------|------|------|------|------|------|------|------|------|
| CJ_10001424 | 3.3  | 2.8  | 2.4  | 0.9  | -1.3 | 0.5  | 1.5  | -0.4 | 0.8  | 0.8  |
| CJ_10001425 | 0.9  | 0.6  | 0.3  | 0.1  | -0.2 | -0.2 | -0.1 | -0.2 | 0.1  | 0.1  |
| CJ_10001426 | 0    | 0.1  | 0.2  | 0.1  | -0.1 | 0.2  | 0.1  | 0    | -0.1 | 0.1  |
| CJ_10001427 | 0.5  | 0.3  | 0.2  | 0.1  | 0    | 0.1  | 0    | 0    | 0.1  | 0.1  |
| CJ_10001428 | -1   | -0.7 | -0.2 | -0.1 | -0.1 | 0.1  | -0.2 | 0    | -0.3 | -0.2 |
| CJ_10001429 | -0.2 | 0.1  | -0.2 | 0.1  | 0    | 0.1  | 0    | 0    | 0.1  | -0.1 |
| CJ_10001430 | -0.1 | -0.2 | -0.1 | 0    | 0    | 0    | -0.1 | -0.1 | -0.1 | 0    |
| CJ_10001431 | 0.5  | -0.1 | -0.1 | 0    | 0.1  | 0.1  | -0.3 | 0    | 0    | -0.2 |
| CJ_10001432 | -0.1 | -0.1 | 0.1  | 0    | -0.1 | 0.1  | -0.1 | 0.1  | 0    | 0.1  |
| CJ_10001433 | -0.2 | -0.1 | -0.3 | 0.1  | 0    | 0.3  | -0.1 | -0.1 | 0.2  | 0.1  |
| CJ_10001434 | 0.1  | 0.3  | 0.3  | 0.1  | 0    | 0.1  | 0    | 0.1  | 0.2  | 0    |
| CJ_10001435 | -0.2 | 0    | -0.3 | 0.3  | 0.1  | 0.3  | -0.1 | -0.1 | 0    | 0.1  |
| CJ_10001436 | 0.1  | 0.3  | 0.3  | 0.1  | 0    | 0.2  | 0.2  | -0.1 | 0    | 0.1  |
| CJ_10001438 | 0.2  | 0    | 0.1  | -0.1 | -0.1 | 0.1  | 0.1  | 0.2  | -0.1 | -0.1 |
| CJ_10001439 | 0.2  | 0    | 0.4  | 0.1  | 0.1  | 0.1  | 0.2  | 0.1  | -0.1 | -0.1 |
| CJ_10001440 | 0    | -0.1 | 0.5  | 0.2  | 0    | 0    | 0.1  | 0.1  | 0    | -0.1 |

| CJ_10001441 | 0.6  | 0.3  | 0.5  | 0.3  | 0    | 0    | 0.3  | 0.1  | -0.2 | 0    |
|-------------|------|------|------|------|------|------|------|------|------|------|
| CJ_10001442 | 0.3  | 0.1  | 0.2  | 0.2  | 0.2  | -0.1 | 0    | 0.1  | -0.1 | -0.1 |
| CJ_10001443 | -0.1 | -0.4 | 0.6  | 0.2  | 0.1  | 0    | 0.1  | 0    | -0.2 | -0.1 |
| CJ_10001444 | 0.5  | 0.3  | 0.3  | 0.1  | 0    | 0    | 0.1  | 0    | 0    | -0.1 |
| CJ_10001445 | 0.6  | 0.5  | 0.5  | 0.3  | 0.1  | 0.1  | 0.1  | 0.1  | -0.1 | -0.1 |
| CJ_10001446 | 0.5  | 0.1  | 0.5  | 0.2  | 0    | 0    | 0.2  | 0.1  | -0.3 | 0    |
| CJ_10001448 | 0.7  | 0.3  | 0.6  | 0.3  | -0.1 | 0.4  | 0.2  | -0.3 | 0.1  | 0.2  |
| CJ_10001449 | -0.6 | -0.1 | 0    | 0    | -0.3 | 0.1  | 0.1  | 0.1  | -0.1 | 0    |
| CJ_10001450 | -0.4 | 0.1  | -0.2 | 0.1  | -0.3 | 0.3  | 0    | 0    | 0.1  | 0.1  |
| CJ_10001451 | -0.4 | 0    | -0.1 | 0.2  | 0    | 0.3  | 0.2  | 0    | 0.3  | 0.2  |
| CJ_10001452 | 0.6  | 0.4  | 0.7  | 0.1  | 0.1  | -0.1 | 0.1  | 0    | -0.2 | -0.1 |
| CJ_10001453 | 0    | 0.1  | 0.3  | 0.1  | 0.1  | 0.2  | 0.1  | 0    | -0.1 | 0.1  |
| CJ_10001454 | 0    | 0    | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0    | 0.1  | 0.1  |
| CJ_10001455 | 0.4  | 0.1  | 0.7  | -0.1 | 0    | 0.1  | 0    | 0    | 0.1  | 0    |
| CJ_10001456 | -1.2 | 0    | -0.1 | -0.1 | -0.1 | 0.1  | 0    | 0    | 0.2  | 0    |
| CJ_10001457 | -1.1 | 0.1  | -0.9 | 0.1  | -0.1 | 0.3  | -0.3 | 0    | 0.2  | 0.1  |
| CJ_10001458 | -0.3 | 0    | 0.1  | 0    | -0.2 | 0.2  | 0    | 0    | 0.3  | 0.1  |

| CJ_10001459 | -1.2 | 0.1  | -0.2 | 0.1  | 0.2  | 0   | -0.5 | 0.4  | 0    | 0.1  |
|-------------|------|------|------|------|------|-----|------|------|------|------|
| CJ_10001460 | -0.4 | 0.3  | 0    | 0    | 0    | 0.1 | -0.1 | 0    | -0.1 | 0    |
| CJ_10001461 | -0.1 | 0    | 0.4  | 0.1  | 0    | 0   | -0.1 | 0.1  | -0.1 | -0.1 |
| CJ_10001462 | -1.2 | -0.1 | -1.8 | -0.3 | -0.1 | 0.4 | -0.4 | 0.6  | -0.7 | 0.5  |
| CJ_10001463 | 0    | 0    | 0.1  | 0    | 0    | 0.2 | 0    | 0.1  | -0.1 | 0    |
| CJ_10001464 | 0.3  | -0.6 | -1.3 | 0.1  | 0.1  | 0.1 | -0.1 | 0.1  | -0.3 | -0.1 |
| CJ_10001465 | -0.9 | -0.3 | -1   | 0    | -0.1 | 0.1 | -0.3 | 0.1  | -0.1 | -0.1 |
| CJ_10001466 | 0    | -0.1 | -0.1 | 0    | 0    | 0.1 | -0.1 | 0    | 0    | 0    |
| CJ_10001467 | -1.5 | -0.5 | 0.1  | 0    | 0.1  | 0.2 | 0.1  | 0.2  | 0.1  | 0    |
| CJ_10001469 | 0.2  | -0.1 | 0    | 0.1  | 0    | 0.4 | 0.2  | 0    | -0.1 | 0    |
| CJ_10001471 | -1   | 0    | -1.2 | 0.2  | 0    | 0   | -0.6 | 0    | 0.2  | -0.2 |
| CJ_10001472 | -0.3 | -0.1 | -0.3 | 0    | 0    | 0   | 0    | 0    | 0    | 0    |
| CJ_10001473 | -0.2 | 0.1  | 0.2  | 0    | -0.1 | 0   | 0    | 0    | 0.3  | 0    |
| CJ_10001474 | -0.1 | 0.2  | -0.2 | 0.1  | -0.1 | 0.1 | 0    | 0    | 0.1  | 0.1  |
| CJ_10001475 | 1.9  | 0    | 0.6  | 0    | -0.7 | 0.3 | -0.2 | -0.3 | 0.6  | 0.1  |
| CJ_10001476 | -0.6 | -0.6 | -1.2 | 0    | 0    | 0   | -0.3 | -0.2 | 0.2  | 0    |
| CJ_10001477 | -0.2 | 0.9  | 0.9  | 0.4  | -0.3 | 0.5 | 0.4  | -0.2 | 0.3  | 0.2  |

| CJ_10001479 | 0.1  | 0.2  | -0.1 | 0   | -0.1 | -0.1 | -0.3 | -0.2 | 0.3  | -0.1 |
|-------------|------|------|------|-----|------|------|------|------|------|------|
| CJ_10001480 | 0    | 0    | 0.6  | 0.1 | 0.1  | 0.1  | 0    | -0.1 | 0    | 0    |
| CJ_10001481 | 3.8  | 3.6  | 1.5  | 0.1 | -1.2 | 1.1  | 1.1  | -0.8 | 0.9  | 0.2  |
| CJ_10001482 | -0.1 | 0    | 0.1  | 0   | -0.1 | 0    | -0.1 | -0.2 | 0.3  | 0    |
| CJ_10001483 | 1    | 0.7  | 0.3  | 0.3 | -0.6 | 0.5  | 0.3  | 0.2  | 0.3  | 0.3  |
| CJ_10001484 | 0    | 0.2  | 0.1  | 0.2 | 0.1  | 0.1  | -0.1 | -0.1 | 0    | 0    |
| CJ_10001486 | -0.6 | -0.1 | -0.5 | 0.2 | 0    | 0.3  | 0.1  | 0    | 0    | 0    |
| CJ_10001487 | -0.2 | -0.1 | -0.2 | 0.1 | 0.1  | 0.1  | -0.3 | 0    | -0.1 | -0.1 |
| CJ_10001488 | -0.4 | -0.6 | 0.1  | 0   | 0    | 0.3  | 0.1  | 0.1  | -0.3 | 0.1  |
| CJ_10001489 | -0.2 | -0.3 | -0.3 | 0.1 | 0.1  | 0    | 0    | 0    | -0.1 | 0    |
| CJ_10001490 | -0.3 | -1.5 | -0.7 | 0.2 | 0.5  | 0.2  | -0.6 | 0.3  | 0    | 0.1  |
| CJ_10001491 | -0.1 | 0.1  | 0.3  | 0   | -0.1 | 0.1  | -0.1 | 0.2  | -0.1 | -0.1 |
| CJ_10001492 | 0    | 0.1  | 0    | 0.1 | 0    | 0.2  | -0.1 | 0    | 0    | 0    |
| CJ_10001493 | 0.2  | 0.3  | 0    | 0.2 | -0.1 | 0.2  | 0    | -0.1 | 0    | 0.1  |
| CJ_10001494 | 0.6  | 0.3  | 0.5  | 0.3 | 0.2  | -0.1 | 0.2  | 0.2  | -0.1 | -0.1 |
| CJ_10001495 | 0.4  | 0.2  | 0    | 0.1 | -0.1 | 0    | 0    | -0.2 | 0.1  | 0    |
| CJ_10001496 | 0.2  | 0.2  | -0.2 | 0.1 | -0.1 | 0.1  | 0    | 0    | 0    | 0.1  |

| CJ_10001497 | 0.4  | 0.1  | 0.2  | 0.1  | -0.2 | 0    | 0    | 0.1  | 0.1  | 0    |
|-------------|------|------|------|------|------|------|------|------|------|------|
| CJ_10001498 | -0.4 | -0.1 | -0.5 | 0.1  | 0    | 0.3  | 0    | -0.1 | 0.1  | 0.1  |
| CJ_10001499 | 0    | 0.1  | 0.1  | 0.1  | -0.2 | 0.3  | 0.1  | -0.2 | 0    | 0    |
| CJ_10001500 | -2.1 | 0    | -0.2 | 0    | 0    | 0    | 0    | -0.3 | -0.2 | 0.1  |
| CJ_10001501 | 0.5  | 0.9  | 0.3  | 0.2  | -0.4 | 0.3  | 0.3  | -0.2 | 0.3  | 0.3  |
| CJ_10001502 | 0.7  | 0    | -0.1 | 0.2  | 0.1  | -0.3 | 0.3  | 0.1  | 0.1  | 0    |
| CJ_10001505 | -0.6 | -0.2 | -0.4 | 0    | 0    | 0.3  | 0    | 0    | 0.2  | 0    |
| CJ_10001506 | -0.1 | 0    | -0.4 | -0.1 | -0.2 | -0.1 | 0.2  | 0    | 0.1  | 0.1  |
| CJ_10001507 | 0    | 0.1  | -0.6 | 0.1  | -0.1 | 0.1  | -0.2 | -0.2 | 0    | 0.1  |
| CJ_10001508 | 2.8  | -0.4 | 0.8  | 0.1  | 0.2  | 0.1  | 1.1  | 0    | 0.7  | 0    |
| CJ_10001509 | -0.8 | -0.2 | -0.1 | 0.2  | 0.1  | 0.1  | -0.1 | 0    | -0.1 | -0.2 |
| CJ_10001510 | 0.9  | 0.4  | -0.1 | 0.2  | -0.2 | 0.1  | 0.2  | -0.3 | 0.1  | -1.3 |
| CJ_10001512 | 0.3  | 0.2  | 0.1  | 0.1  | 0.1  | 0    | 0.1  | -0.3 | -0.1 | -0.1 |
| CJ_10001513 | -0.3 | 0    | 0    | 0.1  | 0.1  | 0.1  | 0    | 0    | -0.1 | 0    |
| CJ_10001514 | 0.3  | 0    | 0.1  | 0.2  | 0    | 0.1  | 0.1  | 0    | -0.1 | 0    |
| CJ_10001515 | -0.8 | -0.3 | -0.5 | 0.1  | 0    | 0.1  | -0.2 | 0.1  | 0.1  | -0.1 |
| CJ_10001516 | 0.4  | 0.1  | 0.2  | 0.2  | 0.1  | 0.1  | 0.1  | 0    | 0.1  | 0    |

| CJ_10001517 | -0.3 | -0.6 | -0.3 | 0.1  | 0.2  | 0.1  | -0.2 | 0.1  | -0.2 | 0    |
|-------------|------|------|------|------|------|------|------|------|------|------|
| CJ_10001518 | 0.1  | -0.1 | 0.1  | 0.1  | 0    | 0.1  | -0.1 | 0    | -0.1 | -0.1 |
| CJ_10001519 | -0.5 | -0.2 | 0.7  | 0.1  | 0.1  | 0    | 0.1  | 0.4  | -0.1 | -0.2 |
| CJ_10001520 | 0.5  | 0.5  | -0.1 | 0.2  | -0.2 | -0.9 | -0.1 | 0    | 0.2  | 0.2  |
| CJ_10001521 | -3.8 | 0    | 0.5  | 0.1  | 0.1  | 0.3  | 0    | 0    | 0.1  | 0.1  |
| CJ_10001522 | -1.4 | -0.2 | -0.2 | 0.1  | 0.1  | 0.2  | -0.2 | -0.6 | -0.1 | 0    |
| CJ_10001523 | 3.3  | 5.5  | -0.5 | 1.9  | -1.4 | 5.4  | -0.1 | -1.3 | 1.1  | 1.8  |
| CJ_10001524 | -0.8 | -0.3 | -0.6 | 0    | 0    | 0.2  | -0.1 | -0.2 | 0.2  | 0.1  |
| CJ_10001526 | -0.6 | -0.3 | 0    | -0.1 | 0    | 0.1  | 0.1  | 0.1  | 1.7  | 0.1  |
| CJ_10001527 | -0.5 | -0.6 | -0.1 | 0    | 0    | 0.2  | 0.1  | 0    | -0.1 | 0.1  |
| CJ_10001528 | -0.7 | -0.4 | -0.9 | 0.1  | 0    | 0.3  | -0.1 | 0    | 0.1  | 0    |
| CJ_10001529 | 0.2  | 0.1  | 0.5  | 0.1  | 0.1  | -0.1 | 0    | -0.1 | -0.3 | 0    |
| CJ_10001530 | -0.2 | 0    | 0.2  | 0    | 0    | 0.1  | 0    | -0.1 | 0.1  | 0    |
| CJ_10001531 | 0.3  | -0.1 | 0.1  | 0.1  | 0.1  | 0.1  | -0.1 | 0    | 0    | 0    |
| CJ_10001533 | 0.9  | 0.4  | 0.6  | 0.3  | 0.2  | 0    | 0.1  | 0    | 0    | 0    |
| CJ_10001535 | -0.2 | 0    | -1.3 | 0.1  | -0.3 | -0.2 | 0.1  | 0.1  | 0.3  | 0    |
| CJ_10001536 | -0.5 | 0    | -0.5 | 0    | -0.6 | 0.2  | 0    | 0    | 0.2  | 0.2  |

| CJ_10001537 | 0.3  | 0.3  | 0    | 0.1  | -0.1 | 0.1  | 0.2  | 0    | 0.2  | 0.1  |
|-------------|------|------|------|------|------|------|------|------|------|------|
| CJ_10001538 | 0.2  | 0    | -0.1 | 0    | -0.2 | 0.2  | 0.1  | 0.1  | -0.1 | 0.1  |
| CJ_10001539 | 1.7  | 1.2  | 0.6  | 0.1  | -0.4 | 0.3  | 0.5  | 0.2  | 0.1  | -0.1 |
| CJ_10001540 | 0.3  | 0    | 0.1  | 0.1  | 0.2  | 0.1  | 0    | -0.1 | -0.1 | -0.1 |
| CJ_10001541 | -0.1 | -0.2 | 0.2  | 0.1  | 0.1  | 0.1  | -1   | -0.5 | -0.3 | -0.1 |
| CJ_10001542 | 0.5  | 0    | 0.3  | 0.1  | 0    | 0.1  | 0.1  | 0.1  | -0.1 | -0.1 |
| CJ_10001543 | -0.9 | 0    | 0.1  | 0    | -0.1 | 0    | 0    | -0.1 | -0.1 | -0.1 |
| CJ_10001544 | 0    | -0.5 | 0.5  | -0.1 | 0    | 0    | 0    | 0    | 1.2  | -0.1 |
| CJ_10001545 | -0.4 | 0.3  | 0.1  | 0.1  | 0.1  | 0.3  | 0.1  | -0.1 | -0.3 | 0.1  |
| CJ_10001546 | 0.1  | 0    | 0.2  | 0.1  | 0.1  | 0    | 0    | 0    | 0    | 0    |
| CJ_10001547 | 1.4  | 1.1  | 0.6  | 0.2  | 0    | 0.1  | 0.3  | -0.3 | 2.4  | 0    |
| CJ_10001548 | 0.4  | 0.2  | 0.3  | 0    | 0    | 0    | -0.1 | -0.3 | 0    | 0    |
| CJ_10001550 | 0.2  | 0    | 0.5  | -0.1 | 0.1  | 0    | -0.1 | 0.1  | 1.3  | -0.2 |
| CJ_10001552 | 0    | 0.1  | 0    | 0.1  | 0.2  | -0.1 | -0.1 | 0    | 0    | -0.2 |
| CJ_10001553 | -0.4 | -0.2 | -0.1 | 0.1  | 0.1  | -0.1 | -0.1 | 0.1  | 0.6  | -0.1 |
| CJ_10001555 | -3.8 | 0.6  | 0.4  | 0.3  | -0.2 | -1.2 | -1.2 | -1.6 | 0.2  | 0.2  |
| CJ_10001556 | 0    | 0.1  | -0.1 | 0.1  | -0.1 | 0.1  | -0.1 | -0.2 | -0.1 | 0    |

| CJ_10001558 | -2.3 | 0    | -0.4 | 0.1  | -0.1 | -0.1 | -0.3 | -0.3 | 0.1  | -0.1 |
|-------------|------|------|------|------|------|------|------|------|------|------|
| CJ_10001560 | -6.6 | 0.3  | 0.3  | 0.1  | -0.4 | 0.2  | -0.1 | -0.2 | -0.1 | 0.1  |
| CJ_10001562 | -0.3 | 0.5  | 0    | -0.1 | -0.5 | 0.3  | 0.1  | 0    | -0.2 | 0    |
| CJ_10001563 | 0.8  | 0.4  | 0.7  | 0.2  | 0.1  | 0    | 0.2  | 0.1  | -0.1 | -0.1 |
| CJ_10001564 | 0.4  | 0.3  | 0.2  | 0.2  | -0.1 | 0.1  | 0.2  | -0.1 | -0.1 | -0.1 |
| CJ_10001565 | -0.1 | -0.2 | 0.1  | 0    | -0.1 | 0.1  | 0.1  | 0.1  | 0    | 0    |
| CJ_10001566 | 0.3  | 0    | 0    | 0    | 0.1  | -0.1 | 0    | 0.1  | -0.1 | -0.2 |
| CJ_10001567 | -0.4 | -0.8 | -0.7 | 0    | 0    | 0.1  | -0.1 | 0    | 0.1  | 0    |
| CJ_10001568 | 0    | -0.2 | 0.3  | 0    | 0.1  | 0.1  | -0.1 | -0.1 | 1.4  | 0    |
| CJ_10001569 | -0.6 | -0.1 | -0.2 | -0.1 | -0.1 | 0.2  | 0    | -0.1 | -0.1 | 0    |
| CJ_10001570 | -0.1 | 0    | 0    | 0.2  | 0.1  | 0    | 0.1  | -0.1 | 0    | 0    |
| CJ_10001571 | -0.3 | 0    | -0.4 | 0    | 0    | 0.2  | -0.1 | 0    | 1.9  | 0.1  |
| CJ_10001572 | -0.1 | -0.3 | -0.4 | 0    | 0    | 0.3  | 0.1  | 0    | -0.1 | 0.2  |
| CJ_10001573 | 0.2  | -0.3 | 0.3  | 0.1  | 0.1  | 0.1  | 0.1  | -0.1 | -0.1 | 0.1  |
| CJ_10001574 | 0.4  | 0.3  | 0.6  | 0.1  | 0    | 0    | 0    | -0.2 | 0.9  | 0    |
| CJ_10001575 | 0.3  | 0.3  | 0.5  | 0.1  | 0.1  | 0.1  | 0.1  | -0.2 | 0    | 0    |
| CJ_10001576 | 0.4  | 0.2  | 0.5  | 0.1  | 0.1  | 0.1  | 0    | 0    | 0    | 0    |

| CJ_10001577 | -0.3 | -0.3 | 0    | -0.1 | 0    | 0    | -0.1 | -0.2 | 1.3  | 0    |
|-------------|------|------|------|------|------|------|------|------|------|------|
| CJ_10001578 | -0.7 | -0.3 | -0.6 | 0.2  | -0.2 | -1   | -0.1 | -0.6 | 0.1  | 0    |
| CJ_10001579 | 0.2  | -0.2 | -0.1 | 0.1  | 0.2  | 0.2  | -0.1 | -0.2 | -0.2 | 0.1  |
| CJ_10001580 | -0.2 | -0.3 | -0.2 | 0    | -0.3 | 0.3  | 0.2  | 0    | 0.1  | 0.1  |
| CJ_10001581 | 0    | 0.1  | 0    | 0    | -0.2 | 0    | 0    | -0.2 | -0.2 | 0.1  |
| CJ_10001582 | -0.1 | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0    | 0    | 0    | -0.1 |
| CJ_10001583 | 0.3  | 0.4  | 0.1  | 0.2  | -0.3 | 0.1  | -1.8 | 0    | 0.2  | 0    |
| CJ_10001584 | -0.7 | -0.3 | -0.1 | 0    | -0.1 | 0    | -0.3 | 0.1  | -0.1 | -0.2 |
| CJ_10001585 | -0.2 | 0    | -0.3 | -0.1 | 0    | 0.2  | -0.1 | -0.1 | 0.2  | 0    |
| CJ_10001586 | -0.5 | 0    | -0.5 | 0.1  | 0.1  | 0.1  | -0.1 | 0.1  | 0.2  | -0.2 |
| CJ_10001587 | 0.3  | 0.5  | -0.2 | 0.1  | 0    | -0.1 | -0.4 | -0.6 | 0.2  | -0.1 |
| CJ_10001588 | 0.3  | 0.4  | 0.3  | 0.1  | 0    | -0.1 | -0.4 | -0.1 | 0    | -0.2 |
| CJ_10001590 | 0    | 0.2  | 0.4  | 0.2  | 0.1  | -0.1 | -0.1 | -0.1 | 0    | -0.1 |
| CJ_10001591 | -0.2 | 0.2  | 0.3  | 0.1  | 0.2  | 0    | -0.1 | -0.1 | -0.2 | -0.2 |
| CJ_10001593 | -0.3 | -0.1 | -0.5 | 0.1  | 0    | 0.2  | -0.1 | -0.3 | 0    | 0.1  |
| CJ_10001596 | 0.7  | 0.1  | 0.4  | 0    | -0.1 | 0.3  | 0.1  | -0.1 | 0.1  | 0.1  |
| CJ_10001597 | 0    | 0.1  | -0.1 | -0.1 | -0.1 | 0.2  | 0    | -0.1 | 0    | 0    |

| CJ_10001598     | -0.1 | 0    | 0    | -0.1 | 0    | 0.1  | 0    | -0.3 | 0.2  | 0    |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| CJ_10001599     | 0    | -0.1 | -0.1 | 0    | 0    | 0.1  | 0    | 0    | 0.2  | 0    |
| CJ_10001600     | -0.2 | 0    | -0.1 | 0.1  | 0    | 0    | 0    | 0    | 0    | -0.1 |
| CJ_10001601     | 0.5  | 0.4  | 0.5  | 0    | -0.1 | 0.2  | 0.1  | -0.1 | 0.8  | 0    |
| opCcV0100000001 | -0.1 | -0.2 | 0.5  | -0.2 | 0.2  | 0.1  | 0    | 0.1  | -0.2 | -0.1 |
| opCcV0100000002 | 0    | 0.1  | 0.1  | -0.1 | 0    | 0    | -0.2 | -0.1 | 0.2  | -0.2 |
| opCcV0100000004 | -0.4 | -0.4 | 0    | -0.1 | 0.1  | 0.1  | -0.1 | -0.2 | -0.2 | 0    |
| opCcV0100000008 | -0.1 | -0.2 | -0.1 | 0.1  | 0    | 0    | 0    | -0.1 | 0.1  | -0.2 |
| opCcV0100000009 | 0.6  | 0.6  | 0.4  | 0.1  | 0.2  | -0.1 | -0.2 | 0    | -0.6 | -0.1 |
| opCcV0100000014 | 0.5  | 0.2  | 0.2  | -0.1 | 0    | 0    | 0.2  | 0.1  | 0    | -0.2 |
| opCcV0100000017 | 0.7  | -0.7 | 0.7  | -0.1 | 0    | 0.3  | 0.4  | 0    | -0.1 | 0    |
| opCcV0100000019 | -0.1 | 0.1  | 0    | 0    | -0.1 | 0.2  | 0    | -0.1 | 0.1  | 0.1  |
| opCcV0100000023 | -2.2 | -1.8 | 0    | -0.5 | 0.8  | 0    | -0.8 | 1.2  | -0.6 | -0.7 |
| opCcV0100000025 | 0.1  | 0    | 0.3  | -0.2 | 0.1  | 0.2  | 0    | 0    | -0.1 | 0    |
| opCcV0100000033 | -1.1 | -1.5 | -0.3 | -0.1 | 0    | -0.3 | 0.3  | 0.4  | -0.4 | -0.1 |
| opCcV0100000035 | -0.6 | -0.2 | -0.9 | -0.1 | -0.1 | -0.1 | 0    | 0.1  | 0    | 0    |
| opCcV0100000036 | 0.6  | 0.4  | 0.2  | -0.1 | -0.2 | 0.2  | -0.2 | 0    | 0.1  | 0    |

| opCcV0100000037 | 0.1  | -0.1 | -0.1 | 0.1  | 0.1  | 0    | 0    | 0    | -0.1 | -0.1 |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100000038 | -0.6 | -0.4 | -0.5 | -0.1 | -0.3 | 0.2  | -0.2 | -0.9 | 0.2  | 0.1  |
| opCcV0100000039 | -0.9 | -0.2 | 0.3  | 0    | 0    | 0.1  | 0.2  | -0.1 | 0.1  | 0    |
| opCcV0100000040 | -0.5 | -0.7 | -2.1 | -0.3 | 0.2  | -1.4 | -1.5 | -0.3 | -0.1 | -0.1 |
| opCcV0100000041 | -0.9 | 1.3  | -1.9 | -0.1 | 0.1  | -1.9 | -1.3 | -0.1 | 0    | -0.2 |
| opCcV0100000046 | -1.4 | -0.9 | 1    | -0.1 | 0.6  | 0    | 0.2  | 0.5  | -0.5 | -0.4 |
| opCcV0100000047 | -1   | -0.2 | -1   | -0.2 | 0    | 0.1  | -0.2 | -0.1 | 0.3  | 0    |
| opCcV0100000049 | -1.6 | -1.9 | -0.8 | 0    | 0.4  | -0.3 | -0.2 | 0.9  | -1   | -0.2 |
| opCcV010000050  | -1.9 | -1.4 | 0    | -0.2 | -0.1 | 0.1  | 0.1  | 0    | -0.1 | -0.4 |
| opCcV0100000053 | 0.2  | -0.2 | 0.7  | 0    | 0    | 0.2  | 0.1  | -0.2 | 0.6  | 0    |
| opCcV0100000055 | 0.1  | 0.2  | 0    | 0.1  | 0.1  | 0    | 0    | 0    | 0    | -0.1 |
| opCcV010000057  | 1.1  | -0.6 | 0.6  | 0    | 0    | 0.2  | 0.5  | 0.1  | 0.1  | 0    |
| opCcV0100000060 | 1.6  | 0.4  | -0.1 | 0.1  | -0.1 | 0.3  | 0.1  | -0.1 | 0.1  | -0.1 |
| opCcV0100000068 | 0    | 0.2  | 0.2  | -0.1 | -0.1 | 0    | -0.2 | 0    | -0.1 | 0    |
| opCcV0100000069 | 2.5  | 1.4  | 1.8  | 0.6  | -0.7 | 0.5  | 0.5  | -0.6 | 0.7  | 0.6  |
| opCcV0100000072 | -0.9 | -1.9 | 0.1  | -0.3 | -0.1 | 0.3  | 0.2  | 0.4  | -0.3 | 0.1  |
| opCcV0100000075 | 0.2  | 0.3  | 0.4  | 0    | 0    | 0    | 0    | -0.2 | 0    | -0.1 |

| opCcV0100000078 | 0.4  | 0.3  | 0    | 0    | 0    | 0.3  | 0    | 0    | 0.2  | 0    |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100000079 | 0.3  | 0    | 0.2  | 0    | 0    | 0    | -0.2 | 0.1  | 0.2  | 0.1  |
| opCcV0100000085 | -0.3 | 0    | -0.2 | 0    | 0.1  | 0    | -0.1 | -0.1 | 0    | -0.2 |
| opCcV010000087  | 0.2  | 0.2  | 0.1  | -0.1 | -0.1 | 0.1  | 0    | 0.1  | 0    | -0.1 |
| opCcV0100000091 | 0.1  | 0    | -0.1 | 0.1  | -0.1 | 0.1  | 0    | -0.1 | 0    | 0    |
| opCcV0100000095 | 0    | -0.1 | -0.3 | 0.1  | 0.3  | -1.7 | -2.4 | 0.1  | 0    | 0    |
| opCcV0100000098 | 1.8  | 1.3  | 1.4  | 0.5  | -0.4 | 0.6  | 0.4  | -0.6 | 0.2  | 0.6  |
| opCcV0100000101 | 0.4  | 0.1  | 0.3  | 0.1  | 0    | 0.1  | 0    | -0.1 | 0.1  | 0.1  |
| opCcV0100000104 | 0.6  | 0.3  | 0.6  | 0.1  | 0.1  | 0    | -0.1 | -0.1 | 0    | 0    |
| opCcV0100000105 | 0.9  | 0.7  | 0.4  | 0.1  | -0.2 | 0.2  | -0.3 | -0.5 | 0.3  | 0.2  |
| opCcV0100000109 | -0.9 | 0.1  | 0.4  | -0.1 | -0.2 | -0.4 | -0.2 | 0.2  | -0.2 | 0    |
| opCcV0100000111 | -0.2 | -0.3 | 0.7  | 0.1  | 0.2  | 0.3  | 0.5  | 0    | -0.2 | 0    |
| opCcV0100000118 | 0.2  | 0.1  | 0.3  | 0    | 0.1  | -0.1 | -0.3 | -0.1 | -0.1 | 0    |
| opCcV0100000123 | -1.1 | -0.9 | -0.6 | 0    | 0.2  | -0.6 | -0.2 | -0.2 | 0    | -0.1 |
| opCcV0100000126 | 0.2  | -0.1 | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | -0.1 | 0.1  | 0    |
| opCcV0100000129 | -0.6 | -0.2 | -0.6 | 0    | -0.1 | 0.2  | -0.5 | -0.1 | -0.1 | 0    |
| opCcV0100000132 | 0.7  | 0.4  | -1.8 | 0.1  | 0.1  | -1.6 | -1.9 | -1.7 | -0.1 | 0    |

| opCcV0100000135 | -0.3 | 1    | 1.3  | 0.1  | -0.3 | 0.5  | 0.4  | -0.4 | -0.3 | -0.1 |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100000137 | 0    | 0    | -4.6 | -0.2 | -0.2 | -1.4 | -3   | -1.4 | 0    | 0.1  |
| opCcV0100000143 | 1.2  | 0.9  | 0.2  | 0.3  | 0    | 0    | 0.7  | -0.1 | 0.3  | 0.2  |
| opCcV0100000148 | 0.3  | -0.2 | 0.1  | 0    | 0    | -0.1 | -0.1 | 0    | 0    | -0.1 |
| opCcV0100000149 | 0.4  | 0.6  | 1    | 0.3  | 0    | 0.5  | 0.2  | 0.1  | -0.1 | 0.4  |
| opCcV0100000151 | 0.4  | 0.5  | 0.3  | 0    | 0    | 0    | -0.1 | 0    | 0.1  | -0.1 |
| opCcV0100000153 | 0.1  | 0.1  | 0.6  | 0.2  | 0    | 0.3  | 0    | -0.1 | 0    | 0    |
| opCcV0100000155 | 0.8  | 1.1  | -0.5 | 0.4  | -0.4 | -0.2 | 0.3  | -0.6 | 0.1  | 0.4  |
| opCcV0100000158 | 0    | 0.2  | 0.2  | 0    | 0    | 0.2  | 0    | 0    | -0.1 | -0.1 |
| opCcV0100000161 | 0.7  | 1.1  | 0.7  | 0.1  | -0.2 | -0.1 | 0.4  | -0.1 | 0.1  | -0.1 |
| opCcV0100000162 | 0.2  | 0.1  | -4.6 | 0    | 0.1  | -0.1 | 0.2  | -1.6 | 0    | 0    |
| opCcV0100000164 | -0.2 | -0.1 | -0.1 | -0.2 | -0.1 | 0.3  | -0.1 | 0    | 0    | -0.1 |
| opCcV0100000167 | -1.2 | -0.5 | -1   | -0.1 | 0    | 0.2  | -0.2 | 0    | 0.1  | 0    |
| opCcV0100000169 | 0.3  | 0    | 0.1  | 0.1  | 0.1  | 0    | 0.1  | 0.1  | 0    | -0.1 |
| opCcV0100000171 | -0.1 | -0.2 | 0.1  | 0    | 0.1  | -0.7 | 0    | 0    | 0.2  | 0.1  |
| opCcV0100000172 | -0.5 | -0.2 | 1.3  | -0.4 | 0    | -0.1 | -0.2 | 0.2  | -0.3 | -0.2 |
| opCcV0100000174 | 0.2  | 0    | 0.6  | 0.2  | 0.1  | 0.3  | 0.2  | -0.1 | 0.1  | -0.1 |

| opCcV0100000182 | -0.4 | 0    | -0.6 | 0.1  | 0.1  | 0.1  | 0    | 0    | 0    | -0.1 |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100000184 | 0    | -0.3 | -0.8 | 0    | 0.1  | -0.2 | 0.2  | 0.2  | -0.1 | 0.1  |
| opCcV0100000186 | 0.2  | -0.6 | 0.6  | -0.1 | 0.4  | 0    | -0.1 | 0.2  | -0.1 | -0.1 |
| opCcV0100000192 | 0.2  | 0.1  | 0.3  | 0    | 0.1  | 0.1  | 0.1  | 0.1  | 0    | 0    |
| opCcV0100000195 | -0.4 | -0.1 | -0.3 | 0    | 0    | 0.2  | 0    | 0    | 0    | 0    |
| opCcV0100000198 | 1.8  | 0    | 0.9  | 0.4  | -0.2 | 0.1  | 0.4  | -0.4 | 0.3  | 0.3  |
| opCcV0100000200 | 1.5  | 1.2  | 0.7  | -0.5 | -0.7 | 0.9  | 0.7  | 0.4  | 0.8  | 0.1  |
| opCcV0100000201 | -0.6 | 2.2  | 2.2  | 0.8  | -0.9 | 0.6  | 0.8  | -0.5 | 0.5  | 0.5  |
| opCcV0100000205 | 0.1  | -0.2 | 0.1  | -0.2 | -0.1 | 0.2  | -0.1 | 0    | -0.1 | -0.1 |
| opCcV0100000216 | 0.2  | 0    | -0.4 | 0.1  | 0    | 0.1  | 0.1  | 0    | -0.1 | 0    |
| opCcV0100000220 | -0.1 | -0.7 | 1.2  | 0.4  | -0.2 | 0.4  | 0.6  | -0.2 | 0.3  | 0.5  |
| opCcV0100000222 | -0.4 | 0    | -0.3 | -0.1 | -0.3 | 0.2  | 0    | -0.1 | 0.1  | 0.1  |
| opCcV0100000225 | -2   | -1.5 | -0.9 | -0.8 | 0.4  | 0    | -0.4 | 0.9  | -0.4 | -0.6 |
| opCcV0100000232 | 0.3  | 0    | 0    | 0    | 0.1  | 0    | 0.1  | 0.1  | -0.1 | -0.1 |
| opCcV0100000236 | -3.2 | -1.4 | 0.3  | 0    | -0.1 | -0.3 | 0.1  | 0.9  | 0.5  | 0.1  |
| opCcV0100000237 | -0.3 | 0    | -0.5 | 0    | 0.1  | 0    | -0.1 | 0    | 0.1  | -0.2 |
| opCcV0100000239 | -2.6 | -1.3 | 0.8  | -0.2 | -0.2 | -0.2 | 0    | 0.2  | 0.1  | 0.1  |

| opCcV0100000240    | 1.4  | 0.1  | 0.8  | 0    | -0.1 | 0.2  | 0    | 0.1  | -0.1 | 0    |
|--------------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100000241    | -0.1 | 0.3  | 0.6  | 0    | 0    | 0.4  | 0.2  | 0    | 0    | 0    |
| opCcV0100000242    | -1.2 | -1.1 | 0    | -0.2 | 0.1  | -0.2 | 0.3  | 0.4  | 0.1  | 0    |
| opCcV0100000243.80 | 3.7  | 1.7  | 0.4  | -0.7 | -1.7 | -0.2 | 0.6  | 1.9  | 1.8  | -0.9 |
| opCcV0100000243.90 | 6    | 1.2  | -0.2 | 0.2  | -2.7 | -0.2 | -1.9 | 1.1  | 2.8  | -1.9 |
| opCcV0100000243.C  | 1.5  | 1.2  | -0.2 | -1.8 | -0.5 | 0.8  | -0.7 | -1   | 1.9  | -0.6 |
| opCcV0100000244    | 0.8  | 0    | 0.2  | 0    | -0.1 | 0    | 0.3  | -0.3 | 0    | 0.1  |
| opCcV0100000245    | -0.1 | 0.1  | -6.1 | 0    | 0    | -2.4 | -2.1 | 0.1  | 0.1  | 0    |
| opCcV0100000250    | 0.1  | -0.9 | -0.5 | -0.1 | 0.2  | -0.5 | 0.1  | -0.6 | -0.1 | -0.1 |
| opCcV0100000256    | 0.5  | 0    | 0.1  | 0.1  | 0.2  | 0    | 0.1  | 0.1  | -0.1 | 0    |
| opCcV0100000260    | 1.3  | -0.4 | 0.6  | -0.2 | -0.1 | 0.3  | -0.1 | 0.5  | -0.1 | 0    |
| opCcV0100000264    | 0.1  | -0.3 | -0.1 | -0.1 | 0    | 0    | -0.1 | 0    | 0.1  | 0    |
| opCcV0100000268    | 0.7  | 0    | 0.5  | 0    | 0.1  | 0.1  | 0.1  | 0    | -0.1 | 0    |
| opCcV0100000274    | 0.6  | 0.3  | 0.1  | 0    | 0    | 0.1  | 0.2  | 0    | -0.2 | -0.2 |
| opCcV0100000278    | -0.4 | -1   | -0.1 | -0.1 | 0.1  | -0.3 | -0.2 | 0.1  | -0.2 | -0.1 |
| opCcV0100000279    | -0.5 | -1.7 | -0.1 | -0.6 | 0.5  | 0.1  | -0.1 | 1.3  | -0.4 | -0.4 |
| opCcV0100000280    | 4    | 0.5  | 1.1  | -0.3 | -1.9 | -0.1 | 0.6  | -1.9 | 1    | -0.4 |

| opCcV0100000281 | 0.7  | -0.1 | 0.2  | 0    | -0.1 | 0.2  | -0.6 | -0.1 | 0.3  | 0    |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100000282 | 1.5  | 0.1  | 0.5  | 0.2  | 0.1  | 0.1  | 0.3  | 0.1  | -0.2 | 0    |
| opCcV0100000286 | 0    | -0.3 | 0.5  | 0.1  | 0    | 0.1  | -0.1 | 0    | -0.1 | 0    |
| opCcV0100000291 | -0.1 | 0.2  | -0.3 | 0    | -0.2 | 0    | 0    | -0.4 | 0.4  | 0    |
| opCcV0100000293 | 0.3  | 0.3  | 0.1  | 0    | 0    | -2.4 | -2.3 | 0.1  | 0    | -0.1 |
| opCcV0100000299 | 0.6  | 0.2  | 0.9  | 0    | 0.1  | 0    | 0.2  | 0    | -0.1 | -0.2 |
| opCcV010000300  | 0.8  | 0.4  | 0.7  | 0    | 0    | -0.1 | 0.1  | 0.1  | 0    | -0.2 |
| opCcV0100000304 | 0.6  | 0.4  | -2   | 0    | -0.1 | -2   | -1.7 | -1.6 | 0    | -0.1 |
| opCcV0100000307 | -1.9 | -0.6 | -0.2 | 0    | 0.1  | -0.7 | -1   | -0.3 | 0    | 0    |
| opCcV0100000311 | 0.6  | 0.2  | 0.5  | 0.2  | 0    | -0.1 | 0.1  | 0    | 0    | -0.1 |
| opCcV0100000312 | 5.1  | 4.5  | -1   | 0.9  | -2.1 | -1.2 | -0.1 | -1.1 | 2.4  | 1.6  |
| opCcV0100000315 | -1.1 | -1.2 | -0.2 | 0.1  | 0.1  | 0.6  | -0.1 | 0.5  | -0.7 | 0    |
| opCcV0100000317 | 0.2  | 0.1  | 0    | 0.1  | -0.1 | 0    | 0.2  | 0.1  | -0.1 | -0.1 |
| opCcV0100000320 | 0.5  | 0.1  | 0.4  | -0.1 | 0    | 0.1  | 0    | 0    | -0.2 | -0.1 |
| opCcV0100000321 | -0.1 | -0.2 | -0.1 | 0    | 0    | -0.1 | -0.1 | -0.1 | -0.2 | -0.1 |
| opCcV0100000324 | 0.3  | -0.1 | 0.2  | 0    | -0.1 | 0.2  | -0.1 | 0.1  | -0.2 | 0    |
| opCcV0100000326 | -0.5 | -0.3 | -0.1 | 0    | 0    | 0    | 0.1  | 0.1  | -0.1 | -0.2 |

| opCcV0100000327 | -0.1 | -0.2 | 0.2  | 0    | -0.1 | 0.2  | 0    | 0.1  | -0.1 | -0.1 |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100000330 | -0.8 | -0.4 | 0.6  | -0.2 | -0.1 | -0.2 | 0.2  | 0.9  | -0.5 | -0.2 |
| opCcV0100000333 | -0.2 | 0    | -0.2 | 0    | -0.2 | 0    | -0.2 | -0.4 | 0    | 0    |
| opCcV0100000336 | 0    | -0.1 | 0.1  | -0.1 | -0.2 | 0.1  | 0    | -0.1 | 0    | 0.1  |
| opCcV0100000337 | 0.5  | 0.2  | -3.1 | 0.1  | 0.1  | -1.2 | 0    | -0.1 | -0.1 | -0.1 |
| opCcV0100000338 | 0.4  | -0.4 | -1.4 | 0.2  | 0.1  | -0.5 | -0.9 | 0.1  | -0.1 | -0.1 |
| opCcV0100000339 | 0.8  | -0.9 | 0.8  | 0.1  | -0.3 | 0.6  | 0.5  | 0.2  | 0.5  | 0.3  |
| opCcV0100000340 | 0.7  | -0.5 | 0.3  | 0.1  | -0.4 | 0.3  | -0.3 | 0.1  | -0.8 | -0.2 |
| opCcV0100000343 | 1.7  | 1.2  | 0.8  | 0.3  | -0.7 | 0.5  | 0.5  | -0.2 | 0.4  | 0.4  |
| opCcV0100000344 | -3.1 | -0.5 | 0.3  | -0.1 | 0    | -0.5 | 0.3  | 0    | -0.5 | -0.1 |
| opCcV0100000348 | 1.5  | 1.2  | -0.2 | 0.1  | -0.6 | -0.1 | -0.4 | -0.6 | 0.1  | 0.2  |
| opCcV0100000349 | 0    | 0    | -0.1 | -0.1 | -0.1 | 0.1  | 0    | 0.1  | 0.1  | 0    |
| opCcV0100000351 | -0.4 | 0    | -0.5 | -0.1 | -0.3 | -0.2 | -0.8 | 0.1  | 0.1  | 0    |
| opCcV0100000355 | -1.8 | -1.4 | -0.5 | -0.2 | 0.3  | -0.1 | -0.4 | 0.4  | -0.2 | -0.3 |
| opCcV0100000358 | -0.7 | -0.7 | 0.5  | -0.1 | 0.2  | 0.2  | 0.2  | 0.2  | -0.2 | -0.2 |
| opCcV0100000360 | -0.1 | -1.2 | -0.6 | 0    | 0.1  | -0.2 | -0.2 | -0.1 | -0.2 | -0.1 |
| opCcV0100000361 | -5.5 | 0.3  | -4.3 | -0.7 | 1.3  | -1.3 | -2   | 0.9  | -0.6 | -1   |

| opCcV0100000364 | -1.4 | -2.1 | -0.5 | -0.4 | 0.4  | -0.1 | -0.3 | 0.5  | -0.5 | -0.4 |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100000367 | -1.5 | -0.4 | 1.4  | -0.2 | -0.3 | 0.4  | 0.5  | 0.2  | 0    | -0.1 |
| opCcV0100000368 | -0.9 | -0.2 | 0.4  | 0.1  | 0.1  | 0.3  | 0.2  | 0.3  | -0.6 | -0.1 |
| opCcV0100000370 | 0.3  | -0.2 | -0.2 | -0.1 | 0    | 0.1  | 0    | 0    | -0.1 | 0.1  |
| opCcV0100000376 | 1.8  | 1.6  | 1.9  | 1.3  | -1.3 | 0.3  | 1.1  | 0.2  | 1.4  | -0.5 |
| opCcV0100000377 | -0.7 | 0.1  | 0.6  | -0.1 | 0.1  | 0.1  | 0    | 0.3  | -0.9 | -0.1 |
| opCcV0100000384 | 0.2  | 0.1  | 0.2  | 0.1  | 0.1  | -0.1 | -0.1 | 0    | 0    | -0.1 |
| opCcV0100000385 | -0.4 | -0.9 | 0    | -0.1 | 0    | -0.1 | -0.4 | 0    | -0.1 | 0    |
| opCcV0100000387 | -2   | -1.1 | -0.2 | 0    | 0.3  | 0.1  | -0.2 | 0.7  | -0.6 | 0    |
| opCcV0100000391 | -0.4 | -0.3 | 0.3  | 0    | -0.4 | 0.3  | 0.1  | 0.2  | 0.1  | 0.1  |
| opCcV0100000396 | -0.2 | 0.3  | 0.1  | -0.3 | -0.2 | 0.3  | 0.1  | 0.2  | 0.1  | 0.1  |
| opCcV0100000397 | 0.4  | -0.8 | 0.1  | -0.1 | 0.2  | 0    | 0.1  | -0.2 | 0.1  | -0.1 |
| opCcV0100000400 | 0.2  | -1   | -0.2 | 0    | 0    | -0.3 | -0.2 | -0.1 | 0    | -0.1 |
| opCcV0100000408 | -3.2 | -1.1 | -1.4 | -0.2 | 0    | -0.9 | 0    | 0.2  | -0.3 | 0.1  |
| opCcV0100000411 | -0.4 | -0.1 | -0.1 | 0    | 0.1  | 0.1  | -0.1 | -0.1 | -0.1 | 0    |
| opCcV0100000412 | 0.8  | -0.2 | 0.1  | 0    | 0.1  | -0.1 | 0.1  | 0.2  | -0.2 | -0.1 |
| opCcV0100000414 | -0.6 | -0.1 | -0.5 | 0.1  | -0.2 | 0.2  | 0.1  | -0.2 | 0.2  | 0.1  |

| opCcV0100000416 | 0.9  | -0.6 | -0.3 | 0.3  | 0.5  | 0    | -0.1 | 0    | 0    | 0.3  |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100000422 | 0.3  | 0.2  | -2.3 | 0    | 0    | -1.7 | -1.7 | -0.8 | 0.2  | -0.1 |
| opCcV0100000425 | 1    | 0.7  | 0.8  | 0.2  | 0.1  | -0.2 | 0.2  | -0.1 | 0    | 0    |
| opCcV0100000427 | 0.8  | 0.5  | 0.7  | 0.3  | 0.2  | -0.1 | 0.2  | 0.1  | -0.1 | -0.1 |
| opCcV0100000428 | 0.1  | 0.6  | 0.1  | 0.1  | 0    | 0.1  | 0    | 0    | 1    | 0.2  |
| opCcV0100000429 | 0    | 0    | -0.2 | -0.1 | 0.1  | 0.2  | -0.1 | -0.1 | 0.1  | 0.1  |
| opCcV0100000434 | 0.3  | -0.2 | 0    | 0.1  | 0.1  | -0.1 | -0.2 | -0.1 | 1.1  | 0    |
| opCcV0100000437 | -0.3 | -0.6 | 0.3  | 0    | -0.1 | 0.2  | 0.1  | -0.3 | -0.2 | 0    |
| opCcV0100000443 | -0.1 | 0.4  | 0    | -0.1 | -0.2 | 0.1  | -0.1 | 0.1  | 0.2  | -0.1 |
| opCcV0100000444 | 0    | 0    | -1.6 | -0.1 | -0.2 | -0.8 | -1.1 | -1.1 | 0    | 0.1  |
| opCcV0100000446 | -0.1 | -0.5 | 0    | 0    | 0.1  | 0.2  | 0.2  | 0    | -0.1 | -0.1 |
| opCcV0100000447 | 0.4  | -0.2 | 0.4  | 0    | -0.1 | -0.1 | 0.2  | 0.1  | -0.2 | 0    |
| opCcV0100000448 | 0.2  | -1.6 | -0.2 | -0.1 | 0    | 0.1  | -0.2 | -0.1 | 0.2  | -0.1 |
| opCcV0100000451 | 0.9  | 1    | 0.8  | 0.2  | 0.1  | 0.2  | 0.3  | -0.1 | -0.1 | 0.2  |
| opCcV0100000452 | -1.4 | -0.1 | -0.4 | -0.1 | 0    | 0.2  | -0.2 | -0.2 | 0    | 0.1  |
| opCcV0100000455 | 1.3  | 1.2  | 0.8  | 0    | 0    | 0.2  | 0.2  | -0.1 | 0.3  | 0    |
| opCcV0100000458 | 0.1  | 0.2  | 0.4  | 0.1  | 0.1  | 0.1  | 0    | 0    | 0    | 0    |

| opCcV0100000463 | 0.1  | 0.1  | -0.2 | -0.1 | -0.1 | 0    | -0.2 | -0.1 | 0.1  | 0    |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100000467 | 0.9  | 0    | 0.2  | 0.1  | -0.3 | 0    | 0.3  | 0.3  | -0.2 | -0.1 |
| opCcV0100000469 | -1.5 | -1.6 | -0.5 | -0.1 | 0.3  | -0.1 | -0.2 | 0.3  | -0.4 | -0.3 |
| opCcV0100000470 | 1.1  | -1.6 | 0.2  | 0.6  | 0    | 0.5  | 1    | 0.5  | -0.9 | -0.4 |
| opCcV0100000472 | -3.4 | -3.5 | -6.1 | -1.1 | 1.3  | -1.7 | -1.5 | 1.3  | -1.5 | -1.4 |
| opCcV0100000476 | 0.9  | -0.3 | 0.2  | 0.1  | 0    | -0.3 | -0.5 | -0.1 | -0.1 | 0    |
| opCcV0100000478 | 0.8  | 0.7  | 0.8  | 0.1  | 0.1  | 0.1  | 0.1  | -0.1 | 0    | 0.1  |
| opCcV0100000479 | -2.1 | -1.3 | -0.8 | -0.4 | 0.7  | -0.6 | -0.3 | 0    | -1.8 | 0    |
| opCcV0100000481 | -0.4 | 0.2  | 0.5  | 0.1  | 0    | 0.3  | -0.1 | 0    | 0.2  | 0.1  |
| opCcV0100000484 | 0.2  | 0.1  | 0.4  | 0.3  | -0.1 | 0.4  | 0.5  | -0.3 | 0.4  | 0.2  |
| opCcV0100000492 | 0.3  | 0.4  | 0.3  | -0.1 | -0.2 | 0    | -0.1 | 0.1  | 0.1  | -0.1 |
| opCcV0100000495 | -1.8 | -0.7 | 0.1  | 0    | 0.8  | -0.1 | -0.1 | 0.6  | -1.3 | -0.1 |
| opCcV0100000497 | 0    | -0.2 | 0    | 0.1  | 0.1  | -0.1 | -0.1 | 0.1  | 0    | 0    |
| opCcV0100000498 | 0.4  | 0.6  | 0.2  | 0    | 0.2  | 0    | 0    | -0.1 | -0.2 | -0.1 |
| opCcV010000503  | 3.2  | 0.5  | -0.5 | 0    | 1.2  | 1.1  | -1.9 | 1.2  | 1.3  | 0.2  |
| ppCcV0100000504 | 0.2  | 0    | 0.5  | -0.1 | 0.1  | 0.2  | -0.1 | 0    | 0.1  | -0.1 |
| opCcV0100000505 | -1.2 | 0    | -0.7 | 0    | 0.4  | -0.2 | -0.4 | -0.1 | -0.5 | 0    |

| opCcV0100000506 | 3    | 3.1  | 3.2  | 0.9  | -0.8 | 1    | 1.2  | -0.9 | 1.3  | 1    |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100000510 | 0.4  | -0.3 | 0.5  | 0    | -0.1 | 0    | 0.1  | 0.3  | -0.4 | -0.3 |
| opCcV0100000512 | -0.2 | -0.2 | -0.6 | 0    | -0.3 | 0.2  | 0.1  | -0.1 | 0    | 0.1  |
| opCcV0100000513 | -1.4 | -0.6 | -0.2 | -0.2 | 0    | -0.1 | 0.2  | 0.3  | -0.3 | 0    |
| opCcV0100000517 | -0.9 | -0.8 | 0    | 0    | 0.1  | -0.1 | 0    | 0.2  | -0.3 | -0.1 |
| opCcV010000520  | -0.3 | -0.2 | -0.4 | -0.1 | 0    | 0.2  | -0.1 | -0.1 | 0.2  | 0    |
| opCcV0100000521 | 1.2  | 0.6  | 0.6  | 0.1  | -0.2 | 0.3  | 0.1  | 0    | 0.1  | 0    |
| opCcV010000530  | -0.1 | 0.1  | -0.1 | -0.1 | -0.1 | 0.4  | 0    | -0.1 | 0.2  | 0.2  |
| opCcV0100000532 | -0.4 | -0.2 | 0.5  | -0.2 | -0.4 | 0.5  | 0.1  | -0.3 | 0.1  | 0    |
| opCcV0100000534 | -0.1 | -0.2 | -0.1 | -0.1 | -0.1 | 0.1  | 0    | -0.2 | 0    | 0    |
| opCcV010000540  | 0.5  | 0.1  | 0.2  | 0.1  | -0.1 | 0.1  | 0    | -0.1 | 0    | 0    |
| opCcV010000548  | -1.3 | 0.6  | 0    | 0    | 0.2  | -0.1 | -0.2 | 0.2  | -0.3 | -0.1 |
| opCcV0100000549 | -1.5 | -2.1 | -0.9 | -0.1 | 0    | -0.3 | 0.3  | 1.7  | -2.8 | -0.3 |
| opCcV0100000551 | 0.9  | 0    | 0.7  | 0.4  | 0.7  | -0.9 | 0.2  | 0.7  | 0.5  | 0    |
| opCcV0100000555 | -2.7 | -2.1 | -0.7 | 0    | 0.2  | 0.1  | -0.3 | 0.4  | -0.2 | -0.1 |
| opCcV0100000557 | -0.3 | -0.1 | 0    | 0    | -0.1 | 0.2  | 0    | 0.1  | 0    | -0.1 |
| opCcV0100000559 | 0    | 0    | 0.2  | -0.1 | -0.3 | 0.2  | 0.1  | 0    | 0.1  | 0    |

| opCcV0100000560.60 | 2.2  | 0.8  | -0.3 | 0.1  | -1.3 | -0.1 | 0.1  | 1.6  | 1.4  | -0.8 |
|--------------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100000560.80 | 2.1  | -0.1 | -2.1 | -0.5 | 0.4  | -0.6 | -1   | 1.7  | 0    | -2.6 |
| opCcV0100000560.90 | 0.1  | 1.2  | -0.4 | -1.2 | -1   | -0.4 | -1.4 | 0    | -0.3 | -0.3 |
| opCcV0100000561    | -0.4 | 0.2  | -0.3 | -0.1 | -0.1 | 0.2  | 0    | -0.1 | 0    | 0    |
| opCcV0100000562    | -0.2 | -0.2 | -0.2 | -0.3 | -0.1 | 0.1  | -0.1 | 0.1  | 0    | -0.1 |
| opCcV0100000563    | 0.3  | 0    | -0.1 | 0.1  | 0.1  | 0    | 0    | -0.3 | -0.1 | -0.1 |
| opCcV0100000564    | 0.5  | 0.2  | 0.3  | 0.1  | 0.1  | 0    | 0.1  | 0    | -0.1 | -0.2 |
| opCcV0100000567    | 1.1  | 0.7  | 0.8  | 0.3  | -0.2 | 0.4  | 0.2  | -0.2 | 0.3  | 0.2  |
| opCcV0100000568    | 0.2  | -0.1 | 0.2  | -0.1 | 0    | 0.1  | 0    | 0    | -0.1 | 0    |
| opCcV0100000570    | -0.8 | -0.3 | -0.1 | 0.2  | 0.3  | 0    | -0.1 | 0.6  | -0.1 | -0.2 |
| opCcV0100000573    | 0.1  | 0.1  | 0.1  | -0.1 | 0.2  | -0.1 | -0.1 | 0    | -0.1 | -0.2 |
| opCcV0100000574    | 0.8  | 0.9  | -0.6 | 0.2  | -0.5 | 0.1  | 0    | -0.6 | -0.2 | 0.2  |
| opCcV0100000578    | -0.1 | -0.5 | -0.2 | -0.1 | 0    | 0    | -0.1 | 0.2  | -0.1 | -0.2 |
| opCcV0100000581    | 4.4  | 1.4  | 1.3  | -0.5 | -0.6 | -0.2 | 0.4  | -0.5 | 1.1  | -0.8 |
| opCcV0100000583    | 0.4  | -0.1 | -4.6 | 0    | 0.2  | -2   | -2.1 | -1.8 | -0.1 | -0.1 |
| opCcV0100000584    | 1.6  | 2.1  | -2.1 | 0.9  | -1.8 | -0.8 | -1   | -0.2 | 0.9  | -2   |
| opCcV0100000585    | 0    | 0    | -5.4 | 0    | -0.2 | -1.7 | -1.9 | -1.8 | -0.1 | 0    |

| opCcV0100000588 | 0.2  | -0.2 | 0.5  | 0.1  | -0.1 | 0.1  | 0.3  | -0.1 | -0.1 | 0.1  |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100000589 | -0.4 | 0    | -5.1 | 0    | -0.1 | 0.2  | 0.1  | -1.7 | 0.1  | 0    |
| opCcV0100000590 | -0.4 | -0.1 | -0.1 | 0    | 0    | 0.2  | 0.1  | 0    | 0    | 0    |
| opCcV0100000593 | -1.2 | -0.7 | 0.4  | -0.2 | 0.2  | 0.5  | -0.1 | 0.6  | -0.3 | -0.3 |
| opCcV0100000595 | -0.2 | 0.1  | 0.2  | -0.1 | 0.1  | 0.1  | 0    | -0.2 | 0.1  | 0.1  |
| opCcV010000596  | -2.7 | -1.1 | 1.2  | -0.1 | 0    | 0.8  | 0.4  | 0.2  | -0.1 | 0.1  |
| opCcV0100000602 | -0.8 | -0.4 | -0.2 | -0.3 | -0.1 | 0.1  | 0    | 0.2  | 0    | 0    |
| opCcV0100000606 | 0.7  | 0.7  | 0.5  | 0.1  | -0.5 | 0.5  | 0.3  | -0.3 | -0.2 | 0.4  |
| opCcV0100000615 | 0.7  | 0.3  | -0.7 | -0.1 | -0.2 | 0.1  | 0.2  | 0    | 0.3  | 0.2  |
| opCcV0100000623 | -4.8 | -4.8 | 0.5  | -1.3 | 1.9  | -1.2 | -1.5 | 1.7  | -1.6 | -1.5 |
| opCcV0100000625 | 0.2  | 0.1  | -1   | 0.1  | 0.1  | -0.7 | -0.9 | -0.6 | -0.1 | -0.1 |
| opCcV0100000627 | -2.4 | 0.9  | -0.9 | 0.2  | -0.3 | 0.3  | 0.5  | -0.2 | 0.1  | 0.2  |
| opCcV0100000628 | 0.3  | 0    | 0.3  | 0    | 0    | 0.1  | 0    | 0.2  | 0    | 0    |
| opCcV0100000630 | 0.1  | -0.2 | 0.4  | 0.1  | -0.1 | 0.2  | 0    | 0    | 0.2  | 0    |
| opCcV0100000631 | 0.1  | -0.1 | 0.3  | 0.1  | 0    | 0.1  | -0.1 | 0.2  | 0.1  | 0    |
| opCcV0100000633 | 2.4  | 2.1  | -1.2 | -0.3 | -2.2 | 2.6  | 0.6  | 0.4  | 1.3  | 0.1  |
| opCcV0100000637 | -0.3 | 0    | 0    | 0    | -0.1 | 0.2  | -0.1 | 0    | 0    | 0    |

| opCcV0100000640 | -4.5 | -3.6 | 0.2  | -0.6 | 1.6  | 0.1  | 0    | 1.6  | -1.3 | -1.5 |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100000643 | 0.1  | 0.1  | -0.1 | -0.1 | 0    | 0.1  | 0.1  | 0    | 0.1  | 0    |
| opCcV0100000645 | -1.8 | -0.8 | -0.3 | 0.1  | 0.2  | 0.3  | 0    | 0    | 0.1  | -0.1 |
| opCcV0100000651 | 1.3  | 2    | 1.6  | 0.1  | 0.3  | 0.9  | 0.6  | -1.1 | 1.4  | -0.4 |
| opCcV0100000654 | 0.6  | 0.3  | 0.4  | -0.1 | 0.1  | 0    | 0    | 0.2  | 0    | -0.2 |
| opCcV0100000655 | 0.5  | -0.1 | 0.3  | 0.2  | 0.2  | -0.7 | 0.1  | -0.1 | 0.2  | -0.1 |
| opCcV0100000657 | 0.8  | 0.3  | 0.4  | 0.2  | 0.1  | -1.4 | 0.4  | 0    | -0.1 | 0.1  |
| opCcV0100000658 | -0.3 | -0.4 | -0.2 | -0.1 | 0.1  | 0.2  | -0.1 | 0.1  | 0    | -0.1 |
| opCcV0100000661 | -0.2 | 0    | -0.3 | -0.1 | -0.2 | 0    | 0    | 0    | 0.1  | -0.1 |
| opCcV0100000662 | 0.5  | 0.3  | 0.9  | -0.1 | -0.1 | 0    | 0.1  | -0.2 | -0.1 | -0.1 |
| opCcV0100000664 | 0.5  | -0.3 | -0.1 | 0    | 0    | 0.2  | 0.1  | 0    | 0    | 0    |
| opCcV0100000666 | 0    | -0.2 | -0.1 | -0.1 | 0.2  | -0.2 | 0.1  | -0.1 | -0.1 | -0.2 |
| opCcV0100000672 | 0.9  | 0.6  | 0.7  | 0.2  | 0    | 0    | 0    | -0.3 | 0.3  | 0.1  |
| opCcV0100000674 | -3.4 | -0.7 | -0.3 | -0.2 | 0.1  | 0.1  | -0.2 | 0.6  | -0.2 | -0.3 |
| opCcV0100000681 | 0    | -0.1 | -0.8 | 0    | 0    | -0.1 | -2.4 | 0    | 0.1  | 0    |
| opCcV0100000683 | -0.2 | -0.3 | -0.2 | 0    | 0.1  | 0    | 0.1  | 0.1  | -0.3 | -0.1 |
| opCcV0100000684 | 0    | 0    | 1    | -0.1 | -0.1 | 0.2  | 0    | 0.1  | -0.1 | -0.1 |

| opCcV0100000685 | -0.8 | -1.9 | 2.8  | 0.2  | -0.1 | -0.2 | 0.3  | 0.1  | -0.3 | 0    |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100000691 | -3.3 | -3.5 | 0    | -0.9 | 1    | 0    | -0.6 | 1    | -1.4 | -0.9 |
| opCcV0100000693 | 0.8  | 0.3  | 0.2  | 0.1  | 0.3  | -0.1 | 0    | -0.1 | -0.1 | -0.2 |
| opCcV0100000696 | 2.7  | 1.6  | 1    | 0.3  | -0.8 | 0.4  | 0.7  | 0    | 0.5  | 0.3  |
| opCcV0100000698 | -0.4 | -0.4 | 1.2  | -0.2 | 0    | 0.4  | 0.5  | 0.1  | -0.1 | -0.3 |
| opCcV0100000699 | 0.6  | 0.2  | 0.4  | 0    | -0.2 | 0.3  | 0.2  | 0    | 0.3  | 0    |
| opCcV0100000700 | 0    | -0.5 | -2   | -0.1 | 0    | 0.2  | -0.1 | -0.5 | -0.1 | -0.1 |
| opCcV0100000702 | 0.3  | -0.3 | -0.3 | 0    | 0.1  | -0.4 | -0.5 | 0    | 0.1  | -0.1 |
| opCcV0100000703 | -0.1 | 0    | 0.4  | 0    | 0    | 0.1  | 0    | 0    | -0.1 | -0.1 |
| opCcV0100000704 | -0.8 | -0.7 | -0.5 | -0.1 | 0.3  | -0.2 | -0.1 | 0.1  | -0.1 | -0.2 |
| opCcV0100000707 | 5.1  | 0.5  | -0.3 | -0.3 | 1.9  | -0.6 | -1.4 | 1.8  | -0.8 | -0.2 |
| opCcV0100000708 | 0.7  | -0.2 | 0.4  | 0.1  | 0.2  | 0.2  | 0.1  | 0.3  | -0.3 | -0.1 |
| opCcV0100000710 | -0.7 | -0.5 | 0.2  | -0.1 | 0.4  | -0.3 | 0    | 0.5  | -0.3 | -0.4 |
| opCcV0100000711 | 0.1  | 0    | -3.6 | -0.1 | 0.1  | -1.9 | -2   | -1   | 0.1  | -0.1 |
| opCcV0100000714 | 0    | 0.2  | 0.2  | -0.2 | 0    | 0    | -0.1 | -0.1 | 0.2  | -0.1 |
| opCcV0100000717 | 0.1  | -0.1 | -5.3 | 0    | 0    | -2.2 | -2.4 | -1.7 | 0.3  | 0    |
| opCcV0100000718 | 3.5  | 3.1  | -0.2 | 0.9  | -1.2 | -0.6 | -0.5 | -0.7 | 1.2  | 1    |

| opCcV0100000719 | 0.6  | 0.4  | -0.5 | 0    | -0.3 | -0.1 | 0    | -0.4 | 0.3  | 0.1  |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100000721 | 4.9  | 3.9  | -0.7 | 1    | -1.9 | 0.5  | 0.9  | -0.7 | 1.2  | 1.1  |
| opCcV0100000723 | -0.8 | -0.2 | -0.2 | 0    | -0.3 | 0.2  | -0.1 | 0.2  | 0.3  | 0    |
| opCcV0100000724 | 0.5  | -0.5 | 1.8  | 0    | -0.1 | 0.1  | 0.1  | 0.3  | 0.1  | 0    |
| opCcV0100000725 | 0.1  | 0.1  | 0.6  | 0    | -0.1 | 0.3  | 0.1  | 0.2  | 0.2  | 0.1  |
| opCcV0100000727 | 1.7  | 1.6  | -0.8 | -0.1 | 0.2  | 0    | -0.1 | 0.6  | -0.8 | -0.3 |
| opCcV0100000730 | 0    | 0.2  | -0.2 | 0    | -0.1 | -0.3 | -0.2 | -0.4 | 0    | -0.1 |
| opCcV0100000733 | 0.2  | 0    | -0.1 | 0    | -0.1 | 0    | 0    | -0.2 | 0    | -0.1 |
| opCcV0100000734 | 0    | 0.1  | 0    | 0    | 0.1  | 0    | 0.1  | 0.1  | -0.1 | 0    |
| opCcV0100000736 | 0.2  | 0.2  | -0.3 | -0.1 | -0.1 | -0.1 | 0    | 0    | -0.1 | 0    |
| opCcV0100000737 | -1.2 | -0.7 | -0.6 | -0.2 | 0.2  | 0    | -0.3 | 0    | -0.1 | -0.2 |
| opCcV0100000739 | -3.2 | -0.6 | -2   | -0.5 | -0.1 | -0.4 | -1   | 0.3  | 0    | -0.7 |
| opCcV0100000743 | 0.3  | 0    | 0    | 0.1  | 0    | 0.1  | 0    | 0    | 0    | 0    |
| opCcV0100000750 | 0    | -0.4 | 0.1  | 0.1  | 0    | 0.3  | 0.1  | 0.4  | -0.4 | 0    |
| opCcV0100000751 | -0.1 | 0.2  | -1.2 | 0    | -0.2 | 0.2  | -0.1 | -0.1 | 0.2  | 0    |
| opCcV0100000756 | 2.5  | 1.6  | 1.2  | 0.2  | -1.3 | 0.8  | 0.8  | -0.2 | 1.4  | -1.5 |
| opCcV0100000757 | -0.6 | -0.5 | -0.6 | -0.2 | -0.1 | -0.1 | 0    | 0.2  | 0    | -0.1 |

| opCcV0100000765 | -0.7 | 0.1  | -1.8 | -0.1 | -0.1 | 0.1  | -0.1 | -0.1 | -0.1 | 0.1  |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100000767 | -0.6 | 0.2  | -0.6 | -0.2 | -0.3 | 0.2  | -0.1 | 0    | 0.3  | -0.1 |
| opCcV0100000769 | 0.4  | 0.7  | -0.3 | 0    | -0.3 | 0.4  | 0.1  | -0.1 | 0.2  | 0.1  |
| opCcV0100000770 | -0.4 | -0.4 | 0    | -0.1 | -0.2 | 0.1  | 0    | 0.1  | -0.1 | -0.1 |
| opCcV0100000778 | 2.7  | 2.2  | 2.5  | 0.6  | -1.3 | 0.9  | 1    | -0.5 | 1    | 0.8  |
| opCcV0100000779 | 1.7  | 1.2  | 1.8  | 0.3  | -0.6 | 0.7  | 0.7  | -0.5 | 0.2  | 0.6  |
| opCcV0100000786 | -0.5 | -0.4 | -0.4 | 0    | 0    | 0.1  | -0.3 | -0.1 | 0    | 0    |
| opCcV0100000787 | 0.4  | 0.5  | 0.4  | 0.1  | -0.1 | 0    | -0.1 | 0    | 0.3  | 0    |
| opCcV0100000788 | 0.5  | -0.1 | 0.7  | 0    | -0.1 | 0.1  | 0.2  | -0.1 | 0    | 0    |
| opCcV0100000795 | -0.2 | -0.1 | -4.3 | 0    | 0    | -1.4 | -1.6 | -1.4 | 0    | 0    |
| opCcV0100000797 | 0.5  | 0.5  | 0.3  | 0.3  | -0.1 | 0.1  | 0.2  | 0    | 0    | -0.1 |
| opCcV0100000801 | -1.5 | -1.4 | -0.4 | 1.6  | 0.7  | -0.5 | -1.2 | 0.8  | -0.4 | -0.5 |
| opCcV010000806  | 0    | 0.1  | 0    | -0.1 | -0.2 | 0.3  | 0    | -0.1 | 0.2  | 0    |
| opCcV0100000813 | 0.3  | 0.1  | 0.2  | 0    | 0.1  | 0.1  | -0.1 | -0.1 | -0.1 | -0.1 |
| opCcV0100000814 | -0.9 | -1.4 | 0.5  | 0.1  | 0    | -0.1 | 0    | 0.3  | -0.3 | -0.1 |
| opCcV0100000816 | 0    | 0.1  | 0.1  | 0    | -0.1 | 0.2  | 0    | -0.1 | 0.2  | 0.1  |
| opCcV0100000821 | 1.2  | 0.8  | 0.4  | 0    | -0.6 | 0.3  | 0.2  | -0.2 | 0.3  | 0.2  |

| opCcV0100000826 | -0.4 | -0.7 | 0.5  | -0.1 | 0.3  | 0.1  | 0    | 0.2  | 0.5  | -0.1 |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100000828 | -2.7 | -2.9 | -0.2 | -0.2 | 0.1  | -0.2 | -0.3 | 0.3  | -0.6 | -0.4 |
| opCcV0100000829 | 0.4  | 0.8  | 0.7  | 0    | -0.1 | 0.1  | 0    | -0.2 | 0    | 0    |
| opCcV0100000830 | -0.9 | -0.2 | -3.9 | -0.1 | 0.1  | -1   | -1.3 | -1.4 | 0    | 0    |
| opCcV0100000834 | -0.1 | 0    | -0.4 | 0    | 0    | -0.4 | -0.1 | -0.1 | 0    | -0.1 |
| opCcV0100000835 | 0.8  | 0.6  | -5.4 | 0    | -0.2 | -2.1 | -2.3 | 0    | -0.5 | 0.1  |
| opCcV0100000840 | -0.9 | -0.7 | -0.4 | 0    | 0.3  | 0.2  | 0    | 0    | -0.1 | 0    |
| opCcV0100000845 | -2.1 | -1.3 | -0.6 | -0.2 | 0.2  | 0    | -0.3 | 0.4  | -0.3 | 0.1  |
| opCcV0100000852 | -0.1 | -0.2 | 0    | 0    | 0.1  | 0.2  | 0    | -0.3 | 0    | 0    |
| opCcV0100000853 | 0.1  | -1.2 | -0.3 | -0.4 | 0.6  | 0    | 0.1  | 0.5  | -0.2 | -0.1 |
| opCcV0100000856 | -0.6 | -0.4 | 0.4  | -0.1 | -0.1 | 0.1  | -0.7 | 0    | 0    | 0.1  |
| opCcV0100000857 | 0.5  | 0.2  | 0.3  | 0.1  | 0    | 0.2  | 0.1  | 0    | 0.1  | -0.1 |
| opCcV010000860  | 1.1  | -0.6 | 0.8  | 0.1  | -0.4 | 0.5  | 0.5  | 0.4  | 0.1  | 0    |
| opCcV0100000861 | 0.4  | 0.3  | -0.4 | 0.2  | -0.3 | -0.2 | 0.1  | -0.3 | 0.2  | 0.1  |
| opCcV0100000864 | 0.2  | 0.2  | 0    | 0.1  | -0.1 | -0.1 | 0    | 0    | 0.1  | -0.1 |
| opCcV0100000865 | 0.2  | 0.1  | -4   | 0    | -0.2 | -1.3 | -1.9 | 0.1  | 0.1  | 0    |
| opCcV0100000867 | -1.6 | 0.2  | 0.2  | -0.1 | 0.4  | 0.2  | 0.4  | 0.4  | -0.9 | -0.3 |

| opCcV0100000868 | 0    | 0.1  | 0.7  | 0.1  | 0.6  | 0.2  | 0.3  | 0.5  | 0    | 0.1  |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100000873 | 0.3  | 0.1  | 0.5  | 0    | 0.2  | 0    | -0.1 | -0.1 | 0.1  | 0    |
| opCcV0100000875 | -0.7 | -0.7 | -0.4 | -0.1 | -0.1 | 0.1  | -0.3 | -0.1 | -0.2 | -0.2 |
| opCcV0100000877 | -2.2 | -2   | -0.5 | 0    | 0    | 0    | -0.5 | 0.4  | -0.1 | -0.1 |
| opCcV0100000878 | 0.6  | 0.3  | 0.8  | 0.1  | 0.1  | 0.1  | 0.2  | -0.2 | 0    | 0    |
| opCcV0100000879 | -0.8 | -0.6 | -0.4 | -0.1 | 0.1  | -0.4 | -0.7 | 0.3  | -0.7 | -0.2 |
| opCcV0100000882 | -1   | -0.3 | -1.5 | -0.5 | 0    | 0.2  | -0.4 | 0    | 0    | -0.3 |
| opCcV0100000884 | 0    | -0.1 | -0.1 | 0.1  | -1.6 | -0.1 | -0.1 | -0.1 | 0.1  | -0.2 |
| opCcV0100000885 | 0.3  | 0.1  | 0.2  | 0.2  | 0.1  | 0.1  | 0.1  | -0.5 | 0    | 0    |
| opCcV0100000887 | 0.3  | -0.6 | 0.2  | 0.3  | 0.3  | -0.6 | 0    | 0    | -0.1 | -0.2 |
| opCcV0100000888 | 0.3  | 0    | -0.2 | 0    | -0.2 | -1.5 | 0.1  | 0    | 0    | -0.9 |
| opCcV0100000890 | -0.1 | -4.4 | 0.1  | -1.1 | 2.5  | 0.2  | -1   | 1.8  | -1.5 | -2   |
| opCcV0100000894 | 0.3  | 0    | 0.2  | -0.1 | -0.1 | 0.1  | 0.1  | 0    | 0.1  | 0    |
| opCcV0100000895 | 0.4  | 0    | 0.2  | 0.1  | 0.2  | 0    | 0    | 0    | -0.3 | -0.1 |
| opCcV010000896  | 0.3  | -0.2 | 0.5  | 0    | 0.1  | 0.2  | 0.5  | 0    | -0.3 | 0    |
| opCcV0100000898 | 1.6  | 1.4  | 1.6  | 0.3  | -0.6 | 0.4  | 0.4  | 0    | 0.3  | 0.1  |
| opCcV0100000900 | 0.4  | 0.1  | 0    | 0.1  | 0    | 0.1  | 0.1  | -0.1 | 0    | 0    |

| opCcV0100000903 | 0.2  | 0.6  | 0.2  | 0.2  | 0    | -0.1 | 0    | -0.2 | 0    | 0    |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100000904 | 0    | 0.2  | -0.1 | 0    | 0.9  | -2.1 | -2.7 | 0    | 0.2  | -0.1 |
| opCcV0100000905 | -0.5 | -0.3 | 0.1  | -0.1 | -0.3 | 0.3  | 0.1  | -0.1 | 0.1  | 0.1  |
| opCcV0100000908 | 0.2  | 0.1  | 0.2  | -0.1 | -0.1 | 0    | 0.1  | -0.1 | 0    | -0.1 |
| opCcV0100000909 | 0.5  | 0.1  | -0.7 | 0.1  | 0    | -0.7 | -0.6 | -0.4 | -0.1 | -0.1 |
| opCcV0100000910 | -0.6 | -0.7 | -1   | -0.2 | -0.1 | 0.1  | -0.3 | 0.1  | 0.3  | -0.1 |
| opCcV0100000911 | -0.3 | -0.2 | 0    | 0.1  | 0.2  | 0    | 0.1  | 0.2  | -0.2 | -0.2 |
| opCcV0100000912 | 0.2  | 0    | 0.2  | -0.1 | -0.1 | 0.2  | 0.1  | 0    | 0    | 0    |
| opCcV0100000915 | 0.2  | 0.1  | -4.3 | -0.1 | -0.1 | -1.4 | -2.2 | 0.1  | 0    | 0    |
| opCcV0100000917 | 0.7  | 0.2  | 0.3  | 0    | 0    | 0.3  | 0.4  | 0.2  | -0.2 | -0.2 |
| opCcV0100000918 | 0    | 0    | 0.1  | 0    | -0.1 | 0.2  | 0.1  | 0.1  | -0.1 | 0    |
| opCcV0100000921 | -1   | -0.5 | -3.2 | -0.3 | 0.2  | -2.9 | -3.2 | -0.9 | 0.3  | 0    |
| opCcV0100000922 | 0.1  | 0    | 0    | 0.1  | 0.1  | 0.1  | -0.4 | 0    | 0    | 0.1  |
| opCcV0100000923 | -2.8 | -3.3 | -3.7 | -1.1 | 0.6  | -1   | -1.3 | 0.4  | -0.4 | -1.1 |
| opCcV0100000924 | 0.4  | 0    | 0.3  | -0.1 | 0.1  | 0    | 0    | 0.1  | 0.1  | -0.1 |
| opCcV0100000928 | 0.2  | -0.8 | -1.7 | 0.1  | -0.5 | 0.1  | -0.6 | 0.5  | 0.4  | -0.1 |
| opCcV0100000931 | -1.4 | -1.3 | -0.1 | -0.4 | 2.3  | 0    | 0    | 0.6  | -0.2 | -0.4 |

| opCcV0100000932 | 0.5  | 0.3  | -0.3 | 0    | -0.4 | 0.1  | 0.2  | -0.2 | 0.1  | 0.1  |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100000934 | -0.3 | -0.3 | -0.3 | 0    | 0    | 0.2  | 0    | -0.1 | -0.1 | -0.1 |
| opCcV0100000937 | 0.3  | 0    | 0.1  | 0    | 0    | 0.1  | 0    | 0    | -0.1 | 0    |
| opCcV0100000943 | 0.5  | 0.2  | 0.2  | 0    | -0.1 | 0    | 0.1  | 0    | 0    | -0.1 |
| opCcV0100000951 | 0.2  | -0.3 | 0.2  | -0.1 | -0.1 | 0.1  | -0.5 | 0.4  | 0    | 0    |
| opCcV0100000954 | -0.1 | -1.4 | 0    | -0.3 | 0    | 0.1  | 0    | 0    | -0.3 | -0.4 |
| opCcV0100000958 | -0.6 | 0.1  | 0    | -0.1 | 0    | 0.1  | -0.1 | -0.3 | 0.4  | 0    |
| opCcV0100000962 | 0.7  | 0.1  | 0.6  | 0    | 0.2  | 0    | 0.2  | 0    | -0.2 | -0.1 |
| opCcV0100000965 | -2.4 | 0.2  | -2   | 0.9  | 0.7  | -1   | 1.6  | 0.7  | -0.2 | 0.1  |
| opCcV0100000966 | -0.9 | -0.7 | -1.2 | -0.1 | 0.3  | -0.4 | -0.7 | 0    | -0.3 | 0.1  |
| opCcV0100000970 | -2.3 | -1.9 | -1.1 | -0.5 | 0.5  | -0.1 | -0.6 | 1    | -0.4 | -0.5 |
| opCcV0100000973 | -0.3 | 0.4  | 0.6  | 0    | 0    | 0.1  | 0    | -0.1 | 0.3  | 0    |
| opCcV0100000975 | 0.3  | 0.1  | -4.3 | -0.1 | -0.2 | -1.3 | 0.1  | 0    | 0.3  | 0    |
| opCcV0100000976 | -0.3 | 0.2  | -0.1 | 0    | -0.1 | 0.2  | 0.1  | -0.1 | 0.1  | 0.2  |
| opCcV0100000981 | 0.6  | -0.2 | 0.6  | 0    | 0.1  | -0.1 | -0.1 | 0.1  | -0.3 | -0.1 |
| opCcV0100000987 | -0.9 | -0.4 | 0.1  | 0.2  | 0.6  | -0.4 | 0    | 0.7  | -0.5 | -0.3 |
| opCcV0100000989 | -1.2 | -0.8 | -0.3 | -0.2 | 0.1  | -0.2 | -0.1 | 1    | -0.3 | -0.1 |

| opCcV0100000996 | -0.1 | 0.4  | 0.8  | 0.4  | -0.7 | 0.3  | 0    | -0.2 | -0.2 | 0.6  |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100000998 | -0.2 | -0.2 | -0.2 | 0.1  | 0    | 0.3  | 0    | -0.1 | 0    | 0.1  |
| opCcV0100000999 | -0.5 | -0.4 | 0.2  | 0    | 0.1  | 0.1  | 0.1  | 0.1  | -0.1 | 0    |
| opCcV0100001000 | 0.3  | 0.1  | 0.4  | 0    | -0.2 | -0.1 | 0    | 0.2  | -0.3 | 0    |
| opCcV0100001001 | 1    | 0.5  | 0.3  | 0.2  | -0.2 | 0.2  | 0.2  | -0.3 | 0    | 0.1  |
| opCcV0100001004 | 0.2  | 0    | 0.5  | 0    | -0.1 | 0.3  | 0.3  | -0.1 | 0    | -0.1 |
| opCcV0100001007 | -0.2 | -0.3 | -2.5 | -0.1 | 0    | -0.6 | -0.1 | 0    | 0    | 0    |
| opCcV0100001009 | -0.1 | -0.3 | -2.8 | -0.1 | 0.1  | -1.5 | -0.1 | 0.1  | 0.1  | -0.1 |
| opCcV0100001010 | 0    | -0.2 | 0    | 0    | 0    | 0.1  | 0.1  | 0.1  | 0    | 0    |
| opCcV0100001011 | 0.3  | -0.2 | 0.1  | 0.2  | 0.2  | -0.1 | 0    | 0.3  | -0.4 | -0.3 |
| opCcV0100001012 | -0.1 | -0.1 | 0.1  | 0    | 0    | 0.2  | 0.1  | 0    | -0.1 | 0    |
| opCcV0100001013 | -5.7 | -3.8 | -0.9 | -2.7 | 3.9  | -1.9 | -1.9 | 1    | -3.7 | -1.8 |
| opCcV0100001015 | -0.1 | 0.1  | 0.8  | 0    | 0    | 0.3  | 0.2  | -0.2 | -0.1 | 0.1  |
| opCcV0100001017 | 1.3  | -0.9 | 0.8  | 0.1  | 0.2  | 0.3  | 0.6  | 0.6  | -0.7 | 0    |
| opCcV0100001019 | -0.1 | -0.1 | 0    | 0.1  | 0    | 0.1  | 0    | -0.2 | 0.2  | 0.1  |
| opCcV0100001021 | -0.5 | 0.3  | -0.4 | 0    | -0.1 | -0.1 | -0.1 | 0.2  | 0    | -0.1 |
| opCcV0100001023 | 0    | -1.9 | -0.6 | -0.3 | 0.5  | -0.3 | -0.3 | 0.2  | -0.5 | -0.4 |

| opCcV0100001025 | -0.1 | -0.5 | 0.1  | 0    | 0.3  | -0.2 | 0    | 0.1  | -0.2 | -0.1 |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100001026 | 1.6  | 0.6  | 0.8  | -0.1 | -1.2 | 0.3  | 0.6  | -1.1 | 1    | -0.4 |
| opCcV0100001029 | -0.5 | -0.8 | -0.5 | -0.1 | 0    | 0.2  | 0    | -0.1 | -0.2 | -0.1 |
| opCcV0100001030 | 0.8  | 0    | 0.4  | 0.1  | 0.1  | 0.2  | 0.3  | 0.1  | -0.2 | -0.1 |
| opCcV0100001032 | 0.4  | 0    | 0.7  | -0.1 | 0.2  | -0.1 | 0    | -1   | -0.2 | -0.2 |
| opCcV0100001034 | -0.1 | 0.1  | -0.5 | -0.2 | -0.1 | -0.1 | -0.1 | 0    | 0.1  | -0.1 |
| opCcV0100001037 | -0.8 | -0.3 | -1.7 | -0.2 | 0    | 0.1  | -0.2 | 0.7  | 0    | -0.5 |
| opCcV0100001038 | 0.2  | 0    | 0.2  | 0.1  | 0.1  | 0    | 0.1  | 0.1  | -0.2 | -0.1 |
| opCcV0100001047 | 0.4  | 0.3  | -5.3 | 0.1  | -0.2 | -1.8 | -1.9 | -0.1 | 0.2  | 0.1  |
| opCcV0100001049 | -2.3 | -1.8 | -0.2 | -0.1 | 0.3  | -0.2 | -0.2 | 0.4  | -0.3 | 0.1  |
| opCcV0100001051 | 0.3  | 0    | -0.1 | 0    | 0    | 0    | 0    | 0    | 0    | -0.1 |
| opCcV0100001058 | 0.9  | 0    | -0.1 | 0    | 0.1  | -0.1 | 0.1  | 0.2  | -0.2 | -0.1 |
| opCcV0100001061 | -0.8 | -0.5 | -0.4 | -0.1 | -0.1 | 0.1  | -0.1 | 0    | 0    | -0.1 |
| opCcV0100001062 | 0.2  | -0.1 | 0    | 0.1  | 0.3  | -0.1 | 0    | 0.1  | -0.2 | -0.2 |
| opCcV0100001064 | -0.1 | -0.2 | 0    | -0.1 | 0    | 0.2  | 0    | 0    | 0.2  | 0    |
| opCcV0100001066 | -3.1 | -2.6 | -0.5 | -0.1 | 0    | -0.1 | -0.3 | 0.3  | 1    | -0.1 |
| opCcV0100001071 | -2.6 | -1   | -1.6 | -0.2 | 0    | -0.5 | -1.3 | 0.2  | -0.3 | -0.1 |

| opCcV0100001072    | 1    | 0.9  | 0.5  | 0.2  | -0.2 | 0.1  | 0.2  | -0.1 | 0.5  | -0.1 |
|--------------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100001073    | 0.7  | 0.6  | 0.4  | 0.1  | -0.2 | 0.1  | 0.1  | -0.2 | 0.1  | 0    |
| opCcV0100001075    | 0    | 0.1  | 0.2  | -0.1 | -0.1 | 0.2  | 0    | 0.1  | 0.1  | 0    |
| opCcV0100001078    | 0.3  | 0    | 0.1  | -0.1 | 0    | 0.2  | 0.1  | 0    | -0.1 | 0    |
| opCcV0100001079    | 0.3  | 0.1  | 0.3  | 0.1  | 0    | 0    | 0.1  | 0.1  | -0.1 | -0.1 |
| opCcV0100001080    | -0.4 | -0.4 | -0.6 | 0    | 0    | 0.1  | 0    | 0.1  | 0    | -0.1 |
| opCcV0100001081    | 1.2  | -0.1 | 0.1  | 0    | -0.2 | 0    | -0.1 | 0.3  | 0.3  | 0    |
| opCcV0100001082    | 2.8  | 2.6  | 1.8  | 0.7  | -0.7 | 0.2  | 0.4  | -0.4 | 0.4  | 0.4  |
| opCcV0100001086    | 0.1  | 0.1  | -2.7 | -0.2 | 0    | -1   | -1.2 | 0.2  | 0    | -0.1 |
| opCcV0100001089    | 0.7  | 0.3  | 0.6  | 0.1  | 0.1  | -0.1 | 0    | -0.1 | 0.1  | 0    |
| opCcV0100001090    | -3.1 | -0.5 | 1.1  | -0.6 | -0.1 | 0.5  | 0.3  | 1.1  | 0    | -0.5 |
| opCcV0100001098    | 1.4  | 1    | -1.2 | -0.1 | -0.1 | -1.6 | -2.2 | -1.8 | 0.1  | -0.3 |
| opCcV0100001100    | -0.3 | -0.1 | -0.1 | 0    | 0    | 0    | -0.2 | 0.1  | -0.1 | 0    |
| opCcV0100001102    | -0.7 | 0.2  | -0.1 | -0.2 | -0.4 | 0.3  | 0.1  | -0.1 | 0.3  | 0.1  |
| opCcV0100001107    | 0.5  | 0.5  | 0.9  | 0.2  | 0.2  | -0.2 | 0.5  | 0.2  | 0.1  | 0.1  |
| opCcV0100001110    | -4.7 | -3.4 | -0.7 | -1.3 | 1.1  | -1.1 | -1   | 0.8  | -1.3 | -1.2 |
| opCcV0100001111.50 | 2.1  | -0.5 | -0.3 | -1.7 | -0.7 | -1.3 | 0.3  | 0.3  | 1.9  | 0    |

| opCcV0100001111.70 | 1.6  | 0.7  | -1.2 | 0    | -1.1 | -0.1 | 1.8  | 0.4  | 1.9  | -0.5 |
|--------------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100001111.90 | 1.3  | 0.5  | -0.6 | 0.2  | -1   | -0.3 | -0.2 | 0    | 1.6  | -0.3 |
| opCcV0100001111.A  | -0.5 | 0.1  | -0.7 | -0.2 | 0.5  | 0.2  | -0.1 | 0    | 0.3  | 0    |
| opCcV0100001111    | 0.7  | 0.5  | 0.7  | 0    | -0.1 | 0.1  | 0.1  | 0.1  | 0.3  | -0.1 |
| opCcV0100001112    | 0.2  | 0.2  | 0.3  | 0    | 0.1  | 0    | 0    | 0    | 0    | -0.1 |
| opCcV0100001113    | -0.4 | -0.4 | -0.1 | 0    | 0.1  | 0.1  | -0.6 | 0    | -0.1 | 0    |
| opCcV0100001117    | 0.5  | 0.4  | 0.5  | 0    | 0    | -1.4 | 0    | 0    | 0.1  | -0.1 |
| opCcV0100001120    | -0.1 | -0.1 | -0.3 | 0    | -0.1 | 0.2  | 0.1  | -0.1 | 0.2  | 0    |
| opCcV0100001125    | 0    | -0.3 | -0.1 | -0.3 | -0.1 | 0.1  | -0.1 | 0    | 0.1  | -0.3 |
| opCcV0100001126    | -0.4 | -1   | -1   | 0.2  | 0.1  | 0    | -0.1 | 0.2  | -0.4 | 0.1  |
| opCcV0100001127    | -0.9 | -0.6 | -0.9 | -0.1 | 0    | 0.5  | 0.1  | 0.1  | 0.2  | 0    |
| opCcV0100001129    | -1.9 | -0.3 | -0.5 | -0.2 | 0.3  | -0.2 | -0.4 | 0.1  | -0.4 | -0.4 |
| opCcV0100001135    | -0.8 | -2.3 | 0    | 0    | 0.3  | -1.5 | 0.4  | 0.3  | -1.2 | 0.1  |
| opCcV0100001137    | -1.3 | -1.3 | 0.3  | -0.2 | 0.1  | 0.1  | 0    | 0    | -0.2 | 0    |
| opCcV0100001138    | -1.6 | -0.5 | -0.2 | 0    | -0.1 | 0    | -0.8 | -0.2 | -0.2 | -0.1 |
| opCcV0100001143    | -1.2 | -2.6 | -0.2 | -0.2 | 0.2  | -0.1 | -0.2 | 0.1  | -0.4 | -0.2 |
| opCcV0100001146    | -0.1 | 0.2  | 0.1  | 0    | -0.1 | 0.1  | 0    | 0    | 0.1  | 0    |

| opCcV0100001149 | -0.8 | -0.8 | 0.6  | 0    | 0.2  | 0.1  | 0.2  | 0    | -0.3 | 0    |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100001150 | 0.2  | 0    | -0.2 | -0.1 | 0    | 0    | 0.1  | 0    | 0    | -0.1 |
| opCcV0100001151 | 0    | 0.2  | -4.3 | -0.1 | -0.1 | -1.3 | -1.5 | -1.1 | 0.1  | -0.1 |
| opCcV0100001159 | -0.1 | -0.1 | 0.1  | -0.1 | 0.1  | 0.1  | -0.1 | 0.1  | 0    | 0    |
| opCcV0100001161 | 0.7  | 0.2  | 0.6  | -0.1 | 0    | 0    | 0.1  | -0.1 | 0.1  | 0    |
| opCcV0100001164 | -0.5 | -0.4 | -0.3 | -0.1 | 0.1  | 0    | -0.1 | -0.1 | 0    | 0    |
| opCcV0100001167 | 1.8  | 1.4  | -0.4 | -1.4 | 0.5  | 0    | 0.8  | 0.6  | 1    | -1.3 |
| opCcV0100001169 | 0.3  | -0.2 | 0.2  | 0    | -0.2 | -0.1 | 0.2  | 0.1  | -0.3 | -0.1 |
| opCcV0100001170 | 0.6  | 0.3  | -2.4 | -0.1 | -0.3 | -1.6 | -2.1 | 0    | 0.3  | 0.1  |
| opCcV0100001173 | 1    | 0.5  | 0.6  | 0.1  | -0.1 | 0    | 0.1  | 0.1  | 0    | 0    |
| opCcV0100001174 | -0.9 | -0.7 | -0.7 | -0.1 | 0.2  | 0.1  | 0    | 0.2  | -0.1 | -0.1 |
| opCcV0100001175 | 1.3  | -1.2 | 1.3  | -0.3 | -0.4 | 1    | 0    | 0.5  | -0.2 | 0.3  |
| opCcV0100001190 | 2.1  | -1.2 | 1.8  | -0.2 | 0.5  | 0    | 0.4  | 0.5  | -0.4 | -0.4 |
| opCcV0100001191 | 0.6  | -0.3 | 1.1  | -0.2 | -0.1 | 0.3  | 0.2  | 0.3  | 0.6  | 0    |
| opCcV0100001194 | 0.9  | 0.4  | 0.5  | 0    | 0.1  | -0.2 | 0.1  | 0    | -0.2 | -0.2 |
| opCcV0100001196 | 0.7  | 0.2  | 0.3  | 0.1  | -0.1 | 0.2  | 0    | 0    | 0.1  | 0.1  |
| opCcV0100001198 | -1.4 | -0.3 | -0.9 | -0.1 | -0.1 | -0.3 | -0.1 | 0.7  | -0.3 | 0    |

| opCcV0100001199    | 0.4  | 0.7  | 0.2  | 0    | -0.2 | 0.1  | 0    | 0.1  | 0.1  | 0    |
|--------------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100001200.70 | 2    | 1.5  | -0.4 | -0.9 | -2.5 | -1.1 | 0.1  | 0.7  | 1.6  | 0.5  |
| opCcV0100001200.A  | 0.9  | 1.3  | 0.2  | 0    | -0.8 | 0.4  | 0.5  | 0    | 1    | 0.4  |
| opCcV0100001200.C  | 3.5  | 0.5  | -0.2 | -0.6 | -1.3 | -0.5 | -0.5 | 0.5  | 2    | -0.9 |
| opCcV0100001200    | 2.2  | 0.3  | 1    | -0.2 | -0.3 | -0.1 | 0.3  | 0.3  | 0.2  | -0.1 |
| opCcV0100001203    | -1.8 | -0.2 | -0.3 | -0.1 | -0.2 | 0.1  | 0    | 0.3  | 0.1  | 0.3  |
| opCcV0100001204    | -0.8 | 0.1  | -0.2 | 0    | 0    | 0.1  | 0    | -0.3 | 0    | 0    |
| opCcV0100001205    | 0    | 0.1  | 0    | 0    | 0    | 0.2  | 0.1  | 0    | 0.1  | -0.1 |
| opCcV0100001210    | -0.4 | -0.1 | -0.4 | -0.1 | 0    | -0.2 | -0.1 | 0    | 0.2  | 0.1  |
| opCcV0100001212    | -0.3 | -0.2 | 0.4  | -0.1 | 0.1  | -0.2 | 0    | -0.3 | 0.5  | 0    |
| opCcV0100001213    | 0.3  | 0.3  | 0.2  | 0    | 0.3  | 0    | 0    | 0    | 0    | -0.2 |
| opCcV0100001214    | -0.6 | -0.3 | 1.5  | -0.1 | 0.1  | -0.3 | -0.2 | 0.2  | -0.1 | -0.1 |
| opCcV0100001216    | -0.6 | -1   | -1.1 | 0    | 0.2  | -0.7 | -0.4 | -0.3 | 0    | -0.1 |
| opCcV0100001219    | -0.5 | -0.2 | -0.3 | -0.1 | 0    | 0.3  | -0.1 | 0.1  | 0    | 0    |
| opCcV0100001221    | -2.5 | -1.8 | -0.9 | -0.3 | 0.4  | 0.3  | 0    | 0.8  | -0.2 | -0.4 |
| opCcV0100001222    | 0.7  | 0.3  | 0.2  | 0.1  | 0    | -0.1 | 0.1  | 0    | 0    | -0.1 |
| opCcV0100001223    | 0.2  | -0.1 | 0.7  | -0.1 | -0.2 | 0    | 0    | 0    | -0.1 | 0    |

| opCcV0100001225 | -0.7 | 0.1  | -1.2 | 0    | -0.4 | 0.2  | -0.1 | -0.1 | 0.3  | 0.1  |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100001231 | -2   | 0.4  | -0.5 | 0    | 0    | -0.3 | -0.5 | -0.5 | 0.1  | 0.1  |
| opCcV0100001232 | -5.2 | -5   | -1.1 | -0.8 | 1.6  | -1.3 | -1.5 | 0.5  | -1.7 | -0.8 |
| opCcV0100001233 | -0.7 | -0.7 | -0.3 | 0.1  | 0.3  | -0.2 | -0.1 | -0.3 | 0    | 0.1  |
| opCcV0100001236 | -0.8 | -0.8 | -3.4 | -0.4 | 0.2  | 0.2  | -0.2 | -0.5 | -0.5 | -0.3 |
| opCcV0100001238 | 0.8  | 0.9  | 0.9  | 0    | -0.3 | 0.2  | 0.2  | -0.2 | 0.4  | 0    |
| opCcV0100001240 | 0.4  | 0.9  | 0.4  | 0.3  | -0.1 | 0.2  | 0.3  | -0.1 | 0    | 0.2  |
| opCcV0100001242 | 0.3  | 0.2  | 0    | 0    | -0.1 | 0    | 0.2  | 0    | 0    | 0    |
| opCcV0100001244 | 0.2  | 0.1  | 0.4  | -0.1 | -0.1 | 0.2  | 0.1  | -0.1 | -0.2 | 0    |
| opCcV0100001246 | 0.6  | 0.4  | 0.2  | 0    | 0.1  | -0.1 | 0    | -0.1 | -0.2 | -0.1 |
| opCcV0100001248 | -2.6 | -1.9 | -1.5 | -0.6 | 0.9  | -0.1 | -0.2 | 0.2  | -0.5 | -0.6 |
| opCcV0100001251 | -0.8 | -0.7 | 0.3  | -0.4 | 0.4  | -0.2 | 0    | 0.4  | -0.2 | -0.3 |
| opCcV0100001252 | 0.3  | 0.1  | -0.1 | 0    | 0    | 0    | 0.1  | 0.1  | 0    | -0.1 |
| opCcV0100001255 | -0.2 | 0    | -3.5 | -0.1 | 0.1  | -0.9 | 0    | -0.1 | 0.2  | 0.1  |
| opCcV0100001260 | 1    | 0    | 1.3  | 0.2  | 0.7  | 0.4  | 0.3  | -0.1 | 0    | 0.1  |
| opCcV0100001261 | -0.7 | -0.6 | 0.1  | -0.3 | 0.2  | 0.2  | -0.1 | 0.1  | -0.1 | -0.1 |
| opCcV0100001263 | 1.1  | -0.8 | 0.7  | 0.4  | 0    | 0.3  | 0.3  | 0.4  | 0.4  | 0.2  |

| opCcV0100001264.60 | 3.3  | 1.7  | 0.6  | 0.4  | -1.7 | 0.1  | 0.4  | 0.9  | 0.9  | -0.4 |
|--------------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100001264.70 | 1.9  | 1.2  | -0.9 | -0.9 | -1.6 | 0.2  | 0.5  | 1.6  | 2.5  | -1.2 |
| opCcV0100001264.80 | 2.3  | 6.5  | -1   | 0.8  | -0.4 | -0.8 | 4    | 0.6  | 0.1  | 0.6  |
| opCcV0100001264.90 | -1   | -1.2 | -1.3 | -0.1 | 0.3  | 0.1  | 0.3  | -0.2 | -0.3 | -0.3 |
| opCcV0100001264.A  | -2.7 | -2.2 | -4.5 | -0.5 | 1    | 0.2  | 0.2  | 0.2  | -0.1 | -0.4 |
| opCcV0100001264    | -1.5 | -2.2 | -3.2 | -0.2 | 0.9  | -0.1 | 0.5  | 0    | -0.4 | -0.2 |
| opCcV0100001265    | 1    | -3   | 0    | -0.7 | 1    | 0.2  | -0.1 | 1.9  | 0.2  | -0.9 |
| opCcV0100001266    | 0.3  | 0.2  | 0.9  | 0    | 0.1  | 0.3  | 0.4  | 0.2  | -0.1 | -0.1 |
| opCcV0100001268    | 1.1  | 0.7  | 0.6  | 0.1  | -0.2 | 0.2  | 0.3  | -0.1 | 0.1  | 0.1  |
| opCcV0100001270    | -1.9 | -0.8 | -0.3 | -0.1 | -0.1 | 0.1  | -0.1 | 0.1  | -0.1 | 0    |
| opCcV0100001271    | -0.5 | 0    | 0.3  | -0.1 | -0.1 | 0    | 0.1  | 0.1  | 0.2  | 0    |
| opCcV0100001272    | -1.2 | -0.7 | -0.2 | 0.2  | 0.4  | -0.3 | 0.2  | 0.4  | -0.7 | 0    |
| opCcV0100001273    | -0.1 | 0.2  | 0.1  | -0.1 | -0.4 | 0.2  | 0    | -0.1 | 0.1  | 0.1  |
| opCcV0100001275    | 0.7  | 1.4  | 0.5  | -0.1 | 0.7  | 0.7  | -0.4 | 1.4  | -0.6 | 0.3  |
| opCcV0100001276    | 0.3  | 0    | 0.1  | -0.1 | 0    | 0.2  | 0    | 0    | 0    | 0    |
| opCcV0100001278    | 1.5  | -0.3 | 1.8  | 0.1  | 0.2  | 0.7  | 0.2  | 0.5  | 0.8  | 0.3  |
| opCcV0100001279    | -1   | -0.6 | -2.7 | 0    | 0.1  | 0    | 0    | -1.2 | 0    | -0.1 |

| opCcV0100001281    | -1.9 | -2.1 | -1   | 0    | 1.2  | -0.1 | -0.3 | 0.3  | -0.6 | -0.2 |
|--------------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100001286    | 0.2  | 0    | 0.3  | 0.1  | 0.1  | 0.1  | -0.1 | 0.2  | 0.1  | 0    |
| opCcV0100001288    | -0.1 | 0.2  | -0.2 | -0.1 | -0.2 | 0.2  | -0.2 | 0    | 0.1  | 0.2  |
| opCcV0100001290    | 1.5  | -0.5 | -0.1 | 0.3  | 0.1  | 0    | 0    | 0    | -0.3 | 0.3  |
| opCcV0100001291    | 2.8  | 1.5  | 1.5  | 0.2  | -0.9 | 0.5  | 0.6  | -0.2 | 0.6  | 0.3  |
| opCcV0100001292.50 | 3.1  | 1.3  | -0.9 | -2.1 | 0.2  | -0.1 | 0.5  | 0.7  | -0.4 | -1.4 |
| opCcV0100001292.90 | 0    | -0.1 | -0.1 | -0.2 | 0.1  | -0.3 | -0.9 | -1   | 0.1  | -0.1 |
| opCcV0100001292.A  | -0.1 | 0    | -0.1 | -0.1 | 0    | 0.1  | 0    | -0.8 | 0.1  | 0    |
| opCcV0100001292.C  | 3.1  | 1.1  | 0    | -0.7 | 0.4  | 0.1  | 0.4  | 1.2  | 2.2  | -1.9 |
| opCcV0100001292    | 0.1  | 0    | 0.1  | -0.1 | 0    | 0    | -0.1 | -0.6 | 0    | -0.1 |
| opCcV0100001294    | 0.6  | 0.7  | 0.2  | 0.1  | -0.4 | 0.2  | 0.1  | -0.1 | 0.1  | 0.1  |
| opCcV0100001295    | -0.9 | -0.5 | -0.3 | -0.2 | 0.1  | 0.1  | -0.1 | 0    | -0.2 | -0.1 |
| opCcV0100001297    | 0.4  | -0.5 | 0.2  | 0.1  | 0.2  | -0.1 | -0.1 | 0.2  | -0.2 | -0.1 |
| opCcV0100001299    | 0.4  | 0.1  | 0.4  | 0.3  | -0.1 | 0.2  | 0.1  | 0    | -0.1 | 0    |
| opCcV0100001302    | -0.2 | -0.3 | -0.1 | 0    | 0    | 0.1  | -0.1 | -0.1 | 0.1  | 0    |
| opCcV0100001305    | -0.7 | -0.9 | -0.7 | 0.2  | -0.2 | -0.2 | -0.2 | 0.7  | -1.2 | -0.1 |
| opCcV0100001307    | -0.2 | -0.2 | 0.2  | 0    | 0    | 0.2  | -0.1 | -0.1 | 0.2  | 0.1  |

| opCcV0100001308 | -0.1 | -0.3 | 0.1  | 0    | 0.3  | 0    | 0    | 0    | -0.1 | -0.1 |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100001309 | -3.1 | -3.3 | -1.1 | -1.2 | 1.1  | -0.6 | -1   | 1.7  | -1.5 | -1.3 |
| opCcV0100001310 | -0.1 | -0.3 | 0.3  | -0.1 | 0.1  | 0    | 0    | 0.1  | -0.2 | -0.1 |
| opCcV0100001311 | -0.4 | -0.2 | -0.7 | -0.1 | -0.2 | -0.2 | -0.2 | 0    | 0.2  | -0.1 |
| opCcV0100001316 | 0.5  | 0.3  | -2.9 | 0.1  | -0.2 | -1   | -1.3 | -0.1 | 0    | 0    |
| opCcV0100001319 | -4.3 | -1.7 | -4.5 | -0.3 | 0.5  | -0.6 | -1.1 | -0.9 | -0.3 | -0.4 |
| opCcV0100001320 | 0.2  | -0.2 | 0.5  | 0    | 0.2  | 0.3  | 0.3  | 0.1  | 0.1  | -0.1 |
| opCcV0100001322 | 1.8  | 0.7  | 1.8  | 0.3  | -1   | 0.7  | 0.8  | -0.4 | 0.7  | 0.6  |
| opCcV0100001324 | 1.7  | 1.3  | 1.4  | 0.3  | -0.6 | 0.5  | 0.6  | -0.4 | 0.7  | 0.5  |
| opCcV0100001325 | -0.1 | -0.3 | 0.2  | -0.1 | 0.1  | 0.1  | 0    | 0.1  | -0.2 | -0.2 |
| opCcV0100001326 | 0.1  | 0.4  | 0.2  | -0.2 | -0.4 | 0.3  | 0    | 0    | -0.1 | -0.1 |
| opCcV0100001327 | 0.5  | -0.2 | 0.5  | 0.1  | 0    | -0.1 | -0.1 | 0    | 0    | -0.1 |
| opCcV0100001332 | -0.6 | -0.4 | 0.2  | -0.1 | 0    | -0.1 | 0.3  | 0.1  | -0.1 | 0    |
| opCcV0100001340 | -0.1 | 0    | 0.1  | -0.1 | -0.1 | -0.1 | -0.1 | 0.1  | -0.3 | -0.1 |
| opCcV0100001341 | -0.4 | -0.8 | 2.5  | 0.2  | 1.2  | 1    | 1.4  | 0.3  | -0.2 | 0.2  |
| opCcV0100001344 | -0.2 | -0.6 | 0.5  | 0.1  | 0.3  | 0.1  | 0.3  | 0.3  | -0.3 | -0.1 |
| opCcV0100001345 | -0.3 | 0.3  | 0.1  | 0    | -0.3 | 0    | -0.4 | 0.2  | -0.2 | 0    |

| opCcV0100001347 | 0.7  | 0.3  | 0.1  | 0    | -0.1 | 0    | 0    | -0.1 | -0.1 | 0    |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100001353 | 0    | 0    | -6.5 | 0    | 0    | 0.1  | -0.1 | -1.9 | 0.1  | 0    |
| opCcV0100001356 | 0.1  | -1.3 | -0.5 | 0.1  | 0.3  | -0.1 | -0.1 | 0.4  | -0.7 | -0.1 |
| opCcV0100001357 | 0.4  | 0.4  | 0.1  | 0    | 0    | 0    | -0.1 | 0    | 0.1  | 0    |
| opCcV0100001358 | 0.4  | 0.4  | 0.5  | 0.1  | -0.2 | -0.3 | 0.2  | -0.1 | -0.1 | -0.1 |
| opCcV0100001361 | 0.7  | -0.9 | 0.3  | 0    | 0.2  | -0.1 | 0.2  | 0.7  | -0.3 | -0.2 |
| opCcV0100001367 | 1.7  | 1.6  | 0.4  | -2   | -1   | 0.2  | -0.5 | 0.1  | 1.2  | -1.6 |
| opCcV0100001370 | 0.5  | 0.3  | 0.5  | 0    | 0    | 0.1  | 0.1  | 0.1  | -0.1 | -0.1 |
| opCcV0100001371 | -0.2 | -0.4 | 0.2  | 0.1  | 0.2  | -0.2 | 0.2  | -0.1 | -0.2 | -0.1 |
| opCcV0100001377 | 0.2  | 0.1  | 0.4  | 0.1  | 0.1  | 0    | 0    | 0.1  | -0.1 | -0.1 |
| opCcV0100001378 | 0.5  | 0.1  | 0.3  | 0    | 0    | 0.1  | 0.1  | -0.1 | -0.1 | 0    |
| opCcV0100001381 | 0.7  | 0.4  | 0.4  | 0.2  | 0    | 0    | 0    | -0.1 | 0    | 0.1  |
| opCcV0100001383 | -0.5 | -0.2 | 0.5  | -0.1 | 0.2  | 0    | 0    | 0.2  | -0.1 | -0.1 |
| opCcV0100001389 | 0    | 0.1  | 0.3  | 0    | 0.1  | 0.2  | 0    | 0.2  | -0.1 | 0    |
| opCcV0100001390 | -0.6 | -0.5 | -0.5 | 0    | 0.1  | 0.1  | 0    | -0.1 | 0    | 0    |
| opCcV0100001394 | -0.2 | -0.3 | 0.1  | -0.2 | -0.1 | 0.2  | -0.2 | 0.1  | 0    | -0.1 |
| opCcV0100001395 | -0.5 | -0.2 | -7.4 | -0.1 | -0.1 | 0.2  | 0    | -1.7 | 0.1  | 0    |

| opCcV0100001399    | -1.1 | 0    | 0.6  | 0.1  | 0.1  | 0.3  | 0.2  | 0.2  | -0.6 | 0    |
|--------------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100001402    | 0.3  | -0.1 | 0.3  | 0    | 0.2  | 0.1  | -0.4 | -0.4 | 0.1  | 0    |
| opCcV0100001404    | -0.2 | -0.5 | 0.7  | 0    | 0.2  | -0.1 | 0.1  | 0.2  | -0.2 | -0.2 |
| opCcV0100001406    | 0.9  | 0.2  | 0.2  | 0.1  | 0.1  | 0    | 0    | -0.1 | 0    | 0    |
| opCcV0100001411    | -5.4 | -4.1 | -4.3 | -0.3 | 2.7  | -1.4 | -2.1 | 2    | -1.5 | -1.6 |
| opCcV0100001414    | -0.1 | -0.4 | 0.5  | 0.1  | 0.3  | 0.3  | 0.3  | 0.7  | -0.1 | -0.2 |
| opCcV0100001415.80 | -0.8 | -0.5 | 0.2  | -0.1 | -0.3 | -1   | -1.1 | 0.2  | -0.4 | -0.1 |
| opCcV0100001415.90 | 0.1  | -0.2 | -0.2 | -0.1 | -0.1 | -0.2 | -0.2 | 0    | -0.1 | -0.1 |
| opCcV0100001415.A  | -0.8 | -0.4 | -0.8 | -0.1 | 0    | 0    | -0.3 | 0.1  | 0.1  | -0.1 |
| opCcV0100001415.C  | 1.3  | 1    | -0.2 | 0    | -1.1 | -0.7 | -0.2 | -0.3 | 1    | -0.1 |
| opCcV0100001415    | 0.3  | 0    | 0    | 0    | 0    | -0.1 | -0.1 | 0    | -0.1 | -0.2 |
| opCcV0100001418    | 0.2  | 0    | 0.4  | 0    | -0.1 | 0.2  | 0    | -0.1 | -0.1 | 0    |
| opCcV0100001421    | -0.8 | 0    | 0    | -0.1 | -0.1 | 0    | -0.3 | -0.1 | 0.1  | 0    |
| opCcV0100001423    | 0.3  | 0.2  | 0.3  | 0.2  | 0    | 0.1  | 0    | 0    | 0.1  | -0.1 |
| opCcV0100001424    | 1.5  | 0.5  | 2.5  | 0.5  | -0.7 | 0.2  | 0.6  | -0.4 | 0.5  | 0.5  |
| opCcV0100001425    | -0.3 | -0.2 | 0.9  | -0.1 | -0.1 | 0.3  | 0.3  | 0.4  | 0    | -0.1 |
| opCcV0100001431    | 2.1  | -1.5 | 1.3  | -0.1 | 0.2  | 0.5  | 0.1  | 0.6  | 0.3  | 0    |

| opCcV0100001432 | -5.2 | 0.4  | -2.6 | -0.8 | 0.7  | -1.2 | -1.1 | 0.6  | -1.2 | -0.5 |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100001435 | 0.6  | 0.4  | 0.3  | 0    | -0.3 | 0.3  | 0.2  | -0.1 | 0.2  | 0    |
| opCcV0100001437 | -0.6 | -0.5 | -1.2 | -0.2 | 0.2  | -0.1 | 0    | 0.1  | -0.2 | -0.2 |
| opCcV0100001440 | 0.3  | 0    | 0    | 0    | 0.2  | -0.1 | 0    | 0.1  | -0.2 | -0.2 |
| opCcV0100001442 | 1.1  | -1.2 | 0.5  | -0.1 | 0.2  | -0.2 | -0.5 | -0.2 | -0.9 | -0.2 |
| opCcV0100001444 | -0.8 | -0.8 | -0.2 | -0.2 | 0.1  | 0.1  | -0.4 | 0.6  | -0.1 | -0.2 |
| opCcV0100001446 | 0.5  | 0.2  | 0.2  | 0.1  | 0.1  | 0    | -0.1 | -0.2 | 0    | -0.1 |
| opCcV0100001448 | -1.1 | 0.4  | 0.5  | 0    | 0.1  | 0    | 0    | 0.1  | 0.2  | 0    |
| opCcV0100001449 | 0.3  | 0.1  | 0.5  | 0.1  | 0.1  | 0.1  | 0.1  | 0    | -0.1 | -0.1 |
| opCcV0100001451 | 2.2  | -0.2 | 0.4  | 0.4  | 0.3  | 0    | -0.5 | 0.9  | -1.5 | -0.2 |
| opCcV0100001452 | 0    | -0.2 | -0.6 | -0.1 | 0.1  | -0.5 | 0.2  | -0.3 | -0.1 | 0    |
| opCcV0100001453 | 0.2  | 0    | 0.3  | 0    | 0.1  | 0.2  | 0.2  | 0    | -0.1 | 0    |
| opCcV0100001454 | -0.6 | -1.3 | -0.1 | -0.1 | 0.3  | 0.1  | -0.3 | -0.2 | 0.2  | 0    |
| opCcV0100001455 | 0.5  | 0.3  | 0.2  | 0.1  | 0    | -0.1 | 0.2  | -0.1 | 0    | -0.1 |
| opCcV0100001456 | 0    | -0.1 | 0    | -0.1 | -0.1 | 0    | 0    | 0    | 0    | -0.2 |
| opCcV0100001459 | 2.2  | 0.9  | -0.1 | 0.2  | -0.4 | -0.4 | -0.5 | -0.2 | 0.2  | 0.4  |
| opCcV0100001461 | -4.1 | -0.4 | -0.3 | 0    | 0.2  | -0.2 | -0.3 | 0.5  | -0.3 | -0.2 |

| opCcV0100001462 | -0.1 | -0.7 | -0.3 | -0.2 | 0.1  | 0    | -0.5 | 0.3  | -0.2 | -0.2 |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100001465 | -0.2 | -0.1 | 0.1  | -0.1 | 0    | -0.1 | 0    | -0.5 | 1    | -0.1 |
| opCcV0100001466 | -0.8 | -0.5 | -1.8 | 0    | 0    | 0.1  | -0.1 | 0.1  | 0    | -0.1 |
| opCcV0100001467 | 0.2  | 0    | 0.1  | 0    | -0.1 | 0    | 0    | -0.1 | 0    | -0.1 |
| opCcV0100001471 | -1.8 | -1.3 | 0.2  | -0.3 | 0.1  | -0.2 | 0.4  | 0.3  | -0.6 | -0.4 |
| opCcV0100001476 | -0.9 | -0.6 | 0.3  | -0.1 | 0    | -0.2 | 0    | 0.3  | -0.1 | -0.1 |
| opCcV0100001479 | -0.8 | -0.3 | 0.1  | 0    | 0    | 0    | 0.1  | 0.1  | -0.2 | -0.2 |
| opCcV0100001480 | -2.3 | -0.2 | -0.1 | -0.4 | -0.1 | 0.1  | -0.1 | 0.6  | -0.5 | -0.4 |
| opCcV0100001482 | -0.6 | -0.3 | 0.5  | 0    | 0.1  | 0.2  | 0    | -0.4 | 0.1  | 0    |
| opCcV0100001483 | 0.3  | 0    | 0.2  | 0    | 0    | 0    | 0.1  | -0.1 | 0    | -0.1 |
| opCcV0100001488 | -0.8 | -1.5 | -0.8 | -0.2 | 0.6  | -0.3 | -0.5 | 0.6  | -0.3 | -0.2 |
| opCcV0100001489 | 0.9  | -0.2 | 1.9  | 0.5  | 0    | 0.2  | 0.8  | -0.1 | 0.2  | 0.5  |
| opCcV0100001493 | -0.6 | -1.6 | -0.3 | 0    | 0    | 0    | 0    | 0.1  | 0.1  | 0.1  |
| opCcV0100001498 | 2.1  | 1.7  | 0.2  | 0.6  | -0.8 | 0    | -0.1 | -0.5 | 0.7  | 0.5  |
| opCcV0100001501 | -0.7 | -0.3 | -1   | -0.1 | 0    | -0.6 | -0.3 | 0    | 0.1  | -0.1 |
| opCcV0100001504 | -0.2 | 0    | -0.5 | -0.1 | 0    | -0.9 | -0.3 | -0.5 | -0.3 | 0.2  |
| opCcV0100001513 | -1.3 | -1.1 | 0.9  | 0    | 0.4  | 0.1  | -0.2 | 0.1  | -0.5 | -0.3 |

| opCcV0100001515 | -1.4 | -0.9 | -0.5 | 0    | 0.3  | 0.1  | -0.6 | 0.5  | -1.4 | -0.1 |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100001519 | -1.7 | -1.5 | -1   | -0.4 | 0.3  | -0.1 | -0.2 | 0    | -0.4 | -0.1 |
| opCcV0100001521 | -0.4 | -0.9 | -2.3 | -0.2 | -0.4 | -0.2 | -0.4 | -0.1 | -0.3 | -0.1 |
| opCcV0100001522 | -0.1 | -0.6 | 0    | -0.3 | -0.1 | 0.2  | -0.1 | 0.3  | -0.2 | -0.3 |
| opCcV0100001526 | 0.7  | -0.4 | 0.6  | 0    | -0.3 | 0.2  | -1   | 0.1  | 0.1  | 0    |
| opCcV0100001528 | -0.8 | 0.2  | 0    | 0    | 0    | -0.1 | -0.1 | 0    | -0.1 | -0.1 |
| opCcV0100001535 | 0.1  | -1.1 | -1.1 | 0    | 0.3  | 0    | -0.4 | 0.2  | -0.3 | 0    |
| opCcV0100001536 | 0    | -1.2 | 0    | 0    | 0.3  | 0    | 0    | 0.3  | -1.3 | 0    |
| opCcV0100001537 | 1.2  | 1.1  | -0.1 | 0.2  | -0.2 | -0.1 | 0.1  | -0.4 | 0.3  | 0.2  |
| opCcV0100001538 | 0    | -0.2 | -0.3 | -0.1 | -0.1 | 0.2  | -0.1 | -0.1 | -0.2 | -0.1 |
| opCcV0100001540 | -0.7 | -0.7 | -0.3 | 0    | 0.2  | -0.1 | -0.4 | -0.3 | -0.1 | 0    |
| opCcV0100001541 | -1.4 | 1.5  | 0.9  | 0.1  | 0    | 0    | 0.3  | 0.6  | -0.3 | 0    |
| opCcV0100001543 | 0    | 0.3  | 0    | 0.1  | -0.1 | 0.1  | -0.1 | -0.1 | 0.1  | 0.1  |
| opCcV0100001549 | -0.5 | -0.5 | -0.3 | 0    | 0.4  | -0.2 | -0.3 | 0.3  | 0.8  | -0.1 |
| opCcV0100001553 | 0.6  | 0.2  | 0.4  | 0.1  | -0.1 | 0    | 0    | 0    | 0    | 0    |
| opCcV0100001554 | 0.5  | 0.2  | 0.2  | 0    | 0    | 0    | 0.1  | 0    | -0.1 | 0    |
| opCcV0100001559 | -1.6 | -3.3 | -0.3 | 0.1  | 0.3  | 0.4  | 0.1  | 0.1  | 0.2  | -0.1 |

| opCcV0100001561 | 0.5  | 0    | 0    | 0.1  | 0    | -0.1 | -0.1 | 0.1  | 0    | -0.1 |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100001563 | -0.2 | 0    | -0.5 | 0    | 0    | 0    | -0.1 | 0    | 0.1  | -0.3 |
| opCcV0100001566 | 0.2  | -0.6 | 1.3  | 0.4  | 0.4  | 0.1  | -1   | 0.2  | -0.2 | -0.1 |
| opCcV0100001567 | 0.1  | -0.2 | -0.2 | -0.1 | -0.1 | 0.1  | -0.1 | -0.2 | -0.7 | 0    |
| opCcV0100001569 | -1.7 | -0.1 | -0.4 | -0.2 | -0.1 | -0.4 | -0.2 | 0.1  | -0.3 | 0    |
| opCcV0100001570 | 0.1  | 0    | 0    | -0.1 | 0    | 0.1  | -0.2 | -0.3 | 1.2  | 0    |
| opCcV0100001572 | 0    | 0    | 0.2  | 0    | 0.2  | 0.1  | -0.1 | 0    | -0.1 | -0.1 |
| opCcV0100001578 | 0.1  | 0.2  | 0.1  | 0.1  | 0    | 0.1  | 0.2  | 0    | 0    | 0    |
| opCcV0100001583 | -0.3 | -0.4 | 0    | -0.2 | -0.2 | 0.1  | -0.1 | 0.2  | 0    | -0.1 |
| opCcV0100001584 | 0.3  | -0.1 | 0    | 0    | 0    | 0    | 0.1  | 0    | 0    | 0    |
| opCcV0100001587 | -0.5 | -0.9 | -0.3 | 0    | 0.1  | 0.3  | -0.2 | 0.2  | -0.1 | 0    |
| opCcV0100001592 | 0.1  | -0.2 | 0.8  | 0    | 0.1  | -0.1 | 0.1  | 0.1  | 0.3  | -0.1 |
| opCcV0100001594 | 0.7  | 0.2  | 0.4  | 0.1  | 0.1  | 0    | 0    | -0.1 | 0    | -0.1 |
| opCcV0100001598 | -0.8 | 0.2  | 0.4  | -0.2 | -0.1 | 0.2  | 0    | 0.2  | 0.4  | 0.1  |
| opCcV0100001599 | -0.3 | -0.3 | -0.4 | 0.2  | 0.1  | -0.1 | -0.2 | 0    | 0.1  | -0.1 |
| opCcV0100001602 | 0.4  | 0    | -0.4 | -0.1 | -0.2 | -0.1 | 0.1  | 0.1  | 0    | 0    |
| opCcV0100001606 | 1.7  | 0.9  | 0.4  | 0.2  | 0.4  | 0.1  | -0.1 | -0.1 | 0.1  | 0.1  |

| opCcV0100001607 | -2.9 | -3.6 | -0.2 | 0    | 0.3  | -0.5 | 0    | 0.8  | -1   | -0.2 |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100001610 | 0.2  | -0.6 | -0.9 | 0.1  | 0.2  | -0.4 | -0.9 | 0.3  | -0.1 | -0.2 |
| opCcV0100001611 | 0.4  | 0    | -0.2 | 0    | 0    | 0.1  | 0    | 0    | -0.1 | -0.1 |
| opCcV0100001614 | 0.2  | -0.5 | 0    | -0.2 | 0.2  | 0    | -0.2 | 0.1  | -0.2 | -0.2 |
| opCcV0100001619 | 0.1  | 0.1  | 0    | -0.1 | 0.7  | 0.2  | -0.1 | -0.1 | 0    | 0    |
| opCcV0100001620 | 0.2  | 0    | 1.2  | 0    | 0.1  | 0.2  | 0.1  | -0.1 | 0    | 0    |
| opCcV0100001622 | -2.8 | -2.8 | -2   | -0.4 | 0.3  | -0.2 | -0.7 | 1    | -1.3 | -0.5 |
| opCcV0100001623 | 0.7  | 0.4  | 0.9  | 0.2  | 0.1  | 0    | 0.1  | 0.2  | 0    | 0    |
| opCcV0100001624 | -0.8 | -1.3 | 0.5  | 0.1  | -0.5 | 0.1  | -0.2 | 0.2  | -0.4 | 0    |
| opCcV0100001625 | -0.4 | -0.1 | 0.6  | 0    | 0    | -0.2 | -0.3 | -0.1 | -0.2 | -0.1 |
| opCcV0100001629 | -0.3 | -0.4 | -0.1 | -0.2 | -0.2 | 0.1  | -0.2 | 0.2  | 0.2  | 0.1  |
| opCcV0100001630 | 0.4  | 0    | 0.2  | -0.1 | 0    | -0.1 | -0.1 | 0.2  | 0.1  | 0.1  |
| opCcV0100001631 | 0.2  | 0.5  | 0.8  | 0    | -0.6 | 0.2  | 0.2  | -0.2 | 0.2  | 0.2  |
| opCcV0100001634 | -0.8 | -1.6 | 2    | 0.2  | 0.3  | 0.3  | 0.2  | 0.4  | 0.2  | 0.6  |
| opCcV0100001635 | 0.3  | 0.2  | 0.3  | 0    | 0    | 0    | -0.1 | -0.2 | 0.1  | 0.1  |
| opCcV0100001636 | -0.2 | 0    | -0.2 | 0    | -0.1 | 0.2  | -0.1 | -0.1 | 0.1  | 0    |
| opCcV0100001639 | 0.1  | 0.1  | 0.2  | 0    | 0    | 0.1  | 0    | 0    | -0.2 | -0.1 |

| opCcV0100001640    | -0.5 | -1.9 | 0    | 0    | 0.2  | -0.1 | -0.5 | 0.8  | 0.2  | 0    |
|--------------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100001641    | 0.1  | -0.2 | 0.6  | 0    | 0    | -0.7 | 0    | 0    | 0    | -0.1 |
| opCcV0100001644    | -1.8 | -1.4 | -1.4 | -0.1 | -0.2 | 0.2  | 0.1  | 0.1  | -0.3 | 0    |
| opCcV0100001647    | 0.1  | 0.1  | -0.1 | 0    | -0.2 | 0.1  | 0    | 0.1  | 0.1  | 0    |
| opCcV0100001649    | -0.9 | -0.4 | -0.3 | -0.2 | -0.1 | 0.1  | -0.1 | 0    | 0    | 0    |
| opCcV0100001653    | 0.4  | 0.3  | 0.7  | 0    | -0.2 | 0.1  | 0    | 0.2  | -0.1 | 0    |
| opCcV0100001654    | 0.5  | 0    | 0.5  | -0.1 | -0.2 | 0.2  | 0.3  | 0    | -0.2 | 0    |
| opCcV0100001655    | 1.4  | -1.2 | -0.1 | 0.1  | -0.2 | 0.1  | 0.6  | -0.1 | 0.6  | 0.5  |
| opCcV0100001656    | 0.4  | -0.1 | 0.5  | 0    | 0    | -0.1 | 0.1  | 0    | 0.1  | -0.1 |
| opCcV0100001657    | -0.3 | 0    | 0.4  | 0    | -0.1 | 0    | -0.1 | 0.1  | -0.2 | -0.2 |
| opCcV0100001658    | 0    | 0    | 0    | 0.1  | 0    | 0    | -0.2 | -0.2 | 0.2  | -0.1 |
| opCcV0100001659    | 0.7  | 0.4  | 1.2  | 0    | 0    | 0.5  | 0.6  | 0.6  | -0.2 | 0    |
| opCcV0100001660    | 0.2  | 0    | 0    | 0.1  | 0.1  | -1.6 | 0    | 0.1  | -0.1 | -0.1 |
| opCcV0100001664    | -0.3 | -0.3 | 0    | -0.1 | 0.1  | 0.5  | -0.2 | 0.3  | -0.1 | -0.1 |
| opCcV0100001676    | 0.5  | 0.4  | 0.1  | -0.1 | -0.1 | 0    | 0    | 0.1  | 0.2  | 0    |
| opCcV0100001678    | -0.5 | -0.4 | 0.7  | 0    | 0    | 0.5  | 0.4  | 0.1  | 0    | 0    |
| opCcV0100001679.70 | 2.4  | 1.5  | 0.7  | 0    | -0.3 | 0.5  | -0.7 | 0.3  | 0.2  | -0.2 |

| opCcV0100001679.80 | 1.5  | 0.8  | 0.2  | 0    | 0.1  | 0.9  | 0.4  | 0.6  | 1    | 0    |
|--------------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100001679.90 | 2.7  | 0.5  | -0.2 | 0.9  | 0.6  | -0.6 | 0.5  | 1.1  | 0    | -0.9 |
| opCcV0100001679.A  | -0.1 | 0.3  | -0.6 | 0    | -0.1 | 0    | 0    | -0.2 | 0.2  | 0.1  |
| opCcV0100001679    | 0.9  | 0.6  | 0    | 0.2  | 0.1  | -0.5 | -0.3 | -0.5 | -0.2 | 0    |
| opCcV0100001680    | 0.4  | 0.3  | 0.7  | 0    | -0.2 | -0.1 | 0.2  | 0.1  | 0.1  | -0.1 |
| opCcV0100001682    | 0    | -0.3 | -0.6 | 0    | 0.1  | -0.3 | -0.3 | 0    | 0.2  | 0    |
| opCcV0100001684    | -1.7 | -1.8 | -0.2 | 0    | 0    | -0.1 | -0.3 | 0.5  | -0.8 | -0.2 |
| opCcV0100001686    | 0.5  | 0.3  | 0.5  | -0.1 | 0    | 0    | -0.2 | 0    | 0.3  | 0.1  |
| opCcV0100001688    | 0.8  | 0.5  | 0.6  | 0.2  | 0    | 0.4  | 0.3  | -0.1 | 0    | 0    |
| opCcV0100001689    | 0    | -0.1 | -0.6 | 0    | 0    | -0.2 | -0.7 | 0    | 0.1  | 0.1  |
| opCcV0100001691    | 0    | 0    | 0.3  | -0.1 | 0    | 0.1  | -0.1 | -0.1 | -0.2 | 0    |
| opCcV0100001692    | 0.3  | -0.1 | 0    | 0.1  | 0.1  | 0    | 0.1  | 0.1  | 0.1  | 0    |
| opCcV0100001694    | 1.7  | -0.6 | 0.2  | -1.2 | 0.6  | -0.5 | 0.9  | 1    | 0.2  | 0    |
| opCcV0100001695    | -0.5 | -0.4 | -0.2 | 0    | 0    | 0    | -0.1 | 0    | -0.1 | -0.1 |
| opCcV0100001698    | -0.1 | 0    | -0.1 | 0    | -0.1 | 0.2  | 0.2  | 0    | 0    | 0    |
| opCcV0100001702    | 0.1  | -0.3 | 0    | 0    | 0    | 0    | -0.2 | -0.1 | -0.1 | -0.1 |
| opCcV0100001703    | -0.5 | -0.9 | -1   | -0.1 | -0.1 | -0.4 | -0.6 | -0.1 | 0    | -0.1 |

| opCcV0100001709 | -1   | 0    | -0.1 | 0.1  | -0.1 | -0.1 | 0.1  | 0.2  | 0.1  | -0.1 |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100001710 | 1.3  | 1    | -2.3 | 0.4  | -0.4 | 0.2  | 0    | -1   | 0.5  | 0.3  |
| opCcV0100001711 | 0.1  | 0    | 0.2  | -0.1 | -0.1 | -0.1 | -0.1 | 0    | -0.1 | 0    |
| opCcV0100001712 | -0.7 | -1.2 | 0    | 0    | 0.3  | -0.1 | -0.1 | -0.1 | -0.4 | -0.2 |
| opCcV0100001724 | -0.2 | -0.2 | 0    | -0.1 | 0.1  | 0    | 0    | 0.1  | -0.1 | -0.2 |
| opCcV0100001727 | 0.7  | -0.2 | 0.1  | 0    | 0.1  | -0.2 | 0.1  | 0.7  | -0.1 | -0.2 |
| opCcV0100001728 | 0.1  | -0.1 | -0.2 | 0    | -0.1 | 0.2  | 0    | 0    | 0.2  | 0    |
| opCcV0100001729 | 0    | 0    | -0.3 | 0    | -0.2 | 0.1  | 0    | -0.1 | -0.1 | -0.1 |
| opCcV0100001730 | 0.3  | 0.1  | 0.1  | 0    | -0.1 | 0.2  | 0    | -0.1 | 0    | 0.1  |
| opCcV0100001733 | 1.4  | 0.3  | 0.4  | 0.1  | -0.3 | 0    | 0.1  | -0.3 | 0.3  | 0.1  |
| opCcV0100001737 | 0    | -0.1 | 0.1  | 0    | 0.1  | 0    | -0.2 | 0    | -0.1 | 0    |
| opCcV0100001738 | 0    | 0    | 0    | 0    | 0.1  | 0    | 0.1  | 0.1  | 0    | 0    |
| opCcV0100001739 | -0.4 | 0    | -0.4 | 0    | -0.1 | 0    | -0.3 | 0    | 0.3  | 0    |
| opCcV0100001741 | 0.2  | 0.3  | -4.4 | 0    | -0.1 | -1.8 | -2.1 | 0    | 0.2  | 0    |
| opCcV0100001742 | -0.2 | -0.6 | 0    | -0.3 | 0    | 0.2  | -0.5 | 0.4  | -0.2 | 0    |
| opCcV0100001743 | -0.6 | -0.3 | -0.8 | -0.1 | 1.9  | 0.2  | -0.1 | -0.1 | 0.1  | -0.1 |
| opCcV0100001745 | -4.7 | -3.7 | -3.6 | -1   | 1.5  | -1.1 | -1.3 | 1.2  | -1   | -1.3 |

| opCcV0100001748 | -0.3 | -0.2 | 0.1  | -0.1 | 0.1  | 0    | 0    | 0.2  | -0.1 | -0.1 |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100001750 | 0.2  | -0.1 | 0.3  | 0    | 0.1  | 0    | -0.1 | -0.2 | 0    | -0.1 |
| opCcV0100001753 | 0.1  | -0.1 | 0    | -0.1 | 0    | 0.1  | 0.1  | 0.1  | -0.1 | -0.1 |
| opCcV0100001754 | -0.4 | -4   | -3.9 | -1.4 | 1.8  | 0.2  | -0.2 | 1.2  | -1.6 | -1.5 |
| opCcV0100001758 | -1.5 | -1.8 | -0.3 | 0    | 0.4  | -0.1 | -0.8 | -0.2 | -2   | 0.2  |
| opCcV0100001762 | -0.2 | 0    | -0.5 | 0    | 0.1  | 0    | -0.1 | 0    | 0.1  | -0.2 |
| opCcV0100001763 | -0.9 | -0.7 | -4.9 | -0.1 | 0.1  | 0.1  | -0.2 | -1.2 | 0.3  | -0.2 |
| opCcV0100001764 | -0.5 | -0.2 | -1.1 | 0.1  | -0.1 | -0.3 | -0.5 | 0.2  | -0.7 | -0.1 |
| opCcV0100001765 | -1.5 | 0    | 0.2  | -0.1 | 0.5  | 0.1  | -0.5 | 0.4  | -0.2 | 0    |
| opCcV0100001767 | 0.1  | -0.4 | 1.5  | 0.2  | 0.3  | 0.3  | 0.7  | 0.4  | -0.4 | -0.1 |
| opCcV0100001768 | -1   | -0.8 | -1.1 | -0.1 | 0.2  | 0    | -0.1 | 0.2  | 0    | -0.2 |
| opCcV0100001769 | -1.1 | -0.6 | -1.1 | -0.1 | 0.2  | -0.1 | -1.1 | 0.1  | -0.3 | -0.3 |
| opCcV0100001770 | -0.4 | -0.4 | 0.1  | -0.3 | -0.1 | 0.3  | 0.1  | 0.2  | -0.2 | 0    |
| opCcV0100001771 | 0.4  | -0.3 | -0.1 | 0.1  | 0    | 0    | 0    | 0.3  | -0.1 | -0.1 |
| opCcV0100001774 | -2.8 | 4.4  | 2.7  | -0.1 | -1.3 | -0.3 | 0.7  | 0.5  | 1.2  | -0.5 |
| opCcV0100001776 | 0    | 1.4  | 1.2  | -0.1 | -0.7 | 0    | 0.5  | 0.1  | -0.2 | -0.1 |
| opCcV0100001778 | 0.4  | -3.3 | -3.3 | 0.1  | 1.5  | -0.1 | -1.2 | 0.1  | 0    | -0.2 |

| opCcV0100001780    | 0.1  | 0.2  | 0.2  | 0    | 0    | -0.3 | -0.1 | 0    | 0.1  | 0.1  |
|--------------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100001781    | 0.1  | 0    | -3.7 | 0    | 0    | 0    | -1.7 | 0    | 0.2  | 0    |
| opCcV0100001782    | 0.8  | 0.4  | 0.6  | 0.4  | 0    | -0.3 | 0.1  | 0.7  | -0.5 | 0    |
| opCcV0100001783    | -0.6 | -0.2 | -0.1 | -0.2 | -0.1 | 0.1  | 0    | 0    | 0.2  | 0    |
| opCcV0100001784    | 0.7  | 0.5  | 0.9  | 0    | 0    | 0.1  | 0.3  | 0    | -0.1 | 0    |
| opCcV0100001786    | -0.1 | -0.2 | -0.2 | 0.1  | 0    | -0.1 | -0.1 | -0.1 | 0    | -0.2 |
| opCcV0100001787    | -5.4 | -4.9 | -3.9 | -1.4 | 1.6  | -1.2 | -1.7 | 1.4  | -1.8 | -1.4 |
| opCcV0100001788    | 0.2  | -0.1 | -0.1 | 0    | 0    | -1.6 | -1.6 | -0.1 | 0    | 0    |
| opCcV0100001793    | -0.6 | -0.6 | -1.7 | 0    | 0.1  | -0.2 | -0.5 | -0.3 | -0.1 | -0.1 |
| opCcV0100001795    | -0.3 | -0.4 | 0    | -0.1 | 0.2  | -0.5 | -0.1 | 0.3  | -0.3 | -0.1 |
| opCcV0100001796    | 0.4  | 0.4  | 0.3  | -0.4 | -0.3 | -0.8 | 0.2  | 0.3  | -0.3 | -0.2 |
| opCcV0100001797    | 1    | 1    | 0.2  | -0.4 | -0.6 | 1    | 0.8  | -0.4 | 0.9  | 0.1  |
| opCcV0100001800    | -0.3 | -0.1 | -0.3 | -0.2 | -0.2 | 0.1  | 0    | 0    | -0.1 | -0.2 |
| opCcV0100001801    | -1.5 | -1.1 | 0.1  | 0.1  | 0.3  | -0.1 | -0.1 | -0.1 | -0.4 | -0.5 |
| opCcV0100001802    | -0.5 | -0.5 | -0.4 | -0.2 | -0.1 | 0.1  | -0.4 | 0.1  | 0.2  | -0.1 |
| opCcV0100001806.50 | 4.1  | 1    | -0.6 | -1.3 | -0.1 | 0.1  | -0.9 | 0.6  | 0.8  | 1    |
| opCcV0100001806.60 | 1.7  | 1.8  | -0.3 | 0.5  | -1.7 | -1   | 0.8  | 0    | 0    | 0.4  |

| opCcV0100001806.90 | 0.3  | -0.1 | 0.5  | 0    | 0    | -0.1 | 0.3  | 0.1  | 0.3  | -0.2 |
|--------------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100001806.A  | -0.4 | 0.1  | -0.6 | -0.1 | 0    | 0    | 0    | 0.1  | 0.2  | -0.2 |
| opCcV0100001806    | 0.6  | 0.1  | 0.4  | 0.1  | 0.1  | 0    | 0    | 0.1  | -0.1 | -0.1 |
| opCcV0100001808    | -2.4 | -0.9 | -1.1 | -0.5 | 0    | 0.4  | -0.1 | 0.6  | -0.3 | 0    |
| ppCcV0100001809    | 0.5  | 0.2  | 0.2  | -0.1 | -0.2 | 0.2  | 0    | -0.2 | -0.1 | 0    |
| opCcV0100001810    | -1.7 | 1.5  | -0.1 | -0.1 | -0.2 | 0    | 0.1  | 0.5  | -1   | 0.3  |
| opCcV0100001812    | 0.7  | 0.2  | 0.4  | 0.1  | 0    | 0.2  | 0    | -0.1 | 0    | -0.1 |
| opCcV0100001813    | -0.8 | -0.1 | 0.7  | -0.3 | 0    | 0.2  | 0.3  | 0.6  | 0.2  | -0.1 |
| opCcV0100001815    | 2.8  | 0.5  | -0.9 | -0.3 | 2    | -0.4 | -0.9 | 0.9  | -0.8 | -0.1 |
| opCcV0100001822    | -0.1 | 0    | -0.1 | 0    | 0    | 0.1  | 0    | 0.1  | 0.1  | -0.1 |
| opCcV0100001823    | -0.7 | -0.5 | 0    | 0    | -0.1 | 0    | -0.2 | -0.1 | -0.1 | -0.1 |
| opCcV0100001824    | 0.7  | 0.2  | 0.7  | 0    | 0    | 0.1  | 0.1  | 0.1  | 0    | 0    |
| opCcV0100001825    | -0.3 | -0.6 | -1.5 | -0.3 | -0.1 | 0.1  | 0    | 0.1  | 0    | 0    |
| opCcV0100001830    | -0.7 | -0.6 | -0.4 | -0.1 | 0.1  | 0.2  | -0.2 | 0    | -0.2 | -0.2 |
| opCcV0100001833    | 1.2  | -0.8 | -2.5 | 0.1  | 0.7  | -0.4 | -0.1 | 0.8  | -1.4 | 0.3  |
| ppCcV0100001835    | 0    | -0.1 | -0.6 | 0    | 0.2  | 0.1  | -0.2 | -0.2 | -0.1 | -0.1 |
| opCcV0100001836    | -0.3 | -0.2 | 1    | 0.2  | 0.1  | 0.4  | 0.2  | 0.1  | -0.1 | 0.3  |

| opCcV0100001837 | 0.4  | 0.5  | 0.5  | 0.1  | 0.1  | -0.1 | 0.1  | 0    | -0.1 | -0.2 |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100001838 | -0.2 | -0.1 | 0    | 0    | 0.1  | -0.1 | -0.1 | 0.1  | -0.1 | -0.1 |
| opCcV0100001839 | -0.6 | -0.6 | -0.7 | -0.1 | 0    | 0.1  | -0.2 | 0.1  | -0.1 | -0.1 |
| opCcV0100001840 | 1.4  | 2.1  | 0.3  | 0.2  | -0.9 | 0.5  | 0.7  | -0.3 | 0.3  | 0.2  |
| opCcV0100001842 | 0    | -0.2 | -5.8 | -0.1 | 0.1  | -0.1 | -0.1 | -1.9 | -0.2 | -0.1 |
| opCcV0100001843 | 0.9  | -1.4 | -0.1 | -0.2 | -0.2 | 0    | -0.2 | 0.4  | -0.3 | 0    |
| opCcV0100001847 | -0.9 | -0.6 | 0    | -0.1 | -0.1 | 0.3  | -0.1 | 0    | 0    | -0.1 |
| opCcV0100001848 | 0.1  | 0    | -0.4 | -0.1 | 0.1  | -0.2 | -0.3 | 0.1  | -0.1 | -0.1 |
| opCcV0100001850 | 0.5  | 0.4  | 0.1  | 0    | -0.1 | 0    | 0.1  | 0    | -0.1 | -0.1 |
| opCcV0100001857 | -1   | -1   | -4.3 | 0.4  | 0.4  | -0.4 | -1.3 | -1.4 | 0.3  | 0.1  |
| opCcV0100001858 | -0.7 | -0.1 | -0.8 | -0.3 | -0.2 | 0.1  | -0.2 | 0    | 0.3  | -0.1 |
| opCcV0100001859 | 0.4  | 0.8  | 0.6  | -0.2 | -0.2 | 0.1  | 0    | 0.1  | -0.1 | -0.1 |
| opCcV0100001862 | -1.1 | 0    | -0.1 | 0    | -0.1 | 0.1  | 0    | 0.1  | 0    | 0    |
| opCcV0100001863 | 0.3  | 0.2  | -0.4 | 0    | 0    | -1.7 | -2.4 | 0.1  | 0.1  | -0.1 |
| opCcV0100001865 | -0.1 | -0.1 | -0.5 | 0    | 0.1  | 0    | -0.3 | -0.1 | -0.1 | -0.1 |
| opCcV0100001868 | 1.1  | 0.4  | 1.1  | 0.1  | 0.3  | -0.2 | 0    | 0.1  | -0.1 | -0.1 |
| opCcV0100001871 | 0.9  | 0.3  | 0.6  | -0.2 | -0.2 | 0.2  | 0.1  | 0    | 0    | 0    |

| opCcV0100001874 | 0.4  | -0.2 | -1   | -0.3 | 0.1  | -0.3 | -0.4 | 0.5  | 0.2  | -0.3 |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100001875 | 0.5  | -0.1 | 0.5  | 0    | 0.1  | 0    | 0.1  | 0.1  | 0    | -0.2 |
| opCcV0100001877 | 1.3  | 0.6  | 0.9  | 0    | -0.1 | 0.3  | 0.3  | -0.1 | 0    | 0    |
| opCcV0100001879 | 1.1  | 1.3  | 0.7  | 0.2  | -0.5 | -0.1 | 0    | -0.8 | 0.7  | 0.2  |
| opCcV0100001883 | 2    | 0.6  | 4.5  | -0.4 | -1   | 0.2  | 0.2  | -1.1 | 1.1  | 0.2  |
| opCcV0100001885 | -0.7 | -0.2 | -0.1 | -0.3 | 0.1  | 0    | -0.1 | 0.1  | -0.1 | -0.1 |
| opCcV0100001886 | 0    | -0.1 | -0.5 | -0.1 | 0    | 0    | 0    | 0.1  | -0.1 | -0.2 |
| opCcV0100001889 | 0.3  | 0    | 0.2  | 0    | 0.2  | 0    | 0    | 0.2  | -0.2 | -0.2 |
| opCcV0100001890 | -0.3 | -0.2 | -3.6 | -0.1 | -0.1 | -0.9 | -1.6 | 0    | 0    | -0.1 |
| opCcV0100001891 | 0.1  | -0.1 | 0    | -0.3 | -0.3 | -0.3 | 0    | 0    | 0    | 0    |
| opCcV0100001893 | 1.2  | 0.7  | 0.7  | 0    | -0.3 | 0.1  | 0.2  | 0.2  | 0    | -0.1 |
| opCcV0100001939 | 0.7  | -2.6 | 0.1  | -0.8 | 0.9  | -0.7 | -1   | 3.8  | 1.5  | -1   |
| opCcV0100001985 | 0.1  | -0.1 | -0.2 | -0.1 | -0.1 | 0.1  | -0.8 | -0.1 | 0.1  | -0.1 |
| opCcV0100001986 | 0.4  | -0.4 | 0.4  | 0    | -0.1 | 0.1  | 0.3  | 0    | -0.1 | 0.1  |
| opCcV0100001989 | 1.1  | -0.4 | 1.4  | -0.2 | -0.4 | 0.2  | 0.2  | 0.3  | 0    | 0    |
| opCcV0100001990 | -1   | -0.8 | -0.6 | 0    | 0.6  | -0.1 | 0.4  | 0    | -0.6 | 0    |
| opCcV0100002002 | 0.2  | -0.3 | 0.4  | 0.1  | 0.2  | 0.3  | 0.3  | 0.1  | -0.1 | 0    |

| opCcV0100002009    | 0.7  | -1.4 | 1.1  | -0.1 | -1   | -0.1 | 0.2  | 1.6  | 1.2  | -1.3 |
|--------------------|------|------|------|------|------|------|------|------|------|------|
| opCcV0100002077    | 0.1  | -1.1 | 0.2  | -0.8 | -1.1 | -0.2 | -1.6 | -0.2 | 0    | -3.1 |
| opCcV0100002088    | 0    | -0.1 | -0.2 | 0.1  | 0    | -0.6 | 0    | 0.1  | 0.1  | -0.1 |
| opCcV0100002089    | 0.3  | 0.2  | 0    | 0    | 0    | 0    | 0    | 0.2  | 0    | -0.2 |
| opCcV0100002090    | -0.9 | -0.9 | -0.6 | -0.2 | 0    | 0    | -0.4 | 0.3  | -0.3 | -0.1 |
| opCcV0100002091    | -0.3 | 0    | -4.6 | -0.1 | -0.1 | -0.1 | -0.1 | -1.4 | 0.2  | 0    |
| opCcV0100002092.50 | 1.1  | -0.7 | 0    | -1.9 | -1.4 | 0.3  | -0.4 | 0.1  | 1.9  | -1.5 |
| opCcV0100002092.70 | 7.6  | 1.3  | -0.1 | -0.7 | -1.5 | 0.1  | 0.3  | 0.5  | 0.1  | -0.1 |
| opCcV0100002092.80 | 2.4  | 1.6  | -0.5 | -1.1 | -2   | 0.3  | -0.4 | 0.6  | 0.6  | -0.5 |
| opCcV0100002092    | 2.1  | 0.5  | -0.4 | 1.1  | 0.2  | -0.3 | 0.3  | 1.2  | 0.3  | -1.4 |
| opCjjV010000001    | 0.4  | 0.3  | 0    | 0.1  | 0    | 0    | -0.2 | -0.1 | 0.1  | 0    |
| opCjjV010000003    | 0.1  | 0.2  | 0.4  | 0    | 0.2  | 0.1  | -0.2 | -0.2 | -0.1 | -0.1 |
| opCjjV010000004    | 0.4  | 0.2  | 0.5  | 0.2  | 0.2  | 0    | -0.1 | 0    | 0.1  | -0.1 |
| opCjjV010000005    | -0.3 | 0.2  | 0.2  | 0.1  | -0.2 | 0.1  | 0.1  | 0    | 0.1  | 0.1  |
| opCjjV010000006    | 0.2  | 0.1  | 0.2  | 0    | 0    | 0    | 0    | 0.2  | -0.1 | -0.1 |
| opCjjV010000007    | 0.3  | 0.1  | 0.4  | 0    | 0    | 0.2  | 0.2  | -0.1 | -0.1 | 0    |
| opCjjV010000008    | 0.2  | 0.1  | 0.1  | 0.1  | -0.2 | -0.1 | 0    | -0.1 | 0.1  | -0.2 |

| opCjjV010000009 | 0.5  | 0.2  | 0.4  | 0.2  | 0    | 0.1  | 0.1  | 0.1  | 0    | 0    |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjjV010000010 | 0.3  | 0    | 0.2  | 0    | 0    | 0    | -0.1 | -0.1 | 0    | 0    |
| opCjjV010000011 | 0    | 0.1  | 0.3  | 0.2  | 0.2  | -0.2 | -0.1 | 0    | -0.1 | -0.1 |
| opCjjV010000013 | 0    | -0.1 | 0    | 0    | 0    | 0.1  | 0    | -0.1 | 0    | 0    |
| opCjjV010000014 | -1.5 | 0    | -0.4 | -0.1 | -0.2 | -0.1 | -0.2 | 0.1  | 0.1  | 0.1  |
| opCjjV010000016 | 0.4  | 0.4  | 0.3  | 0    | -0.1 | 0.1  | 0.1  | 0    | 0.1  | 0    |
| opCjjV010000017 | 0.4  | 0.6  | 0.4  | 0    | -0.1 | 0    | -0.1 | 0    | 0    | 0    |
| opCjjV010000021 | 0.1  | 0.1  | 0.4  | -0.1 | 0    | 0.1  | 0.1  | -0.1 | 0.1  | 0    |
| opCjjV010000022 | -0.4 | 0    | -0.2 | -0.1 | -0.2 | 0.2  | -0.1 | 0    | 0.1  | 0    |
| opCjjV010000023 | 0.3  | -0.4 | 0.7  | 0    | 0    | -0.1 | -0.2 | 0.2  | -0.5 | 0    |
| opCjjV010000024 | 0.2  | 0.2  | 0.1  | -0.1 | 0.1  | 0    | -0.1 | 0.1  | 0.1  | 0.1  |
| opCjjV010000025 | 0.5  | 0.2  | 0    | 0    | 0    | 0.1  | 0    | -0.1 | 0    | 0    |
| opCjjV010000026 | 0.4  | 0.6  | 0.5  | 0    | 0.1  | -0.1 | 0.1  | 0    | 0.1  | 0    |
| opCjjV010000027 | 0.4  | 0.3  | 0.4  | 0    | 0.1  | 0.1  | 0.1  | -0.1 | 0.1  | 0.1  |
| opCjjV010000028 | -0.3 | -0.3 | -3.1 | 0    | 0.1  | 0.4  | -0.1 | -1.4 | 0.2  | 0    |
| opCjjV010000030 | 0    | 0.1  | -0.2 | 0.1  | 0    | 0.1  | 0    | 0.1  | 0.1  | 0    |
| opCjjV010000031 | -0.5 | 0.1  | 0.2  | -0.1 | -0.2 | 0.2  | 0    | -0.1 | 0    | 0    |

| opCjjV010000032 | 0.7  | 0.5  | 0.7  | 0.2  | 0    | -0.1 | 0    | 0    | 0    | 0    |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjjV010000034 | -0.1 | 0.1  | -1.3 | 0    | 0    | -0.6 | -0.5 | -0.5 | 0    | 0.1  |
| opCjjV010000035 | 0.1  | -0.2 | -0.1 | 0.1  | 0.1  | 0.2  | 0    | 0    | -0.3 | 0    |
| opCjjV010000036 | 0    | 0.1  | 0.1  | -0.1 | -0.2 | 0    | 0    | 0    | -0.1 | 0.1  |
| opCjjV010000038 | -0.2 | 0.3  | -0.3 | 0.1  | -0.1 | 0    | -0.2 | 0    | 0.3  | 0    |
| opCjjV010000039 | -0.4 | -0.1 | -1.2 | 0.4  | 0.2  | -0.7 | 0    | -0.6 | 0.6  | -0.3 |
| opCjjV010000041 | -0.8 | -0.5 | 0.1  | 0.1  | 0    | 0.3  | 0.1  | 0.1  | 0    | 0.1  |
| opCjjV010000046 | 0.3  | 0.3  | 0.5  | 0    | 0.1  | -0.2 | -0.1 | 0    | 0.1  | -0.1 |
| opCjjV010000047 | 0.1  | 0.1  | 0.2  | 0    | 0    | 0.1  | 0    | 0    | -0.1 | 0    |
| opCjjV010000049 | 0.5  | 0.3  | 0.6  | 0.1  | 0    | 0.1  | 0.1  | -0.1 | 1.2  | 0    |
| opCjjV010000050 | -0.6 | -0.2 | -0.5 | 0    | 0.1  | 0.1  | 0    | -0.1 | 0.1  | 0    |
| opCjjV010000051 | 0.2  | 0.3  | 0.3  | 0.2  | 0.1  | 0.1  | 0    | 0    | 0    | 0    |
| opCjjV010000052 | 0.7  | 0.6  | 0.8  | 0.1  | 0.1  | -0.1 | 0.1  | 0.1  | 0.1  | 0    |
| opCjjV010000055 | -0.1 | 0    | -0.2 | 0.1  | -0.1 | 0.2  | 0    | 0    | 0    | 0.1  |
| opCjjV010000058 | 1.1  | 1.1  | 1    | 0.1  | -0.4 | 0.2  | 0.2  | -0.1 | 0.2  | 0    |
| opCjjV010000060 | 0.8  | 0.4  | 0.5  | 0.2  | 0    | 0.1  | 0.1  | -0.1 | -0.1 | -0.1 |
| opCjjV010000061 | 0.2  | 0.1  | 0.2  | 0    | -0.1 | -0.1 | 0    | 0.2  | 0.2  | -0.1 |

| opCjjV010000062 | 0.1  | 0    | 0    | 0    | 0.1  | 0    | 0.1  | 0.1  | -0.1 | 0    |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjjV010000064 | 0.8  | 0.3  | 0.5  | 0.2  | -0.1 | 0    | 0.1  | 0    | 0.1  | 0.2  |
| opCjjV010000065 | -0.5 | 0.1  | -0.2 | -0.1 | -0.3 | 0.3  | 0    | 0    | 0.2  | 0.1  |
| opCjjV010000066 | 0.4  | 0.4  | 0.2  | 0.1  | 0    | -0.1 | 0.1  | -0.1 | 0    | -0.1 |
| opCjjV010000067 | 0.9  | 1.4  | 0.9  | 0.1  | 0    | -0.2 | 0    | 0    | 0.2  | 0    |
| opCjjV010000068 | 0.5  | 0.2  | 0.5  | 0    | 0.1  | 0    | 0    | -0.1 | -0.2 | -0.1 |
| opCjjV010000070 | 0.1  | 0.4  | 0.2  | 0.1  | -0.1 | 0    | 0    | 0    | 0.3  | 0.1  |
| opCjjV010000071 | -0.3 | 0    | -0.4 | -0.1 | -0.1 | 0.2  | -0.1 | -0.1 | -0.1 | -0.1 |
| opCjjV010000073 | 1    | 1.1  | 0.7  | 0.3  | 0    | 0    | 0.1  | -0.2 | 0.1  | 0.1  |
| opCjjV010000074 | -0.4 | -0.1 | 0.2  | 0    | 0    | 0.2  | 0    | -0.1 | 0    | 0.2  |
| opCjjV010000075 | -0.1 | -0.2 | -0.3 | -0.1 | 0    | 0    | -0.3 | 0.1  | 0    | -0.2 |
| opCjjV010000076 | 0.4  | -0.1 | 0.4  | 0    | 0    | 0.3  | 0    | -0.1 | -0.1 | 0.1  |
| opCjjV010000078 | 0.2  | 0.2  | 0.5  | 0    | 0.1  | 0    | 0.1  | -0.1 | 0.1  | -0.1 |
| opCjjV010000080 | 0.6  | 0.4  | 0.5  | 0    | -0.2 | 0.1  | -0.2 | 0    | 0.3  | 0.1  |
| opCjjV010000081 | -0.1 | 0.1  | -0.1 | -0.1 | -0.1 | 0.2  | 0    | 0    | 0.2  | 0    |
| opCjjV010000082 | 5.1  | 4.8  | 3    | 1.4  | -2.1 | 0    | 1.7  | -0.3 | 1.3  | 1.4  |
| opCjjV010000083 | 0.5  | 0.4  | 0.1  | 0.1  | -0.1 | -0.1 | 0    | 0    | 0    | -0.1 |

| opCjjV010000084 | 0.3  | 0    | 0.1  | 0    | 0    | 0    | 0    | -0.1 | -0.1 | 0    |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjjV010000085 | 0.7  | 0.3  | 0.4  | 0.1  | 0.1  | -0.1 | 0    | 0    | -0.1 | -0.2 |
| opCjjV010000087 | -0.6 | -0.2 | -0.8 | -0.2 | 0    | 0.3  | -0.1 | 0    | 0.2  | -0.1 |
| opCjjV010000088 | 0.4  | 0.6  | 0.3  | 0.1  | -0.3 | 0    | 0.1  | 0.1  | 0.2  | -0.1 |
| opCjjV010000089 | 1.1  | 0.8  | 0.9  | 0    | -0.2 | 0.1  | 0.2  | 0.1  | 0    | 0    |
| opCjjV010000091 | 0    | -1.6 | 0.5  | 0    | 0.7  | 0.1  | 0.1  | 0.2  | 0    | 0    |
| opCjjV010000092 | 0.3  | 0.3  | 0.4  | 0.1  | 0    | 0    | 0.1  | -0.1 | 0.2  | 0    |
| opCjjV010000093 | -0.1 | 0.3  | -0.7 | -0.1 | -0.2 | 0    | -0.1 | -0.1 | 0.2  | 0.1  |
| opCjjV010000094 | 0.7  | 0.4  | 0.6  | 0.1  | 0.2  | 0    | 0.1  | 0    | 0.1  | -0.1 |
| opCjjV010000095 | 0.2  | 0.3  | 0.3  | 0.1  | 0.1  | 0.1  | 0.1  | -0.1 | 0.1  | -0.1 |
| opCjjV010000098 | 0.3  | 0.3  | 0.3  | 0.1  | 0.1  | 0.1  | 0    | -0.1 | 0    | -0.1 |
| opCjjV010000099 | 0.3  | 0.3  | 0.3  | 0.1  | 0.1  | -0.1 | -0.1 | -0.1 | 0.1  | 0    |
| opCjjV010000100 | 0.9  | 0.4  | -2.9 | 0.2  | 0    | 0.1  | 0.1  | -1.1 | 0.2  | 0.1  |
| opCjjV010000101 | -0.2 | 0    | 0.1  | 0    | 0.2  | 0.2  | -0.1 | 0    | 0.2  | 0.1  |
| opCjjV010000102 | 0.1  | 0.1  | 0.2  | -0.1 | -0.3 | 0.2  | 0.1  | -0.1 | 0.2  | 0.1  |
| opCjjV010000103 | -0.1 | 0.2  | -0.1 | 0    | -0.2 | 0.2  | 0    | -0.1 | 0.1  | 0.1  |
| opCjjV010000104 | 0    | -0.1 | 0.1  | 0    | 0.1  | 0.1  | -0.1 | -0.3 | 0    | -0.1 |

| opCjjV010000105 | -0.1 | 0.2  | -0.2 | -0.2 | -0.3 | 0.2  | -0.1 | 0.2  | 0.3 | 0.1  |
|-----------------|------|------|------|------|------|------|------|------|-----|------|
| opCjjV010000108 | 0.3  | 0.6  | 0.1  | -0.1 | -0.3 | 0.2  | 0.1  | -0.1 | 0.1 | 0    |
| opCjjV010000109 | -0.3 | 0    | -0.4 | -0.2 | -0.4 | 0    | -0.1 | 0    | 0   | -0.1 |
| opCjjV010000110 | 0    | 0.3  | 0    | -0.1 | -0.1 | 0.1  | 0    | 0.1  | 0.2 | -0.2 |
| opCjjV010000115 | 0.2  | 0.1  | 0.4  | -0.1 | -0.1 | 0.1  | 0    | 0    | 0   | 0    |
| opCjjV010000117 | -0.3 | 0    | -0.2 | -0.1 | -0.1 | 0.3  | -0.1 | -0.1 | 0.1 | 0.1  |
| opCjjV010000119 | 0    | 0    | -0.5 | 0    | 0.1  | -0.1 | -0.1 | -0.1 | 0.1 | -0.3 |
| opCjjV010000120 | -0.2 | 0    | -0.2 | 0    | 0    | 0.1  | -0.1 | -0.1 | 0.1 | 0    |
| opCjjV010000121 | 0    | -0.1 | 0    | -0.1 | 0    | 0    | 0    | 0    | 0.1 | -0.1 |
| opCjjV010000122 | 0.2  | -0.2 | 0.3  | 0    | 2.5  | 0.1  | 0.1  | 0    | 0   | -0.1 |
| opCjjV010000123 | 0.5  | 0.4  | 0.6  | 0.1  | 0.1  | 0    | 0.1  | -0.1 | 0   | 0    |
| opCjjV010000124 | -0.1 | -0.1 | 0    | -0.1 | -0.1 | 0.3  | 0    | -0.2 | 0.2 | 0.2  |
| opCjjV010000125 | 0.4  | 0.2  | 0.4  | 0.1  | 0    | 0    | 0    | -0.1 | 0.2 | 0.1  |
| opCjjV010000126 | 1.1  | 0.6  | 1    | 0    | -0.1 | -0.1 | 0.2  | -0.2 | 0   | 0    |
| opCjjV010000127 | 0.2  | 0.2  | 0.1  | -0.1 | -0.2 | 0    | 0.2  | 0.1  | 0   | 0    |
| opCjjV010000128 | -0.5 | 0.2  | 0.3  | 0    | 0    | 0    | 0.1  | -0.1 | 0   | 0    |
| opCjjV010000130 | 0.2  | 0.2  | -0.1 | -0.1 | -0.2 | -0.1 | 0    | 0    | 0.1 | -0.1 |

| opCjjV010000131 | 0    | 0.1  | -0.1 | 0    | 0    | 0    | 0    | -0.1 | 0.2  | 0    |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjjV010000132 | 0.1  | 0    | 0.1  | 0.2  | 0.1  | -0.1 | 0.1  | 0.2  | 0    | -0.3 |
| opCjjV010000133 | -0.7 | -0.8 | -1   | -0.1 | 0    | -0.8 | -0.1 | -1.2 | 0    | -0.1 |
| opCjjV010000134 | 0.7  | 0.3  | 0.2  | 0.1  | 0.1  | 0    | 0.1  | -0.1 | -0.1 | -0.1 |
| opCjjV010000137 | 0.5  | 0.3  | 0.4  | 0    | 0    | 0.1  | 0.2  | 0    | -0.1 | 0    |
| opCjjV010000138 | 0.3  | 0.3  | 0.2  | 0.2  | 0.2  | -0.1 | 0.1  | -0.1 | -0.1 | -0.1 |
| opCjjV010000141 | 0.3  | 0.4  | 0.2  | 0.1  | 0    | 0    | -0.1 | 0    | 0.2  | -0.1 |
| opCjjV010000143 | 0.5  | 0.2  | 0.5  | 0.1  | 0.1  | 0.1  | 0    | -0.1 | 0    | 0    |
| opCjjV010000144 | 0.6  | 0.3  | 0.6  | 0.1  | 0.1  | -1.2 | 0.1  | 0    | 0    | 0    |
| opCjjV010000146 | 0.6  | 0.2  | 0.6  | 0    | 0    | 0.1  | 0.1  | -0.1 | 0.1  | 0    |
| opCjjV010000147 | 0.4  | 0.4  | 0.5  | 0.1  | 2.9  | 0.1  | 0.1  | 0    | 0    | 0    |
| opCjjV010000151 | 0.4  | 0.1  | 0.5  | 0    | 0    | 0    | 0.1  | 0.1  | -0.1 | -0.2 |
| opCjjV010000152 | 0.5  | 0.3  | 0.4  | 0.1  | -0.1 | 0.1  | 0.1  | -0.1 | 0    | -0.1 |
| opCjjV010000154 | 0.2  | -0.1 | 0    | 0    | -0.1 | 0    | 0    | 0    | -0.1 | -0.1 |
| opCjjV010000155 | 0.5  | 0.3  | 0.2  | 0.1  | -0.1 | 0    | 0.2  | -0.1 | 0    | 0.1  |
| opCjjV010000156 | -0.5 | 0    | -0.1 | 0    | -0.1 | 0.3  | -0.3 | 0    | 0.2  | 0    |
| opCjjV010000157 | 0    | -0.2 | 0.2  | -0.1 | -0.2 | 0.1  | -0.1 | 0.1  | 0    | 0    |

| opCjjV010000158 | -0.8 | -0.5 | -0.3 | -0.3 | -0.1 | 0.2  | 0.1  | 0    | 0.2  | 0    |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjjV010000159 | 0    | -0.1 | -0.1 | -0.1 | 0    | 0.1  | 0.1  | 0    | 0    | -0.1 |
| opCjjV010000160 | 0.7  | 0.2  | 0.6  | 0    | -0.1 | 0.1  | 0.1  | 0    | 0    | 0    |
| opCjjV010000161 | 0.1  | 0    | 0.2  | 0    | -0.2 | 0.3  | 0    | 0    | 0.1  | 0    |
| opCjjV010000163 | -0.4 | 0    | -7.7 | -0.1 | -0.1 | -2   | -2.3 | -2.2 | 0.2  | 0    |
| opCjjV010000164 | -0.3 | 0.1  | -0.5 | 0    | 0.1  | 0    | -0.1 | -0.1 | 0.1  | -0.2 |
| opCjjV010000165 | 0.1  | 0.1  | 0    | 0    | 0    | 0.1  | -0.1 | 0    | 0.1  | 0    |
| opCjjV010000166 | 0.2  | 0    | -0.2 | 0    | 3.7  | 0    | -0.2 | 0    | 0    | 0    |
| opCjjV010000167 | 0.3  | 0.2  | 0.2  | 0.1  | -0.2 | 0.1  | -0.1 | 0.1  | 0.3  | 0.1  |
| opCjjV010000169 | 0    | -0.2 | 0.4  | -0.1 | 0.1  | 0.1  | -0.1 | 0    | -0.1 | -0.1 |
| opCjjV010000170 | 0.4  | -0.4 | -0.2 | 0.1  | 0.3  | -0.1 | -0.3 | -0.1 | -0.2 | 0    |
| opCjjV010000171 | 0.1  | 0.1  | -0.1 | -0.1 | 0.1  | 0    | -0.3 | 0    | 0.2  | 0.1  |
| opCjjV010000172 | 3.6  | -0.1 | 3.2  | 0.9  | 0.1  | 0.8  | 1    | -0.1 | -0.5 | 0.8  |
| opCjjV010000174 | 0.2  | 0.1  | 0.6  | 0.1  | 0.2  | 0    | -0.3 | 0    | 0    | -0.1 |
| opCjjV010000175 | -0.6 | -0.1 | -0.2 | -0.1 | 0.1  | 0.2  | 0    | 0.1  | 0.2  | 0.3  |
| opCjjV010000176 | 0.3  | 0    | 0.1  | 0    | -0.3 | 0    | -0.4 | -0.1 | 0.2  | 0.1  |
| opCjjV010000177 | 0.1  | 0.2  | -0.1 | 0    | -0.1 | 0.1  | -0.3 | -0.1 | 0.1  | -0.1 |

| opCjjV010000179 | 0.2  | 0.4  | 0.2  | 0    | 0    | -0.1 | 0.1  | -0.1 | 0    | -0.1 |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjjV010000180 | -0.2 | 0.1  | -0.5 | 0.1  | 0    | 0    | 0    | 0    | 0.1  | -0.2 |
| opCjjV010000181 | 1.3  | 1    | 0.8  | 0.1  | -0.2 | 0.2  | 0.2  | -0.2 | 0.2  | 0.2  |
| opCjjV010000182 | 0.5  | 0.2  | 0.3  | 0.1  | 0    | -0.1 | 0.1  | 0    | -0.1 | -0.1 |
| opCjjV010000184 | 0.2  | 0    | 0.6  | 0.1  | -0.1 | 0.3  | 0.2  | -0.2 | 0    | 0    |
| opCjjV010000187 | 0.4  | 0.2  | 0.6  | 0    | 0    | 0.1  | 0.1  | -0.1 | 0    | -0.3 |
| opCjjV010000188 | 0.5  | 0.4  | 0.5  | 0    | -0.2 | 0    | -0.1 | -0.1 | 0.1  | 0    |
| opCjjV010000189 | 0.5  | 0.4  | 0.7  | 0.1  | 0    | 0    | 0.1  | 0    | -0.1 | -0.1 |
| opCjjV010000192 | -0.1 | -0.1 | -0.1 | 0    | 0.1  | 0    | -0.4 | -0.2 | -0.1 | -0.2 |
| opCjjV010000193 | -0.5 | -0.2 | -0.6 | 0    | -0.1 | 0.2  | -0.3 | -0.1 | 0.2  | 0    |
| opCjjV010000195 | 0.8  | 0.3  | 0.9  | 0.1  | 0    | 0.1  | 0.3  | 0    | -0.1 | 0.1  |
| opCjjV010000196 | 0.6  | 0.3  | 0.4  | 0.1  | -0.1 | 0.1  | 0.1  | 0    | 0.1  | 0    |
| opCjjV010000197 | -0.1 | -0.2 | 0    | 0    | 0    | 0    | 0    | 0.2  | 0.1  | 0    |
| opCjjV010000198 | -0.5 | -0.1 | -1   | 0    | 0    | 0.1  | -0.3 | -0.2 | 0.4  | 0    |
| opCjjV010000201 | 0.7  | 0.3  | 0.3  | 0.1  | 0.2  | -0.1 | 0.1  | 0.1  | -0.1 | -0.1 |
| opCjjV010000205 | -1.4 | -0.2 | -0.7 | -0.1 | 0.2  | -0.1 | -0.4 | 0.2  | -0.2 | -0.1 |
| opCjjV010000206 | -0.3 | -0.2 | -0.3 | -0.1 | -0.1 | 0    | 0    | 0.2  | 0    | 0    |

| opCjjV010000207 | -0.5 | -0.1 | 0.3  | -0.1 | 0.2  | 0    | 0    | 0.1  | -0.1 | -0.2 |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjjV010000208 | 0.7  | 0.2  | 0.3  | 0.2  | 0.2  | -0.2 | 0    | -0.2 | -0.1 | -0.1 |
| opCjV0100000001 | 0    | 0    | 0.3  | -0.1 | 0    | 0.2  | 0.1  | -0.2 | -0.1 | 0.1  |
| opCjV0100000002 | 0.2  | -0.1 | 0.3  | 0    | 0.1  | 0.1  | 0.1  | -0.1 | -0.1 | 0    |
| opCjV0100000005 | -0.7 | -0.2 | -4   | 0    | 0    | -2.2 | -1.1 | 0.1  | 0.4  | 0    |
| opCjV010000006  | -0.2 | -0.4 | 0.6  | -0.1 | 0.1  | 0.1  | 0    | -0.1 | -0.3 | -0.1 |
| opCjV010000007  | -0.7 | -0.3 | -0.2 | -0.2 | 0.1  | 0.2  | 0    | 0.2  | 0.1  | 0.3  |
| opCjV0100000010 | -0.2 | -0.2 | -0.3 | 0    | 0.1  | 0.2  | 0    | -0.1 | 0    | 0.1  |
| opCjV0100000011 | -7.1 | -6.3 | -2.8 | -0.3 | 2.8  | -1   | -2.3 | 0.5  | -3   | -0.3 |
| opCjV0100000012 | 0.5  | 0.3  | 0.8  | 0.1  | 0.1  | -0.1 | 0.1  | 0.2  | -0.2 | -0.1 |
| opCjV0100000013 | 0.2  | 0    | 0.3  | -0.1 | 0    | 0.1  | -0.1 | 0    | 0.1  | 0    |
| opCjV0100000014 | -0.6 | -0.1 | -0.5 | 0    | -0.1 | 0    | -0.1 | 0    | 0.3  | 0    |
| opCjV0100000015 | 0.2  | 0.2  | 0.5  | 0    | -0.1 | 0    | -0.1 | 0.1  | 0.1  | -0.1 |
| opCjV0100000017 | -1.6 | 0    | 0.2  | -0.3 | -0.2 | 0    | -0.2 | 0    | -0.2 | -0.2 |
| opCjV0100000020 | 0.1  | 0.1  | 0    | 0.1  | -0.1 | 0.2  | 0.1  | -0.1 | 0    | 0.1  |
| opCjV0100000021 | -0.4 | 0    | 0    | -0.2 | -0.2 | 0.1  | 0    | 0    | 0.1  | 0    |
| opCjV0100000022 | -2   | -0.2 | -1.4 | -0.5 | -0.1 | -1.2 | -0.9 | -0.2 | 0    | -0.5 |

| opCjV0100000023 | 0.3  | 0.3  | 0.2  | 0    | -0.1 | 0.2  | 0.2  | 0.1  | 0    | 0    |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000025 | 0.2  | 0    | -0.1 | 0.1  | 0.1  | 0.2  | 0    | -0.2 | 0    | 0    |
| opCjV0100000026 | -6.7 | -5.3 | -4.2 | -1.8 | 2    | -1.3 | -1.9 | 2.2  | -2.1 | -1.7 |
| opCjV0100000027 | -0.8 | -0.3 | -6.2 | 0    | 0.1  | -1.8 | -2   | -0.2 | 0.4  | 0    |
| opCjV0100000028 | 0.2  | 0.5  | 0.8  | 0.1  | 0.1  | 0.3  | 0.1  | -0.1 | 0    | 0.1  |
| opCjV0100000029 | -5.2 | -4.2 | -4.9 | -1.4 | 1.6  | -1.2 | -2   | 1.6  | -1.6 | -1.5 |
| opCjV0100000030 | 0    | 0    | 0.2  | -0.1 | 0.1  | 0    | -0.2 | 0    | 0.1  | 0    |
| opCjV0100000036 | 1    | 0.5  | 0.8  | 0.3  | 0    | -0.1 | 0.1  | 0    | 0.2  | -0.1 |
| opCjV0100000039 | -0.1 | -0.3 | 0.6  | 0    | -0.1 | 0.1  | 0.1  | 0.1  | -0.2 | 0    |
| opCjV0100000040 | -0.2 | 0    | -0.1 | -0.1 | -0.2 | 0.1  | -0.1 | 0.1  | 0    | 0    |
| opCjV0100000041 | -1.4 | -0.2 | 0.9  | 0    | 0.2  | 0.1  | 0.3  | 0.3  | -0.1 | -0.2 |
| opCjV0100000042 | -0.2 | 0    | 0.1  | 0    | -0.2 | 0.2  | -0.1 | -0.2 | 0.2  | 0    |
| opCjV0100000043 | -0.1 | 0.1  | 0    | -0.1 | -0.1 | 0.2  | 0    | -0.2 | 0    | 0.1  |
| opCjV0100000044 | 0.1  | 0.1  | 0.3  | 0    | 0    | -0.1 | 0.1  | 0    | 0.1  | 0    |
| opCjV0100000045 | -0.3 | 0    | 0    | -0.2 | -0.3 | 0.2  | 0    | 0.1  | 0.3  | -0.1 |
| opCjV0100000047 | 0.4  | -0.1 | 0.2  | 0    | 0    | 0.1  | -0.1 | -0.1 | -0.1 | 0    |
| opCjV0100000048 | -0.4 | 0.2  | -1   | -0.1 | -0.2 | 0.2  | -0.1 | -0.2 | 0.4  | 0.1  |

| opCjV0100000049 | -0.1 | 0    | 0    | 0    | -0.1 | 0.3  | -0.1 | 0    | 0.1  | 0.1  |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV010000050  | 0.1  | -0.1 | -0.2 | 0.1  | 0.1  | 0    | 0    | -0.1 | -0.2 | 0    |
| opCjV0100000051 | 0    | 0.2  | 0.3  | 0.1  | 0.1  | 0.1  | -0.1 | -0.1 | 0.3  | 0    |
| opCjV0100000052 | -0.3 | -0.4 | -1.6 | 0    | 0.2  | 0.1  | -0.1 | 0    | 0    | 0    |
| opCjV010000053  | -0.4 | -0.1 | -0.2 | -0.1 | -0.2 | 0.2  | -0.1 | -0.2 | 0.2  | 0    |
| opCjV0100000055 | -0.1 | -0.1 | 0.1  | 0    | 0.1  | 0    | 0    | 0    | 0.1  | 0    |
| opCjV010000056  | -0.2 | -0.2 | 0    | -0.1 | 0    | 0.1  | -0.1 | 0    | 0.1  | -0.1 |
| opCjV0100000058 | 0.4  | 0.1  | 0.5  | 0    | 0.1  | 0    | 0    | 0    | 0.1  | 0.1  |
| opCjV0100000059 | -5.3 | -0.2 | -4.1 | 0    | 1.7  | -1.4 | -1.7 | 0.3  | -2.3 | 0    |
| opCjV0100000060 | 0.4  | 0.2  | 0.5  | 0    | -0.1 | 0.1  | -0.2 | 0    | 0.1  | 0    |
| opCjV0100000061 | 1    | 0.6  | 0.9  | 0.2  | -0.1 | 0    | 0.2  | 0    | 0    | -0.1 |
| opCjV0100000062 | -0.1 | 0.1  | -0.1 | 0    | 0    | -1.8 | 0    | -0.1 | -0.1 | 0    |
| opCjV0100000064 | -5.7 | -0.9 | -4.2 | -0.2 | 1.9  | -1.3 | -1.9 | 0.2  | -1.7 | -0.2 |
| opCjV0100000065 | 0.9  | 0.4  | 0.5  | 0.1  | 0    | 0    | 0.1  | 0    | 0    | -0.1 |
| opCjV0100000066 | 0.1  | 0.1  | 0.5  | -0.1 | -0.1 | 0.2  | 0.1  | 0    | 0.1  | 0.1  |
| opCjV0100000067 | 0.4  | 0.4  | 0.2  | 0.1  | -0.1 | 0    | 0.1  | 0    | 0.1  | 0    |
| opCjV0100000068 | 0.2  | -0.1 | 0    | 0    | 0.2  | -0.1 | 0    | 0.1  | 0    | -0.1 |

| opCjV0100000069 | 0    | 0.1  | 0.3  | 0    | -0.1 | 0.1  | 0    | 0.1  | -0.1 | 0    |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000070 | -0.3 | 0    | 0    | -0.1 | -0.1 | 0.3  | 0    | -0.1 | 0.1  | 0    |
| opCjV0100000071 | 0    | -1.2 | -1.2 | -2.2 | 4    | -2.2 | -2.9 | 2.8  | -0.4 | -2.3 |
| opCjV0100000072 | -0.4 | 0.1  | -0.2 | -0.1 | -0.1 | 0.2  | -0.1 | 0.1  | 0.2  | 0    |
| opCjV0100000073 | 1    | 0.8  | 0.8  | 0.2  | -0.1 | 0.1  | 0.2  | -0.2 | 0.1  | 0.1  |
| opCjV0100000074 | -0.1 | 0.1  | 0    | 0    | 0    | 0.2  | -0.1 | -0.1 | 0    | 0    |
| opCjV0100000075 | 0.5  | 0.6  | 0.7  | -0.1 | 0    | 0    | 0.2  | 0    | -0.2 | -0.1 |
| opCjV0100000077 | -0.2 | 0.1  | -0.1 | 0    | -0.2 | 0.2  | -0.1 | 0    | 0    | 0.1  |
| opCjV0100000078 | 0    | 0.2  | 0.7  | 0    | 0.2  | -0.1 | -0.1 | 0    | -0.4 | -0.1 |
| opCjV0100000080 | 0.2  | 0.2  | 0.4  | 0.1  | 0.2  | 0.1  | -0.2 | 0    | 0.1  | 0    |
| opCjV0100000082 | -0.5 | 0    | 0.2  | -0.1 | 0    | 0.2  | 0    | -0.1 | 0    | 0.1  |
| opCjV0100000084 | 0.3  | 0.1  | 0.7  | 0.1  | 0.1  | 0    | -0.4 | 0.1  | 0    | -0.1 |
| opCjV0100000085 | 0.6  | 0.3  | 0.5  | 0.1  | -0.1 | 0    | 0    | 0.1  | 0    | -0.1 |
| opCjV0100000087 | -0.4 | 0.2  | -0.2 | -0.1 | -0.1 | 0    | 0    | 0.1  | 0.1  | -0.1 |
| opCjV0100000088 | 0.2  | 0    | 0.2  | 0.1  | 0.1  | 0.1  | 0.2  | -0.3 | -0.1 | -0.1 |
| opCjV0100000089 | 0.3  | 0    | 0.1  | 0    | -0.1 | 0.2  | 0.1  | 0    | -0.1 | 0    |
| opCjV0100000092 | -0.3 | 0.2  | -2   | -0.1 | -0.3 | -1.3 | -1.8 | -1.1 | 0.1  | 0.1  |

| opCjV0100000093 | 0.7  | 0.5  | 0.2  | 0.2  | 0    | 0.1  | 0    | 0    | 0    | -0.1 |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000094 | -0.1 | 0    | 0.1  | 0    | 0.1  | 0.1  | -0.1 | 0    | -0.2 | 0    |
| opCjV0100000095 | 0.3  | 0.2  | 1    | 0    | 0.2  | 0    | 0    | -1   | -0.1 | -0.1 |
| opCjV0100000096 | 0.1  | -0.1 | 0.3  | 0.2  | 0.2  | 0    | -0.2 | -0.2 | 0    | 0    |
| opCjV0100000098 | 0.1  | 0.1  | 0.1  | 0    | -0.1 | 0.2  | 0.2  | -0.2 | 0.1  | 0.1  |
| opCjV0100000099 | -0.1 | 0.1  | 0.2  | 0    | -2.4 | 0.2  | 0    | 0    | 0    | 0.1  |
| opCjV0100000100 | 0.1  | 0.1  | 0.4  | -0.1 | 0.1  | 0.3  | 0.1  | 0    | 0    | 0.1  |
| opCjV0100000101 | 0.2  | 0.3  | 0.5  | 0.1  | 0    | 0.1  | 0    | -0.2 | 0.1  | 0.1  |
| opCjV0100000102 | 0.3  | 0.3  | 0.5  | 0.1  | -1.3 | 0.1  | 0.1  | -0.1 | 0    | 0    |
| opCjV0100000103 | 1.1  | 0.6  | 1.4  | 0.2  | 0.3  | -0.2 | -0.1 | -0.1 | 0    | 0.1  |
| opCjV0100000106 | -0.5 | -0.3 | -0.5 | -0.1 | -0.3 | 0.2  | -0.2 | -0.1 | 0.1  | -0.1 |
| opCjV0100000108 | 0.2  | 0.2  | 0    | 0    | 0    | 0.1  | 0    | -0.1 | -0.1 | -0.1 |
| opCjV0100000109 | -0.1 | 0.1  | -0.3 | -0.2 | -0.3 | 0.2  | 0    | 0.1  | 0.1  | 0    |
| opCjV0100000110 | 0    | 0.1  | 0.1  | 0    | -0.1 | 0.1  | 0    | -0.1 | 0.2  | 0    |
| opCjV0100000111 | 0.8  | 0.3  | 0.5  | 0.1  | 0.1  | 0.2  | 0.3  | 0    | 0    | 0.1  |
| opCjV0100000112 | 0.6  | 0.5  | -0.1 | 0.1  | -0.1 | 0    | 0.1  | 0    | 0.1  | 0    |
| opCjV0100000114 | -5.3 | -4.1 | -3.7 | -1.3 | 1.9  | -1.4 | -0.1 | 1.6  | -1.3 | -1.3 |

| opCjV0100000115 | 0.1  | 0.2  | 0    | 0.1  | 0    | 0    | 0    | 0    | 0.2  | 0    |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000116 | 0.1  | 0.4  | 0    | 0    | -0.1 | 0.1  | -0.1 | 0    | 0.3  | 0    |
| opCjV0100000117 | -0.2 | 0.1  | -0.5 | 0.1  | 0.1  | 0    | -0.1 | 0    | 0.1  | -0.2 |
| opCjV0100000118 | 0.4  | 0.1  | 0.4  | 0.1  | 0.2  | 0    | -0.1 | -0.1 | 0.1  | -0.1 |
| opCjV0100000120 | 0    | -0.1 | -0.5 | 0    | -1.6 | 0.2  | -0.2 | -0.2 | 0    | 0    |
| opCjV0100000121 | 0.1  | 0.4  | 0.3  | 0    | 0    | -0.1 | 0    | 0    | 0    | -0.1 |
| opCjV0100000122 | 0.3  | 0.2  | 0.2  | 0.1  | 0    | 0    | -0.3 | 0    | 0    | 0.1  |
| opCjV0100000124 | 0.4  | 0.2  | 0.6  | 0    | 0.3  | -0.1 | 0    | -0.1 | -0.2 | -0.1 |
| opCjV0100000125 | 0.7  | 0.4  | 0.8  | 0.2  | 0.2  | -0.1 | -0.2 | -0.3 | 0    | 0.2  |
| opCjV0100000126 | 0.2  | 0.3  | 0.2  | 0.2  | -0.7 | 0.3  | 0    | -0.2 | 0.3  | 0.3  |
| opCjV0100000127 | 0.5  | 0.3  | 0.7  | 0    | 0.2  | 0    | 0    | -0.1 | -0.2 | 0    |
| opCjV0100000130 | 0.6  | 0.2  | 0.7  | -0.1 | -0.1 | 0.3  | 0.1  | 0    | 0.2  | -0.1 |
| opCjV0100000131 | -0.2 | 0.1  | -0.1 | 0    | -0.2 | 0.2  | 0.1  | -0.1 | 0.1  | 0    |
| opCjV0100000132 | 0.3  | 0    | 0.2  | 0.1  | 0.1  | 0.1  | 0.1  | -0.1 | -0.1 | 0    |
| opCjV0100000133 | 0.2  | 0    | 0.2  | 0    | -0.1 | 0.1  | 0    | 0    | 0.1  | 0    |
| opCjV0100000134 | 0.2  | 0.2  | 0.2  | 0    | 0    | -0.1 | 0.1  | 0.1  | 0    | 0    |
| opCjV0100000135 | 0.1  | 0.1  | 0.2  | -0.1 | -0.1 | 0.2  | 0    | 0    | 0    | 0    |

| opCjV0100000136 | 0.2  | 0.2  | 0    | 0    | -0.2 | 0.1 | 0.1  | 0    | 0.1  | 0.1  |
|-----------------|------|------|------|------|------|-----|------|------|------|------|
| opCjV0100000137 | -0.4 | 0.1  | -0.1 | -0.1 | 0    | 0   | -0.4 | 0.2  | -0.1 | -0.1 |
| opCjV0100000138 | -0.5 | 0.2  | -0.3 | 0    | -0.1 | 0   | 0.1  | -0.3 | -0.1 | 0    |
| opCjV0100000140 | -1.9 | -4.4 | -0.3 | -1.3 | 1.9  | 0   | -0.9 | 1.6  | -1.5 | -1.5 |
| opCjV0100000141 | 0    | 0.1  | 0.1  | -0.1 | -0.1 | 0.1 | 0.1  | -0.1 | 0.1  | 0.1  |
| opCjV0100000142 | 0.6  | 0.2  | 0.7  | 0.1  | 0.1  | 0.1 | 0    | 0    | 0    | 0.1  |
| opCjV0100000143 | 0.1  | -0.1 | 0    | 0.1  | -0.9 | 0   | -0.3 | -0.1 | 0.2  | 0    |
| opCjV0100000144 | 0.7  | -0.1 | 1    | 0    | 0    | 0.2 | 0    | 0.1  | 0    | 0    |
| opCjV0100000145 | -0.1 | -0.2 | 0.1  | 0    | 0.1  | 0.1 | 0.1  | -0.1 | -0.1 | 0.1  |
| opCjV0100000146 | 0    | 0    | 0    | 0    | -1.2 | 0.1 | 0.1  | -0.1 | 0    | 0    |
| opCjV0100000147 | 0.2  | 0.2  | 0.5  | 0.1  | 0.1  | 0.2 | 0    | 0    | 0.1  | 0    |
| opCjV0100000150 | -0.4 | -0.2 | -0.6 | 0.1  | 0.1  | 0.1 | 0    | -0.2 | 0.2  | 0.1  |
| opCjV0100000151 | -0.2 | 0.1  | 0    | 0.1  | 0.1  | 0.2 | 0.1  | 0    | 0.2  | 0.1  |
| opCjV0100000152 | 0.1  | 0.3  | 0.5  | 0.2  | -0.8 | 0   | 0    | 0    | 0    | -0.1 |
| opCjV0100000153 | -0.4 | -0.8 | -0.4 | 0    | 0.1  | 0   | -0.1 | 0    | -0.1 | -0.1 |
| opCjV0100000154 | 0.4  | 0.1  | 0.2  | 0    | -0.1 | 0.2 | 0    | -0.1 | 0    | 0.1  |
| opCjV0100000155 | -0.2 | 0.1  | -0.1 | -0.1 | -0.2 | 0.1 | 0    | -0.1 | 0.2  | 0.1  |

| opCjV0100000156 | -0.2 | 0    | -0.4 | -0.1 | -0.3 | 0.2  | -0.1 | 0    | 0    | -0.1 |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000158 | -0.6 | -2.2 | -2.1 | -0.7 | 1.2  | -0.5 | -0.1 | 1.1  | -0.7 | -0.1 |
| opCjV0100000159 | -0.1 | 0.1  | 0.1  | -0.1 | -0.4 | 0.3  | 0    | -0.1 | 0    | 0.1  |
| opCjV0100000160 | 0    | 0.3  | 0.3  | -0.1 | -0.1 | 0.2  | 0.1  | 0.1  | 0.3  | 0    |
| opCjV0100000161 | 0.8  | 0    | 0    | 0.2  | 0.1  | -0.1 | 0    | -0.1 | -0.1 | 0    |
| opCjV0100000164 | -2.1 | -1.5 | -0.9 | -0.4 | 0.6  | -0.8 | -1.1 | -0.1 | -0.5 | -0.4 |
| opCjV0100000165 | -0.2 | -4.7 | -2.1 | -1.5 | 1.3  | -1.2 | -0.1 | 5.5  | -2   | -1.4 |
| opCjV0100000166 | -1   | -0.4 | -2.7 | 0.1  | -0.3 | 0.4  | 0.1  | -0.3 | 0.1  | 0.3  |
| opCjV0100000169 | 0    | 0    | -1.6 | 0    | -0.1 | -0.9 | -2.7 | -0.1 | 0.1  | 0.1  |
| opCjV0100000170 | 0.6  | 0.4  | -0.1 | 0.3  | -1.8 | -0.1 | 0    | -0.4 | 0    | 0    |
| opCjV0100000172 | 0.4  | 0.2  | 0.4  | 0.1  | 0.1  | 0.1  | 0    | -0.1 | 0    | 0.1  |
| opCjV0100000173 | 0.3  | 0.3  | 0    | -1.4 | -0.4 | -1.4 | -1.7 | 0.9  | 0    | -1.5 |
| opCjV0100000174 | -1.3 | -0.8 | 0.1  | -0.3 | 0.2  | 0    | -0.1 | 0.2  | -0.1 | -0.3 |
| opCjV0100000175 | 0.6  | 0.5  | 0.1  | 0.1  | 0.2  | 0    | -0.2 | -0.4 | 0    | 0    |
| opCjV0100000176 | 0.3  | 0.4  | 0.3  | 0.1  | 0.2  | 0    | -0.1 | 0    | 0.1  | 0    |
| opCjV0100000178 | 0.3  | 0    | 0.3  | -0.1 | -0.1 | 0    | 0.2  | 0    | -0.1 | 0    |
| opCjV0100000179 | 0.7  | 0.3  | 0.5  | 0.1  | 0.2  | 0    | 0    | 0    | -0.1 | -0.1 |

| opCjV0100000180 | 0    | 0.1  | -4.5 | 0    | -0.1 | -1.3 | -1.4 | 0.2  | 0    | -0.1 |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000181 | -0.6 | -0.5 | 0    | -0.1 | 0.2  | 0    | 0.1  | 0.1  | -0.2 | -0.2 |
| opCjV0100000183 | 0.4  | 0.3  | 0.6  | 0    | -0.1 | 0.1  | 0.2  | 0    | 0.1  | 0    |
| opCjV0100000187 | -0.4 | 0    | -0.4 | 0    | -0.2 | 0.3  | 0    | -0.1 | 0.2  | 0    |
| opCjV0100000188 | -4.8 | -4   | -3.7 | -1.3 | 2.2  | -1.5 | -1.6 | 1.5  | -1.6 | -1.7 |
| opCjV0100000189 | 0.4  | 0.1  | 0.5  | 0.2  | 0.1  | 0.1  | 0.1  | -0.2 | 0    | 0    |
| opCjV0100000190 | -2.5 | -2.2 | -0.1 | -1.7 | 2.3  | -2.5 | -0.2 | 2.8  | 0    | -1.8 |
| opCjV0100000191 | 0.4  | 0.4  | 0.4  | 0    | -0.1 | 0.1  | 0.1  | 0.1  | 0.1  | 0    |
| opCjV0100000192 | -4   | -3.5 | -3.7 | -1   | 1.6  | -1.2 | -1.3 | 1.3  | -1.3 | -1.2 |
| opCjV0100000193 | 0.3  | 0.1  | -0.1 | 0.1  | 0.1  | -1.8 | 0.1  | 0    | -0.1 | 0    |
| opCjV0100000194 | 0.6  | 0.5  | 0.5  | 0.1  | -0.1 | 0    | 0    | 0    | 0    | -0.1 |
| opCjV0100000195 | 0.1  | 0.2  | 0.4  | 0.2  | 0    | 0.3  | 0.1  | -0.2 | 0    | 0.2  |
| opCjV0100000196 | -0.1 | -0.2 | -2   | 0.1  | 0.1  | -1.5 | -1.8 | -1   | 0.2  | 0    |
| opCjV0100000197 | 0    | 0.2  | 0.2  | 0.1  | 0.1  | 0    | 0    | 0    | 0    | 0    |
| opCjV0100000198 | 0.4  | 0.5  | 0.4  | 0    | 0    | 0.1  | 0.1  | 0    | 0.1  | 0    |
| opCjV0100000199 | 0.3  | 0.5  | 0.4  | 0    | 0    | -0.1 | 0.2  | -0.2 | 0    | 0    |
| opCjV0100000200 | 0    | -0.1 | 0.2  | 0    | 0    | 0    | 0.2  | 0.1  | -0.2 | -0.1 |

| opCjV0100000201 | 0.1  | 0    | 0.3  | 0    | 0.2  | -0.1 | 0.2  | 0.2  | 0    | -0.1 |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000202 | 0.1  | -0.1 | 0    | 0    | 0.1  | 0.1  | 0    | 0    | 0    | -0.2 |
| opCjV010000203  | -0.7 | -0.1 | -0.2 | -0.3 | -0.3 | 0.2  | 0    | 0.1  | 0    | 0    |
| opCjV010000205  | -0.3 | -0.5 | -0.3 | 0.1  | 0.1  | 0.1  | -0.2 | 0.1  | -0.1 | -0.1 |
| opCjV010000206  | 0    | 0.2  | 0.5  | -0.1 | -0.2 | 0.2  | 0    | -0.1 | -0.1 | 0    |
| opCjV0100000207 | -0.9 | -0.3 | -2.2 | -0.1 | -0.2 | -0.7 | -1.3 | 0    | 0.3  | 0    |
| opCjV0100000208 | -1.2 | -0.6 | -0.2 | -0.1 | -0.2 | 0.3  | -0.1 | 0    | 0.2  | 0.1  |
| opCjV0100000211 | -0.3 | -0.2 | -0.8 | -2.4 | 2.9  | -2.4 | -2.9 | 2.1  | 0.2  | -1.9 |
| opCjV0100000212 | 0.8  | 0.6  | 0.9  | 0    | -0.1 | -0.1 | 0.1  | 0    | 0    | -0.1 |
| opCjV0100000213 | 0.2  | 0.2  | 0.5  | -0.1 | -0.1 | 0.2  | 0    | -0.1 | 0    | 0    |
| opCjV0100000214 | 0.5  | 0.3  | 0.5  | 0    | -0.1 | 0    | 0.1  | -0.2 | 0    | 0    |
| opCjV0100000215 | 0.4  | 0.4  | -5.4 | -1.8 | 5.3  | -2.7 | -2.9 | 5.5  | 0.1  | -1.7 |
| opCjV0100000216 | -3.7 | -3   | -3.1 | -0.9 | 1.3  | -0.9 | -1.5 | 2.4  | -1.1 | -1.3 |
| opCjV0100000218 | -0.1 | 0.1  | 0.2  | 0    | -0.1 | 0.2  | 0    | -0.1 | 0    | 0    |
| opCjV0100000219 | -0.1 | 0.1  | 0    | 0    | -0.1 | 0.2  | 0    | 0    | 0.1  | 0    |
| opCjV0100000220 | -3.9 | -3.5 | -1.7 | -1   | 1.5  | 0    | -1.2 | 1.5  | -0.1 | -1.2 |
| opCjV0100000222 | 0.1  | 0.4  | 0.2  | 0    | -0.2 | 0.1  | 0    | -0.2 | -0.1 | 0    |

| opCjV0100000223 | 0.2  | 0.1  | -0.3 | 0.1  | 0.1  | -1.5 | 0    | -0.1 | -0.1 | 0    |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000224 | 0.3  | 0.2  | 0.5  | 0.2  | 0    | 0.1  | 0.3  | 0.1  | -0.3 | -0.1 |
| opCjV0100000225 | 0.4  | 0    | 0    | 0.1  | 0.2  | -0.1 | 0.1  | 0.1  | -0.1 | -0.1 |
| opCjV0100000228 | 0.6  | 0.3  | -0.1 | 0.3  | 0.3  | -0.1 | -0.3 | 0.1  | -0.2 | -0.1 |
| opCjV0100000232 | -0.7 | -0.4 | -0.7 | -0.1 | -0.1 | 0.3  | -0.1 | 0.1  | 0.1  | 0    |
| opCjV0100000233 | -0.1 | 0    | 0.2  | 0    | -0.2 | 0.1  | -0.1 | 0.1  | -0.1 | 0    |
| opCjV0100000235 | -0.5 | -2.4 | -4.8 | -1.7 | 2.2  | 0.1  | -0.1 | 1.8  | -3.1 | -1.5 |
| opCjV0100000238 | -0.1 | -0.1 | 0    | 0    | -0.2 | 0.4  | -0.1 | 0    | 0.2  | 0    |
| opCjV0100000239 | -0.5 | -0.3 | 0    | -0.1 | 0    | 0.1  | -0.1 | 0    | 0.1  | 0    |
| opCjV0100000240 | -0.7 | -0.4 | 0.1  | 0.1  | 0.1  | 0    | 0    | 0    | -0.2 | -0.1 |
| opCjV0100000241 | 0.1  | 0.3  | 0.2  | -0.1 | 0    | 0    | 0    | 0    | -0.1 | 0    |
| opCjV0100000242 | -0.1 | 0    | 0    | -0.1 | -0.1 | 0.2  | 0    | -0.1 | 0.1  | 0    |
| opCjV0100000243 | -0.8 | -0.2 | -0.5 | 0    | -0.1 | 0.3  | -0.1 | -0.1 | 0.1  | 0    |
| opCjV0100000244 | 0.3  | 0.3  | 0.3  | 0.1  | 0.1  | 0.1  | 0.1  | -0.1 | 0    | 0    |
| opCjV0100000245 | -0.1 | 0.1  | 0.1  | 0    | -0.1 | 0.2  | -0.1 | 0    | 0.2  | 0.1  |
| opCjV0100000246 | 0.5  | 0.5  | 0.3  | 0.2  | 0    | 0.2  | 0.1  | -0.2 | -0.1 | 0.1  |
| opCjV0100000250 | 0.1  | 0    | 0.2  | 0    | -0.1 | 0.1  | 0.2  | 0.1  | 0.2  | -0.1 |

| opCjV0100000252 | 0.1  | 0    | -1.4 | 0    | 0    | 0.1  | 0    | 0.1  | 0.1  | 0    |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000253 | 0.7  | 0.5  | 0.6  | 0.1  | 0.1  | 0    | 0.2  | 0.2  | 0    | -0.1 |
| opCjV0100000255 | 0.1  | 0.1  | 0.1  | 0.1  | 0.2  | 0.1  | 0    | 0    | -0.2 | -0.2 |
| opCjV0100000256 | -0.1 | 0.1  | 0.4  | 0    | 0    | 0.1  | 0.2  | 0    | 0    | -0.1 |
| opCjV0100000257 | -0.3 | -0.1 | -2.1 | 0    | -0.2 | -1   | 0.1  | 0    | -0.1 | 0    |
| opCjV0100000259 | 0.1  | 0    | 0.2  | 0    | 0.1  | -0.1 | 0.1  | 0.1  | -0.2 | -0.1 |
| opCjV0100000260 | 0.5  | 0.2  | 0.4  | 0.1  | -0.1 | 0    | 0.1  | -0.5 | 0    | 0    |
| opCjV0100000262 | 0.5  | 0.5  | 0.3  | 0    | -0.1 | 0    | -0.1 | 0.1  | 0.2  | 0.1  |
| opCjV0100000263 | 0.2  | 0.4  | 0.2  | 0    | -0.2 | 0.1  | -0.2 | -0.1 | 0.1  | 0.1  |
| opCjV0100000264 | 0.2  | 0.3  | 0.4  | 0.1  | 0    | 0.2  | 0.1  | -0.1 | 0.1  | 0    |
| opCjV0100000265 | 0.2  | 0.5  | 0.1  | 0    | -0.1 | -2.1 | -1.7 | -0.1 | 0.1  | 0    |
| opCjV0100000266 | 0.4  | 0.3  | 0.5  | 0.1  | 0.1  | 0.2  | 0.2  | 0    | 0.1  | 0    |
| opCjV0100000267 | 0.5  | 0.2  | 0.5  | 0    | 0.1  | -0.1 | 0.1  | 0.1  | 0    | 0    |
| opCjV0100000268 | 0.4  | 0.2  | 0.5  | 0    | 0.1  | 0    | 0    | -0.1 | 0    | 0    |
| opCjV0100000269 | 0.4  | -1   | -0.7 | -1.9 | 3.3  | -0.7 | -2.8 | 2.8  | -0.1 | -2.1 |
| opCjV0100000270 | -0.5 | 0    | -0.4 | 0    | -0.2 | 0.2  | 0    | 0    | 0.2  | 0.1  |
| opCjV0100000271 | -0.4 | -0.1 | 0.6  | 0    | 0    | 0.2  | 0.2  | 0.2  | -0.2 | 0    |

| opCjV0100000272 | -0.2 | -0.1 | -0.2 | 0    | -0.1 | 0.2  | 0    | 0.1  | 0    | 0    |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000273 | 0.2  | 0.3  | 0.1  | 0.1  | 0.1  | 0    | 0    | 0.1  | 0    | -0.1 |
| opCjV0100000274 | 0.6  | 0.2  | 0.4  | 0    | 0    | 0    | 0.2  | 0    | -0.1 | -0.1 |
| opCjV0100000276 | -0.4 | -0.2 | -0.4 | 0.1  | -0.1 | 0.1  | -0.2 | 0.2  | 0.2  | 0    |
| opCjV010000279  | -5.3 | -4.4 | -6.1 | -1.7 | 2.4  | -2.2 | -1.8 | 1.7  | -1.6 | -1.6 |
| opCjV010000280  | 0.3  | 0.6  | 0.5  | 0.1  | 0.1  | 0    | 0    | 0.1  | -0.1 | -0.2 |
| opCjV0100000281 | 0.3  | 0.2  | 0.3  | -0.1 | -0.1 | -0.1 | 0.1  | 0.1  | 0    | 0    |
| opCjV0100000282 | -0.2 | 0    | 0.1  | 0    | 0    | 0.2  | 0    | 0    | -0.1 | -0.1 |
| opCjV0100000283 | 0.3  | 0.1  | 0.5  | 0    | 0.1  | 0    | 0.1  | 0.1  | -0.1 | -0.1 |
| opCjV010000284  | 0.2  | 0.1  | 0.5  | -0.1 | -0.1 | 0.1  | 0.1  | 0    | 0    | 0.1  |
| opCjV010000285  | -0.8 | 0    | -0.3 | 0    | -0.2 | 0.2  | 0.1  | 0    | 0.2  | 0.1  |
| opCjV010000286  | -0.2 | 0.1  | -0.4 | 0.1  | 0.1  | 0    | -0.1 | 0    | 0.2  | -0.1 |
| opCjV0100000287 | -0.1 | -0.1 | -0.3 | 0    | -0.1 | 0.2  | 0    | -0.1 | 0    | 0    |
| opCjV010000288  | 0.2  | 0.4  | 0.2  | 0.1  | 0    | 0    | 0.1  | -0.1 | 0.1  | -0.1 |
| opCjV010000290  | -0.3 | -0.2 | 0.1  | 0    | 0    | 0.2  | 0    | -0.1 | 0    | 0    |
| opCjV0100000292 | 0.6  | 0.2  | 0.3  | 0.2  | 0.3  | 0    | -0.1 | -0.1 | -0.1 | 0    |
| opCjV0100000293 | 0.1  | 0.2  | 0.2  | -0.3 | 0    | 0    | 0    | 0.1  | -0.1 | -0.2 |

| opCjV0100000295 | 0.6  | 0.1  | 0.4  | 0    | -0.1 | 0.2  | 0.1  | 0    | 0    | -0.1 |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000296 | 0.8  | 0.3  | 0.4  | 0.2  | 0    | 0    | 0.2  | 0    | -0.1 | -0.1 |
| opCjV0100000298 | 0.2  | 0    | 0.2  | 0    | 0    | 0    | 0    | 0    | 0    | -0.1 |
| opCjV0100000299 | -1.2 | -0.6 | -1.4 | -0.1 | 1.3  | -0.6 | -0.4 | 0.6  | -0.3 | -0.2 |
| opCjV0100000300 | -0.1 | -0.2 | -5   | 0    | 0    | -1.6 | -0.1 | 0.1  | 0.2  | 0    |
| opCjV0100000304 | -1.5 | -1.2 | -0.9 | -0.2 | 0.3  | 0    | -0.4 | 0.1  | -0.1 | -0.2 |
| opCjV0100000305 | -0.7 | -0.1 | -5   | -0.2 | -0.3 | -1.5 | -1.1 | -1.5 | 0.3  | 0.1  |
| opCjV0100000306 | 0.1  | -0.1 | 0.6  | 0    | -0.1 | 0.1  | -0.1 | 0.1  | 0.1  | 0    |
| opCjV0100000307 | 0    | 0.4  | 0.1  | 0    | -0.2 | 0.1  | 0    | 0    | 0.2  | 0.1  |
| opCjV0100000308 | -0.6 | 0.2  | -0.2 | 0.1  | -0.1 | 0.1  | 0.1  | 0.1  | 0.2  | 0.1  |
| opCjV0100000309 | 0.5  | 0.6  | 0.5  | 0    | -0.1 | -0.1 | 0.1  | 0.1  | 0.1  | -0.2 |
| opCjV0100000310 | 0.3  | 0.2  | 0.1  | 0    | -0.1 | 0.1  | 0.1  | 0    | 0    | -0.1 |
| opCjV0100000311 | 0.2  | 0    | 0.3  | 0    | -0.1 | 0    | 0.1  | -0.2 | 0    | 0.1  |
| opCjV0100000312 | 0.4  | 0.5  | 0.4  | -0.2 | -0.1 | 0    | -0.1 | 0.1  | 0.3  | 0    |
| opCjV0100000313 | 0.5  | -0.1 | 0.4  | 0.1  | 0.1  | 0    | 0    | -0.1 | -0.1 | 0    |
| opCjV0100000317 | 0.4  | 0.3  | 0.4  | 0    | 0    | 0.1  | 0.2  | 0    | -0.1 | 0    |
| opCjV0100000320 | -0.6 | 0.2  | 0    | 0    | 0    | 0    | -0.1 | 0.1  | 0    | -0.2 |

| opCjV0100000321 | -0.4 | 0    | -0.1 | -0.1 | -0.2 | 0.2  | 0    | 0.1  | 0    | 0    |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000322 | 1    | 0.5  | 0.9  | 0    | 0    | -0.1 | 0.2  | -0.1 | -0.1 | -0.1 |
| opCjV0100000323 | 0.7  | 0.2  | 0.3  | 0    | 0    | 0.1  | 0.1  | -0.1 | 0    | 0    |
| opCjV0100000324 | 0.4  | 0    | 0.5  | 0    | -0.1 | -0.1 | -0.1 | 0    | 0    | 0    |
| opCjV0100000326 | -0.4 | -0.2 | -0.4 | 0.1  | -0.1 | 0.1  | -0.2 | -0.1 | 0    | -0.1 |
| opCjV0100000329 | 0.2  | 0.1  | -3.9 | 0    | -0.1 | -1.4 | -1.5 | -1.5 | 0    | 0    |
| opCjV0100000330 | 0.2  | 0.4  | 0.4  | 0    | -0.1 | 0.2  | 0.1  | -0.1 | 0.3  | -0.1 |
| opCjV0100000331 | 0.2  | 0    | -0.2 | 0    | 0    | -0.1 | 0    | 0    | 0.1  | 0    |
| opCjV0100000332 | -1.9 | -1.1 | -4.7 | -0.3 | 0.3  | -0.7 | -0.2 | -1.1 | 0.1  | -0.3 |
| opCjV0100000336 | -0.7 | -0.4 | -0.3 | -0.2 | -0.1 | 0.2  | 0    | -0.1 | 0.2  | 0.1  |
| opCjV0100000337 | 0.1  | 0.2  | -0.4 | -0.2 | -0.1 | 0.1  | -0.1 | 0    | -0.4 | -0.1 |
| opCjV0100000338 | -0.8 | -0.1 | 0    | -0.1 | -0.2 | 0.2  | -0.2 | 0    | 0.4  | 0    |
| opCjV0100000339 | -0.5 | -0.1 | -0.3 | -0.1 | -0.1 | 0    | -0.3 | 0    | 0.1  | -0.1 |
| opCjV0100000340 | 0    | 0.2  | 0    | -0.1 | -0.1 | 0    | -0.1 | -0.1 | 0.1  | 0    |
| opCjV0100000341 | -0.1 | -0.1 | 0.1  | 0    | -0.1 | 0.1  | -0.1 | 0.1  | -0.1 | -0.1 |
| opCjV0100000342 | 0.1  | 0    | 0.1  | 0    | 0.1  | 0    | -0.1 | 0    | -0.2 | -0.2 |
| opCjV0100000345 | -2.1 | -1.1 | -0.2 | 0.1  | 0.1  | 0    | -0.3 | -0.1 | -0.2 | -0.2 |

| opCjV0100000346 | 0.2  | 0.1  | 0.2  | 0    | 0.1  | 0    | 0    | 0    | 0    | -0.1 |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000348 | 0.2  | 0.1  | 0    | 0.2  | 0    | 0    | 0    | 0.1  | 0.2  | -0.1 |
| opCjV0100000349 | -0.5 | -0.1 | -0.4 | -0.4 | -0.1 | 0.1  | -0.1 | 0    | -0.1 | -0.2 |
| opCjV0100000350 | -0.5 | 0    | 0    | -0.1 | -0.2 | 0.1  | 0    | 0.1  | 0.1  | -0.1 |
| opCjV0100000351 | -1.3 | -0.1 | -0.6 | 0.1  | 0.2  | -0.3 | -0.3 | -0.2 | -0.1 | -0.2 |
| opCjV0100000354 | 0.8  | 0.6  | 0.7  | 0.1  | 0    | 0    | 0.2  | 0.1  | 0    | -0.1 |
| opCjV0100000355 | -1.4 | -0.1 | -0.7 | -0.2 | 0    | 0.2  | -0.3 | 0    | 0.1  | -0.1 |
| opCjV0100000356 | 0.6  | 0.8  | 1    | 0.1  | -0.1 | -0.2 | 0.2  | -0.1 | 0.2  | -0.1 |
| opCjV0100000357 | -5   | -4.6 | -1.6 | -1.3 | 2.2  | 0    | -0.8 | 3.2  | -2   | -1.8 |
| opCjV0100000358 | 0.1  | 0.2  | 0.3  | 0    | 0    | 0.1  | -0.1 | -0.1 | 0    | -0.1 |
| opCjV0100000361 | -0.5 | 0    | -1.1 | -0.1 | -0.1 | 0.2  | -0.1 | -0.1 | -0.1 | 0.1  |
| opCjV0100000363 | 0    | 0.1  | -0.1 | 0    | 0    | 0.1  | -0.1 | -0.1 | 0.1  | -0.1 |
| opCjV0100000364 | 0.8  | -0.6 | 0.2  | -2.3 | 2.8  | -2.6 | -2.7 | 2.2  | -0.2 | -2.2 |
| opCjV0100000365 | -0.6 | -1   | -1.9 | 0    | 0.2  | -1.9 | -0.8 | 0.2  | -0.1 | -0.1 |
| opCjV0100000366 | 0.6  | 0.2  | 0.1  | 0    | -0.1 | -0.2 | 0    | 0.2  | 0    | -0.2 |
| ppCjV0100000367 | 0.3  | 0.2  | 0.8  | 0    | 0    | 0.1  | 0.1  | 0.1  | 0    | -0.1 |
| opCjV0100000370 | 0.2  | 0.1  | 0.4  | 0    | 0.1  | 0    | 0.1  | 0.1  | -0.1 | -0.1 |

| opCjV0100000371 | 1    | 0.4  | 0.8  | 0.1  | 0    | -0.2 | 0.2  | 0.2  | -0.1 | -0.1 |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000372 | 0.7  | 0.7  | 0.6  | 0.3  | 0    | 0.1  | 0.1  | -0.1 | 0.1  | -0.1 |
| opCjV0100000373 | 0.3  | 0.1  | -5.4 | 0    | 0    | -2.1 | -1.4 | -0.2 | 0    | -0.1 |
| opCjV0100000378 | 0.2  | 0    | 0.2  | 0    | 0.1  | 0.2  | 0.1  | -0.3 | 0.2  | 0.1  |
| opCjV0100000381 | 0.3  | 0.1  | 0.2  | 0.1  | 0.1  | -0.2 | 0.1  | 0    | -0.1 | 0    |
| opCjV0100000382 | 1.1  | 0.5  | 1    | 0    | -0.2 | 0    | 0.2  | 0    | -0.7 | 0.1  |
| opCjV0100000383 | -0.1 | 0.3  | 0.3  | -0.1 | 0    | 0.1  | -0.4 | -0.1 | 0.2  | 0    |
| opCjV0100000384 | -0.6 | -0.5 | -2.8 | -0.1 | 0.1  | -1.4 | -1.8 | 0    | 0.2  | 0    |
| opCjV0100000385 | -0.2 | 0.1  | 0    | 0    | 0.1  | 0    | 0    | 0    | 0.2  | 0    |
| opCjV0100000386 | -0.1 | 0.1  | 0    | -0.1 | -0.1 | 0.2  | 0    | 0.1  | 0    | 0    |
| opCjV0100000390 | 0.1  | 0.5  | 0.4  | 0.1  | 0    | -0.1 | -0.1 | -0.1 | 0    | -0.1 |
| opCjV0100000391 | -0.2 | 0.3  | -1.1 | -0.6 | -0.1 | -0.8 | -1.2 | -0.4 | -0.8 | 0    |
| opCjV0100000392 | -0.1 | 0.1  | 0    | 0.1  | -0.1 | 0    | -0.1 | -0.1 | 0    | -0.1 |
| opCjV0100000393 | -0.2 | 0.2  | -0.3 | 0.1  | 0    | 0.1  | 0    | -0.2 | 0.2  | 0    |
| opCjV0100000394 | 0.5  | 0.3  | 0.4  | 0.1  | 0    | 0    | 0.1  | 0    | 0    | -0.1 |
| opCjV0100000395 | -0.4 | 0    | 0.7  | 0    | 0.1  | 0.2  | 0    | 0    | -0.3 | 0    |
| opCjV0100000396 | -4.9 | -4.1 | -3.3 | -1.2 | 1.8  | -0.9 | -2.5 | 1.5  | -1.5 | -1.4 |

| opCjV0100000397 | -0.7 | 0    | -0.2 | -0.1 | -0.4 | 0.2  | -0.1 | 0    | 0.2  | 0    |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000398 | -1.3 | -0.2 | -0.5 | -0.1 | -0.2 | 0    | 0    | -0.3 | 0.1  | 0.1  |
| opCjV0100000399 | -3.2 | -2.6 | -2.2 | -0.9 | 1.6  | -0.8 | -1   | 1.1  | -1   | -1   |
| opCjV0100000401 | 0    | -0.2 | 0.4  | -0.2 | 0.1  | 0.1  | 0    | -0.2 | 0.1  | 0    |
| opCjV0100000402 | 0.7  | 0.5  | 0.5  | 0.2  | 0.1  | 0    | 0.1  | 0    | 0    | 0    |
| opCjV0100000403 | -0.1 | 0.2  | 0.3  | -0.2 | -0.1 | 0    | -0.1 | -0.1 | -0.6 | 0    |
| opCjV0100000404 | -0.3 | 0    | -1   | 0    | 0    | 0.1  | -1   | -0.6 | 0.3  | 0.1  |
| opCjV0100000406 | -0.3 | -0.6 | -0.5 | -1.1 | 0.1  | 0    | -0.1 | 0.4  | 0.2  | -2   |
| opCjV0100000407 | 0.3  | 0.1  | 0.4  | 0    | 0    | 0.1  | 0    | -0.4 | -0.1 | -0.1 |
| opCjV0100000408 | -0.5 | 0    | -0.5 | -0.1 | -0.1 | 0.2  | -0.1 | -0.1 | 0.2  | 0.1  |
| opCjV0100000409 | -0.1 | 0.1  | 0.1  | 0    | 0    | 0.1  | -0.1 | -0.5 | 0    | 0.1  |
| opCjV0100000410 | 0.3  | 0.2  | 0    | 0    | 0.1  | 0    | -0.1 | -0.2 | 0    | 0    |
| opCjV0100000412 | 0.2  | 0.3  | 0.4  | -0.1 | -0.2 | 0.1  | 0.1  | 0.1  | 0    | 0    |
| opCjV0100000413 | 0.6  | 0.3  | 0.5  | 0.1  | -0.1 | 0    | 0    | 0    | 0.1  | 0.1  |
| opCjV0100000414 | -4.1 | -3.2 | -6.5 | -1   | 1.6  | -1.2 | -1.3 | 0.8  | -1.3 | -1.3 |
| opCjV0100000416 | -0.6 | 0    | 0.3  | 0    | 0    | -0.2 | 0.4  | 0.3  | 0.2  | 0    |
| opCjV0100000417 | 0.2  | -0.1 | -0.4 | -2   | 3.3  | -2   | -2.5 | 3.2  | -0.2 | -0.1 |

| opCjV0100000418 | 0.1  | 0.1  | 0.1  | -0.1 | 0    | 0.1  | 0.1  | 0.1  | -0.1 | -0.1 |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000419 | 0.2  | 0    | 0.4  | 0    | -0.2 | 0.2  | 0    | -0.1 | 0    | 0    |
| opCjV0100000423 | -4   | -2.7 | -0.3 | -0.7 | 1.2  | 0    | -0.2 | 1.1  | -0.7 | -0.8 |
| opCjV0100000425 | 0.3  | 0.3  | 0.5  | 0.1  | 0.3  | 0    | 0.1  | 0.1  | -0.1 | -0.1 |
| opCjV0100000426 | -0.1 | -0.5 | 0    | -1.6 | 3.3  | -1.6 | -1.2 | 3.2  | 0    | -3.2 |
| opCjV0100000428 | 0.1  | -0.1 | 0.3  | 0    | 0.1  | 0.2  | 0.1  | 0    | -0.1 | 0    |
| opCjV0100000430 | 0.6  | 0.4  | 0.7  | 0    | 0    | 0.1  | 0.1  | -0.1 | -0.1 | 0    |
| opCjV0100000433 | 0.3  | 0.1  | 0.4  | 0    | 0    | 0    | -0.1 | -0.1 | 0    | 0    |
| opCjV0100000434 | 0.5  | 0.2  | 0.4  | 0.3  | 0.3  | 0    | -0.1 | 0.1  | -0.3 | 0    |
| opCjV0100000435 | 0.5  | 0.6  | 0.4  | 0    | -0.3 | -0.1 | 0.1  | -0.1 | 0    | -0.1 |
| opCjV0100000436 | 0.6  | 0.3  | 0.5  | -0.1 | -0.2 | 0    | -0.1 | 0    | 0.1  | 0    |
| opCjV0100000437 | 0.8  | 0.6  | 0.9  | 0    | 0.1  | 0.1  | 0.2  | 0    | 0    | 0    |
| opCjV0100000438 | 0.6  | 0.1  | 0.6  | 0    | -0.1 | 0    | 0.1  | 0.2  | 0.1  | 0    |
| opCjV0100000439 | -0.4 | 0.2  | -0.2 | -0.1 | -0.3 | 0.2  | 0    | 0    | 0.2  | 0.1  |
| opCjV0100000442 | 0.1  | -0.1 | -0.1 | 0.1  | 0    | 0.1  | -0.1 | -0.1 | 0    | 0    |
| opCjV0100000444 | -0.3 | -0.1 | -0.5 | -0.1 | -0.4 | -0.8 | -1.3 | 0.1  | 0.3  | 0    |
| opCjV0100000445 | 0.5  | 0.3  | 0.3  | 0.1  | 0    | 0    | -0.1 | 0    | 0    | -0.1 |

| opCjV0100000448 | -0.1 | -0.2 | 0.2  | 0    | 0.1  | 0.1  | 0    | -0.1 | 0.1  | 0.1  |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000449 | -0.2 | 0    | 0    | 0    | 0.2  | 0.1  | -0.1 | 0    | 0    | 0    |
| opCjV0100000450 | -0.2 | 0    | 0.5  | -0.3 | 0    | -0.1 | -0.1 | 0    | 0.1  | -0.1 |
| opCjV0100000451 | 0.3  | 0.5  | 0.3  | 0    | -0.1 | 0.1  | 0    | -0.1 | 0    | 0    |
| opCjV0100000454 | 0.3  | 0.1  | 0.6  | 0.1  | 0.2  | 0    | 0.1  | 0    | -0.2 | 0    |
| opCjV0100000455 | 0    | 0    | 0.1  | -0.1 | -0.1 | 0.1  | 0    | -0.1 | 0.1  | 0.1  |
| opCjV0100000456 | -0.2 | -1.5 | 0.3  | -0.4 | 0.5  | -0.1 | -0.1 | 0.2  | 0    | -0.4 |
| opCjV0100000457 | 0.9  | 0.8  | 0.6  | 0.2  | 0.1  | 0    | 0.3  | -0.1 | -0.1 | 0    |
| opCjV0100000458 | 0.4  | -0.3 | 0.3  | 0    | 0.1  | 0.2  | -0.1 | 0    | -0.2 | 0    |
| opCjV0100000459 | 0.4  | 0.4  | 0.3  | 0.1  | -0.1 | 0    | 0.2  | 0    | 0.1  | 0    |
| opCjV0100000460 | -0.2 | 0.1  | -0.4 | 0    | -0.2 | 0.1  | -0.2 | -0.1 | 0.1  | 0    |
| opCjV0100000461 | -0.5 | 0    | -0.4 | -0.1 | 0    | 0.2  | 0    | 0.2  | 0.1  | 0.1  |
| opCjV0100000462 | 0.3  | 0.4  | 0.5  | 0    | -0.2 | 0    | 0.1  | 0.1  | 0    | 0    |
| opCjV0100000464 | 0.6  | 0.2  | -0.1 | 0.1  | 0    | 0.1  | -0.2 | -0.1 | 0    | 0    |
| opCjV0100000467 | -5.2 | -3.7 | -3.7 | -1.4 | 2.1  | -1.5 | -1.4 | 1.7  | -1.5 | -1.4 |
| opCjV0100000468 | 0.2  | 0.1  | 0.4  | 0    | -0.1 | 0    | -0.2 | 0.1  | 0    | -0.1 |
| opCjV0100000470 | -0.5 | -0.2 | -0.5 | 0    | -0.1 | 0.2  | -0.2 | 0    | 0.2  | 0    |

| opCjV0100000471 | -0.4 | 0    | 0    | 0    | 0    | 0    | -0.2 | 0    | 0.1  | 0.1  |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000472 | 0.3  | 0.2  | 0.3  | 0.1  | -0.3 | 0    | 0    | 0    | 0    | 0    |
| opCjV0100000474 | 0.5  | 0.4  | 0.8  | 0.1  | 0.1  | 0    | 0    | -0.1 | 0    | 0    |
| opCjV0100000475 | 0.1  | 0    | 0.2  | 0.1  | 0.1  | 0.1  | -0.1 | -0.1 | -0.1 | -0.1 |
| opCjV0100000476 | -0.2 | 0.1  | -0.1 | 0.1  | 0.1  | 0.2  | 0    | 0    | 0.1  | 0    |
| opCjV0100000478 | 0    | 0.1  | 0.1  | 0    | 0.1  | 0.2  | 0    | 0    | 0.2  | 0    |
| opCjV0100000479 | 0.8  | 0.4  | 1.1  | 0.1  | 0    | 0.1  | 0.2  | -0.1 | 0    | 0    |
| opCjV0100000480 | -0.1 | 0.1  | 0.1  | 0    | 0.1  | 0.2  | 0    | 0    | 0    | 0.1  |
| opCjV0100000481 | -0.1 | 0.2  | 0    | 0.1  | 0    | 0.1  | 0    | 0    | 0.1  | 0    |
| opCjV0100000483 | -0.3 | -5.2 | -0.3 | -1.4 | 3    | 0    | -0.1 | 2    | -1.9 | -1.7 |
| opCjV0100000484 | -0.1 | -0.2 | 0    | 0    | 0.2  | -0.1 | 0    | -0.2 | -0.1 | 0    |
| opCjV0100000485 | -0.2 | 0.2  | -0.1 | 0    | -0.2 | 0.2  | -0.1 | 0    | 0.3  | 0    |
| opCjV0100000486 | 0.7  | 0.3  | 0.5  | 0    | 0    | 0.1  | 0.2  | 0    | -0.1 | -0.1 |
| opCjV0100000487 | 0    | -0.1 | 0.4  | 0    | 0    | 0.1  | 0    | 0    | 0.1  | -0.1 |
| opCjV0100000488 | 0.2  | 0    | -0.4 | -0.1 | 0.1  | -0.2 | -0.5 | 0.2  | 0.1  | 0    |
| opCjV0100000489 | 0.1  | 0    | 0    | 0.1  | -0.1 | -0.1 | 0    | -0.1 | 0.1  | -0.1 |
| opCjV0100000490 | 0.2  | 0.1  | 0.5  | 0    | 0    | 0.1  | 0    | 0    | 0    | 0    |

| opCjV0100000492 | 0    | 0    | -0.2 | -0.1 | -0.2 | 0.1  | -0.2 | -0.2 | 0.1  | 0.1  |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000493 | 0.3  | 0.1  | 0.1  | 0.1  | 0.1  | 0    | 0.1  | 0    | -0.1 | -0.1 |
| opCjV0100000494 | -0.9 | -0.5 | -1.1 | 0    | 0    | 0.4  | -0.1 | -0.1 | 0.5  | 0.1  |
| opCjV0100000495 | -0.1 | -0.2 | -0.1 | -0.1 | 0.1  | 0.2  | -0.1 | 0    | 0    | -0.1 |
| opCjV0100000496 | 0.1  | 0.1  | 0.2  | 0    | 0.4  | 0.2  | 0.1  | 0    | -0.1 | -0.1 |
| opCjV0100000497 | 0.1  | 0    | 0.8  | -0.1 | -0.1 | 0.3  | 0    | 0    | 0.1  | 0    |
| opCjV010000500  | 0.3  | 0.1  | 0.3  | 0    | 0.3  | -0.1 | -0.1 | 0.1  | -0.1 | -0.1 |
| opCjV0100000504 | -0.6 | -0.5 | -0.3 | -0.1 | 0.2  | -0.4 | -0.3 | 0.1  | -0.2 | -0.4 |
| opCjV0100000505 | -0.1 | -0.3 | 0.3  | 0.1  | 2.9  | 0.1  | 0    | 0    | -0.1 | -0.1 |
| opCjV010000507  | 0.3  | 0.3  | 0.3  | 0    | -0.2 | 0.2  | -0.1 | -0.2 | 0    | 0.1  |
| opCjV010000509  | -0.8 | 0.4  | 0.2  | -0.1 | -0.1 | -0.1 | 0    | 0.2  | 0    | -0.1 |
| opCjV0100000510 | -5.3 | -4.7 | -4.8 | -1.5 | 2.6  | -1.4 | -2.1 | 2    | -1.6 | -1.5 |
| opCjV0100000512 | 1    | 1    | 0.6  | 0.2  | 0.1  | -0.1 | 0.1  | -0.1 | -0.2 | -0.2 |
| opCjV0100000513 | 0.4  | 0.3  | 0.1  | 0    | 0.1  | 0.1  | 0    | 0    | 0    | 0    |
| opCjV0100000514 | 1    | 0.5  | 0.7  | 0.1  | 0    | 0    | 0.3  | 0.1  | -0.1 | 0    |
| opCjV0100000517 | 0.3  | 0.2  | -1.3 | -0.1 | -0.1 | -0.3 | -0.8 | 0    | 0    | 0    |
| opCjV0100000519 | 0.1  | -0.1 | 0.2  | 0.1  | 0.1  | 0.1  | 0    | -0.1 | -0.1 | 0    |

| opCjV0100000520 | 0.3  | 0.2  | 0.3  | 0.2  | 0.2  | 0.1  | 0.1  | -0.1 | 0    | 0.1  |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000521 | -0.1 | 0    | -0.1 | 0.2  | -0.4 | 0.1  | -0.1 | 0.1  | 0.1  | -0.1 |
| opCjV0100000522 | 0.9  | 0.5  | 1.3  | 0.1  | 0.1  | -0.1 | 0.2  | 0.1  | -0.2 | -0.1 |
| opCjV0100000523 | -0.2 | -0.1 | -0.3 | 0.1  | 0    | 0    | -0.1 | -0.2 | 0.2  | 0.1  |
| opCjV0100000524 | -0.3 | 0.1  | 0.1  | 0    | -1   | 0.3  | 0.2  | -0.1 | 0.2  | 0    |
| opCjV0100000525 | -0.2 | 0.1  | -0.3 | -0.1 | -0.1 | 0    | -0.1 | -0.1 | 0.3  | 0    |
| opCjV0100000527 | 0.2  | 0.2  | 0.2  | 0.1  | 0.1  | -0.1 | -0.1 | -0.1 | 0.1  | 0    |
| opCjV0100000528 | -0.5 | -0.1 | -0.6 | 0    | -0.2 | 0.3  | -0.1 | 0    | 0.3  | 0.2  |
| opCjV0100000529 | 0.1  | 0.1  | 0.1  | 0    | -0.1 | -0.1 | -0.1 | -0.2 | 0.1  | 0    |
| opCjV0100000530 | 0    | 0    | -3.5 | 0.1  | 0    | 0.1  | -1.3 | -0.1 | 0.1  | 0    |
| opCjV0100000532 | 0.2  | 0    | 0.3  | 0    | 0    | 0.1  | 0.1  | 0    | -0.2 | -0.1 |
| opCjV0100000533 | -0.6 | 0    | -0.7 | 0    | 0    | 0    | 0    | -0.1 | 0    | 0    |
| opCjV0100000534 | 0.5  | 0.5  | 0.4  | 0.1  | -0.2 | 0.1  | 0.2  | 0    | 0    | 0.1  |
| opCjV0100000535 | 0.5  | 0.3  | 0.5  | 0    | -0.1 | 0.2  | 0.1  | 0    | 0    | -0.1 |
| opCjV0100000536 | 1.1  | 1    | 0.6  | 0.3  | -0.2 | 0.1  | 0.3  | -0.1 | 0.1  | 0.1  |
| opCjV0100000538 | 0.1  | 0.1  | -0.3 | -0.2 | -0.1 | 0.1  | 0    | 0    | -0.1 | -0.1 |
| opCjV0100000539 | 0.3  | 0.4  | 0.4  | 0    | -0.2 | 0.1  | 0.1  | 0    | 0    | 0    |

| opCjV0100000540 | 0.7  | 0.4  | 0.2  | 0.1  | -0.1 | 0    | 0    | 0.1  | 0.1  | 0.2  |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000542 | 0    | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0    | -0.1 | 0    | 0.1  |
| opCjV0100000543 | 0.8  | 0.4  | 0.3  | 0.2  | 0.2  | -0.1 | 0    | -0.1 | 0    | 0    |
| opCjV0100000545 | -0.1 | -0.2 | -0.6 | 0    | 0.1  | 0.1  | -0.2 | -0.1 | 0.1  | 0    |
| opCjV0100000546 | 0.8  | 0.6  | 0.7  | 0    | 0.3  | -0.1 | 0.1  | 0    | -0.1 | -0.1 |
| opCjV0100000547 | 0.2  | 0.1  | 0.3  | 0.1  | -0.3 | 0.1  | 0    | -0.1 | 0    | 0    |
| opCjV0100000549 | -4.4 | -4.3 | -2.5 | -1.5 | 1.7  | -0.9 | -1.2 | 1.4  | -1.5 | -1.6 |
| opCjV0100000550 | 0.1  | 0    | 0.2  | 0.2  | 0    | 0    | 0    | -0.1 | -0.1 | 0    |
| opCjV0100000552 | -0.1 | 0.3  | 0    | -0.1 | -0.1 | 0.1  | -0.1 | 0    | 0.2  | -0.1 |
| opCjV0100000553 | -8.6 | -5.7 | -2.9 | -1.7 | 3.6  | -1.8 | -2.5 | 2.6  | -2.9 | -1.9 |
| opCjV0100000555 | -0.6 | -0.4 | -1.5 | 0.1  | 0.4  | -1.2 | -1.9 | -1.4 | -0.2 | -0.1 |
| opCjV0100000557 | 0.3  | 0.4  | 0.1  | 0.1  | -0.2 | 0.1  | 0    | -0.2 | 0    | -0.1 |
| opCjV0100000558 | 0    | 0.3  | 0.3  | 0.2  | 0.1  | 0.2  | 0.1  | -0.1 | -0.1 | 0.1  |
| opCjV0100000559 | 0.4  | 0.2  | 0.5  | 0    | 0    | 0.1  | 0.1  | -0.1 | 0.1  | 0    |
| opCjV0100000560 | 0.9  | 0.5  | 0.9  | 0.1  | 0    | 0.1  | 0.2  | 0    | 0    | -0.1 |
| opCjV0100000562 | -3.9 | -3.2 | -5.3 | -1.1 | 1.5  | -1.8 | -1.3 | 1.1  | -1   | -1.2 |
| opCjV0100000563 | 0.8  | 0.3  | 0.3  | -0.1 | -0.1 | 0.2  | 0.2  | -0.1 | 0.1  | 0    |

| opCjV0100000564 | 0.5  | 0.4  | 0    | 0.1  | -0.1 | 0    | -0.1 | 0    | 0    | 0    |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV010000565  | -1.5 | -1.3 | -1.7 | 0    | 0.5  | 0    | -0.4 | 0.2  | -0.4 | 0.1  |
| opCjV0100000566 | 0.1  | 0    | 0    | 0.1  | 0.1  | 0    | 0.1  | 0    | 0    | 0    |
| opCjV0100000567 | 0.2  | 0.3  | 0.2  | 0.1  | 0.1  | 0    | 0    | -0.1 | 0    | -0.2 |
| opCjV0100000568 | 0.3  | 0.4  | 0.4  | 0    | -0.1 | 0    | 0.1  | 0    | 0    | 0    |
| opCjV0100000569 | 0.6  | 0.3  | 0.3  | 0.1  | -0.1 | 0.2  | 0    | -0.5 | -0.1 | 0    |
| opCjV0100000570 | 0.6  | 0.1  | 0.6  | 0.1  | 0.1  | 0    | 0.2  | 0    | -0.2 | -0.2 |
| opCjV0100000571 | -0.7 | -0.1 | -0.6 | 0    | -0.1 | 0.3  | -0.2 | 0    | 0.3  | -0.1 |
| opCjV0100000572 | 0.4  | 0.3  | 0.1  | 0    | 0    | 0    | 0.1  | 0    | -0.1 | -0.1 |
| opCjV0100000573 | 0    | 0.4  | 0.2  | 0.1  | 0    | 0.1  | 0    | -0.1 | 0.1  | 0    |
| opCjV0100000574 | 0.3  | 0.1  | 0.2  | -0.1 | -0.1 | 0    | 0    | -0.1 | 0.1  | 0    |
| opCjV0100000576 | -1.4 | 0    | -0.5 | 0    | 0.2  | -0.1 | -0.4 | 0    | -0.1 | 0    |
| opCjV0100000577 | -0.4 | 0    | -0.1 | 0    | 0.1  | 0.1  | 0    | 0.2  | 0.1  | 0    |
| opCjV0100000578 | 0.8  | 0.5  | 0.4  | 0.3  | 0.3  | 0    | 0.1  | 0    | -0.1 | -0.1 |
| opCjV0100000579 | 0.3  | 0    | 0    | 0.1  | 0.1  | 0    | 0    | 0    | -0.1 | 0    |
| opCjV0100000581 | -0.2 | -0.5 | -0.3 | -0.2 | 0.3  | -0.3 | 0    | 0.4  | -0.2 | -0.3 |
| opCjV0100000582 | -0.1 | -0.2 | -0.1 | 0    | 0    | 0.2  | 0.1  | 0.1  | -0.1 | 0    |

| opCjV0100000587 | -0.2 | -0.2 | 0    | -0.1 | -0.1 | 0.3  | 0    | 0.2  | 0    | 0    |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000588 | 0.4  | 0.2  | 0.4  | 0    | 0    | 0.1  | 0.1  | 0.1  | 0    | 0    |
| opCjV0100000589 | 0.6  | -0.4 | 0.1  | 0.1  | 0.2  | 0    | 0    | 0.3  | -0.4 | -0.2 |
| opCjV0100000590 | 0.7  | 0.2  | 0.9  | 0.1  | 0.2  | -0.1 | 0.1  | -0.1 | -0.1 | 0    |
| opCjV0100000591 | -1   | -0.8 | 0.5  | -0.2 | 0.5  | 0.1  | -0.3 | 0.5  | -0.2 | -0.2 |
| opCjV0100000594 | 0.7  | 0.1  | 0.6  | 0.1  | 0.1  | 0    | 0.1  | 0    | -0.1 | 0    |
| opCjV0100000595 | -2.9 | 0.1  | -0.9 | 0    | 0    | -0.4 | -0.7 | -0.1 | -0.1 | -0.1 |
| opCjV0100000596 | -0.8 | 0    | 0.2  | 0    | 0    | 0    | 0.1  | -0.1 | 0    | 0    |
| opCjV0100000598 | -2.7 | -2.2 | -2.4 | -2.3 | 2.8  | -1.9 | -2.2 | 2.5  | -0.6 | -1.9 |
| opCjV0100000600 | 0.3  | 0.4  | -0.1 | 0.1  | 0    | -2.2 | -3   | 0    | 0.1  | 0    |
| opCjV0100000601 | -2.5 | 0    | 0    | 0.2  | 0.3  | 0.2  | 0.3  | 0.9  | -1.1 | 0.2  |
| opCjV0100000604 | -2   | -1   | -0.9 | -1.9 | 1.7  | -2   | -1.9 | 1    | -0.1 | -1.7 |
| opCjV0100000605 | -1   | -0.3 | -0.6 | -0.1 | -0.1 | 0.3  | -0.2 | -1.7 | 0.2  | 0.1  |
| opCjV0100000606 | -0.4 | -0.1 | 0    | 0    | 0    | 0.2  | 0    | -0.1 | -0.2 | -0.1 |
| opCjV0100000609 | 0.3  | -0.2 | 0    | 0.1  | 0.1  | 0.1  | -0.1 | 0    | 0    | 0    |
| opCjV0100000611 | -1.9 | -0.1 | -1.4 | 0    | 0.1  | -1.6 | -0.3 | 0.2  | -0.2 | -0.1 |
| opCjV0100000612 | -0.4 | -0.1 | 0.1  | 0.1  | -0.1 | 0.3  | 0    | 0.2  | 0.2  | 0    |

| opCjV0100000613 | 0.1  | 0.4  | -0.9 | 0.1  | 0    | 0    | 0.2  | -0.1 | -0.1 | 0    |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000614 | -0.5 | -0.3 | -2.7 | 0    | 0    | 0.2  | 0    | 0.1  | 0.2  | 0.1  |
| opCjV0100000615 | -1.4 | 0.1  | -0.1 | -0.1 | 0.5  | 0    | -1.1 | 0.2  | -0.3 | -0.1 |
| opCjV0100000616 | 0.5  | 0.4  | 0.6  | 0.1  | -0.1 | 0.2  | 0.2  | 0    | 0    | -0.1 |
| opCjV0100000617 | 0.4  | -0.2 | 0.4  | 0    | 0.2  | 0.1  | -0.1 | -0.1 | -0.1 | 0.1  |
| opCjV0100000618 | 0.2  | 0.2  | -0.1 | 0    | 0    | 0    | -0.2 | -0.2 | 0    | -0.1 |
| opCjV0100000620 | 0.2  | -3.4 | 0.1  | -0.7 | 1.4  | -0.3 | -0.5 | 1.7  | -0.1 | -1.1 |
| opCjV0100000622 | -0.1 | -0.2 | 0.7  | -0.1 | -0.1 | 0.2  | 0.1  | 0    | 0    | 0    |
| opCjV0100000623 | 0    | 0.2  | 0.1  | 0.1  | 0.2  | 0.1  | 0    | 0    | -0.2 | 0    |
| opCjV0100000624 | -3.8 | -2.2 | -1.9 | -0.7 | 0.9  | -1.1 | -1.7 | -0.1 | -1.3 | -0.7 |
| opCjV0100000625 | 0.1  | 0.3  | 0.2  | 0.1  | 0    | 0.1  | 0.1  | 0.1  | 0.1  | -0.1 |
| opCjV0100000626 | -5.6 | -5.5 | 0.2  | -1.5 | 2.4  | 0.3  | 0.1  | 2.9  | -1.6 | -1.6 |
| opCjV0100000627 | 0.3  | -0.1 | 0.2  | 0    | 0.2  | 0.2  | -0.1 | 0    | 0.2  | 0    |
| opCjV0100000628 | 0.3  | 0.1  | 0.5  | 0    | 0    | 0    | 0.3  | 0.3  | -0.1 | -0.1 |
| opCjV0100000629 | -0.3 | -0.1 | -0.3 | 0    | 0    | 0.2  | 0.1  | 0.1  | 0.1  | 0    |
| opCjV0100000630 | -0.2 | -0.1 | -0.3 | -0.2 | 0    | 0    | -0.2 | 0.1  | 0    | -0.1 |
| opCjV0100000631 | -0.3 | -0.2 | -0.4 | -0.1 | 0    | 0.1  | 0.1  | 0.1  | 0.1  | 0    |

| opCjV0100000634 | 0.1  | 0    | -0.1 | 0    | 0.1  | 0.2  | 0.1  | 0.1  | 0    | -0.1 |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000635 | 0.5  | 0    | 0.3  | 0    | 0.1  | 0.1  | 0.1  | 0.1  | -0.1 | -0.1 |
| opCjV0100000636 | -1.1 | -0.4 | -0.5 | 0    | 0    | 0.3  | 0.1  | 0.2  | 0.5  | 0.1  |
| opCjV0100000637 | 0.2  | 0    | 0    | 0    | -0.1 | 0.2  | 0.2  | -0.1 | 0    | 0    |
| opCjV0100000638 | -0.1 | -0.3 | -0.2 | 0    | 0    | -0.5 | 0.1  | 0    | 0    | 0.1  |
| opCjV0100000639 | -0.1 | 0.2  | -0.7 | 0    | -0.2 | 0.1  | 0    | 0    | 0.1  | 0    |
| opCjV0100000640 | 0.4  | 0.2  | -0.4 | 0.1  | 0    | -2.7 | 0    | 0    | -0.1 | 0    |
| opCjV0100000642 | 0.1  | -0.1 | 0.2  | 0    | 0    | 0.1  | -0.1 | 0    | -0.1 | 0    |
| opCjV0100000644 | -0.2 | -1.6 | -0.8 | 0    | 0.1  | 0    | -1.3 | -1.3 | 0    | 0    |
| opCjV0100000645 | -6   | -4.7 | -1.5 | -1.3 | 2.2  | -1.7 | -1.8 | 1.8  | -1.6 | -1.6 |
| opCjV0100000646 | -0.3 | 0.1  | -0.3 | -0.1 | -0.2 | 0.2  | -0.5 | -0.2 | 0.2  | 0    |
| opCjV0100000647 | -0.2 | 0    | -0.4 | 0    | -0.2 | 0.3  | 0    | -0.2 | 0.1  | 0.2  |
| opCjV0100000649 | 0.1  | -0.3 | 0.4  | 0    | 0.1  | 0.1  | 0    | 0.2  | -0.2 | 0    |
| opCjV0100000650 | 0.4  | 0.2  | 0.1  | 0    | 0.1  | -0.1 | 0    | 0    | -0.1 | -0.1 |
| opCjV0100000651 | 0.4  | 0.1  | 0.1  | 0.2  | 0.2  | 0.2  | 0.1  | 0.1  | -0.1 | 0.1  |
| opCjV0100000652 | -0.7 | -0.3 | -0.9 | -0.1 | 0    | 0    | -0.1 | 0.1  | 0.2  | 0    |
| opCjV0100000654 | -1.3 | -0.3 | -0.7 | -2.1 | 3.1  | -2.6 | -2.7 | 3.3  | 0    | -0.4 |

| opCjV0100000656 | -0.2 | -0.2 | -2.7 | 0    | 0    | -0.6 | 0    | 0    | 0    | 0    |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000658 | 0.3  | 0    | 0    | 0    | 0    | 0.1  | 0.1  | 0.2  | -0.3 | -0.1 |
| opCjV0100000659 | 0.4  | -0.1 | 0.4  | 0    | 0    | 0    | 0.1  | 0.1  | -0.2 | -0.2 |
| opCjV0100000660 | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0    | 0.2  | 0.1  | 0    | -0.1 |
| opCjV0100000663 | 0.3  | 0.2  | 0.5  | 0    | 0    | 0.2  | 0    | 0    | -0.1 | -0.1 |
| opCjV0100000664 | 0.1  | -0.2 | 0.7  | -0.1 | 0    | 0    | 0    | 0.2  | -0.3 | -0.1 |
| opCjV0100000665 | -0.8 | -0.6 | -0.6 | 0    | -0.1 | 0.2  | 0    | 0.1  | 0.1  | 0.1  |
| opCjV0100000667 | 0    | 0.1  | 0.8  | -1.9 | 2.9  | -2.7 | -2.5 | 3    | -0.1 | -1.5 |
| opCjV0100000668 | 0.4  | 0.3  | -4.7 | 0    | -0.1 | -2   | 0.1  | 0    | 0    | 0    |
| opCjV0100000669 | 0    | 0    | -0.1 | -0.1 | -0.1 | 0.2  | 0.1  | -0.1 | -0.1 | 0.1  |
| opCjV0100000670 | -0.8 | 0    | -1.6 | -0.3 | -0.4 | -0.1 | -0.1 | -0.3 | 0.5  | 0.1  |
| opCjV0100000671 | 0.4  | 0.3  | -0.1 | 0    | -0.1 | -1.6 | 0    | -0.1 | 0.3  | 0    |
| opCjV0100000672 | 0    | 0    | 0.2  | 0    | 0    | 0.1  | 0.1  | 0    | -0.3 | -0.1 |
| opCjV0100000673 | 0.3  | 0    | 0.3  | 0    | 0.1  | 0    | 0.1  | 0.2  | 0    | -0.1 |
| opCjV0100000674 | -0.6 | 0    | -0.6 | 0    | -0.2 | 0.1  | 0    | 0.1  | 0.2  | 0    |
| opCjV0100000676 | 0.3  | 0.1  | 0.8  | -0.1 | -0.1 | 0.1  | 0.1  | 0.1  | 0    | 0    |
| opCjV0100000677 | 0.7  | 0.5  | 0.5  | 0.1  | -0.2 | 0.2  | 0.1  | 0    | 0.2  | -0.1 |

| opCjV0100000678 | -0.6 | -0.3 | -0.6 | -0.1 | 0    | 0.2  | 0    | 0.2  | 0.1  | 0.1  |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000679 | -0.2 | -0.2 | 0.1  | -0.1 | 0.1  | -0.1 | -0.1 | 0.4  | -0.1 | -0.3 |
| opCjV0100000680 | 0.9  | 0.8  | 0.9  | 0.1  | -0.3 | 0.2  | 0.1  | -0.1 | 0.2  | -0.1 |
| opCjV0100000681 | -0.5 | 0    | -0.6 | -0.1 | -0.2 | 0.2  | 0    | 0    | 0.2  | -0.1 |
| opCjV0100000683 | 0.4  | 0.3  | 0.3  | 0.1  | 0    | 0    | 0.1  | 0.1  | 0    | -0.1 |
| opCjV0100000684 | 0.2  | 0.1  | 0.6  | -0.1 | -0.1 | 0    | 0    | 0    | 0.1  | -0.1 |
| opCjV0100000685 | -5.2 | -5.9 | -0.5 | -1.8 | 2.1  | -1.6 | -2.1 | 2.1  | -3.2 | -1.8 |
| opCjV0100000687 | -0.3 | -0.2 | 0.1  | -0.1 | 0    | 0.1  | -0.1 | -0.1 | 0.1  | 0    |
| opCjV0100000688 | 0.2  | 0    | 0.2  | 0    | 0    | 0    | 0    | 0    | -0.1 | 0    |
| opCjV0100000689 | 0    | 0    | -2.4 | 0    | 0.1  | -2.4 | -1   | 0    | -0.1 | 0    |
| opCjV0100000690 | -0.1 | -2.1 | 0.6  | -0.1 | 0.7  | -0.1 | 0.2  | 0.2  | 0.1  | 0    |
| opCjV0100000691 | 0.6  | 0.4  | 0.8  | 0.1  | 0.1  | 0    | 0    | 0    | 0    | -0.1 |
| opCjV0100000692 | 0    | 0.3  | 0.1  | 0    | -0.1 | 0.1  | -0.1 | -0.1 | 0    | -0.1 |
| opCjV0100000693 | 0.6  | 0.5  | 0.7  | -0.1 | -0.2 | 0    | -0.1 | -0.2 | 0.4  | -0.1 |
| opCjV0100000695 | 0.2  | -0.7 | -0.6 | 0    | 0.3  | 0    | 0    | 0.1  | 0    | 0    |
| opCjV0100000696 | 0.7  | 0.4  | 0.6  | 0.1  | 0    | -0.1 | 0.1  | 0.1  | -0.1 | -0.1 |
| opCjV0100000697 | -0.4 | -0.2 | -0.2 | 0    | -0.1 | 0    | -0.2 | 0.1  | 0.1  | 0    |

| opCjV0100000698 | -0.3 | -0.1 | -7.7 | -0.1 | -0.2 | -2.4 | 0    | 0    | 0.1  | 0    |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000699 | 0    | 0.1  | -5.1 | -0.1 | -0.2 | 1.7  | 0    | 0.1  | 0.2  | 0    |
| opCjV0100000700 | 0.5  | 0.1  | 0.5  | 0.1  | 0    | 0    | 0.2  | 0.1  | -0.2 | -0.1 |
| opCjV0100000701 | -0.8 | -0.8 | 0.2  | -0.2 | 0    | 0.2  | 0.1  | 0.5  | 0    | -0.2 |
| opCjV0100000702 | -0.1 | 0    | -0.8 | 0    | 0    | -2.3 | 0.1  | 0.1  | -0.1 | -0.2 |
| opCjV0100000703 | 0.3  | 0.1  | 0.2  | 0.1  | -0.1 | 0.1  | 0    | 0.1  | 0    | 0    |
| opCjV0100000704 | 0.3  | -0.1 | 0.3  | -0.1 | -0.1 | 0.1  | -0.1 | 0.1  | 0    | -0.1 |
| opCjV0100000705 | 0.3  | 0    | 0.5  | 0    | 0.1  | 0.1  | 0    | 0.2  | -0.1 | -0.2 |
| opCjV0100000706 | 0.7  | 0    | 0.5  | 0.1  | 0    | 0    | 0.1  | 0.2  | -0.1 | -0.1 |
| opCjV0100000707 | 0.6  | 0.4  | 0.6  | 0.1  | 0    | 0    | 0.1  | 0.1  | 0    | -0.1 |
| opCjV0100000709 | 0.6  | 0.4  | 0.8  | 0    | 0    | 0.1  | 0.3  | -0.1 | 0    | 0    |
| opCjV0100000712 | 0.3  | 0    | 0.2  | 0.1  | 0.1  | 0    | 0    | 0    | -0.1 | 0    |
| opCjV0100000713 | -0.5 | -0.1 | -0.4 | 0    | -0.1 | 0.2  | -0.1 | -0.1 | 0.2  | 0    |
| opCjV0100000714 | -0.5 | -0.5 | -0.4 | -0.1 | -0.2 | 0    | -0.1 | -0.4 | 0.2  | 0    |
| opCjV0100000715 | 0.3  | 0.3  | 0.4  | 0.1  | -0.1 | 0.3  | 0.1  | -0.1 | 0    | 0    |
| opCjV0100000716 | 0.4  | 0.2  | 0.4  | 0    | 0    | 0.2  | 0.1  | -0.1 | -0.1 | 0.1  |
| opCjV0100000717 | 1.1  | 0.8  | 0.7  | 0.2  | 0.2  | -0.3 | 0.2  | -0.1 | 0.1  | -0.1 |

| opCjV0100000718 | -1.7 | 0    | 0.2  | 0    | -0.1 | 0.1  | -0.1 | -0.1 | 0    | 0    |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000720 | 0    | 0    | 0    | 0    | 0.1  | -0.1 | -0.3 | -0.1 | -0.1 | -0.2 |
| opCjV0100000722 | -1.5 | -0.8 | -1.6 | -1.7 | 2    | -3   | -0.1 | 2    | -0.1 | -1.6 |
| opCjV0100000723 | -0.2 | 0.1  | -0.1 | -0.1 | -0.2 | 0.1  | 0    | 0.1  | 0.2  | -0.1 |
| opCjV0100000725 | 0.1  | -0.1 | -0.2 | 0    | -0.1 | 0.1  | -0.1 | 0.1  | 0    | 0    |
| opCjV0100000726 | -0.1 | -0.3 | -0.2 | -0.1 | 0    | -0.1 | 0.2  | 0.4  | -0.1 | -0.2 |
| opCjV0100000727 | -0.2 | -0.1 | 0    | -0.1 | -0.1 | 0.1  | 0    | 0.1  | -0.1 | -0.1 |
| opCjV0100000728 | 0.2  | -0.1 | 0.1  | 0    | 0.2  | 0    | 0.1  | 0    | -0.2 | -0.1 |
| opCjV0100000729 | -0.7 | -0.4 | -0.4 | -0.2 | 0    | 0    | -0.1 | 0.3  | 0.1  | -0.1 |
| opCjV0100000733 | -0.5 | -0.1 | -0.6 | 0    | -0.1 | 0.1  | 0    | -0.1 | 0.2  | 0    |
| opCjV0100000734 | 0.4  | 0.3  | -5.9 | 0    | 0    | -2   | 0.1  | 0    | 0    | 0    |
| opCjV0100000735 | 0.3  | 0.2  | 0    | -0.1 | -0.1 | -0.2 | -0.2 | 0    | 0.1  | 0    |
| opCjV0100000736 | 0.7  | 0.4  | 0.7  | 0.1  | 0    | 0.2  | 0.2  | 0    | 0.1  | 0    |
| opCjV0100000737 | 0.7  | 0.5  | 0.7  | 0.2  | 0    | 0.1  | 0.1  | -0.1 | -0.1 | 0    |
| opCjV0100000738 | 0.6  | -0.2 | -0.1 | 0    | -0.1 | 0.1  | 0.1  | -0.1 | -0.1 | -0.1 |
| opCjV0100000739 | 0.1  | -0.3 | 0    | 0    | 0    | 0.1  | 0    | -0.1 | 0.1  | 0    |
| opCjV0100000740 | 0.8  | 0.5  | 0.6  | 0.1  | 0    | 0    | 0.2  | 0    | 0    | -0.1 |

| opCjV0100000741 | 0    | 0.1  | 0.2  | -0.1 | -0.1 | 0.1  | 0.1  | 0    | 0.2  | 0    |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000743 | -0.8 | -0.3 | -0.8 | -1.7 | 2.9  | -2.1 | -0.3 | 3.7  | -0.3 | -1.8 |
| opCjV0100000744 | -0.6 | -0.1 | -0.8 | 0    | 0    | -0.1 | 0    | 0.1  | 0.1  | 0    |
| opCjV0100000747 | 0.1  | 0    | 0.1  | 0.1  | 0    | 0    | -0.1 | 0.1  | 0    | -0.1 |
| opCjV0100000748 | 0.2  | 0.3  | 0.2  | 0.1  | -0.1 | 0.2  | 0.1  | 0    | 0.1  | 0    |
| opCjV0100000749 | 0.4  | 0.2  | -0.2 | 0    | 0.1  | -0.2 | 0    | -0.1 | -0.1 | 0    |
| opCjV0100000750 | 0.1  | 0    | 0.2  | -0.1 | 0    | 0.1  | 0.1  | 0    | 0.1  | 0    |
| opCjV0100000751 | 0.6  | 0.1  | 0.2  | 0.1  | 0    | -0.1 | 0.1  | 0    | -0.1 | -0.2 |
| opCjV0100000752 | -0.9 | -0.6 | 0.4  | -0.1 | 0.4  | 0    | 0    | 0.3  | -0.2 | -0.4 |
| opCjV0100000753 | -0.1 | -0.2 | 0.1  | 0    | 0    | 0    | 0    | 0.1  | -0.1 | -0.3 |
| opCjV0100000754 | -0.2 | -0.1 | -0.2 | 0.1  | 0.1  | 0.1  | 0    | 0.2  | -0.1 | -0.1 |
| opCjV0100000755 | 0.7  | 0.6  | 0.2  | 0    | 0    | 0.2  | 0.2  | 0.1  | 0.1  | -0.1 |
| opCjV0100000759 | 0.1  | -0.3 | 0.4  | -0.1 | 0.3  | -0.1 | -0.1 | 0    | -0.2 | -0.1 |
| opCjV0100000760 | -7.3 | -4.7 | -2.2 | -0.1 | 2.3  | -1.8 | -2   | 0.1  | -2.5 | -0.2 |
| opCjV0100000761 | -0.5 | -0.4 | -0.3 | 0    | 0    | 0.3  | -0.2 | -0.3 | 0.1  | 0    |
| opCjV0100000762 | 0.2  | 0.2  | 0.2  | 0    | 0.1  | 0.2  | 0.1  | -0.2 | 0    | -0.1 |
| opCjV0100000765 | 0.2  | 0.3  | -0.2 | -2.3 | 2.3  | -2.2 | -2.7 | 2.3  | 0.1  | -2   |

| opCjV0100000766 | -0.7 | -0.2 | -0.5 | -0.1 | -0.2 | 0.2  | -0.1 | 0    | 0    | 0.1  |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000767 | 0.9  | 0.5  | 0.5  | 0.1  | -0.1 | 0    | 0.1  | -0.1 | 0    | 0    |
| opCjV0100000768 | -0.5 | 0.2  | -0.5 | -0.2 | -0.4 | 0.2  | 0    | -0.1 | 0.3  | 0.1  |
| opCjV0100000769 | -0.5 | 0.1  | -0.7 | -0.1 | -0.3 | -0.1 | -0.4 | -0.4 | 0.1  | 0    |
| opCjV0100000770 | 0.6  | 0.4  | 0.5  | 0    | -0.1 | 0    | 0    | -0.1 | -0.1 | 0    |
| opCjV0100000771 | 0.6  | 0    | 0.6  | 0.1  | 0.1  | 0.1  | 0.2  | 0    | -0.1 | 0    |
| opCjV0100000774 | 0    | 0.1  | 0    | 0    | 0.1  | 0    | 0.1  | 0    | -0.1 | -0.1 |
| opCjV0100000775 | -1.8 | -1.5 | -6.1 | -0.3 | 0.6  | -2.2 | -2.1 | 0.4  | -0.4 | -0.6 |
| opCjV0100000777 | -5   | -3.8 | -3   | -1.1 | 1.8  | -1.5 | -2.3 | 1.8  | -1.8 | -1.6 |
| opCjV0100000778 | 0.3  | 0.3  | 0.4  | 0    | -0.1 | -0.2 | 0    | 0    | -0.1 | -0.1 |
| opCjV0100000779 | -0.2 | -0.1 | -0.1 | 0    | 0    | 0    | 0    | -0.1 | 0.1  | 0    |
| opCjV0100000780 | 0.4  | 0.2  | 0.1  | 0    | 0.1  | -0.1 | 0    | 0    | -0.1 | -0.1 |
| opCjV0100000781 | -0.3 | 0    | 0.1  | -0.1 | -0.1 | 0.2  | -0.4 | -0.2 | 0.2  | 0.1  |
| opCjV0100000782 | 0.3  | 0.4  | 0.5  | -0.1 | 0.1  | 0.1  | 0    | -0.2 | -0.1 | 0    |
| opCjV0100000783 | 0.1  | 0.2  | 0.2  | 0    | 0.1  | 0.1  | 0    | -0.1 | 0    | 0    |
| opCjV0100000786 | 0.7  | 0.7  | 0.8  | 0.1  | 0    | -0.2 | 0    | 0    | 0.2  | 0    |
| opCjV0100000787 | -1.1 | -1.5 | -0.8 | -0.3 | 0.3  | -0.1 | -0.2 | 0.1  | 0.3  | -0.2 |

| opCjV0100000788 | -0.2 | -1.5 | 0.4  | -0.4 | 0.1  | 0.1  | 0.1  | 0.2  | -0.3 | -0.1 |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000789 | 0.5  | 0.4  | 0.3  | 0.2  | 0    | 0.1  | 0.1  | -0.3 | 0.1  | 0.2  |
| opCjV0100000792 | 0.5  | 0.3  | 0.3  | 0.2  | 0    | 0    | 0    | 0    | 0.1  | -0.1 |
| opCjV0100000793 | -1   | -0.5 | -0.2 | 0    | -0.1 | 0.2  | -0.1 | 0.1  | 0.1  | -0.1 |
| opCjV0100000794 | -3.2 | -2.6 | -3   | -0.6 | 1.2  | -0.7 | -1.3 | 2    | -0.9 | -1   |
| opCjV0100000795 | 0.1  | 0.1  | 0.3  | -0.1 | -0.1 | 0.2  | 0    | 0.1  | 0    | 0    |
| opCjV0100000796 | 0.2  | 0.4  | 0.4  | 0.1  | 0    | 0.2  | 0    | 0.1  | 0    | 0    |
| opCjV0100000797 | -0.2 | 0.2  | -0.1 | 0.1  | -0.1 | 0.1  | 0    | 0.1  | 0.1  | 0    |
| opCjV0100000798 | 0.6  | 0.2  | 0.1  | -1.2 | 3    | -2.2 | -2.1 | 2.3  | 0.1  | -2.1 |
| opCjV0100000799 | -0.2 | 0.4  | -0.7 | 0    | -0.1 | 0    | -0.4 | 0    | 0    | 0    |
| opCjV0100000800 | 0.5  | 0.2  | 0.3  | 0    | 0    | 0.2  | 0    | 0    | 0    | -0.1 |
| opCjV0100000802 | 0.9  | 1    | 1.2  | 0.3  | 0.1  | 0    | 0.1  | -0.1 | -0.3 | 0    |
| opCjV0100000804 | -4.3 | -3.1 | -1   | -1.1 | 1.2  | -1.2 | -1.2 | 1    | -1.2 | -1.3 |
| opCjV0100000807 | -0.1 | -0.1 | 0.1  | 0    | 0.1  | 0.1  | -0.1 | 0    | 0.1  | 0    |
| opCjV0100000809 | 0.5  | 0.2  | 0.7  | 0    | 0.3  | -0.1 | 0.1  | -0.1 | -0.4 | 0    |
| opCjV0100000810 | 0.5  | 0.5  | 1    | 0    | 0    | 0.1  | 0.5  | 0.2  | 0    | 0.1  |
| opCjV0100000812 | 0    | 0    | -0.1 | 0.1  | 0.1  | 0.1  | 0    | -0.2 | 0.2  | 0    |

| opCjV0100000813 | -0.2 | -0.2 | -0.3 | 0    | 0    | 0.1  | 0    | 0    | 0    | 0    |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000815 | 0.5  | 0.4  | -0.5 | 0.2  | 0.1  | -0.1 | -0.5 | -0.4 | 0    | 0    |
| opCjV0100000816 | 0.3  | 0    | -0.2 | 0    | -0.1 | 0    | 0.1  | -0.3 | 0    | 0    |
| opCjV0100000817 | -0.1 | 0.2  | -1.6 | 0    | -0.4 | 0.3  | -0.1 | 0    | 0.1  | 0.1  |
| opCjV0100000818 | 0    | 0.1  | 0.1  | 0    | -0.1 | 0.1  | 0.1  | 0    | 0.1  | 0.1  |
| opCjV0100000819 | -0.2 | 0.1  | 0.4  | 0    | 0.2  | 0    | 0    | 0    | -0.1 | 0    |
| opCjV0100000820 | 0.2  | 0    | 0.3  | 0.1  | -0.4 | 0.3  | 0.2  | 0.1  | 0.4  | 0.1  |
| opCjV0100000821 | 0.3  | 0.3  | 0.3  | 0.1  | 0    | 0.1  | 0    | 0    | 0.1  | 0    |
| opCjV0100000822 | 0    | 0    | -0.4 | 0    | 0    | -0.1 | -0.1 | -0.3 | 0.1  | 0    |
| opCjV0100000823 | -0.1 | 0    | -0.3 | -0.1 | -0.3 | 0.2  | 0    | 0    | 0.2  | 0.1  |
| opCjV0100000824 | 0.2  | 0.3  | 0.1  | -0.1 | -0.3 | 0    | -0.1 | -0.1 | 0.1  | 0.1  |
| opCjV0100000828 | -3.4 | -2.9 | -3.4 | -1   | 1.1  | -0.8 | -1   | 1    | -1.5 | 0.1  |
| opCjV0100000829 | 0    | 0.1  | 0.3  | 0.1  | 0.2  | -0.1 | 0    | -0.1 | 0.2  | 0    |
| opCjV0100000830 | 0.5  | 0.3  | 0.6  | 0    | 0.1  | 0.1  | 0.1  | -0.1 | 0    | 0.1  |
| opCjV0100000832 | -5.8 | -0.2 | -2.1 | -1.4 | 1.9  | -1.8 | -0.1 | 1.7  | -2.4 | -1.4 |
| opCjV0100000834 | 0.8  | 0.5  | 1.1  | 0.1  | 0.3  | 0    | 0.1  | 0    | 0    | 0    |
| opCjV0100000835 | -0.7 | -0.2 | -0.8 | -0.2 | 0.1  | 0.3  | -0.2 | -0.1 | 0.3  | 0    |

| opCjV0100000836 | 0.4  | 0.3  | 0.8  | -0.1 | 0    | 0    | 0    | 0    | 0.2  | -0.1 |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000837 | -0.2 | -0.3 | -0.3 | -0.1 | 0    | 0.3  | -0.1 | -0.1 | 0.2  | 0    |
| opCjV0100000839 | 0.8  | 0.5  | 0.3  | 0.2  | 0.1  | -2   | 0    | 0.2  | 0.1  | -0.1 |
| opCjV0100000840 | -0.4 | 0.2  | 0.2  | 0    | -0.1 | 0.1  | 0    | 0    | 0    | 0    |
| opCjV0100000841 | -0.6 | -0.1 | -0.5 | -0.2 | -0.2 | 0.1  | -0.1 | -0.1 | 0.1  | 0.1  |
| opCjV0100000842 | 0.4  | 0.4  | 0.3  | 0.1  | -0.1 | 0    | -0.1 | 0    | 0.2  | 0    |
| opCjV0100000843 | -0.9 | -1   | 0    | -0.2 | 0.5  | 0    | 0.1  | 0.7  | -0.4 | -0.4 |
| opCjV0100000844 | -2.2 | 0.1  | -1.2 | 0    | 0    | -1   | -0.2 | 0    | 0    | -0.1 |
| opCjV0100000845 | -1.8 | -1   | -3   | 0    | -0.1 | -0.5 | -1   | -0.2 | 0    | -0.1 |
| opCjV0100000846 | 0.7  | 0.4  | 0.5  | 0.1  | 0    | 0.1  | 0.1  | -0.1 | 0    | 0    |
| opCjV0100000847 | -0.3 | 0    | -0.2 | -0.1 | -0.2 | 0.2  | 0    | 0    | 0.1  | 0    |
| opCjV0100000849 | 0.2  | 0.2  | 0.3  | 0    | 0    | 0.1  | -0.1 | 0    | -0.2 | -0.1 |
| opCjV0100000851 | 0.1  | 0    | 0.3  | 0    | 0.1  | 0    | -0.2 | -0.1 | 0    | -0.1 |
| opCjV0100000853 | 0.1  | 0.1  | 0.2  | 0    | 0.1  | 0.1  | 0    | 0    | 0.2  | 0    |
| opCjV0100000855 | 0.1  | 0.1  | 0.2  | 0.1  | 2.5  | 0.2  | 0    | -0.1 | 0.2  | 0.1  |
| opCjV0100000856 | -0.6 | -0.6 | -0.1 | 0    | 0.2  | 0.2  | -0.2 | -0.1 | -0.1 | 0    |
| opCjV0100000857 | -0.1 | -0.7 | 0.8  | -0.1 | 0.3  | 0.1  | 0.1  | 0.5  | -0.3 | -0.2 |

| opCjV0100000858 | -0.7 | -0.7 | -0.2 | -0.1 | 0    | 0.2  | 0    | -0.2 | 0.2  | 0.1  |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000859 | -0.2 | 0.2  | 0.5  | 0.1  | 0.3  | 0    | 0    | 0    | 0    | 0    |
| opCjV010000860  | -0.4 | -0.5 | -0.2 | -0.1 | 0.3  | -0.2 | -0.3 | 0    | -0.1 | -0.1 |
| opCjV0100000861 | -6.2 | -0.1 | -6.2 | 0    | 0.1  | -1.8 | -2   | -0.3 | -1.2 | 0    |
| opCjV010000862  | 0.5  | 0.3  | 0.5  | 0    | -0.2 | 0.1  | 0.1  | -0.1 | 0.1  | 0    |
| opCjV0100000863 | 0.5  | 0.1  | 0.4  | 0.2  | -0.1 | 0.1  | 0.3  | -0.2 | 0.1  | -0.1 |
| opCjV0100000864 | 0.3  | 0.3  | 0    | 0    | -0.2 | 0    | 0.1  | -0.1 | 0    | 0    |
| opCjV0100000865 | 0.4  | 0.1  | 0.2  | 0.1  | 0    | 0    | -0.1 | 0.1  | 0.1  | 0    |
| opCjV010000866  | -0.8 | 0    | -0.1 | -0.1 | -0.2 | 0.1  | -0.2 | -0.1 | 0    | 0.1  |
| opCjV0100000867 | 0    | -1.7 | -0.7 | -0.2 | 2.2  | -0.4 | -2.2 | 0.1  | 0    | -0.2 |
| opCjV0100000868 | -0.5 | -0.2 | -0.7 | -0.1 | 0    | -1.4 | -0.3 | 0.1  | -0.1 | -0.1 |
| opCjV0100000869 | -0.3 | 0    | -0.2 | -0.1 | -0.1 | 0    | -0.1 | -0.1 | 0    | 0    |
| opCjV0100000870 | 0.1  | 0.2  | -0.1 | 0    | 0    | 0    | -0.1 | 0    | 0.1  | -0.1 |
| opCjV0100000872 | -5.4 | -4.5 | -5.5 | -1.1 | 1.8  | -1.6 | -1.6 | 1.7  | -1.4 | -1.4 |
| opCjV0100000873 | 0.2  | -0.1 | 0    | 0    | 0.1  | 0    | 0    | 0.1  | -0.1 | -0.2 |
| opCjV0100000874 | -0.1 | -0.4 | -0.8 | -0.2 | 0.1  | -0.2 | -0.2 | -0.1 | -0.3 | -0.2 |
| opCjV0100000875 | -0.7 | -0.4 | -0.9 | -0.1 | 0    | -0.8 | -0.3 | -0.9 | 0.1  | -0.1 |

| opCjV0100000876 | 0.1  | -0.2 | 0.3  | 0.1  | 0.1  | 0    | 0    | 0.1  | -0.1 | 0    |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| ppCjV0100000877 | 0.2  | -0.2 | -1.8 | 0.1  | 0.3  | 0    | 0    | -0.2 | 0.1  | 0.1  |
| opCjV0100000878 | -0.4 | -0.5 | 0.2  | 0.1  | 0.2  | 0.1  | -0.1 | -0.1 | -0.1 | 0    |
| opCjV0100000879 | 0.1  | 0    | 0.1  | 0.1  | 1.3  | 0.1  | 0    | 0    | 0    | 0    |
| ppCjV0100000880 | -0.2 | -0.1 | 0    | -0.1 | 0    | 0.2  | -0.1 | 0    | 0.4  | 0.1  |
| ppCjV0100000881 | -0.6 | 0.1  | -0.1 | 0.1  | 0.2  | 0.1  | -0.2 | 0.1  | 0    | 0    |
| opCjV0100000883 | -0.6 | 0    | -1   | -0.2 | 0    | -1.3 | -0.3 | -1.1 | 0.4  | 0    |
| opCjV0100000884 | -0.4 | 0    | -0.1 | 0.1  | 0.2  | 0    | -0.2 | 0.1  | 0.1  | -0.1 |
| opCjV0100000887 | 0.5  | 0.2  | 0.3  | 0    | -0.2 | 0.2  | 0.1  | 0    | 0.1  | 0    |
| opCjV0100000888 | -0.4 | -0.2 | -0.2 | -0.1 | 0    | 0.1  | -0.1 | -0.1 | 0    | -0.1 |
| opCjV0100000890 | 0    | 0.1  | -0.1 | 0    | 0    | 0.2  | -0.4 | -0.1 | 0.1  | -0.2 |
| opCjV0100000891 | 0.3  | 0    | -1.7 | -1.6 | 1.9  | -2.1 | -2.1 | 1.6  | -0.1 | -1.8 |
| opCjV0100000892 | -0.1 | -0.3 | 0.3  | -0.3 | 0.2  | -0.1 | -0.1 | 0.3  | -0.3 | -0.3 |
| opCjV0100000894 | -0.4 | -0.1 | -0.6 | 0.1  | 0    | 0.2  | -0.1 | 0    | 0    | 0    |
| opCjV0100000895 | -2.8 | -1.4 | -0.8 | -0.3 | 0.4  | -1.4 | -1.1 | 0    | -0.3 | -0.5 |
| ppCjV0100000896 | -7   | -0.2 | -1.7 | 0    | 2.2  | -1.6 | -2.3 | -0.1 | -1.4 | -0.1 |
| opCjV0100000897 | -2.5 | -1.9 | -1.6 | -0.6 | 0.6  | -0.7 | -0.9 | 0.2  | -0.6 | -0.6 |

| opCjV0100000898 | -0.2 | -0.3 | -0.2 | -0.2 | 0    | 0.3  | -0.2 | -0.2 | -0.1 | 0.1  |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000899 | 0.2  | 0.1  | 0.4  | 0.2  | 0.3  | 0    | 0    | -0.1 | -0.1 | 0    |
| opCjV010000900  | -0.5 | -0.5 | -0.3 | -0.1 | 0.2  | 0.1  | -0.2 | 0    | -0.2 | -0.1 |
| opCjV0100000901 | -0.4 | 0    | -0.3 | -0.4 | -0.1 | 0.1  | 0    | 0    | 0.1  | 0.1  |
| opCjV010000902  | -7.4 | -0.2 | -3.4 | 0    | 0.6  | -1.1 | -0.7 | -0.1 | -0.4 | 0.1  |
| opCjV0100000904 | -0.2 | -0.1 | -0.6 | 0    | 0    | 0    | 0    | -0.1 | 0    | 0.1  |
| opCjV0100000905 | -0.3 | -0.1 | -0.1 | -0.1 | -0.1 | 0.2  | 0    | -0.2 | 0.2  | 0.2  |
| opCjV0100000906 | -0.1 | -0.1 | -0.1 | 0    | 0    | 0    | -0.1 | -0.2 | -0.1 | 0    |
| opCjV0100000907 | 0    | 0.1  | 0.4  | -0.1 | 0    | 0.1  | -0.1 | 0.1  | 0    | 0    |
| opCjV0100000908 | -0.1 | -0.2 | 0.3  | 0    | 0    | 0.1  | 0    | -0.1 | 0.1  | 0.1  |
| opCjV0100000909 | 0.3  | 0    | -0.1 | -0.5 | 0.3  | -0.5 | -0.6 | 0.2  | -0.1 | -0.7 |
| opCjV0100000910 | -3   | -2.6 | -1.4 | -0.5 | 0.5  | -0.3 | -0.7 | 0.4  | -0.6 | -0.5 |
| opCjV0100000911 | -0.4 | -0.2 | -3   | -0.2 | -0.1 | -1.2 | -1.7 | -1.1 | -0.1 | 0    |
| opCjV0100000912 | -0.7 | -0.3 | -1.1 | -0.2 | -0.2 | 0.1  | -0.1 | 0    | 0.1  | -0.1 |
| opCjV0100000913 | -0.2 | 0.3  | 0.2  | 0    | -0.2 | 0.2  | 0    | 0    | 0.2  | 0.1  |
| opCjV0100000914 | 0.5  | 0.2  | -0.7 | 0.1  | 0    | -0.2 | 0.1  | -0.1 | 0.1  | 0    |
| opCjV0100000915 | 0    | -1.6 | -0.4 | -0.5 | 0.6  | -1.6 | -0.7 | 0.5  | -0.1 | -0.6 |

| opCjV0100000916 | -0.1 | 0.4  | 0.5  | 0.1  | -0.1 | 0    | 0    | -0.1 | 0.1  | -0.1 |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000917 | -3.6 | -3   | -1.4 | -0.8 | 1.3  | -1   | -1.3 | 1.1  | -0.9 | -0.9 |
| opCjV0100000918 | 0.4  | 0.2  | 0.3  | 0    | 0    | 0    | -0.1 | 0    | 0    | 0    |
| opCjV0100000919 | -0.8 | -0.2 | -0.7 | -0.2 | -0.2 | 0.2  | -0.1 | -0.1 | 0.1  | 0    |
| opCjV0100000920 | -0.2 | -0.3 | 0.2  | -0.1 | 0.6  | -0.1 | -0.6 | -0.1 | -0.2 | -0.3 |
| opCjV0100000921 | -3.9 | -2.5 | -1.3 | -0.8 | 0.8  | -0.4 | -0.8 | 0.6  | -0.6 | -0.6 |
| opCjV0100000922 | -0.3 | -0.3 | -2.2 | -0.1 | 0.1  | 0.2  | -0.4 | 0    | 0    | 0    |
| opCjV0100000923 | 0.5  | 0.2  | 0.8  | 0.1  | 0.4  | 0.1  | 0.1  | 0    | -0.1 | 0    |
| opCjV0100000924 | -2.5 | -0.3 | -1   | 0    | 0    | 0.2  | -0.6 | -0.1 | -0.6 | 0.1  |
| opCjV0100000925 | 0.4  | 0.2  | -0.8 | 0    | 0    | -0.8 | -0.6 | -0.6 | 0.1  | 0    |
| opCjV0100000927 | 0.4  | 0.2  | 0.7  | 0.1  | 0.2  | 0.1  | 0    | -0.2 | 0.1  | 0.1  |
| opCjV0100000929 | 0    | -0.2 | 0.1  | 0    | 0.1  | -0.1 | 0    | -0.1 | -0.1 | 0    |
| opCjV0100000930 | -0.4 | -0.1 | -0.1 | 0    | 0    | 0.1  | 0    | 0    | 0.1  | 0    |
| opCjV0100000931 | -0.3 | -0.3 | 0    | -0.1 | 0    | 0    | 0    | 0.1  | 0.1  | 0    |
| opCjV0100000933 | 0.3  | 0.1  | 0.5  | 0.1  | 0.2  | -0.2 | 0    | 0    | -0.1 | -0.1 |
| opCjV0100000935 | 0.6  | 0.5  | 0.1  | 0.1  | -0.1 | 0    | 0    | -0.2 | 0.1  | 0    |
| opCjV0100000936 | -1.3 | -1.3 | -0.6 | -0.4 | 0.3  | -0.2 | -0.6 | 0.4  | -0.3 | -0.2 |

| opCjV0100000937 | 0.2  | 0.2  | 0.2  | -0.1 | -0.1 | 0    | 0    | -0.2 | 0.1  | 0    |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000938 | 0.1  | 0.2  | -0.4 | 0    | -0.2 | -0.1 | 0.1  | 0    | 0.2  | 0.1  |
| opCjV0100000940 | 0.2  | 0.3  | 0.2  | 0    | -0.2 | 0    | 0    | -0.1 | 0    | -0.1 |
| opCjV0100000941 | -0.1 | -0.2 | 0.1  | -0.1 | 0    | 0.2  | 0    | 0.2  | -0.1 | 0    |
| opCjV0100000942 | 0    | 0    | 0.1  | 0.1  | 0.1  | -0.1 | 0    | 0    | -0.1 | -0.2 |
| opCjV0100000943 | -0.1 | -0.1 | 0.1  | -0.1 | -0.2 | 0.1  | -0.1 | 0    | 0.1  | -0.1 |
| opCjV0100000944 | -2.6 | -2.4 | -2.7 | -0.8 | 1.3  | -2   | -1.3 | 1.9  | -0.6 | -1   |
| opCjV0100000945 | -1   | -0.4 | -0.3 | -0.1 | 0    | 0.2  | 0    | -0.1 | 0.1  | 0    |
| opCjV0100000946 | 0.4  | 0.2  | 0.4  | 0    | -0.1 | 0.2  | 0.1  | 0    | -0.2 | 0.1  |
| opCjV0100000947 | -0.2 | -0.1 | -0.6 | -0.2 | 0    | 0    | -0.3 | -0.1 | -0.1 | -0.1 |
| opCjV0100000948 | 0.4  | -0.2 | 0.5  | 0.1  | 0.1  | 0.1  | 0    | 0.1  | -0.1 | 0    |
| opCjV0100000951 | -5.3 | -5.6 | -4.7 | -1.6 | 1.7  | -1.3 | -1.9 | 2    | -2   | -1.6 |
| opCjV0100000952 | 0.1  | 0.2  | -0.2 | 0    | -0.1 | -0.1 | -0.1 | -0.1 | 0.1  | -0.1 |
| opCjV0100000953 | 0.5  | 0.1  | 0.5  | 0.1  | 0    | 0.1  | 0.1  | 0    | 0    | 0    |
| opCjV0100000954 | -1.2 | 0    | -0.6 | -0.1 | -0.3 | 0.2  | -0.1 | 0    | 0.3  | 0    |
| opCjV0100000956 | 0.4  | 0.2  | 0.3  | 0.1  | -0.1 | 0.2  | 0    | -0.2 | 0.1  | 0    |
| opCjV0100000958 | 0.4  | 0.1  | 0.3  | 0    | 0.1  | -0.1 | 0.1  | 0.2  | -0.1 | -0.2 |

| opCjV0100000960 | -0.2 | 0.1  | -0.4 | 0.1  | 0    | 0    | 0    | 0    | 0.1  | -0.3 |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000962 | -0.7 | -0.3 | -0.9 | -0.1 | -0.2 | 0.3  | 0    | 0    | 0.3  | 0.2  |
| opCjV0100000963 | 0.8  | 0.5  | 0.8  | 0    | 0    | 0.1  | -0.9 | -0.5 | 0    | 0    |
| opCjV0100000965 | 0.1  | -0.2 | -0.5 | 0    | 0.1  | 0.1  | 0    | 0.2  | 0    | -0.1 |
| opCjV0100000966 | -0.5 | -0.1 | -0.6 | -0.1 | -0.2 | 0.1  | -0.1 | 0    | 0.1  | -0.1 |
| opCjV0100000967 | -0.2 | -0.1 | -0.1 | -0.1 | -0.1 | 0.2  | 0    | -0.2 | 0.1  | 0    |
| opCjV0100000969 | 0.1  | 0.1  | 0.2  | 0    | -0.1 | 0.2  | 0.1  | 0.1  | 0.1  | 0    |
| opCjV0100000970 | -0.1 | 0    | -0.2 | 0    | -0.1 | 0.3  | 0.1  | -0.1 | 0    | 0.1  |
| opCjV0100000971 | -1.1 | 0.2  | -0.5 | -0.1 | 0    | -0.1 | -0.2 | 0    | 0    | 0.1  |
| opCjV0100000972 | 0.7  | 0.6  | 0.5  | 0    | 0.1  | -0.1 | 0.1  | 0    | -0.1 | -0.1 |
| opCjV0100000974 | 0.2  | 0.1  | 0.2  | 0    | -0.1 | -0.1 | -0.1 | 0    | 0.1  | 0    |
| opCjV0100000975 | 0.6  | 0.2  | 0.6  | 0    | 0    | 0    | 0    | 0    | -0.1 | 0    |
| opCjV0100000977 | 0.3  | 0.3  | 0.4  | 0    | -0.1 | 0    | 0.1  | 0    | -0.1 | -0.1 |
| opCjV0100000979 | 0.7  | 0.3  | 1    | 0    | 0    | 0.3  | 0.3  | 0.2  | 0    | 0    |
| opCjV0100000981 | 0    | -0.1 | 0    | -0.1 | 0.2  | 0    | -0.1 | 0.1  | -0.2 | -0.1 |
| opCjV0100000982 | -0.4 | -0.8 | -0.3 | -0.1 | 0.2  | 0.1  | -0.1 | 0.1  | -0.2 | -0.1 |
| opCjV0100000983 | -0.8 | -0.6 | -0.8 | -1.3 | 1.8  | 0    | -0.4 | 2.2  | 0.1  | -1.2 |

| opCjV0100000984 | -0.1 | -0.1 | -0.1 | -0.1 | -0.3 | 0.2  | 0    | 0    | 0.2  | 0    |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100000986 | -0.3 | -0.1 | -0.5 | 0.1  | 0    | 0.2  | 0    | 0.1  | 0.3  | 0    |
| opCjV0100000988 | 0.2  | 0    | 0.1  | 0    | 0.1  | 0.1  | 0.2  | 0.1  | -0.1 | -0.1 |
| opCjV0100000989 | 0.2  | 0    | -5.6 | 0.1  | 0    | 0.3  | 0    | -1.9 | -0.2 | 0    |
| opCjV0100000991 | -0.6 | -0.3 | -0.8 | -0.1 | -0.1 | 0.2  | 0    | -0.1 | 0.1  | 0    |
| opCjV0100000992 | 0.7  | 0.5  | 0.2  | 0.2  | 0.1  | -0.1 | 0.1  | -0.1 | -0.3 | 0    |
| opCjV0100000993 | -0.5 | -0.4 | -5   | -0.1 | 0    | 0.1  | -0.2 | -1.4 | -0.1 | -0.1 |
| opCjV0100000994 | 0.3  | -0.1 | 0.3  | 0    | 0.1  | 0.1  | 0    | 0    | -0.1 | -0.1 |
| opCjV0100000995 | 0.2  | 0    | 0.3  | 0.1  | 0.1  | 0.1  | 0.1  | -0.1 | -0.1 | 0    |
| opCjV0100000996 | 0    | 0.2  | 0    | -0.1 | -0.2 | 0.1  | -0.1 | -0.2 | 0.4  | 0    |
| opCjV0100000997 | 0.4  | 0.1  | 0.3  | 0.1  | 0.1  | 0    | 0.1  | 0    | 0.1  | 0    |
| opCjV0100000998 | 0.2  | 0.1  | 0.3  | 0.1  | 0.2  | 0.1  | -0.1 | 0    | -0.1 | 0    |
| opCjV0100000999 | -5.7 | -5.9 | -4.9 | -1.5 | 1.9  | -1.2 | -1.8 | 1.8  | -2   | -1.6 |
| opCjV0100001000 | 0.4  | 0.3  | 0.4  | 0    | 0    | 0.1  | 0.1  | -0.1 | -0.1 | 0    |
| opCjV0100001001 | -3.8 | -1.2 | -2.1 | -0.4 | 0.5  | -0.5 | -0.1 | -0.4 | -0.1 | -0.4 |
| opCjV0100001002 | 0.7  | 0.6  | 0.8  | 0.1  | 0    | 0.1  | 0.1  | 0    | 0    | 0    |
| opCjV0100001003 | 0.2  | 0.4  | 0.2  | 0.1  | 0    | 0.1  | -0.2 | -0.1 | 0.1  | 0    |

| opCjV0100001004 | -0.1 | 0    | 0.1  | 0    | 0.1  | 0.1  | -0.2 | -0.2 | 0    | -0.1 |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100001005 | 0    | 0    | 0.4  | 0    | 0    | 0.2  | 0.1  | 0    | -0.1 | -0.1 |
| opCjV0100001006 | -0.6 | -0.5 | -3.6 | -0.1 | 0    | 0.3  | -0.3 | -1.3 | 0.3  | -0.1 |
| opCjV0100001007 | 0.4  | 0.4  | 0.4  | 0    | -0.1 | -0.1 | -0.1 | 0.1  | 0.1  | -0.1 |
| opCjV0100001008 | -0.3 | 0.1  | -0.9 | -0.1 | -0.3 | 0.1  | -0.3 | -0.2 | 0.3  | 0.1  |
| opCjV0100001010 | 0    | 0.1  | 0.2  | -0.1 | -0.2 | 0.3  | 0.2  | 0    | 0    | 0    |
| opCjV0100001011 | 0.4  | 0    | 0.2  | -0.1 | 0    | 0    | 0    | 0    | -0.1 | -0.1 |
| opCjV0100001012 | 0.4  | 0.1  | -0.4 | 0    | 0    | 0    | -0.1 | 0.2  | 0    | -0.2 |
| opCjV0100001013 | 0.2  | 0.1  | 0.1  | -0.1 | 0    | 0.1  | 0.1  | 0.2  | 0    | -0.1 |
| opCjV0100001014 | 0.3  | -0.2 | 0.3  | 0.1  | 0    | 0.1  | 0.1  | 0    | -0.1 | -0.1 |
| opCjV0100001016 | -0.1 | 0    | -0.2 | -0.1 | 0    | 0.1  | 0.1  | -0.1 | -0.1 | -0.1 |
| opCjV0100001017 | 1.3  | 1    | 0.7  | 0.1  | -0.1 | 0.2  | 0.2  | -0.2 | 0.2  | 0.1  |
| opCjV0100001018 | 0.4  | 0.2  | -4.2 | 0    | 0    | -1.4 | 0    | 0    | -0.1 | -0.1 |
| opCjV0100001019 | 0.3  | 0.1  | 0.4  | 0.1  | 0    | 0.3  | 0    | -0.2 | 0    | 0.1  |
| opCjV0100001020 | 0    | -0.3 | -0.8 | -1.7 | 3.2  | -2.5 | -2.5 | 3.9  | -0.3 | -1.8 |
| opCjV0100001021 | 0.4  | 0.4  | 0.4  | -0.1 | -0.2 | 0.1  | 0.1  | 0    | 0.2  | 0    |
| opCjV0100001022 | 0.2  | 0    | 0    | 0    | 0    | 0    | -0.2 | -0.1 | 0    | 0    |

| opCjV0100001023 | 0.1  | 0.3  | 0.1  | 0.1  | 0    | 0.2  | -0.2 | -0.2 | 0    | 0    |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100001024 | -0.3 | 0.2  | -1.1 | -0.1 | -0.1 | -2.1 | -0.1 | -0.1 | 0.1  | 0    |
| opCjV0100001025 | -6.5 | -6   | -3   | -0.2 | 3    | -2.4 | -2.6 | 0.6  | -2.2 | -0.3 |
| opCjV0100001026 | -5.3 | -4.4 | -6.7 | -1.2 | 1.6  | -2.2 | -0.2 | 2.9  | -1.2 | -1.4 |
| opCjV0100001028 | -0.3 | 0    | -0.1 | 0    | -0.1 | 0.1  | 0    | 0    | 0.1  | 0    |
| opCjV0100001029 | 0.2  | -0.4 | 0.3  | -0.1 | 0.1  | 0.2  | 0    | -0.9 | 0    | 0    |
| opCjV0100001030 | -0.2 | -0.1 | -0.4 | 0    | -0.1 | 0.1  | -0.1 | 0.1  | 0    | 0    |
| opCjV0100001031 | 0.2  | 0.1  | 0.2  | 0    | 0    | 0    | 0.1  | 0.3  | -0.1 | -0.1 |
| opCjV0100001032 | 0.2  | 0.1  | 0.3  | 0    | -0.1 | 0.1  | -0.1 | -0.2 | -0.1 | -0.1 |
| opCjV0100001034 | 0.4  | 0.3  | 0.2  | 0    | 0    | 0    | 0    | 0.2  | -0.3 | -0.1 |
| opCjV0100001035 | 0.3  | 0.2  | 0.1  | 0    | 0    | 0    | -0.1 | 0.2  | 0    | -0.1 |
| opCjV0100001036 | 0.3  | 0.3  | 0.3  | 0    | 0    | 0.2  | 0.1  | 0.1  | -0.1 | 0    |
| opCjV0100001038 | 0.5  | 0.2  | 0.3  | 0    | 0.1  | -0.1 | 0.1  | 0.1  | -0.1 | -0.2 |
| opCjV0100001039 | 0.8  | 0.2  | 0.3  | 0.2  | 0.2  | 0    | 0.1  | 0.1  | -0.1 | -0.1 |
| opCjV0100001040 | -0.4 | -0.1 | 0.3  | 0    | 0.2  | 0.2  | 0.2  | 0.5  | -0.4 | -0.2 |
| opCjV0100001041 | 0.4  | 0.2  | -0.2 | 0    | 0.1  | -1.4 | 0    | 0    | -0.1 | -0.1 |
| opCjV0100001042 | 0.2  | 0.1  | 0.1  | 0    | 0    | 0    | 0    | 0.1  | -0.1 | -0.2 |

| opCjV0100001044 | -3   | 0.5  | 0.3  | -0.2 | -0.2 | 0.2  | 0.4  | 0.3  | 0.2  | -1.2 |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100001045 | -0.5 | -0.1 | -0.3 | 0    | 0    | 0.2  | -0.1 | 0    | 0.3  | 0    |
| opCjV0100001046 | 0.3  | 0.5  | 0.6  | 0    | -0.1 | 0.1  | 0.2  | 0    | 0    | 0    |
| opCjV0100001047 | -0.1 | 0.2  | -0.2 | 0    | -0.1 | 0.2  | 0    | -0.1 | 0.1  | 0    |
| opCjV0100001048 | 0    | 0.2  | 0    | 0.1  | -0.2 | 0.3  | 0    | 0    | 0.3  | 0    |
| opCjV0100001049 | 0.4  | 0.3  | 0.2  | 0.2  | 0    | 0    | 0.1  | -0.1 | 0    | 0    |
| opCjV0100001050 | -0.3 | 0    | 0.4  | 0    | -0.1 | 0.3  | 0    | 0    | 0    | -0.1 |
| opCjV0100001051 | 0.2  | 0.1  | 0    | 0    | 0    | 0    | -0.1 | -0.1 | 0.1  | 0    |
| opCjV0100001052 | -0.5 | -0.2 | -0.8 | -0.1 | -0.1 | 0.1  | -0.1 | 0.1  | 0.1  | 0    |
| opCjV0100001054 | -0.2 | -0.3 | -0.1 | 0    | 0    | 0.1  | 0    | 0.1  | -0.1 | 0    |
| opCjV0100001055 | 0    | 0    | -0.2 | 0    | 0    | 0    | 0    | 0.1  | 0    | 0    |
| opCjV0100001056 | 0.2  | 0.1  | 0.1  | 0.1  | -0.1 | 0.1  | 0.1  | 0.2  | -0.1 | -0.1 |
| opCjV0100001057 | -4.5 | -0.7 | -0.6 | -0.1 | 0    | -1.1 | -1.8 | -0.1 | -0.1 | -0.1 |
| opCjV0100001058 | -3.8 | -3.2 | -3.4 | -1.2 | 2    | -1.3 | -1.5 | 1.3  | -1.2 | -1.4 |
| opCjV0100001061 | -4.5 | 0.1  | -2.6 | 0    | -0.2 | -0.9 | -0.8 | -0.9 | 0.1  | 0    |
| opCjV0100001063 | -0.8 | -0.4 | -0.8 | -0.1 | -0.1 | 0.3  | -0.1 | 0.1  | 0.4  | 0    |
| opCjV0100001066 | -0.3 | 0.1  | -0.4 | 0    | -0.1 | -0.3 | -0.2 | -0.2 | 0.1  | 0    |

| opCjV0100001067 | 0.3  | 0.1  | 0.5  | 0.1  | 0.2  | 0    | 0.1  | 0    | -0.2 | 0    |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100001068 | -0.5 | -0.4 | -2   | -0.1 | 0.1  | 0.2  | -0.1 | -1   | 0.2  | 0    |
| opCjV0100001069 | 0.3  | 0.2  | 0.3  | 0    | 0    | -0.1 | -0.2 | 0.1  | 0.2  | 0    |
| opCjV0100001070 | -0.5 | -0.1 | -0.4 | 0    | 0    | 0.2  | -0.1 | 0.1  | 0.1  | 0    |
| opCjV0100001071 | -0.7 | -0.2 | -0.5 | -0.1 | -0.1 | 0.1  | -0.1 | 0    | 0.1  | -0.1 |
| opCjV0100001072 | -0.3 | -0.1 | -0.1 | 0    | 0    | 0.2  | 0    | 0    | -0.1 | -0.1 |
| opCjV0100001073 | -0.4 | -0.2 | -0.8 | 0    | 0    | -1   | 0    | -0.1 | 0.1  | 0    |
| opCjV0100001074 | -3   | -0.7 | -2.7 | 0    | -0.2 | -0.7 | -0.8 | 0.4  | 0.9  | 0    |
| opCjV0100001075 | 0.6  | 0.4  | 0.5  | 0    | 0    | 0    | 0    | -0.1 | 0    | 0    |
| opCjV0100001076 | -0.1 | -0.1 | -0.1 | -0.2 | 0.2  | -0.2 | -0.1 | 0.2  | 0    | -0.2 |
| opCjV0100001077 | 0.1  | 0.1  | 0.2  | 0    | 0    | 0    | 0.1  | 0.2  | -0.1 | -0.1 |
| opCjV0100001078 | 0.2  | 0.1  | 0.1  | 0    | 0    | -0.1 | -0.1 | 0.2  | 0.1  | 0    |
| opCjV0100001079 | -0.5 | -0.5 | -0.9 | 0    | 0.2  | 0.1  | -0.1 | 0    | -0.1 | -0.1 |
| opCjV0100001081 | 0.5  | -0.5 | 0.4  | 0.1  | 0    | 0.1  | 0.2  | 0    | 0    | -0.1 |
| opCjV0100001085 | -6.4 | -4.1 | -3.5 | 0    | 1.3  | -2   | -1.8 | -1   | -0.8 | -1.3 |
| opCjV0100001087 | -5.1 | -3.7 | -0.1 | -0.9 | 1.8  | -1.1 | -1.5 | 1.7  | -1.2 | -1.2 |
| opCjV0100001088 | 0.2  | 0    | 0    | -0.1 | -0.2 | 0    | 0    | -0.1 | 0    | 0    |

| opCjV0100001089 | 0.1  | 0.3  | 0.2  | 0.1  | 0    | 0    | 0.1  | 0.1  | 0.1  | 0    |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100001090 | 0    | 0    | -0.1 | 0    | 0.1  | 0.1  | 0    | -0.2 | 0    | 0    |
| opCjV0100001093 | -4.1 | 0    | -2.8 | 0    | 0    | -1   | 0.1  | 0.1  | 0    | 0    |
| opCjV0100001094 | -0.8 | 0.1  | 0.3  | 0    | 0    | 0.2  | 0.1  | 0    | 0    | -0.1 |
| opCjV0100001095 | 0.4  | 0.3  | 0.6  | 0    | 0    | 0    | -0.2 | 0.1  | 1.3  | 0.1  |
| opCjV0100001096 | 0.7  | 0.4  | -3.6 | 0    | 0    | -1.5 | -1.8 | -1.6 | 0    | -0.1 |
| opCjV0100001097 | 0.1  | -0.1 | 0.1  | 0    | 0    | 0.1  | 0.1  | -0.1 | -0.1 | 0.1  |
| opCjV0100001098 | -1.5 | -0.7 | 0.9  | -1   | 1.2  | -0.1 | -0.7 | 1.7  | -0.8 | -0.9 |
| opCjV0100001099 | -0.3 | 0    | -0.3 | 0    | -0.1 | 0.2  | 0    | 0    | 0.1  | 0.1  |
| opCjV0100001100 | 0.6  | 0.4  | 0.4  | 0    | 0    | 0    | 0.2  | 0    | 0    | -0.1 |
| opCjV0100001101 | -0.4 | 0    | -0.3 | 0.1  | -0.2 | 0.2  | 0    | 0    | 0.1  | -0.1 |
| opCjV0100001102 | -3.4 | -3   | -0.9 | -0.9 | 2    | -0.7 | -1.4 | 1.6  | -1   | -1.1 |
| opCjV0100001103 | 0.5  | 0.3  | 0.3  | -0.1 | -0.1 | 0.1  | 0    | 0    | 0.1  | -0.1 |
| opCjV0100001104 | 0.1  | 0.2  | 0.4  | 0    | -0.2 | 0.1  | 0    | -0.1 | 0.1  | -0.1 |
| opCjV0100001105 | -0.3 | -0.1 | -4.7 | 0.1  | -0.1 | -1.4 | 0    | -0.1 | 0.3  | 0    |
| opCjV0100001106 | 0.2  | 0    | 0.3  | -0.1 | 0    | -1   | 0    | 0.1  | -0.1 | -0.1 |
| opCjV0100001107 | -0.3 | 0.2  | 0.7  | 0.1  | -0.1 | 0    | -0.1 | 0    | 0    | -0.1 |

| opCjV0100001108 | 0.7  | 0.3  | 1    | 0.1  | 0    | 0    | 0.1  | 0.1  | 0    | -0.1 |
|-----------------|------|------|------|------|------|------|------|------|------|------|
| opCjV0100001109 | 0.6  | 0.1  | 0.4  | 0.1  | 0.2  | 0    | 0    | -0.1 | -0.2 | -0.2 |
| opCjV0100001110 | -0.9 | -0.5 | -0.6 | 0    | -0.1 | 0.2  | -0.2 | 0.1  | -0.3 | -0.1 |
| opCjV0100001111 | 0.7  | 0.3  | 0.6  | 0.2  | 0.1  | -0.1 | 0.3  | 0    | -0.1 | -0.2 |
| opCjV0100001112 | -1.4 | -0.3 | -0.9 | -0.1 | 0    | 0.1  | -0.1 | 0.3  | 0    | 0    |
| opCjV0100001113 | 0.2  | 0.2  | 0.4  | -0.1 | 0    | 0.1  | 0    | -0.1 | -0.1 | 0    |
| opCjV0100001114 | -6   | -6.7 | -2.1 | -1.1 | 3.3  | -0.9 | -3.5 | 2.9  | -2.6 | -1.2 |
| opCjV0100001115 | 0.2  | 0.1  | 0.3  | 0    | 0    | 0    | 0    | -0.1 | -0.1 | 0    |
| opCjV0100001116 | 1    | 0.7  | 0.7  | 0.1  | 0.1  | -0.1 | 0.1  | 0    | 0.1  | 0    |
| opCjV0100001117 | 0.3  | 0.1  | 0.4  | 0.1  | 0.1  | 0.1  | 0    | -0.1 | -0.1 | 0    |
| opCjV0100001118 | 0.6  | 0    | -0.1 | 0.1  | 0    | 0.2  | 0    | 0    | 0.1  | 0    |
| opCjV0100001120 | 0.6  | 0.1  | 0.2  | 0.1  | 0    | -0.1 | 0.1  | -0.1 | 0.1  | 0    |
| opCjV0100001121 | -3.3 | -3.1 | -3.1 | -2   | 2.9  | -1.7 | -1.7 | 1.7  | -1.1 | -2.1 |
| opCjV0100001122 | -0.3 | 0.1  | -0.1 | -0.1 | -0.2 | 0.2  | 0    | 0    | 0.1  | -0.1 |
| opCjV0100001123 | 0.4  | 0.2  | 0.4  | 0    | -0.1 | 0    | 0.1  | 0    | 0    | -0.1 |
| opCjV0100001124 | -0.5 | -0.1 | -2.1 | 0    | -0.1 | -1   | 0    | 0    | 0.1  | 0    |
| opCjV0100001125 | -0.2 | -0.2 | -2.7 | 0.1  | 0    | 0.1  | -0.1 | -0.6 | 0    | 0    |

| opCjV0100001126 | 0.7 | 0.4  | 0.5  | 0    | -0.2 | 0.2 | 0    | 0.1  | 0    | 0    |
|-----------------|-----|------|------|------|------|-----|------|------|------|------|
| opCjV0100001127 | 0   | 0.1  | 0.1  | -0.1 | -0.2 | 0   | -0.1 | -0.3 | 0    | -0.1 |
| opCjV0100001128 | 0.5 | 0.7  | 0.6  | 0    | -0.2 | 0.2 | 0.1  | 0.1  | 0.3  | 0.2  |
| opCjV0100001129 | 0.1 | -0.2 | 0.1  | 0    | -0.1 | 0.1 | 0    | 0.1  | -0.1 | 0    |
| opCjV0100001130 | 0   | -0.3 | -0.1 | 0    | 0.1  | 0.2 | 0.1  | 0    | -0.1 | 0    |
| opCjV0100001131 | 0.8 | 0.4  | 0.5  | 0.2  | 0    | 0   | 0.1  | 0.1  | -0.1 | -0.2 |

<sup>\*</sup>The log 2 ratio values for each strain is calculated by taking average of the log 2 ratios for three independent array experiments.

Appendix

Supplementary table 3: GACK trinary cutoffs for all genes on the array for six hyperinvasive and four low invasive *C. jejuni* strains.

|                       | Gene              |                 |                  |                |                   |                 | Hy        | perin     | ivasi     | ve C      | . jeju    | ıni       | Lo         | w in      | vasiv     | 'e        |                                                  |                                                   |                                                     |
|-----------------------|-------------------|-----------------|------------------|----------------|-------------------|-----------------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-----------|-----------|-----------|--------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|
|                       |                   |                 |                  |                |                   |                 |           | •         |           |           |           |           | <i>C</i> . | jejun     | i         |           |                                                  |                                                   |                                                     |
| Oligo_ID              | Number_R<br>M1221 | Name_R<br>M1221 | Number_<br>11168 | Name_1<br>1168 | Number_R<br>M2228 | Name_R<br>M2228 | 01_<br>10 | 01_<br>35 | 01_<br>04 | 01_<br>41 | 01_<br>51 | EX<br>114 | 01_<br>30  | 01_<br>32 | 01_<br>46 | 01_<br>39 | Role_11168                                       | Role_RM1221                                       | Role_RM2228                                         |
| "CJ_10001524"         | CJE0001           | dnaA            | Cj0001           | dnaA           | CCO0032           | DnaA            | 0         | 1         | 0         | 1         | 1         | 1         | 1          | 1         | 1         | 1         | chromosomal replication initiator protein        | chromosomal replication initiation protein        | chromosomal replication<br>initiator protein DnaA   |
| "CJ_10001526"         | CJE0002           | dnaN            | Cj0002           | dnaN           | CCO0033           | DnaN            | 0         | 1         | 1         | 1         | 1         | 1         | 1          | 1         | 1         | 1         | DNA polymerase III, beta chain                   | DNA polymerase III subunit beta                   | DNA polymerase III, beta subunit                    |
| "CJ_10001527"         | CJE0003           | gyrB            | Cj0003           | gyrB           | CCO0034           | GyrB            | 0         | 0         | 1         | 1         | 1         | 1         | 1          | 1         | 1         | 1         | DNA gyrase subunit B                             | DNA gyrase subunit B                              | DNA gyrase, B subunit                               |
| "CJ_10001528"         | CJE0004           | -               | Cj0004c          | -              | -                 | -               | 0         | 0         | 0         | 1         | 1         | 1         | 1          | 1         | 1         | 1         | putative periplasmic protein                     | hypothetical protein                              | -                                                   |
| "CJ_10001529"         | CJE0005           | -               | Cj0005c          | -              | -                 | -               | 1         | 1         | 1         | 1         | 1         | 1         | 1          | 1         | 1         | 1         | putative molybdenum<br>containing oxidoreductase | molybdopterin<br>oxidoreductase family<br>protein | -                                                   |
| "CJ_10001530"         | CJE0006           | -               | Cj0006           | -              | CCO0041           | -               | 1         | 1         | 1         | 1         | 1         | 1         | 1          | 1         | 1         | 1         | putative integral membrane<br>protein            | Na+/H+ antiporter family protein                  | probable integral membrane<br>protein Cj0006        |
| "CJ_10001531"         | CJE0007           | gltB            | Cj0007           | gltB           | CCO0042           | gltB            | 1         | 1         | 1         | 1         | 1         | 1         | 1          | 1         | 1         | 1         | glutamate synthase<br>(NADPH) large subunit      | glutamate synthase, large<br>subunit              | glutamate synthase, large<br>subunit                |
| "CJ_10001533"         | CJE0008           | gltD            | Cj0009           | gltD           | CCO0043           | -               | 1         | 1         | 1         | 1         | 1         | 1         | 1          | 1         | 1         | 1         | glutamate synthase<br>(NADPH) small subunit      | glutamate synthase, small<br>subunit              | glutamate synthase<br>(NADPH) small chain<br>Cj0009 |
| "CJ_10001023"         | CJE0009           | rnhB            | Cj0010c          | rnhB           | CCO0044           | rnhB            | 1         | 1         | 1         | 1         | -1        | -1        | 1          | -1        | 1         | 1         | ribonuclease HII                                 | ribonuclease HII                                  | ribonuclease HII                                    |
| "CJ_10001024"         | CJE0010           | comEA           | Cj0011c          | -              | -                 | -               | 1         | 1         | 1         | 1         | 1         | 0         | -1         | -1        | 1         | 1         | putative non-specific DNA<br>binding protein     | competence protein ComEA                          | -                                                   |
| "CJ_10001025"         | CJE0011           | rbr             | Cj0012c          | -              | CCO0045           | rr2             | 1         | 1         | 1         | 1         | 1         | 1         | 1          | 1         | 1         | 1         | non-haem iron protein                            | rubrerythrin                                      | rubrerythrin                                        |
| "CJ_10001026"         | CJE0012           | ilvD            | Cj0013           | ilvD           | -                 | -               | 1         | 1         | 1         | -1        | -1        | 1         | 1          | 0         | 1         | 1         | dihydroxy-acid dehydratase                       | dihydroxy-acid dehydratase                        | -                                                   |
| "CJ_10001028"         | CJE0013           | -               | Cj0014c          | -              | -                 | -               | 0         | 1         | 1         | -1        | -1        | 1         | 1          | -1        | 1         | 1         | putative integral membrane protein               | pseudogene                                        | -                                                   |
| "CJ_10001030"         | CJE0015           | -               | Cj0015c          | -              | CCO0047           | -               | 1         | 1         | 1         | 1         | 1         | 1         | 1          | 1         | 1         | 1         | hypothetical protein                             | hypothetical protein                              | conserved hypothetical protein                      |
| "CJ_10001032"         | CJE0016           | -               | Cj0016           | -              | CCO0049           | -               | 1         | 1         | 1         | 1         | 1         | 1         | 1          | 1         | 1         | 1         | putative transcriptional regulatory protein      | ExsB                                              | exsB protein                                        |
| "opCcV010000<br>1629" | CJE0017           | -               | Cj0017c          | -              | CCO0050           | -               | 1         | 0         | 1         | 1         | 1         | 1         | 1          | 1         | 1         | 1         | putative ATP /GTP binding protein                | disulfide bond formation<br>protein, DsbB family  | probable ATP /GTP binding<br>protein Cj0017c        |
| "CJ_10001036"         | CJE0018           | -               | Cj0018c          | -              | CCO0051           | -               | 1         | 1         | 1         | 1         | -1        | 0         | 1          | 1         | 0         | 1         | small hydrophobic protein                        | hypothetical protein                              | small hydrophobic protein<br>Cj0018c -related       |
| "CJ_10001038"         | CJE0019           | -               | Cj0019c          | -              | -                 | -               | 1         | 1         | 1         | 1         | -1        | -1        | 1          | 1         | 1         | -1        | MCP-domain signal transduction protein           | methyl-accepting<br>chemotaxis protein            | -                                                   |
| "CJ_10001051"         | CJE0020           | -               | Cj0020c          | -              | -                 | -               | 0         | 1         | 1         | -1        | -1        | 1         | 1          | 0         | 1         | 1         | cytochrome C551<br>peroxidase                    | cytochrome c551<br>peroxidase                     | -                                                   |
| "CJ_10001052"         | CJE0021           | -               | Cj0021c          | -              | CCO0052           | -               | 1         | 1         | 1         | 1         | -1        | 1         | 1          | -1        | 1         | 1         | hypothetical protein                             | fumarylacetoacetate<br>hydrolase family protein   | fumarylacetoacetate<br>hydrolase family protein     |
| "CJ_10001053"         | CJE0022           | -               | Cj0022c          | -              | CCO0053           | -               | 1         | 1         | 1         | 0         | -1        | 1         | 0          | -1        | 1         | -1        | putative ribosomal<br>pseudouridine synthase     | RNA pseudouridylate<br>synthase family protein    | RNA pseudouridylate<br>synthase family              |
| "CJ 10001054"         | CJE0023           | -               | Ci0023           | purB           | CCO0054           | purB            | 1         | 1         | 1         | 1         | -1        | 1         | 1          | -1        | 1         | 1         | adenylosuccinate lyase                           | adenylosuccinate lyase                            | adenylosuccinate lyase                              |
| "CJ_10001056"         | CJE0024           | nrdA            | Cj0024           | nrdA           | CCO0055           | -               | 1         | 1         | 1         | 1         | -1        | 1         | 1          | 1         | 1         | 1         | ribonucleoside-diphosphate<br>reductase alpha    | ribonucleotide-diphosphate<br>reductase alpha     | ribonucleoside reductase,<br>alpha subunit          |
| "CJ_10001058"         | CJE0025           | -               | Cj0025c          | -              | CCO0056           | gltP            | 1         | 1         | 1         | 1         | 1         | 1         | 1          | 1         | 1         | 1         | putative transmembrane<br>symporter              | sodium/dicarboxylate<br>symporter                 | sodium/dicarboxylate<br>symporter family protein    |
| "CJ_10001060"         | CJE0026           | thyX            | Cj0026c          | -              | CCO0057           | -               | 1         | 1         | 1         | 1         | 0         | 1         | 1          | -1        | 1         | -1        | hypothetical protein                             | thymidylate synthase                              | Thymidylate synthase complementing protein          |

| "CJ 10001063"         | CJE0027 | pyrG | Ci0027  | pyrG | CCO0058 | pyrG | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | CTP synthase                                | CTP synthetase                                    | CTP synthase                                       |
|-----------------------|---------|------|---------|------|---------|------|----|----|----|----|----|----|----|----|----|----|---------------------------------------------|---------------------------------------------------|----------------------------------------------------|
| "CJ_10001065"         | CJE0028 | recJ | Cj0028  | recJ | CCO0059 | recJ | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  |    | 1  | putative single-stranded-<br>DNA-specific   | single-stranded-DNA-<br>specific exonuclease RecJ | single-stranded-DNA-<br>specific exonuclease RecJ  |
| "CJ 10001067"         | CJE0029 | ansA | Cj0029  | ansA | CCO0060 | +    | 1  | 1  | 1  | 1  | 0  | 1  | 1  | -1 | 1  | 1  | cytoplasmic L-asparaginase                  | L-asparaginase                                    | L-asparaginase II                                  |
| "CJ 10001084"         | CJE0030 | -    | Ci0030  | -    | -       | 1    | 1  | 1  | 1  | -1 | -1 | 1  | 1  | 1  | 1  | 1  | hypothetical protein                        | hypothetical protein                              | - L uspuruginuse 11                                |
| "CJ 10001086"         | CJE0031 | _    | Ci0031  | -    | CCO0070 | _    | 0  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 0  | 1  | putative type IIS restriction               | type II restriction-                              | type II restriction-                               |
| CU_10001000           | C020001 |      | Cjoos I |      | 2230070 |      |    | 1  | 1  | 1  | 1  | 1  | 1  | 1  |    | 1  | /modification                               | modification enzyme                               | modification enzyme                                |
| "CJ_10001089"         | CJE0032 | -    | Cj0033  | -    | CCO0073 | -    | 1  | 1  | 1  | -1 | 0  | 1  | 1  | 1  | 1  | -1 | Putative integral membrane protein          | hypothetical protein                              | probable integral membrane<br>protein Cj0033       |
| "CJ_10001092"         | CJE0033 | -    | Cj0034c | -    | CCO0075 | -    | 1  | 1  | 1  | 0  | -1 | 1  | 1  | 1  | 1  | 1  | putative periplasmic protein                | hypothetical protein                              | probable periplasmic<br>protein Cj0034c            |
| "CJ_10001095"         | CJE0034 | -    | Cj0035c | -    | CCO0076 | -    | 1  | 1  | 1  | -1 | -1 | 1  | 1  | 1  | 1  | 0  | putative efflux protein                     | drug resistance transporter,<br>Bcr/CflA family   | probable efflux protein<br>Cj0035c                 |
| "CJ_10001100"         | CJE0035 | -    | Cj0036  | -    | CCO0077 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 0  | hypothetical protein                        | hypothetical protein                              | conserved hypothetical protein                     |
| "CJ_10001103"         | CJE0036 | -    | Cj0037c | -    | -       | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative cytochrome c                       | cytochrome c family protein                       | -                                                  |
| "CJ_10001106"         | CJE0037 | -    | Cj0038c | -    | CCO0078 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | putative membrane protein                   | hypothetical protein                              | probable membrane protein<br>Cj0038c               |
| "CJ_10001109"         | CJE0038 | typA | Сј0039с | typA | CCO0079 | typA | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | GTP-binding protein typA<br>homolog         | GTP-binding protein TypA                          | GTP-binding protein TypA                           |
| "CJ_10001119"         | CJE0039 | -    | Cj0040  | -    | CCO0080 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | hypothetical protein                        | hypothetical protein                              | conserved hypothetical protein                     |
| "CJ_10001121"         | CJE0040 | -    | Cj0041  | -    | CCO0081 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | hypothetical protein                        | hypothetical protein                              | conserved hypothetical protein                     |
| "CJ_10001123"         | CJE0041 | flgD | Cj0042  | flgD | CCO0082 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | putative flagellar hook<br>assembly protein | flagellar hook assembly protein                   | probable flagellar hook<br>assembly protein Cj0042 |
| "CJ_10001125"         | CJE0042 | -    | Cj0043  | flgE | CCO0083 | -    | 0  | 1  | 1  | -1 | -1 | 1  | 1  | 0  | -1 | 0  | flagellar hook protein flgE                 | flagellar hook protein                            | flagellar hook protein flgE<br>Cj0043              |
| "CJ_10001128"         | CJE0043 | -    | Cj0044c | -    | CCO0084 | -    | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                        | hypothetical protein                              | conserved hypothetical protein                     |
| "CJ_10001134"         | CJE0044 | -    | Cj0045c | -    | CCO0085 | -    | 1  | 1  | 1  | 1  | -1 | 1  | -1 | -1 | 1  | 1  | putative iron-binding<br>protein            | hypothetical protein                              | conserved hypothetical protein                     |
| "opCjV010000<br>1066" | CJE0045 | -    | -       | -    | -       | -    | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 0  | 1  | 1  | -                                           | hypothetical protein                              | -                                                  |
| "CJ_10001138"         | CJE0046 | -    | Cj0046  | -    | CCO0087 | -    | 1  | 1  | 1  | 1  | -1 | -1 | 1  | -1 | 1  | 0  | pseudogene                                  | pseudogene                                        | C4-dicarboxylate<br>transporter                    |
| "CJ_10001141"         | CJE0048 | trmU | Cj0053c | trmU | CCO0088 | trmU | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | tRNA                                        | tRNA                                              | tRNA                                               |
| "CJ_10001144"         | CJE0049 | -    | Cj0054c | -    | CCO0089 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                        | lysine decarboxylase family protein               | Predicted Rossmann fold<br>nucleotide-binding      |
| "opCjV010000<br>0022" | CJE0050 | =    | -       | -    | =       | -    | -1 | 1  | 0  | 0  | 1  | -1 | -1 | 1  | 1  | -1 | -                                           | hypothetical protein                              | -                                                  |
| "opCjV010000<br>0192" | CJE0051 | -    | -       | -    | =       | -    | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | -1 | -                                           | hypothetical protein                              | -                                                  |
| "opCjV010000<br>1058" | CJE0052 | -    | -       | -    | -       | -    | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | -1 | -                                           | hypothetical protein                              | -                                                  |
| "opCjV010000<br>0772" | CJE0053 | -    | -       | -    | -       | -    | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | -1 | -                                           | hypothetical protein                              | -                                                  |
| "CJ_10001165"         | CJE0054 | -    | Cj0057  | -    | CCO0113 | -    | 1  | 1  | -1 | 1  | 1  |    | 1  | 1  | 1  | 1  | putative periplasmic protein                | hmcD domain protein                               | probable periplasmic<br>protein Cj0057             |
| "CJ_10001167"         | CJE0055 | -    | Cj0058  | -    | CCO0114 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 0  | 1  | 0  | putative periplasmic protein                | peptidase family protein                          | probable periplasmic<br>protein Cj0058             |
| "CJ_10001168"         | CJE0056 | fliY | Cj0059c | fliY | CCO0115 | fliY | 1  | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative flagellar motor<br>switch protein  | flagellar motor switch protein                    | fliY protein (fliY)                                |
| "CJ_10001172"         | CJE0057 | fliM | Cj0060c | fliM | CCO0116 | fliM | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | flagellar motor switch<br>protein           | flagellar motor switch protein                    | flagellar motor switch<br>protein FliM             |

| "CJ_10001176"         | CJE0058 | fliA | Cj0061c | fliA | CCO0117 | -    | 1  | 1 | 1  | 1  | 1  | -1 | 1 | 1  | 1  | 1 | putative RNA polymerase<br>sigma factor for         | flagellar biosynthesis sigma<br>factor FliA   | probable RNA polymerase<br>sigma factor for                                 |
|-----------------------|---------|------|---------|------|---------|------|----|---|----|----|----|----|---|----|----|---|-----------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------|
| "CJ_10001180"         | CJE0059 | -    | Cj0062c | -    | CCO0118 | -    | 1  | 1 | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1 | putative integral membrane protein                  | hypothetical protein                          | probable integral membrane<br>protein Cj0062c                               |
| "CJ_10001183"         | CJE0060 | -    | Cj0063c | -    | CCO0119 | -    | 1  | 1 | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1 | putative ATP-binding protein                        | ATPase, ParA family                           | ATP-binding protein (ylxH)                                                  |
| "CJ_10001186"         | CJE0061 | flhF | Cj0064c | flhF | CCO0120 | -    | 1  | 1 | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1 | flagellar biosynthesis<br>protein                   | flagellar biosynthesis<br>protein             | flagellar biosynthetic<br>protein FlhF, putative                            |
| "CJ_10001188"         | CJE0062 | folK | Cj0065c | folK | CCO0121 | folK | 0  | 0 | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1 | putative                                            | 2-amino-4-hydroxy-6-                          | 2-amino-4-hydroxy-6-<br>hydroxymethyldihydropteri<br>dine pyrophosphokinase |
| "CJ_10001210"         | CJE0063 | aroQ | Cj0066c | aroQ | CCO0122 | aroQ | 1  | 1 | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1 | 3-dehydroquinate<br>dehydratase                     | 3-dehydroquinate<br>dehydratase               | 3-dehydroquinate<br>dehydratase, type II                                    |
| "opCcV010000<br>0682" | CJE0064 | -    | Cj0067  | -    | CCO0123 | -    | 1  | 1 | 1  | -1 | 1  | 1  | 1 | 1  | 1  | 1 | hypothetical protein                                | chlorohydrolase                               | chlorohydrolase                                                             |
| "opCcV010000<br>0642" | CJE0065 | sppA | Cj0068  | pspA | CCO0124 | sppA | 1  | 0 | 1  | 1  | 1  | 1  | 1 | 1  | -1 | 1 | protease                                            | signal peptide peptidase<br>SppA, 36K type    | protease IV (PspA)                                                          |
| "CJ_10001216"         | CJE0066 | -    | Cj0069  | -    | CCO0125 | -    | 1  | 1 | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1 | hypothetical protein                                | hypothetical protein                          | conserved hypothetical protein                                              |
| "CJ_10001219"         | CJE0067 | -    | Cj0070c | -    | CCO0126 | -    | -1 | 1 | 1  | 1  | -1 |    | 1 | -1 | 1  | 1 | hypothetical protein                                | hypothetical protein                          | conserved hypothetical protein                                              |
| "CJ_10001223"         | CJE0068 | -    | Cj0072c | -    | -       | -    | 1  | 0 | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1 | pseudogene                                          | pseudogene                                    | -                                                                           |
| "CJ_10001227"         | CJE0069 | -    | Cj0073c | -    | CCO0129 | -    | 1  | 1 | -1 | 1  | 1  | 1  | 1 | 1  | 1  | 1 | hypothetical protein                                | hypothetical protein                          | conserved hypothetical protein                                              |
| "CJ_10001230"         | CJE0070 | -    | Cj0074c | -    | CCO0130 | -    | 1  | 1 | 1  | 1  | 0  | 1  | 1 | 1  | 1  | 1 | putative iron-sulfur protein                        | iron-sulfur cluster binding protein           | iron-sulfur cluster binding protein                                         |
| "CJ_10001232"         | CJE0071 | -    | Cj0075c | -    | CCO0131 | glcF | 1  | 1 | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1 | putative oxidoreductase<br>iron-sulfur subunit      | cysteine-rich domain<br>protein               | conserved hypothetical secreted protein                                     |
| "CJ 10001235"         | CJE0072 | lctP | Ci0076c | lctP | CCO0132 | -    | 1  | 1 | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1 | L-lactate permease                                  | L-lactate permease                            | L-lactate permease (lctP)                                                   |
| "CJ_10001257"         | CJE0073 | cdtC | Cj0077c | cdtC | -       | -    | 0  | 1 | 0  | 1  | 1  | 1  | 1 | 0  | 1  | 1 | cytolethal distending toxin                         | cytolethal distending toxin, subunit C        | -                                                                           |
| "CJ_10001259"         | CJE0074 | cdtB | Cj0078c | cdtB | CCO0369 | cdtB | 1  | 1 | 0  | 1  | 1  | 1  | 1 | 1  | 1  | 1 | cytolethal distending toxin                         | cytolethal distending toxin,<br>subunit B     | cytolethal distending toxin                                                 |
| "CJ_10001261"         | CJE0075 | cdtA | Сј0079с | cdtA | CCO0370 | cdtA | 0  | 1 | 1  | -1 | 0  | 1  | 1 | -1 |    | 1 | cytolethal distending toxin                         | cytolethal distending toxin,<br>subunit A     | cytolethal distending toxin<br>A                                            |
| "CJ_10001264"         | CJE0076 | -    | Cj0080  | -    | CCO0133 | -    | 1  | 1 | 1  | 1  | 1  | -1 | 1 | -1 | 1  | 1 | putative membrane protein                           | hypothetical protein                          | probable membrane protein<br>Cj0080                                         |
| "CJ_10001266"         | CJE0077 | cydA | Cj0081  | cydA | CCO0134 | cydA | 1  | 1 | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1 | cytochrome bd oxidase<br>subunit I                  | cytochrome d ubiquinol oxidase, subunit I     | cytochrome d ubiquinol<br>oxidase, subunit I                                |
| "CJ_10001269"         | CJE0078 | cydB | Cj0082  | cydB | CCO0135 | cydB | 1  | 1 | 1  | 1  | 1  | 1  | 1 | 0  | 1  | 1 | cytochrome bd oxidase<br>subunit II                 | cytochrome d ubiquinol<br>oxidase, subunit II | cytochrome d ubiquinol<br>oxidase, subunit II                               |
| "opCjV010000<br>0945" | CJE0079 | -    | -       | -    | -       | -    | 0  | 0 | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1 | -                                                   | hypothetical protein                          | -                                                                           |
| "CJ_10001272"         | CJE0080 | -    | Cj0085c | -    | CCO0139 | -    | 1  | 1 | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1 | putative amino acid recemase                        | aspartate racemase, putative                  | aspartate racemase                                                          |
| "CJ_10001273"         | CJE0081 | ung  | Cj0086c | ung  | CCO0140 | ung  | 1  | 1 | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1 | uracil-DNA glycosylase                              | uracil-DNA glycosylase                        | uracil-DNA glycosylase                                                      |
| "CJ_10001275"         | CJE0082 | aspA | Cj0087  | aspA | CCO0141 | aspA | 1  | 1 | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1 | aspartate ammonia-lyase                             | aspartate ammonia-lyase                       | aspartate ammonia-lyase                                                     |
| "CJ_10001277"         | CJE0083 | dcuA | Cj0088  | dcuA | CCO0142 | -    | 1  | 1 | 1  | -1 | -1 | 1  | 1 | 1  | 1  | 1 | putative anaerobic C4-<br>dicarboxylate transporter | anaerobic C4-dicarboxylate transporter        | Dcu family anaerobic dicarboxylate transport                                |
| "CJ_10001287"         | CJE0084 | -    | Cj0089  | -    | CCO0143 | -    | 1  | 1 | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1 | putative lipoprotein                                | lipoprotein, putative                         | probable lipoprotein Cj0089                                                 |
| "CJ_10001290"         | CJE0085 | -    | Cj0090  | -    | -       | -    | 1  | 1 | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1 | putative lipoprotein                                | lipoprotein, putative                         | -                                                                           |
| "CJ_10001292"         | CJE0086 | -    | Cj0091  | -    | CCO0144 | -    | 0  | 1 | 1  | 1  | 1  | 1  | 1 | 0  | 1  | 1 | putative lipoprotein                                | lipoprotein, putative                         | probable lipoprotein Cj0091                                                 |
| "CJ_10001294"         | CJE0087 | -    | Cj0092  | -    | -       | -    | 1  | 1 | 1  | 1  | -1 | -1 | 1 | 1  | 1  | 1 | putative periplasmic protein                        | hypothetical protein                          | -                                                                           |
| "CJ_10001296"         | CJE0088 | -    | Cj0093  | -    | CCO0145 | -    | 1  | 1 | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1 | putative periplasmic protein                        | hypothetical protein                          | probable periplasmic<br>protein Cj0093 , putative                           |

| Company   Comp   | "CJ 10001299" | CJE0089  | rplU       | Ci0094  | rplU   | CCO0146 | rplU       | 1   | 1 1      | 1 1      | 1       | 1        | 1 1      | 1 1 | 1  | 1  | 1 1      | 50S ribosomal protein L21   | 50S ribosomal protein L21  | ribosomal protein L21      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|------------|---------|--------|---------|------------|-----|----------|----------|---------|----------|----------|-----|----|----|----------|-----------------------------|----------------------------|----------------------------|
| C.   C.   C.   C.   C.   C.   C.   C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |          | -          | - 3     |        |         | -          | 1   | 1        | 1        | 1       | 1        | 1        | 1   | 1  | 1  | 1        |                             |                            |                            |
| Composition      |               |          | IpiliA     |         | трина  |         | -          |     | 1        | 1        | 1       | 1        | 1        | 1   | 1  | 1  | 1        |                             |                            |                            |
| C.   C.   C.   C.   C.   C.   C.   C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | CJE0091  | -          | CJ0096  | -      | CC00148 | obg        | 1   | 1        | 1        | 1       | 1        | 1        | 1   | 1  | 1  | 1        | 1 0                         | GTP1/Obg family            | GTP-binding protein Obg    |
| Cumulation   Cum   |               | CJE0092  | proB       | Cj0097  | proB   |         | proB       | 1   | 1        | 1        | 1       | 1        | 1        | 1   | 0  | 1  | 1        | putative glutamate 5-kinase |                            | glutamate 5-kinase         |
| C.   G.   G.   G.   G.   G.   G.   G.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | "CJ_10001307" | CJE0093  | fmt        | Cj0098  | fmt    | CCO1783 | fmt        | 1   | -1       |          |         | -1       | -1       | 1   | -1 | -1 | -1       | methionyl-tRNA              |                            | methionyl-tRNA             |
| Company   Comp   |               |          |            |         |        |         |            |     |          |          |         |          |          |     |    |    |          | formyltransferase           | formyltransferase          | formyltransferase          |
| C.   C.   C.   C.   C.   C.   C.   C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | "CJ_10001316" | CJE0094  | -          | Cj0099  | birA   | CCO1782 | -          | 1   | 1        | 1        | 1       | 1        | 1        | 0   | 1  | 1  | 1        | putative biotin[acetyl-     | biotinprotein ligase       | biotinacetyl-CoA-          |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |          |            |         |        |         |            |     |          |          |         |          |          |     |    |    |          | CoA-carboxylase]            |                            | carboxylase ligase         |
| Color   Colo   | "CJ_10001319" | CJE0095  | -          | Cj0100  | -      | CCO1781 | -          | 1   | 1        | 1        | 1       | 1        | 1        | 1   | 1  | 1  | 1        | parA family protein         |                            | parA family protein Cj0100 |
| C.   C.   C.   C.   C.   C.   C.   C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | "CJ_10001322" | CJE0096  | -          | Cj0101  | -      | CCO1780 | spo0J      | 0   | 0        | 1        | 1       | 1        | 1        | 1   | 1  | 1  | 1        | parB family protein         | chromosome partitioning    |                            |
| Composition      | "CI 10001224" | CIE0007  |            | C;0102  |        | CCO1770 | 1          | 1   | 1        | 1        | 1       | 1        | 1        | 1   | 1  | 1  | 1        | ATD synthese E0 sector P'   |                            |                            |
| "CJ.000132" CB0999 apH C9104 apH CC01778 apH 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CJ_10001324   | CJE0097  | -          | CJ0102  | _      | CCO1779 | -          | 1   | -1       | -1       | -1      | -1       | -1       | 1   | 1  | -1 | 1        |                             | ATF synthase subunit B     |                            |
| Col.      | "CI 10001327" | CIE0008  |            | Ci0103  | atnE   | CCO1778 |            | 1   | 1        | 1        | 1       | 1        | 1        | 1   | 1  | 1  | 1        |                             | ATP synthase subunit R     |                            |
| "CJ_000134" CJE009 stpl. (CP0104 appl. CC01775 appl. I l l l l l l l l l l l l l l l l l l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CJ_10001327   | CJE0098  | -          | CJ0103  | atpr   | CCO1778 | -          | 1   | 1        | 1        | 1       | 1        | 1        | 1   | 1  | 1  | 1        | *                           | ATF synthase subunit B     |                            |
| C2_10001357   C16101   apG   C9106   apA   C9175   apG   C1775   apG   T2   T2   T2   T2   T2   T2   T2   T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | "CI 10001220" | CIEOGO   | otnU       | C;0104  | otnU   | CC01777 | otnU       | 1   | 1        | 1        | 1       | 1        | 1        | 1   | 1  | 1  | 1        |                             | ATP synthese subunit D     | 1 ,                        |
| "CJ_10001334" CIED100 app CiD10 app  | CJ_10001330   | CJE0099  | агргі      | CJ0104  | агрп   | CCOITT  | агргі      | 1   | 1        | 1        | 1       | 1        | 1        | 1   | 1  | 1  | 1        |                             | ATF synthase subunit D     |                            |
| Collour   Coll   | "CI 10001224" | CIE0100  | otes A     | C:0105  | otes A | CC01776 | otm A      | 1   | 1        | 1        | 1       | 1        | 1        | 1   | 1  | 1  | 1        |                             | ATD symthesis subspit A    |                            |
| "CJ_10001337" GED10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CJ_10001334   | CJEU100  | atpA       | CJ0103  | агрА   | CCO1776 | ацрА       | 1   | 1        | 1        | 1       | 1        | 1        | 1   | 1  | 1  | 1        |                             | ATP synthase subunit A     |                            |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | "CI 10001227" | CIE0101  | otnC       | C;0106  | otnC   | CCO1775 | otnC       | 1   | 1        | 1        | 1       | 1        | 1        | 1   | 1  | 1  | 1        | 1                           | ATP synthese subunit C     |                            |
| "CJ_10001349" GB0102 app G0107 app G010001457 GB0103 app G0107 app | CJ_10001337   | CJEUIUI  | агрС       | CJ0106  | агрО   | CC01773 | atpG       | 1   | 1        | 1        | 1       | 1        | 1        | 1   | 1  | 1  | 1        |                             | ATP synthase subunit C     |                            |
| Colorology   Col   | "CI 10001240" | CIE0102  | otnD       | C;0107  | otnD   | CCO1774 | otnD       | 1   | 1        | 1        | 1       | 1        | 1        | 1   | 1  | 1  | 1        |                             | ATP synthese subunit P     |                            |
| "C_1000143"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CJ_10001340   | CJE0102  | ацр        | CJ0107  | ацъ    | CCO1774 | ацр        | 1   | 1        | 1        | 1       | 1        | 1        | 1   | 1  | 1  | 1        |                             | ATF synthase subunit B     |                            |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | "CL 10001343" | CIE0103  | atnC       | Ci0108  | atnC   | CCO1773 | atnC       | 1   | 1        |          | 1       | -1       | 1        | -1  | -1 | 1  | -1       |                             | ATP synthase subunit       |                            |
| C2   1000466   C3   C5   C5   C5   C5   C5   C5   C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C3_10001343   | CJEOTOS  | uipe       | Cjoroo  | utpe   | 6601773 | uipe       | 1   | 1        |          | 1       | 1 -      | 1        | 1 * | 1  | 1  | 1        |                             |                            |                            |
| C2   10000408   C3   C4   C5   C5   C5   C5   C5   C5   C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | "CI 10000466" | CJE0104  | <b>†</b> - | Ci0109  | exhB3  | CCO1772 | † <u>-</u> | 1   | 1        | 1        | 1       | 1        | 1        | 1   | 1  | 1  | 1        |                             |                            |                            |
| "CJ_1000448" CJ50105 - Cj0110 exbD3 CC01771 - I I I I I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CU_10000100   | CULOTO.  |            | Cjoros  | Chobs  | 0001772 |            | 1   |          |          | 1       | 1        | 1        | 1   | 1  | 1  | 1        |                             |                            |                            |
| CL   1000470"   Cl   10106   Cl   20110      | "CJ_10000468" | CJE0105  | -          | Ci0110  | exbD3  | CCO1771 | -          | 1   | 1        | 1        | 1       | 1        | 1        | 1   | 1  | 1  | 1        | -                           |                            |                            |
| "CJ_10000470" CJE0106 - Cj0112 - CCO1769 tolB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |          |            | Joseph  |        |         |            |     | -        | -        | -       | -        |          | -   |    | _  | -        |                             |                            |                            |
| "CJ_1000471"   CJE0107   tollB   Cj0112   -     CCO1769   tollB   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | "CJ_10000470" | CJE0106  | -          | Ci0111  | -      | CCO1770 | -          | 1   | 1        | 1        | 1       | 1        | -1       | 1   | -1 | -1 | -1       | periplasmic protein         | 1                          | periplasmic protein Ci0111 |
| CCO1760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |          | tolB       |         | -      |         | tolB       | 1   | 1        | 1        | 1       | 1        | 1        | 1   | 1  | 1  | 1        | · · · · · ·                 |                            | 1 1 1                      |
| "CJ_10000472" CE0109 - Cj0114 - CC01768 - 1 1 1 1 1 1 1 1 1 1 1 1 1 peptidoglycan associated lipoprotein (omp18) "CJ_10000472" CE0109 - Cj0114 - CC01767 - 0 1 1 1 1 1 1 1 1 1 1 1 1 peptidoglycan associated lipoprotein (omp18) "CJ_10000473" CE0109 - Cj0114 - CC01767 - 0 1 1 1 1 1 1 1 1 1 1 1 peptidoglycan associated lipoprotein (omp18) "CJ_10000473" CE0110 slyD Cj0115 slyD CC01766 slyD I I I I I I I I I I I I I I I peptidoglycan associated lipoprotein (omp18) "CJ_10000473" CE0110 slyD Cj0115 slyD CC01766 slyD I I I I I I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |          |            | -30     |        |         |            |     | -        | -        | -       | -        |          | -   |    | _  | -        | Freehammer Francis          | -                          |                            |
| 1578"   CJ   CJ   CJ   CJ   CJ   CJ   CJ   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | "opCcV010000  | CJE0108  | -          | Ci0113  | pa1    | CCO1768 | 1 -        | 1   | 1        | 1        | 1       | 1        | 1        | 1   | 1  | 1  | 1        | peptidoglycan associated    |                            |                            |
| "CJ_10000472" CJE0109 - Cj0114 - CCO1767 - 0 1 1 1 1 0 1 1 1 1 1 1 putative periplasmic protein hypothetical protein probable periplasmic protein (j0114 protein) probable periplasmic protein (j0114 protein) probable periplasmic protein (j0114 protein) protein pr |               |          |            | Jerre   | P      |         |            |     | -        | -        | -       | -        |          | -   |    | _  | -        |                             |                            | 337-7-3                    |
| CJ_10000473"   CJE0110   SlyD   Cj0115   SlyD   CC01766   SlyD   CC01765   SlyD   SlyD   CC01765   SlyD      |               | CJE0109  | -          | Ci0114  | -      | CCO1767 | -          | 0   | 1        | 1        | 1       | 0        | 1        | 1   | 1  | 1  | 1        |                             |                            | probable periplasmic       |
| "CJ_10000473" CJE0110 slyD Cj0115 slyD CC01766 slyD I I I I I I I I I D I I D D D D D D D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |          |            | Jerry   |        |         |            |     | -        | -        | -       | "        |          | -   |    | _  | -        | Farmer a baseline baseline  | -5,F                       |                            |
| "CJ_1000474" CJE0111 fabD Cj0116 fabD CC01765 fabD 1 1 0 1 1 -1 1 1 1 1 1 1 1 and pylico-Acayl carrier protein transacylase protein tra | "CJ 10000473" | CJE0110  | slyD       | Cj0115  | slyD   | CCO1766 | slyD       | 1   | 1        | 1        | 1       | 1        | 0        | 1   | 1  | 1  | 1        | peptidyl-prolyl cis-trans   | FKBP-type peptidyl-prolyl  |                            |
| "CJ_10000475" CJE0112 mtnA Cj0117 pfs CCO1764 - 1 1 1 1 1 1 1 1 1 1 1 1 1 5-methylthioadenosine\( \)S adenosylhomocysteine adenosylhomocysteine "CJ_10000476" CJE0113 - Cj0118 - CCO1763 - 0 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _             |          | '          | ,       |        |         |            |     |          |          |         |          |          |     |    |    |          |                             |                            |                            |
| "CJ_10000475" CJE0112 mtnA Cj0117 pfs CC01764 - 1 1 1 1 1 1 1 1 1 1 1 1 5-methylthioadenosine\( \)S adenosylhomocysteine adenosylhomocysteine "CJ_10000476" CJE0113 - Cj0118 - CC01763 - 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | "CJ 10000474" | CJE0111  | fabD       | Cj0116  | fabD   | CCO1765 | fabD       | 1   | 1        | 0        | 1       | 1        | -1       | 1   | 1  | 1  | 1        | malonyl CoA-acyl carrier    | acyl-carrier-protein S-    | malonyl CoA-acyl carrier   |
| "CJ_10000476" CJE0113 - Cj0118 - CCO1763 - O -1 I I I I I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |          |            |         |        |         |            |     |          |          |         |          |          |     |    |    |          | protein transacylase        | malonyltransferase         | protein transacylase       |
| CJ_10000476"   CJE0113   CJE0114   CJE0115   CJE0115   CJE0115   CJE0116   CCO1763   CCO1760   CCCO1760   CCCO1   | "CJ 10000475" | CJE0112  | mtnA       | Ci0117  | pfs    | CCO1764 | -          | 1   | 1        | 1        | 1       | 1        | 1        | 1   | 1  | 1  | 1        | 5'-methylthioadenosine\S-   | 5'-methylthioadenosine/S-  | MTA/SAH nucleosidase       |
| "CJ_10000487" CJE0114 - Cj0129 - CC01762 - 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _             |          |            | ,       | 1      |         |            |     |          |          |         |          |          |     |    |    |          |                             |                            |                            |
| "CJ_10000487"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | "CJ_10000476" | CJE0113  | -          | Cj0118  | -      | CCO1763 | -          | 0   | -1       | 1        | 1       | 1        | 1        | 1   | 1  | 1  | 1        | hypothetical protein        | PP-loop family protein     | conserved hypothetical     |
| "CJ_10000488" CJE0115 - Cj0120 - CCO1761 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |          |            | _       |        |         |            |     |          |          |         |          |          |     |    |    |          |                             |                            | protein                    |
| "CJ_10000488"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | "CJ_10000487" | CJE0114  | -          | Cj0119  | -      | CCO1762 | -          | 1   | 0        | 1        | 1       | 1        | 1        | 1   | 1  | 1  | 1        | hypothetical protein        | pyrazinamidase/nicotinamid | conserved hypothetical     |
| CJ_10000489"   CJE0116   CJE0116   CJE0117   CJE0117   CCO1759     |               | <u> </u> |            |         |        | 1       | <u> </u>   | _L_ | <u> </u> | <u> </u> | <u></u> | <u> </u> | <u> </u> |     | 1_ | 1_ | <u> </u> |                             | ase, putative              | protein                    |
| "CJ_10000489" CJE0116 - Cj0121 - CCO1760 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | "CJ_10000488" | CJE0115  | -          | Cj0120  | -      | CCO1761 | -          | 1   | 1        | 1        | 1       | 1        | 1        | 1   | 1  | 1  | 1        | hypothetical protein        | hypothetical protein       | conserved hypothetical     |
| "CJ_10000490" CJE0117 - Cj0122 - CCO1759 - 0 0 0 -1 1 1 1 -1 -1 1 1 hypothetical protein hypothetical protein protein protein reconserved hypothetical protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | <u> </u> |            |         |        | 1       | <u> </u>   | _L_ | <u> </u> | <u> </u> | <u></u> | <u> </u> | <u> </u> |     | 1_ | 1_ | <u> </u> | <u> </u>                    | <u> </u>                   | * 1                        |
| "CJ_10000490" CJE0117 - Cj0122 - CCO1759 - 0 0 -1 1 1 1 -1 -1 1 1 hypothetical protein hypothetical protein protein rigroups of the conserved hypothetical protein protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | "CJ_10000489" | CJE0116  | -          | Cj0121  | -      | CCO1760 | -          | 1   | 1        | 1        | 1       | 1        | 1        | 1   | 1  | 1  | 1        | hypothetical protein        | hypothetical protein       | conserved hypothetical     |
| protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |          |            |         |        |         |            |     |          |          |         | 1        |          |     |    |    |          | •                           |                            |                            |
| protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | "CJ_10000490" | CJE0117  | -          | Cj0122  | -      | CCO1759 | -          | 0   | 0        | -1       | 1       | 1        | -1       | -1  | -1 | 1  | 1        | hypothetical protein        | hypothetical protein       | conserved hypothetical     |
| "CJ_10000491"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | <u> </u> |            |         |        | 1       |            | _L_ |          |          |         | <u> </u> | <u> </u> |     | 1_ |    | <u> </u> |                             |                            |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | "CJ_10000491" | CJE0118  | dusB       | Cj0123c | -      | CCO1756 | -          | 1   | 1        | 1        | 1       | 1        | 1        | 1   | 1  | 1  | 1        | putative transcriptional    | tRNA-dihydrouridine        | probable transcription     |

|                       |         |      |         |      |         |      |    |    |    |    |    |    |    |    |    |    | regulator                                                | synthase B                                               | regulator Cj0123c                                      |
|-----------------------|---------|------|---------|------|---------|------|----|----|----|----|----|----|----|----|----|----|----------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|
| "CJ_10000492"         | CJE0119 | -    | Cj0124c | -    | CCO1755 | -    | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative membrane protein                                | hypothetical protein                                     | probable membrane protein<br>Cj0124c                   |
| "CJ_10000493"         | CJE0120 | -    | Cj0125c | -    | CCO1754 | -    | 1  | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | dksA-like protein                                        | dnaK suppressor protein, putative                        | dnaK suppressor, putative                              |
| "CJ_10000494"         | CJE0121 | -    | Cj0126c | -    | CCO1753 | -    | 0  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                                     | hypothetical protein                                     | conserved hypothetical secreted protein                |
| "CJ_10000495"         | CJE0122 | accD | Cj0127c | accD | CCO1752 | accD | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | acetyl-coenzyme A<br>carboxylase carboxyl                | acetyl-CoA carboxylase<br>beta subunit                   | acetyl-CoA carboxylase,<br>carboxyl transferase,       |
| "CJ_10000496"         | CJE0123 | -    | Cj0128c | -    | CCO1751 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | suhB-like protein                                        | Inositol monophosphatase family protein                  | conserved hypothetical protein                         |
| "CJ_10000507"         | CJE0124 | -    | Cj0129c | -    | CCO1750 | -    | 1  | 0  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | outer membrane protein                                   | outer membrane protein,<br>OMP85 family                  | outer membrane protein<br>Cj0129c                      |
| "CJ_10000508"         | CJE0125 | tyrA | Cj0130  | tyrA | CCO1749 | -    | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative prephenate<br>dehydrogenase                     | prephenate dehydrogenase                                 | Prephenate dehydrogenase                               |
| "CJ_10000509"         | CJE0126 | -    | Cj0131  | -    | CCO1748 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative periplasmic protein                             | peptidase, M23/M37 family                                | probable periplasmic<br>protein Cj0131                 |
| "CJ_10000510"         | CJE0127 | lpxC | Cj0132  | lpxC | CCO1747 | lpxC | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | UDP-3-O-[3-<br>hydroxymyristoyl] n-<br>acetylglucosamine | UDP-3-O-[3-<br>hydroxymyristoyl] N-<br>acetylglucosamine | UDP-3-0-acyl N-<br>acetylglucosamine<br>deacetylase    |
| "CJ_10000512"         | CJE0128 | -    | Cj0133  | -    | CCO1746 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                                     | hypothetical protein                                     | conserved hypothetical protein                         |
| "CJ_10000514"         | CJE0129 | thrB | Cj0134  | thrB | CCO1745 | thrB | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | homoserine kinase                                        | homoserine kinase                                        | homoserine kinase                                      |
| "CJ_10000516"         | CJE0130 | -    | Cj0135  | -    | CCO1744 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | hypothetical protein                                     | hypothetical protein                                     | Protein of unknown<br>function (DUF448)                |
| "CJ_10000517"         | CJE0131 | infB | Cj0136  | infB | CCO1743 | infB | 1  | 1  | 1  | -1 | 1  | 1  | -1 | -1 | -1 | -1 | translation initiation factor<br>IF-2                    | translation initiation factor<br>IF-2                    | translation initiation factor<br>IF-2                  |
| "CJ_10000519"         | CJE0132 | rbfA | Cj0137  | -    | CCO1742 | rbfA | 0  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                                     | ribosome-binding factor A                                | ribosome-binding factor A                              |
| "CJ_10000520"         | CJE0133 | -    | Cj0138  | -    | CCO1741 | -    | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                                     | hypothetical protein                                     | conserved hypothetical protein                         |
| "CJ_10000536"         | CJE0134 | -    | Cj0139  | -    | -       | -    | 1  | 1  | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | putative endonuclease                                    | McrBC restriction<br>endonuclease system, McrB           | -                                                      |
| "CJ_10000537"         | CJE0135 | -    | Cj0140  | -    | -       | -    | 0  | -1 | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | hypothetical protein                                     | hypothetical protein                                     | -                                                      |
| "CJ_10000538"         | CJE0136 | -    | Cj0141c | -    | CCO1737 | -    | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | ABC transporter integral membrane protein                | cation ABC transporter,<br>permease protein              | ABC transporter integral membrane protein              |
| "CJ_10000539"         | CJE0137 | -    | Cj0142c | -    | CCO1736 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | ABC transporter ATP-<br>binding protein                  | cation ABC transporter,<br>ATP-binding protein           | ABC transporter, ATP-<br>binding protein               |
| "CJ_10000541"         | CJE0138 | -    | Cj0143c | -    | CCO1735 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | periplasmic solute binding protein for ABC               | cation ABC transporter,<br>periplasmic                   | adhesion protein, putative                             |
| "opCjV010000<br>0828" | CJE0139 | -    | -       | -    | -       | -    | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | 1  | -                                                        | hypothetical protein                                     | -                                                      |
| "CJ_10001578"         | CJE0140 | -    | Cj1564  | -    | CCO1678 | -    | 0  | 0  | 0  | 1  | 1  | -1 | 1  | -1 | 1  | 1  | putative methyl-accepting<br>chemotaxis signal           | methyl-accepting<br>chemotaxis protein                   | methyl-accepting<br>chemotaxis protein (tlpA)          |
| "CJ_10000544"         | CJE0141 | -    | Cj0145  | -    | CCO1732 | -    | -1 | 0  | 0  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | hypothetical protein                                     | hypothetical protein                                     | Tat (twin-arginine<br>translocation) pathway<br>signal |
| "CJ_10000546"         | CJE0142 | trxB | Cj0146c | trxB | CCO1731 | trxB | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | thioredoxin reductase                                    | thioredoxin-disulfide reductase                          | thioredoxin reductase                                  |
| "CJ_10000548"         | CJE0143 | trx  | Cj0147c | trxA | CCO1730 | trx  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | thioredoxin                                              | thioredoxin                                              | thioredoxin                                            |
| "CJ_10000550"         | CJE0144 | -    | Cj0148c | -    | CCO1729 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                                     | hypothetical protein                                     | Endonuclease                                           |
| "CJ_10000564"         | CJE0145 | hom  | Cj0149c | hom  | CCO1728 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | homoserine dehydrogenase                                 | homoserine dehydrogenase                                 | homoserine dehydrogenase                               |
| "CJ_10000565"         | CJE0146 | -    | Cj0150c | -    | CCO1727 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | aminotransferase                                         | aspartate aminotransferase                               | aspartate aminotransferase                             |
| "CJ_10000566"         | CJE0147 | -    | Cj0151c | -    | CCO1726 | -    | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | -1 | -1 | putative periplasmic protein                             | hypothetical protein                                     | probable periplasmic<br>protein Cj0151c                |
| "CJ_10000567"         | CJE0148 | -    | Cj0152c | -    | CCO1725 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative membrane protein                                | hypothetical protein                                     | probable membrane protein                              |

|                       |         |      |         |       | 1       |      |   | 1  | 1  |   |   |    |     | 1  | 1  |    |                                              |                                                   | Ci0152c                                                |
|-----------------------|---------|------|---------|-------|---------|------|---|----|----|---|---|----|-----|----|----|----|----------------------------------------------|---------------------------------------------------|--------------------------------------------------------|
| "CJ_10000569"         | CJE0149 | -    | Cj0153c | -     | CCO1724 | -    | 1 | 1  | 1  | 1 | 1 | 1  | 1   | 0  | 1  | 1  | putative rRNA methylase                      | RNA methyltransferase,                            | RNA methyltransferase,                                 |
| _                     |         |      | j       |       |         |      |   |    |    |   |   |    |     |    |    |    | 1                                            | TrmH family                                       | TrmH family, group 3                                   |
| "CJ_10000570"         | CJE0150 | -    | Cj0154c | -     | CCO1723 | -    | 1 | 1  | 1  | 1 | 1 | 1  | 1   | 1  | 1  | 1  | putative methylase                           | tetrapyrrole methylase                            | conserved hypothetical                                 |
|                       | C*****  |      | 210177  |       |         |      | 1 | L  | L  |   |   | 1  | ļ., | 1  | L  |    |                                              | family protein                                    | protein TIGR00096                                      |
| "CJ_10000572"         | CJE0151 | rpmE | Cj0155c | rpmE  | CCO1722 | rpmE | 1 | 1  | 1  | 1 | 1 | 1  | 1   | 1  | 1  | 1  | 50S ribosomal protein L31                    | ribosomal protein L31                             | ribosomal protein L31                                  |
| "CJ_10000574"         | CJE0152 | -    | Cj0156c | -     | CCO1721 | -    | 0 | -1 | 1  | 1 | 1 | 1  | 1   | 1  | 1  | 1  | hypothetical protein                         | conserved hypothetical<br>protein TIGR00046       | conserved hypothetical<br>protein TIGR00046            |
| "CJ_10000576"         | CJE0153 | -    | Cj0157c | -     | CCO1720 | -    | 1 | 1  | 1  | 1 | 1 | 1  | 1   | 1  | 1  | 1  | putative integral membrane protein           | hypothetical protein                              | probable integral membrane<br>protein Cj0157c          |
| "CJ_10000578"         | CJE0154 | -    | Cj0158c | -     | CCO1719 | -    | 1 | 1  | 1  | 1 | 1 | 1  | 1   | 1  | 1  | 1  | putative haem-binding lipoprotein            | cytochrome c family protein                       | conserved hypothetical protein                         |
| "CJ_10000592"         | CJE0155 | -    | Cj0159c | -     | CCO1718 | -    | 1 | 1  | 1  | 1 | 1 | 1  | 1   | 1  | 1  | 1  | hypothetical protein                         | 6-pyruvoyl<br>tetrahydrobiopterin<br>synthase,    | 6-pyruvoyl<br>tetrahydrobiopterin<br>synthase,         |
| "CJ_10000593"         | CJE0156 | -    | Cj0160c | -     | CCO1717 | -    | 1 | 1  | 1  | 1 | 1 | 1  | 1   | 1  | 1  | 1  | hypothetical protein                         | radical SAM domain protein                        | radical SAM domain<br>protein, putative                |
| "CJ_10000594"         | CJE0157 | -    | Cj0161c | moaA  | CCO1716 | moaA | 1 | 1  | 1  | 1 | 1 | 1  | 1   | 1  | 1  | 1  | molybdenum cofactor                          | molybdenum cofactor                               | molybdopterin cofactor                                 |
| _                     |         |      |         |       |         |      |   |    |    |   |   |    |     |    |    |    | biosynthesis protein A                       | biosynthesis protein A                            | biosynthesis protein A                                 |
| "CJ_10000595"         | CJE0158 | -    | Cj0162c | -     | CCO1715 | -    | 0 | 0  | 1  | 1 | 1 | 1  | 1   | 1  | 1  | 1  | putative periplasmic protein                 | hypothetical protein                              | probable periplasmic<br>protein Cj0162c                |
| "CJ_10000596"         | CJE0159 | -    | Cj0163c | -     | CCO1714 | -    | 1 | 1  | 1  | 1 | 1 | 1  | 1   | 1  | 1  | 1  | hypothetical protein                         | hypothetical protein                              | conserved hypothetical protein                         |
| "CJ_10000597"         | CJE0160 | -    | Cj0164c | ubiA  | CCO1713 | -    | 1 | 1  | 1  | 1 | 1 | 1  | 1   | 1  | 1  | 1  | putative 4-hydroxybenzoate                   | 4-hydroxybenzoate<br>octaprenyltransferase        | 4-hydroxybenzoate polyprenyltransferase,               |
| "CJ 10000599"         | CJE0161 | miaA | Cj0166  | miaA  | CCO1712 | miaA | 1 | 1  | 1  | 1 | 1 | 1  | 1   | 1  | 1  | 1  | tRNA delta(2)-                               | tRNA delta(2)-                                    | tRNA delta(2)-                                         |
| _                     |         |      | ,       |       |         |      |   |    |    |   |   |    |     |    |    |    | isopentenylpyrophosphate                     | isopentenylpyrophosphate                          | isopentenylpyrophosphate                               |
| "CJ_10000601"         | CJE0162 | -    | Cj0167c | -     | CCO1711 | -    | 0 | 1  | 1  | 1 | 1 | 1  | 1   | 0  | 1  | 1  | putative integral membrane<br>protein        | hypothetical protein                              | membrane protein, putative                             |
| "opCjjV010000<br>101" | CJE0163 | -    | Cj0168c | -     | -       | -    | 1 | 1  | 1  | 1 | 1 | 1  | 1   | 1  | 1  | 1  | putative periplasmic protein                 | hypothetical protein                              | -                                                      |
| "opCcV010000<br>1164" | CJE0164 | sodB | Cj0169  | sodB  | CCO1706 | -    | 1 | 0  | 1  | 1 | 1 | 1  | 1   | 1  | 1  | 1  | superoxide dismutase (Fe)                    | superoxide dismutase, Fe                          | superoxide dismutase (fe)                              |
| "CJ_10000628"         | CJE0165 | -    | Cj0172c | -     | CCO1705 | -    | 1 | 1  | 1  | 1 | 1 | 1  | 1   | 1  | 1  | 1  | hypothetical protein                         | saccharopine<br>dehydrogenase                     | saccharopine dehydrogenase                             |
| "CJ_10000630"         | CJE0166 | -    | Cj0173c | -     | CCO1704 | potA | 1 | 1  | 1  | 1 | 1 | 0  | 1   | 1  | 0  | 1  | putative iron-uptake ABC transport system    | iron ABC transporter, ATP<br>binding subunit      | spermidine/putrescine ABC transporter,                 |
| "CJ_10000631"         | CJE0167 | -    | Cj0174c | -     | CCO1703 | -    | 1 | 1  | 1  | 1 | 1 | 1  | 1   | 1  | 0  | 1  | putative iron-uptake ABC<br>transport system | iron ABC transporter,<br>permease protein         | iron compound ABC<br>transporter, permease<br>protein, |
| "CJ_10000632"         | CJE0168 | -    | Cj0175c | -     | CCO1702 | -    | 1 | 1  | 1  | 1 | 1 | 1  | 0   | 1  | 1  | 1  | putative iron-uptake ABC<br>transport system | iron ABC transporter,<br>periplasmic iron-binding | iron transport protein                                 |
| "CJ_10000634"         | CJE0169 | -    | Cj0176c | -     | CCO1701 | -    | 1 | 1  | 0  | 1 | 1 | 1  | 1   | 1  | 1  | 1  | putative lipoprotein                         | hypothetical protein                              | probable lipoprotein<br>Cj0176c -related protein       |
| "CJ_10000636"         | CJE0170 | -    | Cj0177  | -     | CCO1700 | -    | 1 | 1  | 0  | 1 | 0 | 1  | -1  | -1 | 1  | 1  | putative lipoprotein                         | TonB-dependent colicin lipoprotein, putative      | lipoprotein, putative                                  |
| "CJ_10000638"         | CJE0171 | -    | Cj0178  | -     | CCO1699 | -    | 1 | 1  | -1 | 1 | 1 | 1  | 1   | -1 | 1  | 1  | putative outer membrane siderophore receptor | TonB-dependent colicin receptor protein,          | TonB-dependent receptor                                |
| "CJ_10000640"         | CJE0172 | -    | Cj0179  | exbB1 | CCO1698 | -    | 1 | 1  | -1 | 1 | 1 | 0  | -1  | -1 | 1  | 1  | biopolymer transport protein                 | TonB system transport protein ExbB                | biopolymer transport<br>protein Cj0179                 |
| "CJ_10000654"         | CJE0173 | -    | Cj0180  | exbD1 | CCO1697 | -    | 0 | 0  |    | 1 | 1 |    |     | 1  | -1 | 1  | biopolymer transport<br>protein              | biopolymer transport<br>protein, ExbD/TolR family | biopolymer transport<br>protein Cj0180                 |
| "CJ_10000656"         | CJE0174 | -    | Cj0181  | tonB1 | CCO1696 | -    | 1 | 1  | -1 | 1 | 1 | -1 | -1  | -1 | 1  | 1  | possible tonB transport<br>protein           | TonB-dependent colicin receptor protein,          | probable tonB transport<br>protein Cj0181              |
| "CJ_10000657"         | CJE0175 | -    | Cj0182  | -     | CCO1695 | -    | 1 | 1  | 1  | 1 | 1 | -1 | -1  | 1  | -1 | -1 | transmembrane transport                      | antibiotic transport protein,                     | transmembrane transport                                |

|                       | ı       | 1    |         |      |         | 1    | 1  | 1        | 1  | 1        | 1  |    |    | 1  | 1  | 1 | 1                                               | 1                                              |                                                |
|-----------------------|---------|------|---------|------|---------|------|----|----------|----|----------|----|----|----|----|----|---|-------------------------------------------------|------------------------------------------------|------------------------------------------------|
|                       |         |      |         |      |         |      |    | <u> </u> |    | <u> </u> |    |    |    |    |    |   | protein                                         | putative                                       | protein Cj0182                                 |
| "CJ_10000659"         | CJE0176 | -    | Cj0183  | -    | CCO1693 | -    | 1  | 1        | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1 | putative integral membrane protein with         | transporter, putative                          | transporter, putative                          |
| "CJ_10000660"         | CJE0177 | -    | Cj0184c | -    | CCO1692 | -    | 1  | -1       | 0  | 0        | 1  | 1  | 1  | 1  | 0  | 0 | possible serine\threonine                       | Ser/Thr protein phosphatase                    | probable serine/threonine                      |
| #GT 10000.cc1#        | CIE0170 |      | G:0105  |      | 0001601 | 1 4  | -  | 1        | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1 | protein phosphatase                             | family protein                                 | protein phosphatase                            |
| "CJ_10000661"         | CJE0178 | -    | Cj0185c | -    | CCO1691 | phnA | 1  | 1        | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1 | phnA-like protein                               | PhnA domain protein                            | phnA protein                                   |
| "CJ_10000663"         | CJE0179 | -    | Cj0186c | -    | CCO1690 | -    | 1  | 1        | 1  | 1        | 0  | 1  | 1  | 1  | 1  | 1 | putative integral membrane protein              | integral membrane protein,<br>TerC family      | membrane protein, TerC family                  |
| "CJ_10000665"         | CJE0180 | purN | Cj0187c | purN | CCO1687 | purN | -1 | -1       | -1 | -1       | 1  | -1 | 1  | 1  | -1 | 1 | phosphoribosylglycinamide<br>formyltransferase  | phosphoribosylglycinamide<br>formyltransferase | phosphoribosylglycinamide<br>formyltransferase |
| "CJ_10000667"         | CJE0181 | -    | Cj0188c | -    | CCO1686 | -    | 1  | 1        | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1 | hypothetical protein                            | hypothetical protein                           | YjeF-related protein N-<br>terminus family     |
| "CJ_10000669"         | CJE0182 | -    | Cj0189c | -    | CCO1685 | -    | 1  | 1        | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1 | hypothetical protein                            | hypothetical protein                           | conserved hypothetical protein                 |
| "CJ_10000683"         | CJE0183 | -    | Cj0190c | -    | CCO1684 | -    | 1  | 1        | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1 | hypothetical protein                            | Mg chelatase-related protein                   | Mg chelatase-related protein                   |
| "CJ_10000685"         | CJE0184 | def  | Cj0191c | def  | CCO1683 | def  | 1  | 1        | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1 | polypeptide deformylase                         | peptide deformylase                            | polypeptide deformylase                        |
| "CJ_10000687"         | CJE0185 | clpP | Cj0192c | clpP | CCO1682 | clpP | 1  | 1        | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1 | ATP-dependent clp protease                      | ATP-dependent Clp                              | ATP-dependent Clp                              |
| _                     |         | •    | ,       | 1    |         |      |    |          |    |          |    |    |    |    |    |   | proteolytic subunit                             | protease proteolytic subunit                   | protease, proteolytic subunit                  |
| "CJ_10000689"         | CJE0186 | tig  | Cj0193c | tig  | CCO1681 | tig  | 1  | 1        | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1 | trigger factor (peptidyl-<br>prolyl cis /trans  | trigger factor                                 | trigger factor                                 |
| "CJ 10000690"         | CJE0187 | folE | Ci0194  | folE | CCO1680 | folE | 1  | 1        | 1  | 1        | 0  | 1  | 1  | 1  | 1  | 1 | GTP cyclohydrolase I                            | GTP cyclohydrolase I                           | GTP cyclohydrolase I                           |
| "CJ 10000691"         | CJE0188 | fliI | Ci0195  | fliI | CCO1679 | fliI | 1  | 1        | 1  | 1        | 1  | 1  | 1  | 0  | 1  | 1 | flagellum-specific ATP                          | flagellum-specific ATP                         | flagellum-specific ATP                         |
|                       |         |      | 2,000   |      |         | 1    | _  | _        | _  | _        | -  | -  | -  |    | -  | - | synthase                                        | synthase                                       | synthase                                       |
| "CJ_10000693"         | CJE0189 | purF | Сј0196с | purF | CCO0286 | purF | 1  | 1        | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1 | amidophosphoribosyltransfe<br>rase              | amidophosphoribosyltransfe<br>rase             | amidophosphoribosyltransfe<br>rase             |
| "CJ_10000695"         | CJE0190 | dapB | Cj0197c | dapB | CCO0287 | dapB | 1  | 1        | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1 | dihydrodipicolinate<br>reductase                | dihydrodipicolinate<br>reductase               | dihydrodipicolinate<br>reductase               |
| "CJ_10000697"         | CJE0191 | -    | Cj0198c | -    | CCO0288 | -    | 1  | 1        | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1 | helicase-like protein                           | ATPase, AAA family protein                     | ATPase, AAA family                             |
| "CJ_10000699"         | CJE0192 | -    | Сј0199с | -    | CCO0289 | -    | 1  | 1        | 1  | 1        | -1 | 1  | 1  | -1 | 1  | 1 | putative periplasmic protein                    | hypothetical protein                           | probable periplasmic<br>protein Cj0199c        |
| "CJ_10000711"         | CJE0193 | -    | Cj0200c | -    | CCO0290 | -    | 1  | 1        | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1 | putative periplasmic protein                    | hypothetical protein                           | probable periplasmic<br>protein Cj0200c        |
| "CJ_10000713"         | CJE0194 | -    | Cj0201c | -    | CCO0290 | -    | 0  | 0        | -1 | 1        | 1  | -1 | 1  | 1  | 1  | 1 | putative integral membrane<br>protein           | hypothetical protein                           | probable periplasmic<br>protein Cj0200c        |
| "CJ 10000715"         | CJE0195 | -    | Cj0202c | -    | -       | -    | 1  | 1        | -1 | 1        | 1  | -1 | 1  | 1  | 1  | 1 | hypothetical protein                            | hypothetical protein                           | -                                              |
| "CJ_10000716"         | CJE0196 | -    | Cj0203  | -    | -       | -    | 1  | 1        | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1 | putative transmembrane<br>transport protein     | pseudogene                                     | -                                              |
| "CJ_10000717"         | CJE0197 | -    | Cj0204  | -    | CCO0294 | -    | 1  | 1        | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1 | putative integral membrane                      | oligopeptide transporter,<br>OPT family        | oligopeptide transporter,<br>OPT family        |
| "CJ_10000719"         | CJE0198 | -    | Cj0205  | bacA | CCO0295 | -    | 1  | 0        | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1 | putative undecaprenol<br>kinase (bacitracin     | undecaprenol kinase,<br>putative               | undecaprenol kinase,                           |
| "CJ 10000721"         | CJE0199 | thrS | Ci0206  | thrS | CCO0296 | thrS | 1  | 1        | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1 | threonyl-tRNA synthetase                        | threonyl-tRNA synthetase                       | threonyl-tRNA synthetase                       |
| "CJ 10000723"         | CJE0200 | infC | Cj0207  | infC | CCO0297 | infC | 1  | -1       | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1 | translation initiation factor                   | translation initiation factor                  | translation initiation factor                  |
| _                     |         |      | ,       |      |         |      |    |          |    |          |    |    |    |    |    |   | IF-3                                            | IF-3                                           | IF-3                                           |
| "CJ_10000725"         | CJE0201 | -    | Cj0208  | -    | CCO0298 | -    | 1  | 1        | 1  | 1        | 0  | 1  | 1  | -1 | 1  | 1 | DNA modification<br>methylase (adenine-specific | D12 class N6 adenine-<br>specific DNA          | ulcer associated adenine<br>specific DNA       |
| "opCjV010000<br>1041" | CJE0202 | -    | -       | -    | -       | -    | 1  | 1        | 1  | 1        | 1  | -1 | 1  | 1  | 1  | 1 | -                                               | hypothetical protein                           | -                                              |
| "opCjV010000<br>0895" | CJE0203 | -    | -       | -    | -       | -    | -1 | -1       | 0  | 0        | 1  | -1 | -1 | 1  | 1  | 0 | -                                               | hypothetical protein                           | -                                              |
| "opCjV010000<br>0671" | CJE0204 | -    | Cj0223  | -    | -       | -    | 1  | 1        | 1  | 1        | 1  | -1 | 1  | 1  | 1  | 1 | pseudogene                                      | hypothetical protein                           | -                                              |
| "opCjV010000          | CJE0205 | -    | Ci0223  | -    | -       | -    | 1  | 1        | 1  | 1        | 1  | -1 | 1  | 1  | 1  | 1 | pseudogene                                      | hypothetical protein                           | -                                              |

|                       | Г       | 1   | 1      | 1 | 1 | 1 |    |    |    | 1  | ı  |    |    | 1        |    |    | T          |                                              |   |
|-----------------------|---------|-----|--------|---|---|---|----|----|----|----|----|----|----|----------|----|----|------------|----------------------------------------------|---|
| 0223"                 |         |     | ~      |   |   |   |    | _  | _  |    |    |    |    | <u> </u> |    |    |            | 1                                            |   |
| "opCjV010000<br>0062" | CJE0206 | -   | Cj0223 | - | - | - | 1  | 1  | 1  | 1  | 1  | -1 | 1  | 1        | 1  | 1  | pseudogene | hypothetical protein                         | - |
| "opCjV010000<br>0934" | CJE0207 | -   | Cj0223 | - | - | - | 1  | 1  | 0  | 1  | 1  | -1 | 1  | 1        | 1  | 1  | pseudogene | hypothetical protein                         | - |
| "opCjV010000<br>0204" | CJE0208 | -   | Cj0223 | - | - | - | 1  | 1  | 0  | 1  | 1  | 0  | 1  | 1        | 1  | 1  | pseudogene | hypothetical protein                         | - |
| "opCjV010000<br>0005" | CJE0209 | -   | -      | - | - | - | 0  | 1  | -1 | 1  | 1  | -1 | -1 | 1        | 1  | 1  | -          | hypothetical protein                         | - |
| "opCjV010000<br>0365" | CJE0210 | -   | Cj0223 | - | - | - | 0  | 0  | -1 | 1  | 1  | -1 | -1 | 1        | 1  | 1  | pseudogene | hypothetical protein                         | - |
| "CJ_10000727"         | CJE0211 | -   | Cj0223 | - | - | - | 1  | 1  | -1 | 1  | 1  | -1 | 0  | 1        | 1  | 1  | pseudogene | pathogenicity domain<br>protein              | - |
| "opCjV010000<br>0640" | CJE0212 | -   | Cj0223 | - | - | - | 1  | 1  | 1  | 1  | 1  | -1 | 1  | 1        | 1  | 1  | pseudogene | pathogenicity protein,<br>homolog            | - |
| "opCjV010000<br>0722" | CJE0213 | -   | -      | - | - | - | 0  | 0  | -1 | -1 | 1  | -1 | 1  | 1        | 1  | -1 | -          | hypothetical protein                         | - |
| "opCjV010000<br>0482" | CJE0214 | -   | -      | - | - | - | -1 | -1 | 0  | -1 | 1  | -1 | -1 | 1        | -1 | -1 | -          | hypothetical protein                         | - |
| "opCjV010000<br>0190" | CJE0215 | -   | -      | - | - | - | -1 | -1 | 1  | -1 | 1  | -1 | 0  | 1        | 1  | -1 | -          | phage repressor protein,<br>putative         | - |
| "opCjV010000<br>0686" | CJE0216 | -   | -      | - | - | - | 0  | -1 | 0  | -1 | 1  | 1  | -1 | 1        | 1  | -1 | -          | hypothetical protein                         | - |
| "opCjV010000<br>0915" | CJE0217 | -   | -      | - | - | - | 1  | -1 | 1  | 0  | 1  | -1 | -1 | 1        | 1  | -1 | -          | hypothetical protein                         | - |
| "opCjV010000<br>0231" | CJE0218 | -   | -      | - | - | - | 0  | -1 | 0  | -1 | 1  | 0  | -1 | 1        | 1  | -1 | -          | hypothetical protein                         | - |
| "opCjV010000<br>0743" | CJE0219 | -   | -      | - | - | - | 0  | 1  | 0  | -1 | 1  | -1 | 0  | 1        | 1  | -1 | -          | hypothetical protein                         | - |
| "opCjV010000<br>0516" | CJE0220 | dam | =      | - | - | - | 1  | 0  | 1  | -1 | 1  | -1 | -1 | 1        | 1  | -1 | -          | DNA adenine methylase                        | - |
| "opCjV010000<br>0891" | CJE0221 | -   | -      | - | - | - | 1  | 1  | -1 | -1 | 1  | -1 | -1 | 1        | 1  | -1 | -          | phage virion morphogenesis protein, putative | - |
| "opCjV010000<br>0215" | CJE0222 | -   | -      | - | - | - | 1  | 1  | -1 | -1 | 1  | -1 | -1 | 1        | 1  | -1 | -          | tail tape measure protein,<br>TP901 family   | - |
| "opCjV010000<br>0032" | CJE0223 | -   | -      | - | - | - | 1  | 1  | -1 | -1 | 1  | -1 | -1 | 1        | 1  | -1 | -          | hypothetical protein                         | - |
| "opCjV010000<br>0440" | CJE0224 | -   | -      | - | - | - | 1  | 1  | -1 | -1 | -1 | -1 | -1 | 1        | 1  | -1 | -          | hypothetical protein                         | - |
| "opCjV010000<br>0893" | CJE0225 | -   | -      | - | - | - | 1  | 0  | -1 | -1 | 1  | -1 | 0  | 1        | 1  | -1 | -          | hypothetical protein                         | - |
| "opCjV010000<br>0592" | CJE0226 | -   | -      | - | - | - | 1  | 0  | -1 | -1 | 1  | -1 | 1  | 1        | 1  | -1 | -          | phage major tail tube protein, putative      | - |
| "opCjV010000<br>0364" | CJE0227 | -   | -      | - | - | - | 1  | 0  | 1  | -1 | 1  | -1 | -1 | 1        | 1  | -1 | -          | major tail sheath protein                    | - |
| "opCjV010000<br>1020" | CJE0228 | -   | -      | - | - | - | 1  | 1  | 0  | -1 | 1  | -1 | -1 | 1        | 0  | -1 | -          | hypothetical protein                         | - |
| "opCjV010000<br>0959" | CJE0229 | -   | -      | - | - | - | 1  | 1  | 1  | -1 | -1 | -1 | -1 | 1        | 1  | -1 | -          | hypothetical protein                         | - |
| "opCjV010000<br>0217" | CJE0230 | -   | -      | - | - | - | 0  | 1  | 0  | -1 |    | -1 | -1 | 1        | 1  | -1 | -          | hypothetical protein                         | - |
| "opCjV010000<br>0593" | CJE0231 | -   | -      | - | - | - | 1  | 0  | 0  | -1 | 1  | -1 | 1  | 1        | -1 | -1 | -          | tail fiber protein H, putative               | - |
| "opCjV010000<br>0426" | CJE0232 | -   | -      | - | - | - | 1  | 0  | 1  | -1 | 1  | -1 | -1 | 1        | 1  | -1 | -          | phage tail protein, putative                 | - |

| "opCjV010000<br>0427" | CJE0233 | -   | - | - | - | - | 0  | 0  | 0 |    |    |    |    | -1 | 1 |    | - | baseplate assembly protein J, putative | - |
|-----------------------|---------|-----|---|---|---|---|----|----|---|----|----|----|----|----|---|----|---|----------------------------------------|---|
| "opCjV010000<br>0033" | CJE0234 | -   | - | - | - | - | 1  | 0  | 0 | -1 | 1  | -1 | -1 | 1  | 1 | 1  | - | baseplate assembly protein W, putative | - |
| "opCjV010000<br>0643" | CJE0235 | -   | - | - | - | - | 1  | 1  | 0 | -1 | 1  | -1 | -1 | 1  | 1 | -1 | - | hypothetical protein                   | - |
| "opCjV010000<br>0541" | CJE0236 | -   | - | - | - | - | 1  | 1  | 1 | -1 | 1  | -1 | -1 | 1  | 1 | -1 | - | baseplate assembly protein V, putative | - |
| "opCjV010000<br>0173" | CJE0237 | -   | - | - | - | - | 1  | 1  | 1 | -1 | 0  | -1 | -1 | 1  | 1 | -1 | - | hypothetical protein                   | - |
| "opCjV010000<br>0210" | CJE0238 | -   | - | - | - | - | 1  | 1  | 0 |    |    |    |    |    | 1 |    | - | hypothetical protein                   | - |
| "opCjV010000<br>0765" | CJE0239 | -   | - | - | - | - | 1  | 1  | 1 | -1 | 1  | -1 | -1 | 1  | 1 | -1 | - | lipoprotein, putative                  | - |
| "opCjV010000<br>0950" | CJE0240 | -   | - | - | - | - | 1  | 1  | 1 |    | -1 | 1  | -1 | 1  | 1 | -1 | - | hypothetical protein                   | - |
| "opCjV010000<br>0655" | CJE0241 | -   | - | - | - | - | 1  | 1  | 1 |    |    |    |    | -1 | 1 |    | - | hypothetical protein                   | - |
| "opCjV010000<br>0798" | CJE0242 | -   | - | - | - | - | 1  | 1  | 1 | -1 | 1  | -1 | -1 | 1  | 1 | -1 | - | hypothetical protein                   | - |
| "opCjV010000<br>0724" | CJE0243 | -   | - | - | - | - | 1  | 1  | 1 |    |    | 1  | 1  | -1 | 1 |    | - | hypothetical protein                   | - |
| "opCjV010000<br>0443" | CJE0244 | -   | - | - | - | - | 1  | 1  | 1 |    | -1 | 1  | -1 | 1  | 1 | -1 | - | Mu-like prophage I protein, putative   | - |
| "opCjV010000<br>0269" | CJE0245 | -   | - | - | - | - | 1  | 0  | 0 | -1 | 1  | -1 | -1 | 1  | 1 | -1 | - | hypothetical protein                   | - |
| "opCjV010000<br>0177" | CJE0246 | -   | - | - | - | - | 1  | 1  | 1 | -1 | -1 | 1  | 1  | 1  | 1 | -1 | - | hypothetical protein                   | - |
| "opCjV010000<br>0328" | CJE0247 | -   | - | - | - | - | 1  | 1  | 0 | -1 |    | 1  | 1  | 1  | 1 | -1 | - | hypothetical protein                   | - |
| "opCjV010000<br>1082" | CJE0248 | -   | - | - | - | - | 1  | 1  | 0 | 0  | 1  | 0  | -1 | 1  | 1 | -1 | - | hypothetical protein                   | - |
| "opCjV010000<br>0909" | CJE0249 | -   | - | - | - | - | 1  | 1  | 1 | 0  | 1  | 0  | -1 | 1  | 1 | -1 | - | phage uncharacterized protein          | - |
| "opCjV010000<br>0353" | CJE0250 | -   | - | - | - | - | 1  | 1  | 1 | -1 | -1 | 1  | -1 | -1 | 1 | 1  | - | hypothetical protein                   | - |
| "opCjV010000<br>0297" | CJE0251 | -   | - | - | - | - | -1 | 1  | 0 | -1 |    | 1  | 1  | -1 | 1 | 0  | - | prophage MuSo1, F protein, putative    | - |
| "opCjV010000<br>0585" | CJE0252 | -   | - | - | - | - | 1  | 1  | 1 |    | 1  | 1  | -1 | 1  | 1 | -1 | - | phage tail protein, putative           | - |
| "opCjV010000<br>0667" | CJE0253 | -   | - | - | - | - | 1  | 1  | 1 | -1 | 1  | -1 | -1 | 1  | 1 | -1 | - | tail protein X, putative               | - |
| "opCjV010000<br>0604" | CJE0254 | -   | - | - | - | - | -1 | 0  | 0 | -1 | 1  | -1 | -1 | 1  | 1 | -1 | - | tail protein D, putative               | - |
| "opCjV010000<br>0932" | CJE0255 | -   | - | - | - | - | 0  | 1  | 0 | -1 | 1  | -1 | -1 | 1  | 1 | 1  | - | DNA-binding protein, putative          | - |
| "opCjV010000<br>0957" | CJE0256 | dns | - | - | - | - | 1  | 1  | 0 |    |    |    | -1 | -1 | 1 |    | - | extracellular<br>deoxyribonuclease     | - |
| "opCjV010000<br>0211" | CJE0257 | -   | - | - | - | - | 1  | 1  | 0 | -1 | 1  | -1 | -1 | 1  | 1 | -1 | - | hypothetical protein                   | - |
| "opCjV010000<br>0654" | CJE0258 | -   | - | - | - | - | 0  | 1  | 0 | -1 | 1  | -1 | -1 | 1  | 1 | 0  | - | hypothetical protein                   | - |
| "opCjV010000<br>0071" | CJE0259 | -   | - | - | - | - | 1  | -1 | 0 | -1 | 1  | -1 | -1 | 1  | 0 | -1 | - | hypothetical protein                   | - |
| "opCjV010000          | CJE0260 | -   | - | - | - | - | 1  | 1  | 1 | -1 | 1  | -1 | -1 | 1  | 1 | 1  | - | hypothetical protein                   | - |

|                       |         |      | 1       | 1    | 1       |      | 1  |    |    |    |    |    |    | 1        | 1        | 1  | T                                                  | 1                                                |                                                      |
|-----------------------|---------|------|---------|------|---------|------|----|----|----|----|----|----|----|----------|----------|----|----------------------------------------------------|--------------------------------------------------|------------------------------------------------------|
| 0417"                 |         |      |         |      |         | ļ    |    |    |    |    |    |    | ļ  | <u> </u> | <u> </u> |    |                                                    |                                                  |                                                      |
| "opCjV010000<br>0431" | CJE0261 | -    | -       | -    | -       | -    | 1  | 1  | 1  | -1 | 1  | -1 | -1 | -1       | 1        | -1 | -                                                  | hypothetical protein                             | -                                                    |
| "opCjV010000<br>0185" | CJE0262 | -    | -       | -    | -       | -    | -1 | -1 | 0  | -1 | 1  | -1 | -1 | 1        | 1        | -1 | -                                                  | conserved hypothetical protein TIGR01671         | -                                                    |
| "opCjV010000<br>0791" | CJE0263 | -    | -       | -    | -       | -    | -1 | -1 | -1 | -1 | -1 | 0  | -1 | -1       | 1        | -1 | -                                                  | hypothetical protein                             | -                                                    |
| "opCjV010000<br>1084" | CJE0264 | -    | -       | -    | -       | -    | 1  | -1 | -1 | -1 | -1 | 1  | 0  | 1        | 1        | -1 | -                                                  | hypothetical protein                             | -                                                    |
| "opCjV010000<br>0344" | CJE0265 | -    | -       | -    | -       | -    | 1  | 1  | 1  | -1 | 1  | -1 | -1 | -1       | 1        | -1 | -                                                  | host-nuclease inhibitor<br>protein Gam, putative | -                                                    |
| "opCjV010000<br>0376" | CJE0266 | -    | -       | -    | -       | -    | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1        | 0        | -1 | -                                                  | hypothetical protein                             | -                                                    |
| "opCjV010000<br>0598" | CJE0267 | -    | -       | -    | =       | -    | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1        | 0        | -1 | -                                                  | hypothetical protein                             | -                                                    |
| "opCjV010000<br>0580" | CJE0268 | -    | -       | -    | -       | -    | -1 | -1 | -1 |    |    |    |    |          | -1       |    | -                                                  | hypothetical protein                             | -                                                    |
| "opCjV010000<br>0034" | CJE0269 | -    | -       | -    | -       | -    | 1  | 1  | 1  |    |    |    |    | -1       | 1        |    | -                                                  | bacteriophage DNA<br>transposition protein B,    | -                                                    |
| "opCjV010000<br>0708" | CJE0270 | -    | -       | -    | -       | -    | -1 | -1 | 0  | -1 | 1  | -1 | -1 | 1        | 0        | -1 | -                                                  | bacteriophage DNA<br>transposition protein A,    | -                                                    |
| "opCjV010000<br>1121" | CJE0271 | -    | -       | -    | -       | -    | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1        | -1       | -1 | -                                                  | hypothetical protein                             | -                                                    |
| "opCjV010000<br>0076" | CJE0272 | -    | -       | -    | -       | -    | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1        | -1       | -1 | -                                                  | transcriptional regulator, putative              | -                                                    |
| "opCjV010000<br>0632" | CJE0273 | -    | -       | -    | -       | -    | -1 | -1 | 0  | -1 | 1  | -1 | 1  | 1        | -1       | -1 | -                                                  | hypothetical protein                             | -                                                    |
| "opCcV010000<br>0484" | CJE0275 | argC | Cj0224  | argC | CCO0299 | argC | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0        | 1        | 1  | N-acetyl-gamma-glutamyl-<br>phosphate reductase    | N-acetyl-gamma-glutamyl-<br>phosphate reductase  | N-acetyl-gamma-glutamyl-<br>phosphate reductase      |
| "opCcV010000<br>1416" | CJE0276 | -    | Cj0225  | -    | CCO0300 | -    | 1  | 1  | 1  | -1 | -1 | 1  | 1  | -1       | 1        | -1 | putative acetyltransferase                         | acetyltransferase, GNAT family                   | probable acetyltransferase<br>Cj0225                 |
| "opCcV010000<br>0716" | CJE0277 | argB | Cj0226  | argB | CCO0301 | argB | 1  | -1 | 0  | 0  | 1  | 0  | -1 | 1        | -1       | 1  | acetylglutamate kinase                             | acetylglutamate kinase                           | acetylglutamate kinase                               |
| "opCcV010000<br>1452" | CJE0278 | argD | Cj0227  | argD | CCO0302 | -    | 1  | 1  | 0  | 1  | 1  | 0  | 1  | 0        | 1        | 1  | acetylornithine<br>aminotransferase                | acetylornithine<br>aminotransferase              | acetylornithine transaminase<br>Cj0227               |
| "CJ_10001433"         | CJE0279 | pcm  | Cj0228c | pcm  | CCO0303 | pcm  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1        | 1        | 1  | protein-L-isoaspartate O-<br>methyltransferase     | protein-L-isoaspartate O-<br>methyltransferase   | protein-L-isoaspartate O-<br>methyltransferase       |
| "CJ_10001434"         | CJE0280 | -    | Cj0229  | -    | CCO0304 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1        | 1        | 1  | putative acetyltransferase                         | transferase, hexapeptide repeat family           | carbonic anhydrase, family 3 VC0058                  |
| "CJ_10001435"         | CJE0281 | -    | Cj0230c | -    | CCO0305 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1        | 1        | 1  | hypothetical protein                               | nicotinate<br>phosphoribosyltransferase          | nicotinate<br>phosphoribosyltransferase,<br>putative |
| "CJ_10001436"         | CJE0282 | nrdB | Cj0231c | nrdB | CCO0306 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1        | 1        | 1  | ribonucleoside-diphosphate<br>reductase beta chain | ribonucleotide-diphosphate<br>reductase beta     | ribonucleoside-diphosphate<br>reductase, beta        |
| "CJ_10001437"         | CJE0283 | -    | Cj0232c | -    | CCO0307 | -    | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1        | 1        | 1  | putative integral membrane protein                 | hypothetical protein                             | probable integral membrane<br>protein Cj0232c        |
| "CJ_10001438"         | CJE0284 | pyrE | Cj0233c | pyrE | CCO0308 | pyrE | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1        | 1        | 1  | putative orotate<br>phosphoribosyltransferase      | orotate<br>phosphoribosyltransferase             | orotate<br>phosphoribosyltransferase                 |
| "CJ_10001449"         | CJE0285 | frr  | Cj0234c | frr  | CCO0309 | frr  | 0  | 1  | 1  | 1  | 0  | 1  | 1  | 1        | 1        | 1  | ribosome recycling factor                          | ribosome releasing factor                        | ribosome recycling factor                            |
| "CJ_10001450"         | CJE0286 | secG | Cj0235c | secG | CCO0310 | secG | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1        | 1        | 1  | putative protein-export<br>membrane protein        | protein-export membrane protein                  | protein translocation<br>protein, low temperature    |
| "CJ_10001451"         | CJE0287 | -    | Cj0236c | -    | CCO0311 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1        | 1        | 1  | putative integral membrane protein                 | hypothetical protein                             | probable integral membrane<br>protein Cj0236c        |
| "CJ_10001452"         | CJE0288 | cynT | Cj0237  | cynT | CCO0312 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1        | 1        | 1  | carbonic anyhydrase                                | carbonic anhydrase                               | Carbonic anhydrase                                   |
| "CJ_10001453"         | CJE0289 | -    | Cj0238  | -    | CCO0313 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1        | 1        | 1  | putative integral membrane                         | mechanosensitive ion                             | probable integral membrane                           |

|                       |         |      | 1       | 1            | 1       | 1    | 1  |    |    |    |    |    | 1  |    |   | 1  | protein                                            | channel family protein                     | protein Cj0238                                |
|-----------------------|---------|------|---------|--------------|---------|------|----|----|----|----|----|----|----|----|---|----|----------------------------------------------------|--------------------------------------------|-----------------------------------------------|
| "CJ 10001454"         | CJE0290 | -    | Ci0239c | <del> </del> | CCO0314 | +    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1  | nifU protein homolog                               | NifU family protein                        | nifU protein homolog                          |
|                       |         |      | 3       |              |         |      | 1  |    |    |    | 1  |    | 1  | 1  | 1 | 1  |                                                    | TVITO famility protein                     | Cj0239c                                       |
| "CJ_10001455"         | CJE0291 | -    | Cj0240c | -            | CCO0315 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1  | putative aminotransferase<br>(nifS protein         | cysteine desulfurase                       | cysteine desulfurase                          |
| "CJ_10001456"         | CJE0292 | -    | Cj0241c | -            | -       | -    | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1  | putative iron-binding<br>protein                   | pseudogene                                 | -                                             |
| "CJ_10001457"         | CJE0293 | -    | Cj0243c | -            | CCO0316 | -    | 0  | 1  | 0  | 1  | 1  | 1  | 0  | 1  | 1 | 1  | hypothetical protein                               | hypothetical protein                       | conserved hypothetical protein                |
| "CJ_10001458"         | CJE0294 | rpmI | Cj0244  | rpmI         | CCO0317 | rpmI | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1  | 50s ribosomal protein L35                          | 50S ribosomal protein L35                  | ribosomal protein L35                         |
| "CJ_10001469"         | CJE0295 | rplT | Cj0245  | rplT         | CCO0318 | rplT | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1  | 50S ribosomal protein L20                          | 50S ribosomal protein L20                  | ribosomal protein L20                         |
| "CJ_10001470"         | CJE0296 | -    | Cj0246c | -            | -       | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 0  | 1 | 1  | putative MCP-domain<br>signal transduction protein | hypothetical protein                       | -                                             |
| "CJ_10001471"         | CJE0297 | -    | Cj0247c | -            | -       | -    | 0  | 1  | 0  | 1  | 1  | 1  | -1 | 1  | 1 | 0  | hypothetical protein                               | pseudogene                                 | -                                             |
| "CJ_10001472"         | CJE0298 | -    | Cj0248  | -            | CCO0319 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1  | hypothetical protein                               | hypothetical protein                       | conserved hypothetical protein                |
| "CJ_10001474"         | CJE0299 | -    | Cj0249  | -            | CCO0320 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1  | hypothetical protein                               | hypothetical protein                       | conserved hypothetical protein                |
| "CJ_10001476"         | CJE0300 | -    | Cj0250c | -            | CCO0255 | proP | 0  | 0  | 0  | 1  | 1  | 1  | 0  | 0  | 1 | 1  | putative transmembrane<br>transport protein        | major facilitator<br>superfamily protein   | proline/betaine transporter<br>(proP)         |
| "CJ 10001477"         | CJE0301 | -    | Ci0251c | -            | CCO0323 | -    | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 1 | 1  | Highly acidic protein                              | hypothetical protein                       | hypothetical protein                          |
| "CJ 10001479"         | CJE0302 | moaC | Cj0252  | moaC         | CCO0324 | moaC | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 1 | 1  | molybdenum cofactor                                | molybdenum cofactor                        | molybdenum cofactor                           |
| _                     |         |      | ,       |              |         |      |    |    |    |    |    |    |    |    |   |    | biosynthesis protein C                             | biosynthesis protein C                     | biosynthesis protein C                        |
| "CJ_10001480"         | CJE0303 | -    | Cj0253  | -            | CCO0325 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1  | hypothetical protein                               | hypothetical protein                       | conserved hypothetical protein                |
| "CJ_10001482"         | CJE0304 | -    | Cj0254  | -            | CCO0326 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1  | hypothetical protein                               | hypothetical protein                       | conserved hypothetical protein                |
| "CJ_10001498"         | CJE0305 | xth  | Cj0255c | -            | CCO0327 | xth  | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1 | 1  | exodeoxyribonuclease                               | exodeoxyribonuclease III                   | exodeoxyribonuclease III                      |
| "CJ_10001499"         | CJE0306 | -    | Cj0256  | -            | CCO0328 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1  | putative integral membrane protein                 | sulfatase, putative                        | membrane protein, putative                    |
| "CJ_10001500"         | CJE0307 | dgkA | Cj0257  | dgkA         | CCO0329 | -    | -1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1  | diacylglycerol kinase                              | diacylglycerol kinase                      | diacylglycerol kinase<br>Cj0257               |
| "CJ_10001501"         | CJE0308 |      | Cj0258  | -            | CCO0330 | -    | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 1 | 1  | Putative helix turn helix<br>motif protein         | hypothetical protein                       | conserved hypothetical protein                |
| "CJ_10001503"         | CJE0309 | pyrC | Cj0259  | pyrC         | CCO0331 | pyrC | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1 | 1  | dihydroorotase                                     | dihydroorotase                             | dihydroorotase,<br>homodimeric type           |
| "opCjV010000<br>0803" | CJE0310 | -    | -       | -            | -       | -    | -1 | -1 | -1 | 1  | 1  | 0  | -1 | 1  | 1 | 1  | -                                                  | D12 class N6 adenine-<br>specific DNA      | -                                             |
| "CJ_10001506"         | CJE0311 | -    | Cj0261c | -            | CCO0333 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1  | hypothetical protein                               | hypothetical protein                       | conserved hypothetical protein                |
| "CJ_10001510"         | CJE0313 | -    | Cj0263  | -            | CCO0282 | bisZ | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | -1 | putative integral membrane protein                 | zinc transporter ZupT                      | biotin sulfoxide reductase<br>VC1950          |
| "CJ_10000543"         | CJE0314 | -    | Cj0144  | -            | CCO1733 | -    | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 1 | 0  | methyl-accepting                                   | methyl-accepting                           | methyl-accepting                              |
|                       |         |      |         |              |         |      |    |    |    |    |    |    |    |    |   |    | chemotaxis signal transduction                     | chemotaxis protein                         | chemotaxis protein (tlpA)                     |
| "CJ_10001535"         | CJE0315 | -    | Cj0266c | -            | CCO0335 | -    | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1  | 1 | 1  | putative integral membrane protein                 | hypothetical protein                       | probable integral membrane<br>protein Cj0266c |
| "CJ_10001536"         | CJE0316 | -    | Cj0267c | -            | CCO0336 | -    | 1  | 1  | 0  | 1  | 0  | 1  | 1  | 1  | 1 | 1  | putative integral membrane protein                 | hypothetical protein                       | probable integral membrane<br>protein Cj0267c |
| "CJ_10001537"         | CJE0317 | -    | Cj0268c | -            | CCO0337 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1  | putative transmembrane<br>protein                  | SPFH domain / Band 7<br>family protein     | probable transmembrane<br>protein Cj0268c     |
| "CJ_10001538"         | CJE0318 | ilvE | Cj0269c | ilvE         | CCO0338 | ilvE | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 1 | 1  | branched-chain amino acid aminotransferase         | branched-chain amino acid aminotransferase | branched-chain amino acid aminotransferase    |
| "CJ_10001539"         | CJE0319 | -    | Cj0270  | -            | CCO0339 | -    | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 1 | 1  | Possible isomerase                                 | 4-oxalocrotonate                           | 4-oxalocrotonate                              |
| İ                     |         |      |         |              |         | 1    |    |    |    |    |    |    |    | 1  |   | 1  |                                                    | tautomerase family protein                 | tautomerase (dmpI)-related                    |

| "CJ_10001541" | CJE0320 | -    | Cj0271  | -    | CCO0340 | -    | 1  | 1  | 1  | 1  | 1  | 1  | -1 | -1 | -1 | 1  | bacterioferritin comigratory<br>protein homolog   | antioxidant, AhpC/Tsa<br>family                       | bacterioferritin comigratory protein homolog          |
|---------------|---------|------|---------|------|---------|------|----|----|----|----|----|----|----|----|----|----|---------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| "CJ_10001543" | CJE0321 | -    | Cj0272  | -    | CCO0341 | -    | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                              | hypothetical protein                                  | conserved hypothetical protein                        |
| "CJ_10001545" | CJE0322 | fabZ | Cj0273  | fabZ | CCO0342 | fabZ | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | (3R)-hydroxymyristoyl-<br>[acyl carrier protein]  | (3R)-hydroxymyristoyl<br>ACP dehydratase              | beta-hydroxyacyl-(acyl-<br>carrier-protein)           |
| "CJ_10001547" | CJE0323 | lpxA | Cj0274  | lpxA | CCO0343 | lpxA | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 1  | acyl-[acyl-carrier-protein]<br>UDP-N-             | UDP-N-acetylglucosamine acyltransferase               | acyl-[acyl-carrier-protein]<br>UDP-N-                 |
| "CJ_10001563" | CJE0324 | clpX | Cj0275  | clpX | CCO0344 | clpX | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | ATP-dependent clp protease<br>ATP-binding subunit | ATP-dependent protease<br>ATP-binding subunit         | ATP-dependent Clp<br>protease, ATP-binding<br>subunit |
| "CJ_10001564" | CJE0325 | mreB | Cj0276  | mreB | CCO0345 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | homolog of E. coli rod<br>shape-determining       | cell shape-determining<br>protein MreB                | rod shape-determining<br>protein (mreB)               |
| "CJ_10001565" | CJE0326 | -    | Cj0277  | -    | CCO0346 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative periplasmic protein                      | rod shape-determining<br>protein MreC                 | rod shape-determining<br>protein (mreC), putative     |
| "CJ_10001566" | CJE0327 | carB | Cj0279  | carB | CCO0357 | carB | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | carbamoyl-phosphate<br>synthase large chain       | carbamoyl-phosphate<br>synthase large subunit         | carbamoyl-phosphate<br>synthase, large subunit        |
| "CJ_10001567" | CJE0328 | -    | Cj0280  | -    | CCO0358 | -    | -1 | -1 | -1 | -1 | 1  | -1 | 1  | 1  | 1  | -1 | hypothetical protein                              | hypothetical protein                                  | conserved hypothetical protein                        |
| "CJ 10001569" | CJE0329 | tal  | Ci0281c | tal  | CCO0359 | tal  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative transaldolase                            | transaldolase                                         | transaldolase                                         |
| "CJ_10001571" | CJE0330 | serB | Cj0282c | serB | CCO0360 | serB | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative phosphoserine<br>phosphatase             | phosphoserine phosphatase<br>SerB                     | phosphoserine phosphatase<br>SerB                     |
| "CJ_10001572" | CJE0331 | cheW | Cj0283c | cheW | CCO0361 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | chemotaxis protein                                | purine-binding chemotaxis<br>protein CheW             | chemotaxis protein Cj0283c                            |
| "CJ_10001574" | CJE0332 | cheA | Cj0284c | cheA | CCO0362 | cheA | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | chemotaxis histidine kinase                       | chemotaxis protein CheA                               | histidine kinase (cheA)                               |
| "CJ 10001576" | CJE0333 | cheV | Cj0285c | cheV | CCO0363 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | chemotaxis protein                                | chemotaxis protein CheV                               | chemotaxis protein (cheV)                             |
| "CJ_10000002" | CJE0334 | -    | Cj0286c | -    | CCO0364 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                              | hypothetical protein                                  | conserved hypothetical protein                        |
| "CJ_10000004" | CJE0335 | greA | Cj0287c | greA | CCO0365 | -    | -1 | -1 | 0  | 1  | 1  | 1  | 1  | -1 | -1 | -1 | transcription elongation<br>factor                | transcription elongation<br>factor GreA               | transcription elongation<br>factor Cj0287c            |
| "CJ_10000006" | CJE0336 | lpxB | Cj0288c | lpxB | CCO0366 | lpxB | 0  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | -1 | 1  | lipid-A-disaccharide<br>synthase                  | lipid-A-disaccharide<br>synthase                      | lipid-A-disaccharide<br>synthase                      |
| "CJ_10000008" | CJE0337 | -    | Cj0289c | peb3 | -       | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | major antigenic peptide<br>PEB3                   | major antigenic peptide<br>PEB3                       | -                                                     |
| "CJ_10000009" | CJE0338 | -    | Cj0291c | -    | CCO0371 | -    | 1  | 0  | 0  | 1  | 1  | -1 | 1  | 1  | 1  | -1 | glycerol-3-phosphate<br>transporter (possible     | pseudogene                                            | phosphoglycerate<br>transporter protein pgtP          |
| "CJ_10000010" | CJE0339 | -    | Cj0291c | -    | CCO0372 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | glycerol-3-phosphate<br>transporter (possible     | pseudogene                                            | phosphoglycerate<br>transporter protein pgtP          |
| "CJ_10000011" | CJE0340 | -    | Cj0291c | -    | CCO0373 | -    | 1  | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | glycerol-3-phosphate<br>transporter (possible     | pseudogene                                            | phosphoglycerate<br>transporter protein pgtP          |
| "CJ_10000012" | CJE0341 | -    | Cj0291c | -    | CCO0374 | -    | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | glycerol-3-phosphate<br>transporter (possible     | pseudogene                                            | phosphoglycerate<br>transporter protein pgtP          |
| "CJ_10000030" | CJE0342 | panC | Сј0297с | panC | CCO0380 | panC | 0  | 0  | -1 | 1  | 1  | -1 | -1 | 1  | 1  | 1  | pantoatebeta-alanine<br>ligase                    | pantoatebeta-alanine<br>ligase                        | pantoatebeta-alanine<br>ligase                        |
| "CJ_10000032" | CJE0343 | panB | Cj0298c | panB | CCO0381 | panB | 1  | 1  | -1 | 1  | 1  | -1 | -1 | 1  | 1  | 1  | 3-methyl-2-oxobutanoate                           | 3-methyl-2-oxobutanoate                               | 3-methyl-2-oxobutanoate                               |
| "CJ_10000034" | CJE0344 | -    | Cj0299  | -    | -       | -    | 1  | 1  |    | 1  | 1  | -1 |    | 1  | 1  | 1  | putative periplasmic beta-<br>lactamase           | beta-lactamase                                        | -                                                     |
| "CJ_10000035" | CJE0345 | modC | Cj0300c | modC | CCO0385 | modC | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | putative molybdenum<br>transport ATP-binding      | molybdenum ABC<br>transporter, ATP-binding<br>protein | molybdenum ABC<br>transporter, ATP-binding<br>protein |
| "CJ_10000036" | CJE0346 | modB | Cj0301c | modB | CCO0386 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | putative molybdenum<br>transport system permease  | molybdenum ABC<br>transporter, permease<br>protein    | molybdenum ABC<br>transporter, permease<br>protein    |
| "CJ_10000038" | CJE0347 | -    | Cj0302c | -    | CCO0387 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | hypothetical protein                              | TOBE domain protein                                   | molybdenum-pterin binding domain protein,             |

| "CJ_10000039"         | CJE0348 | modA  | Cj0303c | modA  | CCO0388 | modA  | 1  | 1  | 1 | 1 | 1  | 1 | -1 | -1 | -1 | 1  | putative molybdate-binding                            | molybdenum ABC                                            | molybdenum ABC                                  |
|-----------------------|---------|-------|---------|-------|---------|-------|----|----|---|---|----|---|----|----|----|----|-------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------|
|                       |         |       |         |       |         |       |    |    |   |   |    |   |    |    |    |    | lipoprotein                                           | transporter, periplasmic                                  | transporter, periplasmic                        |
| "CJ_10000040"         | CJE0349 | -     | Cj0304c | bioC  | CCO0389 | -     | 1  | 1  | 1 | 1 | -1 | 1 | 1  | -1 | 1  | 1  | putative biotin synthesis<br>protein                  | biotin biosynthesis protein<br>BioC                       | biotin synthesis protein<br>BioC, putative      |
| "CJ_10000042"         | CJE0350 | -     | Cj0305c | -     | CCO0390 | -     | 0  | 1  | 1 | 1 | -1 | 1 | 1  | 0  | 1  | 1  | hypothetical protein                                  | hypothetical protein                                      | Protein of unknown<br>function (DUF452)         |
| "CJ_10000049"         | CJE0351 | bioF  | Cj0306c | bioF  | CCO0391 | -     | 0  | 1  | 1 | 1 | -1 | 1 | 1  | -1 | 1  | -1 | 8-amino-7-oxononanoate synthase                       | 8-amino-7-oxononanoate synthase                           | 8-amino-7-oxononanoate synthase                 |
| "CJ_10000051"         | CJE0352 | bioA  | Cj0307  | bioA  | CCO0393 | bioA  | -1 | 1  | 1 | 1 | 1  | 1 | 1  | 1  | 0  | 1  | adenosylmethionine-8-                                 | adenosylmethionine8-                                      | adenosylmethionine8-                            |
|                       |         |       | _       |       |         |       |    |    |   |   |    |   |    |    |    |    | amino-7-oxononanoate                                  | amino-7-oxononanoate                                      | amino-7-oxononanoate                            |
| "CJ_10000053"         | CJE0353 | bioD  | Cj0308c | bioD  | CCO0394 | -     | -1 | 1  | 0 | 1 | 1  | 1 | 1  | 1  | 1  | 1  | putative dethiobiotin<br>synthetase                   | dethiobiotin synthetase                                   | probable dethiobiotin<br>synthase Cj0308c       |
| "CJ_10000055"         | CJE0354 | -     | Сј0309с | -     | CCO0395 | -     | 1  | 1  | 0 | 1 | 1  | 1 | 1  | 0  | 1  | 1  | putative efflux protein                               | multidrug resistance<br>protein, SMR family               | probable efflux protein<br>Ci0309c              |
| "CJ_10000056"         | CJE0355 | -     | Cj0310c | -     | CCO0396 | -     | -1 | 1  | 1 | 1 | 0  | 1 | 1  | 1  | 1  | 1  | putative efflux protein                               | multidrug resistance<br>protein, SMR family               | probable efflux protein<br>Ci0310c              |
| "CJ_10000057"         | CJE0356 | rplY  | Cj0311  | -     | CCO0397 | -     | 1  | 0  | 1 | 1 | 1  | 1 | 1  | 1  | 1  | 1  | ctc protein homolog                                   | 50S ribosomal protein L25                                 | ribosomal 5S rRNA E-loop<br>binding protein     |
| "CJ 10000058"         | CJE0357 | pth   | Ci0312  | pth   | CCO0398 | pth   | 1  | 1  | 1 | 1 | 1  | 1 | 1  | 1  | 1  | 1  | peptidyl-tRNA hydrolase                               | peptidyl-tRNA hydrolase                                   | peptidyl-tRNA hydrolase                         |
| "CJ_10000059"         | CJE0358 | -     | Cj0313  | -     | CCO0399 | -     | 0  | 1  | 1 | 1 | 1  | 1 | 1  | 0  | 1  | 1  | putative integral membrane protein                    | hypothetical protein                                      | probable integral membrane<br>protein Cj0313    |
| "CJ 10000060"         | CJE0359 | lysA  | Cj0314  | lysA  | CCO0400 | lysA  | 0  | 1  | 1 | 1 | 1  | 1 | 1  | 1  | 1  | 1  | diaminopimelate                                       | diaminopimelate                                           | diaminopimelate                                 |
| CU_10000000           | 002000  | 1,511 | Cjosi . | 1,511 | 0000.00 | 1,511 |    | 1  |   | 1 | 1  |   | 1  | 1  |    |    | decarboxylase                                         | decarboxylase                                             | decarboxylase                                   |
| "CJ_10000061"         | CJE0360 | -     | Cj0315  | -     | CCO0401 | -     | 0  | 1  | 1 | 1 | 0  | 1 | 1  | 0  | 1  | 1  | hypothetical protein                                  | HAD-superfamily<br>hydrolase, subfamily IIA               | HAD-superfamily<br>hydrolase, subfamily IIA     |
| "CJ 10000069"         | CJE0361 | pheA  | Cj0316  | pheA  | CCO0402 | -     | 0  | 1  | 1 | 1 | 1  | 1 | 1  | 1  | 1  | 1  | chorismate                                            | chorismate                                                | chorismate mutase /                             |
| C3_1000000)           | CJE0301 | pheri | CJ0510  | phori | 2200102 |       |    |    | 1 | 1 |    | • |    |    |    | •  | mutase\prephenate<br>dehydratase                      | mutase/prephenate<br>dehydratase                          | prephenate dehydratase                          |
| "CJ 10000071"         | CJE0362 | hisC  | Ci0317  | hisC  | CCO0403 | hisC  | 1  | 1  | 1 | 1 | 1  | 1 | 1  | 1  | 1  | 1  | probable histidinol-                                  | histidinol-phosphate                                      | histidinol-phosphate                            |
|                       |         |       | 3       |       |         |       |    |    |   |   |    |   |    |    |    |    | phosphate aminotransferase                            | aminotransferase                                          | aminotransferase                                |
| "CJ_10000073"         | CJE0363 | fliF  | Cj0318  | fliF  | CCO0404 | fliF  | 0  | -1 | 1 | 1 | 1  | 1 | 1  | 1  | -1 | 1  | flagellar M-ring protein                              | flagellar M-ring protein                                  | flagellar M-ring protein FliF                   |
| "CJ 10000075"         | CJE0364 | fliG  | Ci0319  | fliG  | CCO0405 | fliG  | 1  | 0  | 1 | 1 | 1  | 1 | 1  | 1  | 0  | 1  | flagellar motor switch                                | flagellar motor protein                                   | flagellar motor switch                          |
| _                     |         |       | 3       |       |         |       |    |    |   |   |    |   |    |    |    |    | protein                                               |                                                           | protein FliG                                    |
| "CJ_10000076"         | CJE0365 | -     | Cj0320  | fliH  | CCO0406 | fliH  | 0  | 1  | 1 | 1 | 1  | 1 | 1  | 1  | -1 | 1  | putative flagellar assembly protein                   | flagellar assembly protein                                | flagellar export protein<br>(fliH)              |
| "CJ_10000077"         | CJE0366 | dxs   | Cj0321  | dxs   | CCO0407 | dxs   | 1  | 1  | 1 | 1 | 1  | 1 | 1  | 1  | 1  | 1  | 1-deoxyxylulose-5-<br>phosphate synthase              | 1-deoxy-D-xylulose-5-<br>phosphate synthase               | deoxyxylulose-5-phosphate<br>synthase           |
| "CJ_10000078"         | CJE0367 | -     | Cj0322  | perR  | CCO0408 | furR1 | 1  | -1 | 1 | 1 | 1  | 1 | 1  | 1  | 0  | 1  | peroxide stress regulator                             | transcriptional regulator, Fur family                     | transcriptional regulator,<br>Fur family        |
| "CJ_10000079"         | CJE0368 | -     | Cj0323  | -     | CCO0409 | -     | 0  | -1 | 0 | 1 | 1  | 1 | 1  | 1  | -1 | 1  | hypothetical protein                                  | hypothetical protein                                      | conserved hypothetical                          |
| "CJ_10000080"         | CJE0369 | ubiE  | Cj0324  | ubiE  | CCO0410 | ubiE  | 1  | 1  | 1 | 1 | 1  | 1 | 1  | 1  | 1  | 1  | ubiquinone\menaquinone<br>biosynthesis                | ubiquinone/menaquinone<br>biosynthesis                    | gerC2 protein (gerC2)                           |
| "CJ_10000081"         | CJE0370 | xseA  | Cj0325  | xseA  | CCO0414 | xseA  | 1  | 1  | 1 | 1 | 1  | 1 | 1  | 1  | 1  | 1  | exodeoxyribonuclease VII<br>large subunit             | exodeoxyribonuclease VII,<br>large subunit                | exodeoxyribonuclease VII,<br>large subunit      |
| "CJ_10000619"         | CJE0371 | serC  | Cj0326  | serC  | CCO0415 | serC  | 1  | 1  | 1 | 1 | 1  | 1 | 1  | 1  | 1  | 1  | phosphoserine<br>aminotransferase                     | phosphoserine<br>aminotransferase                         | phosphoserine<br>aminotransferase               |
| "CJ_10000620"         | CJE0372 | -     | Cj0327  | -     | -       | -     | 1  | 1  | 1 | 1 | 1  | 1 | 1  | 1  | 1  | 1  | hypothetical protein                                  | endoribonuclease L-PSP                                    | -                                               |
| "CJ_10000621"         | CJE0373 | fabH  | Cj0328c | fabH  | CCO0416 | fabH  | 1  | 1  | 1 | 1 | 0  | 1 | 1  | 1  | 1  | 1  | 3-oxoacyl-[acyl-carrier-<br>protein] synthase         | family protein  3-oxoacyl-(acyl carrier protein) synthase | beta-ketoacyl-acp synthase                      |
| "CJ_10000622"         | CJE0374 | plsX  | Cj0329c | plsX  | CCO0417 | plsX  | 1  | 1  | 1 | 1 | 1  | 1 | 1  | 1  | 1  | 1  | putative fatty                                        | fatty acid/phospholipid                                   | fatty acid/phospholipid                         |
| "omCoV010000          | CJE0375 |       | C:0220- |       | CCO0418 |       | 1  | 1  | 1 | 1 | 1  | 1 | 1  | 1  | 1  | 1  | acid\phospholipid synthesis 50S ribosomal protein L32 | synthesis protein                                         | synthesis protein PlsX<br>ribosomal protein L32 |
| "opCcV010000<br>1244" | CJEU3/3 | rpmF  | Cj0330c | rpmF  | CCO0418 | rpmF  | 1  | 1  | 1 | 1 | 1  | 1 | 1  | 1  | 1  | 1  | 505 Hoosomal protein L32                              | 50S ribosomal protein L32                                 | 1100SOIHai protein L32                          |

| "CJ_10000623"         | CJE0376 | -    | Cj0331c | -    | CCO0419 | -    | 1  | 1  |    | 1  | 1 |    | 0  |    | 1  | -1 | hypothetical protein                               | hypothetical protein                               | conserved hypothetical protein                     |
|-----------------------|---------|------|---------|------|---------|------|----|----|----|----|---|----|----|----|----|----|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| "CJ_10000624"         | CJE0377 | ndk  | Cj0332c | ndk  | CCO0420 | -    | 1  | 1  | -1 | -1 | 1 | 1  | 1  | -1 | 1  | 1  | nucleoside diphosphate<br>kinase                   | nucleoside diphosphate<br>kinase                   | nucleoside diphosphate<br>kinase Cj0332c           |
| "opCcV010000<br>0143" | CJE0378 | -    | Cj0333c | fdxA | CCO0421 | -    | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | ferredoxin                                         | ferredoxin, 4Fe-4S                                 | ferredoxin                                         |
| "CJ_10000627"         | CJE0379 | -    | Cj0334  | ahpC | CCO0422 | -    | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | alkyl hydroperoxide reductase                      | antioxidant, AhpC/Tsa<br>family                    | antioxidant, AhpC/Tsa<br>family VC0731             |
| "CJ_10000629"         | CJE0380 | flhB | Cj0335  | flhB | CCO0423 | flhB | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | flagellar biosynthetic<br>protein                  | flagellar biosynthetic<br>protein FlhB             | flagellar biosynthetic<br>protein FlhB             |
| "CJ_10000647"         | CJE0381 | -    | Cj0336c | motB | CCO0424 | -    | 1  | 1  | 0  | 1  | 1 | 1  | 1  | 0  | 1  | 1  | putative flagellar motor protein                   | flagellar motor protein                            | chemotaxis motB protein, putative                  |
| "CJ_10000648"         | CJE0382 | -    | Сј0337с | motA | CCO0425 | -    | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | putative flagellar motor<br>proton channel         | flagellar motor protein                            | probable flagellar motor<br>proton channel Cj0337c |
| "CJ_10000649"         | CJE0383 | polA | Cj0338c | polA | CCO0426 | polA | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | DNA polymerase I                                   | DNA polymerase I                                   | DNA polymerase I (polA)                            |
| "CJ_10000650"         | CJE0384 | -    | Cj0339  | -    | =       | -    | 0  | 1  | 1  | 1  | 1 | 1  | 0  | 1  | 1  | 1  | putative transmembrane<br>transport protein        | major facilitator family transporter               | -                                                  |
| "CJ_10000651"         | CJE0385 | -    | Cj0340  | -    | -       | -    | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | putative nucleoside<br>hydrolase                   | inosine-uridine preferring<br>nucleoside hydrolase | -                                                  |
| "CJ_10000652"         | CJE0386 | -    | Cj0341c | -    | CCO0427 | -    | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | putative integral membrane protein                 | hypothetical protein                               | membrane protein, putative                         |
| "opCjV010000<br>0999" | CJE0387 | -    | -       | -    | =       | -    | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1  | -1 | -1 | -                                                  | hypothetical protein                               | -                                                  |
| "opCjV010000<br>0510" | CJE0388 | -    | -       | -    | -       | -    | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1  | -1 | -1 | -                                                  | hypothetical protein                               | -                                                  |
| "opCjV010000<br>0162" | CJE0389 | -    | -       | -    | -       | -    | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1  | -1 | -1 | -                                                  | hypothetical protein                               | -                                                  |
| "CJ_10000653"         | CJE0390 | uvrA | Cj0342c | uvrA | CCO0431 | uvrA | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | excinuclease ABC subunit A                         | excinuclease ABC subunit A                         | excinuclease ABC, A subunit                        |
| "CJ_10000655"         | CJE0391 | -    | Cj0343c | -    | CCO0432 | -    | 1  | 0  | 0  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | putative integral membrane protein                 | hypothetical protein                               | conserved hypothetical integral membrane           |
| "opCjjV010000<br>041" | CJE0392 | -    | Cj0344  | -    | -       | -    | 0  | 0  | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | hypothetical protein                               | hypothetical protein                               | -                                                  |
| "opCjV010000<br>0687" | CJE0393 | -    | -       | -    | -       | -    | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | -                                                  | hypothetical protein                               | -                                                  |
| "CJ_10000658"         | CJE0394 | trpE | Cj0345  | trpE | CCO0433 | -    | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | putative anthranilate<br>synthase component I      | anthranilate synthase<br>component I               | anthranilate synthase component I                  |
| "CJ_10000676"         | CJE0395 | trpD | Cj0346  | trpD | CCO0434 | -    | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | anthranilate synthase component II                 | anthranilate synthase<br>component II              | anthranilate phosphoribosyltransferase,            |
| "CJ_10000677"         | CJE0396 | trpF | Cj0347  | trpF | CCO0435 | trpF | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | N-(5'-<br>phosphoribosyl)anthranilate<br>isomerase | N-<br>(5'phosphoribosyl)anthranil<br>ate isomerase | N-<br>(5'phosphoribosyl)anthranil<br>ate isomerase |
| "CJ_10000678"         | CJE0397 | trpB | Cj0348  | trpB | CCO0436 | trpB | 0  | 0  | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | tryptophan synthase beta<br>chain                  | tryptophan synthase subunit<br>beta                | tryptophan synthase, beta<br>subunit               |
| "CJ_10000679"         | CJE0398 | trpA | Cj0349  | trpA | CCO0437 | trpA | 1  | 0  | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | tryptophan synthase alpha<br>chain                 | tryptophan synthase, alpha<br>subunit              | tryptophan synthase, alpha<br>subunit              |
| "CJ_10000680"         | CJE0399 | -    | Cj0350  | -    | CCO0438 | -    | 0  | 0  | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | hypothetical protein                               | hypothetical protein                               | conserved hypothetical protein                     |
| "CJ_10000681"         | CJE0400 | fliN | Cj0351  | fliN | CCO0439 | -    | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | flagellar motor switch<br>protein                  | flagellar motor switch<br>protein                  | flagellar switch protein                           |
| "CJ_10000682"         | CJE0401 | -    | Cj0352  | -    | CCO0440 | -    | 1  | 0  | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | putative transmembrane<br>protein                  | hypothetical protein                               | probable transmembrane<br>protein Cj0352           |
| "CJ_10000684"         | CJE0402 | -    | Cj0353c | -    | CCO0441 | gppA | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | phosphatase                                        | phosphatase, Ppx/GppA<br>family                    | guanosine pentaphosphate<br>phosphohydrolase       |
| "CJ_10000686"         | CJE0403 | -    | Cj0354c | fdxB | CCO0442 | -    | 0  | 0  | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | putative ferredoxin                                | ferredoxin, 4Fe-4S                                 | ferredoxin                                         |

| C_10000785   C 800085   - C   C 8058   - C   C 00445   - C    | "CJ_10000688" | CJE0404 | -              | Cj0355c | -    | CCO0443 | -    | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | two-component regulator                    | DNA-binding response           | response regulator                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------|----------------|---------|------|---------|------|---|---|---|----|----|----|----|----|----|----|--------------------------------------------|--------------------------------|------------------------------------------------|
| Control   Cont  | "CI 10000705" | CIE0405 | -              | C:0256a |      | CC00444 | fo1D | 0 | 0 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hymothetical mustain                       | regulator                      | dibriduon contonin aldalaca                    |
| CEMONOPOON   CIPSART   COMMAN   COMMA  |               |         | <del>  -</del> |         | -    |         | 101D |   |   | 0 | 1  | 1  | 1  | 1  | 1  | 1  | 1  |                                            |                                |                                                |
| CISAMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |         | ļ -            | ,       |      |         | _    |   |   | U | 1  | 1  | 1  | 1  | 1  | 1  | 1  | protein                                    | 1                              | protein TIGR00023                              |
| Forestation   Circums     | "CJ_10000707" | CJE0407 | -              | Cj0358  | -    | CCO0446 | mauG | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  |                                            | 3                              | 1 -                                            |
| Colorabia   Colo  |               | CJE0408 | -              | -       | -    | -       | -    | 1 | 1 | 0 | -1 | -1 | -1 | 1  | 1  | -1 | 1  | -                                          | 1                              | -                                              |
| Colorofic   Colo  |               |         |                |         |      |         |      |   |   |   |    |    |    |    |    |    |    |                                            |                                |                                                |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | "CJ_10000708" | CJE0409 | glmM           | Cj0360  | -    | CCO0447 | -    | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  |                                            |                                |                                                |
| Coloron   Color   Co  | "CJ_10000709" | CJE0410 | glmM           | Cj0361  | -    | CCO0448 | mrsA | 0 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  |                                            |                                | PHOSPHOSUGAR                                   |
| C1-0000712"   C1E0112   C1E0112   C1G012   C1G  | "CJ_10000710" | CJE0411 | glmM           | Cj0362  | -    | CCO0449 | mrsA | 0 | 1 | 1 | 1  | 1  | 1  | 1  | 0  | 1  | 1  |                                            |                                |                                                |
| CI_0000714*   CIB0413   -     Cig0364   -   CCO0453   -     0   1   0   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | "CJ_10000712" | CJE0412 | -              | Cj0363c | -    | CCO0452 | -    | 1 | 1 | 0 | 1  | 1  | 1  | 1  | -1 | 1  | 1  |                                            | coproporphyrinogen III         | oxygen-independent                             |
| Procedure   Proc  | "CI_10000714" | CIE0413 | <u> </u>       | Ci0364  | _    | CCO0453 | _    | 0 | 1 | 0 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                       |                                |                                                |
| 1459                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _             |         |                | ,       | ļ -  |         |      | Ů | 1 | Ü | 1  |    |    | 1  |    |    |    |                                            |                                | protein                                        |
| "GLO00073"   GE0415   cme   Cj0366c   CC00455   cme   Cj0366c   CC00456   cme   Cj0366c   cme   Cj0366c   cme   Cj0366c   cme   Cj0366c   cme   Cj0366c   cme   Cj0366c   cme   cme |               | CJE0414 | cmeC           | Cj0365c | -    | CCO0454 | -    | 1 | 1 | 1 | 1  | 0  | 0  | 0  | 0  | 1  | 1  |                                            |                                |                                                |
| "CJ_10000733" CJE0416 meA Cj0367c - CC0456 - 1 1 1 0 0 -1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | "opCcV010000  | CJE0415 | cmeB           | Cj0366c | -    | CCO0455 | -    |   |   | 0 | -1 | 1  | 1  | -1 | 1  | -1 | -1 | •                                          |                                |                                                |
| 1985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |         |                | ,       |      |         |      |   |   |   |    |    |    |    |    |    |    |                                            |                                | protein Cj0366c                                |
| Cyclogoryate   Cycl  |               | CJE0416 | cmeA           | Cj0367c | -    | CCO0456 | -    | 1 | 1 | 0 | -1 | 1  | 1  | -1 | 1  | 1  | -1 | -                                          | membrane fusion protein        |                                                |
| "CJ_1000735" CJE0419 rpsU Cj0370 rpsU CC00459 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | "CJ_10000733" | CJE0417 | -              | Cj0368c | -    | CCO0457 | -    | 0 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  |                                            | 1 0                            |                                                |
| "CJ_10000736" CJE0420 - Cj0371 - CCO0460 - I I I I I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | "CJ_10000734" | CJE0418 | -              | Cj0369c | -    | CCO0458 | -    | 0 | 0 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | containing integral                        | - C                            | ferrodoxin-like protein                        |
| "CJ_10000737"   CJE0421     Cj0372     CCO0461     1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | "CJ_10000735" | CJE0419 | rpsU           | Cj0370  | rpsU | CCO0459 | -    | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 30S ribosomal protein S21                  | 30S ribosomal protein S21      | ribosomal protein S21                          |
| "CJ_1000738" CJE0422 - Cj0373 - CC00462 hprA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | "CJ_10000736" | CJE0420 | -              | Cj0371  | -    | CCO0460 | -    | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  |                                            | hypothetical protein           |                                                |
| "CJ_10000738" CJE0422 - Cj0373 - CCO0462 hprA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | "CJ_10000737" | CJE0421 | -              | Cj0372  | -    | CCO0461 | -    | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                       |                                |                                                |
| "CJ_10000740" CJE0423 - Cj0374 - CCO0463 - 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | "CJ_10000738" | CJE0422 | -              | Cj0373  | -    | CCO0462 | hprA | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  |                                            | 2-hydroxyacid                  | phosphoglycerate                               |
| "CJ_10000740"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | "CJ_10000739" | CJE0423 | -              | Cj0374  | -    | CCO0463 | -    | 0 | 1 | 1 | 1  | 1  | 1  | 1  | 0  | 1  | 1  |                                            |                                | Protein of unknown                             |
| "CJ_10000741"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | "CT 10000740" | CIE0424 | -              | C;0275  |      | CC00464 | -    | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | nutativa linearatain                       | linoprotoin putativo           |                                                |
| "CJ_10000755" CJE0426 - Cj0377 - CCO0466 - 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 probable AAA family ATPase, AAA family ATPase, AAA family ATPase protein ATPase protein ATPase protein Protein Cj0376  "CJ_10000757" CJE0427 - Cj0378c - CCO0467 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 probable AAA family ATPase  "CJ_10000759" CJE0428 - Cj0379c - CCO0468 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |         | 1              |         | + -  |         | 1    | 1 | 1 | 1 | 1  | 0  | 1  | 1  | 1  | 1  | 1  |                                            |                                |                                                |
| CJ_10000757"   CJE0427   CJE0427   Cj0378c   CCO0467   CCO0468   CCO0468   CCO0469    | _             |         | _              | ,       |      |         | _    | 1 | 1 | 1 | 1  | Ů  | 1  | 1  | 1  | 1  | 1  |                                            |                                | protein Cj0376                                 |
| CJ_10000759"   CJE0428   - Cj0379c   - CCO0468   - I I I I I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | "CJ_10000755" | CJE0426 | -              | Cj0377  | -    | CCO0466 | -    | 1 | 0 | 1 | 1  | 0  | 1  | 1  | 1  | 1  | 1  | -                                          | ,                              | 1 1                                            |
| "CJ_10000759" CJE0428 - Cj0379c - CCO0468 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | "CJ_10000757" | CJE0427 | -              | Cj0378c | -    | CCO0467 | -    | 1 | 1 | 1 | 1  | 0  | 1  | 1  | 1  | 1  | 1  |                                            | hypothetical protein           | probable integral membrane<br>protein Cj0378c  |
| "CJ_10000761" CJE0429 - Cj0380c - CCO0469 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | "CJ_10000759" | CJE0428 | -              | Сј0379с | -    | CCO0468 | -    | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  |                                            | hypothetical protein           | conserved hypothetical                         |
| "CJ_10000763" CJE0430 pyrF Cj0381c pyrF CCO0470 pyrF 1 1 1 1 1 1 1 1 1 orotidine 5'-phosphate decarboxylase orotidine 5'-phosphate decarboxylase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | "CJ_10000761" | CJE0429 | -              | Cj0380c | -    | CCO0469 | -    | 1 | 1 | 1 | 1  | 1  | -1 | -1 | -1 | 0  | -1 | hypothetical protein                       | hypothetical protein           | conserved hypothetical                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | "CJ_10000763" | CJE0430 | pyrF           | Cj0381c | pyrF | CCO0470 | pyrF |   | 1 | 1 | 1  | -1 | 1  | 1  | 1  | 1  | 1  |                                            |                                | orotidine 5`-phosphate                         |
| "CJ 10000765"   CJE0431   nusB   Ci0382c   nusB   CC00471   nusB   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | "CJ 10000765" | CJE0431 | nusB           | Ci0382c | nusB | CCO0471 | nusB | 1 | 1 | 1 | 1  | 1  | -1 | -1 | 1  | 1  | 1  | decarboxylase<br>transcription termination | decarboxylase<br>transcription | decarboxylase<br>transcription antitermination |

|                       |         |      |         |      |         |      |    |   |   |    |    |    |    |    |    |    | protein                                            | antitermination protein<br>NusB                    | factor NusB                                        |
|-----------------------|---------|------|---------|------|---------|------|----|---|---|----|----|----|----|----|----|----|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| "CJ_10000767"         | CJE0432 | ribH | Cj0383c | ribH | CCO0472 | ribH | 0  | 1 | 1 | 1  | -1 | -1 | 1  | 1  |    | 1  | 6,7-dimethyl-8-<br>ribityllumazine synthase        | riboflavin synthase subunit<br>beta                | 6,7-dimethyl-8-<br>ribityllumazine synthase        |
| "CJ_10000768"         | CJE0433 | kdsA | Cj0384c | kdsA | CCO0473 | kdsA | 1  | 1 | 1 | 1  | -1 | 1  | 1  | 1  | 1  | 1  | 2-dehydro-3-<br>deoxyphosphooctonate<br>aldolase   | 2-dehydro-3-<br>deoxyphosphooctonate<br>aldolase   | 2-dehydro-3-<br>deoxyphosphooctonate<br>aldolase   |
| "CJ_10000769"         | CJE0434 | -    | Cj0385c | -    | CCO0474 | -    | 1  | 1 | 1 | 0  | -1 | 1  | 1  | 0  | -1 | 1  | putative integral membrane protein                 | integral membrane protein                          | probable integral membrane<br>protein Cj0385c      |
| "CJ_10000770"         | CJE0435 | -    | Cj0386  | -    | CCO0475 | -    | -1 | 1 |   | 1  | -1 | 1  | 1  | 1  | 1  | -1 | putative GTP-binding protein                       | GTP-binding protein EngA                           | GTPase                                             |
| "CJ_10000790"         | CJE0436 | aroK | Cj0387  | aroK | CCO0476 | aroK | 1  | 1 | 1 | 1  | 1  | 1  | 0  | 1  | 1  | 1  | shikimate kinase                                   | shikimate kinase                                   | shikimate kinase                                   |
| "CJ_10000793"         | CJE0437 | trpS | Cj0388  | trpS | CCO0477 | trpS | 0  | 1 | 1 | 1  | -1 | 1  | 1  | -1 | -1 | 1  | tryptophanyl-tRNA<br>synthetase                    | tryptophanyl-tRNA<br>synthetase                    | tryptophanyl-tRNA<br>synthetase                    |
| "CJ_10000796"         | CJE0438 | serS | Cj0389  | serS | CCO0478 | serS | 1  | 1 | 1 | 1  | 0  | 1  | -1 | -1 | 1  | 1  | seryl-tRNA synthetase                              | seryl-tRNA synthetase                              | seryl-tRNA synthetase                              |
| "CJ_10000798"         | CJE0439 | -    | Cj0390  | -    | CCO0479 | -    | 1  | 1 | 1 | 1  | -1 | -1 | -1 | 1  | 1  | 1  | putative transmembrane<br>protein                  | TPR domain protein                                 | probable transmembrane<br>protein Cj0390           |
| "CJ_10000800"         | CJE0440 | -    | Cj0391c | -    | CCO0480 | -    | 0  | 1 | 1 | 1  | -1 | 1  | 1  | -1 | 1  | 1  | hypothetical protein                               | hypothetical protein                               | conserved hypothetical protein                     |
| "CJ_10000802"         | CJE0441 | pyk  | Cj0392c | pyk  | CCO0481 | pyk  | 0  | 0 | 1 | 1  | 0  | 1  | 1  | 1  | 1  | 1  | pyruvate kinase                                    | pyruvate kinase                                    | pyruvate kinase                                    |
| "CJ_10000804"         | CJE0442 | 1    | Cj0393c | -    | CCO0482 | -    | 1  | 1 | 1 | -1 | -1 | 1  | 1  | 1  | 1  | -1 | putative oxidoreductase                            | malate:quinone<br>oxidoreductase, putative         | probable oxidoreductase<br>Cj0393c                 |
| "CJ_10000806"         | CJE0443 | -    | Cj0394c | -    | CCO0483 | -    | 1  | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                               | transcriptional activator,<br>putative, Baf family | transcriptional activator,<br>putative, Baf family |
| "CJ_10000807"         | CJE0444 | -    | Cj0395c | -    | CCO0484 | -    | 1  | 1 | 1 | -1 | -1 | 1  | 1  | 1  | 1  | 1  | hypothetical protein                               | tram-like protein                                  | conserved hypothetical protein                     |
| "CJ_10000808"         | CJE0445 | -    | Сј0396с | -    | CCO0485 | -    | 1  | 1 | 1 | 1  | -1 | 1  | 1  | -1 | 1  | 1  | putative lipoprotein                               | lipoprotein, putative                              | probable lipoprotein<br>Cj0396c                    |
| "CJ_10000819"         | CJE0446 | -    | Сј0397с | -    | CCO0486 | -    | 1  | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                               | hypothetical protein                               | conserved hypothetical protein                     |
| "CJ_10000822"         | CJE0447 | gatC | Cj0398  | gatC | CCO0487 | gatC | 1  | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative Glu-tRNAGln<br>amidotransferase subunit C | aspartyl/glutamyl-tRNA<br>amidotransferase subunit | glutamyl-tRNA(Gln)<br>amidotransferase, C subunit  |
| "CJ_10000825"         | CJE0448 | -    | Cj0399  | -    | CCO0488 | cvpA | 1  | 1 | 1 | 1  | -1 | 1  | 1  | -1 | 1  | 1  | putative integral membrane protein                 | cvpA family protein                                | CvpA family protein                                |
| "CJ_10000828"         | CJE0449 | fur  | Cj0400  | fur  | CCO0489 | -    | 1  | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | ferric uptake regulator                            | ferric uptake regulation protein                   | ferric uptake regulator<br>Cj0400                  |
| "opCcV010000<br>1338" | CJE0450 | lysS | Cj0401  | lysS | CCO0490 | lysS | 1  | 1 | 1 | 0  | 1  | -1 | -1 | 1  | -1 | -1 | lysyl-tRNA synthetase                              | lysyl-tRNA synthetase                              | lysyl-tRNA synthetase                              |
| "opCcV010000<br>0067" | CJE0451 | glyA | Cj0402  | glyA | CCO0491 | glyA | -1 | 0 | 0 | -1 | 1  | 1  | 0  | 1  | -1 | 1  | serine<br>hydroxymethyltransferase                 | serine<br>hydroxymethyltransferase                 | serine<br>hydroxymethyltransferase                 |
| "opCcV010000<br>1753" | CJE0452 | -    | Cj0403  | -    | CCO0492 | -    | 1  | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                               | hypothetical protein                               | conserved hypothetical protein                     |
| "CJ_10000833"         | CJE0453 | -    | Cj0404  | -    | CCO0493 | -    | 1  | 1 | 1 | -1 | -1 | -1 | 1  | 1  | 1  | -1 | putative transmembrane<br>protein                  | hypothetical protein                               | probable transmembrane<br>protein Cj0404           |
| "CJ_10000834"         | CJE0454 | aroE | Cj0405  | aroE | CCO0494 | aroE | 0  | 0 | 1 | -1 | -1 | 1  | 1  | 1  | 1  | 1  | shikimate 5-dehydrogenase                          | shikimate 5-dehydrogenase                          | shikimate 5-dehydrogenase                          |
| "CJ_10000835"         | CJE0455 | -    | Сј0406с | -    | CCO0495 | -    | 1  | 1 | 1 | 1  | -1 | 1  | 1  | -1 | 1  | 1  | putative lipoprotein                               | lipoprotein, putative                              | probable lipoprotein<br>Cj0406c                    |
| "CJ_10000846"         | CJE0456 | lgt  | Cj0407  | lgt  | CCO0496 | lgt  | 1  | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | prolipoprotein<br>diacylglyceryl transferase       | prolipoprotein<br>diacylglyceryl transferase       | prolipoprotein<br>diacylglyceryl transferase       |
| "CJ_10000849"         | CJE0457 | frdC | Cj0408  | frdC | CCO0497 | -    | 1  | 1 | 1 | -1 | -1 | 1  | 1  | -1 | -1 | 1  | fumarate reductase<br>cytochrome B subunit         | fumarate reductase,<br>cytochrome b subunit        | Fumarate reductase respiratory complex,            |
| "CJ_10000852"         | CJE0458 | frdA | Cj0409  | frdA | CCO0498 | -    | 1  | 1 | 1 | 1  | -1 | 1  | 1  | 1  | 1  | 1  | fumarate reductase<br>flavoprotein subunit         | fumarate reductase                                 | succinate dehydrogenase<br>flavoprotein Cj0409     |
| "CJ_10000855"         | CJE0459 | frdB | Cj0410  | frdB | CCO0499 | sdhB | 0  | 1 | 1 | 1  | -1 | -1 | 1  | -1 | 1  | 1  | fumarate reductase iron-<br>sulfur protein         | succinate dehydrogenase                            | fumarate reductase iron-<br>sulfur protein         |

| "CJ_10000857"         | CJE0460 | -    | Cj0411  | 1 -  | CCO0500 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | -1 | 1  | 0  | putative ATP/GTP binding                              | GTP-binding protein                             | probable ATP /GTP binding                             |
|-----------------------|---------|------|---------|------|---------|------|----|----|----|----|----|----|----|----|----|----|-------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------|
|                       |         |      |         |      |         |      |    |    |    |    |    |    |    |    |    |    | protein                                               |                                                 | protein Cj0411                                        |
| "CJ_10000859"         | CJE0461 | -    | Cj0412  | -    | CCO0501 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | putative ATP/GTP binding protein                      | GTP-binding protein                             | probable ATP /GTP binding<br>protein Cj0412           |
| "CJ_10000861"         | CJE0462 | -    | Cj0413  | -    | CCO0502 | -    | 1  | 0  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | putative periplasmic protein                          | hypothetical protein                            | conserved hypothetical secreted protein,              |
| "CJ_10000862"         | CJE0463 | -    | Cj0414  | -    | -       | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | -1 | putative oxidoreductase<br>subunit                    | hypothetical protein                            | -                                                     |
| "CJ_10000864"         | CJE0464 | -    | Cj0415  | -    | -       | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | putative oxidoreductase<br>subunit                    | oxidoreductase, putative                        | -                                                     |
| "opCjV010000<br>0636" | CJE0465 | -    | -       | -    | -       | -    | 0  | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | -                                                     | hypothetical protein                            | -                                                     |
| "opCjV010000<br>1087" | CJE0466 |      | -       | -    | -       | -    | -1 | -1 | 1  | -1 | 1  | -1 | -1 | 1  | -1 | -1 | -                                                     | hypothetical protein                            | -                                                     |
| "CJ_10000878"         | CJE0467 | -    | Cj0418c | -    | CCO0503 | -    | 1  | 1  | 1  | 0  | -1 | 1  | 1  | 1  | -1 | 1  | hypothetical protein                                  | hypothetical protein                            | srpA-related protein                                  |
| "CJ_10000881"         | CJE0468 | -    | Cj0419  | -    | CCO0504 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | -1 | 1  | 1  | hypothetical protein                                  | HIT family protein                              | HIT domain protein                                    |
| "CJ_10000883"         | CJE0469 |      | Cj0420  | -    | CCO0505 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 0  | 1  | putative periplasmic protein                          | hypothetical protein                            | conserved hypothetical secreted protein               |
| "CJ_10000884"         | CJE0470 |      | Cj0421c | -    | CCO0506 | -    | -1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative integral membrane protein                    | hypothetical protein                            | probable integral membrane<br>protein Cj0421c         |
| "CJ_10000885"         | CJE0471 | -    | Cj0422c | -    | CCO0507 | -    | 0  | 1  | 1  | 1  | 1  | 1  | 0  | -1 | 1  | 1  | putative H-T-H containing protein                     | hypothetical protein                            | conserved hypothetical protein                        |
| "opCjV010000<br>0549" | CJE0472 | -    | -       | -    | -       | -    | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | -1 | -                                                     | hypothetical protein                            | -                                                     |
| "opCjV010000<br>0188" | CJE0473 |      | -       | -    | -       | -    | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | -1 | -                                                     | hypothetical protein                            | -                                                     |
| "opCjV010000<br>0961" | CJE0474 | -    | -       | -    | -       | -    | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | -1 | -                                                     | lipoprotein, putative                           | -                                                     |
| "opCcV010000<br>1299" | CJE0475 | -    | Cj0426  | -    | CCO0512 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | ABC transporter ATP-<br>binding protein               | ABC transporter, ATP-<br>binding protein        | ABC transporter, ATP-<br>binding protein (yheS)       |
| "CJ_10001596"         | CJE0476 | -    | Cj0427  | -    | CCO0513 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                                  | hypothetical protein                            | conserved hypothetical protein                        |
| "CJ_10001597"         | CJE0477 | -    | Cj0428  | -    | CCO0514 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                                  | hypothetical protein                            | conserved hypothetical protein                        |
| "CJ_10001598"         | CJE0478 | -    | Cj0429c | -    | CCO0515 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 1  | hypothetical protein                                  | hypothetical protein                            | conserved hypothetical protein                        |
| "opCjV010000<br>1079" | CJE0479 | -    | -       | -    | -       | -    | 1  | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | -                                                     | hypothetical protein                            | -                                                     |
| "CJ_10001599"         | CJE0480 | -    | Cj0430  | -    | CCO0516 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative integral membrane protein                    | hypothetical protein                            | conserved hypothetical integral membrane              |
| "CJ_10001600"         | CJE0481 | -    | Cj0431  | -    | CCO0517 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative periplasmic ATP<br>/GTP-binding protein      | hypothetical protein                            | conserved hypothetical protein                        |
| "CJ_10001601"         | CJE0482 | murD | Cj0432c | murD | CCO0524 | murD | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | UDP-N-<br>acetylmuramoylalanineD-<br>glutamate ligase | UDP-N-acetylmuramoyl-L-<br>alanyl-D-glutamate   | UDP-N-<br>acetylmuramoylalanineD-<br>glutamate ligase |
| "CJ_10000001"         | CJE0483 | mraY | Cj0433c | mraY | CCO0525 | mraY | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | phospho-N-<br>acetylmuramoyl-<br>pentapeptide-        | phospho-N-<br>acetylmuramoyl-<br>pentapeptide-  | phospho-N-<br>acetylmuramoyl-<br>pentapeptide-        |
| "CJ_10000003"         | CJE0484 | pgm  | Cj0434  | pgm  | CCO0526 | gpmA | 0  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | phosphoglycerate mutase                               | phosphoglyceromutase                            | phosphoglycerate mutase,                              |
| "CJ_10000005"         | CJE0485 | fabG | Cj0435  | fabG | CCO0527 | fabG | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 3-oxoacyl-[acyl-carrier protein] reductase            | 3-ketoacyl-(acyl-carrier-<br>protein) reductase | 3-oxoacyl-(acyl-carrier-<br>protein) reductase        |
| "CJ_10000007"         | CJE0486 | -    | Cj0436  | -    | CCO0528 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | hypothetical protein                                  | hypothetical protein                            | conserved hypothetical protein                        |
| "opCjV010000<br>1038" | CJE0487 | -    | -       | -    | -       | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | -                                                     | hypothetical protein                            | -                                                     |

| "CJ_10000022"  | CJE0488            | sdhA  | Cj0437  | sdhA  | 1       |          | 0  | 1        | 1        | 1   | 1        | 1        | 1 | 1  | 1        | 1  | succinate dehydrogenase                       | succinate dehydrogenase,                  | 1                                                 |
|----------------|--------------------|-------|---------|-------|---------|----------|----|----------|----------|-----|----------|----------|---|----|----------|----|-----------------------------------------------|-------------------------------------------|---------------------------------------------------|
| CJ_10000022    | CJE0466            | SullA | CJ0437  | SullA | -       | -        | U  | 1        | 1        | 1   | 1        | 1        | 1 | 1  | 1        | 1  | flavoprotein subunit                          | flavoprotein subunit                      | -                                                 |
| "CJ 10000023"  | CJE0489            | sdhB  | Cj0438  | sdhB  |         |          | 1  | 0        | 1        | 1   | -1       | 1        | 1 | 1  | 1        | 1  | putative succinate                            | succinate dehydrogenase,                  |                                                   |
| CJ_10000023    | CJE0469            | Suiib | CJ0436  | SUIID | _       | -        | 1  | 0        | 1        | 1   | -1       | 1        | 1 | 1  | 1        | 1  | dehydrogenase iron-sulfur                     | iron-sulfur protein                       | <sup>-</sup>                                      |
| "CJ 10000024"  | CJE0490            | sdhC  | Ci0439  | sdhC  |         |          | 0  | 1        | 1        | 1   | 1        | 1        | 0 | 1  | -1       | 1  | putative succinate                            | succinate dehydrogenase, C                |                                                   |
| CJ_10000024    | CJE0490            | suiic | CJ0439  | sunc  | -       | -        | U  | 1        | 1        | 1   | 1        | 1        | U | 1  | -1       | 1  | dehydrogenase subunit C                       | subunit                                   | -                                                 |
| "CJ_10000025"  | CJE0491            | -     | Cj0440c | -     | CCO0529 | -        | 0  | 1        | 1        | 1   | 1        | 1        | 1 | 0  | 1        | 1  | putative transcriptional                      | TenA/Thi-4 family protein                 | transcriptional regulator                         |
|                |                    |       |         |       |         |          |    |          |          |     |          |          |   |    |          |    | regulator                                     |                                           | TenA, putative                                    |
| "opCjV010000   | CJE0492            | -     | -       | -     | -       | -        | 1  | 1        | 1        | 1   | 1        | 1        | 1 | 1  | 1        | 1  | -                                             | hypothetical protein                      | -                                                 |
| 0088"          | CIE0 102           | D     | 0:0441  | D.    | GG00530 | D        |    | 1        | 1        | 1   | 1        | 1        | 1 | 1  | 0        | 1  | 1                                             | 1                                         |                                                   |
| "CJ_10000026"  | CJE0493            | acpP  | Cj0441  | acpP  | CCO0530 | acpP     | 1  | 1        | 1        | 1   | 1        | 1        | 1 | 1  | 0        | 1  | acyl carrier protein                          | acyl carrier protein                      | acyl carrier protein                              |
| "CJ_10000027"  | CJE0494            | fabF  | Cj0442  | fabF  | CCO0531 | fabB     | 1  | 1        | 1        | 1   | 1        | 1        | 1 | 1  | 1        | 1  | 3-oxoacyl-[acyl-carrier-<br>protein] synthase | 3-oxoacyl-(acyl carrier protein) synthase | beta ketoacyl-acyl carrier<br>protein synthase II |
| "CJ 10000028"  | CJE0495            | accA  | Ci0443  | accA  | CCO0532 | accA     | 1  | -1       | -1       | 1   | -1       | -1       | 1 | 1  | 1        | 1  | acetyl-coenzyme A                             | acetyl-CoA carboxylase                    | acetyl-CoA carboxylase,                           |
| CJ_10000028    | CJE0493            | accA  | CJ0443  | accA  | CC00332 | acca     | 1  | -1       | -1       | -1  | -1       | -1       | 1 | 1  | 1        | 1  | carboxylase carboxyl                          | alpha subunit                             | carboxyl transferase,                             |
| "opCcV010000   | CJE0496            | 1 -   | Ci0444  |       | CCO0537 | 1 -      | 1  | 1        | 1        | 1   | -1       | 1        | 1 | 0  | 1        | 1  | pseudogene                                    | pseudogene                                | iron-regulated outer                              |
| 1291"          | CJEO170            |       | Cjotti  |       | 0000007 |          | 1  | 1        | 1 -      | 1 * | 1        | 1 -      | 1 | Ů  | 1        | 1  | pseudogene                                    | pseudogene                                | membrane virulence                                |
|                |                    |       |         |       |         |          |    |          |          |     |          |          |   |    |          |    |                                               |                                           | protein,                                          |
| "CJ 10000031"  | CJE0497            | -     | Ci0447  | -     | CCO0538 | -        | 1  | 1        | 1        | 1   | 1        | 1        | 1 | 1  | 1        | 1  | hypothetical protein                          | NUDIX domain protein                      | conserved hypothetical                            |
| _              |                    |       | ,       |       |         |          |    |          |          |     |          |          |   |    |          |    |                                               | 1                                         | protein TIGR00052                                 |
| "CJ_10000033"  | CJE0498            | -     | Cj0448c | -     | CCO0539 | -        | -1 | -1       | 1        | 1   | 0        | 1        | 1 | 1  | 1        | 1  | putative MCP-type signal                      | methyl-accepting                          | methyl-accepting                                  |
|                |                    |       | -       |       |         |          |    |          |          |     |          |          |   |    |          |    | transduction protein                          | chemotaxis protein                        | chemotaxis transducer                             |
|                |                    |       |         |       |         |          |    |          |          |     |          |          |   |    |          |    |                                               |                                           | (tlpC)                                            |
| "CJ_10000043"  | CJE0499            | -     | Cj0449c | -     | CCO0540 | -        | 1  | 1        | 1        | 1   | 1        | 1        | 1 | 1  | 1        | 1  | hypothetical protein                          | hypothetical protein                      | Protein of unknown<br>function (DUF465) family    |
| "opCcV010000   | CJE0500            | rpmB  | Ci0450c | rpmB  | CCO0541 | rpmB     | 1  | 1        | 1        | 1   | 1        | 1        | 1 | 1  | 1        | 1  | 50S ribosomal protein L28                     | 50S ribosomal protein L28                 | ribosomal protein L28                             |
| 0349"          | CJE0300            | тринь | CJ0430C | тринь | CC00541 | тринь    | 1  | 1        | 1        | 1   | 1        | 1        | 1 | 1  | 1        | 1  | 303 Hoosomai protein E28                      | 303 Hoosomai protein L28                  | Hoosomai protein L28                              |
| "CJ_10000044"  | CJE0501            | rpe   | Cj0451  | rep   | CCO0542 | rpe      | 1  | 1        | 1        | 1   | -1       | 1        | 1 | -1 | 1        | 1  | ribulose-phosphate 3-                         | ribulose-phosphate 3-                     | ribulose-phosphate 3-                             |
|                |                    |       | -50.00  |       |         | - F      | -  | -        | -        | -   | -        | _        | - | 1  | -        | -  | epimerase                                     | epimerase                                 | epimerase                                         |
| "CJ 10000045"  | CJE0502            | -     | Cj0452  | dnaQ  | CCO0543 | -        | 1  | 0        | 1        | 1   | 1        | 1        | 1 | 1  | 1        | 1  | exonuclease, possibly dna                     | DNA polymerase III                        | DNA polymerase III epsilon                        |
|                |                    |       | 1       |       |         |          |    |          |          |     |          |          |   |    |          |    | polymerase III epsilon                        | subunit epsilon                           | subunit (dnaQ)                                    |
| "CJ 10000046"  | CJE0503            | thiC  | Cj0453  | thiC  | CCO0544 | thiC     | 1  | 1        | 1        | 1   | 1        | 1        | 1 | 1  | 0        | 1  | thiamin biosynthesis protein                  | thiamine biosynthesis                     | thiamine biosynthesis                             |
| _              |                    |       | 3       |       |         |          |    |          |          |     |          |          |   |    |          |    | ThiC                                          | protein ThiC                              | protein ThiC                                      |
| "CJ_10000047"  | CJE0504            | -     | Cj0454c | -     | CCO0545 | -        | 0  | 1        | 1        | 1   | 0        | 1        | 1 | 1  | 1        | 1  | putative membrane protein                     | hypothetical protein                      | probable membrane protein                         |
|                |                    |       | _       |       |         |          |    |          |          |     |          |          |   |    |          |    |                                               |                                           | Cj0454c                                           |
| "CJ_10000048"  | CJE0505            | -     | Cj0455c | -     | CCO0546 | -        | 0  | 1        | 1        | 1   | 1        | 1        | 1 | 1  | 1        | 1  | putative membrane protein                     | hypothetical protein                      | probable membrane protein                         |
|                |                    |       |         |       |         |          |    |          |          |     |          |          |   |    |          |    |                                               |                                           | Cj0455c                                           |
| "CJ_10000050"  | CJE0506            | -     | Cj0456c | -     | CCO0547 | -        | 0  | 0        | 1        | 1   | 1        | 1        | 1 | 1  | 1        | 1  | hypothetical protein                          | hypothetical protein                      | conserved hypothetical                            |
|                |                    |       |         |       |         |          |    |          |          |     |          |          |   |    |          |    |                                               |                                           | protein                                           |
| "CJ_10000052"  | CJE0507            | -     | Cj0457c | -     | CCO0548 | -        | 0  | 0        | 0        | 1   | 1        | 1        | 1 | 1  | 0        | 1  | putative lipoprotein                          | hypothetical protein                      | probable lipoprotein                              |
|                |                    |       |         |       | ~~~~    | <b>_</b> |    |          | 1        |     |          |          |   |    |          | 1  |                                               |                                           | Cj0457c                                           |
| "CJ_10000054"  | CJE0508            | miaB  | Cj0458c | -     | CCO0549 | miaB     | 0  | 0        | 1        | 1   | 1        | 1        | 1 | 1  | -1       | 1  | hypothetical protein                          | tRNA-i(6)A37                              | tRNA-i(6)A37                                      |
|                |                    |       |         |       |         |          |    |          |          |     |          |          |   |    |          |    |                                               | thiotransferase enzyme                    | thiotransferase enzyme                            |
| #GY 100000 62# | GYEO 500           |       | G:0.450 |       | 0000550 |          |    | <b>.</b> | <b>.</b> |     | <b>.</b> |          |   |    | <b>.</b> | ١. |                                               | MiaB                                      | MiaB                                              |
| "CJ_10000062"  | CJE0509            | -     | Cj0459c | -     | CCO0550 | -        | 0  | 1        | 1        | 1   | 1        | 1        | 1 | 1  | 1        | 1  | hypothetical protein                          | hypothetical protein                      | conserved hypothetical                            |
| "CJ 10000063"  | CIEO510            |       | 0:0460  |       | 0000551 |          | -  | 1        | 1        | -   | 1        | 1        | 1 | 1  | 1        | 1  |                                               |                                           | protein                                           |
| "CJ_10000063"  | CJE0510            | nusA  | Cj0460  | nusA  | CCO0551 | nusA     | 1  | 1        | 1        | 1   | 1        | 1        | 1 | 1  | 1        | 1  | transcription termination                     | transcription elongation                  | transcription termination                         |
| "CI 10000064"  | CJE0511            |       | C:0461a |       | CCO0552 | -        | 1  | 1        | 1        | 1   | 0        | 1        | 1 | 0  | 1        | 1  | factor                                        | factor NusA                               | factor NusA                                       |
| "CJ_10000064"  | CJEUSII            | -     | Cj0461c | 1 -   | CC00332 | -        | 1  | 1        | 1        | 1   | 0        | 1        | 1 | 10 | 1        | 1  | putative integral membrane protein            | transporter, putative                     | permease, putative                                |
| "CJ 10000065"  | CJE0512            | -     | Ci0462  |       | CCO0553 | _        | 1  | 1        | 1        | 1   | 1        | 1        | 1 | 1  | 1        | 1  | hypothetical protein                          | hypothetical protein                      | conserved hypothetical                            |
| CJ_10000003    | CJEUJ12            | 1 -   | CJ0402  | 1 -   | CC00333 | ] -      | 1  | 1        | 1        | 1   | 1        | 1        | 1 | 1  | 1        | 1  | nypomencai protein                            | nypothetical protein                      | protein TIGR00423                                 |
| "CJ 10000066"  | CJE0513            | +     | Ci0463  | +     | CCO0554 | +_       | 0  | 0        | 1        | 1   | 0        | 1        | 1 | 1  | 1        | 1  | zinc protease-like protein                    | peptidase, putative                       | processing protease (ymxG)                        |
| "CJ_10000067"  | CJE0513<br>CJE0514 | recG  | Ci0464  | recG  | CC00555 | recG     | 1  | 1        | 1        | 1   | 1        | 1        | 1 | 0  | 1        | 1  | ATP-dependent DNA                             | ATP-dependent DNA                         | ATP-dependent DNA                                 |
| CJ_1000000/    | CJE0514            | icco  | CJ0404  | 1000  | 2000333 | 1600     | 1  | 1        | 1        | 1   | 1        | 1        | 1 |    | 1        | 1  | helicase                                      | helicase RecG                             | helicase RecG                                     |
|                | l                  | 1     | 1       | 1     | 1       | 1        |    | l .      | ı        |     | l .      | <u> </u> | 1 |    | 1        | 1  | nenease                                       | neneast Reco                              | nenease Reco                                      |

| "CJ_10000068"         | CJE0515  | -    | Cj0465c | -    | CCO0556 | -    | 1  | 1  | 0  | 1  | 0  | 0  | 0  | 0  | 1 | 1  | hypothetical protein                              | hypothetical protein                                  | conserved hypothetical protein                         |
|-----------------------|----------|------|---------|------|---------|------|----|----|----|----|----|----|----|----|---|----|---------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|
| "CJ_10000070"         | CJE0516  | -    | Cj0466  | -    | CCO0557 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 0  | 1 | 1  | putative transcriptional regulator                | transcriptional regulator,<br>putative                | probable transcription<br>regulator Cj0466             |
| "CJ_10000072"         | CJE0517  | -    | Cj0467  | -    | CCO0559 | glnP | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0 | 1  | amino-acid ABC transporter integral membrane      | amino acid ABC<br>transporter, permease<br>protein,   | glutamine ABC transporter,<br>permease protein         |
| "CJ_10000074"         | CJE0518  | -    | Cj0468  | -    | CCO0560 | glnP | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1  | amino-acid ABC transporter integral membrane      | amino acid ABC<br>transporter, permease<br>protein,   | glutamine ABC transporter,<br>permease protein         |
| "CJ_10000082"         | CJE0519  | -    | Cj0469  | -    | CCO0562 | glnQ | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1  | amino-acid ABC transporter<br>ATP-binding protein | amino acid ABC<br>transporter, ATP-binding<br>protein | glutamine/glutamate ABC transporter, ATP-binding       |
| "CJ_10000083"         | CJE0520  | tuf  | Cj0470  | tuf  | CCO0566 | tuf  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1  | elongation factor TU                              | elongation factor Tu                                  | translation elongation factor<br>Tu                    |
| "CJ_10000084"         | CJE0521  | rpmG | Cj0471  | rpmG | CCO0567 | rpmG | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1  | 50S ribosomal protein L33                         | 50S ribosomal protein L33                             | ribosomal protein L33                                  |
| "CJ_10000085"         | CJE0522  | secE | Cj0472  | secE | CCO0569 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1  | preprotein translocase SecE<br>subunit            | translocase                                           | preprotein translocase SecE<br>chain Cj0472            |
| "CJ_10000086"         | CJE0523  | nusG | Cj0473  | nusG | CCO0570 | nusG | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1  | putative transcription<br>antitermination protein | transcription<br>antitermination protein<br>NusG      | transcription<br>termination/antitermination<br>factor |
| "CJ_10000087"         | CJE0524  | rplK | Cj0474  | rplK | CCO0571 | rplK | 0  | -1 | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1  | 50S ribosomal protein L11                         | 50S ribosomal protein L11                             | ribosomal protein L11                                  |
| "CJ_10000088"         | CJE0525  | rplA | Cj0475  | rplA | CCO0572 | rplA | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1  | 50S ribosomal protein L1                          | 50S ribosomal protein L1                              | ribosomal protein L1                                   |
| "CJ_10000089"         | CJE0526  | rpIJ | Cj0476  | rplJ | CCO0573 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1  | 50S ribosomal protein L10                         | 50S ribosomal protein L10                             | 50S ribosomal protein L10<br>Cj0476                    |
| "CJ_10000090"         | CJE0527  | rplL | Cj0477  | rplL | CCO0574 | rplL | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1  | 50S ribosomal protein L7<br>/L12                  | 50S ribosomal protein<br>L7/L12                       | ribosomal protein L7/L12                               |
| "CJ_10000091"         | CJE0528  | rpoB | Cj0478  | rpoB | CCO0575 | -    | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1  | DNA-directed RNA                                  | DNA-directed RNA                                      | DNA-directed RNA                                       |
|                       |          |      |         |      |         |      |    |    |    |    |    |    |    |    |   |    | polymerase beta chain                             | polymerase, beta subunit                              | polymerase, beta subunit                               |
| "CJ_10000092"         | CJE0529  | rpoB | Cj0479  | rpoB | CCO0576 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1  | DNA-directed RNA                                  | DNA-directed RNA                                      | DNA-directed RNA                                       |
| #GY 10000000          | GYEO 500 |      | G:0.400 |      | 0000550 |      |    |    |    |    |    |    |    |    |   | +  | polymerase beta chain                             | polymerase, beta subunit                              | polymerase beta chain,                                 |
| "CJ_10000093"         | CJE0530  | -    | Cj0480c | -    | CCO0578 | -    | 0  | -1 | -1 | 1  | 0  | -1 | -1 | -1 | 1 | 1  | putative transcriptional regulator                | transcriptional regulator,<br>IclR family             | probable transcription<br>regulator Cj0480c            |
| "opCcV010000<br>0230" | CJE0531  | -    | -       | -    | CCO0579 | -    | 1  | 1  | -1 | 1  | 1  | -1 | 1  | -1 | 1 | 1  | -                                                 | hypothetical protein                                  | probable lyase Cj0481                                  |
| "CJ_10000094"         | CJE0532  | -    | Cj0481  | -    | CCO0580 | -    | 1  | 1  | -1 | 1  | 1  | -1 | -1 | -1 | 1 | 1  | putative lyase                                    | dihydrodipicolinate<br>synthase, putative             | altronate hydrolase                                    |
| "CJ_10000095"         | CJE0533  | uxaA | -       | -    | -       | -    | 1  | 1  | 0  | 1  | 1  | -1 | -1 | -1 | 1 | 1  | -                                                 | pseudogene                                            | -                                                      |
| "CJ_10000097"         | CJE0534  | -    | Cj0484  | -    | CCO0582 | -    | 0  | 1  | -1 | 1  | 1  | -1 | -1 | -1 | 1 | 1  | transmembrane transport protein                   | tartrate transporter, putative                        | transmembrane transport<br>protein Cj0484              |
| "CJ_10000098"         | CJE0535  | -    | Cj0485  | -    | CCO0583 | -    | 1  | 0  | -1 | 1  | 1  | 1  | 1  | -1 | 1 | 1  | putative oxidoreductase                           | short chain dehydrogenase                             | probable oxidoreductase<br>Cj0485                      |
| "CJ_10000099"         | CJE0536  | fucP | Cj0486  | -    | CCO0584 | fucP | 1  | 1  | -1 | 1  | 1  |    | 1  | -1 | 1 | 1  | putative sugar transporter                        | L-fucose permease                                     | L-fucose permease                                      |
| "CJ_10000100"         | CJE0537  | -    | Cj0487  | -    | CCO0585 | -    | 0  | 1  | -1 | 1  | -1 | -1 | -1 | -1 | 1 | 1  | hypothetical protein                              | hypothetical protein                                  | conserved hypothetical protein                         |
| "CJ_10000101"         | CJE0538  | -    | Cj0488  | -    | CCO0586 | -    | -1 | 0  | -1 | 1  | 1  |    | -1 | -1 | 1 | 1  | hypothetical protein                              | hypothetical protein                                  | Protein of unknown<br>function (DUF718)                |
| "CJ_10000109"         | CJE0539  | aldA | Cj0490  | -    | CCO0587 | -    | -1 | 1  | -1 | 1  | 1  | 1  | 1  | -1 | 1 | 1  | pseudogene                                        | aldehyde dehydrogenase                                | probable lactaldehyde<br>dehydrogenase truncated       |
| "CJ_10000113"         | CJE0540  | rpsL | Cj0491  | rpsL | CCO0588 | rpsL | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1  | 30S ribosomal protein S12                         | 30S ribosomal protein S12                             | ribosomal protein S12                                  |
| "CJ_10000115"         | CJE0541  | rpsG | Cj0492  | rpsG | CCO0589 | rpsG | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1  | 30S ribosomal protein S7                          | 30S ribosomal protein S7                              | ribosomal protein S7                                   |
| "CJ_10000116"         | CJE0542  | fusA | Cj0493  | fusA | CCO0590 | fusA | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1  | elongation factor G                               | elongation factor EF-2                                | translation elongation factor G                        |
| "opCjV010000<br>0897" | CJE0544  | -    | -       | -    | -       | -    | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1  | 0 | -1 | -                                                 | site-specific recombinase,<br>phage integrase         | -                                                      |

| "opCjV010000<br>0168" | CJE0545 | - | - | - | - | - | -1 | -1 | -1 | -1 | 1  | 1  | -1 | 1  | -1 | -1 | - | DNA binding domain,<br>excisionase family         | - |
|-----------------------|---------|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|---|---------------------------------------------------|---|
| "opCjV010000<br>0553" | CJE0546 | - | - | - | - | - | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | -1 | - | pentapeptide repeat family protein                | - |
| "opCjV010000<br>0167" | CJE0547 | - | - | - | - | - |    | -1 | -1 | -1 | 1  | -1 | 1  | 1  | -1 | -1 | - | hypothetical protein                              | - |
| "opCjV010000<br>0090" | CJE0548 | - | - | - | - | - |    | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | -1 | - | phage anti-repressor<br>protein, putative         | - |
| "opCjV010000<br>0446" | CJE0549 | - | - | - | - | - |    | -1 | -1 | -1 | -1 | -1 | -1 | 1  | 1  | -1 | - | hypothetical protein                              | - |
| "opCjV010000<br>0163" | CJE0550 | - | - | - | - | - | -1 | -1 | -1 | 0  | 1  | -1 | -1 | 1  | -1 | 1  | - | site-specific DNA-<br>methyltransferase, putative | - |
| "opCjV010000<br>0554" | CJE0551 | - | - | - | - | - |    | -1 | -1 | -1 | -1 | 1  | 1  | 1  | -1 | -1 | - | hypothetical protein                              | - |
| "opCjV010000<br>1062" | CJE0552 | - | - | - | - | - |    | -1 | -1 | -1 | 1  | 0  | -1 | 1  | 1  | -1 | - | hypothetical protein                              | - |
| "opCjV010000<br>0291" | CJE0554 | - | - | - | - | - |    | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | -1 | - | hypothetical protein                              | - |
| "opCjV010000<br>0756" | CJE0555 | - | - | - | - | - |    |    |    |    |    |    | -1 | -1 |    |    | - | hypothetical protein                              | - |
| "opCjV010000<br>0790" | CJE0556 | - | - | - | - | - | -1 | -1 | 0  | -1 | 1  | -1 | -1 | 1  | -1 | -1 | - | hypothetical protein                              | - |
| "opCjV010000<br>0463" | CJE0557 | - | - | - | - | - |    | -1 | -1 | -1 | 1  | -1 | -1 | 1  | 1  | -1 | - | hypothetical protein                              | - |
| "opCjV010000<br>0608" | CJE0558 | - | - | - | - | - |    |    | -1 |    |    |    | 1  | -1 |    |    | - | hypothetical protein                              | - |
| "opCjV010000<br>0149" | CJE0559 | - | - | - | - | - |    |    | -1 | -1 | 1  | -1 | -1 | 1  | 1  | 1  | - | hypothetical protein                              | - |
| "opCjV010000<br>0254" | CJE0560 | - | - | - | - | - |    |    | -1 |    |    | -1 |    | -1 |    |    | - | hypothetical protein                              | - |
| "opCjV010000<br>0597" | CJE0561 | - | - | - | - | - |    |    | -1 | -1 | -1 | -1 | 1  | -1 | 1  | -1 | - | hypothetical protein                              | - |
| "opCjV010000<br>0602" | CJE0562 | - | - | - | - | - |    |    |    |    |    |    |    |    |    | -1 | - | hypothetical protein                              | - |
| "opCjV010000<br>0387" | CJE0563 | - | - | - | - | - |    |    | -1 | -1 | 1  | -1 | -1 | 1  | 1  | -1 | - | hypothetical protein                              | - |
| "opCjV010000<br>0421" | CJE0564 | - | - | - | - | - |    | -1 | -1 | 1  | 1  | -1 | -1 | 1  | -1 | 1  | - | hypothetical protein                              | - |
| "opCjV010000<br>0004" | CJE0565 | - | - | - | - | - |    |    |    |    |    |    |    | -1 |    |    | - | hypothetical protein                              | - |
| "opCjV010000<br>0955" | CJE0566 | - | - | 1 | - | - |    | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | -1 | - | DNA/RNA non-specific endonuclease                 | - |
| "opCjV010000<br>0508" | CJE0567 | - | - | 1 | - | - |    | -1 | -1 | -1 | -1 | -1 | -1 | 1  | 1  | 0  | - | hypothetical protein                              | - |
| "opCjV010000<br>0171" | CJE0568 | - | - | - | - | - |    |    | -1 | -1 | 1  | -1 | -1 | 1  | 1  | -1 | - | hypothetical protein                              | - |
| "opCjV010000<br>0325" | CJE0569 | - | - | - | - | - |    |    | -1 | -1 |    |    |    | -1 | 1  | -1 | - | phage repressor protein,<br>putative              | - |
| "opCjV010000<br>0973" | CJE0570 | - | - | - | - | - |    |    | -1 | -1 | -1 | -1 | 1  | 1  | 1  | -1 | - | hypothetical protein                              | - |
| "opCjV010000<br>0113" | CJE0571 | - | - | - | - | - |    | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | -1 | - | hypothetical protein                              | - |
| "opCjV010000<br>0018" | CJE0572 | - | - | - | - | - |    | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | -1 | - | lipoprotein, putative                             | - |
| "opCjV010000          | CJE0573 | - | - | - | - | - |    | -1 | -1 | -1 | -1 | 1  | -1 | 1  | 1  | 0  | - | hypothetical protein                              | - |

| 0063"                 |         |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |   |                                  |   |
|-----------------------|---------|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|---|----------------------------------|---|
| "opCjV010000<br>0415" | CJE0574 | - | - | - | - | - |    | -1 | -1 | -1 |    | 1  | -1 | -1 | 1  | -1 | - | hypothetical protein             | - |
| "opCjV010000<br>0316" | CJE0575 | - | - | - | - | - |    | -1 | -1 | -1 | 1  | -1 | -1 | 1  | 1  | -1 | - | hypothetical protein             | - |
| "opCjV010000<br>0315" | CJE0576 | - | - | - | - | - |    | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | -1 | - | hypothetical protein             | - |
| "opCjV010000<br>0129" | CJE0577 | - | - | - | - | - |    |    | -1 |    | -1 | -1 | -1 | -1 | 1  | -1 | - | terminase B protein,<br>putative | - |
| "opCjV010000<br>0083" | CJE0578 | - | - | - | - | - |    |    | -1 | 1  | 1  | -1 | -1 | 1  | 1  | 1  | - | hypothetical protein             | - |
| "opCjV010000<br>0745" | CJE0579 | - | - | - | - | - |    | -1 | -1 | -1 |    |    | 1  | 1  |    | -1 | - | hypothetical protein             | - |
| "opCjV010000<br>0037" | CJE0580 | - | - | - | - | - |    |    | -1 |    | -1 | 1  | -1 | 1  | 1  | -1 | - | hypothetical protein             | - |
| "opCjV010000<br>0400" | CJE0581 | - | - | - | - | - |    | -1 | -1 | -1 | 1  | -1 | -1 | 1  | 1  | -1 | - | hypothetical protein             | - |
| "opCjV010000<br>0694" | CJE0582 | - | - | - | - | - |    | -1 | 0  | -1 | 1  | -1 | -1 | 1  | 0  | -1 | - | hypothetical protein             | - |
| "opCjV010000<br>1059" | CJE0583 | - | - | - | - | - |    | -1 | -1 | -1 | 1  | -1 | -1 | 1  | 1  | -1 | - | hypothetical protein             | - |
| "opCjV010000<br>0732" | CJE0584 | - | - | - | - | - |    |    | -1 | -1 | 1  | -1 | -1 | 1  | 0  | 1  | - | hypothetical protein             | - |
| "opCjV010000<br>0491" | CJE0585 | - | - | - | - | - | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1  | 1  | -1 | - | hypothetical protein             | - |
| "opCjV010000<br>0666" | CJE0586 | - | - | - | - | - |    |    | -1 | 1  | 1  |    |    | 1  |    | 1  | - | hypothetical protein             | - |
| "opCjV010000<br>0583" | CJE0587 | - | - | - | - | - |    |    | -1 |    |    |    | -1 | -1 |    |    | - | hypothetical protein             | - |
| "opCjV010000<br>0249" | CJE0588 | - | - | - | - | - |    |    | -1 | -1 | -1 | -1 | 1  | -1 | 1  | -1 | - | hypothetical protein             | - |
| "opCjV010000<br>0236" | CJE0589 | - | - | - | - | - |    |    | -1 | -1 | -1 | -1 | -1 | 1  | 1  | -1 | - | hypothetical protein             | - |
| "opCjV010000<br>0976" | CJE0590 | - | - | - | - | - |    | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | -1 | - | hypothetical protein             | - |
| "opCjV010000<br>0760" | CJE0591 | - | - | - | - | - | -1 | -1 | -1 | 1  | 1  | -1 | -1 | 1  | -1 | 1  | - | hypothetical protein             | - |
| "opCjV010000<br>0011" | CJE0592 | - | - | - | - | - | -1 | -1 | -1 | 0  | 1  | -1 | -1 | 1  | -1 | 0  | - | hypothetical protein             | - |
| "opCjV010000<br>0466" | CJE0593 | - | - | - | - | - | -1 | -1 | -1 | -1 | 1  | -1 | 1  | 1  | -1 | -1 | - | hypothetical protein             | - |
| "opCjV010000<br>1114" | CJE0594 | - | - | - | - | - | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | -1 | - | hypothetical protein             | - |
| "opCjV010000<br>0157" | CJE0595 | - | - | - | - | - |    | -1 | -1 | -1 | -1 | -1 | 1  | 1  | -1 | -1 | - | hypothetical protein             | - |
| "opCjV010000<br>0319" | CJE0596 | - | - | - | - | - |    | -1 | -1 | 0  |    | 1  | 1  | 1  | -1 | 0  | - | hypothetical protein             | - |
| "opCjV010000<br>0852" | CJE0597 | - | - | - | - | - | -1 | -1 | -1 | 0  | 1  | -1 | -1 | 1  | -1 | 0  | - | hypothetical protein             | - |
| "opCjV010000<br>0009" | CJE0598 | - | - | - | - | - |    |    | -1 | 1  | 1  | -1 | -1 | -1 | 1  | 1  | - | hypothetical protein             | - |
| "opCjV010000<br>0123" | CJE0599 | - | - | - | - | - | -1 | -1 | -1 | 0  | -1 | -1 | -1 | 1  | -1 | 0  | - | hypothetical protein             | - |
| "opCjV010000<br>0091" | CJE0600 | - | - | - | - | - |    | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | -1 | - | hypothetical protein             | - |

|                       |         |      |         |      |         |      |    |    |   |    |    |    |    | •  |    |    | T                                                    |                                                      |                                                       |
|-----------------------|---------|------|---------|------|---------|------|----|----|---|----|----|----|----|----|----|----|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|
| "opCjV010000<br>0645" | CJE0601 | -    | -       | -    | -       | -    | -1 | -1 | 0 | -1 | 1  | -1 | -1 | 1  | -1 | -1 | -                                                    | hypothetical protein                                 | -                                                     |
| "opCjV010000<br>0787" | CJE0602 | -    | -       | -    | -       | -    | 0  | -1 | 0 | 0  | 1  | 1  | 1  | 1  | 1  | 1  | -                                                    | hypothetical protein                                 | -                                                     |
| "CJ_10000118"         | CJE0603 | -    | Cj0495  | -    | CCO0593 | -    | 0  | 0  | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                                 | hypothetical protein                                 | conserved hypothetical protein                        |
| "CJ_10000119"         | CJE0604 | -    | Cj0496  | -    | CCO0594 | -    | 0  | 0  | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                                 | hypothetical protein                                 | conserved hypothetical protein                        |
| "CJ_10000120"         | CJE0605 | -    | Cj0497  | -    | CCO0595 | -    | 1  | 0  | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative lipoprotein                                 | lipoprotein, putative                                | ATP-dependent nuclease (addB), putative               |
| "CJ_10000121"         | CJE0606 | trpC | Cj0498  | trpC | CCO0596 | trpC | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | indole-3-glycerol phosphate synthase                 | indole-3-glycerol phosphate synthase                 | indole-3-glycerol phosphate synthase                  |
| "CJ_10000129"         | CJE0607 | -    | Cj0499  | -    | CCO0597 | hit  | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 0  | 1  | 1  | HIT-like protein                                     | Hit family protein                                   | hit family protein                                    |
| "CJ_10000131"         | CJE0608 | -    | Cj0500  | -    | CCO0598 | -    | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative ATP /GTP binding protein                    | GTP-binding protein                                  | rhodanese-like domain<br>protein, putative            |
| "CJ 10000133"         | CJE0609 | -    | Ci0501  | _    | CCO0599 | amt  |    | -1 | 0 | 1  | 1  | -1 | 1  | 1  | -1 | 1  | pseudogene                                           | pseudogene                                           | ammonium transporter                                  |
| "CJ 10000135"         | CJE0610 | hemH | Ci0503c | hemH | CCO0600 | hemH | 1  | 1  | 1 | 1  | 0  | 1  | 1  | 1  | 1  | 1  | putative ferrochelatase                              | ferrochelatase                                       | ferrochelatase                                        |
| "CJ 10000136"         | CJE0611 | пени | Ci0504c | пени | CCO0602 | пени | 0  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                                 | oxidoreductase,                                      | oxidoreductase,                                       |
| C3_10000130           | CJE0011 |      | CJ0304C | -    | CC00002 | -    |    | 1  | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | nypometicai protein                                  | Gfo/Idh/MocA family                                  | Gfo/Idh/MocA family,<br>putative                      |
| "CJ_10000137"         | CJE0612 | -    | Cj0505c | -    | CCO0604 | degT | 0  | 1  | 1 | 1  | 0  | 1  | 1  | 1  | 1  | 1  | putative aminotransferase<br>(degT family)           | DegT/DnrJ/EryC1/StrS<br>aminotransferase family      | A porR mutant of<br>Pophyromonas gingivalis<br>shows  |
| "CJ 10000138"         | CJE0613 | alaS | Ci0506  | alaS | CCO0605 | alaS | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | alanyl-tRNA synthetase                               | alanyl-tRNA synthetase                               | alanyl-tRNA synthetase                                |
| "CJ 10000139"         | CJE0614 | maf  | Ci0507  | maf  | CCO0606 | _    | 0  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | MAF homolog                                          | Maf-like protein                                     | Maf protein, putative                                 |
| "CJ 10000140"         | CJE0615 | pbpA | Cj0508  | pbpA | CCO0607 | _    | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | penicillin-binding protein                           | penicillin-binding protein                           | penicillin-binding protein                            |
| _                     |         |      | 5       |      |         |      |    | 1  | 1 |    | 1  | 1  | 1  | 1  | 1  |    |                                                      | 1A                                                   | 1A (PBP-1A)                                           |
| "opCcV010000<br>0257" | CJE0616 | clpB | Cj0509c | clpB | CCO0608 | -    | 1  | -1 | 1 | -1 | 1  | 1  | 1  | 1  | -1 | 0  | ATP-dependent CLP<br>protease ATP-binding<br>subunit | ATP-dependent chaperone protein ClpB                 | ATP-dependent Clp<br>protease, ATP-binding<br>subunit |
| "opCcV010000<br>0188" | CJE0617 | -    | Cj0510c | -    | CCO0609 | -    | 1  | 1  | 1 | 0  | 1  | 0  | 0  | 1  | 1  | 1  | hypothetical protein                                 | hypothetical protein                                 | conserved hypothetical protein                        |
| "CJ_10000149"         | CJE0618 | ctpA | Cj0511  | -    | CCO0611 | prc  | -1 | 1  | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative secreted protease                           | carboxyl-terminal protease                           | protease                                              |
| "CJ_10000151"         | CJE0619 | purC | Cj0512  | purC | CCO0612 | purC | 1  | 1  | 1 | 1  | 0  | 1  | 1  | 1  | 1  | 1  | phosphoribosylaminoimidaz<br>ole-succinocarboxamide  | phosphoribosylaminoimidaz<br>ole-succinocarboxamide  | phosphoribosylaminoimidaz<br>ole-succinocarboxamide   |
| "CJ_10000153"         | CJE0620 | purS | Cj0513  | -    | CCO0613 | purS | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                                 | phosphoribosylformylglycin<br>amidine synthase, purS | phosphoribosylformylglycin<br>amidine synthase, PurS  |
| "CJ_10000154"         | CJE0621 | purQ | Cj0514  | purQ | CCO0614 | purQ | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | phosphoribosylformylglycin<br>amidine synthase I     | phosphoribosylformylglycin<br>amidine synthase       | phosphoribosylformylglycin<br>amidine synthase I      |
| "CJ_10000155"         | CJE0622 | -    | Cj0515  | -    | CCO0615 | -    | 1  | 0  | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative periplasmic protein                         | hypothetical protein                                 | probable periplasmic<br>protein Cj0515                |
| "CJ_10000156"         | CJE0623 | -    | Cj0516  | plsC | CCO0616 | -    | 0  | 0  | 1 | 1  | 0  | 1  | 1  | 1  | 1  | 1  | putative 1-acyl-SN-<br>glycerol-3-phosphate          | 1-acyl-sn-glycerol-3-<br>phosphate acyltransferase,  | 1-acyl-sn-glycerol-3-<br>phosphate acyltransferase,   |
| "CJ_10000157"         | CJE0624 | -    | Cj0517  | crcB | CCO0617 | crcB | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | CRCB protein homolog                                 | CrcB                                                 | crcB protein                                          |
| "CJ_10000158"         | CJE0625 | htpG | Cj0518  | htpG | CCO0618 | -    | -1 | 1  | 1 | 1  | 1  | 1  | 1  | 0  | 1  | 1  | hsp90 family heat shock<br>protein                   | heat shock protein 90                                | hsp90 family heat shock<br>protein Cj0518             |
| "CJ_10000159"         | CJE0626 | -    | Cj0519  | -    | CCO0619 | -    | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                                 | hypothetical protein                                 | conserved hypothetical protein                        |
| "CJ_10000165"         | CJE0627 | -    | Cj0520  | -    | CCO0620 | -    | 1  | 0  | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative membrane protein                            | hypothetical protein                                 | probable membrane protein<br>Cj0520                   |
| "CJ_10000169"         | CJE0628 | -    | Cj0523  | -    | CCO0621 | -    | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative membrane protein                            | Na/Pi-cotransporter,<br>putative                     | Na/Pi cotransporter,<br>putative                      |
| "CJ_10000172"         | CJE0629 | -    | Cj0525c | pbpB | CCO0622 | -    | 0  | 1  | 1 | 1  | 0  | 1  | 1  | 1  | 1  | 1  | putative penicillin-binding protein                  | penicillin-binding protein                           | cell division protein (ftsI)                          |
| "CJ 10000173"         | CJE0630 | fliE | Cj0526c | fliE | CCO0623 | fliE | 1  | 1  | 1 | 1  | -1 | 1  | 1  | -1 | -1 | -1 | putative flagellar hook-basal                        | flagellar basal body protein                         | flagellar hook-basal body                             |

| Commonweight   Comm   | -             |          | 1    |         |      |         |      |    |    | ı  | ı  | 1  | 1  |    | 1  | 1  |    | hody compley                 |                           | acamalay mastain                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|------|---------|------|---------|------|----|----|----|----|----|----|----|----|----|----|------------------------------|---------------------------|---------------------------------------|
| Common   C   | "CI 10000174" | CIE0621  | flaC | C;0527a | flaC | CC00624 | flaC | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |                              | flagallar basal body rod  |                                       |
| Cumulation   Cum   |               |          |      | 5       | _    |         |      |    | U  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | protein                      | protein                   | protein FlgC                          |
| Commonweight   Comm   | "CJ_10000175" | CJE0632  | flgB | Cj0528c | flgB | CCO0625 | flgB | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |                              |                           |                                       |
| CF-       |               |          |      |         |      |         |      |    |    |    |    |    |    |    |    |    |    |                              | 1                         |                                       |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | "CJ_10000176" | CJE0633  | -    | Cj0529c | -    | CCO0626 | -    | 0  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | hypothetical protein         | hypothetical protein      |                                       |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | "CJ_10000177" | CJE0634  | -    | Cj0530  | -    | CCO0627 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 1  | 1  | putative periplasmic protein | hypothetical protein      |                                       |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | "CJ_10000781" | CJE0635  | icd  | Cj0531  | icd  | CCO0628 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | isocitrate dehydrogenase     |                           |                                       |
| Coloron   Color   Co   | "CJ_10000782" | CJE0636  | mdh  | Cj0532  | mdh  | CCO0629 | -    | 1  | 1  | 1  | 1  | -1 | 1  | -1 | -1 | 1  | 1  | malate dehydrogenase         | malate dehydrogenase      |                                       |
| Composition      | "CJ_10000783" | CJE0637  | sucC | Cj0533  | sucC | CCO0630 | sucC | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  |                              |                           |                                       |
| 1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932    1932   | "CJ_10000784" | CJE0638  | sucD | Cj0534  | sucD | CCO0631 | sucD | 1  | 1  | 1  | 1  | -1 | 1  | -1 | -1 | 1  | -1 |                              |                           | SucD                                  |
| Company   Comp   | "opCcV010000  | CJE0639  | oorD | Cj0535  | oorD | CCO0632 | korD | 1  | 1  | 1  | 0  | -1 | 1  | 1  | 1  | 1  | 0  | OORD subunit of 2-           | 2-oxoglutarate:acceptor   | ferrodoxin-like protein               |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |          |      |         |      |         |      |    |    |    |    |    |    |    |    |    |    | · ·                          | ·                         |                                       |
| CJ   10000785   CJ   10000791   CJ   10000791   CJ   10000791   CJ   CJ   CJ   CJ   CJ   CJ   CJ   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | "CJ_10000786" | CJE0640  | oorA | Cj0536  | oorA | CCO0633 | vorB | 1  | -1 | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  |                              | e e                       | · · · · · · · · · · · · · · · · · · · |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |          |      |         |      |         |      |    | 1  |    |    |    |    |    | 1  |    | 1  |                              |                           |                                       |
| "CJ_10000791" CJE0643 - CJ0538 onC CC00635 - I 0 0 I 0 I 1 1 1 0 0 I 1 I 1 0 0 CORC submit of 2-considerates agamma submit of conserved hypothetical protein protein in CC000797 CJE0643 - CJ05099 - CC00636 - I 0 I 0 I I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | "CJ_10000788" | CJE0641  | oorB | Cj0537  | oorB | CCO0634 | oorB | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 1  |                              |                           |                                       |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | #GT 10000701# | CITO 642 | 6    | G:0530  |      | 0000625 |      |    | 0  | 1  | 1  | 1  | 1  |    |    | 1  | 1  |                              |                           |                                       |
| CL   10000794   CE  1643   CE  1645   CE     | "CJ_10000/91" | CJE0642  | oorC | Cj0538  | oorC | CC00635 | -    | 1  | 0  | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  |                              |                           |                                       |
| CI_10000797   CIE0644   -   Cj0540   -   CC00637   -   1   0   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | "CI 10000704" | CIE0642  | +    | C;0520  |      | CC00636 |      | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |                              |                           |                                       |
| CL   1000/0819   CL     |               |          |      |         |      |         | -    | 1  | 1  | 1  |    |    | 1  | 1  | 1  | 1  | 1  |                              |                           | protein                               |
| CL   10000810   Cl   10006816   mm   Cl   0.54   mm   CC00639   mm   M   M   M   M   M   M   M   M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _             |          | -    |         | -    |         | -    | 1  |    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein         | hypothetical protein      | protein                               |
| "CJ_1000811" CJE647 proS Cj0543 proS CC00640 proS I I I I I I I I I I I I I I prolyl-tRNA synthetase prolyl-translated protein protein proling proling proling protein (Synthetical protein protein) propholinogen deaminase proling classification protein (PS44 protein) protein pr |               |          | -    |         | -    |         |      | 1  | 0  | 1  |    | -1 | 1  | -1 | 1  | 1  | -1 |                              | family protein            | synthase (ispB)                       |
| "CJ_10000812" CJE0648 - Cj0544 - CC00641 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |          | _    |         | _    |         |      | 1  | 1  | 1  | 1  | -  | 1  | 1  | 1  | 1  | 1  |                              |                           |                                       |
| CJ_10000815"   CJE0649   hemC   Cj0545   hemC   CC00642   hemC   1   1   1   0   -1   1   -1   1   1   1   popphobilingen deaminase   popphobilingen deaminase   prophobilingen deami   |               |          | proS |         | proS |         | proS | 1  | 1  | 1  |    |    | 1  | 1  | -1 | 1  | 1  |                              |                           |                                       |
| "CJ_10000815" CJE0650 - Cj0546 - CCO0643 - 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _             |          | -    | ,       | -    |         | -    | 1  | 1  | -1 |    | 1  | 1  | -1 | 1  | -1 | -1 | memnbrane protein            | hypothetical protein      | memnbrane protein Cj0544              |
| "CJ_1000820" CJE0651 flaG Cj0547 flaG CC00644 - 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 flagellar protein FlaG Clgostate Carbox-lysase. "CJ_1000820" CJE0652 fliD Cj0548 fliD CC00645 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 flagellar protein FlaG Clgostate Carbox-lysase. "CJ_1000820" CJE0652 fliD Cj0548 fliD CC00645 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |          | hemC |         | hemC |         | hemC | 1  | 1  | 1  | 0  | -1 | 1  | -1 | -1 | 1  | 1  | porphobilinogen deaminase    | porphobilinogen deaminase |                                       |
| "CJ_10000820" CJE0652 fliD Cj0548 fliD CC00645 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | "CJ_10000815" | CJE0650  | -    | Cj0546  | -    | CCO0643 | -    | 1  | 0  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | hypothetical protein         | hydroxybenzoate carboxy-  |                                       |
| "CJ_10000823" CJE0653 flis Cj0549 flis CC00646 flis 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | "CJ_10000817" | CJE0651  | flaG | Cj0547  | flaG | CCO0644 | -    | 0  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | -1 | -1 | possible flagellar protein   | flagellar protein FlaG    |                                       |
| "CJ_10000826"         CJE0654         -         Cj0550         -         CC00647         -         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th< td=""><td>"CJ_10000820"</td><td>CJE0652</td><td>fliD</td><td>Cj0548</td><td>fliD</td><td>CCO0645</td><td>-</td><td>1</td><td>1</td><td>1</td><td>1</td><td>-1</td><td>1</td><td>1</td><td>-1</td><td>1</td><td>1</td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | "CJ_10000820" | CJE0652  | fliD | Cj0548  | fliD | CCO0645 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  |                              |                           |                                       |
| CJ_10000836"   CJE0655   efp   Cj0551   efp   CC00649   efp   1   0   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | "CJ_10000823" | CJE0653  | fliS | Cj0549  | fliS | CCO0646 | fliS | 1  | 1  | 1  |    | -1 | 1  | 1  | -1 | 1  | 1  | flagellar protein            | flagellar protein FliS    | flagellar protein FliS                |
| CJ_10000837"   CJE0656   CJE0656   CJE0657   CJE0658   CJE0658   CJE0658   CJE0658   CJE0659     | "CJ_10000826" | CJE0654  | -    | Cj0550  | -    | CCO0647 | -    | 1  | 1  | 1  | 1  | -1 | 0  | 1  | 1  | 1  | 1  | hypothetical protein         | hypothetical protein      |                                       |
| "CJ_10000838"         CJE0657         -         Cj0553         -         -         1         1         1         1         1         -         1         1         1         -         -         1         1         1         1         -         -         1         1         1         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td>"CJ_10000836"</td> <td>CJE0655</td> <td>efp</td> <td>Cj0551</td> <td>efp</td> <td>CCO0649</td> <td>efp</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>-1</td> <td>1</td> <td>1</td> <td>-1</td> <td>1</td> <td>1</td> <td>elongation factor P</td> <td>elongation factor P</td> <td>Ü</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | "CJ_10000836" | CJE0655  | efp  | Cj0551  | efp  | CCO0649 | efp  | 1  | 0  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | elongation factor P          | elongation factor P       | Ü                                     |
| "CJ_10000838"         CJE0657         -         Cj0553         -         -         -         1         1         1         1         -         1         1         -         1         1         -         -         -         Putative integral membrane protein         hypothetical protein         -           "CJ_10000839"         CJE0658         -         Cj0554         -         -         -         1         1         1         -         1         1         -         1         1         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | "CJ_10000837" | CJE0656  | -    | Cj0552  | -    | -       | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | hydrophobic protein          | hypothetical protein      | -                                     |
| "CJ_10000839" CJE0658 - Cj0554 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | "CJ_10000838" | CJE0657  | -    | Cj0553  | -    | -       | -    | 1  | 1  | 1  | 1  | -1 | 1  | -1 | -1 | 1  | 1  |                              | hypothetical protein      | -                                     |
| "CJ_10000840" CJE0659 - Cj0555 1 1 1 1 -1 1 1 1 -1 1 1 -1 putative integral membrane hypothetical protein -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | "CJ 10000839" | CJE0658  | 1 -  | Ci0554  | -    | -       | -    | 1  | 1  | 1  | 1  | -1 | -1 | 0  | 1  | 1  | -1 |                              | hypothetical protein      | -                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          | -    |         | -    | -       | -    | -1 | 1  | 1  | -1 |    | 1  | 1  | -1 | 1  |    | putative integral membrane   |                           | -                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | "CJ 10000842" | CJE0660  | +    | Ci0556  |      | +       | +    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein         | hypothetical protein      |                                       |

| "CJ_10000844"         | CJE0661 | -    | Cj0557c | -    | CCO0650 | -     | 1  | 1  | 1  | -1 | -1 | 1  |    | -1 | 1  | 1  | putative integral membrane protein                   | hypothetical protein                              | probable integral membrane<br>protein Cj0557c    |
|-----------------------|---------|------|---------|------|---------|-------|----|----|----|----|----|----|----|----|----|----|------------------------------------------------------|---------------------------------------------------|--------------------------------------------------|
| "CJ_10000845"         | CJE0662 | -    | Cj0557c | -    | CCO0651 | -     | 1  | 1  | 1  | 0  | 1  | 1  | 1  | -1 | 0  | 1  | putative integral membrane protein                   | hypothetical protein                              | probable integral membrane<br>protein Cj0557c    |
| "CJ_10000850"         | CJE0663 | -    | Cj0559  | -    | CCO0653 | -     | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | oxidoreductase                                       | pyridine nucleotide-<br>disulphide oxidoreductase | oxidoreductase Cj0559                            |
| "CJ_10000853"         | CJE0665 | -    | Cj0560  | -    | CCO0655 | -     | 1  | 1  | 1  | -1 | -1 | 1  | 1  | -1 | -1 | 1  | putative integral membrane<br>protein                | pseudogene                                        | MATE efflux family protein, putative             |
| "CJ_10000865"         | CJE0666 | -    | Cj0561c | -    | CCO0656 | -     | 1  | 0  | 1  | 1  | -1 | -1 | -1 | 0  | 1  | 1  | possible periplasmic protein                         | hypothetical protein                              | probable periplasmic<br>protein Cj0561c          |
| "CJ_10000866"         | CJE0667 | dnaB | Cj0562  | dnaB | CCO0657 | dnaB  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | -1 | -1 | 1  | replicative DNA helicase                             | replicative DNA helicase                          | replicative DNA helicase                         |
| "CJ_10000867"         | CJE0668 | -    | Cj0563  | -    | -       | -     | 1  | 1  | 1  | -1 | 1  | -1 | 1  | -1 | 1  | 1  | hypothetical protein                                 | hypothetical protein                              | -                                                |
| "CJ_10000868"         | CJE0669 | -    | Cj0564  | -    | -       | -     | 1  | 1  | 1  | 1  | 1  | 1  | -1 | -1 | 1  | -1 | putative integral membrane<br>protein                | hypothetical protein                              | -                                                |
| "opCjV010000<br>0279" | CJE0670 | -    | -       | -    | -       | -     | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | -1 | -                                                    | GTP-binding protein                               | -                                                |
| "opCjV010000<br>0872" | CJE0671 | -    | -       | -    | -       | -     | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | -1 | -                                                    | hypothetical protein                              | -                                                |
| "opCjV010000<br>1026" | CJE0672 | -    | -       | -    | -       | -     | -1 | -1 | -1 | -1 | 1  | -1 | 1  | 1  | -1 | -1 | -                                                    | hypothetical protein                              | -                                                |
| "CJ_10000882"         | CJE0673 | -    | Cj0570  | -    | CCO0247 | -     | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | putative ATP /GTP binding protein                    | pseudogene                                        | probable ATP /GTP binding<br>protein Cj0570      |
| "CJ_10000889"         | CJE0674 | -    | Cj0571  | -    | CCO0245 | -     | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | putative transcriptional regulator                   | transcriptional regulator,<br>putative            | probable transcription<br>regulator Cj0571       |
| "CJ_10000890"         | CJE0675 | ribB | Cj0572  | ribA | CCO1384 | ribBA | 1  | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | GTP cyclohydrolase II / 3,4-<br>dihydroxy-2-butanone | bifunctional 3,4-dihydroxy-<br>2-butanone         | 3,4-dihydroxy-2-butanone<br>4-phosphate          |
| "CJ_10000891"         | CJE0676 | -    | Cj0573  | -    | CCO1383 | -     | 1  | -  | 1  | 0  | -1 | 1  | 1  | -1 | 1  | -1 | hypothetical protein                                 | GatB/Yqey family protein                          | YqeY family protein                              |
| "CJ_10000892"         | CJE0677 | ilvB | Cj0574  | ilvI | CCO1382 | ilvB  | 1  | 1  |    | 1  | -1 | 0  | -1 | 1  | 1  | -1 | acetolactate synthase large subunit                  | acetolactate synthase III<br>large subunit        | acetolactate synthase, large subunit,            |
| "CJ_10000893"         | CJE0678 | ilvH | Cj0575  | ilvH | CCO1381 | ilvN  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | -1 | 1  | 1  | acetolactate synthase small subunit                  | acetolactate synthase III<br>small subunit        | acetolactate synthase, small subunit             |
| "CJ_10000894"         | CJE0679 | lpxD | Cj0576  | lpxD | CCO1380 | lpxD  | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | UDP-3-O-[3-<br>hydroxymyristoyl]<br>glucosamine      | UDP-3-O-[3-<br>hydroxymyristoyl]<br>glucosamine   | UDP-3-O-[3-<br>hydroxymyristoyl]<br>glucosamine  |
| "CJ_10000895"         | CJE0680 | queA | Cj0577c | queA | CCO1379 | queA  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | -1 | 1  | 1  | S-<br>adenosylmethionine:tRNA                        | S-<br>adenosylmethionine:tRNA                     | S-<br>adenosylmethionine:tRNA                    |
| "CJ_10000896"         | CJE0681 | tatC | Cj0578c | mttB | CCO1378 | tatC  | 1  | 1  | 1  | -1 | -1 | 1  | -1 | -1 | 1  | -1 | sec-independant protein translocase                  | Sec-independent protein<br>translocase TatC       | Sec-independent protein<br>translocase TatC      |
| "CJ_10000897"         | CJE0682 | tatB | Cj0579c | -    | CCO1377 | -     | 0  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | hypothetical protein                                 | sec-independent translocase                       | Sec-independent protein translocase protein      |
| "CJ_10000898"         | CJE0683 | -    | Cj0580c | -    | CCO1376 | 1     | 1  | 1  | 1  | -1 | -1 | 1  | 1  | -1 | -1 | 1  | putative oxidoreductase                              | coproporphyrinogen III<br>oxidase                 | oxygen-independent<br>coproporphyrinogen III     |
| "CJ_10000899"         | CJE0684 | nidH | Cj0581  | -    | CCO1375 | mutT  | 1  | 1  | 1  | 1  | -1 | 1  | -1 | -1 | 1  | -1 | putative NTPase                                      | dinucleoside polyphosphate hydrolase              | (di)nucleoside<br>polyphosphate hydrolase        |
| "CJ_10000900"         | CJE0685 | -    | Cj0582  | lysC | CCO1374 | 1     | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | aspartokinase, alpha and beta subunits               | aspartate kinase                                  | aspartate kinase,<br>monofunctional class        |
| "CJ_10000901"         | CJE0686 | -    | Cj0583  | -    | CCO1373 | -     | 1  | 1  | 1  | 1  | -1 | 1  | 0  | 1  | 1  | 1  | hypothetical protein                                 | hypothetical protein                              | conserved hypothetical protein                   |
| "CJ_10000902"         | CJE0687 | -    | Cj0584  | -    | CCO1372 | -     | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | hypothetical protein                                 | DNA polymerase III subunit delta                  | DNA polymerase III delta<br>prime subunit (holB) |
| "opCcV010000<br>0841" | CJE0688 | folP | Cj0585  | folP | CCO1371 | folP  | 1  | 1  | 1  | 1  | -1 | 0  | -1 | 1  | 0  | 1  | putative dihydropteroate synthase                    | dihydropteroate synthase                          | dihydropteroate synthase<br>(folP)               |
| "CJ_10000903"         | CJE0689 | ligA | Cj0586  | ligA | CCO1368 | -     | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | DNA ligase                                           | DNA ligase                                        | DNA ligase (NAD) Cj0586                          |
| "CJ_10000904"         | CJE0690 | -    | Cj0587  | -    | CCO1366 | -     | 1  | 1  | 1  | 1  | -1 | 1  | -1 | 1  | 1  | 1  | putative integral membrane protein                   | hypothetical protein                              | probable integral membrane<br>protein Cj0587     |

| "CJ 10000905"         | CJE0691 | tlyA | Ci0588  | tlyA | CCO1365 | tly  | 1  | 1  | 1 | -1 | -1 | 1 1 | 1 1 | 1  | 1 1 | 1  | putative haemolysin                                        | hemolysin A                                       | hemolysin (tly)                                   |
|-----------------------|---------|------|---------|------|---------|------|----|----|---|----|----|-----|-----|----|-----|----|------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| "CJ_10000906"         | CJE0692 | -    | Cj0589  | ribF | CCO1364 | ribF | 1  | 1  | 1 | 1  | 1  | 1   | 1   | -1 | 1   | 1  | putative identifysin<br>putative riboflavin kinase<br>/FMN | hypothetical protein                              | riboflavin biosynthesis<br>protein RibF           |
| "CJ_10000907"         | CJE0693 | -    | Cj0590  | -    | CCO1363 | -    | 1  | 1  | 1 | 1  | -1 | 1   | 1   | -1 | 1   | 0  | hypothetical protein                                       | methyltransferase, putative                       | methyltransferase, putative                       |
| "CJ_10000915"         | CJE0694 | -    | Cj0591c | -    | CCO1362 | -    | 1  | 1  | 1 | 1  | 1  | 1   | 1   | -1 | 1   | 1  | putative lipoprotein                                       | lipoprotein, putative                             | probable lipoprotein<br>Cj0591c -related protein  |
| "CJ_10000917"         | CJE0695 | -    | Cj0592c | -    | -       | -    | 1  | 1  | 1 | 1  | -1 | 1   | 1   | 1  | 1   | -1 | putative periplasmic protein                               | hypothetical protein                              | -                                                 |
| "CJ_10000920"         | CJE0696 | -    | Cj0593c | -    | CCO1361 | -    | 1  | 1  | 1 | 1  | -1 | 1   | 1   | -1 | -1  | 1  | putative integral membrane<br>protein                      | hypothetical protein                              | probable integral membrane<br>protein Cj0593c     |
| "CJ_10000923"         | CJE0697 | -    | Cj0594c | -    | CCO1360 | -    | 0  | 1  | 1 | 1  | -1 | 1   | 1   | 1  | 1   | 1  | putative periplasmic protein                               | DNA/RNA non-specific endonuclease                 | DNA/RNA non-specific endonuclease                 |
| "CJ_10000925"         | CJE0698 | nth  | Cj0595c | nth  | CCO1359 | nth  | 0  | 1  | 1 | 1  | 0  | 1   | 1   | 1  | 1   | 1  | endonuclease III                                           | endonuclease III                                  | endonuclease III                                  |
| "CJ_10000926"         | CJE0699 | -    | Cj0596  | -    | CCO1358 | -    | 1  | 1  | 1 | 1  | -1 | 1   | 1   | 1  | 1   | 1  | peptidyl-prolyl cis-trans<br>isomerase                     | major antigenic peptide<br>PEB4                   | peptidyl-prolyl cis-trans<br>isomerase            |
| "CJ_10000927"         | CJE0700 | fbaA | Cj0597  | fba  | CCO1357 | fba  | 1  | 1  | 1 | -1 | -1 | 1   | 0   | -1 | 1   | -1 | fructose-bisphosphate<br>aldolase                          | fructose-bisphosphate<br>aldolase                 | fructose-bisphosphate<br>aldolase, class II       |
| "CJ_10000929"         | CJE0701 | -    | Cj0598  | -    | CCO1356 | -    | 1  | 1  | 1 | 1  | 1  | 1   | 1   | 0  | 1   | -1 | putative membrane protein                                  | hypothetical protein                              | probable membrane protein<br>Cj0598               |
| "CJ_10000931"         | CJE0702 | -    | Cj0599  | -    | CCO1355 | -    | 1  | 1  | 1 | 1  | -1 | 1   | 1   | 0  | 1   | 1  | putative periplasmic protein                               | chemotaxis protein MotB,<br>putative              | probable periplasmic<br>protein Cj0599            |
| "CJ_10000932"         | CJE0703 | -    | Cj0600  | -    | CCO1354 | -    | 1  | 1  | 1 | 1  | 0  | 1   | -1  | 1  | 0   | 1  | hypothetical protein                                       | hypothetical protein                              | conserved hypothetical                            |
| "CJ_10000942"         | CJE0704 | -    | Cj0601c | -    | CCO0684 | -    | 1  | 1  | 1 | 1  | -1 | 1   | 1   | 1  | 1   | 1  | putative sodium-dependent<br>transmembrane                 | sodium-dependent<br>transporter, putative         | sodium- and chloride-<br>dependent transporter    |
| "CJ 10000944"         | CJE0705 | -    | Ci0602c | -    | CCO0685 | -    | 1  | 1  | 1 | -1 | -1 | 1   | 1   | 0  |     | 1  | hypothetical protein                                       | MOSC domain protein                               | MOSC domain protein                               |
| "CJ_10000947"         | CJE0706 | dsbD | Cj0603c | dsbD | CCO0686 | -    | 1  | 1  | 1 | 1  | -1 | 1   | 1   | 1  | 1   | 1  | putative thiol:disulfide interchange protein               | thiol:disulfide interchange<br>protein DsbD       | thiol:disulfide interchange<br>protein DsbD       |
| "CJ_10000950"         | CJE0707 | -    | Cj0604  | -    | CCO0687 | -    | 1  | 1  | 1 | 1  | -1 | 0   | -1  | -1 | 1   | 1  | hypothetical protein                                       | hypothetical protein                              | Domain of unknown<br>function (DUF344) family     |
| "CJ_10000952"         | CJE0708 | -    | Cj0605  | -    | CCO0688 | -    | 1  | 1  | 1 | 1  | 1  | -1  | -1  | 1  | -1  | -1 | putative amidohydrolase                                    | carboxypeptidase                                  | peptidase, M20/M25/M40<br>family                  |
| "CJ_10000954"         | CJE0709 | -    | Cj0606  | -    | CCO0689 | -    | 1  | 1  | 1 | -1 | -1 | 0   | 0   | -1 | 1   | 1  | putative periplasmic protein                               | macrolide-specific efflux<br>protein macA         | probable periplasmic<br>protein Cj0606            |
| "CJ_10000956"         | CJE0710 | -    | Cj0607  | -    | CCO0690 | ybjZ | -1 | 0  | 1 | 1  |    | 1   | -1  | -1 | 1   | 1  | ABC-type transmembrane transport protein                   | macrolide-specific efflux<br>protein macB         | ABC transporter, ATP-<br>binding protein          |
| "CJ_10000958"         | CJE0711 | -    | Cj0608  | -    | CCO0691 | -    | 0  | 1  | 1 | 1  | -1 | 1   | 1   | -1 | 1   | 1  | putative outer membrane<br>protein                         | outer membrane efflux<br>protein                  | outer membrane efflux<br>family protein, putative |
| "CJ_10000960"         | CJE0712 | -    | Cj0609c | -    | CCO0692 | -    | 1  | 1  | 1 | 1  | 1  | 1   | 1   | 1  | 1   | 1  | possible periplasmic protein                               | hypothetical protein                              | probable periplasmic<br>protein Cj0609c           |
| "CJ_10000961"         | CJE0713 | -    | Cj0610c | -    | CCO0693 | -    | 1  | 1  | 1 | 1  | -1 | 1   | 1   | 1  | 1   | 1  | putative periplasmic protein                               | hypothetical protein                              | probable periplasmic<br>protein Cj0610c           |
| "CJ_10000972"         | CJE0714 | algI | Cj0611c | -    | CCO0694 | -    | 1  | 1  |   | 1  | -1 | 1   | -1  | -1 | 1   | -1 | putative transmembrane<br>transport protein                | alginate O-acetyltransferase<br>AlgI              | probable transmembrane transport protein          |
| "opCcV010000<br>0246" | CJE0715 | ftn  | Cj0612c | cft  | CCO0695 | pfr  | -1 | -1 | 1 | 0  | 1  | 1   | -1  | 1  | -1  | 1  | ferritin                                                   | nonheme iron-containing ferritin                  | ferritin                                          |
| "CJ_10000976"         | CJE0716 | -    | Cj0613  | pstS | CCO0696 | -    | 1  | 1  | 1 | 1  | -1 | 1   | 1   | 1  | 1   | -1 | possible periplasmic phosphate binding protein             | phosphate ABC transporter,<br>periplasmic         | probable periplasmic phosphate binding protein    |
| "CJ_10000979"         | CJE0717 | -    | Cj0614  | pstC | CCO0697 | -    | 1  | 1  | 1 | 1  | 0  | 1   | 1   | -1 | 1   | 1  | putative phosphate transport<br>system permease            | phosphate ABC transporter,<br>permease protein    | probable phosphate<br>transport system permease   |
| "CJ_10000981"         | CJE0718 | -    | Cj0615  | pstA | CCO0698 | -    | 1  | 1  | 1 | 1  | 1  | 1   | 1   | 1  | 1   | 1  | putative phosphate transport<br>system permease            | phosphate ABC transporter,<br>permease protein    | probable phosphate<br>transport system permease   |
| "CJ_10000983"         | CJE0719 | pstB | Cj0616  | pstB | CCO0699 | pstB | 1  | 0  | 1 | 1  | 1  | 1   | 1   | 1  | 1   | 1  | putative phosphate transport<br>ATP-binding                | phosphate ABC transporter,<br>ATP-binding protein | phosphate ABC transporter,<br>ATP-binding protein |
| "CJ_10000987"         | CJE0720 | -    | Cj0618  | -    | CCO0700 | -    | 1  | 1  | 1 | 1  | 1  | -1  | 1   | 1  | 1   | -1 | hypothetical protein                                       | pseudogene                                        | conserved hypothetical protein                    |

|                       | GTEO SOL |      |         |      |         | 1    |    | Ι. |    |    |    |    |    | T. |    |    | T                                               | I a a a a                                           | T                                                   |
|-----------------------|----------|------|---------|------|---------|------|----|----|----|----|----|----|----|----|----|----|-------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| "opCjV010000<br>1074" | CJE0721  | -    | -       | -    | -       | -    | -1 | 0  | -1 | 1  | 1  | -1 | -1 | 1  | 1  | 1  | -                                               | hypothetical protein                                | -                                                   |
| "CJ_10000988"         | CJE0722  | -    | Cj0619  | -    | CCO0701 | -    | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | -1 | putative integral membrane protein              | MATE efflux family protein                          | probable integral membrane<br>protein Cj0619        |
| "CJ_10000990"         | CJE0723  | -    | Cj0620  | -    | CCO0702 | -    | -1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                            | hypothetical protein                                | conserved hypothetical protein                      |
| "CJ_10001001"         | CJE0724  | -    | Cj0621  | -    | CCO0703 | -    | 0  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | hypothetical protein                            | hypothetical protein                                | conserved hypothetical protein                      |
| "CJ_10001003"         | CJE0725  | hypF | Cj0622  | hypF | CCO0704 | hypF | 1  | 1  | 1  | -1 | -1 | 1  | 1  | 1  | 1  | 1  | transcriptional regulatory protein hypF         | [NiFe] hydrogenase<br>maturation protein HypF       | [NiFe] hydrogenase<br>maturation protein HypF       |
| "CJ_10001006"         | CJE0726  | hypB | Cj0623  | hypB | CCO0705 | hypB | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 1  | hydrogenase isoenzymes<br>formation protein     | hydrogenase accessory<br>protein HypB               | hydrogenase accessory<br>protein HypB               |
| "CJ_10001009"         | CJE0727  | hypC | Cj0624  | hypC | CCO0706 | hypC | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | hydrogenase isoenzymes<br>formation protein     | hydrogenase assembly<br>chaperone HypC/HupF         | hydrogenase assembly<br>chaperone hypC/hupF         |
| "CJ_10001011"         | CJE0728  | hypD | Cj0625  | hypD | CCO0707 | hypD | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hydrogenase isoenzymes<br>formation protein     | hydrogenase<br>expression/formation<br>protein HypD | hydrogenase<br>expression/formation<br>protein HypD |
| "CJ_10001013"         | CJE0729  | hypE | Cj0626  | hypE | CCO0708 | -    | 1  | 1  | 1  | 1  | -1 |    | 1  | -1 | -1 | -1 | hydrogenase isoenzymes<br>formation protein     | hydrogenase<br>expression/formation<br>protein HypE | hydrogenase isoenzymes<br>formation protein Cj0626  |
| "CJ_10001015"         | CJE0730  | hypA | Cj0627  | hypA | CCO0709 | hypA | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  |    | 1  | hydrogenase expression<br>/formation protein    | hydrogenase nickel<br>insertion protein HypA        | hydrogenase nickel<br>insertion protein HypA        |
| "opCjV010000<br>0653" | CJE0731  | -    | -       | -    | -       | -    | -1 | -1 | -1 | -1 | -1 | -1 | 1  | 1  | 1  | -1 | -                                               | type III restriction/modification enzyme,           | -                                                   |
| "opCjV010000<br>0114" | CJE0732  | -    | -       | -    | -       | -    | -1 | -1 | -1 | -1 | 1  | -1 | 1  | 1  | -1 | -1 | -                                               | type III restriction-<br>modification enzyme        | -                                                   |
| "CJ_10001019"         | CJE0733  | -    | Cj0630c | -    | CCO0710 | -    | 1  | 0  | 0  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | hypothetical protein                            | hypothetical protein                                | conserved hypothetical protein                      |
| "CJ_10000102"         | CJE0734  | -    | Cj0631c | -    | CCO0711 | -    | 1  | 1  | 1  | 1  | 0  | 1  | 1  | -1 | 1  | 1  | putative ribonuclease                           | RNB-like protein                                    | probable ribonuclease<br>Cj0631c                    |
| "CJ_10000103"         | CJE0735  | ilvC | Cj0632  | ilvC | CCO0712 | ilvC | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | ketol-acid reductoisomerase                     | ketol-acid reductoisomerase                         | ketol-acid reductoisomerase                         |
| "CJ_10000104"         | CJE0736  | -    | Cj0633  | -    | CCO0713 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative periplasmic protein                    | hypothetical protein                                | probable periplasmic<br>protein Cj0633              |
| "CJ_10000105"         | CJE0737  | dprA | Cj0634  | -    | CCO0714 | dprA | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | SMF family protein                              | DNA processing protein A                            | DNA processing chain A (dprA)                       |
| "CJ_10000106"         | CJE0738  | -    | Cj0635  | -    | CCO0715 | -    | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                            | Holliday junction resolvase-<br>like protein        | conserved hypothetical protein TIGR00250            |
| "CJ_10000107"         | CJE0739  | -    | Cj0636  | -    | CCO0716 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | NOL1\NOP2\sun family protein                    | NOL1/NOP2/sun family protein                        | Sun/nucleolar protein<br>family protein VC1502      |
| "CJ_10000108"         | CJE0740  | msrA | Cj0637c | mrsA | CCO0717 | msrA | 0  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | putative peptide methionine sulfoxide reductase | peptide methionine<br>sulfoxide reductase           | peptide methionine<br>sulfoxide reductase           |
| "CJ_10000110"         | CJE0741  | ppa  | Cj0638c | ppa  | CCO0718 | ppa  | -1 | -1 | 0  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | inorganic pyrophosphatase                       | inorganic pyrophosphatase                           | inorganic pyrophosphatase                           |
| "CJ_10000112"         | CJE0742  | adk  | Cj0639c | adk  | CCO0719 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | adenylate kinase                                | adenylate kinase                                    | adenylate kinase Cj0639c                            |
| "CJ_10000114"         | CJE0743  | aspS | Cj0640c | aspS | CCO0720 | aspS | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | aspartyl-tRNA synthetase                        | aspartyl-tRNA synthetase                            | aspartyl-tRNA synthetase                            |
| "CJ_10000122"         | CJE0744  | -    | Cj0641  | -    | CCO0721 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 1  | hypothetical protein                            | ATP-NAD kinase, putative                            | inorganic<br>polyphosphate/ATP-NAD<br>kinase        |
| "CJ_10000123"         | CJE0745  | recN | Cj0642  | recN | CCO0722 | -    | 1  | -1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative DNA repair protein                     | DNA repair protein RecN                             | DNA repair protein RecN, putative                   |
| "CJ_10000124"         | CJE0746  | -    | Cj0643  |      | CCO0723 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative two-component response regulator       | response regulator/GGDEF<br>domain protein          | response regulator/GGDEF domain protein,            |
| "CJ_10000125"         | CJE0747  | -    | Cj0644  | -    | CCO0724 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                            | hydrolase, TatD family                              | hydrolase, TatD family                              |
| "CJ_10000126"         | CJE0748  | -    | Cj0645  | -    | CCO0725 | dniR | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative secreted                               | membrane-bound lytic                                | regulatory protein DniR                             |
|                       |          |      |         |      |         |      |    |    |    |    |    |    |    |    |    |    | transglycosylase                                | murein transglycosylase D,                          | _                                                   |

| "CJ_10000127"         | CJE0749 | rlpA | Cj0646  | -    | CCO0726 | -    | 1  | 1  | 1  | 1 | 1  | 1 | 1 | 1 | 1 | 1  | putative lipoprotein                     | rare lipoprotein A                            | lipoprotein, rare lipoprotein<br>A family          |
|-----------------------|---------|------|---------|------|---------|------|----|----|----|---|----|---|---|---|---|----|------------------------------------------|-----------------------------------------------|----------------------------------------------------|
| "CJ_10000128"         | CJE0750 | -    | Cj0647  | -    | CCO0727 | -    | 1  | 0  | 1  | 1 | 1  | 0 | 1 | 1 | 1 | 1  | hypothetical protein                     | phosphatase, YrbI family                      | phosphatase, YrbI family                           |
| "CJ_10000130"         | CJE0751 | -    | Cj0648  | -    | CCO0728 | -    | 1  | 1  | 1  | 1 | 1  | 1 | 1 | 1 | 1 | 1  | hypothetical protein                     | hypothetical protein                          | conserved hypothetical protein                     |
| "CJ_10000132"         | CJE0752 | -    | Cj0649  | -    | CCO0729 | -    | 0  | 1  | 1  | 1 | 1  | 1 | 0 | 1 | 1 | 1  | hypothetical protein                     | OstA family protein                           | ostA family protein                                |
| "CJ_10000134"         | CJE0753 | -    | Cj0650  | -    | CCO0730 | -    | 0  | 0  | 1  | 1 | 1  | 1 | 1 | 1 | 1 | 1  | putative ATP /GTP binding protein        | GTP-binding protein                           | GTP-binding protein EngB                           |
| "CJ_10000141"         | CJE0754 | -    | Cj0651  | -    | CCO0731 | -    | 1  | 1  | 1  | 1 | 1  | 1 | 1 | 1 | 1 | 1  | putative integral membrane<br>protein    | hypothetical protein                          | probable integral membrane<br>protein Cj0651       |
| "CJ_10000142"         | CJE0755 | pbpC | Cj0652  | pbpC | CCO0732 | -    | 1  | 1  | 1  | 1 | 1  | 1 | 1 | 1 | 1 | 1  | penicillin-binding protein               | penicillin-binding protein 2                  | penicillin-binding protein 2<br>(pbp2)             |
| "CJ_10000143"         | CJE0756 | -    | Cj0653c | -    | CCO0733 | -    | 1  | 0  | 1  | 1 | 1  | 1 | 1 | 1 | 1 | 1  | putative aminopeptidase                  | peptidase, M24 family                         | peptidase, M24 family protein                      |
| "opCjV010000<br>0750" | CJE0757 | -    | Cj0654c | -    | -       | -    | 1  | 1  | 1  | 1 | 1  | 1 | 1 | 1 | 1 | 1  | pseudogene                               | di-/tripeptide transporter                    | -                                                  |
| "CJ_10000144"         | CJE0758 | -    | Cj0654c | -    | -       | -    | -1 | -1 | -1 | 1 | 1  | 1 | 1 | 1 | 1 | 1  | pseudogene                               | pseudogene                                    | -                                                  |
| "opCjV010000<br>0166" | CJE0759 | -    | Cj0654c | -    | -       | -    | 0  | 0  | -1 | 1 | 0  | 1 | 1 | 0 | 1 | 1  | pseudogene                               | hypothetical protein                          | -                                                  |
| "CJ_10000145"         | CJE0761 | -    | Cj0659c | -    | CCO0734 | -    | 1  | 1  | 0  | 1 | 1  | 1 | 1 | 1 | 1 | 1  | putative periplasmic protein             | hypothetical protein                          | probable periplasmic<br>protein Cj0659c , putative |
| "CJ_10000146"         | CJE0762 | -    | Cj0660c | -    | CCO0735 | -    | 1  | 0  | -1 | 1 | 0  | 1 | 1 | 1 | 1 | 1  | putative transmembrane<br>protein        | hypothetical protein                          | probable transmembrane<br>protein Cj0660c          |
| "CJ_10000147"         | CJE0763 | era  | Cj0661c | era  | CCO0736 | era  | 0  | 1  | 1  | 1 | 1  | 1 | 0 | 1 | 1 | 1  | GTP-binding protein ERA<br>homolog       | GTP-binding protein Era                       | GTP-binding protein Era                            |
| "CJ_10000148"         | CJE0764 | hslU | Cj0662c | hslU | CCO0737 | hslU | 0  | 0  | 1  | 1 | 1  | 1 | 1 | 1 | 1 | 1  | putative heat shock protein              | ATP-dependent protease<br>ATP-binding subunit | heat shock protein HslVU,<br>ATPase subunit HslU   |
| "CJ_10000150"         | CJE0765 | hslV | Cj0663c | hslV | CCO0738 | hslV | 1  | 1  | 1  | 1 | 1  | 1 | 1 | 1 | 1 | 1  | putative heat shock protein              | ATP-dependent protease peptidase subunit      | heat shock protein                                 |
| "CJ_10000152"         | CJE0766 | rplI | Cj0664c | rplI | CCO0739 | rplI | 1  | 1  | 1  | 1 | 1  | 1 | 1 | 1 | 1 | 1  | 50S ribosomal protein L9                 | 50S ribosomal protein L9                      | ribosomal protein L9                               |
| "CJ_10000160"         | CJE0767 | argG | Cj0665c | argG | CCO0740 | argG | 1  | 1  | 1  | 1 | 1  | 1 | 1 | 1 | 1 | 1  | argininosuccinate synthase               | argininosuccinate synthase                    | argininosuccinate synthase                         |
| "CJ_10000161"         | CJE0768 | -    | Cj0667  | -    | CCO0741 | -    | 1  | 0  | 1  | 1 | 0  | 1 | 1 | 1 | 1 | 1  | hypothetical protein                     | S4 domain protein                             | S4 domain protein                                  |
| "CJ_10000162"         | CJE0769 | -    | Cj0668  | -    | CCO0742 | -    | 1  | 1  | 1  | 1 | 1  | 1 | 1 | 1 | 1 | 1  | putative ATP /GTP-binding protein        | conserved hypothetical protein TIGR00150      | conserved hypothetical<br>protein TIGR00150        |
| "opCcV010000<br>0267" | CJE0770 | -    | Cj0669  | -    | CCO0743 | -    | 1  | 1  | 1  | 1 | -1 | 1 | 1 | 1 | 1 | 1  | ABC-transporter ATP-<br>binding protein  | ABC transporter, ATP-<br>binding protein      | ABC transporter, ATP-<br>binding protein           |
| "opCcV010000<br>2014" | CJE0771 | rpoN | Cj0670  | rpoN | CCO0744 | -    | 1  | 1  | 1  | 1 | -1 | 1 | 1 | 1 | 1 | -1 | RNA polymerase sigma-54 factor           | DNA-directed RNA<br>polymerase subunit N      | RNA polymerase sigma-54 factor, putative           |
| "CJ_10000163"         | CJE0772 | dcuB | Cj0671  | dcuB | CCO0745 | -    | 1  | 1  | 1  | 1 | 1  | 1 | 1 | 1 | 1 | 1  | putative anaerobic C4-                   | anaerobic C4-dicarboxylate                    | anaerobic C4-dicarboxylate                         |
|                       |         |      |         |      |         |      |    |    |    |   |    |   |   |   |   |    | dicarboxylate transporter                | transporter                                   | membrane transporter                               |
| "CJ_10000164"         | CJE0773 | -    | Cj0672  | -    | -       | -    | 1  | 1  | 1  | 1 | 1  | 1 | 1 | 1 | 1 | 1  | Putative periplasmic protein             | hypothetical protein                          | -                                                  |
| "CJ_10000166"         | CJE0774 | -    | Cj0676  | kdpA | -       | -    | 1  | 1  | 1  | 1 | 1  | 1 | 1 | 1 | 1 | 1  | pseudogene                               | pseudogene                                    | -                                                  |
| "CJ_10000168"         | CJE0775 | -    | Cj0677  | kdpB | -       | -    | 1  | 1  | 1  | 1 | 1  | 1 | 1 | 1 | 1 | 1  | potassium-transporting<br>ATPase B chain | pseudogene                                    | -                                                  |
| "CJ_10000170"         | CJE0776 | -    | Cj0678  | kdpC | -       | -    | 1  | 1  | 1  | 1 | 0  | 1 | 1 | 0 | 1 | 1  | pseudogene                               | potassium-transporting<br>ATPase, C subunit,  | -                                                  |
| "CJ_10000178"         | CJE0777 | -    | Cj0679  | -    | -       | -    | 1  | 1  | 1  | 1 | 1  | 1 | 1 | 1 | 1 | 1  | truncated KdpD protein                   | pseudogene                                    | -                                                  |
| "CJ_10000179"         | CJE0778 | uvrB | Cj0680c | uvrB | CCO0746 | uvrB | 0  | 0  | 1  | 1 | 1  | 1 | 1 | 1 | 1 | 1  | excinuclease ABC subunit B               | excinuclease ABC subunit B                    | excinuclease ABC, B subunit                        |
| "CJ_10000180"         | CJE0779 | -    | Cj0681  | -    | CCO0747 | -    | 1  | 1  | 1  | 1 | 0  | 1 | 1 | 1 | 1 | 1  | hypothetical protein                     | hypothetical protein                          | conserved hypothetical protein                     |
| "CJ_10000181"         | CJE0780 | -    | Cj0682  | -    | CCO0748 | -    | 0  | 1  | 0  | 1 | 1  | 1 | 1 | 1 | 1 | 1  | hypothetical protein                     | hypothetical protein                          | conserved hypothetical protein                     |
| "CJ_10000182"         | CJE0781 | -    | Cj0683  | -    | CCO0749 | -    | 0  | 1  | 1  | 1 | 1  | 1 | 1 | 1 | 1 | 1  | putative periplasmic protein             | hypothetical protein                          | prepilin-like protein                              |

| "CJ_10000183"         | CJE0782 | priA | Cj0684  | priA  | CCO0750 | priA   | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | putative primosomal protein N'                   | primosome assembly<br>protein PriA                | primosomal protein N`                              |
|-----------------------|---------|------|---------|-------|---------|--------|----|----|----|----|----|----|----|----|----|----|--------------------------------------------------|---------------------------------------------------|----------------------------------------------------|
| "opCjjV010000<br>198" | CJE0783 | -    | Cj0685c | -     | -       | -      | 1  | 1  | 0  | 1  | 1  | 1  | 0  | 0  | 1  | 1  | possible sugar transferase                       | invasion phenotype protein                        | -                                                  |
| "CJ_10000184"         | CJE0785 | ispG | Cj0686  | gcpE  | CCO0752 | ispG   | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | gcpE protein homolog                             | 4-hydroxy-3-methylbut-2-<br>en-1-yl diphosphate   | 1-hydroxy-2-methyl-2-(E)-<br>butenyl 4-diphosphate |
| "CJ_10000185"         | CJE0786 | flgH | Cj0687c | flgH  | CCO0753 | flgH   | 0  | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative flagellar L-ring<br>protein precursor   | flagellar L-ring protein<br>precursor             | flagellar L-ring protein<br>FlgH                   |
| "CJ_10000186"         | CJE0787 | pta  | Cj0688  | pta   | CCO0754 | carB   | 1  | -1 | 0  | 0  | 1  | 1  | 0  | 1  | 1  | 0  | putative phosphate<br>acetyltransferase          | phosphate acetyltransferase                       | carbamoyl-phosphate<br>synthase, large subunit     |
| "CJ_10000187"         | CJE0788 | ackA | Cj0689  | ackA  | CCO0755 | ackA   | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | acetate kinase                                   | acetate kinase                                    | acetate kinase                                     |
| "CJ_10000188"         | CJE0789 | -    | Cj0690c | -     | -       | -      | 1  | 1  | -1 | 1  | 0  | -1 | 1  | -1 | 1  | 1  | possible restriction<br>/modification enzyme     | hypothetical protein                              | -                                                  |
| "CJ_10000189"         | CJE0790 | -    | Cj0691  | -     | CCO0756 | -      | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 1  | 1  | putative membrane protein                        | hypothetical protein                              | probable membrane protein<br>Cj0691                |
| "CJ_10000190"         | CJE0791 | -    | Cj0692c | -     | CCO0757 | -      | 0  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | putative membrane protein                        | hypothetical protein                              | probable membrane protein<br>Cj0692c               |
| "CJ_10000191"         | CJE0792 | mraW | Cj0693c | -     | CCO0758 | mraW   | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                             | S-adenosyl-<br>methyltransferase                  | S-adenosyl-<br>methyltransferase MraW              |
| "CJ_10000192"         | CJE0793 | -    | Cj0694  | -     | CCO0759 | -      | 1  | 1  | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | putative periplasmic protein                     | peptidyl-prolyl cis-trans<br>isomerase D, homolog | conserved hypothetical secreted protein,           |
| "CJ_10000193"         | CJE0794 | ftsA | Cj0695  | ftsA  | CCO0760 | ftsA   | 0  | -1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | cell division protein ftsA                       | cell division protein FtsA                        | cell division protein FtsA                         |
| "CJ_10000194"         | CJE0795 | ftsZ | Cj0696  | ftsZ  | CCO0761 | ftsZ   | 1  | 1  | 1  | 1  | 1  | -1 | -1 | 1  | 1  | 1  | cell division protein ftsZ                       | cell division protein FtsZ                        | cell division protein FtsZ                         |
| "CJ_10000195"         | CJE0796 | -    | Cj0697  | flgG2 | CCO0762 | flgG_1 | 1  | 1  | 1  |    |    | 1  |    | 1  |    | -1 | putative flagellar basal-body<br>rod protein     | flagellar basal-body rod<br>protein               | flagellar basal-body rod<br>protein (flgG)         |
| "CJ_10000196"         | CJE0797 | flgG | Cj0698  | flgG  | CCO0763 | flgG   | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | flagellar basal-body rod<br>protein              | flagellar basal-body rod<br>protein FlgG          | flagellar basal-body rod<br>protein (flgG)         |
| "CJ 10000204"         | CJE0798 | glnA | Ci0699c | glnA  | CCO0765 | glnA   | 1  | 1  | 0  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | glutamine synthetase                             | glutamine synthetase, type I                      | glutamine synthetase, type I                       |
| "opCcV010000<br>1719" | CJE0799 | -    | -       | -     | CCO0766 | -      | -1 | 0  | 1  | -1 | 1  | 1  | 0  | 1  | -1 | -1 | -                                                | hypothetical protein                              | conserved hypothetical protein                     |
| "CJ_10000206"         | CJE0800 | -    | Cj0700  | -     | CCO0766 | -      | 0  | 1  | 0  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | hypothetical protein                             | hypothetical protein                              | conserved hypothetical protein                     |
| "CJ_10000209"         | CJE0801 | -    | Cj0701  | -     | CCO0767 | -      | -1 | -1 | -1 | -1 | -1 | -1 | 1  | 1  | -1 | 1  | putative protease                                | peptidase, U32 family                             | probable proteinase Cj0701                         |
| "CJ_10000212"         | CJE0802 | purE | Cj0702  | purE  | CCO0768 | purE   | 1  | 1  | -1 | -1 | -1 | 1  | 0  | 1  | 1  | -1 | phosphoribosylaminoimidaz<br>ole carboxylase     | phosphoribosylaminoimidaz<br>ole carboxylase      | phosphoribosylaminoimidaz<br>ole carboxylase,      |
| "CJ_10000214"         | CJE0803 | -    | Cj0703  | -     | CCO0769 | -      | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 1  | hypothetical protein                             | pseudogene                                        | conserved hypothetical protein                     |
| "CJ_10000216"         | CJE0804 | glyQ | Cj0704  | glyQ  | CCO0770 | glyQ   | 0  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | glycyl-tRNA synthetase<br>alpha chain            | glycyl-tRNA synthetase<br>alpha subunit           | glycyl-tRNA synthetase,<br>alpha subunit           |
| "CJ_10000218"         | CJE0805 | -    | Cj0705  | -     | CCO0771 | -      | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 1  | hypothetical protein                             | conserved hypothetical<br>protein TIGR00486       | conserved hypothetical<br>protein TIGR00486        |
| "CJ_10000220"         | CJE0806 | -    | Cj0706  | -     | CCO0772 | -      | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                             | hypothetical protein                              | conserved hypothetical protein                     |
| "CJ_10000222"         | CJE0807 | waaA | Cj0707  | kdtA  | CCO0773 | waaA   | -1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 3-deoxy-D-manno-<br>octulosonic-acid transferase | 3-deoxy-D-manno-<br>octulosonic-acid transferase  | 3-deoxy-d-manno-<br>octulosonic-acid transferase   |
| "CJ_10000223"         | CJE0808 | -    | Cj0708  | -     | CCO0774 | -      | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative ribosomal<br>pseudouridine synthase     | RNA pseudouridylate<br>synthase family protein    | ribosomal large subunit<br>pseudouridine synthase  |
| "CJ_10000234"         | CJE0809 | ffh  | Cj0709  | ffh   | CCO0775 | ffh    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | signal recognition particle protein              | signal recognition particle protein               | signal recognition particle protein                |
| "opCcV010000<br>0480" | CJE0810 | rpsP | Cj0710  | rpsP  | CCO0776 | rpsP   |    | 0  | 0  | 1  | 1  | -1 | -1 | 1  | 1  | 1  | 30S ribosomal protein S16                        | 30S ribosomal protein S16                         | ribosomal protein S16                              |
| "CJ_10000235"         | CJE0811 | -    | Cj0711  | -     | CCO0777 | -      | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                             | hypothetical protein                              | conserved hypothetical protein                     |
| "CJ_10000238"         | CJE0812 | rimM | Cj0712  | rimM  | CCO0778 | -      | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative 16S rRNA<br>processing protein          | 16S rRNA processing protein RimM                  | 16S rRNA processing protein RimM, putative         |

| "CJ 10000240"               | CJE0813            | trmD       | Ci0713           | trmD      | CCO0779            | trmD      | 0  | 1 | 0 | 1  | 1  | 1 1 | 1  | 1 1 | 1 1 | 1 1 | tRNA (guanine-N1)-                        | tRNA (guanine-N(1)-)-                      | tRNA (guanine-N1)-                       |
|-----------------------------|--------------------|------------|------------------|-----------|--------------------|-----------|----|---|---|----|----|-----|----|-----|-----|-----|-------------------------------------------|--------------------------------------------|------------------------------------------|
| CJ_10000240                 | CJEU813            | uniiD      | CJ0/13           | uniiD     | CC00779            | unii      | 0  | 1 | 0 | 1  | 1  | 1   | 1  | 1   | 1   | 1   | methyltransferase                         | methyltransferase                          | methyltransferase                        |
| "CJ 10000242"               | CJE0814            | rplS       | Cj0714           | rplS      | CCO0780            | rplS      | -1 | 1 | 1 | 1  | 1  | 1   | 1  | 1   | 1   | 1   | 50S ribosomal protein L19                 | 50S ribosomal protein L19                  | ribosomal protein L19                    |
| "CJ_10000244"               | CJE0815            | -          | Cj0715           | -         | CCO0781            | -         | 1  | 1 | 1 | 1  | 1  | 1   | 1  | 1   | 1   | 1   | transthyretin-like                        | transthyretin-like protein                 | transthyretin family protein             |
|                             |                    |            | ,                |           |                    |           |    |   |   |    |    |     |    |     |     |     | periplasmic protein                       |                                            |                                          |
| "CJ_10000246"               | CJE0816            | -          | Cj0716           | -         | CCO0782            | -         | 0  | 1 | 1 | 1  | 1  | 1   | 1  | 1   | 1   | 1   | putative phospho-2-                       | 3-deoxy-7-                                 | phospho-2-dehydro-3-                     |
|                             |                    |            |                  |           |                    |           |    |   |   |    |    |     |    |     |     |     | dehydro-3-deoxyheptonate                  | phosphoheptulonate                         | deoxyheptonate aldolase                  |
| UCT 100002478               | CIE0017            |            | 0:0717           |           | 0000702            |           | 1  | 1 | 1 | 1  | 1  | 1   | 1  | 1   | 1   | 1   |                                           | synthase                                   | 06 1                                     |
| "CJ_10000247" "CJ_10000249" | CJE0817<br>CJE0818 | -<br>dnaE  | Cj0717<br>Cj0718 | -<br>dnaE | CCO0783<br>CCO0784 | -<br>dnaE | 0  | 1 | 1 | -1 | 1  | 1   | -1 | -1  | 1   | -1  | hypothetical protein                      | hypothetical protein                       | arsC family protein                      |
| _                           |                    | dnaE       | 3                | dnaE      |                    | dnaE      | U  | 1 | 1 | 1  | 1  | 1   | 1  | 1   | 1   | 1   | DNA polymerase III, alpha chain           | DNA polymerase III subunit alpha           | DNA polymerase III, alpha subunit        |
| "CJ_10000258"               | CJE0819            | -          | Cj0719c          | -         | CCO0785            | -         | 1  | 1 | 1 | 1  | 1  | 1   | 1  | 1   | 0   | 1   | hypothetical protein                      | conserved hypothetical protein TIGR00044   | conserved hypothetical protein TIGR00044 |
| "CJ_10000260"               | CJE0820            | flaC       | Cj0720c          | flaC      | CCO0786            | -         | 1  | 1 | 1 | 1  | 1  | 1   | 1  | 1   | 1   | 1   | flagellin                                 | flagellin subunit protein<br>FlaC          | flagellin                                |
| "CJ 10000262"               | CJE0821            |            | Ci0721c          |           | CCO0787            |           | 1  | 0 | 1 | 1  | 1  | 1   | 1  | 1   | 1   | 1   | putative integral membrane                | hypothetical protein                       | probable integral membrane               |
| _                           |                    |            | 3                |           |                    | _         |    |   | 1 | 1  |    | 1   | 1  | 1   | 1   | 1   | protein                                   |                                            | protein Cj0721c                          |
| "CJ_10000265"               | CJE0822            | -          | Cj0722c          | -         | CCO0788            | hemG      | 1  | 1 | 1 | 1  | 1  | 1   | 1  | 1   | 1   | 1   | putative DNA methylase                    | modification methylase,<br>HemK family     | protoporphyrinogen oxidase<br>(hemK)     |
| "CJ 10000267"               | CJE0823            | -          | Ci0723c          | -         | CCO0789            | -         | 1  | 1 | 1 | 1  | 1  | 1   | 1  | 1   | 1   | 1   | putative integral membrane                | peptidase, M48 family                      | zinc-metallo protease                    |
| _                           |                    |            | ,                |           |                    |           |    |   |   |    |    |     |    |     |     |     | zinc-metalloprotease                      |                                            | (YJR117W)                                |
| "CJ_10000269"               | CJE0824            | -          | Cj0724           | -         | CCO0790            | -         | 1  | 1 | 1 | 1  | 1  | 1   | 1  | 1   | 1   | 1   | hypothetical protein                      | hypothetical protein                       | conserved hypothetical protein           |
| "CJ_10000271"               | CJE0825            | mogA       | Cj0725c          | mog       | CCO0791            | -         | 0  | 1 | 1 | 1  | 1  | 1   | 1  | 1   | 1   | 1   | molybdopterin biosynthesis                | molybdenum cofactor                        | molybdopterin biosynthesis               |
| _                           |                    |            | ,                |           |                    |           |    |   |   |    |    |     |    |     |     |     | protein                                   | biosynthesis protein                       | protein Cj0725c                          |
| "CJ_10000272"               | CJE0826            | corA       | Cj0726c          | corA      | CCO0792            | corA      | 1  | 1 | 1 | 1  | 1  | 1   | 1  | 0   | 1   | 1   | magnesium and cobalt                      | magnesium and cobalt                       | magnesium and cobalt                     |
|                             |                    |            |                  |           |                    |           |    |   |   |    |    |     |    |     |     |     | transport protein                         | transport protein CorA                     | transport protein CorA                   |
| "CJ_10000274"               | CJE0827            | -          | Cj0727           | -         | CCO0793            | -         | 0  | 0 | 1 | 1  | 1  | 1   | 1  | 1   | -1  | 1   | putative periplasmic solute-              | ABC transporter,<br>periplasmic substrate- | ABC transporter,                         |
|                             |                    |            |                  |           |                    |           |    |   |   |    |    |     |    |     |     |     | binding protein                           | binding                                    | periplasmic binding protein              |
| "CJ_10000276"               | CJE0828            | -          | Cj0728           | -         | CCO0794            | -         | 1  | 1 | 1 | 1  | 1  | 1   | 1  | 1   | 1   | 1   | putative periplasmic protein              | hypothetical protein                       | probable periplasmic<br>protein Cj0728   |
| "CJ 10000287"               | CJE0829            | _          | Ci0729           | -         | CCO0795            | -         | 0  | 1 | 1 | 1  | 1  | 1   | 1  | 1   | 1   | 1   | hypothetical protein                      | hypothetical protein                       | conserved hypothetical                   |
|                             |                    |            | 3                |           |                    |           |    |   |   |    |    |     |    |     |     |     | 51                                        | 5 F                                        | protein                                  |
| "CJ_10000289"               | CJE0830            | -          | Cj0730           | -         | CCO0796            | -         | 1  | 1 | 1 | 1  | 1  | 1   | 1  | 1   | 1   | 1   | putative ABC transport                    | ABC transporter, permease                  | probable ABC transport                   |
|                             |                    |            |                  |           |                    |           | 1  |   |   | 1  |    |     |    |     |     |     | system permease                           | protein                                    | system permease Cj0730                   |
| "CJ_10000292"               | CJE0831            | -          | Cj0731           | -         | CCO0797            | -         | 0  | 0 | 0 | 1  | 1  | 1   | 1  | 1   | 1   | 1   | putative ABC transport                    | ABC transporter, permease                  | permease protein                         |
| "CJ_10000295"               | CJE0832            | -          | Ci0732           |           | CCO0798            | potA      | 1  | 1 | 1 | 1  | 1  | 1   | 1  | 1   | 1   | 1   | system permease ABC transport system ATP- | protein ABC transporter, ATP-              | ABC transporter, ATP-                    |
| CJ_10000293                 | CJE0632            | -          | CJ0732           | -         | CC00/98            | potA      | 1  | 1 | 1 | 1  | 1  | 1   | 1  | 1   | 1   | 1   | binding protein                           | binding protein                            | binding protein                          |
| "CJ 10000297"               | CJE0833            | <b>+</b> - | Ci0733           | _         | CCO0799            | -         | 0  | 0 | 1 | 1  | 1  | 1   | 1  | 1   | 1   | 1   | hypothetical protein                      | HAD-superfamily                            | HAD-superfamily                          |
|                             |                    |            | -50.00           |           |                    |           | _  | _ | - | -  |    |     | -  | 1   | _   | _   |                                           | subfamily IB hydrolase                     | subfamily IB hydrolase,                  |
| "CJ_10000299"               | CJE0834            | cjaC       | Cj0734c          | hisJ      | CCO0800            | -         | 1  | 1 | 0 | 1  | 1  | 1   | 1  | 1   | 1   | 1   | histidine-binding protein                 | CjaC                                       | histidine-binding protein                |
|                             |                    |            |                  |           |                    |           |    |   |   |    |    |     |    |     |     |     | precursor                                 |                                            | precursor                                |
| "CJ_10000300"               | CJE0835            | -          | Cj0735           | -         | -                  | -         | 0  | 0 | 1 | 1  | 1  | 1   | 1  | 1   | 0   | 1   | putative periplasmic protein              | hypothetical protein                       | -                                        |
| "CJ_10000302"               | CJE0836            | -          | Cj0736           | -         | -                  | -         | 0  | 1 | 0 | -1 | 1  | 1   | 0  | 1   | 1   | -1  | hypothetical protein                      | pseudogene                                 | -                                        |
| "CJ_10000304"               | CJE0837            | -          | Cj0737           | -         | -                  | -         | 1  | 1 | 1 | 1  | 1  | 1   | 1  | 1   | 1   | 1   | putative periplasmic protein              | haemagglutination domain                   | -                                        |
| "CJ 10000306"               | CJE0838            | +          | Ci0738           | -         | <u> </u>           | +_        | 1  | 1 | 1 | 1  | 1  | 1   | 1  | -1  | -1  | -1  | hypothetical protein                      | hypothetical protein                       | -                                        |
| "opCjV010000                | CJE0839            | -          | Ci0741           | -         | -                  | -         | 1  | 1 | 0 | 1  | 1  | -1  | 1  | 1   | 1   | 1   | hypothetical protein                      | hypothetical protein                       | -                                        |
| 1024"                       |                    |            | - <b>J</b>       |           |                    |           |    |   |   |    |    |     |    |     |     |     |                                           |                                            |                                          |
| "CJ_10000910"               | CJE0840            | -          | Cj0741           | -         | -                  | -         | 1  | 1 | 1 | 1  | -1 | 1   | 1  | -1  | 1   | 1   | hypothetical protein                      | hypothetical protein                       | -                                        |
| "opCjV010000<br>0193"       | CJE0841            | -          | Cj0742           | -         | -                  | -         | 1  | 1 | 1 | 1  | 1  | -1  | 1  | 1   | 1   | 1   | pseudogene                                | hypothetical protein                       | -                                        |
| "opCjV010000                | CJE0842            | -          | Cj0742           | -         | -                  | -         | -1 | 1 | 0 | 1  | 1  | -1  | 0  | 1   | 1   | 1   | pseudogene                                | hypothetical protein                       | -                                        |

| 0611"                 | ı       |      |         | 1     | 1                                                |      |    | 1   | I  | 1  | 1        | I  | 1  | 1  | 1  | 1  | T                                             | ī                                                    |                                                 |
|-----------------------|---------|------|---------|-------|--------------------------------------------------|------|----|-----|----|----|----------|----|----|----|----|----|-----------------------------------------------|------------------------------------------------------|-------------------------------------------------|
| "CJ_10000911"         | CJE0843 | +    | Ci0742  |       |                                                  |      | 1  | 1   | 1  | -1 | -1       | 1  | 1  | -1 | 1  | -1 | pseudogene                                    | hypothetical protein                                 | _                                               |
| "CJ_10000911"         | CJE0843 | +    | Ci0752  | 1     | <del>                                     </del> | + -  | 1  | 1   | 0  | 1  | 1        | 1  | 0  | 1  | 1  | 1  | pseudogene                                    | pseudogene                                           | 1                                               |
| "CJ 10000914"         | CJE0845 | tonB | Cj0753c | tonB3 | CCO0809                                          | -    | 1  | -   | 1  | -1 | 0        | -1 | 1  | -1 | 1  | 1  | tonB transport protein                        | TonB                                                 | TonB                                            |
| "opCjV010000<br>0226" | CJE0846 | -    | -       | -     | -                                                | -    | 0  | 1   | -1 | 1  | 1        |    |    | 1  | 1  | 0  | -                                             | hypothetical protein                                 | -                                               |
| "CJ 10000919"         | CJE0847 | cfrA | Ci0755  | cfrA  | CCO0810                                          | -    | 1  | 1   | 1  | 1  | -1       | 1  | -1 | 1  | -1 | -1 | putative iron uptake protein                  | ferric receptor CfrA                                 | ferric receptor CfrA                            |
| "CJ_10000922"         | CJE0848 | hrcA | Cj0757  | hrcA  | CCO0811                                          | -    | 1  | 1   | 1  | 1  | -1       | -1 | 1  | -1 | -1 | 1  | putative heat shock<br>regulator              | heat-inducible transcription repressor               | probable heat shock<br>regulator Ci0757         |
| "CJ 10000935"         | CJE0849 | grpE | Ci0758  | grpE  | CCO0812                                          | grpE | 1  | 1   | 1  | 1  | -1       | 1  | 1  | -1 | 1  | 1  | heat shock protein grpE                       | co-chaperone protein GrpE                            | co-chaperone GrpE                               |
| "CJ_10000936"         | CJE0850 | dnaK | Cj0759  | dnaK  | CCO0813                                          | -    | 1  | 1   | 1  | 1  | -1       | 1  | 1  | 0  | 1  | 1  | heat shock protein dnaK                       | molecular chaperone DnaK                             | heat shock protein dnaK<br>Ci0759               |
| "CJ_10000937"         | CJE0851 | -    | Cj0760  | -     | CCO0816                                          | -    | 1  | 1   | 1  | 1  | 0        | 1  | 1  | 0  | 1  | 1  | hypothetical protein                          | hypothetical protein                                 | conserved hypothetical protein                  |
| "CJ_10000938"         | CJE0852 | -    | Cj0761  | -     | CCO0817                                          | -    | 1  | 1   | 1  | 1  | -1       | 1  | 1  | 1  | 1  | 1  | hypothetical protein                          | hypothetical protein                                 | conserved hypothetical protein                  |
| "CJ_10000939"         | CJE0853 | aspC | Cj0762c | aspB  | CCO0818                                          | -    | 1  | 1   | 1  | 1  | -1       | 1  | 1  | -1 | 1  | 1  | aspartate aminotransferase                    | aspartate aminotransferase                           | probable aspartate<br>transaminase Cj0762c      |
| "CJ_10000940"         | CJE0854 | cysE | Cj0763c | cysE  | CCO0819                                          | -    | 1  | 1   | 1  | 1  | -1       | 1  | 1  | 0  | 1  | -1 | serine acetyltransferase                      | serine acetyltransferase                             | serine O-acetyltransferase                      |
| "CJ_10000941"         | CJE0855 | speA | Cj0764c | speA  | CCO0820                                          | speA | 1  | 1   | 1  | 1  | 0        | 1  | 1  | 1  | 1  | 1  | biosynthetic arginine<br>decarboxylase        | arginine decarboxylase                               | arginine decarboxylase                          |
| "CJ_10000943"         | CJE0856 | hisS | Cj0765c | hisS  | CCO0821                                          | hisS | 1  | 1   | 1  | 1  | 1        | 1  | 1  | -1 | -1 | -1 | histidyl-tRNA synthetase                      | histidyl-tRNA synthetase                             | histidyl-tRNA synthetase                        |
| "CJ_10000946"         | CJE0857 | tmk  | Cj0766c | tmk   | CCO0822                                          | tmk  | 1  | 1   | 1  | 1  | -1       | -1 | 1  | 0  | 1  | 1  | putative thymidylate kinase                   | thymidylate kinase                                   | thymidylate kinase                              |
| "CJ_10000949"         | CJE0858 | coaD | Cj0767c | kdtB  | CCO0823                                          | coaD | 0  | 1   | 1  | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 3-deoxy-D-manno-                              | phosphopantetheine                                   | pantetheine-phosphate                           |
|                       |         |      |         |       |                                                  |      |    |     | 1  |    |          |    |    |    |    |    | octulosonic-acid transferase                  | adenylyltransferase                                  | adenylyltransferase                             |
| "CJ_10000965"         | CJE0859 | -    | Cj0768c | -     | CCO0824                                          | ubiX | 1  | 1   | 1  |    | -1       |    | -1 |    |    | -1 | putative decarboxylase                        | 3-octaprenyl-4-<br>hydroxybenzoate carboxy-<br>lyase | phenylacrylic acid decarboxylase,               |
| "CJ_10000966"         | CJE0860 | -    | Cj0769c | -     | CCO0825                                          | -    | 1  | 1   | 1  | 1  | 1        | 1  | 1  | -1 | 1  | -1 | putative periplasmic protein                  | flagellar basal body P-ring<br>biosynthesis          | probable periplasmic<br>protein Cj0769c         |
| "CJ_10000967"         | CJE0861 | -    | Cj0770c | -     | CCO0826                                          | -    | 1  | 1   | 1  | 0  | -1       | 1  | 1  | 0  | 1  | 1  | putative periplasmic protein                  | lipoprotein, NLPA family                             | D-methionine-binding<br>lipoprotein MetQ        |
| "CJ_10000968"         | CJE0862 | -    | Cj0771c | -     | CCO0827                                          | -    | 1  | 1   | 1  | 1  | 1        | 1  | 1  | -1 | 1  | -1 | putative periplasmic protein                  | lipoprotein, NLPA family                             | D-methionine-binding lipoprotein MetQ           |
| "CJ_10000969"         | CJE0863 | -    | Cj0772c | -     | CCO0828                                          | -    | -1 | 1   | 1  | 1  | 0        | 1  | 0  | 1  | 0  | 1  | putative periplasmic protein                  | lipoprotein, NLPA family                             | D-methionine-binding lipoprotein MetQ           |
| "CJ_10000970"         | CJE0864 | -    | Cj0773c | -     | CCO0829                                          | -    | -1 | 0   | 0  | 1  | 1        | 1  | -1 | 1  | 1  | 1  | binding-protein dependent<br>transport system | ABC transporter, permease protein                    | ABC transporter, permease component CAC0985     |
| "CJ_10000971"         | CJE0865 | -    | Cj0774c | -     | CCO0830                                          | -    | 1  | 1   | 1  | -1 | -1       |    | 1  | -1 | 1  | -1 | ABC transport system ATP-                     | ABC transporter, ATP-                                | ABC transporter, ATP-                           |
| HOT 100000EC          | OTEO CC | 10   | 0:0555  | 10    | GGGGGGT                                          | 10   |    | ļ., |    |    | <b>.</b> | 1  | 1  | +  | 1  | +  | binding protein                               | binding protein                                      | binding protein                                 |
| "CJ_10000973"         | CJE0866 | valS | Cj0775c | valS  | CCO0831                                          | valS | 1  | 1   | 1  | 0  | -1<br>0  | 1  | 1  | -1 | 1  | 1  | valyl-tRNA synthetase                         | valyl-tRNA synthetase                                | valyl-tRNA synthetase                           |
| "CJ_10000975"         | CJE0867 | -    | Cj0776c | -     | CCO0832                                          | -    | 1  | 1   | 1  | 1  | Ů        | 1  | 1  | Ů  | 1  | 1  | putative periplasmic protein                  | hypothetical protein                                 | probable periplasmic<br>protein Cj0776c         |
| "CJ_10000978"         | CJE0868 | -    | Cj0777  | -     | CCO0833                                          | rep  | 1  | 1   | 1  | 1  | -1       | 1  | 1  | -1 | 1  | 1  | putative ATP-dependent<br>DNA helicase        | ATP-dependent DNA<br>helicase, putative              | rep helicase, single-stranded<br>DNA-dependent  |
| "CJ_10000994"         | CJE0869 | -    | Cj0778  | peb2  | CCO0834                                          | -    | 0  | 1   | 1  | 1  | 1        | 1  | 0  | 1  | 0  | 1  | major antigenic peptide<br>PEB2               | major antigenic peptide<br>PEB2                      | accessory colonization<br>factor AcfC VC0841,   |
| "CJ_10000995"         | CJE0870 | tpx  | Cj0779  | tpx   | CCO0837                                          | tpx  | 1  | 1   | 1  | 1  | 1        | 1  | 1  | 1  | 1  | 0  | probable thiol peroxidase                     | thiol peroxidase                                     | thiol peroxidase                                |
| "CJ_10000996"         | CJE0871 | napA | Cj0780  | napA  | CCO0838                                          | napA | 1  | 1   | 1  | 1  | 1        | 1  | 1  | 1  | 1  | 1  | periplasmic nitrate reductase                 | periplasmic nitrate<br>reductase, large subunit      | periplasmic nitrate<br>reductase, large subunit |
| "CJ_10000997"         | CJE0872 | napG | Cj0781  | napG  | CCO0839                                          | -    | 1  | 1   | 1  | 1  | 1        | 1  | 1  | 1  | 1  | 1  | putative ferredoxin                           | quinol dehydrogenase<br>periplasmic component        | probable ferredoxin Cj0781                      |
| "CJ_10000998"         | CJE0873 | napH | Cj0782  | napH  | CCO0840                                          | -    | 1  | 1   | 1  | 1  | -1       | 1  | 1  | -1 | 1  | -1 | putative ferredoxin                           | quinol dehydrogenase<br>membrane component           | iron-sulfur cluster-binding protein napH        |

| "CJ_10000999" | CJE0874 | napB | Cj0783  | napB | CCO0841 | -    | 1 | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | -1 | periplasmic nitrate<br>reductase small subunit  | periplasmic nitrate<br>reductase, small subunit   | NapB periplasmic nitrate reductase              |
|---------------|---------|------|---------|------|---------|------|---|----|----|----|----|----|----|----|----|----|-------------------------------------------------|---------------------------------------------------|-------------------------------------------------|
| "CJ_10001000" | CJE0875 | napL | Cj0784  | -    | CCO0842 | -    | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative periplasmic protein                    | NapL                                              | probable periplasmic<br>protein Cj0784          |
| "CJ_10001002" | CJE0876 | napD | Cj0785  | napD | CCO0843 | -    | 1 | 1  | 1  | 1  | -1 | 1  | -1 | 0  | 1  | 1  | possible napD protein<br>homolog                | NapD                                              | probable napD protein<br>homolog Cj0785         |
| "CJ_10001005" | CJE0877 | -    | Cj0786  | -    | CCO0844 | -    | 0 | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | small hydrophobic protein                       | hypothetical protein                              | small hydrophobic protein<br>Cj0786 -related    |
| "CJ_10001008" | CJE0878 | -    | Cj0787  | -    | CCO0848 | -    | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                            | hypothetical protein                              | conserved hypothetical protein                  |
| "CJ_10001027" | CJE0879 | -    | Cj0788  | -    | CCO0849 | -    | 1 | 1  | 1  | -1 | -1 | 1  | 1  | 1  | 1  | 1  | hypothetical protein                            | hypothetical protein                              | conserved hypothetical protein                  |
| "CJ_10001029" | CJE0880 | -    | Cj0789  | -    | CCO0850 | cca  | 0 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative RNA<br>nucleotidyltransferase          | polyA polymerase family protein                   | tRNA nucleotidyltransferase                     |
| "CJ_10001031" | CJE0881 | purU | Cj0790  | purU | CCO0851 | purU | 0 | 1  | -1 | 0  | 1  | 0  | -1 | 0  | 1  | -1 | formyltetrahydrofolate<br>deformylase           | formyltetrahydrofolate<br>deformylase             | formyltetrahydrofolate<br>deformylase           |
| "CJ_10001033" | CJE0882 | -    | Cj0791c | -    | CCO0965 | -    | 1 | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative aminotransferase                       | aminotransferase, putative                        | nifS-like protein                               |
| "CJ_10001034" | CJE0883 | -    | Cj0792  | -    | CCO0966 | -    | 1 | 1  | 1  | -1 | 1  | -1 | 0  | -1 | -1 | -1 | hypothetical protein                            | hypothetical protein                              | conserved hypothetical protein                  |
| "CJ_10001035" | CJE0884 | 1    | Cj0793  | -    | CCO0967 | -    | 0 | 1  | 0  | 0  | 1  | 1  | 1  | 0  | -1 | -1 | signal transduction histidine kinase            | sensor histidine kinase                           | signal-transducing protein,<br>histidine kinase |
| "CJ_10001037" | CJE0885 | -    | Cj0794  | -    | CCO0873 | -    | 1 | 1  | 1  | 1  | 1  | 1  | -1 | -1 | 1  | 1  | hypothetical protein                            | hypothetical protein                              | conserved hypothetical protein                  |
| "CJ_10001039" | CJE0886 | -    | Cj0795c | murF | CCO0854 | murF | 1 | 1  | 1  | 1  | -1 | 1  | 1  | 0  | -1 | 1  | putative                                        | Mur ligase family protein                         | UDP-MurNac-pentapeptide presynthetase (murF)    |
| "CJ_10001041" | CJE0887 | -    | Cj0796c | -    | CCO0855 | -    | 1 | 1  | 1  | 1  | 1  | 1  | 1  | -1 | 1  | 1  | hypothetical protein                            | hypothetical protein                              | 2-hydroxy-6-oxohepta-2,4-<br>dienoate hydrolase |
| "CJ_10001043" | CJE0888 | -    | Cj0797c | -    | CCO0856 | -    | 1 | 1  |    |    | -1 | 1  | 1  | -1 | 1  |    | hypothetical protein                            | prevent-host-death family protein                 | prevent-host-death family protein               |
| "CJ_10001055" | CJE0889 | ddl  | Cj0798c | ddlA | CCO0857 | -    | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative D-alanineD-<br>alanine ligase          | D-alanylalanine synthetase                        | D-alanineD-alanine ligase                       |
| "CJ_10001057" | CJE0890 | ruvA | Сј0799с | ruvA | CCO0858 | ruvA | 1 | 1  | 1  | 1  | -1 | 1  | 1  | -1 | -1 | 1  | putative Holliday junction<br>DNA helicase      | Holliday junction DNA<br>helicase RuvA            | Holliday junction DNA<br>helicase RuvA          |
| "CJ_10001059" | CJE0891 | -    | Cj0800c | -    | CCO0859 | -    | 1 | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 0  | 1  | hypothetical protein                            | hypothetical protein                              | conserved hypothetical protein                  |
| "CJ_10001061" | CJE0892 | mviN | Cj0801  | -    | CCO0860 | mviN | 0 | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | integral membrane protein (MVIN homolog)        | integral membrane protein<br>MviN                 | integral membrane protein<br>MviN               |
| "CJ_10001062" | CJE0893 | cysS | Cj0802  | cysS | CCO0861 | cysS | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | cysteinyl-tRNA synthetase                       | cysteinyl-tRNA synthetase                         | cysteinyl-tRNA synthetase                       |
| "CJ_10001064" | CJE0894 | -    | Cj0803  | msbA | CCO0862 | msbA | 1 | 1  | 1  | 0  | 1  | 1  | 1  | -1 | 1  | 1  | lipid export ABC transport protein              | ABC transporter, ATP-<br>binding protein/permease | multidrug resistance protein (msbA)             |
| "CJ_10001066" | CJE0895 | pyrD | Cj0804  | pyrD | CCO0863 | pyrD | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | dihydroorotate<br>dehydrogenase                 | dihydroorotate<br>dehydrogenase                   | dihydroorotate<br>dehydrogenase                 |
| "CJ_10001068" | CJE0896 | -    | Cj0805  | -    | CCO0864 | -    | 1 | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | putative zinc protease                          | peptidase, M16 family                             | protease (pqqE)                                 |
| "CJ_10001070" | CJE0897 | dapA | Cj0806  | dapA | -       | -    | 1 | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | -1 | dihydrodipicolinate<br>synthase                 | dihydrodipicolinate<br>synthase                   | -                                               |
| "CJ_10001072" | CJE0898 | -    | Cj0807  | -    | -       | -    | 1 | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | putative oxidoreductase                         | 7-alpha-hydroxysteroid<br>dehydrogenase           | -                                               |
| "CJ_10001091" | CJE0899 | -    | Cj0808c | -    | -       | -    | 1 | -1 | 1  | 1  | -1 | 0  | 1  | -1 | 1  | 0  | small hydrophobic protein                       | hypothetical protein                              | -                                               |
| "CJ_10001094" | CJE0900 | -    | Сј0809с | -    | -       | -    | 1 | 1  | 1  | -1 | -1 | 1  | 1  | 1  | 1  | -1 | putative hydrolase                              | metallo-beta-lactamase family protein             | -                                               |
| "CJ_10001097" | CJE0901 | nadE | Cj0810  | nadE | -       | -    | 0 | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | putative NH(3)-dependent<br>NAD(+) synthetase   | NAD+ synthetase                                   | -                                               |
| "CJ_10001099" | CJE0902 | lpxK | Cj0811  | lpxK | -       | -    | 1 | 1  | 1  | -1 | 0  | 1  | 1  | -1 | 1  | 1  | putative<br>tetraacyldisaccharide 4'-<br>kinase | tetraacyldisaccharide 4'-<br>kinase               | -                                               |

| "CJ_10001101" | CJE0903   | thrC  | Ci0812  | thrC  | CCO0871 | Τ.     | 1 | 1 | 1 | 1   | 1  | 1  | 1  | 1  | 1  | 1 | threonine synthase                             | threonine synthase                                 | threonine synthase                                 |
|---------------|-----------|-------|---------|-------|---------|--------|---|---|---|-----|----|----|----|----|----|---|------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| "CJ 10001104" | CJE0904   | kdsB  | Cj0813  | kdsB  | CCO0872 | kdsB   | 1 | 1 | 1 | 1   | 0  | 1  | 1  | 1  | 1  | 1 | 3-deoxy-manno-                                 | 3-deoxy-manno-                                     | 3-deoxy-D-manno-                                   |
| C3_1000110+   | CJEOJOT   | Rusb  | Cjoors  | Rusb  | CC00072 | Rusb   | 1 | 1 | 1 | 1 . |    | 1  | 1  | 1  | 1  | 1 | octulosonate                                   | octulosonate                                       | octulosonate                                       |
|               |           |       |         |       |         |        |   |   |   |     |    |    |    |    |    |   | cytidylyltransferase                           | cytidylyltransferase                               |                                                    |
| "CJ_10001107" | CJE0905   | -     | Cj0814  | -     | CCO0873 | -      | 1 | 1 | 1 | 1   | -1 | 1  | 1  | -1 | 1  | 1 | hypothetical protein                           | hypothetical protein                               | conserved hypothetical protein                     |
| "CJ_10001112" | CJE0906   | -     | Cj0817  | glnH  | CCO0876 | glnH   | 1 | 1 | 1 | 1   | 1  | 1  | 1  | 1  | 1  | 1 | glutamine-binding                              | amino acid-binding protein                         | glutamine ABC transporter,                         |
| HGT 10001122H | CIE0007   | G.D   | G:0020  | G.D   | GGOOOO  |        |   |   |   |     | -  |    |    |    | 1  | 1 | periplasmic protein                            | Cl 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1            | periplasmic                                        |
| "CJ_10001133" | CJE0907   | fliP  | Cj0820c | fliP  | CCO0880 | -      | 1 | 1 | 1 | 1   | -1 | -1 | 1  | -1 | 1  | 1 | flagellar biosynthesis                         | flagellar biosynthesis<br>protein                  | flagellar biosynthesis<br>protein Cj0820c          |
| "CJ 10001137" | CJE0908   | glmU  | Cj0821  | glmU  | CCO0881 | glmU   | 1 | 1 | 1 | 1   | 1  | 1  | 1  | 1  | 1  | 1 | protein UDP-N-acetylglucosamine                | UDP-N-acetylglucosamine                            | UDP-N-acetylglucosamine                            |
| C3_10001137   | CJE0908   | giiio | CJ0821  | giiio | CC00881 | giiiio | 1 | 1 | 1 | 1   | 1  | 1  | 1  | 1  | 1  | 1 | pyrophosphorylase                              | pyrophosphorylase                                  | pyrophosphorylase                                  |
| "CJ 10001140" | CJE0909   | coaBC | Ci0822  | dfp   | CCO0882 | coaBC  | 1 | 1 | 1 | -1  | 0  | 1  | 1  | 1  | 0  | 1 | DNA /pantothenate                              | phosphopantothenoylcystei                          | phosphopantothenoylcystein                         |
|               |           |       | -,      |       |         |        | _ | _ | _ | -   |    | -  |    | _  | _  | _ | metabolism flavoprotein                        | ne                                                 | e                                                  |
| "CJ_10001143" | CJE0910   | -     | Cj0823  | -     | CCO0883 | -      | 1 | 1 | 1 | 1   | -1 | -1 | 1  | -1 | 1  | 1 | hypothetical protein                           | hypothetical protein                               | conserved hypothetical                             |
|               |           |       |         |       |         |        |   |   |   |     |    |    |    |    |    |   |                                                |                                                    | protein                                            |
| "CJ_10001146" | CJE0911   | uppS  | Cj0824  | uppS  | CCO0884 | uppS   | 1 | 1 | 1 | 1   | 1  | 1  | 1  | 1  | 1  | 1 | putative undecaprenyl                          | undecaprenyl diphosphate                           | undecaprenyl diphosphate                           |
|               |           |       |         |       |         |        |   |   |   |     |    |    |    |    |    |   | diphosphate synthase                           | synthase                                           | synthase                                           |
| "CJ_10001148" | CJE0912   | -     | Cj0825  | -     | CCO0885 | -      | 1 | 1 | 1 | 1   | 1  | 1  | 1  | 1  | 1  | 1 | putative processing                            | peptidase, A24 family                              | type IV prepilin peptidase,                        |
| #GY 10001150# | CIECO12   |       | G:002 5 |       | GG00005 |        |   |   |   |     |    |    |    |    |    | - | peptidase                                      | 1 1 1 1 1                                          | probable , putative                                |
| "CJ_10001150" | CJE0913   | -     | Cj0826  | -     | CCO0886 | -      | 1 | 1 | 1 | 1   | 1  | 1  | 1  | 1  | 1  | 1 | putative integral membrane                     | hypothetical protein                               | conserved hypothetical integral membrane           |
| "CJ 10001152" | CJE0914   | truA  | Ci0827  | truA  | CCO0887 | truA   | 1 | 1 | 1 | 1   | -1 | 1  | 1  | 0  | 1  | 1 | protein<br>putative tRNA                       | tRNA pseudouridine                                 | tRNA pseudouridine                                 |
| CJ_10001132   | CJE0914   | uuA   | CJ0827  | uuA   | CC00887 | uuA    | 1 | 1 | 1 | 1   | -1 | 1  | 1  | 0  | 1  | 1 | pseudouridine synthase                         | synthase A                                         | synthase A                                         |
| "CJ 10001169" | CJE0915   | ilvA  | Ci0828c | ilvA  | CCO0888 | ilvA   | 1 | 1 | 1 | 1   | 1  | 1  | 1  | 0  | 1  | 1 | threonine dehydratase                          | threonine dehydratase                              | threonine dehydratase                              |
| 00_10001109   | 0020710   |       | 0,00200 |       | 000000  |        | 1 | - | - | 1   | 1  | 1  | 1  |    | 1  | 1 | biosynthetic                                   | anconne denyaratase                                |                                                    |
| "CJ 10001171" | CJE0916   | -     | Cj0829c | -     | CCO0889 | -      | 1 | 1 | 1 | 1   | 1  | 0  | 1  | 1  | 1  | 1 | hypothetical protein                           | CoA-binding domain                                 | CoA-binding domain                                 |
|               |           |       | 3       |       |         |        |   |   |   |     |    |    |    |    |    |   | J                                              | protein                                            | protein                                            |
| "CJ_10001175" | CJE0917   |       | Cj0830  | -     | CCO0890 | -      | 1 | 1 | 1 | 1   | 1  | 1  | 1  | 1  | 1  | 1 | putative integral membrane protein             | hypothetical protein                               | probable integral membrane<br>protein Cj0830       |
| "CJ_10001179" | CJE0918   | trmA  | Cj0831c | trmA  | CCO0891 | -      | 1 | 1 | 0 | 1   | 1  | 1  | 1  | 1  | 1  | 1 | tRNA (uracil-5-)-                              | tRNA (uracil-5-)-                                  | tRNA (uracil-5-)-                                  |
|               |           |       |         |       |         |        |   |   |   |     |    |    |    |    |    |   | methyltransferase                              | methyltransferase                                  | methyltransferase                                  |
| "CJ_10001182" | CJE0919   | -     | Cj0832c | -     | CCO0892 | -      | 1 | 1 | 1 | 1   | 1  | 1  | 1  | 1  | 1  | 1 | putative integral membrane                     | Na+/H+ antiporter family                           | probable integral membrane                         |
| #GY 10001105# | CYEOLOGO. |       | G:0022  |       | GG00002 |        |   |   |   |     |    |    |    |    |    | - | protein                                        | protein                                            | protein Cj0832c                                    |
| "CJ_10001185" | CJE0920   | -     | Cj0833c | -     | CCO0893 | -      | 1 | 1 | 1 | 1   | 1  | -1 | 1  | -1 | 1  | 1 | oxidoreductase                                 | oxidoreductase, short chain                        | oxidoreductase, short chain                        |
| "CJ_10001187" | CJE0921   | -     | Cj0834c | -     | CCO0894 | -      | 1 | 1 | 1 | -1  | 0  | 1  | 1  | 1  | 1  | 1 | ankyrin repeat-containing possible periplasmic | ankyrin repeat protein                             | conserved hypothetical protein                     |
| "CJ 10001190" | CJE0922   | acnB  | Ci0835c | acnB  | CCO0895 | acnB   | 0 | 1 | 1 | -1  | 0  | 1  | 1  | 1  | -1 | 1 | aconitate hydratase                            | aconitate hydratase                                | aconitate hydratase 2                              |
| "CJ 10001192" | CJE0923   | ogt   | Ci0836  | ogt   | CCO0896 | ogt    | 0 | 1 | 1 | 1   | 1  | 1  | 1  | 1  | 1  | 1 | methylated-DNAprotein-                         | methylated-DNAprotein-                             | methylated-DNAprotein-                             |
| _             |           |       | ,       |       |         |        |   |   |   |     |    |    |    |    |    |   | cysteine                                       | cysteine                                           | cysteine                                           |
| "CJ_10001195" | CJE0924   | -     | Cj0837c | -     | CCO0897 | -      | 1 | 1 | 1 | 1   | 1  | 1  | 0  | 1  | 1  | 1 | hypothetical protein                           | hypothetical protein                               | conserved hypothetical protein                     |
| "CJ_10001215" | CJE0925   | metG  | Cj0838c | metS  | CCO0898 | metS   | 1 | 0 | 1 | 1   | -1 | 1  | 1  | 1  | 1  | 1 | methionyl-tRNA synthetase                      | methioninetRNA ligase                              | methionyl-tRNA synthetase                          |
| "CJ_10001218" | CJE0926   | -     | Cj0839c | -     | CCO0899 | -      | 1 | 1 | 1 | 1   | 1  | 1  | 1  | 1  | 1  | 1 | hypothetical protein                           | hypothetical protein                               | conserved hypothetical protein                     |
| "CJ_10001222" | CJE0927   | fbp   | Cj0840c | fbp   | CCO0900 | fbp    | 1 | 1 | 1 | 1   | 1  | 1  | 1  | 1  | 1  | 1 | putative fructose-1,6-<br>bisphosphatase       | fructose-1,6-bisphosphatase                        | fructose-1,6-bisphosphatase                        |
| "CJ_10001226" | CJE0928   | mobB  | Cj0841c | -     | CCO0901 | mobB   | 1 | 1 | 1 | 1   | 0  | 1  | 1  | 0  | 1  | 1 | putative ATP/GTP binding protein               | molybdopterin-guanine<br>dinucleotide biosynthesis | molybdopterin-guanine<br>dinucleotide biosynthesis |
| "CJ_10001229" | CJE0929   | -     | Cj0842  | -     | CCO0902 | -      | 1 | 1 | 1 | 1   | -1 | 1  | 1  | -1 | 1  | 1 | putative lipoprotein                           | lipoprotein, putative                              | lipoprotein, putative                              |
| "CJ_10001231" | CJE0930   | -     | Cj0843c | -     | CCO0903 | -      | 1 | 1 | 1 | 1   | 1  | 1  | 1  | 1  | 1  | 1 | putative secreted                              | soluble lytic murein                               | soluble lytic murein                               |
|               |           |       |         |       |         |        |   |   |   |     |    |    | 1  |    |    |   | transglycosylase                               | transglycosylase, putative                         | transglycosylase (slt),                            |
| "CJ_10001234" | CJE0931   | -     | Cj0844c | -     | CCO0904 | -      | 1 | 1 | 1 | 1   | 1  | 1  | 1  | 1  | 1  | 1 | putative integral membrane protein             | YGGT family protein                                | probable integral membrane<br>protein Cj0844c      |
| "CJ_10001237" | CJE0932   | gltX  | Cj0845c | gltX  | CCO0905 | gltX   | 0 | 1 | 1 | 1   | 1  | 1  | -1 | 1  | 1  | 1 | glutamyl-tRNA synthetase                       | glutamyl-tRNA synthetase                           | glutamyl-tRNA synthetase                           |

| C1_0001297   C1_ |               | ı       |      | -       |      | 1       |      | _  |    |   |    |    | ,  |    |    |    |    | 1                              | T                           | 1                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------|------|---------|------|---------|------|----|----|---|----|----|----|----|----|----|----|--------------------------------|-----------------------------|-------------------------------|
| C.   C.   C.   C.   C.   C.   C.   C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | "CJ_10001239" | CJE0933 | -    | Cj0846  | -    | CCO0906 | -    | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1 0                            | 1 1 1                       |                               |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | "CL 10001244" | CIF0934 | nsd  | Ci0847  | ned  | CC00907 | nsd  | -1 | 1  | 0 | 1  | 1  | -1 | 1  | 1  | 1  | 1  |                                |                             |                               |
| Company   Comp |               |         | psu  | 3       | psu  |         | psu  |    |    | Ü | 1  | 1  | -1 | 1  | 1  |    | 1  |                                | decarboxylase               | decarboxylase                 |
| Colonomic   Colo | "CJ_10000197" | CJE0935 | -    | Cj0848c | -    | CCO0908 | -    | 1  | 1  | 1 | 1  | 1  | 1  | -1 | 1  | 1  | 1  | hypothetical protein           | FlhB domain protein         | FlhB domain protein           |
| C.   G.   G.   G.   G.   G.   G.   G.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | "CJ_10000198" | CJE0936 | -    | Cj0849c | -    | CCO0909 | -    | -1 | -1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein           | hypothetical protein        | conserved hypothetical        |
| Colorabia   Colo |               |         |      |         |      |         |      |    |    |   |    |    |    |    |    |    |    |                                |                             | protein                       |
| Composition    | "CJ_10000199" | CJE0937 | -    | Cj0850c | -    | CCO0910 | -    | 1  | 1  | 1 |    | 1  |    | 0  | -1 | 1  | -1 |                                |                             |                               |
| Coloroga                  |         |      |         |      |         |      |    |    |   | 1  |    |    |    |    |    |    | -                              | *                           |                               |
| CLI    "CJ_10000200" | CJE0938 | -    | Cj0851c | -    | CCO0911 | -    | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  |                                | hypothetical protein        |                               |
| C190900707   C19094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | "CJ_10000201" | CJE0939 | -    | Cj0852c | -    | CCO0912 | -    | 1  | 1  | 1 | -1 | 1  | 1  | -1 | 1  |    | 1  | putative integral membrane     | hypothetical protein        | probable integral membrane    |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |         |      |         |      |         |      |    |    |   |    |    |    |    |    |    |    | protein                        | -                           | protein Cj0852c               |
| C1   100002037   C1   100002057   C1   | "CJ_10000202" | CJE0940 | hemL | Cj0853c | hemL | CCO0913 | hemL | 1  | 0  | 0 | 1  | 1  | 1  | 1  | 1  | -1 | 1  | glutamate-1-semialdehyde       | glutamate-1-semialdehyde    | glutamate-1-semialdehyde-     |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _             |         |      | ,       |      |         |      |    |    |   |    |    |    |    |    |    |    | 2,1-aminomutase                | aminotransferase            | 2,1-aminomutase               |
| C.   1000025   C.   1000025   C.   10000025   C.   100000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | "CJ_10000203" | CJE0941 | -    | Cj0854c | -    | CCO0914 | -    | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative periplasmic protein   | hypothetical protein        | probable periplasmic          |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |         |      | _       |      |         |      |    |    |   |    |    |    |    |    |    |    |                                | -                           | protein Cj0854c               |
| C1     C1     C2     C1   C2   C2   C3     C3   C3   C4   C3   C3   C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | "CJ_10000205" | CJE0942 | folD | Cj0855  | folD | CCO0915 | folD | 1  | 1  | 0 | 0  | 1  | 1  | 1  | 1  | 1  | 1  | flagellar biosynthesis         | folD bifunctional protein   | methylene-tetrahydrofolate    |
| Composition    |               |         |      |         |      |         |      |    |    |   |    |    |    |    |    |    |    | protein                        | -                           | dehydrogenase (folD)          |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | "CJ_10000208" | CJE0943 | lepB | Cj0856  | lepP | CCO0916 | -    | 0  | 0  | 1 | 1  | 1  | 1  | 0  | 1  | 0  | 1  | signal peptidase I             | signal peptidase I          | Signal peptidase I            |
| "CJ_10000223" CIB994 No. C 0858c murA CO0886 murA   1   1   0   0   1   1   1   0   0   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | "CJ_10000211" | CJE0944 | -    | Cj0857c | moeA | CCO0987 | -    | 1  | 1  | 0 | 1  | 1  |    |    | 1  | 1  | 1  | putative molybdopterin         | molybdopterin biosynthesis  | molybdopterin biosynthesis    |
| CF   10000228   CF   10000229   CF   100000229   CF   10000029   CF   100000000000000000000000000000000000                                   |               |         |      |         |      |         |      |    |    |   |    |    |    |    |    |    |    | biosynthesis protein           | MoeA protein,               | protein (moeA)                |
| C1   10000239   C1E9947   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | "CJ_10000227" | CJE0945 | murA | Cj0858c | murA | CCO0986 | murA | 1  | 1  | 0 | 0  | -1 | 1  | 1  | 0  | -1 | -1 | UDP-N-acetylglucosamine        | UDP-N-acetylglucosamine     | UDP-N-acetylglucosamine       |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | "CJ_10000228" | CJE0946 | -    | Cj0859c | -    | -       | -    | 0  | 1  | 0 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein           | hypothetical protein        | -                             |
| CFL   10000231*   CFB0948   phb   CFB0861   phb   CFB0862    | "CJ 10000229" | CJE0947 | -    | Ci0860  | -    | CCO0985 | -    | 0  | 0  | 0 | 1  | 1  | 1  | 0  | 1  | -1 | 1  | probable integral membrane     | integral membrane protein   | membrane protein              |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _             |         |      | J       |      |         |      |    |    |   |    |    |    |    |    |    |    |                                | 1                           | 1                             |
| CF   CF   CF   CF   CF   CF   CF   CF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | "CJ_10000230" | CJE0948 | pabA | Cj0861c | pabA | CCO0984 | pabA | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | para-aminobenzoate             | para-aminobenzoate          | para-aminobenzoate            |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |         |      |         |      |         | 1    |    |    |   |    |    |    |    |    |    |    | synthase glutamine             | synthase glutamine          | synthase glutamine            |
| CZ_10000232"   CZ_10000233"   CZ_10000234"   CZ_10000235"   CZ_10000235"   CZ_10000235"   CZ_10000235"   CZ_10000235"   CZ_10000235"   CZ_10000235"   CZ_10000235"   CZ_10000235"   CZ_10000236"   CZ_1 | "CJ_10000231" | CJE0949 | pabB | Cj0862c | pabB | CCO0983 | -    | 0  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | para-aminobenzoate             | para-aminobenzoate          | para-aminobenzoate            |
| Columbe   Colu | _             |         | 1    | ,       | 1    |         |      |    |    |   |    |    |    |    |    |    |    | synthase component I           | synthase glutamine          | synthetase (pabB)             |
| CJ_10000233"   CJE0951   dsbA   CJ0864   -   CC00980   -   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | "CJ_10000232" | CJE0950 | -    | Cj0863c | xerD | CCO0982 | -    | 1  | 1  | 1 | 1  | 1  | 1  | 0  | 1  | 0  | 0  | DNA recombinase                | site-specific recombinase,  | DNA recombinase Cj0863c       |
| Composition    |               |         |      |         |      |         |      |    |    |   |    |    |    |    |    |    |    |                                | phage integrase             | _                             |
| Composition    | "CJ_10000233" | CJE0951 | dsbA | Cj0864  | -    | CCO0980 | -    | 1  | 1  | 1 | 1  | 1  | 1  | 0  | 1  | 1  | 1  | putative periplasmic protein   | thiol:disulfide interchange | thiol:disulfide interchange   |
| S804"   CJE0953   CJE0954   CJE0954   CJE0956   CJE0956   CJE0957   CJE095 |               |         |      |         |      |         |      |    |    |   |    |    |    |    |    |    |    |                                | protein DsbA                | protein, DsbA                 |
| "CJ_10000237" CJE0954 - Cj0872 dsbA CC00980 - 0 0 1 1 1 1 1 1 1 1 1 1 1 pseudogene pseudogene - CJ_10000237" CJE0954 - Cj0874 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 pustive protein disulphide interchange protein DsbA, protein, DsbA protein,        | "opCcV010000  | CJE0952 | dsbB | Cj0865  | dsbB | CCO0981 | -    | 1  | 1  | 1 | 1  | 1  | 1  | 1  |    | 1  | -1 | putative disulfide             | putative disulfide          | disulfide bond formation      |
| Ogl   Figure   Ogl   O | 0804"         |         |      |         |      |         |      |    |    |   |    |    |    |    |    |    |    | oxidoreductase                 | oxidoreductase              | protein                       |
| Opt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | "opCjjV010000 | CJE0953 | -    | Cj0866  | ast  | -       | -    | 1  | -1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | pseudogene                     | pseudogene                  | -                             |
| Column   C |               |         |      | ,       |      |         |      |    |    |   |    |    |    |    |    |    |    |                                |                             |                               |
| "CJ_10000253" CJE0955 - Cj0874c 0 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | "CJ_10000237" | CJE0954 | -    | Cj0872  | dsbA | CCO0980 | -    | 0  | 0  | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative protein disulphide    | thiol:disulfide interchange | thiol:disulfide interchange   |
| "CJ_10000255"         CJE0958         -         Cj0878         -         CCO0979         -         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>isomerase</td><td>protein DsbA,</td><td>protein, DsbA</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |         |      |         |      |         |      |    |    |   |    |    |    |    |    |    |    | isomerase                      | protein DsbA,               | protein, DsbA                 |
| CJ_10000256"   CJE0959   - Cj0879c   - CC00978   - CC00977   - CJ_10000257"   CJE0960   - CJ_10000257"   CJE0960   - CJ_10000257"   CJE0960   - CJ_10000257"   CJE0961   - CJ_10000257"   CJE0961   - CJ_10000257"   CJE0961   - CJ_10000257"   CJE0962   - CC00976   - CJ_10000257"   CJE0962   - CC00976   - CJ_10000257"   CJE0962   - CJE0962    | "CJ_10000253" | CJE0955 | -    | Cj0874c | -    | -       | -    | 0  | 1  | 0 | 0  | 1  | 1  | 0  | 1  | 1  | 1  | cytochrome C                   | pseudogene                  | -                             |
| "CJ_10000256"         CJE0959         -         Cj0879c         -         CCO0978         -         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <t< td=""><td>"CJ_10000255"</td><td>CJE0958</td><td>-</td><td>Cj0878</td><td>-</td><td>CCO0979</td><td>-</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>hypothetical protein</td><td>hypothetical protein</td><td>conserved hypothetical</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | "CJ_10000255" | CJE0958 | -    | Cj0878  | -    | CCO0979 | -    | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein           | hypothetical protein        | conserved hypothetical        |
| CJ_10000257"   CJE0960   -   Cj0880c   -   CCO0977   -   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |         |      |         |      |         |      |    |    |   |    |    |    |    |    |    |    |                                |                             | protein                       |
| "CJ_10000257"         CJE0960         -         Cj0880c         -         CCO0977         -         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <t< td=""><td>"CJ_10000256"</td><td>CJE0959</td><td>-</td><td>Cj0879c</td><td>-</td><td>CCO0978</td><td>-</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>0</td><td>1</td><td>putative periplasmic protein</td><td>hypothetical protein</td><td>probable periplasmic</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | "CJ_10000256" | CJE0959 | -    | Cj0879c | -    | CCO0978 | -    | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | 0  | 1  | putative periplasmic protein   | hypothetical protein        | probable periplasmic          |
| CJ_10000259"   CJE0961   -   Cj0881c   -   CCO0976   -   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _             |         |      | ,       |      |         |      |    |    |   |    |    |    |    |    |    |    |                                |                             | protein Cj0879c               |
| "CJ_10000259"   CJE0961   -     Cj0881c   -   CC00976   -   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | "CJ_10000257" | CJE0960 | -    | Cj0880c | -    | CCO0977 | -    | 1  | 1  | 1 | 1  | 1  | 1  | 0  | -1 | 1  | 1  | hypothetical protein           | hypothetical protein        | conserved hypothetical        |
| Topic   Topi | _             |         |      | ,       |      |         |      |    |    |   |    |    |    |    |    |    |    |                                |                             | protein                       |
| "opCcV010000         CJE0962         flhA         Cj0882c         flhA         CC00975         flhA         1         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | "CJ_10000259" | CJE0961 | -    | Cj0881c | -    | CCO0976 | -    | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein           | hypothetical protein        | conserved hypothetical        |
| 1566" CJ_1000264" CJE0963 - Cj0883c - CCO0974 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |         | 1    | 1       |      |         |      |    |    |   |    |    |    |    |    |    |    |                                |                             | protein                       |
| "CJ_1000264" CJE0963 - Cj0883c - CC00974 - 1 1 1 1 1 1 1 1 1 1 1 1 hypothetical protein RFF2 family protein, putative transcriptional rCJ_1000280" CJE0964 rpsO Cj0884 rpsO CC00973 rpsO 0 0 1 1 1 1 1 1 0 1 0 1 30S ribosomal protein S15 ribosomal protein S15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | "opCcV010000  | CJE0962 | flhA | Cj0882c | flhA | CCO0975 | flhA | 1  | 0  | 1 | 1  | 1  | 1  | -1 | 1  | 1  | 1  | flagellar biosynthesis         | flagellar biosynthesis      | flagellar biosynthesis        |
| CJ_10000280"   CJE0964   rpsO   Cj0884   rpsO   CCO0973   rpsO   0   0   1   1   1   1   0   1   0   1   30S ribosomal protein S15   30S ribosomal protein S15   ribosomal protein S15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |         | 1    | 1       |      |         |      |    |    |   |    |    | 1  |    | 1  |    | 1  |                                |                             |                               |
| CJ_10000280"   CJE0964   rpsO   Cj0884   rpsO   CCO0973   rpsO   0   0   1   1   1   1   0   1   0   1   30S ribosomal protein S15   30S rib | "CJ_10000264" | CJE0963 | -    | Cj0883c | -    | CCO0974 | -    | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein           | RrF2 family protein,        | rrf2 family protein (putative |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _             |         | 1    |         |      |         |      |    |    |   |    |    |    |    |    |    |    | •                              |                             |                               |
| "CJ_10000281" CJE0965 - Cj0886c ftsK CCO0972 ftsK 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | "CJ_10000280" | CJE0964 | rpsO | Cj0884  | rpsO | CCO0973 | rpsO | 0  | 0  | 1 | 1  | 1  | 1  | 0  | 1  | 0  | 1  | 30S ribosomal protein S15      | 30S ribosomal protein S15   | ribosomal protein S15         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | "CJ_10000281" | CJE0965 | -    | Cj0886c | ftsK | CCO0972 | ftsK | 1  | 1  | 1 | 1  | 1  | -1 | 1  | 1  | 1  | -1 | putative cell division protein | cell division protein FtsK, | cell division protein (ftsK)  |

| _                                            | CJE0966 |              |         |      |         |      |    |    |    |    |    |    |     |    |    |    |                                                  |                                              |                                                 |
|----------------------------------------------|---------|--------------|---------|------|---------|------|----|----|----|----|----|----|-----|----|----|----|--------------------------------------------------|----------------------------------------------|-------------------------------------------------|
| _                                            |         |              | C:0007- | el-D | CC00071 |      | 1  | 0  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  |                                                  | putative                                     |                                                 |
| "CJ_10000283" C.                             |         | -            | Сј0887с | flaD | CCO0971 | -    | 1  | Ů  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | putative flagellin                               | flagellar hook-associated protein            | probable flagellin Cj0887c                      |
|                                              | CJE0967 | -            | Cj0888c | -    | CCO0989 | -    | 1  | 0  | 1  | 1  | 1  | 1  | 0   | 1  | 1  | 1  | ABC transport system ATP-                        | ABC transporter, ATP-                        | ABC transporter, ATP-                           |
|                                              |         |              |         |      |         |      |    |    |    |    |    |    |     |    |    |    | binding protein                                  | binding protein                              | binding protein                                 |
| "CJ_10000284" C.                             | CJE0968 | -            | Cj0889c | -    | CCO0990 | -    | 1  | 0  | 1  | 1  | 1  | 0  | 1   | 1  | 1  | 1  | putative sensory                                 | sensor histidine kinase                      | histidine protein kinase                        |
|                                              |         |              |         |      |         |      |    |    |    |    |    |    |     |    |    |    | trasnduction histidine kinase                    |                                              | PhoR VC0720, putative                           |
| "CJ_10000285" C.                             | CJE0969 | -            | Cj0890c | -    | CCO0991 | drrA | 0  | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | putative sensory<br>transduction transcriptional | DNA-binding response regulator               | response regulator DrrA                         |
| "CJ_10000286" C.                             | CJE0970 | serA         | Cj0891c | serA | CCO0992 | serA | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | D-3-phosphoglycerate<br>dehydrogenase            | D-3-phosphoglycerate<br>dehydrogenase        | D-3-phosphoglycerate<br>dehydrogenase           |
| "CJ_10000288" C.                             | CJE0971 | -            | Cj0892c | -    | CCO0993 | -    | 1  | 0  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | putative periplasmic protein                     | hypothetical protein                         | probable periplasmic                            |
| #GT 10000201# G                              | CIE0072 |              | G:0003  | + .  | GG00004 | +    | 1  | 0  |    |    |    | 1  |     | 1  | 1  | 1  | 200 7 1 1 1 91                                   | 200 7 1 1 1 1                                | protein Cj0892c                                 |
|                                              | CJE0972 | rpsA         | Cj0893c | rpsA | CCO0994 | -    | 1  | 0  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 30S ribosomal protein S1                         | 30S ribosomal protein S1                     | ribosomal protein S1<br>VC1915, putative        |
| "CJ_10000294" C.                             | CJE0973 | ispH         | Cj0894c | lytB | CCO0995 | ispH | 0  | 0  | 1  | 1  | 1  | 1  | 1   | 1  | 0  | 1  | lytB homolog                                     | 4-hydroxy-3-methylbut-2-<br>enyl diphosphate | hydroxymethylbutenyl<br>pyrophosphate reductase |
| "CJ_10000310" C.                             | CJE0974 | aroA         | Cj0895c | aroA | CCO0996 | aroA | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 0  | 1  | 1  | 3-phosphoshikimate 1-                            | 3-phosphoshikimate 1-                        | 3-phosphoshikimate 1-                           |
| _                                            |         |              |         |      |         |      |    |    |    |    |    |    |     |    |    |    | carboxyvinyltransferase                          | carboxyvinyltransferase                      | carboxyvinyltransferase                         |
| "CJ_10000311" C.                             | CJE0975 | pheT         | Cj0896c | pheT | CCO0997 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | phenylalanyl-tRNA                                | phenylalanyl-tRNA                            | phenylalanyl-tRNA                               |
| <u>.                                    </u> |         |              |         |      |         |      |    |    |    |    |    |    |     |    |    |    | synthetase beta chain                            | synthetase beta subunit                      | synthetase, beta subunit,                       |
| "CJ_10000312" C.                             | CJE0976 | pheS         | Cj0897c | pheS | CCO0998 | pheS | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | phenylalanyl-tRNA                                | phenylalanyl-tRNA                            | phenylalanyl-tRNA                               |
|                                              |         |              |         |      |         |      |    |    |    |    |    |    |     |    |    |    | synthetase alpha chain                           | synthetase alpha subunit                     | synthetase, alpha subunit                       |
| "CJ_10000313" C.                             | CJE0977 | -            | Cj0898  | -    | CCO0999 | -    | -1 | -1 | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | HIT-family protein                               | HIT family protein                           | HIT family protein                              |
| "CJ_10000314" C.                             | CJE0978 | thiJ         | Cj0899c | thiJ | CCO1000 | thiJ | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 0  | 1  | 1  | 4-methyl-5(beta-<br>hydroxyethyl)-thiazole       | 4-methyl-5(B-<br>hydroxyethyl)-thiazole      | ThiJ/PfpI family protein                        |
| "CJ_10000315" C.                             | CJE0979 | -            | Сј0900с | -    | CCO1001 | -    | 1  | 1  | 1  | 1  | 0  | 1  | 1   | 1  | 0  | -1 | small hydrophobic protein                        | hypothetical protein                         | small hydrophobic protein<br>Ci0900c -related   |
| "CJ 10000316" C.                             | CJE0980 | _            | Cj0901  | 1    | CCO1002 | 1    | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | putative amino acid ABC                          | amino acid ABC tansporter,                   | amino acid ABC tansporter,                      |
| C3_10000310   C.                             | CJE0980 | -            | CJ0901  | _    | CCO1002 | _    | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | tansporter permease                              | permease protein,                            | permease protein                                |
| "CJ 10000317" C.                             | CJE0981 | <del> </del> | Ci0902  | glnQ | CCO1003 | glnQ | 0  | 1  | 1  | 1  | 1  | 1  | 1   | -1 | 1  | 1  | putative glutamine transport                     | amino acid ABC                               | amino acid ABC                                  |
| C3_10000317 C.                               | CJE0701 |              | CJ0702  | Sing | CC01005 | SinQ |    |    |    |    | •  | 1  | 1 . | 1  | 1  | 1  | ATP-binding                                      | transporter, ATP-binding                     | transporter, ATP-binding                        |
| 1                                            |         |              |         |      |         |      |    |    |    |    |    |    |     |    |    |    | TITI OMANIG                                      | protein                                      | protein                                         |
| "CJ 10000319" C.                             | CJE0982 | -            | Ci0903c | -    | CCO1004 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | putative amino-acid                              | amino acid carrier protein                   | sodium:alanine symporter                        |
| 1                                            |         |              | -307000 |      |         |      | -  |    |    |    | _  | _  | -   | _  | 1  |    | transport protein                                |                                              | family protein                                  |
| "CJ_10000321" C.                             | CJE0983 | -            | Cj0904c | -    | CCO1006 | -    | -1 | -1 | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | putative RNA methylase                           | RNA methyltransferase,<br>TrmH family        | rRNA methylase                                  |
| "CJ 10000330" C.                             | CJE0984 | alr          | Ci0905c | alr  | CCO1007 | 1.   | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | alanine racemase                                 | alanine racemase                             | alanine racemase, putative                      |
|                                              | CJE0985 | -            | Cj0906c | -    | CCO1008 | 1.   | 1  | 1  | 1  | 1  | 1  | -1 | 1   | 1  | 1  | 1  | putative periplasmic protein                     | hypothetical protein                         | conserved hypothetical                          |
| C3_10000331 C.                               | CJE0703 |              | Cjosoc  |      | CCO1000 | _    | 1  | 1  | 1  | 1  | 1  | -1 | 1   | 1  | 1  | 1  | putative periplasifile protein                   | nypothetical protein                         | secreted protein                                |
| "CJ_10000332" C.                             | CJE0986 | -            | Cj0908  | -    | CCO1009 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | putative periplasmic protein                     | hypothetical protein                         | probable periplasmic<br>protein Ci0908          |
| "CJ_10000333" C.                             | CJE0987 | -            | Cj0909  | -    | CCO1010 | -    | 0  | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | putative periplasmic protein                     | hypothetical protein                         | probable periplasmic                            |
| "CJ 10000334" C.                             | CJE0988 | <u> </u>     | G:0010  | +    | CCO1011 | +    | 0  | 0  |    |    |    | 1  |     | 1  | 1  | 1  |                                                  | 1 1 1 1 1                                    | protein Cj0909                                  |
|                                              |         | -            | Cj0910  | -    |         | -    | U  |    | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | putative periplasmic protein                     | hypothetical protein                         | probable periplasmic<br>protein Cj0910          |
| "CJ_10000335" C.                             | CJE0989 | -            | Cj0911  | -    | CCO1012 | -    | 1  | -1 | -1 | -1 | -1 | -1 | 1   | 1  | 1  | 1  | putative periplasmic protein                     | SCO1/SenC family protein                     | probable periplasmic<br>protein Cj0911          |
| "opCcV010000 C.<br>0950"                     | CJE0990 | cysK         | Cj0912c | cysM | CCO1013 | cysK | -1 | -1 | 0  | 0  | 1  | -1 | 0   | 1  | -1 | -1 | cysteine synthase                                | cysteine synthase A                          | cysteine synthase A                             |
|                                              | CJE0991 | hup          | Cj0913c | hupB | CCO1014 | -    | 1  | -1 | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | DNA-binding protein HU<br>homolog                | DNA-binding protein HU                       | DNA-binding protein HU                          |
| "opCcV010000 C.                              | CJE0992 | ciaB         | Cj0914c | -    | CCO1015 | -    | 1  | 1  | 1  | 1  | 1  | -1 | -1  | 1  | -1 | -1 | CiaB protein                                     | invasion antigen B                           | CiaB protein Cj0914c                            |
|                                              | CJE0993 | 1            | Ci0915  | 1    | CCO1016 | +    | 0  | -1 | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | putative hydrolase                               | thioesterase family protein                  | probable hydrolase Ci0915                       |

| "CJ_10000348"         | CJE0994 | -    | Cj0916c | -     | CCO1017 | -    | 1 | 1  | 0 | 1 | 1  | 1 | 1 | 1  | 0 | 1 | hypothetical protein                              | hypothetical protein                                  | Protein of unknown<br>function (DUF466)               |
|-----------------------|---------|------|---------|-------|---------|------|---|----|---|---|----|---|---|----|---|---|---------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| "CJ_10000349"         | CJE0995 | cstA | Cj0917c | cstA  | CCO1018 | -    | 0 | 0  | 1 | 1 | 1  | 1 | 1 | 1  | 1 | 1 | carbon starvation protein A homolog               | carbon starvation protein A                           | carbon starvation protein A<br>homolog Cj0917c        |
| "CJ_10000350"         | CJE0996 | prsA | Cj0918c | prsA  | CCO1019 | prsA | 0 | 0  | 0 | 1 | 1  | 1 | 0 | -1 | 1 | 1 | ribose-phosphate<br>pyrophosphokinase             | ribose-phosphate<br>pyrophosphokinase                 | ribose-phosphate<br>pyrophosphokinase                 |
| "CJ_10000352"         | CJE0997 | -    | Cj0919c | -     | CCO1020 | glnP | 0 | 1  | 1 | 1 | 1  | 1 | 1 | 1  | 1 | 1 | putative ABC-type amino-<br>acid transporter      | amino acid ABC<br>transporter, permease<br>protein    | amino acid ABC<br>transporter, permease<br>protein    |
| "CJ_10000354"         | CJE0998 | -    | Cj0920c | -     | CCO1021 | glnP | 0 | 1  | 1 | 1 | 1  | 1 | 1 | 1  | 1 | 1 | putative ABC-type amino-<br>acid transporter      | amino acid ABC<br>transporter, permease<br>protein    | amino acid ABC<br>transporter, permease<br>protein    |
| "CJ_10000356"         | CJE0999 | pebA | Cj0921c | peb1A | CCO1022 | glnH | 1 | 1  | 1 | 1 | 1  | 1 | 1 | 1  | 1 | 1 | probable ABC-type amino-<br>acid transporter      | amino acid ABC<br>transporter, periplasmic<br>amino   | amino acid ABC<br>transporter, amino acid-<br>binding |
| "CJ_10000358"         | CJE1000 | pebC | Cj0922c | pebC  | CCO1003 | glnQ | 0 | 1  | 1 | 1 | 1  | 1 | 0 | 1  | 1 | 1 | ABC-type amino-acid transporter ATP-binding       | amino acid ABC<br>transporter, ATP-binding<br>protein | amino acid ABC<br>transporter, ATP-binding<br>protein |
| "CJ_10000359"         | CJE1001 | cheR | Cj0923c | cheR  | CCO1024 | -    | 1 | 1  | 1 | 1 | 1  | 1 | 1 | 1  | 1 | 1 | putative MCP protein<br>methyltransferase         | chemotaxis protein<br>methyltransferase CheR          | chemotaxis protein<br>methyltransferase CheR,         |
| "CJ_10000362"         | CJE1002 | cheB | Cj0924c | -     | CCO1025 | -    | 1 | 1  | 0 | 1 | 1  | 1 | 1 | 1  | 1 | 1 | putative MCP protein-<br>glutamate methylesterase | protein-glutamate<br>methylesterase CheB              | protein-glutamate<br>methylesterase CheB              |
| "CJ_10000365"         | CJE1003 | rpiB | Cj0925  | rpiB  | CCO1026 | -    | 1 | 1  | 1 | 1 | 1  | 1 | 1 | 1  | 1 | 1 | putative ribose 5-phosphate isomerase             | ribose 5-phosphate<br>isomerase B                     | sugar-phosphate isomerase                             |
| "CJ_10000376"         | CJE1004 | -    | Cj0926  | -     | CCO1027 | -    | 0 | 0  | 1 | 1 | 1  | 1 | 1 | 1  | 1 | 1 | putative membrane protein                         | hypothetical protein                                  | probable membrane protein<br>Cj0926                   |
| "CJ_10000377"         | CJE1005 | apt  | Cj0927  | apt   | CCO1028 | apt  | 1 | 1  | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | adenine<br>phosphoribosyltransferase              | adenine<br>phosphoribosyltransferase                  | adenine<br>phosphoribosyltransferase                  |
| "CJ_10000379"         | CJE1006 | -    | Cj0928  | -     | CCO1029 | -    | 0 | -1 | 1 | 1 | 1  | 1 | 1 | 1  | 1 | 1 | putative integral membrane<br>protein (dedA       | DedA family protein                                   | conserved hypothetical integral membrane              |
| "CJ_10000381"         | CJE1007 | -    | Ci0929  | pepA  | CCO1030 | pepA | 0 | 0  | 1 | 1 | 1  | 1 | 1 | 1  | 1 | 1 | aminopeptidase                                    | leucyl aminopeptidase                                 | cytosol aminopeptidase                                |
| "CJ_10000383"         | CJE1008 | -    | Cj0930  | -     | CCO1031 | ychF | 1 | 1  | 1 | 1 | 1  | 1 | 1 | 1  | 1 | 1 | putative GTP-binding protein                      | GTP-binding protein YchF                              | GTP-binding protein YchF                              |
| "opCcV010000<br>0857" | CJE1009 | argH | Cj0931c | argH  | CCO1032 | argH | 1 | 1  | 1 | 1 | 1  | 1 | 1 | 1  | 1 | 1 | argininosuccinate lyase                           | argininosuccinate lyase                               | argininosuccinate lyase                               |
| "CJ_10000385"         | CJE1010 | pckA | Cj0932c | pckA  | CCO1033 | pckA | 1 | 1  | 1 | 1 | 1  | 1 | 1 | 0  | 1 | 1 | phosphoenolpyruvate<br>carboxykinase (ATP)        | phosphoenolpyruvate<br>carboxykinase                  | phosphoenolpyruvate<br>carboxykinase (ATP)            |
| "CJ_10000387"         | CJE1011 | -    | Cj0933c | pycB  | CCO1034 | oadA | 1 | 1  | 1 | 1 | -1 | 1 | 1 | 1  | 1 | 1 | putative pyruvate<br>carboxylase B subunit        | oxaloacetate decarboxylase,<br>alpha subunit,         | oxaloacetate decarboxylase,<br>alpha subunit          |
| "CJ_10000388"         | CJE1012 | -    | Cj0934c | -     | CCO1036 | -    | 1 | 1  | 1 | 1 | 1  | 1 | 1 | 1  | 1 | 1 | putative transmembrane<br>transport protein       | sodium transporter, putative                          | sodium- and chloride-<br>dependent transporter        |
| "CJ_10000390"         | CJE1013 | -    | Cj0935c | -     | CCO1037 | -    | 1 | 1  | 1 | 1 | 1  | 1 | 1 | 0  | 0 | 1 | putative transmembrane<br>transport protein       | sodium transporter, putative                          | sodium- and chloride-<br>dependent transporter        |
| "opCcV010000<br>1238" | CJE1014 | atpE | Cj0936  | atpE  | CCO1038 | -    | 1 | 1  | 1 | 1 | 0  | 1 | 1 | 0  | 1 | 1 | ATP synthase F0 sector C subunit                  | ATP synthase subunit C                                | ATP synthase F0, C subunit, putative                  |
| "CJ_10000403"         | CJE1015 | -    | Cj0937  | -     | CCO0852 | -    | 1 | 1  | 1 | 1 | 1  | 1 | 1 | 1  | 1 | 1 | putative integral membrane<br>protein             | hypothetical protein                                  | probable integral membrane<br>protein Cj0937          |
| "CJ_10000405"         | CJE1016 | aas  | Cj0938c | aas   | CCO0853 | -    | 1 | 1  | 1 | 1 | 1  | 1 | 1 | 1  | 1 | 1 | putative 2-<br>acylglycerophosphoethanola<br>mine | 2-acyl-glycerophospho-<br>ethanolamine                | 2-<br>acylglycerophosphoethanola<br>mine              |
| "CJ_10000407"         | CJE1017 | -    | Cj0939c | -     | -       | -    | 1 | 1  | 1 | 1 | 1  | 1 | 1 | 1  | 1 | 1 | hypothetical protein                              | hypothetical protein                                  | -                                                     |
| "CJ_10000409"         | CJE1018 | -    | Cj0940c | glnP  | CCO0957 | glnP | 1 | 1  | 1 | 1 | 1  | 1 | 1 | 1  | 1 | 1 | putative glutamine transport<br>system permease   | amino acid ABC<br>transporter, permease<br>protein,   | amino acid ABC<br>transporter, permease<br>protein    |
| "CJ 10000410"         | CJE1019 | -    | Ci0941c | -     | CCO0954 | 1 -  | 1 | 1  | 1 | 1 | 1  | 1 | 1 | 1  | 1 | 1 | putative integral membrane                        | permease, putative                                    | probable integral membrane                            |

|                       |         |      |         |      | 1       | 1    |   |   |    | I  |    |    |    |    |    |    | protein                                            |                                                | protein Cj0941c                                   |
|-----------------------|---------|------|---------|------|---------|------|---|---|----|----|----|----|----|----|----|----|----------------------------------------------------|------------------------------------------------|---------------------------------------------------|
| "CJ_10000412"         | CJE1020 | secA | Cj0942c | secA | CCO0953 | secA | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | preprotein translocase<br>SECA subunit             | translocase                                    | preprotein translocase, SecA<br>subunit           |
| "CJ_10000414"         | CJE1021 | lolA | Cj0943  | -    | CCO0952 | -    | 1 | 1 | -1 | 1  | 1  | 1  | -1 | 1  | -1 | -1 | putative periplasmic protein                       | outer-membrane lipoprotein carrier protein     | probable periplasmic<br>protein Cj0943            |
| "CJ_10000416"         | CJE1022 | -    | Cj0944c | -    | CCO0951 | -    | 0 | 1 | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | putative periplasmic protein                       | hypothetical protein                           | probable periplasmic<br>protein Cj0944c           |
| "CJ_10000421"         | CJE1023 | -    | Cj0945c | -    | CCO0950 | -    | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative helicase                                  | hypothetical protein                           | TPR domain protein, putative                      |
| "CJ_10000432"         | CJE1024 | -    | Cj0946  | -    | CCO0949 | -    | 1 | 1 | 1  | -1 | -1 |    |    |    |    | -1 | putative lipoprotein                               | lipoprotein, putative                          | probable lipoprotein Cj0946                       |
| "CJ_10000433"         | CJE1025 | -    | Cj0947c | -    | CCO0947 | -    | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative hydrolase                                 | hydrolase, carbon-nitrogen family              | probable hydrolase Cj0947c                        |
| "CJ_10000434"         | CJE1026 | -    | Cj0948c | -    | CCO0946 | -    | 1 | 0 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative transmembrane<br>transport protein        | cation efflux family protein                   | probable transmembrane<br>transport protein       |
| "CJ_10000436"         | CJE1027 | -    | Сј0949с | -    | CCO0945 | -    | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                               | peptidyl-arginine deiminase<br>family protein  | peptidyl-arginine deiminase<br>family protein     |
| "CJ_10000437"         | CJE1028 | -    | Cj0950c | -    | CCO0944 | -    | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | Putative lipoprotein                               | heat shock protein HslJ,<br>putative           | secreted protein involved in flagellar motility   |
| "opCjV010000<br>1011" | CJE1029 | -    | Cj0951c | -    | -       | -    | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative MCP-domain<br>signal transduction protein | hypothetical protein                           | -                                                 |
| "CJ_10000439"         | CJE1030 | -    | Cj0951c | -    | CCO0943 | -    | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative MCP-domain                                | methyl-accepting                               | probable membrane protein                         |
|                       |         |      |         |      |         |      |   |   |    |    |    |    |    |    |    |    | signal transduction protein                        | chemotaxis protein                             | Cj0952c                                           |
| "CJ_10000441"         | CJE1032 | -    | Cj0952c | -    | CCO0943 | -    | 1 | 1 | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | putative membrane protein                          | pseudogene                                     | probable membrane protein<br>Cj0952c              |
| "CJ_10000443"         | CJE1033 | purH | Cj0953c | purH | CCO0942 | purH | 1 | 1 | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | phosphoribosylaminoimidaz<br>olecarboxamide        | bifunctional                                   | phosphoribosylaminoimidaz olecarboxamide          |
| "CJ_10000447"         | CJE1034 | -    | Cj0954c | -    | CCO0941 | -    | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative dnaJ-like protein                         | DnaJ domain protein                            | DnaJ domain protein                               |
| "CJ_10000450"         | CJE1035 | purL | Cj0955c | purL | CCO0940 | purL | 1 | 1 | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | phosphoribosylformylglycin<br>amidine synthase     | phosphoribosylformylglycin<br>amidine synthase | phosphoribosylformylglycin<br>amidine synthase II |
| "CJ_10001081"         | CJE1036 | trmE | Cj0956c | thdF | CCO0939 | trmE | 1 | 1 | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | putative thiophene and furan oxidation protein     | tRNA modification GTPase                       | tRNA modification GTPase<br>TrmE                  |
| "CJ_10001082"         | CJE1037 | -    | Cj0957c | -    | CCO0938 | -    | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                               | hypothetical protein                           | conserved hypothetical protein                    |
| "CJ_10001083"         | CJE1038 | -    | Cj0958c | -    | CCO0937 | -    | 1 | 1 | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | putative membrane protein                          | putative inner membrane<br>protein translocase | 60 kDa inner-membrane protein                     |
| "CJ_10001085"         | CJE1039 | -    | Cj0959c | -    | CCO0936 | -    | 1 | 1 | 1  | 1  | -1 | 1  | 1  | -1 | 1  | -1 | hypothetical protein                               | hypothetical protein                           | conserved hypothetical protein TIGR00278,         |
| "CJ_10001087"         | CJE1040 | rnpA | Cj0960c | rnpA | CCO0935 | rnpA | 1 | 1 | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | putative ribonuclease P protein component          | ribonuclease P protein component               | ribonuclease P protein component                  |
| "opCcV010000<br>1871" | CJE1041 | rpmH | Cj0961c | rpmH | CCO0934 | rpmH | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | -                                                  | 50S ribosomal protein L34                      | ribosomal protein L34                             |
| "CJ_10001090"         | CJE1042 | -    | Cj0962  | -    | CCO0933 | -    | 1 | 1 | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | putative acetyltransferase                         | acetyltransferase, GNAT family                 | acetyltransferase, GNAT family                    |
| "CJ_10001093"         | CJE1043 | -    | Cj0963  | -    | CCO0932 | -    | 1 | 1 | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | hypothetical protein                               | hypothetical protein                           | phage SPO1 DNA<br>polymerase-related protein      |
| "CJ_10001096"         | CJE1044 | -    | Cj0964  | -    | CCO0931 | -    | 0 | 1 | 1  | -1 | -1 | 1  | 1  | -1 | 1  | 1  | putative periplasmic protein                       | hypothetical protein                           | probable periplasmic<br>protein Cj0964            |
| "CJ_10001098"         | CJE1045 | -    | Cj0965c | -    | CCO0930 | -    | 0 | 1 | 1  | 1  | -1 | 1  | 1  | 0  | 1  | 1  | hypothetical protein                               | thioesterase family protein                    | thioesterase family protein, putative             |
| "opCjV010000<br>0416" | CJE1046 | -    | -       | -    | -       | -    | 0 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | -                                                  | hypothetical protein                           | -                                                 |
| "CJ_10001117"         | CJE1047 | -    | Cj0967  | -    | -       | -    | 1 | 1 | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | putative periplasmic protein                       | pseudogene                                     | -                                                 |
| "opCjV010000<br>0857" | CJE1048 | -    | -       | -    | -       | -    | 1 | 0 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | -                                                  | hypothetical protein                           | -                                                 |
| "CJ_10001118"         | CJE1049 | -    | Cj0968  | -    | -       | -    | 0 | 1 | 1  | 1  | 0  | 1  | 1  | -1 | 1  | 1  | Putative periplasmic protein                       | hypothetical protein                           | -                                                 |

| "opCjV010000<br>0581" | CJE1050 | -    | Cj0971  | -    | -       | -    | 1  | 0  | 1  | 0  | 1  | 0  | 1  | 1  | 1  | 0  | pseudogene                                     | hypothetical protein                      | -                                                     |
|-----------------------|---------|------|---------|------|---------|------|----|----|----|----|----|----|----|----|----|----|------------------------------------------------|-------------------------------------------|-------------------------------------------------------|
| "CJ_10001120"         | CJE1051 | -    | Cj0970  | -    | -       | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | hypothetical protein                           | hypothetical protein                      | -                                                     |
| "CJ_10001122"         | CJE1052 | -    | Cj0971  | -    | -       | -    | 1  | 1  | 1  | 1  | 0  | -1 | 1  | 1  | 1  | 1  | hypothetical protein                           | hypothetical protein                      | -                                                     |
| "CJ_10001124"         | CJE1053 | -    | Cj0972  | -    | -       | -    |    | 1  | -1 | 1  | 1  | -1 | -1 | -1 | 1  | 1  | hypothetical protein                           | hypothetical protein                      | -                                                     |
| "CJ_10001126"         | CJE1054 | -    | Cj0973  | -    | -       | -    |    | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                           | hypothetical protein                      | -                                                     |
| "CJ 10001129"         | CJE1055 | -    | Ci0974  | -    | -       | -    | -1 | -1 | -1 | -1 | 1  | -1 | 1  | 1  | -1 | 1  | hypothetical protein                           | hypothetical protein                      | -                                                     |
| "CJ 10001132"         | CJE1056 | -    | Cj0975  | -    | -       | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | putative outer-membrane                        | pseudogene                                | -                                                     |
| _                     |         |      | 3       |      |         |      |    |    |    |    |    |    |    |    |    |    | protein                                        |                                           |                                                       |
| "CJ_10001136"         | CJE1058 | -    | Cj0976  | -    | CCO1042 | -    | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                           | methyltransferase, putative               | conserved hypothetical protein                        |
| "opCcV010000<br>1219" | CJE1059 | -    | Cj0977  | -    | CCO1043 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                           | hypothetical protein                      | probable lipoprotein<br>Cj0978c -related protein      |
| "CJ_10001161"         | CJE1060 | -    | Cj0978c | -    | CCO1044 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative lipoprotein                           | lipoprotein, putative                     | thermonuclease family protein                         |
| "CJ_10001162"         | CJE1061 | -    | Сј0979с | -    | CCO1045 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative secreted nuclease                     | thermonuclease family protein             | probable peptidase Cj0980                             |
| "CJ_10001164"         | CJE1062 | pepD | Cj0980  | -    | CCO1046 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative peptidase                             | aminoacyl-histidine<br>dipeptidase        | major facilitator family transporter                  |
| "CJ_10001166"         | CJE1063 | cjaB | Cj0981c | -    | CCO0255 | proP | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 1  | 1  | transmembrane transport protein                | transport protein CjaB                    | proline/betaine transporter (proP)                    |
| "opCcV010000<br>0748" | CJE1064 | -    | Cj0982c | -    | CCO1048 | -    | 1  | 1  | 0  | -1 | 0  | -1 | 0  | 1  |    | -1 | putative amino-acid<br>transporter periplasmic | surface antigen, CjaA                     | ABC transporter,<br>periplasmic substrate-<br>binding |
| "opCjjV010000<br>156" | CJE1065 | jlpA | Cj0983  | -    | -       | -    | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | putative lipoprotein                           | surface-exposed lipoprotein               | -                                                     |
| "CJ_10001170"         | CJE1066 | -    | Cj0984  | -    | CCO1050 | -    | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                           | hypothetical protein                      | Protein of unknown<br>function (DUF328)               |
| "CJ_10001174"         | CJE1067 | hipO | Cj0985c | hipO | -       | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hippurate hydrolase                            | hippurate hydrolase                       | -                                                     |
| "CJ_10001178"         | CJE1068 | -    | Cj0986c | -    | -       | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative integral membrane protein             | hypothetical protein                      | -                                                     |
| "CJ_10001209"         | CJE1069 | -    | Cj0989  | -    | CCO1051 | -    | 0  | 0  | 1  | 0  | 1  | -1 | -1 | 1  | -1 | 1  | putative membrane protein                      | hypothetical protein                      | conserved hypothetical protein                        |
| "CJ_10001211"         | CJE1070 | -    | Сј0990с | -    | CCO1052 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | hypothetical protein                           | hypothetical protein                      | conserved hypothetical protein                        |
| "CJ_10001212"         | CJE1071 | -    | Cj0991c | -    | CCO1053 | glpC | 0  | -1 | -1 | 1  | 1  | -1 | 1  | -1 | 0  | -1 | putative oxidoreductase                        | iron-sulfur cluster-binding               | anaerobic glycerol-3-                                 |
|                       |         |      |         |      |         |      |    |    |    |    |    |    |    |    |    |    | ferredoxin-type electron                       | domain protein                            | phosphate dehydrogenase,                              |
| "CJ_10001213"         | CJE1072 | hemN | Cj0992c | hemN | CCO1054 | hemN | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | oxygen-independent<br>coproporphyrinogen III   | coproporphyrinogen III<br>oxidase         | oxygen-independent<br>coproporphyrinogen III          |
| "CJ_10001214"         | CJE1073 | -    | Cj0993c | -    | CCO1055 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                           | hypothetical protein                      | conserved hypothetical protein                        |
| "CJ_10001217"         | CJE1074 | argF | Сј0994с | argF | CCO1056 | argF | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | ornithine<br>carbamoyltransferase              | ornithine<br>carbamoyltransferase         | ornithine<br>carbamoyltransferase                     |
| "CJ_10001221"         | CJE1075 | hemB | Cj0995c | hemB | CCO1057 | hemB | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | delta-aminolevulinic acid<br>dehydratase       | delta-aminolevulinic acid<br>dehydratase  | porphobilinogen synthase                              |
| "CJ_10001225"         | CJE1076 | ribA | Cj0996  | ribA | CCO1058 | ribA | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | GTP cyclohydrolase II                          | GTP cyclohydrolase II protein             | GTP cyclohydrolase II                                 |
| "CJ_10001255"         | CJE1077 | gidB | Cj0997  | -    | CCO1059 | gidB | -1 | -1 | -1 | -1 | -1 | 1  | 1  | 1  | 1  | -1 | gidB homolog                                   | methyltransferase GidB                    | methyltransferase GidB                                |
| "CJ_10001256"         | CJE1078 | -    | Cj0998c | -    | CCO1060 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative periplasmic protein                   | hypothetical protein                      | probable periplasmic<br>protein Cj0998c               |
| "CJ_10001258"         | CJE1079 | -    | Сј0999с | -    | CCO1061 | -    | 1  | 1  | 1  | 0  | 1  | 0  | 0  | 1  | 1  | -1 | putative integral membrane<br>protein          | hypothetical protein                      | membrane protein, putative                            |
| "CJ_10001260"         | CJE1080 | -    | Cj1000  | -    | CCO1062 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative transcriptional<br>regulator (lysR    | transcriptional regulator,<br>LysR family | transcription regulator LysR family VCA0542 ,         |
| "opCcV010000          | CJE1081 | rpoD | Cj1001  | rpoD | CCO1063 | rpoD | 0  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | RNA polymerase sigma                           | RNA polymerase sigma                      | RNA polymerase sigma                                  |

| 1743"                 |         |            |            |      | 1        |        |          |    |    | l  |    |     |    |    |    |     | factor (sigma-70)                 | factor                                         | factor RpoD                                           |
|-----------------------|---------|------------|------------|------|----------|--------|----------|----|----|----|----|-----|----|----|----|-----|-----------------------------------|------------------------------------------------|-------------------------------------------------------|
| "opCcV010000          | CJE1082 | sixA       | Cj1002c    |      | CCO1064  | 1      | -1       | 1  | 1  | 1  | 1  | 1   | -1 | -1 | 1  | -1  |                                   | phosphohistidine                               | phosphohistidine                                      |
| 1596"                 |         | SIXA       | CJ1002C    | _    | CCO1004  | -      | -1       | 1  | 1  | 1  | 1  | 1   | -1 | -1 | 1  | -1  | hypothetical protein              | phosphatase SixA                               | phosphatase SixA, putative                            |
| "CJ_10001263"         | CJE1083 | -          | Cj1003c    | -    | CCO1065  | -      | 1        | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1   | putative integral membrane        | rhomboid family protein                        | glp regulon protein (glpG)                            |
|                       |         |            |            |      |          |        |          |    |    |    |    |     |    |    |    |     | protein                           |                                                | isolog                                                |
| "CJ_10001265"         | CJE1084 | -          | Cj1004     | -    | CCO1066  | -      | 0        | 1  | 0  | 0  | 1  | 1   | 0  | 1  | 1  | 1   | putative periplasmic protein      | hypothetical protein                           | probable periplasmic<br>protein Cj1004                |
| "CJ_10001268"         | CJE1085 | -          | Cj1005c    | -    | CCO1067  | ftsH_1 | 1        | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1   | putative membrane bound<br>ATPase | cell division protein FtsH,<br>putative        | cell division protein (ftsH)                          |
| "CJ_10001271"         | CJE1086 | -          | Cj1006c    | -    | CCO1068  | -      | 1        | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1   | hypothetical proteinCj1006c       | MiaB-like tRNA modifying enzyme                | MiaB-like tRNA modifying enzyme                       |
| "CJ_10001284"         | CJE1087 | -          | Cj1007c    | -    | CCO1069  | -      | 1        | 1  | 1  | 1  | 1  | 1   | 1  | 0  | 1  | 1   | putative membrane protein         | mechanosensitive ion<br>channel family protein | conserved hypothetical integral membrane              |
| "CJ 10001285"         | CJE1088 | aroB       | Cj1008c    | aroB | CCO1070  | aroB   | 1        | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1   | 3-dehydroquinate synthase         | 3-dehydroquinate synthase                      | 3-dehydroquinate synthase                             |
| "CJ_10001285"         | CJE1089 | alob       | Cj1008c    | alob | CCO1070  | агов   | 1        | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1   | hypothetical protein              | trkA domain protein                            | TrkA domain protein                                   |
|                       |         | -          |            | -    |          | -      | 1        | 1  | 1  | 1  | 1  | 1 1 | 1  | 1  | 1  | 1 1 |                                   |                                                |                                                       |
| "CJ_10001288"         | CJE1090 | tgt        | Cj1010     | tgt  | CCO1072  | tgt    | -1       | -1 | -1 | -1 | -1 | -1  | 1  | 1  | 1  | -1  | queuine tRNA-                     | queuine tRNA-                                  | queuine tRNA-                                         |
|                       |         |            |            |      | 0001050  |        |          | _  |    |    |    |     |    |    |    |     | ribosyltransferase                | ribosyltransferase                             | ribosyltransferase                                    |
| "CJ_10001289"         | CJE1091 | -          | Cj1011     | -    | CCO1073  | -      | 0        | 1  | 1  | 1  | 0  | 1   | 1  | 1  | 1  | 1   | putative membrane protein         | hypothetical protein                           | probable membrane protein<br>Cj1011                   |
| "opCjV010000<br>0026" | CJE1092 | -          | -          | -    | -        | -      | -1       | -1 | -1 | -1 | 1  | -1  | -1 | 1  | -1 | -1  | -                                 | hypothetical protein                           | -                                                     |
| "opCcV010000<br>1013" | CJE1093 | -          | -          | -    | CCOA0089 | -      | -1       | -1 | 0  | -1 | 1  | -1  | -1 | 1  | -1 | -1  | -                                 | hypothetical protein                           | hypothetical protein                                  |
| "opCcV010000<br>0010" | CJE1094 | -          | -          | -    | CCOA0088 | -      |          |    | 0  |    |    | -1  | -1 | -1 | 1  |     | -                                 | site-specific recombinase,<br>phage integrase  | site-specific recombinase<br>XerC, putative           |
| "opCjV010000          | CJE1095 | † <u>-</u> | -          | _    |          | _      |          | -1 | 0  | -1 | -1 | 1   | 1  | 1  | -1 | -1  |                                   | hypothetical protein                           | -                                                     |
| 0710"                 |         |            |            |      |          | _      |          |    |    |    |    |     | 1  | 1  |    | -1  |                                   |                                                |                                                       |
| "opCcV010000<br>1390" | CJE1096 | -          | -          | -    | CCOA0087 | -      | 0        | 0  | 0  | 1  | 1  | 1   | 1  | 1  | 1  | 1   | -                                 | hypothetical protein                           | erythrocyte membrane-<br>associated antigen           |
| "opCjV010000<br>1060" | CJE1097 | -          | -          | -    | -        | -      |          | -1 | 1  | -1 | 1  | -1  | -1 | 1  | 1  | -1  | -                                 | hypothetical protein                           | -                                                     |
| "opCcV010000<br>0501" | CJE1098 | -          | -          | -    | CCOA0086 | -      |          | -1 | 1  | -1 | 1  | 1   | -1 | 1  | -1 | -1  | -                                 | hypothetical protein                           | hypothetical protein                                  |
| "opCcV010000<br>0426" | CJE1099 | -          | -          | -    | CCOA0085 | -      |          |    | 1  |    |    |     |    | -1 |    | -1  | -                                 | hypothetical protein                           | hypothetical protein                                  |
| "opCjV010000<br>1086" | CJE1100 | -          | -          | -    | -        | -      |          |    | 0  |    |    |     | 0  | -1 | 1  | -1  | -                                 | death-on-curing family protein                 | -                                                     |
| "opCcV010000<br>0781" | CJE1101 | -          | -          | -    | CCOA0056 | -      |          | -1 | 0  | -1 | 1  | -1  | -1 | 1  | 1  | -1  | -                                 | hypothetical protein                           | hypothetical protein                                  |
| "opCjV010000<br>0105" | CJE1102 | -          | -          | -    | -        | -      |          |    | 0  |    | -1 | -1  | -1 | 1  | 1  | -1  | -                                 | hypothetical protein                           | -                                                     |
| "opCcV010000<br>0147" | CJE1103 | -          | -          | -    | CCOA0047 | -      | 1        | 1  | -1 | 1  | 1  | 1   | -1 | 1  | 0  | 1   | -                                 | hypothetical protein                           | Domain of unknown<br>function (DUF332)<br>superfamily |
| "opCjV010000<br>0362" | CJE1104 | -          | -          | -    | -        | -      | -1       | -1 | -1 | -1 | 1  | -1  | -1 | 1  | -1 | -1  | -                                 | hypothetical protein                           | -                                                     |
| "opCcV010000<br>2089" | CJE1105 | -          | -          | -    | CCOA0045 | -      | 1        | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1   | -                                 | hypothetical protein                           | TraG protein, putative                                |
| "opCjV010000<br>0980" | CJE1106 | -          | -          | -    | CCOA0045 | -      |          | -1 | -1 | -1 | 1  | -1  | -1 | 1  | 0  | -1  | -                                 | hypothetical protein                           | TraG protein, putative                                |
| "opCjV010000<br>0731" | CJE1107 | -          | -          | -    | CCOA0045 | -      |          |    | 1  |    |    | 1   | 1  | 1  |    |     | -                                 | TraG-like protein                              | TraG protein, putative                                |
| "opCjV010000<br>0054" | CJE1108 | -          | -          | -    | -        | -      |          |    | 1  | 1  | 1  | 0   | -1 | 1  | 1  | 1   | -                                 | hypothetical protein                           | -                                                     |
| "opCjV010000          | CJE1109 | 1 -        | † <u>-</u> | -    | -        | _      | <u> </u> |    | -1 | -1 | 1  | -1  | -1 | 1  | 0  | 1   | _                                 | hypothetical protein                           | _                                                     |

| 0.50211               | 1        |   | 1       | 1 | T          | 1 | 1  | 1  | 1  | 1  | 1  |    | 1  | 1  | 1  | 1  | T                    |                      |                                |
|-----------------------|----------|---|---------|---|------------|---|----|----|----|----|----|----|----|----|----|----|----------------------|----------------------|--------------------------------|
| 0503"                 | CTELLIO. |   | +       |   | 000 101 10 |   |    |    |    |    |    |    |    |    |    |    |                      | 1                    | 1                              |
| "opCcV010000<br>1931" | CJE1110  | - | -       | - | CCOA0143   | - | 1  | 1  | 1  | 1  | -1 | -1 | 1  | -1 | 1  | 1  | -                    | hypothetical protein | hypothetical protein           |
| "opCjV010000<br>0107" | CJE1111  | - | -       | - | CCOA0143   | - |    |    | -1 | -1 | -1 | -1 | 1  | -1 | 1  | -1 | -                    | hypothetical protein | hypothetical protein           |
| "opCcV010000<br>0005" | CJE1112  | - | -       | - | CCOA0144   | - | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1  | 1  | 1  | -                    | hypothetical protein | hypothetical protein           |
| "opCjV010000<br>0544" | CJE1113  | - | -       | - | -          | - |    |    | -1 | -1 | -1 | -1 | -1 | 1  | 1  | -1 | -                    | hypothetical protein | -                              |
| "opCcV010000<br>0110" | CJE1114  |   | -       | - | CCOA0038   | - | 1  | 1  | 1  | 1  | -1 | 0  | 0  | 1  | 1  | -1 | -                    | hypothetical protein | Phage lysozyme, putative       |
| "opCcV010000<br>1232" | CJE1115  | - | -       | - | CCOA0037   | - | -1 | -1 | 0  | -1 | 1  | -1 | -1 | 1  | -1 | -1 | -                    | hypothetical protein | hypothetical protein           |
| "opCjV010000<br>0182" | CJE1116  | - | -       | - | -          | - |    |    | -1 |    |    |    | 1  | -1 | 1  | -1 | -                    | hypothetical protein | -                              |
| "opCjV010000<br>0742" | CJE1117  | - | -       | - | -          | - | -1 |    | 0  | -1 | 1  | 1  | -1 | 1  | -1 | -1 | -                    | hypothetical protein | -                              |
| "opCjV010000<br>0502" | CJE1118  |   | -       | - | -          | - |    |    | -1 | -1 | -1 | -1 | -1 | 1  | -1 | -1 | -                    | hypothetical protein | -                              |
| "opCjV010000<br>0186" | CJE1119  | - | -       | - | -          | - |    | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | -1 | -                    | hypothetical protein | -                              |
| "opCjV010000<br>0289" | CJE1120  | - | -       | - | -          | - |    |    | 0  | -1 | 1  | -1 | -1 | -1 | 1  | -1 | -                    | hypothetical protein | -                              |
| "opCjV010000<br>0377" | CJE1121  | - | -       | - | -          | - |    | -1 | 0  |    |    |    |    | -1 |    |    | -                    | pseudogene           | -                              |
| "opCjV010000<br>1091" | CJE1122  | - | -       | - | -          | - |    |    | 0  | -1 | 1  | -1 | -1 | 1  | -1 | -1 | -                    | hypothetical protein | -                              |
| "opCjV010000<br>0343" | CJE1123  | - | -       | - | =          | - |    |    | 1  |    |    | 1  |    | -1 |    |    | -                    | hypothetical protein | -                              |
| "opCjV010000<br>0335" | CJE1124  | - | -       | - | -          | - |    | -1 | -1 | -1 | 1  | -1 | -1 | 1  | 1  | -1 | -                    | hypothetical protein | -                              |
| "opCjV010000<br>0556" | CJE1125  | - | -       | - | -          | - |    |    | 0  |    |    |    | 1  | -1 |    |    | -                    | hypothetical protein | -                              |
| "opCcV010000<br>0144" | CJE1126  | - | -       | - | CCOA0009   | - |    |    | 0  |    | 1  | -1 |    | 1  | 1  | -1 | -                    | hypothetical protein | hypothetical protein           |
| "opCjV010000<br>0380" | CJE1127  | - | pTet_43 | - | -          | - |    | 0  | 1  |    |    |    |    | -1 |    |    | hypothetical protein | hypothetical protein | -                              |
| "opCjV010000<br>0139" | CJE1128  | - | -       | - | -          | - | -1 | -1 | -1 | -1 | -1 | -1 | 1  | 1  | 1  | -1 | -                    | hypothetical protein | -                              |
| "opCjV010000<br>0785" | CJE1130  | - | -       | - | -          | - |    | -1 | -1 |    |    |    |    | -1 |    |    | -                    | hypothetical protein | -                              |
| "opCjV010000<br>1092" | CJE1131  | - | -       | - | -          | - |    | -1 | -1 | -1 | 1  | -1 | -1 | 1  | 0  | -1 | -                    | hypothetical protein | -                              |
| "opCjV010000<br>0277" | CJE1132  | - | -       | - | -          | - |    |    | -1 |    |    |    |    | 1  | 1  |    | -                    | hypothetical protein | -                              |
| "opCjV010000<br>0420" | CJE1133  | - | -       | - | -          | - |    |    | -1 |    | -1 | -1 |    | -1 | 1  |    | -                    | hypothetical protein | -                              |
| "opCjV010000<br>0318" | CJE1134  | - | -       | - | -          | - |    |    | -1 |    |    |    |    | -1 |    |    | -                    | hypothetical protein | -                              |
| "opCjV010000<br>0949" | CJE1135  | - | -       | - | CCOA0038   | - |    |    | -1 | -1 | 1  | -1 | -1 | 1  | -1 | -1 | -                    | hypothetical protein | Phage lysozyme, putative       |
| "opCjV010000<br>0854" | CJE1136  | - | -       | - | -          | - |    |    | -1 | -1 | 1  | -1 | -1 | 1  | 1  | 1  | -                    | hypothetical protein | -                              |
| "opCcV010000<br>1378" | CJE1137  | - | -       | - | CCOA0040   | - | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | -                    | hypothetical protein | conserved hypothetical protein |

| # G **010000          | GTELLOO | 1    | 1       | 1    | 000 100 11 |      | 1  |    |    |    |    |    |    |    |    |    | T                                                   | I a de la constantia                               | I a a a a a a a a a a a a a a a a a a a       |
|-----------------------|---------|------|---------|------|------------|------|----|----|----|----|----|----|----|----|----|----|-----------------------------------------------------|----------------------------------------------------|-----------------------------------------------|
| "opCcV010000<br>0863" | CJE1138 | -    | -       | -    | CCOA0041   | -    |    | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | -1 | -                                                   | hypothetical protein                               | hypothetical protein                          |
| "opCcV010000<br>1069" | CJE1139 | -    | -       | -    | CCOA0141   | -    | 1  | 1  | 1  | 1  | -1 | -1 | 1  | 1  | -1 | 1  | -                                                   | hypothetical protein                               | conserved hypothetical protein                |
| "opCjV010000<br>0936" | CJE1140 | -    | -       | -    | -          | -    | 0  | -1 | 0  | 0  | 1  | 1  | -1 | 1  | 1  | 0  | -                                                   | pseudogene                                         | -                                             |
| "opCcV010000<br>1183" | CJE1141 | -    | -       | -    | CCOA0129   | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | -                                                   | hypothetical protein                               | vgrG protein VCA0018, putative                |
| "opCcV010000<br>0261" | CJE1142 | -    | -       | -    | CCOA0099   | -    |    | -1 | 1  | -1 | 1  | -1 | -1 | 1  | -1 | -1 | -                                                   | hypothetical protein                               | vgrG protein VCA0123 ,<br>putative            |
| "opCjV010000<br>0008" | CJE1143 | -    | -       | -    | -          | -    |    | -1 | -1 | -1 | -1 | -1 | -1 | 1  | 1  | -1 | -                                                   | hypothetical protein                               | -                                             |
| "opCjV010000<br>0334" | CJE1144 | -    | -       | -    | =          | -    |    | -1 | -1 | -1 | 1  | 0  | -1 | 1  | 1  | -1 | -                                                   | hypothetical protein                               | -                                             |
| "opCjV010000<br>0499" | CJE1145 | -    | -       | -    | =          | -    |    |    | -1 | -1 | -1 | 1  | 1  | -1 | 1  | -1 | -                                                   | hypothetical protein                               | -                                             |
| "opCcV010000<br>0277" | CJE1146 | -    | -       | -    | CCOA0095   | -    |    |    | -1 |    |    |    |    | -1 |    |    | -                                                   | hypothetical protein                               | hypothetical protein                          |
| "opCcV010000<br>1147" | CJE1147 | -    | -       | -    | CCOA0094   | -    | -1 |    | -1 |    |    |    | 1  | -1 | 1  |    | -                                                   | hypothetical protein                               | conserved hypothetical protein                |
| "opCjV010000<br>0648" | CJE1148 | -    | -       | -    | =          | -    |    | -1 | -1 | -1 | -1 | 1  | 1  | -1 | 1  | -1 | -                                                   | hypothetical protein                               | -                                             |
| "opCjV010000<br>0917" | CJE1149 | -    | -       | -    | =          | -    | -1 | -1 | 0  | -1 | 1  | -1 | -1 | 1  | -1 | -1 | -                                                   | hypothetical protein                               | -                                             |
| "opCcV010000<br>0669" | CJE1150 | -    | -       | -    | CCOA0098   | -    |    |    | -1 |    |    | -1 | -1 | 1  |    |    | -                                                   | hypothetical protein                               | conserved hypothetical protein                |
| "opCcV010000<br>1445" | CJE1151 | -    | -       | -    | CCOA0096   | -    | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | -1 | -                                                   | hypothetical protein                               | hypothetical protein                          |
| "opCjV010000<br>0097" | CJE1152 | -    | -       | -    | =          | -    |    |    | -1 | -1 | -1 | 0  | -1 | 1  | 1  | 1  | -                                                   | hypothetical protein                               | -                                             |
| "opCcV010000<br>2028" | CJE1153 | -    | -       | -    | CCOA0091   | -    | 1  | 1  | 1  | -1 | -1 | 1  | 1  | 1  | 1  | -1 | -                                                   | hypothetical protein                               | hypothetical protein                          |
| "opCcV010000<br>0319" | CJE1154 | -    | -       | -    | CCOA0090   | -    | -1 | -1 | 1  | -1 | 1  | -1 | -1 | 1  | -1 | -1 | -                                                   | hypothetical protein                               | hypothetical protein                          |
| "opCjV010000<br>0357" | CJE1155 | -    | -       | -    | -          | -    | -1 | -1 | -1 | -1 | 1  | 1  | -1 | 1  | -1 | -1 | -                                                   | hypothetical protein                               | -                                             |
| "CJ_10001291"         | CJE1156 | -    | Cj1012c | -    | CCO1079    | -    | 1  | 1  | 1  | 0  | -1 | 1  | -1 | 0  | 1  | 1  | putative membrane protein                           | hypothetical protein                               | probable membrane protein<br>Cj1012c          |
| "CJ_10001293"         | CJE1157 | -    | Cj1013c | -    | CCO1080    | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative membrane protein                           | cytochrome c biogenesis<br>protein, CcmF/CycK/CcsA | cytochrome c biogenesis<br>protein (ycf5)     |
| "CJ_10001295"         | CJE1158 | livF | Cj1014c | livF | CCO1081    | livF | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | branched-chain amino-acid<br>ABC transport system   | high affinity branched-chain amino acid ABC        | branched chain amino acid<br>ABC transporter, |
| "CJ_10001298"         | CJE1159 | livG | Cj1015c | livG | CCO1082    | livG | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | branched-chain amino-acid<br>ABC transport system   | high affinity branched-chain<br>amino acid ABC     | branched chain amino acid<br>ABC transporter, |
| "CJ_10001300"         | CJE1160 | livM | Cj1016c | livM | CCO1083    | livM | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative branched-chain<br>amino-acid ABC transport | high affinity branched-chain<br>amino acid ABC     | branched chain amino acid<br>ABC transporter, |
| "CJ_10001310"         | CJE1161 | livH | Cj1017c | livH | CCO1084    | livH | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | branched-chain amino-acid<br>ABC transport system   | high affinity branched-chain amino acid ABC        | branched chain amino acid<br>ABC transporter, |
| "CJ_10001311"         | CJE1162 | -    | Cj1018c | livK | CCO1085    | livJ | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | branched-chain amino-acid<br>ABC transport system   | high affinity branched-chain<br>amino acid ABC     | branched chain amino acid<br>ABC transporter, |
| "CJ_10001313"         | CJE1163 | -    | Cj1019c | livJ | CCO1086    | livJ | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | branched-chain amino-acid<br>ABC transport system   | high affinity branched-chain<br>amino acid ABC     | branched chain amino acid<br>ABC transporter, |
| "CJ_10001315"         | CJE1164 | -    | Cj1020c | -    | CCO1087    | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 0  | 1  | 1  | putative cytochrome C                               | cytochrome c family protein                        | probable cytochrome C Cj1020c                 |
| "CJ_10001318"         | CJE1165 | -    | Cj1021c | -    | CCO1088    | -    | 1  | -1 | -1 | -1 | -1 | -1 | -1 | 1  | 1  | 1  | putative periplasmic protein                        | porin domain protein                               | probable periplasmic                          |

|               |           |          |         |            |         |            | T | I   |     |   |          | 1   |          | 1   | 1   | 1   |                            |                                          | protein Cj1021c -related                |
|---------------|-----------|----------|---------|------------|---------|------------|---|-----|-----|---|----------|-----|----------|-----|-----|-----|----------------------------|------------------------------------------|-----------------------------------------|
| "CJ 10001321" | CJE1166   | -        | Cj1022c | -          | CCO1089 | -          | 1 | 1   | 1   | 1 | 1        | 1   | 1        | 1   | 0   | 1   | putative integral membrane | hypothetical protein                     | probable integral membrane              |
|               |           |          | ,       |            |         |            |   |     |     |   |          |     |          |     |     |     | protein                    | -                                        | protein Cj1022c                         |
| "CJ_10001323" | CJE1167   | asd      | Cj1023c | asd        | CCO1090 | asd        | 1 | 1   | 1   | 1 | 1        | 1   | 1        | 1   | 1   | 1   | aspartate-semialdehyde     | aspartate-semialdehyde                   | aspartate-semialdehyde                  |
| #GY 10001225# | CTT-11-CO | -        | G:1021  |            | 0001001 |            |   |     |     |   |          |     |          | -   | -   |     | dehydrogenase              | dehydrogenase                            | dehydrogenase                           |
| "CJ_10001326" | CJE1168   | -        | Cj1024c | -          | CCO1091 | -          | 1 | 1   | 1   | 1 | 0        | 1   | 1        | 1   | 1   | 1   | signal-transduction        | sigma-54 dependent DNA-                  | response regulator                      |
|               | ~~~       |          | ~       |            | ~~~     |            |   |     |     |   | <u> </u> |     | <u> </u> |     |     |     | regulatory protein         | binding response                         |                                         |
| "CJ_10001329" | CJE1169   | -        | Cj1025c | -          | CCO1092 | -          | 1 | 1   | 1   | 1 | 1        | 1   | 1        | 1   | 1   | 1   | hypothetical protein       | hypothetical protein                     | conserved hypothetical protein          |
| "CJ_10001333" | CJE1170   | -        | Cj1026c | -          | CCO1093 | -          | 1 | 1   | 1   | 1 | 1        | 1   | 1        | 1   | 1   | 1   | putative lipoprotein       | lipoprotein, putative                    | probable lipoprotein<br>Cj1026c         |
| "CJ_10001350" | CJE1171   | gyrA     | Cj1027c | gyrA       | CCO1094 | gyrA       | 1 | 1   | 1   | 1 | 1        | 1   | 1        | 1   | 1   | 1   | DNA gyrase subunit A       | DNA gyrase subunit A                     | DNA gyrase, A subunit                   |
| "CJ_10001351" | CJE1172   | ctsW     | Cj1028c | -          | CCO1095 | ctsW       | 1 | 1   | 1   |   | -1       | 0   | -1       |     | 1   |     | possible purine/pyrimidine | transformation system                    | transformation system                   |
| _             |           |          |         |            |         |            |   |     |     |   |          |     |          |     |     |     |                            | protein                                  | protein                                 |
| "CJ_10001353" | CJE1173   | mapA     | Cj1029c | mapA       | CCO1096 | -          | 1 | 1   | 1   | 1 | 1        | 1   | 1        | 1   | 1   | 1   | putative lipoprotein       | outer membrane                           | outer membrane                          |
| _             |           | 1        |         | 1          |         |            |   |     |     |   |          |     |          |     |     |     |                            | liproprotein MapA                        | liproprotein MapA                       |
| "CJ 10001355" | CJE1174   | lepA     | Cj1030c | lepA       | CCO1097 | lepA       | 1 | 1   | 1   | 1 | 1        | 1   | 1        | 1   | 1   | 1   | lepA GTP-binding protein   | GTP-binding protein LepA                 | GTP-binding protein LepA                |
|               |           |          | .,      | 1          |         | 1          |   |     |     |   |          |     |          |     |     |     | homolog                    | 31                                       | 3 r · · · · · · · · · · · · · · · · · · |
| "CJ 10001357" | CJE1175   | -        | Cj1031  | -          | CCO1098 | -          | 1 | 1   | 1   | 1 | 1        | 1   | 1        | 1   | 1   | 1   | putative outer membrane    | pseudogene                               | probable outer membrane                 |
|               |           |          | 1,5     |            |         |            |   |     |     |   |          |     |          |     |     |     | component of efflux        | 1                                        | component of efflux                     |
| "CJ 10001358" | CJE1176   | -        | Cj1032  | -          | CCO1099 | -          | 1 | 1   | 1   | 1 | 1        | 1   | 1        | 1   | 1   | 1   | putative membrane fusion   | hypothetical protein                     | probable membrane fusion                |
|               |           |          | 1,3     |            |         |            |   |     |     |   |          |     |          |     |     |     | component of efflux        | 51 · · · · · · · · · · · · · · · · · · · | component of efflux                     |
| "CJ 10001360" | CJE1177   | -        | Cj1033  | -          | CCO1100 | -          | 1 | 1   | 1   | 1 | 1        | 1   | 1        | 1   | 1   | 1   | putative integral membrane | AcrB/AcrD/AcrF family                    | probable integral membrane              |
|               |           |          | 1,3     |            |         |            |   |     |     |   |          |     |          |     |     |     | component of efflux        | protein                                  | component of efflux                     |
| "CJ 10001361" | CJE1178   | -        | Ci1034c | -          | CCO1101 | -          | 1 | 1   | 1   | 1 | 1        | 1   | 1        | 1   | 1   | 1   | possible dnaJ-like protein | DnaJ domain protein                      | DnaJ domain protein                     |
| "CJ 10001363" | CJE1179   | -        | Cj1035c | -          | CCO1102 | -          | 1 | 1   | 1   | 1 | 1        | 1   | 1        | 1   | 1   | 1   | possible transferase       | arginyl-tRNA-protein                     | probable transferase                    |
|               |           |          | -3      |            |         |            | _ | -   | -   | _ |          |     | _        | -   | -   | 1   | F                          | transferase                              | Cj1035c                                 |
| "CJ 10001368" | CJE1180   | -        | Cj1036c | -          | CCO1103 | -          | 1 | 1   | 1   | 1 | -1       | 1   | 1        | 1   | 1   | 1   | hypothetical protein       | hypothetical protein                     | conserved hypothetical                  |
|               |           |          | -3      |            |         |            | _ | -   | -   | _ |          |     | _        | -   | -   | 1   | >F                         | -5,F                                     | protein                                 |
| "CJ 10001375" | CJE1181   | -        | Cj1037c | pycA       | CCO1104 | carB       | 1 | 1   | 1   | 1 | 1        | 1   | 1        | 1   | 1   | 1   | putative pyruvate          | acetyl-CoA carboxylase                   | carbamoyl-phosphate                     |
|               |           |          | -3      | PJ         |         |            | _ | -   | -   | _ |          |     | _        | -   | -   | 1   | carboxylase A subunit      | ,,                                       | synthase, large subunit                 |
| "CJ 10001376" | CJE1182   | <u> </u> | Ci1038  | † <u>-</u> | CCO1105 | † <u>-</u> | 1 | 1   | 1   | 1 | 1        | 1   | 1        | 1   | 1   | 1   | probable cell              | cell division protein,                   | cell cycle protein.                     |
| C0_10001570   | 0021102   |          | Cjroso  |            | 0001100 |            | • | 1   |     |   | 1        | 1   | 1        | 1   | 1   |     | division/peptidoglycan     | FtsW/RodA/SpoVE family                   | FtsW/RodA/SpoVE family                  |
| "CJ 10001377" | CJE1183   | murG     | Ci1039  | murG       | CCO1106 | murG       | 1 | 1   | 1   | 1 | 1        | 1   | 1        | 1   | 1   | 1   | putative                   | N-acetylglucosaminyl                     | UDP-N-acetylglucosamine-                |
| C3_10001377   | CJETTOS   | maro     | CJ1057  | muro       | 0001100 | muro       |   | 1 - | 1   | - | 1        | 1   | 1        | 1   | 1   | 1   | putative                   | transferase                              | -N-acetylmuramyl-                       |
| "CJ 10001379" | CJE1184   | <u> </u> | Ci1040c | † <u>-</u> | CCO1107 | 1 -        | 1 | 1   | 1   | 1 | 1        | 1   | 1        | 0   | 1   | 1   | putative transmembrane     | hypothetical protein                     | cyanate MFS transporter,                |
| 00_10001577   | CULTIO!   |          | CJ10.00 |            | 0001107 |            | • | 1   |     |   | 1        | 1   | 1        |     | 1   |     | transport protein          | nypotnetical protein                     | putative                                |
| "CJ 10001380" | CJE1185   | -        | Ci1041c | -          | CCO1108 | _          | 1 | 1   | 1   | 1 | 1        | -1  | 1        | 1   | 1   | 1   | putative periplasmic       | hypothetical protein                     | conserved hypothetical                  |
| C0_10001500   | CULTION   |          | CJ10.11 |            | 0001100 |            | • | 1   |     |   | 1        | 1   | 1        | 1   | 1   |     | ATP/GTP-binding protein    | nypotnetical protein                     | protein                                 |
| "CJ 10001382" | CJE1186   | <u> </u> | Ci1042c | † <u>-</u> | CCO1109 | 1 -        | 1 | 1   | 1   | 1 | 1        | -1  | 1        | 1   | 1   | 1   | putative transcriptional   | transcriptional regulator,               | probable transcription                  |
| C3_10001302   | CJETTOO   |          | CJ1042C |            | 0001107 |            |   | 1 - | 1   | - | 1        | 1   | 1        | 1   | 1   | 1   | regulatory protein         | AraC family                              | regulatory protein                      |
| "CJ 10001384" | CJE1187   | <u> </u> | Cj1043c | † <u>-</u> | CCO1110 | 1 -        | 1 | 1   | 1   | 1 | 1        | 1   | 1        | 1   | 1   | 1   | possible transferase       | thiamine-phosphate                       | thiamine-phosphate                      |
| C3_10001501   | CJETTO    |          | CJ1045C |            | CCOTITO |            |   | 1 - | 1   | - | 1        | 1   | 1        | 1   | 1   | 1   | possible dansferase        | pyrophosphorylase, putative              | pyrophosphorylase, putative             |
| "CJ 10001386" | CJE1188   | thiH     | Cj1044c | thiH       | CCO1111 | -          | 1 | 1   | 1   | 1 | 1        | 1   | 1        | 1   | 1   | 1   | thiH protein               | thiamine biosynthesis                    | thiH protein Cj1044c                    |
| C3_10001300   | CJL1100   | umi      | CJ1044C | unii       | CCOIIII | _          | 1 | 1   | 1   | 1 | 1        | 1   | 1        | 1   | 1   | 1   | unii protein               | protein ThiH                             | umi protein Cj1044c                     |
| "CJ 10001390" | CJE1189   | thiG     | Ci1045c | thiG       | CCO1112 | <b>+</b> _ | 1 | 1   | 1   | 1 | 1        | 1   | 1        | 1   | 1   | 1   | thiG protein               | thiazole synthase                        | thiamin biosynthesis protein            |
| C3_10001370   | CJETTO    | uno      | CJ1045C | uno        | CCOTTIZ |            |   | 1 - | 1   | - | 1        | 1   | 1        | 1   | 1   | 1   | and protein                | unazote synthase                         | thiG Ci1045c                            |
| "CJ 10001393" | CJE1190   | thiF     | Cj1046c | moeB       | CCO1113 | _          | 1 | 1   | 1   | 1 | 1        | 1   | 1        | 1   | 1   | 1   | putative molybdopterin     | thiamine biosynthesis                    | HesA/MoeB/ThiF family                   |
| C3_10001373   | CJE1170   | um       | CJ1040C | шось       | CCOTTIS | _          | 1 | 1   | 1   | 1 | 1        | 1   | 1        | 1   | 1   | 1   | biosynthesis protein       | protein ThiF                             | protein                                 |
| "CJ 10001404" | CJE1191   | thiS     | Cj1047c | † <u>-</u> | CCO1114 | thiS       | 1 | 0   | 0   | 1 | 1        | 1   | 1        | 1   | 1   | 1   | hypothetical protein       | thiamine biosynthesis                    | thiamine biosynthesis                   |
| 23_10001404   | (32.11)1  |          | CJ104/C |            | 0001114 | 11115      | 1 |     |     | 1 | 1        | 1 * | 1        | 1 * | 1 * | 1 * | 2. pometicai protein       | protein ThiS                             | protein ThiS                            |
| "CJ 10001405" | CJE1192   | dapE     | Cj1048c | dapE       | CCO1116 | dapE       | 1 | 0   | 1   | 1 | 1        | 1   | 1        | 1   | 1   | 1   | succinyl-diaminopimelate   | succinyl-diaminopimelate                 | succinyl-diaminopimelate                |
| C3_10001403   | CJL1172   | dapE     | CJ1046C | аары       | CC01110 | uape       | 1 |     | 1 * | 1 | 1        | 1 1 | 1        | 1 * | 1 * | 1 1 | desuccinylase              | desuccinylase                            | desuccinylase                           |
| "CJ 10001407" | CJE1193   | +        | Ci1049c | +          | CCO1117 | +          | 1 | 1   | 1   | 1 | 1        | 1   | 1        | 1   | 1   | 1   | putative integral membrane | transporter, LysE family                 | probable integral membrane              |
| CJ_1000140/   | CJE1173   | 1 -      | CJ1049C | _          | CCOIII/ | 1 -        | 1 | 1   | 1   | 1 | 1        | 1   | 1        | 1   | 1   | 1   | protein                    | uansporter, LysE family                  | protein Ci1049c                         |
|               | l         | 1        | _1      | 1          | 1       | 1          |   | 1   | 1   | 1 | 1        | 1   |          | 1   | 1   | 1   | protein                    | I                                        | protein CJ10+7C                         |

| "CJ_10001408"         | CJE1194  | -    | Cj1050c | -    | CCO1118 | -    | 1 | 1        | 1  | 1        | -1       | -1       | 1  | -1       | 1        | 1        | putative transferase                       | NAD-dependent<br>deacetylase                       | probable transferase<br>Ci1050c               |
|-----------------------|----------|------|---------|------|---------|------|---|----------|----|----------|----------|----------|----|----------|----------|----------|--------------------------------------------|----------------------------------------------------|-----------------------------------------------|
| "CJ_10001410"         | CJE1195  | -    | Cj1051c | -    | CCO1119 | -    |   | 1        | 1  | 1        | -1       | -1       | 0  | -1       | 1        | 1        | restriction modification                   | type II restriction-                               | type I restriction                            |
|                       |          |      |         |      |         |      |   |          |    |          |          |          |    |          |          |          | enzyme                                     | modification enzyme                                | modification enzyme                           |
| "CJ_10001412"         | CJE1196  | mutS | Cj1052c | mutS | CCO1120 | -    | 0 | 1        | 1  | 1        | 1        | 1        | 1  | 1        | 1        | 1        | putative mismatch repair<br>protein        | recombination and DNA<br>strand exchange inhibitor | probable mismatch repair<br>protein Cj1052c   |
| "CJ_10001414"         | CJE1197  | -    | Cj1053c | -    | CCO1121 | -    | 1 | 1        | 1  | 1        | 1        | 1        | 1  | 1        | 1        | 1        | putative integral membrane protein         | hypothetical protein                               | probable integral membrane<br>protein Cj1053c |
| "CJ_10001416"         | CJE1198  | murC | Cj1054c | murC | CCO1122 | murC | 1 | 1        | 1  | 1        | 1        | 1        | 1  | 1        | 1        | 1        | UDP-N-acetylmuramate                       | UDP-N-acetylmuramateL-                             | UDP-N-acetylmuramate                          |
| "CJ 10001422"         | CJE1199  | -    | Cj1056c |      | CCO1127 | -    | 1 | 1        | 1  | 1        | -1       | 1        | 1  | 0        | 0        | 1        | alanine ligase<br>hypothetical protein     | alanine ligase<br>hydrolase, carbon-nitrogen       | alanine ligase<br>hydrolase, carbon-nitrogen  |
| _                     |          |      |         |      |         | _    | 1 | 1        | 1  | 1        |          | 1        | 1  | Ů        | U        | 1        | 17                                         | family                                             | family                                        |
| "CJ_10000918"         | CJE1200  | -    | Cj1057c | -    | CCO1128 | -    | 1 | 1        | 1  | 1        | -1       | 1        | 1  | -1       | 1        | 1        | putative coiled-coil protein               | exodeoxyribonuclease VII,<br>small subunit,        | exodeoxyribonuclease VII,<br>small subunit,   |
| "CJ_10000921"         | CJE1201  | guaB | Cj1058c | guaB | CCO1129 | guaB | 1 | 1        | 1  | 1        | 1        | 1        | 1  | -1       | 1        | 1        | inosine-5'-monophosphate                   | inositol-5-monophosphate                           | inosine-5'-monophosphate                      |
|                       |          |      | -       |      |         | _    |   |          |    |          |          |          |    |          |          |          | dehydrogenase                              | dehydrogenase                                      | dehydrogenase                                 |
| "CJ_10000924"         | CJE1202  | gatA | Cj1059c | gatA | CCO1130 | gatA | 1 | 1        | 1  | 1        | 1        | 1        | 1  | 1        | 1        | 1        | Glu-tRNAGln                                | glutamyl-tRNA                                      | glutamyl-tRNA(Gln)                            |
|                       |          |      |         |      |         |      |   |          |    |          |          |          |    |          |          |          | amidotransferase subunit A                 | amidotransferase subunit A                         | amidotransferase, A subunit                   |
| "opCcV010000<br>1814" | CJE1203  | -    | Cj1060c | -    | CCO1131 | -    | 1 | 0        | 0  | 1        | 1        | 0        | 1  | 1        | 1        | 0        | -                                          | hypothetical protein                               | hypothetical protein                          |
| "opCcV010000<br>0011" | CJE1204  | ileS | Cj1061c | ileS | CCO1132 | ileS | 1 | 1        | 1  | 1        | -1       | 0        | 1  | 1        | 1        | 0        | isoleucyl-tRNA synthetase                  | isoleucyl-tRNA synthetase                          | isoleucyl-tRNA synthetase                     |
| "CJ_10000928"         | CJE1205  | -    | Cj1062  | -    | CCO1133 | -    | 1 | 1        | 1  | 1        | 1        | 1        | 1  | 0        | 1        | 0        | hypothetical protein                       | competence/damage-<br>inducible domain protein     | conserved hypothetical integral membrane      |
| "CJ_10000930"         | CJE1206  | -    | Cj1063  | -    | CCO1134 | -    | 1 | -1       | 1  | -1       | 1        | 1        | 1  | -1       | 1        | 1        | possible acetyltransferase                 | acetyltransferase, GNAT<br>family                  | probable acetyltransferase<br>Ci1063          |
| "opCcV010000<br>1454" | CJE1208  | -    | Cj1064  | -    | CCO1135 | -    | 0 | -1       | 1  | 1        | 1        | 1        | 0  | 1        | 1        | 1        | pseudogene                                 | pseudogene                                         | nitroreductase family                         |
| "CJ_10000933"         | CJE1209  | -    | Cj1066  | rdxA | CCO1137 | -    | 1 | -1       | 1  | 1        | 0        | 1        | 1  | 1        | 1        | 1        | nitroreductase                             | nitroreductase family protein                      | nitroreductase Cj1066                         |
| "CJ_10000934"         | CJE1210  | pgsA | Cj1067  | pgsA | CCO1138 | pgsA | 1 | 1        | 1  | 1        | -1       | 1        | 1  | 0        | 1        | 1        | CDP-diacylglycerol<br>glycerol-3-phosphate | CDP-diacylglycerol<br>glycerol-3-phosphate         | CDP-diacylglycerol<br>glycerol-3-phosphate    |
| "CJ_10000945"         | CJE1211  | -    | Cj1068  | -    | CCO1139 | -    | 1 | -1       | 1  | 1        | -1       | 1        | 1  | -1       | 1        | 1        | putative integral membrane                 | membrane-associated zinc                           | membrane-associated zinc                      |
| HQX 100000 10H        | GTE 1010 |      | G:10.co | -    | 0001110 |      | + | <b>.</b> |    | <b>.</b> | <b>.</b> | <b>.</b> | ٠. | <b>.</b> | <b>.</b> | <b>.</b> | protein                                    | metalloprotease,                                   | metalloprotease,                              |
| "CJ_10000948"         | CJE1212  |      | Cj1069  |      | CCO1140 | -    | 1 | 1        | 1  | 1        | 1        | 1        | 1  | -1       | 1        | 1        | hypothetical protein                       | hypothetical protein                               | LapB                                          |
| "CJ_10000951"         | CJE1213  | rpsF | Cj1070  | rpsF | CCO1144 | -    | 1 | 1        | 1  | 0        | -1       | 1        | -1 | 1        | 1        | 1        | 30S ribosomal protein S6                   | 30S ribosomal protein S6                           | 30S ribosomal protein S6<br>Cj1070            |
| "CJ_10000953"         | CJE1214  | ssb  | Cj1071  | ssb  | CCO1145 | -    | 1 | 1        | 1  | 1        | -1       | 1        | 1  | -1       | 1        | 1        | single-strand DNA binding protein          | single-strand DNA-binding protein                  | single strand DNA binding protein             |
| "CJ 10000955"         | CJE1215  | rpsR | Cj1072  | rpsR | CCO1146 | rpsR | 1 | 1        | 1  | 1        | 1        | 1        | 1  | -1       | 1        | 1        | 30S ribosomal protein S18                  | 30S ribosomal protein S18                          | ribosomal protein S18                         |
| "CJ 10000957"         | CJE1216  | lon  | Cj1073c | lon  | CCO1147 | lon  | 1 | 1        | 1  | 1        | -1       |          | -1 | -1       | 1        | -1       | ATP-dependent protease La                  | ATP-dependent protease La                          | ATP-dependent protease La                     |
| "CJ_10000959"         | CJE1217  | -    | Cj1074c | -    | CCO1148 | -    | 0 | 1        | 1  | -1       | 1        | 1        | 1  | 1        | 1        | 1        | putative lipoprotein                       | lipoprotein, putative                              | probable lipoprotein<br>Cj1074c               |
| "CJ_10000962"         | CJE1218  | -    | Cj1075  | -    | CCO1149 | -    | 0 | 1        | -1 | -1       | 1        | 0        | 1  | -1       | -1       | -1       | hypothetical protein                       | hypothetical protein                               | Uncharacterized BCR,<br>COG1699 subfamily     |
| "CJ_10000963"         | CJE1219  | proC | Cj1076  | proC | CCO1150 | proC | 1 | 1        | 1  | 1        | 1        | 1        | -1 | 1        | -1       | -1       | putative pyrroline-5-                      | pyrroline-5-carboxylate                            | pyrroline-5-carboxylate                       |
| "CJ 10000964"         | CJE1220  | ctsT | Ci1077  |      | CCO1151 | ctsT | 1 | 1        | 1  | 1        | -1       | 1        | 1  | -1       | 1        | 1        | carboxylate reductase                      | reductase                                          | reductase                                     |
|                       |          | Cts1 | ,       |      |         | CIST | 1 | 1        | 1  | 1        |          | 1        | 1  | -1       | 1        | -1       | putative periplasmic protein               | transformation system protein                      | transformation system protein                 |
| "CJ_10000974"         | CJE1221  | -    | Cj1078  | -    | CCO1152 | -    | 1 | 1        |    | 1        | -1       | 1        | -1 | 1        | 1        | -1       | putative periplasmic protein               | hypothetical protein                               | probable periplasmic<br>protein Cj1078        |
| "CJ_10000977"         | CJE1222  | -    | Cj1079  | -    | CCO1153 | -    | 1 | 1        | 1  | 0        | -1       | 1        | 1  | -1       | 1        | 1        | putative periplasmic protein               | hypothetical protein                               | probable periplasmic<br>protein Cj1079        |
| "CJ_10000980"         | CJE1223  | hemD | Cj1080c | -    | CCO1154 | hemD | 1 | 1        | 0  | 1        | 1        | 1        | 0  | 1        | 1        | 1        | hypothetical protein                       | uroporphyrinogen-III<br>synthetase                 | uroporphyrinogen-III<br>synthase              |

| "CJ_10000982"         | CJE1224 | thiE | Cj1081c | thiE | CCO1155 | thiE | 1  | 1 | 1 | 1  | 1  | 1  | 0  | 0  | 1  | 1  | thiamin-phosphate                            | thiamine-phosphate                             | thiamine-phosphate                                     |
|-----------------------|---------|------|---------|------|---------|------|----|---|---|----|----|----|----|----|----|----|----------------------------------------------|------------------------------------------------|--------------------------------------------------------|
|                       |         |      |         |      |         |      |    |   |   |    |    |    |    |    |    |    | pyrophosphorylase                            | pyrophosphorylase                              | pyrophosphorylase                                      |
| "CJ 10000984"         | CJE1225 | thiD | Cj1082c | thiD | CCO1156 | thiD | 1  | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | phosphomethylpyrimidine                      | phosphomethylpyrimidine                        | phosphomethylpyrimidine                                |
|                       |         | unib | ,       | unib |         |      | 1  |   |   | 1  |    | 1  |    | ,  | •  | 1  | kinase                                       | kinase                                         | kinase                                                 |
| "CJ_10000986"         | CJE1226 | -    | Cj1083c | -    | CCO1157 | nth  | 0  | 1 | 1 | 1  | 0  | -1 | -1 | -1 | -1 | -1 | possible nuclease                            | endonuclease III, putative                     | endonuclease III                                       |
| "CJ_10000989"         | CJE1227 | -    | Cj1084c | -    | CCO1158 | -    | 1  | 1 | 1 |    | -1 |    | 1  | -1 | 1  |    | putative ATP/GTP-binding protein             | hypothetical protein                           | Protein of unknown<br>function (DUF815)                |
| "CJ_10000991"         | CJE1228 | mfd  | Cj1085c | mfd  | CCO1159 | mfd  | 1  | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | transcription-repair coupling factor         | transcription-repair<br>coupling factor        | transcription-repair coupling factor                   |
| "CJ_10000992"         | CJE1229 | -    | Cj1086c | -    | CCO1160 | -    | 1  | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                         | hypothetical protein                           | Protein of unknown<br>function, DUF583<br>superfamily  |
| "CJ_10000993"         | CJE1230 | -    | Cj1087c | -    | CCO1161 | -    | 1  | 1 | 1 | 1  | 1  | -1 | 1  | 1  | 1  | 1  | putative periplasmic protein                 | peptidase, M23/M37 family                      | probable periplasmic<br>protein Cj1087c                |
| "CJ_10001004"         | CJE1231 | folC | Cj1088c | folC | CCO1162 | folC | 0  | 1 | 1 | 1  | 0  | 1  | 1  | 0  | 1  | 1  | folylpolyglutamate<br>synthase/dihydrofolate | folC bifunctional protein                      | folylpolyglutamate synthase<br>(folC)                  |
| "CJ_10001007"         | CJE1232 | -    | Cj1089c | -    | CCO1163 | -    | 0  | 1 | 1 | 1  | -1 | 1  | 1  | 1  | 1  | 0  | hypothetical protein                         | hypothetical protein                           | conserved hypothetical protein                         |
| "CJ_10001010"         | CJE1233 | -    | Cj1090c | -    | CCO1164 | -    | 1  | 1 | 1 | 0  | 1  | -1 | -1 | 1  | 0  | 0  | putative lipoprotein                         | lipoprotein, putative                          | probable lipoprotein<br>Cj1090c                        |
| "CJ_10001012"         | CJE1234 | leuS | Cj1091c | leuS | CCO1165 | leuS | 1  | 1 | 1 | 1  | -1 | 0  | 1  | -1 | 1  | -1 | leucyl-tRNA synthetase                       | leucyl-tRNA synthetase                         | leucyl-tRNA synthetase                                 |
| "CJ_10001014"         | CJE1235 | secF | Cj1092c | secF | CCO1166 | -    | 1  | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | protein-export membrane protein              | protein export protein SecF                    | protein-export membrane<br>protein SecF                |
| "CJ_10001017"         | CJE1236 | secD | Cj1093c | secD | CCO1167 | secD | 0  | 0 | 1 | 1  | 1  | 1  | 1  | 1  | 0  | 1  | protein-export membrane<br>protein           | protein export protein SecD                    | protein-export membrane<br>protein SecD                |
| "CJ_10001018"         | CJE1237 | yajC | Cj1094c | -    | CCO1168 | yajC | 1  | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative membrane protein                    | preprotein translocase<br>subunit YajC         | preprotein translocase, YajC<br>subunit                |
| "CJ_10001020"         | CJE1238 | cutE | Cj1095  | -    | CCO1169 | -    |    | 1 | 1 | 1  | -1 | 1  | 1  | -1 | 1  | -1 | putative integral membrane protein           | apolipoprotein N-<br>acyltransferase           | apolipoprotein N-<br>acyltransferase (cute),           |
| "CJ_10001021"         | CJE1239 | metK | Cj1096c | metK | CCO1174 | metK | 0  | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | S-adenosylmethionine                         | S-adenosylmethionine                           | S-adenosylmethionine                                   |
|                       |         |      |         |      |         |      |    |   |   |    |    |    |    |    |    |    | synthetase                                   | synthetase                                     | synthetase                                             |
| "CJ 10001022"         | CJE1240 | -    | Ci1097  | -    | CCO1175 | -    | 1  | 1 | 1 | -1 | 1  | 1  | 1  | -1 | 1  | 1  | putative transmembrane                       | sodium/dicarboxylate                           | probable transmembrane                                 |
|                       |         |      | -3      |      |         |      | -  | _ | - | -  | -  |    | _  | -  | -  | 1  | transport protein                            | symporter                                      | transport protein Cj1097                               |
| "CJ 10001040"         | CJE1241 | pyrB | Cj1098  | pyrB | CCO1176 | pyrB | 1  | 1 | 1 | 1  | -1 | 1  | 1  | -1 | 1  | -1 | aspartate                                    | aspartate                                      | aspartate                                              |
| CJ_10001040           | CJE1241 | ругь | CJ1098  | ругь | CCOTT/0 | ругь | 1  | 1 | 1 | 1  | -1 | 1  | 1  | -1 | 1  | -1 | carbamoyltransferase                         | carbamoyltransferase<br>catalytic              | carbamoyltransferase                                   |
| "CJ 10001042"         | CJE1242 | pepF | Ci1099  | -    | CCO1177 | pepF | 0  | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | peptidase (M3 family)                        | oligoendopeptidase F                           | oligoendopeptidase F                                   |
| "CJ_10001044"         | CJE1243 | -    | Cj1100  | -    | CCO1178 | -    | 1  | 1 | 1 | 0  | 0  | -1 | 1  | -1 | 1  | -1 | hypothteical protein Cj1100                  | hypothetical protein                           | conserved hypothetical protein                         |
| "CJ_10001045"         | CJE1244 | -    | Cj1101  | -    | CCO1179 | rep  | 0  | 0 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | ATP-dependent DNA<br>helicase                | ATP-dependent DNA<br>helicase, UvrD/REP family | DNA helicase II (uvrD)                                 |
| "CJ_10001046"         | CJE1245 | truB | Cj1102  | truB | CCO1180 | -    | 1  | 1 | 1 | 1  | 1  | 1  | 1  | 0  | 1  |    | tRNA pseudouridine<br>synthase B             | tRNA pseudouridine<br>synthase B               | tRNA pseudouridine<br>synthase B, putative             |
| "CJ_10001047"         | CJE1246 | csrA | Cj1103  | csrA | CCO1181 | csrA | 0  | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | carbon storage regulator<br>homolog          | carbon storage regulator                       | carbon storage regulator                               |
| "CJ_10001048"         | CJE1247 | ispE | Cj1104  | -    | CCO1182 | -    | 1  | 1 | 1 | 1  | -1 | 1  | 1  | -1 | 1  | 1  | hypothetical proteinCj1104                   | 4-diphosphocytidyl-2-C-<br>methyl-D-erythritol | GHMP kinases putative<br>ATP-binding protein<br>domain |
| "CJ_10001049"         | CJE1248 | smpB | Cj1105  | smpB | CCO1183 | smpB | 1  | 1 | 1 | 1  | -1 | 1  | 1  | 1  | -1 | -1 | small protein B homolog                      | SsrA-binding protein                           | SsrA-binding protein                                   |
| "opCcV010000<br>0735" | CJE1249 | -    | Cj1106  | -    | CCO1184 | -    | -1 | 0 | 0 | 0  | 1  | 1  | 0  | 1  | 1  | 1  | possible periplasmic<br>thioredoxin          | thioredoxin domain protein                     | thioredoxin, putative                                  |
| "CJ_10001050"         | CJE1250 | -    | Cj1107  | -    | CCO1185 | -    | 1  | 1 | 1 | 1  | -1 | 1  | 1  | -1 | -1 | 1  | hypothetical protein                         | hypothetical protein                           | Uncharacterized ACR,<br>COG2127                        |
| "CJ_10001069"         | CJE1251 | clpA | Cj1108  | clpA | CCO1186 | clpA | 1  | 1 | 1 | 1  | -1 | -1 | 1  | -1 | 1  | 1  | ATP-dependent CLP protease ATP-binding       | ATP-dependent Clp<br>protease, ATP-binding     | ATP-dependent Clp<br>protease, ATP-binding             |

| ,                     | 1       | 1    |         | 1    | _       |      | 1  |    |    |    |    |        | 1  |    |    | 1  | 1                                                  | _                                                 | 1                                                  |
|-----------------------|---------|------|---------|------|---------|------|----|----|----|----|----|--------|----|----|----|----|----------------------------------------------------|---------------------------------------------------|----------------------------------------------------|
|                       |         |      |         |      |         |      |    |    |    |    |    | $\bot$ |    |    |    |    | subunit                                            | subunit                                           | subunit                                            |
| "CJ_10001071"         | CJE1252 | aat  | Cj1109  | aat  | CCO1187 | aat  | 1  | 1  | 1  | 1  | 1  | 1      | 1  | -1 | -1 | -1 | putative<br>leucyl/phenylalanyl-tRNA<br>protein    | leucyl/phenylalanyl-tRNA<br>protein transferase   | leucyl/phenylalanyl-tRNA<br>protein transferase    |
| "CJ_10001073"         | CJE1253 | -    | Cj1110c | -    | -       | -    | 1  | 1  | 1  | 1  | 0  | 1      | 1  | 1  | 1  | 1  | putative MCP-type signal transduction protein      | methyl-accepting<br>chemotaxis protein            | -                                                  |
| "CJ_10001074"         | CJE1254 | -    | Cj1111c | -    | CCO1188 | -    | 1  | 1  | 1  | 1  | 1  | 1      | 1  | 1  | 1  | 1  | putative integral membrane protein                 | integral membrane protein,<br>MarC family         | probable integral membrane<br>protein Cj1111c      |
| "CJ_10001075"         | CJE1255 | msrB | Cj1112c | -    | CCO1189 | -    | 1  | 1  | 1  | 1  | 1  | 1      | 1  | 1  | 1  | 1  | hypothetical protein                               | methionine sulfoxide<br>reductase B               | PilB-related protein                               |
| "CJ_10001076"         | CJE1256 | -    | Cj1113  | -    | CCO1190 | -    | 1  | 1  | 1  | 1  | -1 | 1      | 1  | -1 | -1 | 1  | hypothetical protein                               | hypothetical protein                              | Protein of unknown<br>function (DUF455)            |
| "CJ_10001077"         | CJE1257 | pssA | Cj1114c | pssA | CCO1191 | -    | 1  | 1  | 1  | 1  | -1 | 1      | 1  | 1  | 1  | -1 | CDP-diacylglycerolserine                           | CDP-diacylglycerolserine                          | CDP-diacylglycerolserine                           |
| "CJ_10001078"         | CJE1258 | -    | Cj1115c | -    | CCO1192 | -    | 1  | 1  | 1  | -1 | -1 | 1      | 1  | 0  | 1  | 1  | putative membrane protein                          | phosphatidylserine<br>decarboxylase-related       | phosphatidylserine<br>decarboxylase-related        |
| "CJ_10001079"         | CJE1259 | ftsH | Cj1116c | ftsH | CCO1193 | ftsH | 0  | 1  | 1  | 1  | 0  | 1      | 1  | 0  | -1 | 1  | membrane bound zinc<br>metallopeptidase            | cell division protein FtsH                        | cell division protein FtsH                         |
| "CJ_10001080"         | CJE1260 | -    | Cj1117c | prmA | CCO1194 | prmA | 1  | 1  | 1  | 1  | -1 | 1      | 1  | 1  | 1  | -1 | possible ribosomal protein<br>methyltransferase    | ribosomal protein L11<br>methyltransferase        | ribosomal protein L11<br>methyltransferase VC0293  |
| "opCcV010000<br>1838" | CJE1261 | cheY | Cj1118c | cheY | CCO1195 | -    | 1  | 1  | 1  | 1  | 1  | 1      | 1  | 1  | 1  | 1  | chemotaxis regulatory protein                      | chemotaxis protein CheY                           | chemotaxis regulatory<br>protein Cj1118c           |
| "opCjjV010000<br>092" | CJE1262 | pglG | Cj1119c | wlaM | -       | -    | 1  | 1  | 1  | 1  | 1  | 1      | 1  | 1  | 1  | 1  | putative integral membrane protein                 | general glycosylation<br>pathway protein          | -                                                  |
| "opCcV010000<br>1169" | CJE1263 | pglF | Cj1120c | wlaL | CCO1196 | pglF | 1  | 1  | 1  | 1  | 1  | 1      | 1  | 1  | 1  | 1  | putative sugar<br>epimerase/dehydratase            | general glycosylation pathway protein             | general glycosylation<br>pathway protein           |
| "opCcV010000<br>1599" | CJE1264 | pglE | Cj1121c | wlaK | CCO1197 | pglE | 1  | 1  | 1  | 1  | 1  | 1      | 1  | 1  | 1  | 1  | putative aminotransferase<br>(degT family)         | general glycosylation<br>pathway protein          | general glycosylation<br>pathway protein           |
| "opCcV010000<br>0909" | CJE1265 | pglD | Cj1123c | wlaI | CCO1198 | pglD | 1  | 1  | 0  | 1  | 1  | -1     | 0  | 0  | 1  | 1  | putative transferase                               | general glycosylation pathway protein             | general glycosylation<br>pathway protein           |
| "opCcV010000<br>0601" | CJE1266 | pglC | Cj1124c | wlaH | CCO1199 | pglC | 1  | -1 | 0  |    | 1  | 1      | -1 | 1  | -1 | 1  | putative<br>galactosyltransferase                  | general glycosylation<br>pathway protein          | general glycosylation<br>pathway protein           |
| "opCcV010000<br>1943" | CJE1267 | pglA | Cj1125c | wlaG | CCO1200 | pglA | 1  | 1  | 1  | 1  | -1 | 1      | 1  | 1  | 1  | 1  | putative<br>galactosyltransferase                  | general glycosylation<br>pathway protein          | general glycosylation<br>pathway protein           |
| "opCcV010000          | CJE1268 | pglB | Cj1126c | wlaF | CCO1201 | pglB | 1  | 1  | 1  | 1  | 1  | 1      | 1  | 1  | 0  | 1  | putative integral membrane                         | general glycosylation                             | general glycosylation                              |
| 1680"                 |         |      |         |      |         |      |    |    |    |    |    | $\bot$ |    |    |    |    | protein (possible                                  | pathway protein                                   | pathway protein                                    |
| "opCcV010000<br>0963" | CJE1269 | pglJ | Cj1127c | wlaE | CCO1202 | pglJ | 1  | -1 | -1 | 0  | 1  | 0      | 1  | 1  | 1  | 1  | putative glycosyltransferase                       | general glycosylation<br>pathway protein          | general glycosylation<br>pathway protein           |
| "opCcV010000<br>1010" | CJE1270 | pglI | Cj1128c | wlaD | CCO1203 | pglI | 1  | 1  | 1  | 1  | 1  | 1      | 1  | 1  | 1  | 1  | putative glycosyltransferase                       | general glycosylation<br>pathway protein          | general glycosylation<br>pathway protein           |
| "opCcV010000<br>0192" | CJE1271 | pglH | Cj1129c | wlaC | CCO1204 | pglH | 1  | 1  | 1  | 1  | 1  | 1      | 1  | 1  | 1  | 1  | putative glycosyltransferase                       | general glycosylation<br>pathway protein          | general glycosylation<br>pathway protein           |
| "opCcV010000<br>0153" | CJE1272 | wlaB | Cj1130c | wlaB | CCO1205 | wlaB | 1  | 1  | 1  | 1  | 1  | 1      | 1  | 1  | 1  | 1  | ABC-type transport protein                         | ABC transporter, ATP-<br>binding/permease protein | ABC transporter, ATP-<br>binding/permease protein  |
| "opCcV010000<br>1263" | CJE1273 | galE | Cj1131c | galE | CCO1206 | galE | 1  | 0  | 1  | 1  | 1  | 1      | 1  | 1  | 1  | 1  | UDP-glucose 4-epimerase                            | UDP-glucose 4-epimerase                           | UDP-glucose 4-epimerase                            |
| "CJ_10001156"         | CJE1274 | wlaX | Cj1132c | -    | CCO1207 | wlaX | 1  | 1  | 1  | 1  | 0  | 0      | 1  | -1 | 1  | 1  | hypothetical protein                               | polysaccharide biosynthesis<br>protein            | polysaccharide biosynthesis<br>protein             |
| "opCcV010000<br>1916" | CJE1275 | waaC | Cj1133  | waaC | CCO1208 | -    | 1  | 1  | 1  | 1  | -1 | 1      | 1  | -1 | 1  | 1  | putative lipopolysaccharide<br>heptosyltransferase | lipopolysaccharide<br>heptosyltransferase I       | lipopolysaccharide<br>heptosyltransferase-1 (rfaC) |
| "CJ_10001157"         | CJE1276 | waaM | Cj1134  | htrB | CCO1209 | -    | 1  | 1  | 1  | 1  | 1  | 1      | 1  | 1  | 1  | 1  | putative lipid A<br>biosynthesis lauroyl           | lipid A biosynthesis lauroyl acyltransferase      | heat shock protein B (ibpB), putative              |
| "CJ_10001158"         | CJE1277 | -    | Cj1135  | -    | CCO1210 | -    | 1  | 1  | -1 | 1  | 0  | -1     | -1 | -1 | 1  | 1  | putative two-domain<br>glycosyltransferase         | lipooligosaccharide<br>biosynthesis               | glycosyl transferase, group<br>2 family protein    |
| "opCjV010000<br>0275" | CJE1278 | -    | -       | -    | -       | -    | -1 | -1 | -1 |    | -1 | 1      |    | 1  | -1 | -1 | -                                                  | lipooligosaccharide<br>biosynthesis               | -                                                  |

| " C:X/010000          | CIE1270 | 1    |         | 1    | 1       |       | _  | 1  | 1 1 | 1  |    | 1 1 | 1 1 | 1 1 | 1  | 1 1 |                                              | 1111                                       |                                                  |
|-----------------------|---------|------|---------|------|---------|-------|----|----|-----|----|----|-----|-----|-----|----|-----|----------------------------------------------|--------------------------------------------|--------------------------------------------------|
| "opCjV010000<br>0610" | CJE1279 | -    | -       | -    | -       | -     |    |    | -1  |    | -1 | -1  | 1   | -1  |    | -1  | -                                            | lipooligosaccharide<br>biosynthesis        | -                                                |
| "CJ_10001197"         | CJE1280 | -    | Cj1139c | -    | CCO1213 | -     | 1  | 1  | 1   | 0  | -1 | -1  |     | 1   | 1  | -1  | putative<br>galactosyltransferase            | lipooligosaccharide<br>biosynthesis        | glycosyl transferase, group<br>2 family protein, |
| "opCjV010000<br>0624" | CJE1281 | -    | -       | -    | -       | -     | -1 | -1 | -1  | -1 | 1  | -1  | -1  | 1   | -1 | -1  | -                                            | hypothetical protein                       | -                                                |
| "CJ_10001206"         | CJE1282 | waaV | Cj1146c | waaV | CCO1219 | -     | 1  | 1  | 1   | 1  | 1  | 1   | 1   | 1   | 1  | 1   | putative glucosyltransferase                 | lipooligosaccharide<br>biosynthesis        | glycosyl transferase,<br>putative                |
| "CJ_10001207"         | CJE1283 | waaF | Cj1148  | waaF | CCO1220 | rfaF  | 0  | 1  | 0   | 1  | 0  | 1   | 1   | 0   | 1  | 1   | ADP-heptoseLPS<br>heptosyltransferase        | ADP-heptoseLPS<br>heptosyltransferase II   | ADP-heptose-lps<br>heptosyltransferase II (rfaF) |
| "opCjV010000<br>0220" | CJE1284 | -    | -       | -    | -       | -     | -1 | -1 | -1  | -1 | 1  | 1   | -1  | 1   | 1  | -1  | -                                            | lipooligosaccharide<br>biosynthesis        | -                                                |
| "CJ 10001241"         | CJE1285 | -    | Ci1149c | gmhA | CCO1222 | gmhA  | 1  | 1  | 1   | 1  | 1  | 1   | 1   | 0   | 0  | 1   | Phosphoheptose isomerase                     | phosphoheptose isomerase                   | phosphoheptose isomerase                         |
| "CJ_10001243"         | CJE1286 | hldE | Cj1150c | waaE | CCO1223 | -     | 1  | 1  | 1   | 1  | 1  | 1   | 1   | -1  | 1  | 1   | putative ADP-heptose<br>synthase             | D,D-heptose 1-phosphate                    | rfaE protein                                     |
| "CJ 10001246"         | CJE1287 | waaD | Cj1151c | waaD | CCO1224 | -     | 1  | 1  | 1   | 1  | -1 | 1   | 1   | 1   | 1  | 1   | ADP-L-glycero-D-manno-                       | ADP-L-glycero-D-                           | ADP-L-glycero-D-                                 |
|                       |         |      |         |      |         |       |    |    |     |    |    |     |     |     |    |     | heptose-6-epimerase                          | mannoheptose-6-epimerase                   | mannoheptose-6-epimerase<br>(rfaD)               |
| "CJ_10001248"         | CJE1288 | -    | Cj1152c | -    | CCO1225 | -     |    | 1  | 1   | 0  | -1 | 1   | 1   | 1   | 1  | 1   | putative phosphatase                         | hydrolase, putative                        | histidinol phosphatase<br>domain protein         |
| "CJ_10001249"         | CJE1289 | cyf  | Cj1153  | -    | CCO1226 | -     | 1  | 1  | 0   | 1  | 1  | 1   | 1   | 1   | 1  | 1   | putative periplasmic<br>cytochrome C         | cytochrome c553                            | probable periplasmic<br>cytochrome C Cj1153      |
| "CJ_10001250"         | CJE1290 | -    | Cj1154c | -    | CCO1227 | -     | 1  | 1  | 1   | 1  | 1  | 1   | 1   | 1   | 1  | 1   | small hydrophobic protein                    | cytochrome oxidase<br>maturation protein,  | small hydrophobic protein<br>Cj1154c -related    |
| "CJ_10001251"         | CJE1291 | -    | Cj1155c | -    | CCO1228 | fixI  | 0  | 1  | 0   | 1  | 1  | 1   | 1   | 1   | 1  | 1   | putative cation-transporting<br>ATPase       | heavy metal translocating<br>P-type ATPase | cation-transporting ATPase,<br>P-type (copA)     |
| "CJ_10001252"         | CJE1292 | rho  | Cj1156  | rho  | CCO1229 | -     | 1  | 1  | 0   | 1  | 1  | 1   | 1   | 0   | 1  | 1   | transcription termination<br>factor          | transcription termination<br>factor Rho    | transcription termination<br>factor Cj1156       |
| "CJ_10001253"         | CJE1293 | dnaX | Cj1157  | dnaX | CCO1231 | dnaZX | -1 | 1  | 1   | 0  | -1 | 1   | 1   | -1  | 1  | 1   | putative DNA polymerase<br>III subunit gamma | DNA polymerase III subunits gamma and tau  | DNA polymerase III gamma and tau subunits        |
| "CJ_10000207"         | CJE1294 | -    | Cj1159c | -    | -       | -     | 1  | 1  | 1   | 1  | 0  | 1   | 1   | 1   | 1  | 1   | small hydrophobic protein                    | pseudogene                                 | -                                                |
| "CJ_10000213"         | CJE1295 | -    | Cj1161c | -    | CCO1232 | -     | 1  | 1  | 1   | 1  | 1  | 1   | 1   | 1   | 1  | 1   | putative cation-transporting<br>ATPase       | copper-translocating P-type<br>ATPase      | copper-translocating P-type<br>ATPase            |
| "CJ_10000215"         | CJE1296 | -    | Cj1162c | -    | CCO1233 | -     | 1  | 1  | 1   | 1  | 1  | 1   | 1   | 1   | 1  | 1   | hypothetical protein                         | hypothetical protein                       | heavy-metal-associated<br>domain, putative       |
| "CJ_10000217"         | CJE1297 | -    | Cj1163c | -    | CCO1234 | -     | 0  | 1  | 1   | 1  | 1  | 1   | 1   | 1   | 1  | 1   | putative cation transport<br>protein         | cation efflux family protein               | cation efflux family protein                     |
| "CJ_10000219"         | CJE1298 | -    | Cj1164c | -    | CCO1235 | -     | 1  | 1  | 1   | 1  | 1  | 1   | 1   | 0   | 1  | 1   | hypothetical protein                         | hypothetical protein                       | conserved hypothetical protein                   |
| "CJ_10000221"         | CJE1299 | -    | Cj1165c | -    | CCO1236 | -     | 1  | 1  | 1   | 1  | 1  | 1   | 1   | 1   | 1  | 1   | putative integral membrane protein           | hypothetical protein                       | probable integral membrane<br>protein Cj1165c    |
| "CJ_10000224"         | CJE1300 | -    | Cj1166c | -    | CCO1237 | -     | 1  | 1  | 1   | 1  | 1  | 1   | 1   | 1   | 1  | 1   | putative integral membrane protein           | hypothetical protein                       | probable integral membrane<br>protein Cj1166c    |
| "CJ_10000225"         | CJE1301 | ldh  | Cj1167  | ldh  | CCO1238 | -     | 0  | 1  | 1   | 1  | 1  | 1   | 1   | 1   | 1  | 1   | putative L-lactate<br>dehydrogenase          | L-lactate dehydrogenase                    | L-lactate dehydrogenase                          |
| "CJ_10000226"         | CJE1302 | -    | Cj1168c | -    | CCO1239 | -     | 1  | 1  | 0   | 1  | 1  | 1   | 1   | 1   | -1 | 1   | putative integral membrane<br>protein (dedA  | DedA family protein                        | probable integral membrane<br>protein (dedA      |
| "opCjjV010000<br>049" | CJE1303 | -    | Cj1169c | -    | -       | -     | 1  | 1  | 1   | 1  | 1  | 1   | 1   | 1   | 1  | 1   | putative periplasmic protein                 | hypothetical protein                       | -                                                |
| "CJ_10000236"         | CJE1304 | -    | Cj1170c | -    | -       | -     | 1  | 1  | 1   | 1  | 1  | -1  | 1   | 1   | 0  | 1   | outer membrane protein                       | hypothetical protein                       | -                                                |
| "CJ_10000239"         | CJE1305 | ppiB | Cj1171c | ppi  | CCO1240 | -     | 0  | 0  | 1   | 1  | 1  | 1   | 1   | 0   | 1  | 1   | peptidyl-prolyl cis-trans<br>isomerase       | peptidyl-prolyl cis-trans<br>isomerase B   | peptidyl-prolyl cis-trans isomerase,             |
| "CJ_10000241"         | CJE1306 | -    | Cj1172c | -    | CCO1241 | -     | 1  | 1  | 1   | 1  | 1  | 1   | 1   | 1   | 1  | 1   | hypothetical protein                         | hypothetical protein                       | conserved hypothetical<br>protein TIGR01033      |
| "CJ_10000243"         | CJE1307 | -    | Cj1173  | -    | CCO1242 | -     | 0  | 1  | 1   | 1  | 1  | 1   | 1   | 1   | 1  | 1   | putative efflux protein                      | multidrug resistance                       | probable efflux protein                          |

|               |                    |      | 1       | 1     | 1       | T        | 1  | 1        |    | 1  | 1  | 1  | 1  | 1  | 1        | 1        |                                                    | protein, SMR family                                | Ci1173                                           |
|---------------|--------------------|------|---------|-------|---------|----------|----|----------|----|----|----|----|----|----|----------|----------|----------------------------------------------------|----------------------------------------------------|--------------------------------------------------|
| "CJ 10000245" | CJE1308            |      | Ci1174  |       | CCO1243 |          | 0  | 1        | 1  | 1  | 1  | 1  | 1  | 1  | 1        | 1        | putative efflux protein                            | multidrug resistance                               | probable efflux protein                          |
|               |                    | _    | ,       | _     |         | ļ -      | U  | 1        | 1  | 1  | 1  | 1  | 1  | 1  | 1        | 1        |                                                    | protein, SMR family                                | Cj1174                                           |
| "CJ_10000248" | CJE1309            | argS | Cj1175c | argS  | CCO1244 | argS     | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1  | 1        | 1        | arginyl-tRNA synthetase                            | arginyl-tRNA synthetase                            | arginyl-tRNA synthetase                          |
| "CJ_10000250" | CJE1310            | -    | Cj1176c | -     | CCO1245 | -        | 1  | -1       | 1  | 1  | 1  | 1  | 1  | -1 | -1       | -1       | hypothetical protein                               | twin-arginine translocation protein, TatA/E        | Sec-independent protein translocase protein      |
| "CJ_10000251" | CJE1311            | -    | Cj1177c | gmk   | CCO1246 | -        | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1  | 1        | 1        | guanylate kinase                                   | guanylate kinase                                   | guanylate kinase Cj1177c                         |
| "CJ_10000252" | CJE1312            | -    | Cj1178c | -     | CCO1247 | -        | 0  | 1        | 1  | 1  | 1  | 1  | 1  | 1  | 1        | 1        | highly acidic protein                              | hypothetical protein                               | highly acidic protein<br>Cj1178c                 |
| "CJ_10000261" | CJE1313            | fliR | Cj1179c | fliR  | CCO1248 | fliR     | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1  | 1        | 1        | flagellar biosynthetic<br>protein                  | flagellar biosynthesis<br>protein                  | flagellar biosynthetic<br>protein FliR           |
| "CJ_10000263" | CJE1314            | -    | Cj1180c | -     | CCO1249 | -        | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1  | 1        | 1        | putative ABC transporter<br>ATP binding protein    | ABC transporter, ATP-<br>binding protein           | ABC transporter, ATP-<br>binding protein         |
| "CJ_10000266" | CJE1315            | tsf  | Cj1181c | tsf   | CCO1250 | tsf      | 1  | 1        | 1  | 1  | 1  | -1 | 1  | -1 | -1       | -1       | elongation factor TS                               | elongation factor Ts                               | translation elongation factor<br>Ts              |
| "CJ_10000268" | CJE1316            | rpsB | Cj1182c | rpsB  | CCO1251 | rpsB     | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1  | 1        | 1        | 30S ribosomal protein S2                           | 30S ribosomal protein S2                           | ribosomal protein S2                             |
| "CJ_10000270" | CJE1317            | -    | Cj1183c | cfa   | CCO1252 | -        | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1  | 1        | 1        | putative cyclopropane-fatty-<br>acyl-phospholipid  | cyclopropane-fatty-acyl-<br>phospholipid synthase, | cyclopropane fatty acid<br>synthase (cfa)        |
| "CJ_10000273" | CJE1318            | petC | Cj1184c | petC  | CCO1253 | petC     | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1  | 1        | 1        | putative ubiquinol-<br>cytochrome C reductase      | ubiquinolcytochrome c<br>reductase, cytochrome c1  | ubiquinol cytochrome c<br>oxidoreductase,        |
| "CJ_10000275" | CJE1319            | petB | Cj1185c | petB  | CCO1254 | petB     | 0  | 0        | 1  | 1  | 1  | -1 | 1  | 1  | 1        | 1        | putative ubiquinol-<br>cytochrome C reductase      | ubiquinolcytochrome c<br>reductase, cytochrome b   | ubiquinol cytochrome c<br>oxidoreductase,        |
| "CJ_10000277" | CJE1320            | petA | Cj1186c | petA  | CCO1256 | -        | 1  | 0        | -1 | 0  | 1  | 1  | 0  | 0  | 1        | 1        | putative ubiquinol-<br>cytochrome C reductase      | ubiquinolcytochrome c<br>reductase, iron-sulfur    | ubiquinol cytochrome c<br>oxidoreductase, Rieske |
| "CJ_10000278" | CJE1321            | arsB | Cj1187c | arsB  | CCO1257 | -        | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1  | 1        | 1        | putative arsenical pump<br>membrane protein        | arsenical pump membrane protein                    | arsenic efflux pump arsB                         |
| "CJ_10000279" | CJE1322            | gidA | Cj1188c | gidA  | CCO1258 | gidA     | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1  | 1        | 1        | glucose inhibited division<br>protein A homolog    | glucose-inhibited division<br>protein A            | glucose inhibited division<br>protein A          |
| "CJ_10000290" | CJE1323            | -    | Cj1189c | -     | CCO1259 | -        | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 0  | 1        | 1        | putative signal-transduction<br>sensor protein     | methyl-accepting<br>chemotaxis protein             | methyl-accepting<br>chemotaxis protein           |
| "CJ_10000293" | CJE1324            | -    | Cj1190c | -     | CCO1260 | -        | 1  | 1        | 1  | 1  | -1 | 1  | 1  | 0  | 1        | 1        | putative MCP-domain<br>signal transduction protein | methyl-accepting<br>chemotaxis protein             | methyl-accepting<br>chemotaxis protein (tlpA)    |
| "CJ_10000296" | CJE1325            | -    | Cj1191c | -     | CCO1261 | -        | -1 | -1       | 1  | 1  | 1  | 1  | 1  | 1  | 1        | 1        | putative signal-transduction<br>sensor protein     | methyl-accepting<br>chemotaxis protein             | methyl-accepting<br>chemotaxis protein           |
| "CJ 10000298" | CJE1326            | dctA | Cj1192  | dctA  | CCO1262 | dctA     | 0  | 1        | 1  | 1  | 0  | 1  | 1  | 1  | 1        | 1        | putative C4-dicarboxylate                          | C4-dicarboxylate transport                         | C4-dicarboxylate transport                       |
|               |                    |      | .,      |       |         |          |    |          |    |    |    |    |    |    |          |          | transport protein                                  | protein                                            | protein                                          |
| "CJ_10000301" | CJE1327            | -    | Cj1193c | -     | CCO1263 | -        | -1 | -1       | 1  | 1  | 1  | 1  | 1  | 1  | 1        | 1        | putative periplasmic protein                       | hypothetical protein                               | probable periplasmic<br>protein Cj1193c          |
| "CJ_10000303" | CJE1328            | -    | Cj1194  | -     | CCO1264 | -        | 1  | 0        | 1  | 1  | 1  | 1  | 1  | 1  | 1        | 1        | possible phosphate<br>permease                     | phosphate transporter<br>family protein            | probable phosphate<br>permease Cj1194            |
| "CJ 10000305" | CJE1329            |      | Ci1195c | pyrC2 | CCO1265 |          | 1  | 1        | 1  | -1 | 1  | 1  | -1 | 1  | -1       | -1       | putative dihydroorotase                            | dihydroorotase                                     | dihydroorotase, putative                         |
| "CJ 10000303" | CJE1329<br>CJE1330 | gpsA | Cj1196c | gpsA  | CCO1266 | +        | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1  | 0        | 1        | glycerol-3-phosphate                               | NAD(P)H-dependent                                  | glycerol-3-phosphate                             |
| C3_10000307   | CJE1550            | gpsA | CJ1190C | gpsA  | CCO1200 | _        | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1  | U        | 1        | dehydrogenase [NAD(P)+]                            | glycerol-3-phosphate                               | dehydrogenase (NAD                               |
| "CJ 10000308" | CJE1331            | gatB | Ci1197c | gatB  | CCO1267 | gatB     | 0  | 0        | 1  | 1  | 1  | 1  | -1 | 1  | 1        | 1        | Glu-tRNAGln                                        | aspartyl/glutamyl-tRNA                             | glutamyl-tRNA(Gln)                               |
|               |                    |      | 1,      | 8     |         | <i>S</i> |    |          |    |    |    |    |    |    |          |          | amidotransferase subunit B                         | amidotransferase subunit                           | amidotransferase, B subunit                      |
| "CJ_10000309" | CJE1332            | luxS | Cj1198  | -     | CCO1268 | luxS     | 1  | 1        | 1  | 1  | 0  | 1  | 1  | 0  | 1        | 1        | hypothetical protein                               | S-ribosylhomocysteinase                            | autoinducer-2 production protein LuxS            |
| "CJ_10000318" | CJE1333            |      | Cj1199  | -     | CCO1269 | -        | 1  | 1        | 1  | 1  | -1 | 1  | 1  | -1 | -1       | -1       | putative iron/ascorbate-<br>dependent              | oxidoreductase, 2OG-Fe(II)<br>oxygenase family     | oxidoreductase, 2OG-Fe(II)<br>oxygenase family   |
| "CJ_10000320" | CJE1334            | -    | Cj1200  | -     | CCO1271 | -        | 0  | 1        | -1 | 1  | 1  | -1 | 1  | 1  | 1        | 1        | putative periplasmic protein                       | lipoprotein, NLPA family                           | D-methionine-binding<br>lipoprotein MetQ         |
| "CJ_10000322" | CJE1335            | metE | Cj1201  | metE  | CCO1272 | metE     | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 0  | 1        | 1        | 5-<br>methyltetrahydropteroyltrigl                 | 5-<br>methyltetrahydropteroyltrigl                 | 5-<br>methyltetrahydropteroyltrigl               |
|               |                    |      | 1       |       | 1       |          |    | <u> </u> |    |    |    |    |    |    | <u> </u> | <u> </u> | utamate                                            | utamate                                            | utamate                                          |
| "CJ_10000323" | CJE1336            | metF | Cj1202  | metF  | CCO1273 | -        | 1  | 1        | 1  | 1  | 1  | 1  | -1 | 1  | -1       | -1       | 5,10-                                              | 5,10-                                              | 5,10-                                            |

|                       |         |       |         |       |         |       |    |   |   |    |    |   |    |    |    |    | methylenetetrahydrofolate reductase                | methylenetetrahydrofolate reductase             | methylenetetrahydrofolate reductase              |
|-----------------------|---------|-------|---------|-------|---------|-------|----|---|---|----|----|---|----|----|----|----|----------------------------------------------------|-------------------------------------------------|--------------------------------------------------|
| "CJ_10000324"         | CJE1337 | -     | Cj1203c | -     | CCO1274 | -     | -1 | 1 | 1 | -1 | -1 | 1 | 1  | 0  | 1  | -1 | putative integral membrane protein                 | hypothetical protein                            | probable integral membrane<br>protein Cj1203c    |
| "CJ_10000325"         | CJE1338 | atpB  | Cj1204c | atpB  | CCO1275 | atpB  | 1  | 1 | 1 | 1  | 1  | 1 | 1  | 1  | 1  | 1  | ATP synthase F0 sector A subunit                   | ATP synthase subunit A                          | ATP synthase F0, A subunit                       |
| "CJ_10000326"         | CJE1339 | radA  | Cj1205c | radA  | CCO1276 | radA  | 0  | 1 | 1 | 1  | 1  | 1 | 1  | 1  | 1  | 1  | putative DNA repair protein<br>RadA (ATP-dependant | DNA repair protein RadA                         | DNA repair protein RadA                          |
| "CJ_10000327"         | CJE1340 | ftsY  | Cj1206c | ftsY  | CCO1282 | ftsY  | 0  | 0 | 0 | 1  | 1  | 1 | 1  | 1  | 1  | 1  | putative signal recognition particle protein       | signal recognition particle-<br>docking protein | signal recognition particle-<br>docking protein  |
| "CJ_10000328"         | CJE1341 | -     | Cj1207c | -     | CCO1283 | -     | 1  | 1 | 1 | 1  | 1  | 1 | 1  | 1  | 1  | 1  | putative lipoprotein thiredoxin                    | lipoprotein, putative                           | thiol:disulfide interchange protein DsbE,        |
| "CJ_10000329"         | CJE1342 | -     | Cj1208  | -     | CCO1284 | -     | 1  | 1 | 1 | 1  | 1  | 1 | 1  | 1  | 0  | 1  | hypothetical protein                               | hypothetical protein                            | conserved hypothetical protein                   |
| "CJ_10000337"         | CJE1343 | -     | Cj1209  | -     | CCO1285 | -     | 1  | 1 | 1 | 1  | 1  | 1 | 1  | 1  | 1  | 1  | hypothetical protein                               | hypothetical protein                            | HDIG/HD/KH domain protein                        |
| "CJ_10000338"         | CJE1344 | -     | Cj1210  | -     | CCO1286 | dedA  | -1 | 0 | 1 | 1  | 1  | 1 | 1  | 0  | 1  | 1  | putative integral membrane protein                 | DedA family protein                             | conserved hypothetical integral membrane         |
| "CJ_10000340"         | CJE1345 | -     | Cj1211  | -     | CCO1287 | -     | -1 | 1 | 1 | 1  | 0  | 1 | 1  | 1  | 1  | 1  | putative integral membrane protein                 | ComEC/Rec2 family protein                       | competence locus E<br>(comE3), putative          |
| "CJ_10000341"         | CJE1346 | rbn   | Cj1212c | rbn   | CCO1288 | -     | 1  | 1 | 1 | 1  | 1  | 1 | 1  | 1  | 1  | 1  | putative ribonuclease BN                           | ribonuclease BN                                 | ribonuclease BN, putative                        |
| "CJ_10000342"         | CJE1347 | glcD  | Cj1213c | glcD  | CCO1289 | -     | 0  | 0 | 1 | 1  | 1  | 1 | 1  | 1  | 1  | 1  | putative glycolate oxidase subunit D               | glycolate oxidase, subunit<br>GlcD              | probable glycolate oxidase<br>chain D Cj1213c    |
| "CJ_10000343"         | CJE1348 | -     | Cj1214c | -     | CCO1290 | -     | 1  | 1 | 1 | 1  | 1  | 1 | 1  | 1  | 1  | 1  | hypothetical protein                               | hypothetical protein                            | conserved hypothetical protein                   |
| "opCjV010000<br>0308" | CJE1349 | -     | -       | -     | -       | -     | 0  | 1 | 1 | 1  | 1  | 1 | 1  | 1  | 1  | 1  | -                                                  | hypothetical protein                            | -                                                |
| "CJ_10000344"         | CJE1350 | -     | Cj1215  | -     | CCO1291 | -     | 1  | 1 | 1 | 1  | 1  | 1 | 1  | 1  | 1  | 1  | putative periplasmic protein                       | peptidase, M23/M37 family                       | probable periplasmic<br>protein Cj1215           |
| "CJ_10000345"         | CJE1351 | -     | Cj1216c | -     | CCO1292 | -     | 1  | 0 | 1 | 1  | 1  | 1 | 1  | 1  | -1 | 1  | hypothetical protein                               | hypothetical protein                            | conserved hypothetical protein                   |
| "CJ_10000346"         | CJE1352 | -     | Cj1217c | -     | CCO1293 | -     | 1  | 1 |   | 1  | -1 | 1 | -1 | -1 | 1  | 1  | hypothetical protein                               | hypothetical protein                            | conserved hypothetical protein                   |
| "CJ_10000347"         | CJE1353 | ribE  | Cj1218c | ribA  | CCO1294 | ribE  | 1  | 1 | 1 | 1  | 1  | 1 | 1  | 1  | 1  | 1  | putative riboflavin synthase<br>alpha chain        | riboflavin synthase subunit alpha               | riboflavin synthase, alpha<br>subunit            |
| "CJ_10000360"         | CJE1354 | -     | Cj1219c | -     | CCO1295 | -     | -1 | 1 | 1 | 1  | 1  | 1 | 1  | 1  | 1  | 1  | putative periplasmic protein                       | hypothetical protein                            | probable periplasmic<br>protein Cj1219c          |
| "CJ_10000364"         | CJE1355 | groES | Cj1220  | groES | CCO1296 | groES | 1  | 1 | 1 | 1  | 0  | 1 | 1  | 1  | 1  | 1  | 10 kD chaperonin (cpn10)                           | co-chaperonin GroES                             | chaperonin, 10 kDa                               |
| "opCcV010000<br>0358" | CJE1356 | groEL | Cj1221  | groEL | CCO1297 | groEL | 0  | 0 | 1 | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 60 kD chaperonin (cpn60)                           | chaperonin GroEL                                | chaperonin, 60 kDa                               |
| "CJ_10000368"         | CJE1357 | -     | Cj1222c | -     | CCO1300 | -     | 1  | 1 | 1 | 1  | 1  | 1 | 1  | 1  | 1  | 1  | putative two-component<br>sensor                   | sensor histidine kinase                         | signal-transducing protein,<br>histidine kinase, |
| "CJ_10000370"         | CJE1358 | -     | Cj1223c | -     | CCO1301 | -     | 1  | 1 | 1 | 1  | 1  | 1 | 1  | 1  | 1  | 1  | putative two-component regulator                   | DNA-binding response regulator                  | response regulator                               |
| "CJ_10000371"         | CJE1359 | -     | Cj1224  | -     | CCO1302 | -     | 0  | 1 | 1 | 1  | 1  | 1 |    | 1  | 1  | 1  | putative iron-binding protein                      | non-heme iron protein,<br>hemerythrin family    | methyl-accepting chemotaxis protein, putative    |
| "CJ_10000372"         | CJE1360 | -     | Cj1225  | -     | -       | -     | 1  | 0 | 1 | 1  | 1  | 1 | 1  | 1  | 0  | 1  | hypothetical protein                               | hypothetical protein                            | -                                                |
| "CJ_10000373"         | CJE1361 | -     | Cj1226c | -     | CCO1314 | -     | 1  | 1 | 1 | 1  | 1  | 0 | 1  | 1  | 1  | 1  | putative two-component<br>sensor                   | sensor histidine kinase                         | signal-transducing protein,<br>histidine kinase  |
| "CJ_10000374"         | CJE1362 | -     | Cj1227c | -     | CCO1315 | -     | 1  | 1 | 1 | 1  | 0  | 1 | 1  | 1  | 1  | 1  | putative two-component regulator                   | DNA-binding response regulator                  | outer membrane protein R (ompR)                  |
| "CJ_10000375"         | CJE1363 | htrA  | Cj1228c | htrA  | CCO1316 | -     | 1  | 0 | 1 | 1  | 1  | 1 | 1  | 1  | 0  | 1  | serine protease (protease DO)                      | protease DO                                     | serine protease (htrA)                           |
| "CJ_10000389"         | CJE1364 | -     | Cj1229  | cbpA  | CCO1317 | -     | 1  | 0 | 1 | 1  | 1  | 1 | 1  | 1  | 1  | 1  | putative curved-DNA<br>binding protein             | co-chaperone protein DnaJ                       | co-chaperone-curved DNA binding protein A        |

| "CJ_10000391"         | CJE1365 | -            | Cj1230  | hspR | CCO1318 | -    | 1  | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative heat shock                                 | transcriptional regulator,<br>MerR family              | probable heat shock<br>transcription regulator   |
|-----------------------|---------|--------------|---------|------|---------|------|----|----|----------|----|----|----|----|----|----|----|-----------------------------------------------------|--------------------------------------------------------|--------------------------------------------------|
| "CT 10000202"         | CJE1366 | <del> </del> | C:1221  | 1CD  | CCO1210 | 160  | 1  | 1  | <u> </u> | 1  | 1  | -  | 1  | 1  | -  | 1  | transcriptional regulator                           |                                                        |                                                  |
| "CJ_10000393"         |         | -            | Cj1231  | kefB | CCO1319 | kefB | 1  | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative glutathione-<br>regulated potassium-efflux | sodium/hydrogen exchanger family protein               | glutathione-regulated<br>potassium-efflux system |
| "CJ_10000395"         | CJE1367 | -            | Cj1232  | -    | CCO1320 | -    | 0  | 1  | 1        | 1  | 0  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                                | hypothetical protein                                   | conserved hypothetical protein                   |
| "CJ_10000397"         | CJE1368 | -            | Cj1233  | -    | CCO1321 | -    | 1  | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative hydrolase                                  | HAD-superfamily<br>hydrolase, subfamily IA,<br>variant | probable hydrolase Cj1233                        |
| "CJ_10000398"         | CJE1369 | glyS         | Cj1234  | glyS | CCO1322 | glyS | 0  | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1  | 1  | glycyl-tRNA synthetase<br>beta chain                | glycyl-tRNA synthetase<br>beta subunit                 | glycyl-tRNA synthetase,<br>beta subunit          |
| "CJ 10000399"         | CJE1370 | -            | Cj1235  | -    | CCO1323 | -    | 1  | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative periplasmic protein                        | peptidase, M23/M37 family                              | peptidase, M23/M37 family                        |
| "CJ_10000400"         | CJE1371 | -            | Cj1236  | -    | CCO1324 | -    | 0  | 0  | -1       | 1  | 1  | 1  | -1 | -1 | 1  | 1  | hypothetical protein                                | hypothetical protein                                   | conserved hypothetical protein                   |
| "CJ_10000401"         | CJE1372 | -            | Cj1237c | -    | CCO1327 | -    | 1  | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1  | 1  | possible phosphatase                                | phosphatase, Ppx/GppA<br>family                        | phosphatase, Ppx/GppA<br>family, putative        |
| "CJ 10000402"         | CJE1373 | pdxJ         | Cj1238  | pdxJ | CCO1328 | pdxJ | 1  | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative pyridoxal                                  | pyridoxal phosphate                                    | pyridoxal phosphate                              |
|                       |         | F            | -3      | F    |         | F    | 1  | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1  | 1  | phosphate biosynthetic                              | biosynthetic protein                                   | biosynthetic protein PdxJ                        |
| "CJ 10000417"         | CJE1374 | pdxA         | Ci1239  | pdxA | CCO1329 | pdxA | 0  | 0  | 1        | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative pyridoxal                                  | 4-hydroxythreonine-4-                                  | 4-hydroxythreonine-4-                            |
|                       |         | P            | -3-2    | P    |         | F    |    |    | -        | -  |    | -  | -  | _  |    | 1  | phosphate biosynthetic                              | phosphate dehydrogenase                                | phosphate dehydrogenase                          |
| "opCcV010000<br>0600" | CJE1375 | -            | Cj1240c | -    | CCO1330 | -    | 1  | 1  | 0        | 1  | -1 | 1  | -1 | 1  | 1  | -1 | putative periplasmic protein                        | hypothetical protein                                   | probable periplasmic<br>protein Cj1240c          |
| "CJ 10000419"         | CJE1376 | -            | Cj1240c | -    | -       | -    | 0  | 0  | -1       | 1  | 0  | 0  | 0  | -1 | 1  | 1  | putative periplasmic protein                        | hypothetical protein                                   | -                                                |
| "CJ_10000422"         | CJE1377 | -            | Cj1241  | -    | -       | -    | 1  | 1  | 1        | 1  | 0  | 1  | 1  | 1  | 1  | 1  | putative transmembrane<br>transport protein         | transporter, putative                                  | -                                                |
| "CJ_10000424"         | CJE1378 | -            | Cj1242  | -    | CCO1332 | -    | 1  | 1  | 0        | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                                | hypothetical protein                                   | conserved hypothetical protein                   |
| "CJ_10000426"         | CJE1379 | hemE         | Cj1243  | hemE | CCO1333 | hemE | 1  | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1  | 1  | uroporphyrinogen<br>decarboxylase                   | uroporphyrinogen<br>decarboxylase                      | uroporphyrinogen<br>decarboxylase                |
| "CJ_10000427"         | CJE1380 | -            | Cj1244  | -    | CCO1334 | -    | 1  | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                                | radical SAM domain protein                             | MoaA/NifB/PqqE family protein, putative          |
| "CJ_10000428"         | CJE1381 | -            | Cj1245c | -    | CCO1335 | -    | 1  | -1 | 1        | 1  | 1  | 1  | 1  | 1  | -1 | 1  | putative membrane protein                           | hypothetical protein                                   | probable membrane protein<br>Cj1245c             |
| "CJ_10000429"         | CJE1382 | uvrC         | Cj1246c | uvrC | CCO1336 | uvrC | 1  | 0  | 1        | 1  | 1  | 1  | 1  | 1  | 1  | 1  | excinuclease ABC subunit<br>C                       | excinuclease ABC subunit<br>C                          | excinuclease ABC, C<br>subunit                   |
| "CJ_10000430"         | CJE1383 | -            | Cj1247c | -    | CCO1337 | -    | -1 | 1  | -1       | -1 | -1 | -1 | 1  | 1  | 1  | -1 | hypothetical protein                                | hypothetical protein                                   | conserved hypothetical protein                   |
| "opCjV010000<br>0727" | CJE1384 | -            | -       | -    | -       | -    | 1  | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1  | 1  | -                                                   | hypothetical protein                                   | -                                                |
| "CJ_10000431"         | CJE1385 | guaA         | Cj1248  | guaA | CCO1338 | guaA | 0  | 0  | 1        | 1  | 1  | 1  | 1  | 0  | 1  | 1  | GMP synthase (glutamine-<br>hydrolyzing)            | bifunctional GMP<br>synthase/glutamine                 | GMP synthase                                     |
| "CJ_10000445"         | CJE1386 | -            | Cj1249  | -    | CCO1343 | -    | 1  | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                                | hypothetical protein                                   | conserved hypothetical protein                   |
| "CJ_10000448"         | CJE1387 | purD         | Cj1250  | purD | CCO1344 | purD | 1  | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1  | 1  | phosphoribosylamine<br>glycine ligase               | phosphoribosylamine<br>glycine ligase                  | phosphoribosylamine<br>glycine ligase            |
| "CJ_10000451"         | CJE1388 | -            | Cj1251  | -    | CCO1345 | -    | 1  | 1  | 1        | 1  | 1  | 1  | 1  | 0  | 1  | 1  | hypothetical protein                                | hypothetical protein                                   | conserved hypothetical protein                   |
| "CJ_10000453"         | CJE1389 | -            | Cj1252  | -    | CCO1346 | -    | 1  | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative periplasmic protein                        | organic solvent tolerance<br>protein, putative         | conserved hypothetical secreted protein,         |
| "CJ_10000455"         | CJE1390 | pnp          | Cj1253  | pnp  | CCO1347 | -    | 1  | 0  | 1        | 1  | 1  | 1  | 1  | 1  | 1  | 1  | polyribonucleotide<br>nucleotidyltransferase        | polyribonucleotide<br>nucleotidyltransferase           | polyribonucleotide<br>nucleotidyltransferase     |
| "CJ_10000456"         | CJE1391 | -            | Cj1254  | -    | CCO1348 | -    | 0  | 1  | 0        | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                                | hypothetical protein                                   | conserved hypothetical protein                   |
| "CJ_10000457"         | CJE1392 | -            | Cj1256c | -    | CCO1351 | -    | 1  | 1  | 1        | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative membrane protein                           | hypothetical protein                                   | probable membrane protein<br>Cj1256c             |

| "CJ_10000458"         | CJE1393 | -      | Cj1257c | -            | CCO1352 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative efflux pump                            | pseudogene                                          | multi-drug resistance<br>protein                    |
|-----------------------|---------|--------|---------|--------------|---------|------|----|----|----|----|----|----|----|----|----|----|-------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| "CJ_10000459"         | CJE1394 | -      | Cj1258  | -            | CCO1353 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | possible phosphotyrosine protein phosphatase    | low molecular weight phosphotyrosine protein        | low molecular weight protein                        |
| "opCcV010000<br>1939" | CJE1395 | porA   | Cj1259  | porA         | CCO0683 | 1    | 1  | -1 | 1  | -1 | 1  | -1 | -1 | 1  | 1  | -1 | major outer membrane protein                    | major outer membrane protein                        | major outer membrane protein                        |
| "opCcV010000<br>1977" | CJE1396 | -      | Cj1260c | dnaJ         | CCO0682 | dnaJ | -1 | -1 | 1  | 0  | 1  | 1  | 1  | 1  | -1 | 1  | chaperone DnaJ                                  | co-chaperone protein DnaJ                           | heat shock protein                                  |
| "opCcV010000<br>0324" | CJE1397 | racR   | Cj1261  | racR         | CCO0681 | drrA | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | two-component regulator                         | DNA-binding response regulator                      | response regulator (ompR)                           |
| "CJ_10001102"         | CJE1398 | racS   | Cj1262  | racS         | CCO0680 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | -1 | 1  | 1  | two-component sensor<br>(histidine kinase)      | sensor histidine kinase                             | signal-transducing protein,<br>histidine kinase     |
| "CJ_10001105"         | CJE1399 | recR   | Cj1263  | recR         | CCO0679 | recR | 1  | 1  | 1  | 1  | -1 | -1 | 1  | 0  | 1  | -1 | recombination protein                           | recombination protein RecR                          | recombination protein RecR                          |
| "CJ_10001108"         | CJE1400 | hydD   | Cj1264c | hydD         | CCO0678 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | -1 | 1  | putative hydrogenase<br>maturation protease     | hydrogenase maturation<br>protease HydD             | hydrogenase<br>expression/formation<br>protein      |
| "CJ_10001111"         | CJE1401 | hydC   | Cj1265c | hydC         | CCO0677 | hyaC | 1  | 1  | 1  | -1 | -1 | 1  | 1  | 1  | 1  | -1 | Ni/Fe-hydrogenase B-type<br>cytochrome subunit  | quinone-reactive Ni/Fe<br>hydrogenase, cytochrome b | quinone-reactive Ni/Fe<br>hydrogenase, cytochrome b |
| "CJ_10001113"         | CJE1402 | hydB   | Cj1266c | hydB         | CCO0676 | -    | 1  | -1 | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | Ni/Fe-hydrogenase large<br>subunit              | quinone-reactive Ni/Fe-<br>hydrogenase, large       | hydrogenase (NiFe) large<br>chain Cj1266c           |
| "CJ 10001114"         | CJE1403 | hydA   | Cj1267c | hydA         | CCO0675 | _    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 0  | 1  | 1  | Ni/Fe-hydrogenase small                         | guinone-reactive Ni/Fe-                             | quinone-reactive Ni/Fe                              |
|                       |         | nyuz i | ,       | nyuz i       |         |      |    |    | 1  | •  |    | 1  |    | Ů  | 1  | 1  | chain                                           | hydrogenase, small                                  | hydrogenase, small                                  |
| "CJ_10001115"         | CJE1404 | -      | Cj1268c | -            | CCO0674 | -    | 1  | 0  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | hypothetical protein                            | oxidoreductase, FAD-<br>dependent                   | oxidoreductase, FAD-<br>binding, putative           |
| "CJ_10001131"         | CJE1405 | -      | Cj1269c | amiA         | CCO0673 | amiA | 1  | 1  | 1  | -1 | -1 | 1  | 1  | 1  | 1  | 1  | putative N-acetylmuramoyl-                      | N-acetylmuramoyl-L-                                 | N-acetylmuramoyl-L-                                 |
|                       |         |        |         |              |         |      |    |    |    |    |    |    |    |    |    |    | L-alanine amidase                               | alanine amidase                                     | alanine amidase (amiA)                              |
| "CJ_10001135"         | CJE1406 | -      | Cj1270c | -            | CCO0672 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | -1 | hypothetical protein                            | oxidoreductase, 2-<br>nitropropane dioxygenase      | oxidoreductase, 2-<br>nitropropane dioxygenase      |
| "CJ 10001139"         | CJE1407 | tyrS   | Cj1271c | tyrS         | CCO0671 | tyrS | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | -1 | tyrosyl-tRNA synthetase                         | tyrosyl-tRNA synthetase                             | tyrosyl-tRNA synthetase                             |
| "CJ_10001142"         | CJE1408 | -      | Cj1272c | spoT         | CCO0670 | spoT | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative guanosine-3',5'-<br>bis(diphosphate)   | RelA/SpoT family protein                            | penta-phosphate                                     |
| "CJ_10001145"         | CJE1409 | rpoZ   | Cj1273c | rpoZ         | CCO0669 | rpoZ | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative DNA-directed<br>RNA polymerase omega   | DNA-directed RNA<br>polymerase omega subunit        | DNA-directed RNA<br>polymerase, omega subunit       |
| "CJ 10001149"         | CJE1410 | pyrH   | Cj1274c | pyrH         | CCO0668 | pyrH | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | uridylate kinase                                | uridylate kinase                                    | uridylate kinase                                    |
| "CJ 10001151"         | CJE1411 | -      | Cj1275c | -            | CCO0667 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative periplasmic protein                    | peptidase, M23/M37 family                           | probable periplasmic                                |
| _                     | CJE1412 | _      | -       |              |         |      | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |                                                 |                                                     | protein Cj1275c                                     |
| "CJ_10001153"         | CJE1412 | _      | Cj1276c | -            | CCO0665 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative integral membrane protein              | cell division protein FtsX,<br>putative             | cell division membrane<br>protein (ftsX)            |
| "CJ_10001154"         | CJE1413 | lolD   | Cj1277c | -            | CCO0664 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative ABC transporter<br>ATP-binding protein | lipoprotein releasing system<br>ATP-binding protein | cell division protein (ftsE)                        |
| "CJ_10001155"         | CJE1414 | trmB   | Cj1278c | -            | CCO0663 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 0  | 1  | 1  | hypothetical protein                            | tRNA (guanine-N(7)-)-<br>methyltransferase          | methyltransferase, putative, putative               |
| "CJ_10001173"         | CJE1415 | -      | Cj1279c | -            | CCO0662 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative fibronectin domain-<br>containing      | fibronectin type III domain<br>protein              | Fibronectin type III domain protein                 |
| "CJ 10001177"         | CJE1416 |        | Cj1280c |              | CCO0661 | rluD | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative ribosomal                              | ribosomal large subunit                             | ribosomal large subunit                             |
|                       |         |        | ,       |              |         | TiuD |    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | pseudouridine synthase                          | pseudouridine synthase,                             | pseudouridine synthase,                             |
| "CJ_10001181"         | CJE1417 | -      | Cj1282  | mrdB         | CCO0660 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | RodA protein homolog                            | rod shape-determining protein RodA, putative        | RodA protein homolog<br>Cj1282                      |
| "opCjV010000<br>0721" | CJE1418 | -      | -       | -            | -       | -    |    | 1  | -1 | 1  | 1  | -1 | 0  | 1  | -1 | 1  | -                                               | site-specific recombinase,<br>phage integrase       | -                                                   |
| "opCjV010000<br>0575" | CJE1419 | -      | -       | -            | -       | -    |    | 1  | -1 | 1  | 1  | -1 | -1 | 1  | 1  | 1  | -                                               | DNA binding protein, putative                       | -                                                   |
| "opCjV010000<br>0641" | CJE1420 | -      | -       | -            | -       | -    |    | 1  | -1 | 1  | 1  | -1 | -1 | 1  | -1 | 1  | -                                               | hypothetical protein                                | -                                                   |
| "opCjV010000          | CJE1421 | +      | +_      | <del> </del> | +-      | +-   | -1 | -1 | -1 | 0  | 1  | -1 | -1 | 1  | -1 | 0  | 1 -                                             | site-specific DNA-                                  | _                                                   |

| 0968"                 |         |   |   |   |   |   |    |    |    |   |    |    |    |    |    |    |   | methyltransferase                 |   |
|-----------------------|---------|---|---|---|---|---|----|----|----|---|----|----|----|----|----|----|---|-----------------------------------|---|
| "opCjV010000<br>0601" | CJE1422 | - | - | - | - | - | -1 | 1  | 1  | 1 | 1  | 1  | 1  | 1  | -1 | 1  | - | emm-like protein                  | - |
| "opCjV010000<br>0882" | CJE1423 | - | - | - | - | - |    | 1  | -1 | 1 | 1  | -1 | -1 | -1 | -1 | 1  | - | hypothetical protein              | - |
| "opCjV010000<br>0896" | CJE1424 | - | - | - | - | - | -1 | 1  | -1 | 1 | 1  | -1 | -1 | 1  | -1 | 1  | - | hypothetical protein              | - |
| "opCjV010000<br>0764" | CJE1425 | - | - | - | - | - |    | 1  | -1 | 1 |    |    |    | -1 |    | 1  | - | hypothetical protein              | - |
| "opCjV010000<br>0038" | CJE1426 | - | - | - | - | - |    | 1  | -1 | 1 | 1  | -1 | -1 | 1  | -1 | 1  | - | hypothetical protein              | - |
| "opCjV010000<br>0024" | CJE1427 | - | - | - | - | - |    | 1  | -1 | 1 | 1  | 1  | -1 | 1  | 1  | 1  | - | hypothetical protein              | - |
| "opCjV010000<br>0303" | CJE1428 | - | - | - | - | - |    | 1  | -1 | 1 | -1 | 1  | -1 | -1 | 1  | 1  | - | hypothetical protein              | - |
| "opCjV010000<br>0019" | CJE1429 | - | - | - | - | - |    | 1  | -1 | 1 | 1  | -1 | -1 | 1  | 1  | 1  | - | hypothetical protein              | - |
| "opCjV010000<br>0825" | CJE1430 | - | - | - | - | - |    | 1  | -1 | 1 | 1  | -1 | -1 | 1  | -1 | 1  | - | RloG protein, putative            | - |
| "opCjV010000<br>0964" | CJE1431 | - | - | - | - | - |    | 1  | -1 | 1 |    |    |    | 1  |    | 1  | - | hypothetical protein              | - |
| "opCjV010000<br>0453" | CJE1432 | - | - | - | - | - |    | 1  | -1 | 1 | 1  | -1 | -1 | 1  | -1 | 1  | - | hypothetical protein              | - |
| "opCjV010000<br>0230" | CJE1433 | - | - | - | - | - |    | 1  |    | 1 |    |    |    | -1 |    | 1  | - | hypothetical protein              | - |
| "opCjV010000<br>0258" | CJE1434 | - | - | - | - | - |    | 1  | -1 | 1 | 1  | -1 | -1 | -1 | -1 | 1  | - | hypothetical protein              | - |
| "opCjV010000<br>0086" | CJE1435 | - | - | - | - | - |    | 1  | -1 | 1 | -1 | -1 | -1 | -1 | 1  | 1  | - | DNA-binding protein Roi           | - |
| "opCjV010000<br>0850" | CJE1436 | - | - | - | - | - |    | 1  | -1 | 1 | -1 | -1 | 1  | 1  | 1  | 1  | - | hypothetical protein              | - |
| "opCjV010000<br>0261" | CJE1437 | - | - | - | - | - |    | 0  | -1 | 1 | -1 | -1 | -1 | 1  | -1 | 1  | - | hypothetical protein              | - |
| "opCjV010000<br>0511" | CJE1438 | - | - | - | - | - |    | 1  | -1 | 1 | 1  | -1 | -1 | 1  | -1 | 1  | - | hypothetical protein              | - |
| "opCjV010000<br>0359" | CJE1439 | - | - | - | - | - |    | -1 | -1 | 0 | 1  | -1 | -1 | 1  | 0  | -1 | - | hypothetical protein              | - |
| "opCjV010000<br>0561" | CJE1440 | - | - | - | - | - | -1 | -1 | -1 | 1 | 1  | -1 | -1 | 1  | -1 | -1 | - | signal peptidase I, putative      | - |
| "opCjV010000<br>0910" | CJE1441 | - | - | - | - | - | -1 | -1 | 0  | 0 | 1  | 0  | -1 | 1  | 0  | -1 | - | DNA/RNA non-specific endonuclease | - |
| "opCjV010000<br>1085" | CJE1442 | - | - | - | - | - | -1 | -1 | -1 | 1 | 1  | -1 | -1 | -1 | -1 | -1 | - | hypothetical protein              | - |
| "opCjV010000<br>0221" | CJE1444 | - | - | - | - | - |    | -1 | -1 | 0 | 1  | -1 | -1 | 1  | 1  | 0  | - | hypothetical protein              | - |
| "opCjV010000<br>0498" | CJE1445 | - | - | - | - | - |    | -1 | -1 | 0 | 1  | -1 | 1  | -1 | 1  | -1 | - | hypothetical protein              | - |
| "opCjV010000<br>0808" | CJE1447 | - | - | - | - | - |    |    | -1 | 1 | 1  | -1 | -1 | 1  | 0  | 1  | - | hypothetical protein              | - |
| "opCjV010000<br>0711" | CJE1448 | - | - | - | - | - | -1 | -1 | -1 | 1 | 1  | -1 | -1 | 1  | -1 | 1  | - | hypothetical protein              | - |
| "opCjV010000<br>0548" | CJE1452 | - | - | - | - | - |    |    | -1 | 1 | 1  | -1 | -1 | 1  | -1 | 1  | - | hypothetical protein              | - |
| "opCjV010000<br>0031" | CJE1453 | - | - | - | - | - |    |    |    | 1 |    |    |    | -1 |    | 1  | - | hypothetical protein              | - |

| "opCjV010000<br>0719"    | CJE1454 | -    | -       | -     | -       |      | -1 | -1 | -1 | 1 | 1  | -1 | -1 | 1  | -1 | 1  | -                                   | phage head-tail adaptor,<br>putative          | -                                    |
|--------------------------|---------|------|---------|-------|---------|------|----|----|----|---|----|----|----|----|----|----|-------------------------------------|-----------------------------------------------|--------------------------------------|
| "opCjV010000<br>0405"    | CJE1455 | -    | -       | -     | =       | -    |    | -1 | -1 | 1 | 1  | -1 | -1 | 0  | -1 | 1  | -                                   | hypothetical protein                          | -                                    |
| "opCjV010000<br>0757"    | CJE1456 | -    | -       | -     |         | -    | -1 | -1 | -1 | 1 | 1  | -1 | -1 | 1  | -1 | 1  | -                                   | hypothetical protein                          | -                                    |
| "opCjV010000<br>0469"    | CJE1457 | -    | -       | -     | -       | -    |    | -1 | -1 | 1 | 1  | -1 | -1 | 1  | 0  | 1  | -                                   | hypothetical protein                          | -                                    |
| "opCjV010000<br>0506"    | CJE1458 | -    | -       | -     | -       | -    |    | -1 | -1 | 1 | 1  | -1 | -1 | 1  | -1 | 1  | -                                   | major capsid protein, HK97 family             | -                                    |
| "opCjV010000<br>0621"    | CJE1459 | -    | -       | -     | -       | -    |    | -1 | -1 | 1 | 1  | -1 | -1 | 1  | -1 | 1  | -                                   | hypothetical protein                          | -                                    |
| "opCjV010000<br>0657"    | CJE1460 | -    | -       | -     | -       | -    |    | -1 | -1 | 1 | 1  | -1 | -1 | 1  | -1 | 1  | -                                   | hypothetical protein                          | -                                    |
| "opCjV010000<br>0148"    | CJE1461 | -    | -       | -     | -       | -    |    | -1 | -1 | 1 | 0  |    | -1 | -1 | 1  | 1  | -                                   | hypothetical protein                          | -                                    |
| "opCjV010000<br>0902"    | CJE1462 | -    | -       | -     | -       | -    | -1 | 1  | -1 | 1 | 1  | -1 | -1 | 1  | 0  | 1  | -                                   | hypothetical protein                          | -                                    |
| "opCjV010000<br>0773"    | CJE1463 | -    | -       | -     | -       | -    |    | 1  | -1 | 1 | -1 | -1 | -1 | 1  | 1  | 1  | -                                   | hypothetical protein                          | -                                    |
| "opCjV010000<br>0301"    | CJE1464 | -    | -       | -     | -       | -    |    | 1  | -1 | 1 | -1 | -1 | 1  | 1  | 1  | 1  | -                                   | hypothetical protein                          | -                                    |
| "opCjV010000<br>0369"    | CJE1465 | -    | -       | -     | -       | -    |    | 1  |    | 1 | 1  | 1  | 1  | -1 | 1  | 1  | -                                   | hypothetical protein                          | -                                    |
| "opCjV010000<br>0730"    | CJE1466 | -    | -       | -     | -       | -    |    | 1  | -1 | 1 | 1  | -1 | -1 | 1  | 1  | 1  | -                                   | hypothetical protein                          | -                                    |
| "opCjV010000<br>0128"    | CJE1467 | -    | -       | -     | -       | -    |    | 1  | -1 | 1 |    | 1  |    | -1 | 1  | 1  | -                                   | hypothetical protein                          | -                                    |
| "opCjV010000<br>0675"    | CJE1468 | -    | -       | -     | -       | -    |    | 1  | -1 | 1 | 1  | -1 | -1 | 1  | -1 | 1  | -                                   | phage protein, HK97 gp10<br>family            | -                                    |
| "opCjV010000<br>0861"    | CJE1469 | -    | -       | -     | -       | -    | -1 | 1  | -1 | 1 | 1  | -1 | -1 | 0  | -1 | 1  | -                                   | portal protein, HK97 family                   | -                                    |
| "opCjV010000<br>1119"    | CJE1470 | -    | -       | -     | -       | -    |    | 1  | -1 | 1 | 1  | -1 | -1 | 1  | 1  | 1  | -                                   | toxin-antitoxin protein,<br>putative          | -                                    |
| "opCjV010000<br>0368"    | CJE1471 | -    | -       | -     | -       | -    | 1  | 1  |    | 1 |    |    | 1  | -1 | 1  | 1  | -                                   | phage terminase, large<br>subunit, putative   | -                                    |
| "opCcV010000<br>0560.80" | CJE1472 | -    | -       | -     | -       | -    | 1  | 1  | -1 | 0 | 1  | -1 | -1 | 1  | 1  | -1 | -                                   | "phage terminase, small<br>subunit, putative" | -                                    |
| "opCjV010000<br>0064"    | CJE1473 | -    | -       | -     | -       | -    | -1 | 0  | -1 | 1 | 1  | -1 | -1 | 1  | -1 | 1  | -                                   | HNH endonuclease domain protein               | -                                    |
| "opCjV010000<br>0059"    | CJE1474 | -    | -       | -     | -       | -    | -1 | 1  | -1 | 1 | 1  | -1 | -1 | 1  | -1 | 1  | -                                   | hypothetical protein                          | -                                    |
| "CJ_10001184"            | CJE1475 | -    | Cj1283  | ktrB  | CCO1388 | -    | 1  | 1  | 1  | 0 | 1  | 1  | 1  | 1  | 1  | -1 | putative K+ uptake protein          | potassium uptake protein,<br>TrkH family      | probable K+ uptake protein<br>Cj1283 |
| "CJ_10001189"            | CJE1476 | -    | Cj1284  | ktrA  | CCO1389 | -    | 1  | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | 1  | putative K+ uptake protein          | potassium uptake protein<br>TrkA, putative    | probable K+ uptake protein<br>Cj1284 |
| "CJ_10001191"            | CJE1477 | -    | Cj1285c | -     | CCO1390 | -    | 1  | 1  | 0  | 1 | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                | hypothetical protein                          | Uncharacterized ACR,<br>COG1427      |
| "CJ_10001193"            | CJE1478 | upp  | Cj1286c | upp   | CCO1391 | upp  | 0  | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | 1  | uracil<br>phosphoribosyltransferase | uracil<br>phosphoribosyltransferase           | uracil<br>phosphoribosyltransferase  |
| "CJ_10001196"            | CJE1479 | -    | Cj1287c | -     | CCO1392 | maeB | 1  | -1 | 1  | 1 | 1  | 1  | -1 | 1  | -1 | -1 | malate oxidoreductase               | NADP-dependent malic enzyme, truncation       | malic enzyme                         |
| "CJ 10001199"            | CJE1480 | gltX | Cj1288c | gltX2 | CCO1393 | gltX | 1  | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | 1  | glutamyl-tRNA synthetase            | glutamyl-tRNA synthetase                      | glutamyl-tRNA synthetase             |
| "CJ_10001201"            | CJE1481 | 5    | Cj1289  | - 52  | CCO1394 |      | 0  | 1  | 1  | 1 | 0  | 1  | 1  | 1  | 1  | 1  | possible periplasmic protein        | hypothetical protein                          | probable periplasmic                 |
| CJ_10001201              | CJE1401 |      | CJ1209  | _     | CC01394 | _    | U  | 1  | 1  | 1 | U  | 1  | 1  | 1  | 1  | 1  | possible periplasifile protein      | nypomenear protein                            | protein Cj1289                       |

| "CJ_10001220"         | CJE1482 | -    | Cj1290c | accC  | CCO1395 | accC | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | biotin carboxylase                                 | acetyl-CoA carboxylase                              | acetyl-CoA carboxylase,<br>biotin carboxylase      |
|-----------------------|---------|------|---------|-------|---------|------|----|----|----|----|----|----|----|----|----|----|----------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|
| "CJ_10001224"         | CJE1483 | accB | Cj1291c | accB  | CCO1396 | accB | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative biotin carboxyl carrier protein of        | acetyl-CoA carboxylase,<br>biotin carboxyl carrier  | acetyl-CoA carboxylase,<br>biotin carboxyl carrier |
| "CJ_10001228"         | CJE1484 | -    | Cj1292  | dcd   | CCO1397 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | possible deoxycytidine<br>triphosphate deaminase   | deoxycytidine triphosphate<br>deaminase             | probable dCTP deaminase<br>Cj1292                  |
| "CJ_10001233"         | CJE1485 | flmA | Cj1293  | -     | CCO1398 | -    | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 0  | 1  | 1  | possible sugar nucleotide<br>epimerase/dehydratase | polysaccharide biosynthesis<br>protein              | polysaccharide biosynthesis<br>protein             |
| "CJ_10001236"         | CJE1486 | -    | Cj1294  | -     | CCO1399 | -    | 1  | 1  | 0  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | putative aminotransferase<br>(degT family)         | aminotransferase, DegT/DnrJ/EryC1/StrS family       | probable aminotransferase<br>(degT family) Cj1294  |
| "CJ_10001238"         | CJE1487 | -    | Cj1295  | -     | CCO1400 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | hypothetical protein                               | hypothetical protein                                | conserved hypothetical protein                     |
| "CJ_10001245"         | CJE1488 | -    | Cj1298  | -     | CCO1402 | -    | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 0  | 1  | 1  | hypothetical protein                               | hypothetical protein                                | conserved hypothetical protein                     |
| "CJ_10001247"         | CJE1489 | -    | Cj1299  | acpP2 | CCO1403 | -    | 1  | 1  | -1 | 1  | -1 | -1 | 1  | 0  | 1  | 1  | putative acyl carrier protein                      | acyl carrier protein, putative                      | probable acyl carrier protein<br>Cj1299 -related   |
| "CJ_10001267"         | CJE1490 | -    | Cj1300  | -     | CCO1404 | -    | 1  | 1  | 0  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | hypothetical protein                               | hypothetical protein                                | conserved hypothetical protein                     |
| "CJ_10001274"         | CJE1491 | -    | Cj1302  | -     | CCO1405 | -    | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | 1  | 1  | hypothetical protein                               | HAD-superfamily phosphatase, subfamily IIIC         | HAD-superfamily<br>phosphatase, subfamily IIIC     |
| "CJ_10001276"         | CJE1492 | -    | Cj1303  | fabH2 | CCO1406 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative 3-oxoacyl-[acyl-<br>carrier-protein]      | 3-oxoacyl-(acyl carrier protein) synthase           | 3-oxoacyl-(acyl-carrier-<br>protein) synthase III, |
| "CJ_10001278"         | CJE1493 | -    | Cj1304  | acpP3 | CCO1407 | -    | 1  | 1  | 1  | -1 | 0  | 1  | -1 | 1  | 1  | -1 | putative acyl carrier protein                      | acyl carrier protein, putative                      | probable acyl carrier protein<br>Cj1304 -related   |
| "opCjV010000<br>0925" | CJE1494 | -    | Cj1306c | -     | CCO1408 | -    | 1  | 1  | 0  | 1  | 1  | -1 | -1 | -1 | 1  | 1  | hypothetical protein                               | hypothetical protein                                | conserved hypothetical protein                     |
| "CJ_10001280"         | CJE1495 | -    | Cj1306c | -     | CCO1410 | -    | 1  | 1  | -1 | 1  | 1  | -1 | -1 | -1 | 1  | 1  | hypothetical protein                               | hypothetical protein                                | conserved hypothetical protein                     |
| "CJ_10001281"         | CJE1496 | -    | Cj1307  | -     | CCO1411 | -    | 1  | 1  | 0  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | putative amino acid                                | amino acid adenylation                              | amino acid adenylation                             |
| "opCjV010000<br>1065" | CJE1497 | -    | -       | -     | -       | -    | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1  | 0  | -1 | activating enzyme                                  | domain protein<br>acetyltransferase, GNAT<br>family | domain protein                                     |
| "opCjV010000<br>0777" | CJE1498 | -    | -       | -     | -       | -    | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | -1 | -                                                  | formyl transferase domain<br>protein                | -                                                  |
| "CJ_10001282"         | CJE1499 | -    | Cj1308  | acpP4 | CCO1414 | -    | 1  | 1  | 0  | 1  | -1 | 1  | -1 | 0  | 1  | 1  | putative acyl carrier protein                      | acyl carrier protein, putative                      | probable acyl carrier protein<br>Cj1308 -related   |
| "opCjV010000<br>0515" | CJE1500 | -    | -       | -     | -       | -    |    | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | -1 | -                                                  | polysaccharide deacetylase<br>family protein        | -                                                  |
| "opCjV010000<br>0278" | CJE1501 | -    | -       | -     | -       | -    |    | -1 | -1 |    | -1 | -1 |    | 1  | 1  | -1 | -                                                  | hypothetical protein                                | -                                                  |
| "opCjV010000<br>0441" | CJE1502 | -    | -       | -     | -       | -    | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1  | 1  | -1 | -                                                  | aminoglycoside N3-<br>acetyltransferase domain      | -                                                  |
| "opCjV010000<br>0035" | CJE1503 | -    | -       | -     | -       | -    | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | -1 | -                                                  | hypothetical protein                                | -                                                  |
| "CJ_10001297"         | CJE1504 | -    | Cj1310c | -     | CCO1419 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 0  | 1  | 1  | hypothetical protein                               | hypothetical protein                                | conserved hypothetical protein                     |
| "CJ_10001302"         | CJE1506 | neuA | Cj1311  | neuA2 | CCO1421 | -    | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 0  | 1  | 1  | acylneuraminate<br>cytidylyltransferase            | CMP-N-acetylneuraminic acid synthetase              | CMP-N-acetylneuraminic acid synthetase (neuA)      |
| "CJ_10001304"         | CJE1507 | -    | Cj1312  | -     | CCO1422 | -    | 0  | 1  | 0  | 1  | 0  | 1  | -1 | 1  | -1 | 1  | possible flagellar protein                         | flagellar protein, putative                         | probable flagellar protein Cj1312                  |
| "CJ_10001306"         | CJE1508 | -    | Cj1313  | -     | CCO1423 | -    | -1 | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | possible flagellar protein                         | acetyltransferase, GNAT family                      | probable flagellar protein<br>Cj1313               |
| "opCcV010000<br>0429" | CJE1509 | -    | Cj1314c | -     | CCO1424 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative cyclase                                   | imidazoleglycerol<br>phosphate synthase, cyclase    | probable cyclase Cj1314c                           |

| "opCcV010000<br>0900" | CJE1510 | -    | Cj1315c | -     | CCO1425 | hisH | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | amidotransferase                                      | imidazole glycerol<br>phosphate synthase,<br>glutamine | imidazole glycerol<br>phosphate synthase,<br>glutamine |
|-----------------------|---------|------|---------|-------|---------|------|----|----|----|----|----|----|----|----|----|----|-------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| "opCcV010000<br>0878" | CJE1511 | -    | Cj1316c | -     | CCO1426 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                                  | flagellin modification<br>protein, PseA                | PseA protein                                           |
| "CJ_10001308"         | CJE1512 | neuB | Cj1317  | neuB3 | CCO1427 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | N-acetylneuraminic acid synthetase                    | N-acetylneuraminic acid synthetase                     | spore coat polysaccharide<br>biosynthesis protein      |
| "CJ_10001309"         | CJE1513 | -    | Cj1319  | -     | CCO1430 | -    | 1  | 1  | -1 | 1  | 1  | 1  | 1  | -1 | 1  | 1  | putative nucleotide sugar<br>dehydratase              | NAD-dependent<br>epimerase/dehydratase<br>family       | probable nucleotide sugar<br>dehydratase Cj1319        |
| "CJ_10001332"         | CJE1514 | -    | Cj1320  | -     | CCO1431 | -    | 1  | 1  | -1 | 1  | 1  | 1  | 1  | -1 | 1  | 1  | putative aminotransferase<br>(degT family)            | aminotransferase, DegT<br>family                       | probable aminotransferase<br>(degT family) Cj1320      |
| "opCjV010000<br>0414" | CJE1515 | -    | -       | -     | -       | -    | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | -1 | -                                                     | formyltransferase, putative                            | -                                                      |
| "CJ_10001347"         | CJE1516 | ptmC | Cj1327  | neuB2 | CCO1433 | -    | 1  | 1  | -1 | 1  | 1  | 1  | 1  | -1 | 1  | 1  | N-acetylneuraminic acid synthetase                    | N-acetylneuraminic acid synthetase                     | capsular polysaccharide<br>biosynthesis protein        |
| "CJ_10001348"         | CJE1517 | neuC | Cj1328  | neuC2 | CCO1434 | -    | 0  | 1  |    | 1  | 1  | 1  | 0  | 1  | 1  | 1  | putative N-<br>acetylglucosamine-6-<br>phosphate      | UDP-N-acetylglucosamine<br>2-epimerase                 | UDP-N-acetylglucosamine<br>2-epimerase                 |
| "CJ_10001349"         | CJE1518 | -    | Cj1329  | -     | CCO1435 | mpg  | 1  | 1  |    | 1  | 1  | -1 | 1  | 1  | 1  | 1  | putative sugar-phosphate<br>nucleotide transferase    | nucleotidyltransferase<br>family protein               | Mannose-1-phosphate guanyltransferase                  |
| "CJ_10001364"         | CJE1519 | -    | Cj1330  | -     | CCO1436 | -    | -1 | 0  | -1 | 1  | 1  | -1 | -1 | -1 | 1  | 1  | hypothetical protein                                  | hypothetical protein                                   | conserved hypothetical protein                         |
| "CJ_10001366"         | CJE1520 | ptmB | Cj1331  | ptmB  | CCO1437 | -    | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | acylneuraminate<br>cytidylyltransferase<br>(flagellin | posttranslational flagellin<br>modification protein    | acylneuraminate<br>cytidylyltransferase,<br>putative   |
| "CJ_10001369"         | CJE1521 | ptmA | Cj1332  | ptmA  | CCO1438 | -    | 1  | 1  |    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | putative oxidoreductase<br>(flagellin                 | flagellin modification<br>protein A                    | probable oxidoreductase<br>(flagellin modification)    |
| "opCcV010000<br>1710" | CJE1522 | -    | Cj1318  | -     | CCO1428 | -    | 1  | 1  | -1 | 1  | 0  | 1  | 1  | -1 | 1  | 1  | hypothetical protein                                  | motility accessory factor                              | conserved hypothetical protein                         |
| "CJ_10001373"         | CJE1523 | -    | Cj1334  | -     | CCO1440 | -    | 0  | 1  |    | 0  | -1 | -1 | -1 | -1 |    | 1  | hypothetical prootein<br>Cj1334 (1318 family)         | motility accessory factor                              | hypothetical prootein<br>Cj1334 (1318 family)          |
| "opCcV010000<br>0701" | CJE1524 | -    | Cj1318  | -     | CCO1429 | -    | 1  | 1  | 1  | 1  | -1 | 1  | -1 | 1  | 1  | 1  | hypothetical protein                                  | motility accessory factor                              | conserved hypothetical protein                         |
| "CJ_10001374"         | CJE1525 | -    | Cj1337  | -     | CCO1442 | -    | 1  | 1  | -1 | 1  | 1  | 1  | 1  | -1 | 1  | 1  | hypothetical protein                                  | motility accessory factor                              | conserved hypothetical protein                         |
| "opCjjV010000<br>192" | CJE1526 | flaB | Cj1338c | flaB  | -       | -    | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | flagellin                                             | flagellin                                              | -                                                      |
| "opCjV010000<br>0504" | CJE1527 | -    | -       | -     | -       | -    | 0  | 0  | 1  | 1  | 1  | 0  | 0  | 1  | 1  | 0  | -                                                     | hypothetical protein                                   | -                                                      |
| "opCjjV010000<br>104" | CJE1528 | flaA | Cj1339c | flaA  | -       | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 1  | flagellin                                             | flagellin                                              | -                                                      |
| "CJ_10001388"         | CJE1529 | -    | Cj1340c | -     | CCO1445 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | -1 | hypothetical protein                                  | motility accessory factor                              | conserved hypothetical protein                         |
| "CJ_10001394"         | CJE1531 | -    | Cj1342c | -     | CCO1448 | -    | 1  | -1 | -1 | 1  | 1  | 1  | -1 | 0  | 1  | 1  | hypothetical protein                                  | hypothetical protein                                   | conserved hypothetical protein                         |
| "CJ_10001396"         | CJE1532 | ctsG | Cj1343c | -     | CCO1449 | ctsG | 1  | -1 | 1  | 1  | 1  | 1  | -1 | 1  | -1 | -1 | putative periplasmic protein                          | transformation system protein                          | transformation system protein                          |
| "CJ_10001398"         | CJE1533 | gcp  | Cj1344c | -     | CCO1450 | gcp  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 1  | putative glycoprotease                                | O-sialoglycoprotein endopeptidase                      | O-sialoglycoprotein<br>endopeptidase                   |
| "CJ_10001399"         | CJE1534 | -    | Cj1345c | -     | CCO1451 | -    | 1  | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 0  | 1  | putative periplasmic protein                          | hypothetical protein                                   | probable periplasmic<br>protein Cj1345c                |
| "CJ_10001400"         | CJE1535 | dxr  | Cj1346c | dxr   | CCO1452 | dxr  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | -1 | 1  | 1  | putative 1-deoxy-D-<br>xylulose 5-phosphate           | 1-deoxy-D-xylulose 5-<br>phosphate reductoisomerase    | 1-deoxy-D-xylulose 5-<br>phosphate reductoisomerase    |
| "CJ_10001401"         | CJE1536 | cdsA | Cj1347c | cdsA  | CCO1453 | cdsA | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | phosphatidate                                         | phosphatidate                                          | phosphatidate                                          |

|                       | 1         |      |         |      | 1       |      |    |    |    |    |          | 1        |    |    |    |          |                                                  | T                                                    |                                                  |
|-----------------------|-----------|------|---------|------|---------|------|----|----|----|----|----------|----------|----|----|----|----------|--------------------------------------------------|------------------------------------------------------|--------------------------------------------------|
|                       | ~~~       |      |         |      | ~~~.    |      |    |    |    |    | <u> </u> | <b> </b> | -  | 1  |    |          | cytidylyltransferase                             | cytidylyltransferase                                 | cytidylyltransferase                             |
| "CJ_10001402"         | CJE1537   | -    | Cj1348c | -    | CCO1454 | -    | 1  | 1  | 1  | 1  | 1        | 1        | 1  | 1  | 1  | 1        | putative coiled-coil protein                     | hypothetical protein                                 | conserved hypothetical protein                   |
| "CJ_10001403"         | CJE1538   | -    | Cj1349c | -    | CCO1455 | -    | 1  | 1  | 1  | 1  | 1        | 1        | 1  | 1  | 1  | 1        | possible                                         | fibronectin/fibrinogen                               | fibronectin/fibrinogen-                          |
|                       |           |      |         |      |         |      |    |    |    |    |          |          |    |    |    |          | fibronectin/fibrinogen-<br>binding protein       | binding protein,                                     | binding protein,                                 |
| "CJ_10001417"         | CJE1539   | -    | Cj1350  | mobA | CCO1456 | -    | 1  | 1  | 1  | 1  | 1        | 1        | 1  | 1  | 1  | 1        | putative molybdopterin-                          | molybdopterin-guanine                                | molybdopterin-guanine                            |
|                       |           |      |         |      |         |      |    |    |    |    |          |          |    |    |    |          | guanine dinucleotide                             | dinucleotide biosynthesis                            | dinucleotide biosynthesis                        |
| "CJ_10001420"         | CJE1540   | pldA | Cj1351  | pldA | CCO1457 | -    | 1  | 1  | 1  | 1  | 1        | 1        | 1  | 1  | 1  | 1        | phospholipase A                                  | phospholipase A                                      | phospholipase A                                  |
| "CJ_10001423"         | CJE1541   | ceuB | Cj1352  | ceuB | CCO1458 | ceuB | 1  | 1  | 1  | 1  | 1        | -1       | -1 | 1  | -1 | -1       | enterochelin uptake                              | enterochelin ABC                                     | enterochelin ABC                                 |
|                       |           |      |         |      |         |      |    |    |    |    |          |          |    |    |    |          | permease                                         | transporter, permease protein                        | transporter, permease protein                    |
| "CJ_10001425"         | CJE1542   | ceuC | Cj1353  | ceuC | CCO1459 | ceuC | 1  | 1  | 1  | 1  | 1        | 1        | 1  | 0  | 1  | 1        | enterochelin uptake                              | enterochelin ABC                                     | enterochelin ABC                                 |
|                       |           |      |         |      |         |      |    |    |    |    |          |          |    |    |    |          | permease                                         | transporter, permease                                | transporter, permease                            |
|                       |           |      |         |      |         |      |    |    |    |    |          |          |    |    |    |          |                                                  | protein                                              | protein                                          |
| "CJ_10001427"         | CJE1543   | ceuD | Cj1354  | ceuD | CCO1460 | ceuD | 1  | 1  | 1  | 1  | 1        | 1        | 1  | 1  | 1  | 1        | enterochelin uptake ATP-                         | enterochelin ABC                                     | enterochelin ABC                                 |
|                       |           |      |         |      |         |      |    |    | 1  |    |          |          |    |    |    | 1        | binding protein                                  | transporter, ATP-binding                             | transporter, ATP-binding                         |
| "CJ_10001428"         | CJE1544   | -    | Cj1355  | ceuE | CCO1461 | ceuE | 0  | 0  | 1  | 1  | 1        | 1        | 1  | 1  | 1  | 1        | enterochelin uptake                              | pseudogene                                           | enterochelin ABC                                 |
| #GY 10001 120#        | CVEL 5.15 | +    | 0:1056  |      | 000116  |      |    |    |    | ٠. |          |          |    | ٠. |    | <b>.</b> | periplasmic binding protein                      |                                                      | transporter, periplasmic                         |
| "CJ_10001429"         | CJE1545   | -    | Cj1356c | -    | CCO1462 | -    | 1  | 1  | 1  | 1  | 1        | 1        | 1  | 1  | 1  | 1        | putative integral membrane                       | hypothetical protein                                 | conserved hypothetical                           |
| "CJ 10001430"         | CJE1546   | nrfA | Cj1357c |      | CCO1464 | _    | 1  | 1  | 1  | 1  | 1        | 1        | 1  | 1  | 1  | 1        | protein<br>putative periplasmic                  | cytochrome c552                                      | protein<br>probable periplasmic                  |
|                       |           |      | ,       |      |         |      | 1  | 1  | 1  | 1  | 1        | 1        | 1  | 1  | 1  | 1        | cytochrome C                                     |                                                      | cytochrome C Cj1357c                             |
| "CJ_10001431"         | CJE1547   | nrfH | Cj1358c | -    | CCO1465 | -    | 1  | 1  | 1  | 1  | 1        | 1        | 0  | 1  | 1  | 1        | putative periplasmic<br>cytochrome C             | cytochrome c-type protein<br>nrfH                    | probable periplasmic<br>cytochrome C Cj1358c     |
| "CJ_10001432"         | CJE1548   | ppk  | Cj1359  | ppk  | CCO1466 | ppk  | 1  | 1  | 1  | 1  | 1        | 1        | 1  | 1  | 1  | 1        | polyphosphate kinase                             | polyphosphate kinase                                 | polyphosphate kinase                             |
| "opCjV010000<br>0483" | CJE1549   | -    | -       | -    | -       | -    | 1  | -1 | 1  | -1 | 1        | 1        | 1  | 1  | -1 | -1       | -                                                | pseudogene                                           | -                                                |
| "opCjV010000<br>0871" | CJE1550   | -    | -       | -    | -       | -    | 1  | -1 | 1  | -1 | 1        | 1        | 1  | 1  | -1 | -1       | -                                                | hypothetical protein                                 | -                                                |
| "opCjV010000<br>0227" | CJE1551   | -    | -       | -    | -       | -    | 1  | -1 | 1  | -1 | 1        | 1        | -1 | 1  | -1 | -1       | -                                                | hypothetical protein                                 | -                                                |
| "opCjV010000<br>0140" | CJE1552   | -    | -       | -    | -       | -    | -1 | -1 | 1  | -1 | 1        | 1        | -1 | 1  | -1 | -1       | -                                                | hypothetical protein                                 | -                                                |
| "CJ_10000351"         | CJE1553   | -    | Cj1361c | -    | CCO1471 | -    | 0  | -1 | 1  | 1  | 1        | 1        | 1  | 1  | 1  | 1        | hypothetical protein                             | hypothetical protein                                 | conserved hypothetical protein                   |
| "CJ_10000353"         | CJE1554   | ruvB | Cj1362  | ruvB | CCO1472 | ruvB | 1  | 1  | 1  | 1  | 1        | 1        | 1  | 1  | 1  | 1        | holliday junction DNA                            | Holliday junction DNA                                | Holliday junction DNA                            |
|                       |           |      |         |      |         |      |    |    |    |    |          |          |    |    |    |          | helicase                                         | helicase RuvB                                        | helicase RuvB                                    |
| "CJ_10000355"         | CJE1555   | -    | Cj1363  | amaA | CCO1473 | -    | 1  | 0  | 1  | 1  | 1        | 1        | 1  | 1  | 1  | 1        | acid membrane antigen A                          | hypothetical protein                                 | acid membrane antigen A<br>Cj1363                |
| "CJ_10000357"         | CJE1556   | fumC | Cj1364c | fumC | CCO1474 | fumC | 1  | 0  | 1  | 0  | 1        | 1        | 1  | 1  | 1  | 1        | fumarate hydratase                               | fumarate hydratase, class II                         | fumarate hydratase, class II                     |
| "CJ_10000361"         | CJE1557   | -    | Cj1365c | -    | -       | -    | 1  | 1  | 1  | 1  | 1        | 1        | 1  | 1  | 1  | 1        | putative secreted serine                         | serine protease, subtilase                           | -                                                |
|                       |           |      |         |      |         |      |    |    |    |    |          |          |    |    |    |          | protease                                         | family                                               |                                                  |
| "CJ_10000363"         | CJE1558   | glmS | Cj1366c | glmS | CCO1475 | glmS | 0  | 1  | 1  | 1  | 1        | 1        | 1  | 1  | 1  | 1        | glucosaminefructose-6-<br>phosphate              | D-fructose-6-phosphate<br>amidotransferase           | glucosaminefructose-6-<br>phosphate              |
| "CJ 10000366"         | CJE1559   | -    | Cj1367c | _    | CCO1476 | 1 -  | 0  | -1 | 1  | 1  | 1        | 1        | 1  | 1  | 1  | 1        | possible                                         | GlnD family protein                                  | probable                                         |
| 20_10000000           | COLLEGE   |      | Sjisore |      | 0001170 |      |    | -  | -  |    |          |          |    |    |    |          | nucleotidyltransferase                           | Cinz raininy protein                                 | nucleotidyltransferase<br>Cj1367c                |
| "CJ_10000367"         | CJE1560   | -    | Cj1368  | -    | CCO1477 | -    | 1  | 1  | 1  | 1  | 1        | 1        | 1  | 1  | 1  | 1        | hypothetical protein                             | hypothetical protein                                 | conserved hypothetical protein TIGR00423         |
| "CJ_10000369"         | CJE1561   | -    | Cj1369  | -    | CCO1478 | -    | 0  | -1 | -1 | 1  | 1        | -1       | 1  | 1  | 0  | 1        | putative transmembrane                           | xanthine/uracil permease                             | probable transmembrane                           |
|                       |           |      |         |      |         |      |    |    |    |    |          |          |    |    |    |          | transport protein                                | family protein                                       | transport protein Cj1369                         |
| "CJ_10000378"         | CJE1562   | -    | Cj1370  | -    | CCO1479 | -    | 1  | 1  | 1  | 1  | 1        | 1        | 1  | 1  | 1  | 0        | putative nucleotide<br>phosphoribosyltransferase | nucleotide<br>phosphoribosyltransferase,<br>putative | probable nucleotide<br>phosphoribosyltransferase |
|                       | l         |      |         |      |         |      | 1  |    |    |    |          |          | 1  |    |    | 1        |                                                  | putative                                             |                                                  |

| "CJ_10000380"         | CJE1563 | -    | Cj1371  | -     | CCO1480 | -    | 1  | 1  |   | 1 | 1 | 1 | 1 | 1 | -1 | 1 | putative periplasmic protein (vacJ homolog)         | lipoprotein, VacJ family                         | probable periplasmic<br>protein (vacJ homolog)    |
|-----------------------|---------|------|---------|-------|---------|------|----|----|---|---|---|---|---|---|----|---|-----------------------------------------------------|--------------------------------------------------|---------------------------------------------------|
| "CJ_10000382"         | CJE1564 | -    | Cj1372  | -     | CCO1481 | -    | 0  | 1  | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1 | putative periplasmic protein                        | toluene tolerance protein,<br>putative           | probable periplasmic<br>protein Cj1372            |
| "CJ_10000384"         | CJE1565 | -    | Cj1373  | -     | CCO1482 | -    | 0  | 1  | 1 | 1 | 0 | 1 | 1 | 0 | 1  | 1 | putative integral membrane protein                  | hypothetical protein                             | conserved hypothetical integral membrane          |
| "CJ_10000386"         | CJE1566 | -    | Cj1374c | -     | CCO1483 | -    | 0  | 0  | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | hypothetical protein                                | non-canonical purine NTP<br>pyrophosphatase,     | Ham1 family                                       |
| "opCjjV010000<br>122" | CJE1567 | -    | Cj1375  | -     | -       | -    | 1  | 1  | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1 | putative efflux protein                             | multidrug resistance efflux transporter,         | -                                                 |
| "CJ_10000392"         | CJE1568 | -    | Cj1377c | -     | CCO1490 | -    | 1  | 1  | 1 | 1 | 0 | 1 | 1 | 1 | 0  | 1 | putative ferredoxin                                 | iron-sulfur cluster-binding domain protein       | iron-sulfur cluster-binding protein, putative     |
| "CJ_10000394"         | CJE1569 | selA | Cj1378  | selA  | CCO1489 | selA | 0  | 1  | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1 | L-seryl-tRNA(SeC)<br>selenium transferase           | selenocysteine synthase                          | L-seryl-tRNA selenium transferase                 |
| "CJ_10000396"         | CJE1570 | selB | Cj1379  | selB  | CCO1488 | selB | 0  | 1  | 1 | 1 | 0 | 1 | 1 | 1 | 1  | 1 | putative selenocysteine-<br>specific elongation     | selenocysteine-specific<br>elongation factor     | selenocysteine-specific<br>translation elongation |
| "CJ_10000404"         | CJE1571 | -    | Cj1380  | -     | CCO1487 | dsbC | 1  | 0  | 0 | 1 | 0 | 1 | 1 | 1 | 1  | 1 | putative periplasmic protein                        | hypothetical protein                             | probable periplasmic<br>protein Cj1380            |
| "CJ_10000406"         | CJE1572 | -    | Cj1381  | -     | CCO1486 | -    | 0  | 1  | 0 | 1 | 1 | 1 | 1 | 1 | 1  | 1 | putative lipoprotein                                | lipoprotein, putative                            | probable lipoprotein Cj1381                       |
| "CJ_10000408"         | CJE1573 | fldA | Cj1382c | fldA  | CCO1492 | -    | 0  | 1  | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1 | flavodoxin                                          | flavodoxin                                       | flavodoxin                                        |
| "CJ_10000411"         | CJE1574 | -    | Cj1383c | -     | CCO1493 | -    | 1  | 1  | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1 | hypothetical protein                                | hypothetical protein                             | conserved hypothetical protein                    |
| "CJ_10000413"         | CJE1575 | -    | Cj1384c | -     | CCO1494 | -    | 1  | 0  | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1 | hypothetical protein                                | hypothetical protein                             | conserved hypothetical protein                    |
| "CJ_10000415"         | CJE1576 | katA | Cj1385  | katA  | CCO1495 | -    | 0  | 1  | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1 | catalase                                            | catalase                                         | catalase                                          |
| "CJ_10000418"         | CJE1577 | -    | Cj1386  | -     | CCO1496 | -    | 0  | 0  | 0 | 1 | 1 | 1 | 1 | 1 | 1  | 1 | ankyrin-repeat containing protein                   | ankyrin repeat protein                           | ankyrin domain protein                            |
| "CJ_10000420"         | CJE1578 | -    | Cj1387c | -     | CCO1497 | -    | 1  | 1  | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1 | helix-turn-helix containing<br>protein              | hypothetical protein                             | conserved hypothetical protein                    |
| "CJ_10000423"         | CJE1579 | -    | Cj1388  | -     | CCO1499 | -    | 1  | 1  | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1 | hypothetical protein                                | endoribonuclease L-PSP, putative                 | endoribonuclease L-PSP, putative                  |
| "CJ_10000425"         | CJE1580 | -    | Cj1389  | -     | CCO1500 | -    | 0  | 1  | 1 | 1 | 0 | 1 | 1 | 1 | 1  | 1 | pseudogene                                          | pseudogene                                       | C4-dicarboxylate anaerobic carrier, putative      |
| "CJ_10000435"         | CJE1581 | metC | Cj1393  | -     | CCO1502 | metC | 1  | 1  | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1 | pseudogene                                          | cystathionine beta-lyase                         | rhodanese domain<br>protein/cystathionine         |
| "CJ_10000438"         | CJE1582 | -    | Cj1394  | -     | CCO1503 | purB | 0  | 1  | 0 | 1 | 1 | 1 | 1 | 0 | -1 | 1 | putative fumarate lyase                             | adenylosuccinate lyase                           | adenylosuccinate lyase                            |
| "CJ_10000440"         | CJE1583 | -    | Cj1395  | -     | CCO1504 | -    | 1  | 1  | 0 | 1 | 0 | 1 | 1 | 1 | 1  | 1 | pseudogene                                          | MmgE/PrpD family protein                         | MmgE/PrpD family protein, putative                |
| "CJ_10000442"         | CJE1584 | -    | Cj1397  | -     | CCO1505 | -    | 1  | 1  | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1 | hypothetical protein                                | feoA family protein                              | ferrous iron transport<br>protein A, putative     |
| "CJ_10000444"         | CJE1585 | -    | Cj1398  | feoB  | CCO1506 | feoB | 1  | 1  | 1 | 1 | 0 | 1 | 1 | 0 | 1  | 1 | ferrous iron transport protein                      | pseudogene                                       | ferrous iron transport protein B                  |
| "CJ_10000446"         | CJE1586 | -    | Сј1399с | hydA2 | CCO1507 | -    | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1 | putative Ni/Fe-hydrogenase<br>small subunit         | hydrogenase,<br>(NiFe)/(NiFeSe) small<br>subunit | quinone-reactive Ni/Fe<br>hydrogenase, small      |
| "CJ_10000449"         | CJE1587 | fabI | Cj1400c | fabI  | CCO1508 | fabI | 1  | 1  | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1 | putative enoyl-[acyl-carrier-<br>protein] reductase | enoyl-(acyl carrier protein)<br>reductase        | enoyl-(acyl-carrier-protein)<br>reductase         |
| "CJ_10000452"         | CJE1588 | tpiA | Cj1401c | tpiA  | CCO1509 | tpiA | 1  | 1  | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | putative triosephosphate<br>isomerase               | triosephosphate isomerase                        | triosephosphate isomerase                         |
| "CJ_10000454"         | CJE1589 | pgk  | Cj1402c | pgk   | CCO1510 | pgk  | 1  | 1  | 1 | 1 | 1 | 1 | 1 | 1 | 0  | 1 | phosphoglycerate kinase                             | phosphoglycerate kinase                          | phosphoglycerate kinase                           |
| "CJ_10000477"         | CJE1590 | gapA | Cj1403c | gapA  | CCO1511 | gap  | 1  | 1  | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1 | glyceraldehyde 3-phosphate<br>dehydrogenase         | glyceraldehyde 3-phosphate<br>dehydrogenase A    | glyceraldehyde-3-phosphate<br>dehydrogenase, type |
| "CJ_10000478"         | CJE1591 | nadD | Cj1404  | -     | CCO1512 | nadD | 1  | 0  | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1 | hypothetical protein                                | nicotinate (nicotinamide)<br>nucleotide          | nicotinate (nicotinamide)<br>nucleotide           |
| "CJ 10000479"         | CJE1592 | 1 -  | Ci1405  | 1 -   | CCO1513 | 1.   | 1  | 1  | 0 | 1 | 1 | 1 | 1 | 1 | 1  | 1 | hypothetical protein                                | hypothetical protein                             | iojap-related protein                             |

| "CJ 10000480"         | CJE1593 | -    | Ci1406c  | _     | -       | -    | 0  | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative periplasmic protein                 | hypothetical protein                             | -                                              |
|-----------------------|---------|------|----------|-------|---------|------|----|----|----|----|----|----|----|----|----|----|----------------------------------------------|--------------------------------------------------|------------------------------------------------|
| "CJ 10000481"         | CJE1594 | algC | Cj1407c  | _     | CCO1515 | -    | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative phospho-sugar                       | phosphomannomutase/phos                          | phosphomannomutase                             |
|                       |         |      | 2,2      |       |         |      | -  |    | _  | _  | _  | _  |    |    |    | -  | mutase                                       | phoglucomutase                                   | (algC){Pseudomonas                             |
| "CJ_10000482"         | CJE1595 | fliL | Cj1408   | fliL  | CCO1516 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | possible flagellar protein                   | flagellar basal body-                            | probable flagellar protein                     |
|                       |         |      |          |       |         |      |    |    |    |    |    |    |    |    |    |    |                                              | associated protein                               | Cj1408                                         |
| "CJ_10000483"         | CJE1596 | acpS | Cj1409   | acpS  | CCO1517 | acpS | 0  | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative holo-[acyl-carrier                  | 4'-phosphopantetheinyl                           | holo-(acyl-carrier-protein)                    |
|                       |         |      |          |       |         |      |    |    |    |    |    |    |    |    |    |    | protein] synthase                            | transferase                                      | synthase                                       |
| "CJ_10000484"         | CJE1597 | -    | Cj1410c  | -     | CCO1518 | -    | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative membrane protein                    | hypothetical protein                             | probable membrane protein<br>Cj1410c           |
| "CJ_10000485"         | CJE1598 | -    | Cj1411c  | -     | CCO1519 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative cytochrome P450                     | cytochrome P450 family protein                   | probable cytochrome P450<br>Cj1411c            |
| "CJ_10000486"         | CJE1599 | -    | Cj1412c  | -     | CCO1520 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative integral membrane protein           | hypothetical protein                             | probable integral membrane<br>protein Cj1412c  |
| "CJ_10000497"         | CJE1600 | kpsS | Cj1413c  | -     | CCO1521 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | possible polysaccharide modification protein | capsule polysaccharide export protein KpsS       | capsule polysaccharide<br>biosynthesis protein |
| "CJ 10000498"         | CJE1601 | kpsC | Cj1414c  | -     | CCO1522 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | possible polysaccharide                      | capsule polysaccharide                           | capsule polysaccharide                         |
|                       |         |      | "        |       |         |      |    |    |    |    |    |    |    |    |    |    | modification protein                         | export protein KpsC                              | biosynthesis protein                           |
| "opCjV010000          | CJE1602 | -    | -        | -     | -       | -    | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | -1 | -                                            | capsular polysaccharide                          | -                                              |
| 0467"                 |         |      |          |       |         |      |    |    |    |    |    |    |    |    |    |    |                                              | biosynthesis protein,                            |                                                |
| "opCjV010000          | CJE1603 | -    | -        | -     | -       | -    |    | -1 | -1 |    | -1 | -1 | -1 | 1  |    |    | -                                            | capsular polysaccharide                          | -                                              |
| 0584"                 |         |      |          |       |         |      |    |    |    |    |    |    |    |    |    | -  |                                              | biosynthesis protein,                            |                                                |
| "opCjV010000          | CJE1604 | -    | -        | -     | -       | -    |    |    | -1 |    |    | -1 | -1 | 1  | 1  | -1 | -                                            | capsular polysaccharide                          | -                                              |
| 0374" "opCjV010000    | CJE1605 |      | +        |       |         |      |    | -1 | -1 |    |    | 1  |    | +  | +  | +  |                                              | biosynthesis protein,<br>capsular polysaccharide |                                                |
| 0251"                 | CJE1003 | 1 -  | 1        | -     | -       | -    |    | -1 | -1 |    |    | 1  |    |    |    |    | -                                            | biosynthesis protein,                            |                                                |
| "opCjV010000          | CJE1606 | -    | -        | -     | _       | -    | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1  | -1 | -1 | _                                            | haloacid dehalogenase-like                       | _                                              |
| 0333"                 | C#21000 |      |          |       |         |      | 1  | 1  | 1  | 1  | -  | 1  | -  | 1  | 1  | 1  |                                              | hydrolase                                        |                                                |
| "opCjV010000          | CJE1607 | -    | -        | -     | -       | -    | -1 | -1 | -1 | -1 |    | -1 | -1 | 1  | 0  | -1 | -                                            | hypothetical protein                             | -                                              |
| 0661"                 |         |      |          |       |         |      |    |    |    |    |    |    |    |    |    |    |                                              |                                                  |                                                |
| "CJ_10000523"         | CJE1608 | -    | Cj1423c  | -     | -       | -    | 1  | 1  | 1  | 1  | -1 | 1  | -1 | -1 | 1  | 1  | putative sugar-phosphate                     | capsular biosynthesis                            | -                                              |
|                       |         |      |          |       |         |      |    |    |    |    |    |    |    |    |    |    | nucleotidyltransferase                       | nucleotidyltransferase,                          |                                                |
| "CJ_10000525"         | CJE1609 | -    | Cj1424c  | gmhA2 | -       | -    | 1  | 1  | 0  | 1  | -1 | 1  | -1 | 1  | 1  | 1  | putative phosphoheptose                      | phosphoheptose isomerase                         | -                                              |
| #GY 10000507#         | CIE1610 |      | G:1.425  |       |         |      | -  | 0  | 1  | 1  |    | 1  | 1  | 1  | 1  | 1  | isomerase                                    | 1 1: 4 :                                         |                                                |
| "CJ_10000527"         | CJE1610 | -    | Cj1425c  | -     | -       | -    | 0  | 0  | 1  | 1  |    | 1  | 1  | -1 | 1  | 1  | putative sugar kinase                        | capsular biosynthesis sugar kinase, putative     | -                                              |
| "opCjV010000          | CJE1611 | wcbK | +        |       |         |      | 0  | 0  | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 |                                              | GDP-mannose 4,6-                                 |                                                |
| 1098"                 | CJETOTT | WCOK | 1        | 1     | 1       | 1    | U  |    | 1  | -1 | 1  | 1  | -1 | 1  | -1 | -1 | -                                            | dehydratase                                      | 1                                              |
| "opCjV010000          | CJE1612 | fcl  | Cj1428c  | fcl   | -       | -    | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1  | 1  | -1 | -                                            | GDP-L-fucose synthetase                          | -                                              |
| 0619"                 |         | 1    | 3,5 .255 |       |         |      |    |    | 1  |    |    |    |    |    |    | 1  |                                              |                                                  |                                                |
| "opCjV010000          | CJE1613 | -    | -        | -     | -       | -    |    | -1 | -1 | -1 | 1  | -1 |    | 1  | 1  | -1 | -                                            | capsular polysaccharide                          | -                                              |
| 0987"                 |         |      |          |       |         |      |    |    |    |    |    |    |    |    |    |    |                                              | biosynthesis protein,                            |                                                |
| "opCjV010000          | CJE1614 | -    | -        | -     | -       | -    |    | -1 | -1 | -1 | 1  | -1 | -1 | 1  | 0  | -1 | -                                            | hypothetical protein                             | -                                              |
| 0978"                 | CIE1515 |      |          |       |         |      |    |    |    |    |    |    |    | -  |    | +  |                                              | 1 1 1 1                                          |                                                |
| "opCjV010000<br>1043" | CJE1615 | -    | -        | -     | -       | -    | T  |    | -1 | -1 |    | -1 | -1 | 1  | 0  | -1 | -                                            | capsular polysaccharide                          | -                                              |
| "opCjV010000          | CJE1616 |      |          |       |         |      | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | -1 |                                              | biosynthesis<br>capsular polysaccharide          |                                                |
| 0633"                 | CJE1010 |      |          |       |         |      | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | -1 |                                              | biosynthesis protein,                            |                                                |
| "CJ_10000581"         | CJE1617 | kpsF | Cj1443c  | kpsF  | CCO1550 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | KpsF protein                                 | arabinose-5-phosphate                            | KpsF protein Cj1443c                           |
| 21_1000001            |         |      | 2,11.00  |       | 2221000 |      |    |    |    |    |    |    |    |    |    |    | 1 1                                          | isomerase                                        | rat prattin Oji i iot                          |
| "CJ_10000583"         | CJE1618 | kpsD | Cj1444c  | kpsD  | CCO1551 | -    | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | putative capsule                             | capsular polysaccharide                          | polysaccharide biosynthesis                    |
|                       |         |      |          |       |         |      |    |    |    |    |    |    |    |    |    |    | polysaccharide export                        | ABC transporter,                                 | protein, putative                              |
|                       |         |      |          |       |         |      |    |    |    |    |    |    |    |    |    |    | system                                       |                                                  |                                                |
| "CJ_10000585"         | CJE1619 | kpsE | Cj1445c  | kpsE  | CCO1552 | -    | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | putative capsule                             | capsular polysaccharide                          | probable capsule                               |
|                       |         |      |          |       |         |      |    |    |    |    |    |    |    |    |    |    | polysaccharide export                        | ABC transporter                                  | polysaccharide export                          |
|                       |         |      |          |       |         |      |    |    |    |    |    |    |    |    |    |    | system                                       |                                                  | system                                         |

| "opCcV010000          | CJE1620 | kpsT | Cj1447c          | kpsT | CCO1553 | -     | 1  | 0  | 1  | 1 | 1  | 1  | 1 | 1  | 0  | 1  | putative capsule                               | capsular polysaccharide                            | lipopolysaccharide ABC                             |
|-----------------------|---------|------|------------------|------|---------|-------|----|----|----|---|----|----|---|----|----|----|------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| 0731"                 |         | 1    | , and the second |      |         |       |    |    |    |   |    |    |   |    |    |    | polysaccharide export                          | ABC transporter,                                   | export system,                                     |
| "opCcV010000<br>1067" | CJE1621 | kpsM | Cj1448c          | kpsM | CCO1554 | abcT3 | -1 | -1 | 0  | 1 | 1  | -1 | 1 | 1  | -1 | 1  | -                                              | capsular polysaccharide ABC transporter,           | KpsM                                               |
| "CJ_10000587"         | CJE1622 | -    | Сј1449с          | -    | CCO1555 | -     | 1  | 1  | 1  | 1 | 1  | 1  | 1 | 1  | 1  | 1  | hypothetical protein                           | hypothetical protein                               | conserved hypothetical protein                     |
| "CJ_10000588"         | CJE1623 | -    | Cj1450           | -    | CCO1556 | -     | 1  | 0  | 1  | 1 | 1  | 1  | 1 | 1  | 1  | -1 | putative ATP/GTP-binding protein               | hypothetical protein                               | conserved hypothetical protein                     |
| "CJ_10000589"         | CJE1624 | -    | Cj1451           | dut  | CCO1557 | -     | 1  | 1  | 0  | 1 | 1  | 1  | 1 | 1  | 1  | 1  | putative dUTPase                               | deoxyuridine triphosphatase<br>domain protein      | probable dUTP<br>diphosphatase Cj1451              |
| "CJ_10000590"         | CJE1625 | -    | Cj1452           | -    | CCO1558 | -     | 0  | 1  | 0  | 1 | 1  | 1  | 1 | 1  | 1  | 1  | putative integral membrane protein             | hypothetical protein                               | probable integral membrane<br>protein Cj1452       |
| "CJ_10000591"         | CJE1626 | -    | Cj1453c          | -    | CCO1559 | -     | 1  | 0  | 1  | 1 | 0  | 1  | 1 | 0  | 0  | 1  | hypothetical protein                           | PP-loop family protein                             | conserved hypothetical protein                     |
| "CJ_10000607"         | CJE1627 | yliG | Cj1454c          | -    | CCO1560 | -     | 1  | 1  | 1  | 1 | 1  | 1  | 1 | 1  | 1  | 1  | hypothetical protein                           | MiaB-like tRNA modifying<br>enzyme YliG, TIGR01125 | MiaB-like tRNA modifying<br>enzyme YliG, TIGR01125 |
| "CJ_10000609"         | CJE1628 | prfB | Cj1455           | prfB | CCO1561 | prfB  | 1  | 1  | 1  | 1 | 1  | 1  | 1 | 1  | 1  | 1  | peptide chain release factor 2                 | peptide chain release factor 2                     | peptide chain release factor 2                     |
| "opCcV010000<br>0633" | CJE1629 | -    | Cj1456c          | -    | CCO1562 | -     | 1  | 1  | 0  | 0 | -1 | 1  | 1 | 1  | 1  | 1  | putative periplasmic protein                   | hypothetical protein                               | hypothetical protein                               |
| "opCcV010000<br>0250" | CJE1630 | -    | -                | -    | CCO1563 | -     | 1  | 0  | 0  | 1 | 1  | 0  | 1 | 0  | 1  | 1  | -                                              | hypothetical protein                               | lipoprotein, putative                              |
| "CJ_10000612"         | CJE1631 | -    | Cj1457c          | -    | CCO1564 | -     | 1  | 0  | 1  | 1 | 1  | 1  | 1 | 1  | 0  | 1  | hypothetical protein                           | tRNA pseudouridine<br>synthase D                   | tRNA pseudouridine<br>synthase D, putative         |
| "CJ_10000613"         | CJE1632 | -    | Cj1458c          | thiL | CCO1565 | -     | 1  | 0  | 1  | 1 | 1  | 1  | 1 | 1  | 0  | 1  | putative thiamin-<br>monophosphate kinase      | thiamine monophosphate kinase                      | thiamin-monophosphate<br>kinase, putative          |
| "CJ_10000614"         | CJE1633 | -    | Cj1459           | -    | CCO1566 | -     | 1  | 1  | 1  | 1 | 1  | 1  | 1 | 1  | 1  | 1  | hypothetical protein                           | hypothetical protein                               | conserved hypothetical protein                     |
| "CJ_10000615"         | CJE1634 | -    | Cj1460           | -    | CCO1567 | -     | 1  | 0  | 1  | 1 | 0  | 1  | 0 | 1  | 1  | 1  | hypothetical protein                           | hypothetical protein                               | conserved hypothetical protein                     |
| "CJ_10000616"         | CJE1635 | -    | Cj1461           | -    | CCO1568 | -     | 1  | 1  | 1  | 1 | 0  | 1  | 1 | 1  | 1  | 1  | possible DNA methylase                         | site-specific DNA<br>methyltransferase, putative   | probable DNA methylase<br>Cj1461                   |
| "CJ_10000617"         | CJE1636 | flgI | Cj1462           | flgI | CCO1569 | flgI  | 1  | 1  | 1  | 1 | 1  | 1  | 1 | 1  | 1  | 1  | flagellar P-ring protein                       | flagellar P-ring protein precursor                 | flagellar P-ring protein FlgI                      |
| "CJ_10000618"         | CJE1637 | -    | Cj1463           | -    | CCO1570 | -     | 1  | 1  | 0  | 1 | 1  | 1  | 1 | 1  | 1  | 1  | hypothetical protein                           | hypothetical protein                               | conserved hypothetical protein                     |
| "CJ_10001312"         | CJE1638 | -    | Cj1464           | -    | CCO1571 | -     | 1  | 0  | 1  | 1 | 1  | 1  | 1 | 1  | 1  | 1  | hypothetical protein                           | hypothetical protein                               | conserved hypothetical protein                     |
| "CJ_10001314"         | CJE1639 | -    | Cj1465           | -    | CCO1572 | -     | 1  | 1  | 1  | 1 | 0  | 1  | 1 | -1 | 1  | 1  | hypothetical protein                           | hypothetical protein                               | conserved hypothetical protein                     |
| "CJ_10001317"         | CJE1640 | -    | Cj1466           | flgK | CCO1573 | flgK  | 1  | 1  | 1  | 1 | 1  | 1  | 1 | 1  | 1  | 1  | putative flagellar hook-<br>associated protein | flagellar hook-associated protein                  | flagellar hook-associated<br>protein 1 (HAP1)      |
| "CJ_10001320"         | CJE1641 | -    | Cj1467           | -    | CCO1574 | -     | 0  | 1  | 0  | 1 | 0  | 1  | 1 | 1  | 1  | 1  | hypothetical protein                           | hypothetical protein                               | conserved hypothetical protein                     |
| "CJ_10001325"         | CJE1642 | -    | Cj1468           | -    | CCO1575 | -     | 1  | 1  | -1 | 1 | 0  | 1  | 1 | 1  | 1  | 1  | putative integral membrane protein             | hypothetical protein                               | membrane protein, putative                         |
| "CJ_10001328"         | CJE1643 | ctsF | Cj1470c          | -    | CCO1576 | ctsF  | 1  | 1  | 1  | 1 | 1  | 1  | 1 | 1  | 1  | 1  | pseudogene                                     | general secretory pathway protein F                | general secretory pathway protein F                |
| "CJ_10001331"         | CJE1644 | ctsE | Cj1471c          | -    | CCO1577 | ctsE  | 0  | 1  | 1  | 1 | -1 | 1  | 1 | 1  | 1  | 1  | putative type II protein<br>secretion system E | general secretory pathway<br>protein E             | general secretory pathway<br>protein E             |
| "CJ_10001335"         | CJE1645 | ctsX | Cj1472c          | -    | CCO1578 | ctsX  | 1  | 1  | 1  | 1 | 1  | 1  | 1 | 1  | 1  | 1  | putative membrane protein                      | transformation system protein                      | transformation system protein                      |
| "CJ_10001338"         | CJE1646 | ctsP | Cj1473c          | -    | CCO1579 | ctsP  | 1  | 1  | 1  | 1 | 1  | 1  | 1 | 1  | 1  | 1  | putative ATP/GTP-binding protein               | transformation system protein                      | transformation system protein                      |
| "CJ_10001341"         | CJE1647 | ctsD | Cj1474c          | -    | CCO1580 | ctsD  | 1  | 1  | 1  | 1 | 1  | 1  | 1 | 1  | 1  | 1  | putative type II protein                       | general secretory pathway                          | general secretory pathway                          |

|                       |          |          |             |         | 1       |          |   |    |          |          |    | 1        |           |          |          |           | secretion system D                                   | protein D                    | protein D                                       |
|-----------------------|----------|----------|-------------|---------|---------|----------|---|----|----------|----------|----|----------|-----------|----------|----------|-----------|------------------------------------------------------|------------------------------|-------------------------------------------------|
| "CJ 10001352"         | CJE1648  | ctsR     | Cj1475c     | +       | CCO1581 | ctsR     | 1 | 1  | 1        | 1        | 1  | 1        | 1         | 1        | 1        | 1         | hypothetical protein                                 | transformation system        | transformation system                           |
| C3_10001332           | CJL1040  | Ctsix    | CJ1475C     |         | CC01361 | CtSIC    | 1 | 1  | 1        | 1        | 1  | 1        | 1         | 1        | 1        | 1         | nypothetical protein                                 | protein                      | protein                                         |
| "CJ_10001354"         | CJE1649  | -        | Cj1476c     | -       | CCO1582 | -        | 1 | -1 | 1        | 1        | 1  | 1        | -1        | 1        | -1       | -1        | pyruvate-flavodoxin                                  | pyruvate                     | pyruvate                                        |
|                       |          |          |             |         |         |          |   |    |          |          |    |          |           |          |          |           | oxidoreductase                                       | ferredoxin/flavodoxin        | ferredoxin/flavodoxin                           |
|                       |          |          |             |         |         |          |   |    |          |          |    |          |           |          |          |           |                                                      | oxidoreductase               | oxidoreductase                                  |
| "CJ_10001356"         | CJE1650  | -        | Cj1477c     | -       | CCO1583 | -        | 1 | 1  | 1        | 1        | 1  | 1        | 1         | 1        | 1        | 1         | putative hydrolase                                   | HAD-superfamily              | phosphoglycolate                                |
|                       |          |          |             |         |         |          |   |    |          |          |    |          |           |          |          |           |                                                      | hydrolase, subfamily IA,     | phosphatase                                     |
| #GY 10001250#         | OFFI (F) | 150      | G:1.450     | 150     | 0001501 | 150      |   |    |          |          |    |          |           | <b>.</b> | <b>.</b> | <b>.</b>  |                                                      | variant                      | 61                                              |
| "CJ_10001359"         | CJE1651  | cadF     | Cj1478c     | cadF    | CCO1584 | cadF     | 1 | 1  | 1        | 1        | 1  | 1        | 1         | 1        | 1        | 1         | outer membrane                                       | fibronectin-binding protein  | fibronectin-binding protein                     |
| "amCaV010000          | CJE1652  | oT       | Cj1479c     | ann o T | CCO1585 | ma o T   | 1 | 1  | 1        | 1        | 1  | 1        | 1         | 1        | 1        | 1         | fibronectin-binding protein 30S ribosomal protein S9 | 30S ribosomal protein S9     | ribosomal protein S9                            |
| "opCcV010000<br>0256" | CJE1032  | rpsI     | CJ14/90     | rpsI    | CC01383 | rpsI     | 1 | 1  | 1        | 1        | 1  | 1        | 1         | 1        | 1        | 1         | 303 fibosofiai protein 39                            | 30S fibosoniai protein S9    | ribosomai protein 39                            |
| "CJ 10001362"         | CJE1653  | rplM     | Cj1480c     | rplM    | CCO1586 | rplM     | 1 | 1  | 1        | 1        | 1  | 1        | 1         | 1        | 1        | 1         | 50S ribosomal protein L13                            | 50S ribosomal protein L13    | ribosomal protein L13                           |
| "CJ 10001365"         | CJE1654  | -        | Cj1481c     | -       | CCO1589 | -        | 1 | 1  | 1        | 1        | 1  | 1        | 1         | 1        | 1        | 1         | putative helicase                                    | ATP-dependent DNA            | helicase, putative                              |
| C0_10001505           | CVLIGO.  |          | CJ1.010     |         | 0001000 |          | 1 | -  | 1        | 1        | •  | 1        | -         | 1        | 1        | 1         | patient to homouse                                   | helicase, UvrD/REP family    | noneuse, patative                               |
| "CJ 10001367"         | CJE1655  | -        | Ci1482c     | -       | CCO1590 | -        | 1 | 1  | 1        | 1        | 1  | 1        | 1         | 1        | 1        | 1         | hypothetical protein                                 | hypothetical protein         | conserved hypothetical                          |
|                       |          |          |             |         |         |          |   |    |          |          |    |          |           |          |          |           |                                                      |                              | protein                                         |
| "CJ_10001370"         | CJE1656  | -        | Cj1483c     | -       | CCO1591 | -        | 1 | 0  | 1        | 1        | 1  | 1        | 1         | 1        | 1        | 1         | putative lipoprotein                                 | lipoprotein, putative        | probable lipoprotein                            |
|                       |          |          |             |         |         |          |   |    |          |          |    |          |           |          |          |           |                                                      |                              | Cj1483c                                         |
| "CJ_10001372"         | CJE1657  | -        | Cj1484c     | -       | CCO1592 | -        | 1 | 1  | 1        | 1        | 1  | 1        | 1         | 1        | 1        | 1         | putative membrane protein                            | hypothetical protein         | probable membrane protein                       |
|                       |          |          |             |         |         |          |   |    |          |          |    |          |           |          |          |           |                                                      |                              | Cj1484c                                         |
| "opCcV010000          | CJE1658  | -        | Cj1485c     | -       | CCO1593 | -        | 0 | 1  | 1        | 0        | 1  | 0        | 1         | 1        | 0        | 1         | putative periplasmic protein                         | hypothetical protein         | probable periplasmic                            |
| 0330"                 | OTEL 650 |          | G:140.6     | -       | 0001501 | -        |   |    | <b>.</b> | <b>.</b> |    |          |           | <u> </u> | <u> </u> |           |                                                      |                              | protein Cj1485c -related                        |
| "CJ_10001378"         | CJE1659  | -        | Cj1486c     | -       | CCO1594 | -        | 1 | 1  | 1        | 1        | 1  | 1        | 1         | 1        | 1        | 1         | putative periplasmic protein                         | hypothetical protein         | probable periplasmic                            |
| "CT 10001201"         | CJE1660  | ccoP     | C:1407-     | D       | CCO1595 | D        | 1 | 1  | 1        | 1        | 1  | 1        | 1         | 1        | 1        | 1         | th town and the control                              | cytochrome c oxidase,        | protein Cj1486c -related cytochrome c oxidase,  |
| "CJ_10001381"         | CJE1000  | CCOP     | Cj1487c     | ccoP    | CC01595 | ccoP     | 1 | 1  | 1        | 1        | 1  | 1        | 1         | 1        | 1        | 1         | cb-type cytochrome C<br>oxidase subunit III          | cbb3-type, subunit III       | cytochrome c oxidase,<br>cbb3-type, subunit III |
| "CJ 10001383"         | CJE1661  | ccoO     | Cj1488c     | ccoO    | CCO1596 | +        | 1 | 1  | 1        | 1        | 1  | 1        | 1         | 1        | 1        | 1         | cb-type cytochrome C                                 | cytochrome c oxidase,        | conserved hypothetical                          |
| C3_10001303           | CJETOOT  | ccoQ     | CJ1400C     | ccoQ    | 6601370 |          | 1 |    | 1        | 1        | •  | 1        | 1         | 1 -      | 1        | 1 *       | oxidase subunit IV                                   | cbb3-type, subunit IV        | protein                                         |
| "CJ 10001385"         | CJE1662  | ccoO     | Ci1489c     | ccoO    | CCO1597 | ccoO     | 1 | 1  | 1        | 1        | 1  | 1        | 1         | 1        | 1        | 1         | cb-type cytochrome C                                 | cytochrome c oxidase,        | cytochrome c oxidase,                           |
|                       |          |          |             |         |         |          |   |    |          |          |    |          |           |          |          |           | oxidase subunit II                                   | cbb3-type, subunit II        | cbb3-type, subunit II                           |
| "CJ_10001387"         | CJE1663  | ccoN     | Cj1490c     | ccoN    | CCO1598 | ccoN     | 1 | 1  | 0        | 0        | -1 | 0        | 1         | 0        | 1        | 1         | cb-type cytochrome C                                 | cytochrome c oxidase,        | cytochrome c oxidase,                           |
|                       |          |          |             |         |         |          |   |    |          |          |    |          |           |          |          |           | oxidase subunit I                                    | cbb3-type, subunit I         | cbb3-type, subunit I                            |
| "CJ_10001389"         | CJE1664  | -        | Cj1491c     | -       | CCO1599 | -        | 1 | 1  | 1        | 1        | 1  | 1        | 0         | 1        | 1        | 1         | putative two-component                               | DNA-binding response         | transcriptional regulatory                      |
|                       |          |          |             |         |         |          |   |    |          |          |    |          |           |          |          |           | regulator                                            | regulator                    | protein KdpE,                                   |
| "CJ_10001392"         | CJE1665  | -        | Cj1492c     | -       | CCO1600 | -        | 1 | 1  | 1        | 1        | -1 | 1        | 1         | 1        | 1        | 1         | putative two-component                               | sensory box sensor histidine | signal-transducing histidine                    |
| #GY 10001205#         | OFFI CCC |          | G:1 102     |         | 0001501 |          |   |    |          |          |    |          |           | <b>.</b> | <b>.</b> | <b>.</b>  | sensor                                               | kinase, putative             | kinase, putative                                |
| "CJ_10001395"         | CJE1666  | -        | Cj1493c     | -       | CCO1601 | -        | 1 | 1  | 1        | 1        | 1  | 1        | 1         | 1        | 1        | 1         | putative integral membrane<br>protein                | hypothetical protein         | probable integral membrane<br>protein Cj1493c   |
| "CJ 10001397"         | CJE1667  | carA     | Cj1494c     | carA    | CCO1602 | carA     | 0 | 1  | 1        | 1        |    | 1        | -1        | 1        | 1        | 1         | carbamoyl-phosphate                                  | carbamoyl-phosphate          | carbamoyl-phosphate                             |
| CJ_10001397           | CJE1007  | CarA     | CJ1494C     | caiA    | CCO1002 | CaiA     | U | 1  | 1        | 1        |    | 1        | -1        |          | 1        | 1         | synthase small chain                                 | synthase small subunit       | synthase, small subunit                         |
| "CJ_10001406"         | CJE1668  | -        | Cj1495c     | -       | CCO1603 | <u> </u> | 1 | 1  | 1        | 1        | 1  | 1        | 1         | 1        | 1        | 1         | hypothetical protein                                 | hypothetical protein         | conserved hypothetical                          |
|                       |          |          | 5,2 1,5 2,5 |         |         |          |   |    |          |          | _  | 1        | _         | -        | -        | -         |                                                      |                              | protein                                         |
| "CJ_10001409"         | CJE1669  | -        | Cj1496c     | -       | CCO1604 | -        | 1 | 1  | 1        | 1        | 1  | 1        | 1         | 1        | 1        | 1         | putative periplasmic protein                         | hypothetical protein         | probable periplasmic                            |
|                       |          |          |             |         |         |          |   |    |          |          |    |          |           |          |          |           |                                                      |                              | protein Cj1496c                                 |
| "CJ_10001411"         | CJE1670  | -        | Cj1497c     | -       | CCO1605 | -        | 1 | 1  | 1        | 1        | 1  | 1        | 1         | 1        | 1        | 1         | hypothetical protein                                 | hypothetical protein         | conserved hypothetical                          |
|                       |          |          |             |         |         |          |   |    |          |          |    |          |           |          |          |           |                                                      |                              | protein                                         |
| "CJ_10001413"         | CJE1671  | purA     | Cj1498c     | purA    | CCO1606 | purA     | 1 | 1  | 1        | 1        | 1  | 1        | 1         | 1        | 1        | 1         | adenylosuccinate synthetase                          | adenylosuccinate synthetase  | adenylosuccinate synthetase                     |
| "opCcV010000          | CJE1672  | -        | -           | -       | CCO1608 | -        | 1 | 1  | 1        | 1        | 1  | 1        | 1         | -1       | 1        | 0         | -                                                    | hypothetical protein         | probable integral membrane                      |
| 0651"                 | CYP1 686 |          | G:1500      |         | 0001505 |          | + |    | <u> </u> | <u> </u> |    | <u> </u> | <b>L.</b> |          | <u> </u> | <b>L.</b> |                                                      |                              | protein Cj1500                                  |
| "CJ_10001415"         | CJE1673  | -        | Cj1500      | -       | CCO1609 | -        | 1 | 1  | 1        | 1        | 1  | 1        | 1         | 1        | 1        | 1         | putative integral membrane                           | hypothetical protein         | conserved hypothetical                          |
| "onCiiV010000         | CJE1674  | <u> </u> | Ci1501      | +       | 1       | _        | 1 | 1  | 0        | 1        | 1  | 1        | 0         | 1        | 1        | 1         | protein                                              | hypothetical pastein         | protein                                         |
| "opCjjV010000<br>193" | CJE10/4  | -        | CJ1501      | 1 -     | 1 -     | -        | 1 | 1  | 0        | 1        | 1  | 1        | 10        | 1        | 1        | 1         | hypothetical protein                                 | hypothetical protein         | -                                               |
| 173                   | l        | 1        |             | 1       | 1       | 1        |   | 1  | 1        | 1        | l  | 1        | 1         | 1        | 1        | 1         | l                                                    |                              |                                                 |

| "CJ 10001418" | CJE1675   | putP         | Cj1502c | putP   | CCO1611 | putP   | 1 1 | 1        | 1  | 1        | 1 1      | 1        | 1        | 1  | 1        | 1 1 | sodium/proline symporter                  | sodium/proline permease           | proline permease (putP)                            |
|---------------|-----------|--------------|---------|--------|---------|--------|-----|----------|----|----------|----------|----------|----------|----|----------|-----|-------------------------------------------|-----------------------------------|----------------------------------------------------|
| "CJ 10001410" | CJE1676   | -            | Cj1502c | putA   | CCO1612 | -      | 1   | 1        | 1  | 1        | 1        | 1        | 1        | 1  | 1        | 1   | putative proline                          | bifunctional putA protein,        | proline dehydrogenase                              |
| _             |           |              | 3       | 1      |         |        |     |          |    |          |          |          |          |    |          |     | 1                                         | putative                          | , , ,                                              |
| "CJ_10001424" | CJE1677   | selD         | Cj1504c | selD   | CCO1613 | selD   | 1   | 1        | 1  | 1        | 1        | -1       | -1       | 1  | -1       | -1  | putative selenide,water                   | selenide, water dikinase          | selenide, water dikinase                           |
| HGY 10001125H | CTEL CEO  |              | G:1505  |        | 0001614 |        |     |          |    |          |          |          |          |    |          |     | dikinase                                  |                                   | 1110                                               |
| "CJ_10001426" | CJE1678   | -            | Cj1505c | -      | CCO1614 | -      | 1   | 1        | 1  | 1        | 1        | 1        | 1        | 1  | 1        | 1   | hypothetical protein                      | hypothetical protein              | predicted Transcriptional                          |
| "CJ 10001439" | CJE1679   | -            | Cj1506c |        |         |        | 1   | 1        | 1  | 1        | 1        | 1        | 1        | 1  | 1        | 1   | putative MCP-type signal                  | methyl-accepting                  | regulator                                          |
| CJ_10001439   | CJE1079   | -            | CJ1500C | -      | -       | _      | 1   | 1        | 1  | 1        | 1        | 1        | 1        | 1  | 1        | 1   | transduction protein                      | chemotaxis protein                |                                                    |
| "CJ 10001440" | CJE1680   | -            | Cj1507c | -      | CCO1615 | -      | 1   | 1        | 1  | 1        | 1        | 1        | 1        | 1  | 1        | 1   | hypothetical protein                      | ModE repressor domain             | N-terminal HTH domain of                           |
| _             |           |              |         |        |         |        |     |          |    |          |          |          |          |    |          |     |                                           | protein                           | molybdenum-binding                                 |
| "CJ_10001441" | CJE1681   | fdhD         | Cj1508c | fdhD   | CCO1616 | fdhD   | 1   | 1        | 1  | 1        | 1        | 1        | 1        | 1  | 1        | 1   | FdhD protein                              | formate dehydrogenase             | formate dehydrogenase                              |
|               |           |              |         |        |         |        |     |          |    | 1        |          |          |          | 1  |          |     |                                           | accessory protein                 | family accessory protein                           |
| "CJ_10001442" | CJE1682   | fdhC         | Cj1509c | fdhC   | CCO1617 | -      | 1   | 1        | 1  | 1        | 1        | 1        | 1        | 1  | 1        | 1   | putative formate                          | formate dehydrogenase,            | formate dehydrogenase                              |
|               |           |              |         |        |         |        |     |          |    |          |          |          |          |    |          |     | dehydrogenase, cytochrome<br>B            | cytochrome b subunit              | cytochrome B chain                                 |
| "CJ 10001443" | CJE1683   | fdhB         | Cj1510c | fdhB   | CCO1618 | -      | 1   | 0        | 1  | 1        | 1        | 1        | 1        | 1  | 1        | 1   | putative formate                          | formate dehydrogenase,            | formate dehydrogenase,                             |
|               |           |              | 0,10101 |        |         |        |     | _        | _  |          | _        | _        | _        | -  | _        |     | dehydrogenase iron-sulfur                 | iron-sulfur subunit               | iron-sulfur subunit                                |
| "CJ_10001444" | CJE1684   | fdhA         | Cj1511c | fdhA   | -       | -      | 1   | 1        | 1  | 1        | 1        | 1        | 1        | 1  | 1        | 1   | putative formate                          | formate dehydrogenase,            | -                                                  |
|               |           |              |         |        |         |        |     |          |    |          |          |          |          |    |          |     | dehydrogenase large subunit               | alpha subunit,                    |                                                    |
| "CJ_10001445" | CJE1685   | -            | Cj1513c | -      | CCO1620 | -      | 1   | 1        | 1  | 1        | 1        | 1        | 1        | 1  | 1        | 1   | possible periplasmic protein              | tat domain protein                | probable periplasmic                               |
| #GT 10001446# | CIE1606   |              | 0:1514  |        | 0001601 |        | -   | 1        | 1  | -        | 1        | 1        | 1        | -  | 0        | 1   |                                           |                                   | protein Cj1513c -related                           |
| "CJ_10001446" | CJE1686   | -            | Cj1514c | -      | CCO1621 | -      | 1   | 1        | 1  | 1        | 1        | 1        | 1        | 1  | 0        | 1   | hypothetical protein                      | hypothetical protein              | conserved hypothetical protein                     |
| "opCjV010000  | CJE1687   | <del> </del> | _       | _      | _       | -      | 0   | 0        | 0  | 1        | 1        | 0        | 0        | 1  | 0        | 1   | _                                         | hypothetical protein              | protein -                                          |
| 0299"         | CJETOO7   |              |         |        |         |        |     |          |    |          | 1        |          |          | 1  |          | 1   |                                           | nypothetical protein              |                                                    |
| "CJ_10001447" | CJE1688   | nspC         | Cj1515c | -      | CCO1622 | nspC   | 1   | 1        | 1  | 1        | 1        | 1        | 1        | 1  | 1        | 1   | putative decarboxylase                    | carboxynorspermidine              | carboxynorspermidine                               |
|               |           |              |         |        |         | _      |     |          |    |          |          |          |          |    |          |     |                                           | decarboxylase                     | decarboxylase                                      |
| "CJ_10001448" | CJE1689   | -            | Cj1516  | -      | CCO1623 | -      | 1   | 1        | 1  | 1        | 1        | 1        | 1        | 0  | 1        | 1   | putative periplasmic                      | oxidoreductase, putative          | probable periplasmic                               |
| #GT 10001450# | CIE1 (00  |              | 0:1517  | - D    | 0001604 |        |     | 1        | 1  | -        | 1        | 1        | 0        | -  | 1        | 1   | oxidoreductase                            | 4:0.6 1                           | oxidoreductase Cj1516                              |
| "CJ_10001459" | CJE1690   | -            | Cj1517  | moaD   | CCO1624 | -      | 0   | 1        | 1  | 1        | 1        | 1        | 0        | 1  | 1        | 1   | possible molybdopterin converting factor, | thiS family protein               | probable molybdopterin<br>converting factor, chain |
| "CJ_10001460" | CJE1691   | +            | Cj1518  | moaE   | CCO1625 | -      | 1   | 1        | 1  | 1        | 1        | 1        | 1        | 1  | 1        | 1   | possible molybdopterin                    | molybdopterin converting          | molybdopterin biosynthesis                         |
| C3_10001400   | CJETOJI   |              | CJISIO  | moun   | CC01023 |        | 1   | 1        |    |          | 1        | 1        | 1        | 1  | 1        | 1   | converting factor,                        | factor, subunit 2                 | protein E chain                                    |
| "opCcV010000  | CJE1692   | -            | -       | -      | CCO1626 | -      | 1   | 1        | 1  | 1        | -1       | 1        | 1        | 1  | 1        | 1   | -                                         | hypothetical protein              | probable molybdopterin                             |
| 1980"         |           |              |         |        |         |        |     |          |    |          |          |          |          |    |          |     |                                           |                                   | biosynthesis protein                               |
| "CJ_10001461" | CJE1693   | -            | Cj1519  | moeA2  | -       | -      | 1   | 1        | 1  | 1        | 1        | 1        | 1        | 1  | 1        | 1   | putative molybdopterin                    | molybdopterin biosynthesis        | -                                                  |
| #GY 10001160# | CTT1 co.4 |              | 0:1501  |        |         |        |     |          |    |          |          | <u> </u> | -        |    | -        |     | biosynthesis protein                      | MoeA protein,                     |                                                    |
| "CJ_10001463" | CJE1694   | cas2         | Cj1521c | -      | -       | -      | 1   | 1        | 1  | 1        | 1        | 1        | 1        | 1  | 1        | 1   | hypothetical protein                      | CRISPR-associated protein<br>Cas2 | -                                                  |
| "CJ 10001464" | CJE1695   | cas1         | Cj1522c | _      | _       | l .    | 1   | 0        | 0  | 1        | 1        | 1        | 1        | 1  | 0        | 1   | hypothetical protein                      | CRISPR-associated protein         |                                                    |
| C3_10001404   | CJE1075   | Casi         | CJ1322C |        |         |        | 1   |          |    | 1        | 1        | 1        | 1        | 1  |          | 1   | nypotheticai protein                      | Cas1                              |                                                    |
| "CJ_10001465" | CJE1697   | -            | Cj1523c | -      | -       | -      | 0   | 1        | 0  | 1        | 1        | 1        | 0        | 1  | 1        | 1   | hyopthetical protein                      | pseudogene                        | -                                                  |
|               |           |              |         |        |         |        |     |          |    |          |          |          |          |    |          |     | Cj1523c                                   |                                   |                                                    |
| "opCjV010000  | CJE1698   | -            | -       | -      | -       | -      | 1   | 1        | 0  | 1        | 1        | 1        | -1       | -1 | 1        | 1   | -                                         | hypothetical protein              | -                                                  |
| 0404"         |           |              |         |        | 2221-22 |        |     |          |    |          |          |          |          |    |          |     |                                           |                                   |                                                    |
| "CJ_10001466" | CJE1699   | -            | Cj1528  | -      | CCO1630 | -      | 1   | 1        | 1  | 1        | 1        | 1        | 1        | 1  | 1        | 1   | pseudogene                                | pseudogene                        | C4-dicarboxylate anaerobic carrier, putative       |
| "CJ 10001467" | CJE1700   | purM         | Cj1529c | purM   | CCO1632 | purM   | 0   | 0        | 1  | 1        | 1        | 1        | 1        | 1  | 1        | 1   | phosphoribosylformylglycin                | phosphoribosylaminoimidaz         | phosphoribosylformylglycin                         |
| C3_1000140/   | CJL1700   | Puilvi       | CJ1329C | Puilvi | CCO1032 | Pullvi |     |          | 1  | 1        | 1        | 1        | 1        | 1  | 1        | 1   | amidine cyclo-ligase                      | ole synthetase                    | amidine cyclo-ligase                               |
| "CJ_10001468" | CJE1701   | -            | Cj1530  | -      | CCO1633 | -      | 0   | -1       | 1  | 1        | -1       | 1        | 1        | -1 | 1        | 1   | putative ATP/GTP-binding                  | dephospho-CoA kinase              | dephospho-CoA kinase                               |
|               |           |              |         |        |         |        |     |          |    |          |          |          |          |    |          |     | protein                                   |                                   |                                                    |
| "CJ_10001484" | CJE1702   | dapF         | Cj1531  | dapF   | CCO1634 | dapF   | 1   | 1        | 1  | 1        | 1        | 1        | 1        | 1  | 1        | 1   | putative diaminopimelate                  | diaminopimelate epimerase         | diaminopimelate epimerase                          |
|               |           |              |         | 1      |         |        |     | <u> </u> | L_ | <u> </u> | <u> </u> | <u> </u> | <u> </u> | 1  | <u> </u> |     | epimerase                                 |                                   |                                                    |
| "CJ_10001486" | CJE1703   | -            | Cj1532  | -      | CCO1635 | -      | 0   | 1        | 0  | 1        | 1        | 1        | 1        | 1  | 1        | 1   | possible periplasmic protein              | mannosyl-glycoprotein             | bax protein, putative                              |

| "CJ 10001488"         | CJE1704            |      | Cj1533c  | -        | CCO1636 |          | 1   | 0        | 1        | 1        | 1 1 | 1        | 1  | 1 1 | Ι ο      | 1  | putative helix-turn-helix    | hypothetical protein        | conserved hypothetical     |
|-----------------------|--------------------|------|----------|----------|---------|----------|-----|----------|----------|----------|-----|----------|----|-----|----------|----|------------------------------|-----------------------------|----------------------------|
| CJ_10001488           | CJE1/04            | -    | CJISSSC  | -        | CCO1636 | -        | 1   | U        | 1        | 1        | 1   | 1        | 1  | 1   | U        | 1  | containsing protein          | hypothetical protein        | ATP-binding protein,       |
| "CJ 10001490"         | CJE1705            | -    | Ci1534c  | -        | CCO1641 | -        | 1   | -1       | 0        | 1        | 1   | 1        | 0  | 1   | 1        | 1  | possible bacterioferritin    | bacterioferritin, putative  | bacterioferrin, putative   |
| "CJ 10001492"         | CJE1706            | pgi  | Cj1535c  | pgi      | CCO1642 | pgi      | 1   | 1        | 1        | 1        | 1   | 1        | 1  | 1   | 1        | 1  | putative glucose-6-          | glucose-6-phosphate         | glucose-6-phosphate        |
|                       |                    | 10   | .,       | 10       |         | 10       |     |          |          |          |     |          |    |     |          |    | phosphate isomerase          | isomerase                   | isomerase                  |
| "CJ 10001493"         | CJE1707            | galU | Cj1536c  | galU     | CCO1643 | galU     | 1   | 1        | 1        | 1        | 1   | 1        | 1  | 1   | 1        | 1  | UTPglucose-1-phosphate       | UTP-glucose-1-phosphate     | UTP-glucose-1-phosphate    |
| CU_10001.55           | CULTION            | gare | CJ1230C  | garo     | 00010.5 | guie     |     | 1        | 1        | 1        | _   | 1        | •  | 1   | 1        | 1  | uridylyltransferase          | uridylyltransferase         | uridylyltransferase        |
| "CJ 10001494"         | CJE1708            | acs  | Cj1537c  | acs      | CCO1644 | 1        | 1   | 1        | 1        | 1        | 1   | 1        | 1  | 1   | 1        | 1  | acetyl-coenzyme A            | acetyl-coenzyme A           | acetyl-CoA synthetase      |
| CJ_10001494           | CJE1700            | acs  | CJ1557C  | acs      | CCO1044 | -        | 1   | 1        | 1        | 1        | 1   | 1        | 1  | 1   | 1        | 1  | synthetase                   | synthetase                  | acetyr-CoA synthetase      |
| "CJ 10001495"         | CJE1709            |      | Cj1538c  | _        | CCO1645 |          | 1   | 1        | 1        | 1        | 1   | 1        | 1  | 1   | 1        | 1  | putative anion-uptake ABC-   | tungsten ABC transporter,   | glutamine ABC transporter, |
| CJ_10001493           | CJE1709            | -    | CJ1556C  | _        | CCO1043 | _        | 1   | 1        | 1        | 1        | 1   | 1        | 1  | 1   | 1        | 1  | transport system             | ATP-binding protein,        | ATP-binding protein        |
| "CJ_10001496"         | CJE1710            |      | Cj1539c  | _        | CCO1646 | +        | 1   | 1        | 1        | 1        | 1   | 1        | 1  | 1   | 1        | 1  | putative anion-uptake ABC-   | tungstate ABC transporter,  | ABC transporter, permease  |
| CJ_10001490           | CJE1710            | -    | CJ1559C  | _        | CCO1040 | _        | 1   | 1        | 1        | 1        | 1   | 1        | 1  | 1   | 1        | 1  |                              | permease protein,           | 1 1                        |
| "CT 10001407"         | CIE 1711           |      | 0:1540   |          | 0001647 | -        | 1   | 1        | 1        | 1        | 1   | 1        | -  | 1   | 1        |    | transport system             |                             | protein                    |
| "CJ_10001497"         | CJE1711            | -    | Cj1540   | -        | CCO1647 | -        | 1   | 1        | 1        | 1        | 1   | 1        | 1  | 1   | 1        | 1  | putative periplasmic protein | tungstate ABC transporter,  | probable periplasmic       |
| #GY 10001510#         | CVELTIO.           |      | 0:1541   |          | 0001610 |          | -   | <b>-</b> | <b>.</b> | <b>.</b> |     | <b>.</b> | -  | +   | <b>.</b> | ١. |                              | periplasmic                 | protein Cj1540             |
| "CJ_10001513"         | CJE1712            | -    | Cj1541   | -        | CCO1648 | -        | 1   | 1        | 1        | 1        | 1   | 1        | 1  | 1   | 1        | 1  | hypothetical protein         | tungstate ABC transporter,  | hypothetical protein       |
|                       |                    |      |          |          |         |          |     |          |          |          |     |          |    |     |          |    |                              | periplasmic                 |                            |
| "CJ_10001515"         | CJE1713            | -    | Cj1542   | -        | CCO1652 | -        | 0   | 1        | 0        | 1        | 1   | 1        | 1  | 1   | 1        | 1  | hypothetical protein         | hypothetical protein        | conserved hypothetical     |
|                       |                    |      |          |          |         |          |     |          |          |          |     |          |    |     |          |    |                              |                             | protein TIGR00370          |
| "CJ_10001517"         | CJE1714            | -    | Cj1543   | -        | CCO1653 | -        | 1   | 0        | 1        | 1        | 1   | 1        | 1  | 1   | 1        | 1  | hypothetical protein         | hypothetical protein        | urea amidolyase-related    |
|                       |                    |      |          |          |         |          |     |          |          |          |     |          |    |     |          |    |                              |                             | protein                    |
| "CJ_10001518"         | CJE1715            | -    | Cj1544c  | -        | CCO1655 | -        | 1   | 1        | 1        | 1        | 1   | 1        | 1  | 1   | 1        | 1  | putative integral membrane   | integral membrane protein   | probable integral membrane |
|                       |                    |      | _        |          |         |          |     |          |          |          |     |          |    |     |          |    | protein                      |                             | protein Cj1544c            |
| "CJ 10001520"         | CJE1716            | -    | Cj1545c  | -        | -       | -        | 1   | 1        | 1        | 1        | 1   | -1       | 1  | 1   | 1        | 1  | MdaB protein homolog         | flavodoxin-like fold domain | -                          |
| _                     |                    |      | ,        |          |         |          |     |          |          |          |     |          |    |     |          |    |                              | protein                     |                            |
| "CJ_10001521"         | CJE1717            | -    | Cj1546   | -        | -       | -        | -1  | 1        | 1        | 1        | 1   | 1        | 1  | 1   | 1        | 1  | hypothetical protein         | transcriptional regulator,  | _                          |
|                       |                    |      | -3 -     |          |         |          |     |          |          |          |     |          |    |     |          |    | 31                           | putative                    |                            |
| "CJ 10001522"         | CJE1718            | -    | Cj1547   | _        | CCO1659 | -        | 0   | 1        | 1        | 1        | 1   | 1        | 1  | -1  | 1        | 1  | homolog of BLC protein       | pseudogene                  | outer membrane lipoprotein |
| 05_10001522           | CULTITO            |      | 0,15 . / |          | 0001007 |          |     | 1        | 1        | 1        |     | 1        | 1  | 1   | 1        | 1  | nomolog of BEC protein       | pseudogene                  | Blc, putative              |
| "opCcV010000          | CJE1719            | _    | Cj1548c  | <u> </u> | CCO1660 | _        | -1  | -1       | -1       | -1       | 1   | -1       | -1 | 1   | -1       | -1 | putative NADP-dependent      | oxidoreductase, zinc-       | probable alcohol           |
| 1745"                 | CJETTI             |      | CJISTOC  |          | CC01000 |          | 1   | 1 -      | 1        | 1        | 1   | 1        |    | 1   | 1        |    | alcohol dehydrogenase        | binding dehydrogenase       | dehydrogenase (NADP)       |
| 1743                  |                    |      |          |          |         |          |     |          |          |          |     |          |    |     |          |    | alcohor denydrogenase        | bilding denydrogenase       | Cj1548c                    |
| "opCjV010000          | CJE1720            |      |          | _        |         | -        | -1  | -1       | 1        | -1       | 1   | -1       | -1 | 1   | 1        | -1 |                              | pseudogene                  | CJ1546C                    |
| 0360"                 | CJE1720            | -    | -        | _        | 1       | -        | -1  | -1       | 1        | -1       | 1   | -1       | -1 | 1   | -1       | -1 | -                            | pseudogene                  | -                          |
|                       | CJE1721            |      |          |          |         |          | -1  | 1        | -1       | 1        | 1   | -1       | 1  | 1   | 1        | -1 |                              | PloC meetain mytativa       |                            |
| "opCjV010000<br>0526" | CJE1/21            | -    | -        | _        | -       | -        | -1  |          | -1       | 1        | 1   | -1       | -1 | 1   | 1        | -1 | -                            | RloC protein, putative      | _                          |
|                       | CJE1722            | -    |          |          |         | <b>+</b> | - 1 | 1        | 1        | 1        | 1   | 1        |    | 1   | 1        | 1  |                              |                             |                            |
| "opCjV010000          | CJE1/22            | -    | -        | -        | -       | -        | -1  | -1       | -1       | -1       | 1   | -1       | -1 | 1   | -1       | -1 | -                            | pseudogene                  | -                          |
| 0237"                 | ~~~                |      |          |          |         |          |     |          |          |          |     |          |    |     |          |    |                              |                             |                            |
| "opCjV010000          | CJE1723            | -    | -        | -        | -       | -        | 1   | -        | 1        | -1       | 1   | -1       | -1 | 1   | 1        | -1 | -                            | MloA protein, putative      | -                          |
| 0763"                 |                    |      |          |          |         |          |     | ļ        |          |          |     |          | 1  |     |          | 1  |                              |                             |                            |
| "opCjV010000          | CJE1724            | hsdM | -        | -        | -       | -        | -1  |          | -1       | -1       |     | -1       | -1 | 1   | 1        | -1 | -                            | type I restriction-         | -                          |
| 0327"                 |                    |      |          |          |         |          |     |          |          |          |     |          |    |     |          |    |                              | modification system, M      |                            |
| "opCjV010000          | CJE1725            | -    | -        | -        | -       | -        | 1   | -1       | 0        | 1        | 1   | 1        | 0  | 1   | 1        | 1  | -                            | 4-carboxymuconolactone      | -                          |
| 0827"                 |                    |      |          |          |         |          |     |          |          |          |     |          |    |     |          |    |                              | decarboxylase, putative     |                            |
| "opCjV010000          | CJE1726            | -    | -        | -        | -       | -        | 0   | -1       | 0        | -1       | 1   | 1        | 0  | 1   | -1       | -1 | -                            | hypothetical protein        | -                          |
| 0389"                 |                    |      |          |          |         |          |     |          |          |          |     |          |    |     |          |    |                              |                             |                            |
| "opCjV010000          | CJE1727            | -    | -        | -        | -       | -        | 1   | -1       | 1        | -1       | 1   | 1        | 1  | 1   | -1       | -1 | -                            | hypothetical protein        | -                          |
| 0776"                 |                    |      |          |          |         |          |     |          |          |          |     |          |    |     |          |    |                              |                             |                            |
| "opCjV010000          | CJE1728            | -    | -        | _        | _       | -        | 1   | -1       | 1        | -1       | 1   | 1        | 1  | 1   | 0        | -1 | -                            | transporter, putative       | -                          |
| 0501"                 |                    |      |          |          |         |          |     |          |          |          |     |          |    |     |          |    |                              | ,                           |                            |
| "CJ 10001555"         | CJE1729            | -    | Ci1555c  | -        | -       | -        | -1  | 1        | 1        | 1        | 1   | -1       | -1 | -1  | 1        | 1  | hypothetical protein         | pseudogene                  | -                          |
| "CJ 10001558"         | CJE1729            | 1 -  | Cj1558   | _        | 1 -     | 1_       | -1  | 1        | 0        | 1        | 1   | 1        | 0  | 0   | 1        | 1  | putative membrane protein    | permease, putative          | _                          |
| "CJ 10001560"         | CJE1730<br>CJE1731 | arsR | Cj1556   | -        | CCO1673 | + -      | -1  | 1        | 1        | 1        | 0   | 1        | 1  | 0   | 1        | 1  | putative transcriptional     | arsenical resistance operon | transcriptional regulator, |
| CJ_10001300           | CJE1/31            | ask  | CJ1501   | _        | CC010/3 | _        | -1  | 1        | 1        | 1        | "   | 1        | 1  | 1   | 1        | 1  | regulator                    | repressor                   | ArsR family                |
| "o=C:V010000          | CJE1732            | arsC | +        | 1        | 1       | 1        | 1   | -1       | -1       | 1        | 1   | 1        | 1  | 1   | 1        | 1  | regulator                    | •                           | 7 Hore failing             |
| "opCjV010000          | CJE1/32            | arsc |          | -        | -       | -        | 1   | -1       | -1       | 1        | 1   | 1        | 1  | 1   | -1       | -1 | 1 -                          | arsenate reductase          | <u> </u>                   |

| 0248"                 |         |      |         |      |         |        |    |    |    |    |   |    |    |    |    |    |                                                    |                                                 |                                                     |
|-----------------------|---------|------|---------|------|---------|--------|----|----|----|----|---|----|----|----|----|----|----------------------------------------------------|-------------------------------------------------|-----------------------------------------------------|
| "opCjV010000<br>0235" | CJE1733 | -    | -       | -    | -       | -      | 1  | -1 | -1 | -1 | 1 | 1  | 1  | 1  | -1 | -1 | -                                                  | arsenical-resistance protein, putative          | -                                                   |
| "CJ_10001562"         | CJE1734 | -    | Cj1563c | -    | CCO1677 | -      | 1  | 1  | 1  | 1  | 0 | 1  | 1  | 1  | 1  | 1  | putative transcriptional regulator                 | pseudogene                                      | probable transcription<br>regulator Cj1563c         |
| "CJ_10001580"         | CJE1736 | pflA | Cj1565c | pflA | CCO0279 | -      | 1  | 1  | 1  | 1  | 0 | 1  | 1  | 1  | 1  | 1  | paralysed flagellum protein                        | paralyzed flagella protein<br>PflA              | paralysed flagella protein (pflA), putative         |
| "CJ_10001582"         | CJE1737 | nuoN | Cj1566c | nuoN | CCO0278 | nuoN   | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | NADH dehydrogenase I<br>chain N                    | NADH-quinone<br>oxidoreductase, N subunit       | NADH-ubiquinone<br>oxidoreductase, NQO14<br>subunit |
| "CJ_10001584"         | CJE1738 | nuoM | Cj1567c | nuoM | CCO0277 | nuoM   | 0  | 1  | 1  | 1  | 1 | 1  | 0  | 1  | 1  | 0  | NADH dehydrogenase I<br>chain M                    | NADH-quinone<br>oxidoreductase, M subunit       | NADH-ubiquinone<br>oxidoreductase, NQO13<br>subunit |
| "CJ_10001586"         | CJE1739 | nuoL | Cj1568c | nuoL | CCO0276 | -      | 1  | 1  | 0  | 1  | 1 | 1  | 1  | 1  | 1  | 0  | NADH dehydrogenase I<br>chain L                    | NADH dehydrogenase<br>subunit L                 | NADH2 dehydrogenase<br>(ubiquinone) I chain L       |
| "CJ_10001587"         | CJE1740 | nuoK | Cj1569c | nuoK | CCO0275 | -      | 1  | 1  | 1  | 1  | 1 | 1  | 0  | -1 | 1  | 1  | NADH dehydrogenase I<br>chain K                    | NADH-quinone<br>oxidoreductase, K subunit       | NADH2 dehydrogenase<br>(ubiquinone) I chain K       |
| "CJ_10001588"         | CJE1741 | nuoJ | Cj1570c | nuoJ | CCO0274 | nuoJ   | 1  | 1  | 1  | 1  | 1 | 1  | 0  | 1  | 1  | 1  | NADH dehydrogenase I<br>chain J                    | NADH dehydrogenase<br>subunit J                 | NADH-ubiquinone<br>oxidoreductase, NQO10<br>subunit |
| "CJ_10001590"         | CJE1742 | nuoI | Cj1571c | nuoI | CCO0273 | -      | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | NADH dehydrogenase I<br>chain I                    | NADH dehydrogenase<br>subunit I                 | NADH2 dehydrogenase<br>(ubiquinone) I chain I       |
| "CJ_10001591"         | CJE1743 | nuoH | Cj1572c | nuoH | CCO0272 | -      | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | NADH dehydrogenase I<br>chain H                    | NADH dehydrogenase<br>subunit H                 | NADH2 dehydrogenase<br>(ubiquinone) chain 1         |
| "CJ_10001593"         | CJE1744 | nuoG | Cj1573c | nuoG | CCO0271 | -      | 1  | 1  | 0  | 1  | 1 | 1  | 1  | 0  | 1  | 1  | probable NADH<br>dehydrogenase I chain G           | NADH dehydrogenase<br>gamma subunit             | probable NADH2<br>dehydrogenase (ubiquinone)        |
| "CJ_10000511"         | CJE1745 | -    | Cj1574c | -    | CCO0270 | -      | 0  | 1  | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | hypothetical protein                               | hypothetical protein                            | conserved hypothetical protein                      |
| "CJ_10000513"         | CJE1746 | -    | Cj1575c | -    | CCO0269 | -      | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | hypothetical protein                               | hypothetical protein                            | conserved hypothetical protein                      |
| "CJ_10000515"         | CJE1747 | nuoD | Cj1576c | nuoD | CCO0268 | -      | -1 | 1  | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | NADH dehydrogenase I<br>chain D                    | NADH dehydrogenase delta<br>subunit             | NADH2 dehydrogenase<br>(ubiquinone) I chain D       |
| "CJ_10000518"         | CJE1748 | nuoC | Cj1577c | nuoC | CCO0267 | -      | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | NADH dehydrogenase I<br>chain C                    | NADH dehydrogenase<br>subunit C                 | NADH2 dehydrogenase<br>(ubiquinone) I chain C       |
| "opCcV010000<br>0039" | CJE1749 | nuoB | Cj1578c | nuoB | CCO0266 | -      | 0  | 1  | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | NADH dehydrogenase I<br>chain B                    | NADH dehydrogenase beta<br>subunit              | NADH2 dehydrogenase<br>(ubiquinone) I chain B       |
| "CJ_10000521"         | CJE1750 | nuoA | Cj1579c | nuoA | CCO0265 | -      | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | NADH dehydrogenase I<br>chain A                    | NADH dehydrogenase<br>alpha subunit             | NADH2 dehydrogenase<br>(ubiquinone) I chain A       |
| "CJ_10000522"         | CJE1751 | -    | Cj1580c | -    | CCO0264 | abcT11 | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 0  | 1  | 1  | putative peptide ABC-<br>transport system          | peptide ABC transporter,<br>ATP-binding protein | oligopeptide ABC<br>transporter, ATP-binding        |
| "CJ_10000524"         | CJE1752 | -    | Cj1581c | -    | CCO0263 | dppD   |    | 0  | 1  | 1  | 1 | 1  | 1  | 0  | 1  | 1  | putative peptide ABC-<br>transport system          | peptide ABC transporter,<br>ATP-binding protein | peptide ABC transporter,<br>ATP-binding protein     |
| "CJ_10000526"         | CJE1753 | -    | Cj1582c | -    | CCO0262 | -      | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | putative peptide ABC-<br>transport system permease | peptide ABC transporter,<br>permease protein    | peptide ABC transporter,<br>permease protein        |
| "CJ_10000528"         | CJE1754 | -    | Cj1583c | -    | CCO0261 | -      | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | putative peptide ABC-<br>transport system permease | peptide ABC transporter,<br>permease protein    | peptide ABC transporter,<br>permease protein,       |
| "CJ_10000540"         | CJE1755 | -    | Cj1584c | -    | CCO0260 | -      | 1  | -1 | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | putative peptide ABC-<br>transport system          | peptide ABC transporter,<br>periplasmic         | peptide ABC transporter,<br>peptide-binding         |
| "CJ_10000542"         | CJE1756 | -    | Cj1585c | -    | CCO0259 | -      | 1  | 1  | -1 | 1  | 1 | -1 | -1 | -1 | 1  | 1  | putative oxidoreductase                            | oxidoreductase, FAD-<br>binding, iron-sulfur    | probable oxidoreductase<br>Cj1585c                  |
| "CJ_10000545"         | CJE1757 | -    | Cj1586  | -    | CCO0258 | hmpA   | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1  | 1  | 1  | putative bacterial<br>haemoglobin                  | flavohemoprotein,<br>truncation                 | flavohemoprotein                                    |
| "CJ_10000547"         | CJE1758 | -    | Cj1587c | -    | CCO0256 | -      | 0  | 0  | 0  | 1  | 1 | 1  | 1  | 1  | 0  | 1  | putative ABC transporter                           | cyclic peptide ABC transporter, ATP-binding     | pyoverdine ABC export system,                       |

| "CJ_10000549"         | CJE1759 | -     | Cj1588c | -    | -       | -      | 0  | 1 | 1  | 1 | 0 | 1 | 0  | 0 | 1  | 1 | putative transmembrane<br>transport protein      | pseudogene                                           | -                                                      |
|-----------------------|---------|-------|---------|------|---------|--------|----|---|----|---|---|---|----|---|----|---|--------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|
| "opCjV010000<br>1112" | CJE1760 | -     | -       | -    | CCO0255 | proP   | 0  | 1 | 0  | 1 | 1 | 1 | 1  | 1 | 1  | 1 | -                                                | hypothetical protein                                 | proline/betaine transporter (proP)                     |
| "CJ_10000551"         | CJE1761 | -     | Cj1589  | -    | -       | -      | 0  | 1 | 1  | 1 | 1 | 1 | 1  | 1 | 1  | 1 | hypothetical protein                             | metallo-beta-lactamase<br>domain protein             | -                                                      |
| "CJ_10000552"         | CJE1762 | infA  | Cj1590  | infA | CCO0244 | infA   | 1  | 1 | 1  | 1 | 1 | 1 | -1 | 1 | 1  | 1 | translation initiation factor<br>IF-1            | translation initiation factor<br>IF-1                | translation initiation factor<br>IF-1                  |
| "opCjjV010000<br>151" | CJE1763 | rpmJ  | Cj1591  | rpmJ | -       | -      | 1  | 1 | 1  | 1 | 1 | 1 | 1  | 1 | 1  | 1 | 50S ribosomal protein L36                        | ribosomal protein L36                                | -                                                      |
| "CJ_10000555"         | CJE1764 | rpsM  | Cj1592  | rpsM | CCO0243 | rpsM   | 1  | 1 | 1  | 1 | 0 | 1 | 1  | 1 | 1  | 1 | 30S ribosomal protein S13                        | 30S ribosomal protein S13                            | ribosomal protein<br>S13p/S18e                         |
| "opCcV010000<br>1449" | CJE1765 | rpsK  | Cj1593  | rpsK | CCO0242 | rpsK   | 1  | 1 | 1  | 1 | 1 | 1 | 1  | 1 | 1  | 1 | 30S ribosomal protein S11                        | 30S ribosomal protein S11                            | ribosomal protein S11                                  |
| "CJ_10000568"         | CJE1766 | rpsD  | Cj1594  | rpsD | CCO0241 | rpsD   | 1  | 1 | 1  | 1 | 1 | 1 | 1  | 1 | 1  | 1 | 30S ribosomal protein S4                         | 30S ribosomal protein S4                             | ribosomal protein S4                                   |
| "CJ_10000571"         | CJE1767 | rpoA  | Cj1595  | rpoA | CCO0240 | rpoA   | 1  | 1 | 1  | 1 | 1 | 1 | 1  | 1 | 1  | 1 | DNA-directed RNA                                 | DNA-directed RNA                                     | DNA-directed RNA                                       |
|                       |         |       |         |      |         |        |    |   |    |   |   |   |    |   |    |   | polymerase alpha chain                           | polymerase alpha subunit                             | polymerase, alpha subunit                              |
| "CJ_10000573"         | CJE1768 | rplQ  | Cj1596  | rplQ | CCO0239 | rplQ   | 1  | 1 | 1  | 1 | 1 | 1 | 0  | 1 | 1  | 1 | 50S ribosomal protein L17                        | 50S ribosomal protein L17                            | ribosomal protein L17                                  |
| "CJ_10000575"         | CJE1769 | hisG  | Cj1597  | hisG | CCO0238 | hisG   | 1  | 1 | 1  | 1 | 1 | 1 | 1  | 1 | 1  | 1 | ATP                                              | ATP                                                  | ATP                                                    |
|                       |         |       |         |      |         |        |    |   |    |   |   |   |    |   |    |   | phosphoribosyltransferase                        | phosphoribosyltransferase                            | phosphoribosyltransferase                              |
| "CJ_10000577"         | CJE1770 | hisD  | Cj1598  | hisD | CCO0237 | hisD   | -1 | 0 | 1  | 1 | 1 | 1 | 1  | 1 | 1  | 1 | histidinol dehydrogenase                         | histidinol dehydrogenase                             | histidinol dehydrogenase                               |
| "CJ_10000579"         | CJE1771 | hisB  | Cj1599  | hisB | CCO0236 | hisB   | 1  | 1 | 1  | 1 | 1 | 1 | 1  | 1 | 1  | 1 | imidazoleglycerol-                               | imidazole glycerol-                                  | imidazoleglycerol-                                     |
|                       |         |       |         |      |         |        |    |   |    |   |   |   |    |   |    |   | phosphate                                        | phosphate                                            | phosphate                                              |
| "CJ_10000580"         | CJE1772 | -     | Cj1600  | hisH | CCO0235 | hisH   | 1  | 1 | 1  | 1 | 1 | 1 | 1  | 1 | 1  | 1 | amidotransferase HisH                            | imidazole glycerol                                   | imidazole glycerol                                     |
|                       |         |       |         |      |         |        |    |   |    |   |   |   |    |   |    |   |                                                  | phosphate synthase,<br>glutamine                     | phosphate synthase,<br>glutamine                       |
| "CJ_10000582"         | CJE1773 | hisA  | Cj1601  | hisA | CCO0234 | -      | 1  | 1 | 1  | 1 | 1 | 1 | 1  | 1 | -1 | 1 | phosphoribosylformimino-                         | phosphoribosylformimino-                             | phosphoribosylformimino-                               |
| #GT 10000704#         | CIE1774 |       | G:1 c02 | -    |         | +      |    | 1 | 0  | 1 | 1 | 0 | 0  |   | 1  | 1 | 5-aminoimidazole                                 | 5-aminoimidazole                                     | 5-aminoimidazole                                       |
| "CJ_10000584"         | CJE1774 | -     | Cj1602  | 1:5  | -       | - 1: F | 1  | 1 | 0  | 1 | 1 | 0 | 0  | 0 | 1  | 1 | hypothetical protein                             | HrgA protein                                         |                                                        |
| "CJ_10000586"         | CJE1775 | -     | Cj1603  | hisF | CCO0233 | hisF   | 1  | 1 | 1  | 1 | 1 | 1 | 1  | 1 | 0  | 1 | cyclase                                          | imidazole glycerol<br>phosphate synthase subunit     | imidazoleglycerol<br>phosphate synthase, cyclase       |
| "CJ_10000598"         | CJE1776 | hisI  | Cj1604  | hisI | CCO0232 | -      | 0  | 1 | 0  | 1 | 1 | 1 | 0  | 0 | 1  | 1 | phosphoribosyl-AMP<br>cyclohydrolase/            | phosphoribosyl-ATP                                   | phosphoribosyl-ATP                                     |
| "CJ_10000600"         | CJE1777 | -     | Cj1605c | dapD | CCO0230 | dapD   | 1  | 1 | 1  | 1 | 1 | 1 | 1  | 0 | 1  | 1 | possible                                         | 2,3,4,5-tetrahydropyridine-<br>2-carboxylate         | tetrahydrodipicolinate N-<br>succinyltransferase       |
| "CJ_10000602"         | CJE1778 | mrp   | Cj1606c | mrp  | CCO0229 | -      | 1  | 1 | 1  | 1 | 1 | 1 | 1  | 1 | 1  | 1 | putative ATP/GTP-binding<br>protein (mrp protein | ATP/GTP-binding protein                              | ATP-binding protein (mpr)                              |
| "CJ_10000603"         | CJE1779 | ispDF | Cj1607  | -    | CCO0228 | -      | 1  | 1 | 0  | 1 | 1 | 1 | 1  | 1 | 1  | 1 | hypothetical protein                             | bifunctional 2-C-methyl-D-<br>erythritol 4-phosphate | ispD/ispF bifunctional<br>enzyme                       |
| "CJ_10000604"         | CJE1780 | -     | Cj1608  | -    | CCO0227 | -      | 1  | 1 | 1  | 1 | 1 | 1 | 1  | 1 | 1  | 1 | possible two-component<br>regulator              | DNA-binding response regulator, putative             | response regulator, putative                           |
| "CJ_10000605"         | CJE1781 | -     | Cj1609  | -    | CCO0226 | -      | 1  | 1 | 1  | 1 | 1 | 1 | 1  | 1 | 1  | 1 | possible sulfate<br>adenylyltransferase          | ATP-sulfurylase family protein                       | sulfate adenylyltransferase,<br>putative               |
| "CJ_10000606"         | CJE1782 | pgpA  | Cj1610  | pgpA | CCO0225 | pgpA   | 1  | 0 | 1  | 1 | 1 | 1 | -1 | 1 | 0  | 1 | putative<br>phosphatidylglycerophosph<br>atase   | phosphatidylglycerophosph<br>atase A                 | phosphatidylglycerophosph<br>atase A                   |
| "CJ 10000608"         | CJE1783 | rpsT  | Cj1611  | rpsT | CCO0224 | rpsT   | 1  | 1 | 1  | 1 | 1 | 1 | 1  | 1 | 1  | 1 | 30S ribosomal protein S20                        | 30S ribosomal protein S20                            | ribosomal protein S20                                  |
| "CJ_10000610"         | CJE1784 | prfA  | Cj1612  | prfA | CCO0223 | prfA   | 1  | 1 | 1  | 1 | 1 | 1 | 1  | 1 | 1  | 1 | peptide chain release factor                     | peptide chain release factor                         | peptide chain release factor                           |
| "CJ_10000611"         | CJE1785 | -     | Cj1613c | -    | CCO0222 | -      | 1  | 1 | 1  | 1 | 1 | 1 | 1  | 1 | 0  | 1 | hypothetical protein                             | hypothetical protein                                 | Protein of unknown<br>function (DUF319) family         |
| "CJ_10000633"         | CJE1786 | chuA  | Cj1614  | chuA | CCO0221 | -      | 0  | 1 | -1 | 1 | 1 | 1 | 1  | 0 | 1  | 0 | haemin uptake system outer<br>membrane receptor  | TonB-dependent heme receptor                         | iron-regulated outer<br>membrane virulence<br>protein, |
| "CJ_10000635"         | CJE1787 | -     | Cj1615  | chuB | CCO0220 | -      | 1  | 1 | 1  | 1 | 1 | 1 | 1  | 1 | 1  | 1 | putative haemin uptake                           | hemin ABC transporter,                               | probable hemein uptake                                 |

|                       |         |      |         |       |         |      |    |    |    |    |    |    |    |    |    |   | system permease protein                          | permease protein,                                   | system permease protein                            |
|-----------------------|---------|------|---------|-------|---------|------|----|----|----|----|----|----|----|----|----|---|--------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|
| "CJ_10000637"         | CJE1788 | -    | Cj1616  | chuC  | CCO0219 | -    | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | putative haemin uptake<br>system ATP-binding     | hemin ABC transporter,<br>ATP-binding protein,      | iron (III) ABC transporter,<br>ATP-binding protein |
| "CJ_10000639"         | CJE1789 | -    | Cj1617  | chuD  | CCO0218 | -    | 1  | 0  | 0  | 0  | 1  | 0  | 1  | 1  | 0  | 1 | putative haemin uptake<br>system periplasmic     | hemin ABC transporter,<br>periplasmic hemin-binding | iron ABC transporter,<br>periplasmic               |
| "CJ_10000641"         | CJE1790 | -    | Cj1618c | -     | CCO0217 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | hypothetical protein                             | pseudogene pseudogene                               | conserved hypothetical                             |
| HGT 10000 (10H        | CIE1701 | 1 .D | 0:1610  | 1 ./D | GG00215 | 1 (D | -  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 11 1 . 1                                         | 11 1 . 1                                            | protein                                            |
| "CJ_10000642"         | CJE1791 | kgtP | Cj1619  | kgtP  | CCO0215 | kgtP | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | alpha-ketoglutarate<br>permease                  | alpha-ketoglutarate<br>permease                     | dicarboxylic acid transport protein                |
| "CJ_10000643"         | CJE1792 | mutY | Cj1620c | mutY  | CCO0214 | mutY | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 1 | A/G-specific adenine glycosylase                 | A/G-specific adenine<br>glycosylase                 | A/G-specific adenine glycosylase                   |
| "CJ_10000644"         | CJE1793 | -    | Cj1621  | -     | CCO0209 | -    | 1  | 1  | 0  | 1  | 1  | 1  | 0  | 1  | 1  | 1 | putative periplasmic protein                     | hypothetical protein                                | probable periplasmic<br>protein Cj1621             |
| "CJ_10000645"         | CJE1794 | -    | Cj1622  | ribD  | CCO0202 | ribD | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 1 | putative riboflavin-specific<br>deaminase        | riboflavin biosynthesis<br>protein RibD, putative   | riboflavin biosynthesis<br>protein (ribG)          |
| "CJ_10000646"         | CJE1795 | -    | Cj1623  | -     | CCO0201 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 1 | putative membrane protein                        | hypothetical protein                                | probable membrane protein<br>Ci1623                |
| "CJ_10000662"         | CJE1796 | sdaA | Cj1624c | sdaA  | CCO0200 | sdaA | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 1 | L-serine dehydratase                             | L-serine ammonia-lyase                              | L-serine dehydratase 1                             |
| "CJ_10000664"         | CJE1797 | sdaC | Cj1625c | sdaC  | CCO0199 | sdaC | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | serine transporter                               | serine transporter                                  | serine transporter (sdaC)                          |
| "CJ_10000666"         | CJE1798 | -    | Cj1626c | -     | CCO0198 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | putative periplasmic protein                     | hypothetical protein                                | probable periplasmic<br>protein Cj1626c            |
| "CJ_10000668"         | CJE1799 | -    | Cj1627c | -     | CCO0197 | -    | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | hypothetical protein                             | hypothetical protein                                | conserved hypothetical protein                     |
| "CJ_10000670"         | CJE1800 | -    | Cj1628  | exbB2 | CCO0195 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | putative exbB/tolQ family                        | TonB system transport                               | probable exbB/tolQ family                          |
|                       |         |      |         |       |         |      |    |    |    |    |    |    |    |    |    |   | transport protein                                | protein ExbB                                        | transport protein                                  |
| "CJ_10000671"         | CJE1801 | exbD | Cj1629  | exbD2 | CCO0194 | -    | -1 | -1 | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | putative exbD/tolR family<br>transport protein   | biopolymer transport exbD protein                   | tolR protein, putative                             |
| "CJ_10000672"         | CJE1802 | -    | Cj1630  | tonB2 | -       | -    | 0  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | putative tonB transport<br>protein               | pseudogene                                          | -                                                  |
| "CJ_10000673"         | CJE1803 | -    | Cj1631c | -     | CCO0193 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | hypothetical protein                             | hypothetical protein                                | conserved hypothetical protein                     |
| "CJ_10000674"         | CJE1804 | -    | Cj1632c | -     | CCO0192 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1 | putative periplasmic protein                     | hypothetical protein                                | probable periplasmic<br>protein Cj1632c -related   |
| "CJ_10000675"         | CJE1805 | -    | Cj1633  | -     | CCO0191 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | hypothetical protein                             | hypothetical protein                                | conserved hypothetical protein                     |
| "CJ_10000692"         | CJE1806 | aroC | Cj1634c | aroC  | CCO0180 | aroC | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | chorismate synthase                              | chorismate synthase                                 | chorismate synthase                                |
| "CJ_10000694"         | CJE1807 | rncS | Cj1635c | rnc   | CCO0179 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | ribonuclease III                                 | ribonuclease III                                    | ribonuclease III Cj1635c                           |
| "CJ_10000696"         | CJE1808 | rnhA | Cj1636c | rnhA  | CCO0178 | rnhA | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | ribonuclease HI                                  | ribonuclease H                                      | RNase H                                            |
| "CJ_10000698"         | CJE1809 | -    | Cj1637c | -     | CCO0177 | -    | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | putative periplasmic protein                     | hypothetical protein                                | probable periplasmic<br>protein Cj1637c            |
| "CJ_10000700"         | CJE1810 | dnaG | Cj1638  | dnaG  | CCO0176 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | DNA primase                                      | DNA primase                                         | DNA primase, probable<br>CP0919, putative          |
| "opCcV010000<br>1481" | CJE1811 | -    | Cj1639  | -     | CCO0175 | -    | 1  | 1  | 0  | 1  | 1  | 0  | 0  | 1  | -1 | 1 | nifU protein homolog                             | NifU family protein                                 | nifU protein homolog<br>Cj1639                     |
| "CJ_10000701"         | CJE1812 | -    | Cj1640  | -     | CCO0174 | -    | 0  | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | hypothetical protein                             | hypothetical protein                                | conserved hypothetical protein                     |
| "CJ_10000702"         | CJE1813 | murE | Cj1641  | murE  | CCO0173 | murE | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | UDP-N-<br>acetylmuramoylalanyl-D-<br>glutamate2, | UDP-N-<br>acetylmuramoylalanyl-D-<br>glutamate2,    | UDP-N-<br>acetylmuramoylalanyl-D-<br>glutamyl-2,   |
| "CJ_10000703"         | CJE1814 | -    | Cj1642  | -     | CCO0172 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | hypothetical protein                             | hypothetical protein                                | conserved hypothetical<br>protein TIGR00103        |
| "CJ_10000704"         | CJE1815 | -    | Cj1643  | -     | CCO0171 | -    | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1 | putative periplasmic protein                     | PDZ domain protein                                  | probable periplasmic<br>protein Cj1643             |
| "CJ_10000718"         | CJE1816 | ispA | Cj1644  | ispA  | CCO0170 | ispA | 1  | -1 | -1 | -1 | -1 | -1 | -1 | 1  | 1  | 1 | geranyltranstransferase                          | geranyltranstransferase                             | geranyltranstransferase<br>(ispA)                  |

| "CJ_10000720"         | CJE1817 | tkt  | Cj1645  | tkt   | CCO0169 | tkt   | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | transketolase                         | transketolase                     | transketolase                                |
|-----------------------|---------|------|---------|-------|---------|-------|----|----|----|----|----|----|----|----|----|----|---------------------------------------|-----------------------------------|----------------------------------------------|
| "CJ_10000722"         | CJE1818 | -    | Cj1646  | iamB  | CCO0168 | -     | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative ABC transport                | ABC transporter, permease         | conserved hypothetical                       |
| _                     |         |      | j       |       |         |       | 1  |    |    |    |    |    |    |    |    |    | system permease protein               | protein, putative                 | integral membrane                            |
| "CJ_10000724"         | CJE1819 | -    | Cj1647  | iamA  | CCO0167 | -     | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative ABC transport                | ABC transporter, ATP-             | ABC transporter                              |
|                       |         |      |         |       |         |       |    |    |    |    |    |    | 1  |    |    | 1  | system ATP-binding                    | binding protein                   |                                              |
| "CJ_10000726"         | CJE1820 | -    | Cj1648  | -     | CCO0166 | -     | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | possible ABC transport                | ABC transporter,                  | conserved hypothetical                       |
|                       |         |      |         |       |         |       |    |    |    |    |    |    |    |    |    |    | system periplasmic                    | periplasmic substrate-<br>binding | protein                                      |
| "CJ_10000728"         | CJE1821 | -    | Cj1649  | -     | CCO0165 | -     | -1 | 0  | 0  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | putative lipoprotein                  | lipoprotein, putative             | probable lipoprotein Cj1649                  |
| "CJ_10000729"         | CJE1822 | -    | Cj1650  | -     | CCO0164 | -     | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                  | hypothetical protein              | conserved hypothetical protein               |
| "CJ_10000730"         | CJE1823 | map  | Cj1651c | map   | CCO0163 | map   | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | methionine aminopeptidase             | methionine aminopeptidase         | methionine aminopeptidase, type I            |
| "CJ_10000731"         | CJE1824 | murI | Cj1652c | murI  | CCO0162 | murI  | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | glutamate racemase                    | glutamate racemase                | glutamate racemase                           |
| "CJ_10000732"         | CJE1825 | nlpC | Cj1653c | -     | CCO0161 | -     | 1  | 1  | 1  | 1  | 1  | 1  | -1 | -1 | 1  | 1  | probable lipoprotein                  | lipoprotein NlpC                  | lipoprotein, NLP/P60<br>family               |
| "CJ 10000742"         | CJE1826 | -    | Cj1654c | nhaA2 | CCO0158 | nhaA  | 0  | 1  | 1  | 1  | 1  | 0  | -1 | -1 | 1  | 1  | Na(+)/H(+) antiporter                 | Na+/H+ antiporter NhaA            | Na+/H+ antiporter NhaA                       |
| "CJ_10000743"         | CJE1827 | -    | Cj1654c | nhaA3 | CCO0159 | -     | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | Na(+)/H(+) antiporter                 | Na+/H+ antiporter NhaA            | Na+/H+ antiporter Cj1654c                    |
| "CJ_10000744"         | CJE1828 | -    | Cj1654c | nhaA4 | CCO0160 | -     | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | Na(+)/H(+) antiporter                 | Na+/H+ antiporter NhaA            | Na+/H+ antiporter Cj1654c                    |
| "opCjV010000<br>0794" | CJE1829 | -    | -       | -     | -       | -     | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | -1 | -                                     | hypothetical protein              | -                                            |
| "CJ_10000745"         | CJE1830 | -    | Cj1658  | -     | CCO0156 | -     | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative integral membrane protein    | iron permease, FTR1 family        | probable integral membrane<br>protein Cj1658 |
| "CJ_10000746"         | CJE1831 | -    | Cj1659  | p19   | CCO0155 | -     | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | periplasmic protein p19               | hypothetical protein              | periplasmic protein p19<br>Ci1659            |
| "CJ_10000747"         | CJE1832 | -    | Cj1660  | -     | CCO0154 | -     | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 1  | putative integral membrane protein    | hypothetical protein              | probable integral membrane<br>protein Cj1660 |
| "CJ_10000748"         | CJE1833 | -    | Cj1661  | -     | CCO0153 | -     | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | possible ABC transport                | ABC transporter, permease         | ABC transporter, ATP-                        |
| _                     |         |      |         |       |         |       |    |    |    |    |    |    |    |    |    |    | system permease protein               | protein                           | binding protein, putative                    |
| "CJ_10000749"         | CJE1834 | -    | Cj1662  | -     | CCO0152 | -     | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative integral membrane<br>protein | ABC transporter, permease protein | permease protein, putative                   |
| "CJ_10000750"         | CJE1835 | -    | Cj1663  | -     | CCO0151 | -     | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative ABC transport                | ABC transporter, ATP-             | ABC transporter, ATP-                        |
|                       |         |      | _       |       |         |       |    |    |    |    |    |    |    |    |    |    | system ATP-binding                    | binding protein                   | binding protein                              |
| "CJ_10000751"         | CJE1836 | -    | Cj1664  | -     | CCO0150 | -     | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | possible periplasmic thiredoxin       | thiredoxin, homolog               | probable periplasmic<br>thiredoxin Cj1664    |
| "CJ_10000771"         | CJE1837 | -    | Cj1665  | -     | CCO0149 | -     | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 0  | 0  | 1  | possible lipoprotein<br>thiredoxin    | thioredoxin family protein        | thioredoxin, putative                        |
| "CJ_10000772"         | CJE1838 | -    | Cj1666c | -     | -       | -     | 1  | 1  | 1  | 1  | -1 | -1 | 1  | -1 | 1  | -1 | putative periplasmic protein          | hypothetical protein              | -                                            |
| "CJ_10000773"         | CJE1839 | -    | Cj1667c | -     | -       | -     | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 0  | 1  | 1  | repA protein homolog                  | hypothetical protein              | -                                            |
| "CJ_10000774"         | CJE1840 | -    | Cj1668c | -     | -       | -     | 1  | 1  | 1  | 1  | 0  | 0  | -1 | 0  | 1  | 1  | putative periplasmic protein          | hypothetical protein              | -                                            |
| "CJ_10000775"         | CJE1841 | -    | Cj1669c | -     | CCO1793 | -     | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | putative ATP-dependent<br>DNA ligase  | DNA ligase                        | DNA ligase                                   |
| "CJ_10000776"         | CJE1842 | -    | Cj1670c | -     | CCO1794 | -     | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | putative periplasmic protein          | hypothetical protein              | probable periplasmic<br>protein Cj1670c      |
| "CJ_10000777"         | CJE1843 | -    | Cj1671c | -     | CCO1795 | -     | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                  | hypothetical protein              | conserved hypothetical protein               |
| "CJ_10000778"         | CJE1844 | eno  | Cj1672c | eno   | CCO1796 | eno   | 1  | -  | 1  | -1 | 1  | -1 | 1  | -1 | 1  | 0  | enolase                               | phosphopyruvate hydratase         | enolase                                      |
| "CJ_10000779"         | CJE1845 | recA | Cj1673c | recA  | CCO1797 | recA  | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | recA protein                          | recombinase A                     | recA protein                                 |
| "CJ_10000780"         | CJE1846 | -    | Cj1674  | -     | CCO1798 | -     | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                  | hypothetical protein              | conserved hypothetical protein               |
| "CJ_10001473"         | CJE1847 | fliQ | Cj1675  | fliQ  | CCO1799 | fliQ  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | flagellar biosynthetic<br>protein     | flagellar biosynthesis<br>protein | flagellar biosynthetic<br>protein FliQ       |
| "CJ_10001475"         | CJE1848 | murB | Cj1676  | murB  | CCO1800 | murB2 | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 0  | 1  | 1  | putative UDP-N-                       | UDP-N-                            | UDP-N-                                       |
|                       |         |      |         |       |         |       |    | 1  |    |    |    |    | 1  |    |    | 1  | acetylenolpyruvoylglucosa             | acetylenolpyruvoylglucosa         | acetoenolpyruvoylglucosam                    |

| The color   The  |               | T       | 1     | 1        |       | 1       | 1     | 1 | ı        | 1  | 1 | ı        | 1        | 1  | I |          | 1 | I:                        | mine reductase               | ine reductase           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------|-------|----------|-------|---------|-------|---|----------|----|---|----------|----------|----|---|----------|---|---------------------------|------------------------------|-------------------------|
| Cum    "CT 10001402" | CIE1040 | -     | C:1600-  | +     | CCO1902 |       | 1 | 1        | 1  | 1 | 0        | 1        | 1  | 1 | 1        | 1 |                           |                              |                         |
| Company   Comp | _             |         | _     | ,        | _     |         | -     | 1 | 1        | 1  | 1 | U        | 1        | 1  | 1 | 1        | 1 |                           |                              | protein Cj1680c         |
| C7_0001497   C81831   BIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | "CJ_10001485" | CJE1850 | cysQ  | Cj1681c  | cysQ  | CCO1803 | -     | 1 | 1        | 1  | 1 | 1        | 1        | 1  | 1 | 0        | 1 | cysQ protein homolog      | CysQ                         |                         |
| C.   1001489   C.   1585   C.   C.   C.   C.   C.   C.   C.   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | "CT 10001407" | CIE1051 | -1+ A | C:1692-  | -14 A | CCO1904 | -14 A | 1 | 1        | 1  | 1 | 1        | 1        | 0  |   | 1        | 1 | -:444                     | -14441                       |                         |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |         | gitA  | - 3      | gitA  |         | gitA  | 1 | 1        | 1  | 1 | 1        | 1        | 1  | 1 | 1        | 1 | ,                         |                              |                         |
| To   10019197   CERSS   1808   CERSS   1808   CERSS   1808   CERSS   1809   CERSS   CERSS   1809   CERSS   1809   CERSS   CERSS   1809   CERSS   1809   CERSS   C | "CJ_10001489" | CJE1852 | -     | Cj1684c  | -     | CCO1805 | -     | 1 | 1        | 1  | 1 | 1        | 1        | 1  | 1 | 1        | 1 | 1                         |                              | *                       |
| CEISS   CEISS   COUNTY   CEISS   COUNTY   COUN | HGY 100011011 | CVE1050 | 1     | G:1 co.  | 1     | 0001006 | 1     | - | <b>.</b> |    |   | <u> </u> |          |    |   |          |   |                           | J 1                          |                         |
| C.   C.   C.   C.   C.   C.   C.   C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |         |       |          |       |         |       | 1 | 1        | 1  | 1 | 1        | 1        | 1  | 1 | 1        | 1 | 1 1                       | ·                            | ,                       |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |         | topA  |          | topA  |         | topA  | 1 | 1        | 1  | 1 | 1        | 0        | 1  | 0 | 1        | 1 |                           |                              |                         |
| Column   C | "CJ_10001505" | CJE1855 | -     | Cj1687   | -     | CCO1808 | -     | 0 | 1        | 0  | 1 | 1        | 1        | 1  | 1 | 1        | 1 | putative efflux protein   | 3                            |                         |
| Secondary   Company   Co | #GY 10001505# | GTT1056 | **    | G:1 coo  | **    | 0001000 |       | - | <u> </u> |    |   | <u> </u> | <b>!</b> |    |   | <b>.</b> |   |                           | 1 71                         | - <b>J</b>              |
| C.   1001599   C.   C.   C.   C.   C.   C.   C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | "CJ_1000150/" | CJE1856 | sec Y | Cj1688c  | sec Y | CCO1809 | -     | 1 | 1        | 0  | 1 | 1        | 1        | 1  | 1 | 1        | 1 |                           | preprotein translocase Sec Y | 1 1                     |
| Forestand   CEISSS   PR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | ~~~     |       |          |       | ~~~     |       |   | <u> </u> |    |   | <u> </u> | <u> </u> |    |   |          |   |                           |                              |                         |
| 0.001512   CE1859   mpR   C,1691c   mpR   CC01812   mpR   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |         |       |          |       |         |       | 0 | 1        | 1  | + | 1        | 1        | 1  | 1 | 1        | 1 |                           |                              |                         |
| CJ_10001512  CJE1850   rps   CJ1690c   rps   |               | CJE1858 | rpsE  | Cj1690c  | rpsE  | CCO1811 | rpsE  | 1 | 1        | 1  | 1 | 1        | 1        | 1  | 1 | 1        | 1 | 30S ribosomal protein S5  | 30S ribosomal protein S5     | ribosomal protein S5    |
| Columbia                  | GTT1050 | 170   | G:1 co.1 | 170   | 0001012 | ID.   | - | <b>.</b> | ٠. |   | <b>.</b> | -        |    |   | l .      | - | 500 7 1 1 1 1 1 1 1 1     | 500 11 1 1 1 1 1 1 1         |                         |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |         |       |          |       |         | rpIR  | 1 | 1        | 1  | 1 | -        | 1        | 1  | 1 | 1        | 1 |                           |                              |                         |
| Topic   Column   Co | "CJ_10001514" | CJE1860 | rplF  | Cj1692c  | rplF  | CCO1813 | -     | 1 | 1        | 1  | 1 | 1        | 1        | 1  | 1 | 1        | 1 | 50S ribosomal protein L6  | 50S ribosomal protein L6     |                         |
| GS   CS   CS   CS   CS   CS   CS   CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | "CJ_10001516" | CJE1861 | rpsH  | Cj1693c  | rpsH  | CCO1814 | rpsH  | 1 | 1        | 1  | 1 | 1        | 1        | 1  | 1 | 1        | 1 | 30S ribosomal protein S8  | 30S ribosomal protein S8     | ribosomal protein S8    |
| CF   CF   CF   CF   CF   CF   CF   CF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | CJE1862 | rpsN  | Cj1694c  | rpsN  | CCO1815 | rpsN  | 1 | 1        | 1  | 1 | 1        | 1        | 1  | 1 | 1        | 1 | 30S ribosomal protein S14 | ribosomal protein S14        |                         |
| 1944   C  161865   ppX   C  16197c   ppX   C  16217   p | "CJ_10001519" | CJE1863 | rplE  | Cj1695c  | rplE  | CCO1816 | -     | 1 | 1        | 1  | 1 | 1        | 1        | 1  | 1 | 1        | 0 | 50S ribosomal protein L5  | 50S ribosomal protein L5     |                         |
| CL   1000 1542"   CE   1866   TPS   C   1699k   TPS   CC   1699k   TPS   TPS   TPS   TPS   TPS   CC   1699k   TPS   TPS   TPS   CC   1699k   TPS   TPS   TPS   CC   1699k   TPS   |               | CJE1864 | rplN  | Cj1696c  | rplN  | CCO1818 | rplN  | 1 | 1        | 1  | 1 | 1        | 1        | 1  | 1 | 1        | 1 | 50S ribosomal protein L24 | 50S ribosomal protein L24    | ribosomal protein L14   |
| CJ   10001544    CJ   1868   mpl   C   1699   mpc   C   1690   mpl   C   1690   mpl   C   1690   mpl   C   1690   mpl   C   C   1690   mpl   | "CJ_10001540" | CJE1865 | rplX  | Cj1697c  | rplX  | CCO1817 | rplX  | 1 | 1        | 1  | 1 | 1        | 1        | 1  | 1 | 1        | 1 | 50S ribosomal protein L14 | 50S ribosomal protein L14    | ribosomal protein L24   |
| C1   1001546   C1   1868   mp   C1   1700c   mp   C1   | "CJ_10001542" | CJE1866 | rpsQ  | Cj1698c  | rpsQ  | CCO1819 | rpsQ  | 1 | 1        | 1  | 1 | 1        | 1        | 1  | 1 | 1        | 1 | 30S ribosomal protein S17 | 30S ribosomal protein S17    | ribosomal protein S17   |
| CJ_1001548"   CJE1869   rgsC   Cj170c   rgsC   CC01822   rgsC   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | "CJ_10001544" | CJE1867 | rpmC  | Cj1699c  | rpmC  | CCO1820 | rpmC  | 1 | 1        | 1  | 1 | 1        | 1        | 1  | 1 | 1        | 1 | 50S ribosomal protein L29 | 50S ribosomal protein L29    | ribosomal protein L29   |
| "CJ_10001550" CJE1871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | "CJ_10001546" | CJE1868 | rplP  | Cj1700c  | rplP  | CCO1821 | rplP  | 1 | 1        | 1  | 1 | 1        | 1        | 1  | 1 | 1        | 1 | 50S ribosomal protein L16 | 50S ribosomal protein L16    | ribosomal protein L16   |
| CL_10001552"   CLEIR71   TPS   CJ1702c   TPS   CC1824   TPS   TP | "CJ_10001548" | CJE1869 | rpsC  | Cj1701c  | rpsC  | CCO1822 | rpsC  | 1 | 1        | 1  | 1 | 1        | 1        | 1  | 0 | 1        | 1 | 30S ribosomal protein S3  | 30S ribosomal protein S3     | ribosomal protein S3    |
| "C_10001553"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | "CJ_10001550" | CJE1870 | rplV  | Cj1702c  | rplV  | CCO1823 | -     | 1 | 1        | 1  | 1 | 1        | 1        | 1  | 1 | 1        | 1 | 50S ribosomal protein L22 | 50S ribosomal protein L22    |                         |
| "CJ_10001556" CJE1873                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | "CJ 10001552" | CJE1871 | rpsS  | Cj1703c  | rpsS  | CCO1824 | rpsS  | 1 | 1        | 1  | 1 | 1        | 1        | 1  | 1 | 1        | 1 | 30S ribosomal protein S19 | 30S ribosomal protein S19    | ribosomal protein S19   |
| "CJ_10001556" CJE1873                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | "CJ 10001553" | CJE1872 | rplB  | Ci1704c  | rplB  | CCO1825 | rplB  | 1 | 1        | 1  | 1 | 1        | 1        | 1  | 1 | 1        | 1 | 50S ribosomal protein L2  | 50S ribosomal protein L2     | ribosomal protein L2    |
| "CJ_10001576" CJE1874 rplD Cj1706c rplD 1 1 1 1 1 1 1 1 1 1 1 50S ribosomal protein L4 50S ribosomal protein L3 50S ribosomal protein S10 50S ribosomal protein S10 50S ribosomal protein S10 50   | "CJ 10001556" | CJE1873 | rplW  | Cj1705c  | rplW  | CCO1826 | rplW  | 1 | 1        | 1  | 1 | 1        | 1        | 1  | 0 | 1        | 1 | 50S ribosomal protein L23 | 50S ribosomal protein L23    | ribosomal protein L23   |
| "CZ_10001570"         CJE1875         rplC         Cj1707c         rplC         -         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <t< td=""><td>"CJ 10001568"</td><td>CJE1874</td><td>•</td><td>Ci1706c</td><td>-</td><td>-</td><td>+ *</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>50S ribosomal protein L4</td><td>*</td><td>-</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | "CJ 10001568" | CJE1874 | •     | Ci1706c  | -     | -       | + *   | 1 | 1        | 1  | 1 | 1        | 1        | 1  | 1 | 1        | 1 | 50S ribosomal protein L4  | *                            | -                       |
| "OPC_V010000   CJE1876   rpsJ   CJ1708c   rpsJ   CC00002   rpsJ   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |         |       |          |       | -       | -     | 1 | 1        | 1  | 1 | 1        | 1        | 1  | 1 | 1        | 1 |                           | *                            | -                       |
| "opCjV010000 0962"         CJE1877         -         -         -         -         0         1         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td></td> <td>CJE1876</td> <td>-</td> <td>Cj1708c</td> <td></td> <td>CCO0002</td> <td>rpsJ</td> <td>1</td> <td>•</td> <td></td> <td>ribosomal protein S10</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | CJE1876 | -     | Cj1708c  |       | CCO0002 | rpsJ  | 1 | 1        | 1  | 1 | 1        | 1        | 1  | 1 | 1        | 1 | •                         |                              | ribosomal protein S10   |
| "CJ_10001573"         CJE1878         -         Cj1709c         -         CCO0003         -         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <t< td=""><td>"opCjV010000</td><td>CJE1877</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>0</td><td>1</td><td>0</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>-</td><td>hypothetical protein</td><td>-</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | "opCjV010000  | CJE1877 | -     | -        | -     | -       | -     | 0 | 1        | 0  | 1 | 1        | 1        | 1  | 1 | 1        | 1 | -                         | hypothetical protein         | -                       |
| "CJ_10001575"         CJE1879         -         Cj1710c         -         CC00004         -         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <t< td=""><td></td><td>CJE1878</td><td>-</td><td>Cj1709c</td><td>-</td><td>CCO0003</td><td>-</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | CJE1878 | -     | Cj1709c  | -     | CCO0003 | -     | 1 | 1        | 1  | 1 | 1        | 1        | 1  | 1 | 1        | 1 |                           |                              |                         |
| "CJ_10001577"         CJE1880         ksgA         Cj1711c         ksgA         CC00005         ksgA         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | "CJ_10001575" | CJE1879 | -     | Cj1710c  | -     | CCO0004 | -     | 1 | 1        | 1  | 1 | 1        | 1        | 1  | 1 | 1        | 1 |                           | metallo-beta-lactamase       | conserved hypothetical  |
| "CJ_10001579" CJE1881 - Cj1712 - CC00006 - 1 1 1 1 1 1 1 1 1 1 1 1 hypothetical protein hypothetical protein purine nucleoside phosphorylase (punB)  "CJ_10001581" CJE1882 - Cj1713 - CC00007 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 hypothetical protein pradical SAM enzyme, Cfr family                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | "CJ_10001577" | CJE1880 | ksgA  | Cj1711c  | ksgA  | CCO0005 | ksgA  | 1 | 1        | 1  | 1 | 1        | 1        | 1  | 0 | 1        | 1 |                           | dimethyladenosine            | dimethyladenosine       |
| "CJ_10001581" CJE1882 - Cj1713 - CCO0007 - 1 1 1 1 1 1 1 1 1 1 1 hypothetical protein radical SAM enzyme, Cfr family radical SAM enzyme, Cfr family                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | "CJ_10001579" | CJE1881 | -     | Cj1712   | -     | CCO0006 | -     | 1 | 1        | 1  | 1 | 1        | 1        | 1  | 1 | 1        | 1 | `                         |                              | purine nucleoside       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | "CJ_10001581" | CJE1882 | -     | Cj1713   | -     | CCO0007 | -     | 1 | 1        | 1  | 1 | 1        | 1        | 1  | 1 | 1        | 1 | hypothetical protein      |                              | radical SAM enzyme, Cfr |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | "CJ_10001583" | CJE1883 | +-    | Ci1714   | +-    | CCO0008 | +     | 1 | 1        | 1  | 1 | 0        | 1        | -1 | 1 | 1        | 1 | small hydrophobic protein |                              |                         |

| 0081" "CJ_10001585" CI          | CJE1884 | -    | -       | -      | -       | -    | -1 | -1 | 1  | -1 | 1  | 1  | 1  | 1  | 0  | 1  | _                                                 | lipopolysaccharide core                         |                                                     |
|---------------------------------|---------|------|---------|--------|---------|------|----|----|----|----|----|----|----|----|----|----|---------------------------------------------------|-------------------------------------------------|-----------------------------------------------------|
| _                               | TE1005  |      |         |        |         |      |    |    |    |    | _  | 1  |    | 1  | U  | 1  |                                                   | biosynthesis protien,                           | -                                                   |
|                                 | CJE1885 | -    | Cj1715  | -      | CCO0014 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative acetyltransferase                        | acetyltransferase, GNAT family                  | acetyltransferase, GNAT family, putative            |
| "opCcV010000 CI<br>1061"        | CJE1886 | leuD | Cj1716c | leuD   | CCO0015 | leuD | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative 3-isopropylmalate<br>dehydratase small   | 3-isopropylmalate<br>dehydratase, small subunit | 3-isopropylmalate<br>dehydratase, small subunit     |
| "opCcV010000 Cl<br>0744"        | CJE1887 | leuC | Cj1717c | leuC   | CCO0016 | leuC | 1  | -1 | 0  | -1 | 1  | -1 | -1 | 1  | 1  | 1  | 3-isopropylmalate<br>dehydratase large subunit    | isopropylmalate isomerase<br>large subunit      | 3-isopropylmalate<br>dehydratase, large subunit     |
| "CJ_10000014" C.                | CJE1888 | leuB | Cj1718c | leuB   | CCO0017 | leuB | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 3-isopropylmalate<br>dehydrogenase                | 3-isopropylmalate<br>dehydrogenase              | 3-isopropylmalate<br>dehydrogenase                  |
| "CJ_10000016" C.                | CJE1889 | leuA | Cj1719c | leuA   | CCO0018 | leuA | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 2-isopropylmalate synthase                        | 2-isopropylmalate synthase                      | 2-isopropylmalate synthase                          |
| "CJ_10000018" C.                | CJE1890 | -    | Cj1720  | -      | CCO0019 | -    | -1 | 1  | -1 | -1 | -1 | -1 | 1  | 1  | 1  | 1  | hypothetical protein                              | hypothetical protein                            | conserved hypothetical protein                      |
| "CJ_10000019" C.                | CJE1891 | -    | Cj1721c | -      | CCO0020 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | possible outer membrane protein                   | hypothetical protein                            | probable outer membrane<br>protein Cj1721c          |
| "CJ_10000021" C.                | CJE1892 | -    | Cj1724c | -      | CCO0022 | -    | 1  | 0  | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                              | GTP cyclohydrolase I family protein             | GTP cyclohydrolase I subfamily, putative            |
| "opCcV010000 Cl<br>0585"        | CJE1893 | -    | Cj1725  | -      | CCO0023 | -    | 1  | 1  | -1 | 1  | 1  | -1 | -1 | -1 | 1  | 1  | putative periplasmic protein                      | hypothetical protein                            | probable periplasmic<br>protein Cj1725              |
| "CJ_10000037" C.                | CJE1894 | metA | Cj1726c | metA   | CCO0024 | metA | 0  | 0  | -1 | 1  | 1  | 1  | 1  | -1 | 1  | 1  | putative homoserine O-                            | homoserine O-                                   | homoserine O-                                       |
|                                 |         |      |         |        |         |      |    |    |    |    |    |    |    |    |    |    | succinyltransferase                               | succinyltransferase                             | succinyltransferase                                 |
| "opCcV010000 CI                 | CJE1895 | metX | Cj1727c | metY   | CCO0027 | metC | 0  | 1  | -1 | 1  | 1  | -1 | 1  | -1 | 1  | 1  | putative O-<br>acetylhomoserine (thiol)-<br>lyase | homoserine O-<br>acetyltransferase              | O-acetylhomoserine<br>sulfhydrylase                 |
| "CJ_10000041" C                 | CJE1896 | -    | Cj1729c | flgE2  | CCO0029 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | flagellar hook subunit<br>protein                 | flagellar hook protein                          | flagellar hook protein FlgE                         |
| "opCcV010000 CI                 | CJE1897 | ruvC | Cj1731c | ruvC   | CCO0031 | ruvC | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | crossover junction<br>endodeoxyribonuclease       | Holliday junction resolvase                     | crossover junction<br>endodeoxyribonuclease<br>RuvC |
| "CJ_10000460" -                 |         | -    | -       | virB8  | -       | -    | 1  | -1 | 1  | 0  | 1  | -1 | 1  | 1  | 0  | 0  | VirB8                                             | -                                               | -                                                   |
| "CJ_10000461" -                 |         | -    | -       | virB9  | -       | -    | 1  | 1  | 0  | 1  | 1  | 0  | 1  | 1  | 1  | 1  | VirB9                                             | -                                               | -                                                   |
| "CJ_10000462" -                 |         | -    | -       | virB10 | -       | -    | 1  | 1  | 1  | 1  | 0  | 1  | 1  | -1 | 1  | 1  | VirB10                                            | -                                               | -                                                   |
| "CJ_10000464" -                 |         | -    | -       | virB11 | -       | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | VirB11                                            | -                                               | -                                                   |
| "CJ_10000465" -                 |         | -    | -       | virD4  | -       | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 0  | VirD4                                             | -                                               | -                                                   |
| "CJ_10000753" -                 |         | -    | -       | topA   | -       | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | -1 | 1  | 0  | TopA                                              | -                                               | -                                                   |
| "CJ_10000756" -                 |         | -    | -       | ssb    | -       | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | -1 | 1  | Ssb                                               | -                                               | -                                                   |
| "CJ_10000803" -                 |         | -    | -       | repA   | -       | -    | -1 | 1  | 1  | 1  | -1 | 1  | 1  | 0  | 0  | -1 | pseudogene                                        | -                                               | -                                                   |
| "CJ_10000877" -                 |         | -    | -       | virB4  | -       | -    | 0  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 0  | VirB4                                             | -                                               | -                                                   |
| "CJ_10001589" -                 |         | -    | -       | repA   | -       | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 0  | 1  | putative replication protein<br>A                 | -                                               | -                                                   |
| "CJ_10001592" -                 |         | -    | -       | repB   | -       | -    | 1  | 1  | 0  | 0  | 0  | 1  | 0  | 1  | 1  | 1  | replication protein B                             | -                                               | -                                                   |
| "CJ_10001594" -                 |         | -    | -       | orf4   | -       | -    | 1  | 1  | 0  | -1 | -1 |    | -1 | 1  | 1  | 1  | unknown                                           | -                                               | -                                                   |
| "CJ_10001595" -                 |         | -    | -       | orf3   | -       | -    | 1  | 1  | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 0  | unknown                                           | -                                               | -                                                   |
| "CJ_10001532" -                 |         | -    | Cj0008  | -      | -       | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | hypothetical protein                              | -                                               | -                                                   |
| "CJ_10000625" -                 |         | -    | Cj0170  | -      | -       | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | hypothetical protein                              | -                                               | -                                                   |
| "CJ_10000626" -                 |         | -    | Cj0171  | -      | -       | -    | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 0  | 1  | 1  | hypothetical protein                              | -                                               | -                                                   |
| "CJ_10001504" -                 |         | -    | Cj0260c | -      | -       | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | small hydrophobic protein                         | -                                               | -                                                   |
| "CJ_10001534" -                 |         | -    | Cj0265c | -      | -       | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 0  | 1  | -1 | putative cytochrome C-type<br>haem-binding        | -                                               | -                                                   |
| "opCjjV010000 -<br>018"         |         | -    | Cj0416  | -      | -       | -    | 1  | 1  | -1 | 1  | -1 | 1  | 1  | -1 | 1  | 1  | hypothetical protein                              | -                                               | -                                                   |
|                                 |         | 1    | Ci0417  | 1 _    | I -     | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | hypothetical protein                              | -                                               | -                                                   |
| "CJ_10000875" - "CJ_10000886" - |         | -    | Cj0417  | _      |         |      | 1  | 1  |    |    | -1 | -1 |    | -1 |    |    | putative integral membrane                        |                                                 |                                                     |

| "CJ_10000887"         | - | -   | Cj0424  | -     | - | - | 1  | 1  | 1  | 1  | 1  | 1  | -1 | -1 | 1  | 1  | putative acidic periplasmic protein      | - | - |
|-----------------------|---|-----|---------|-------|---|---|----|----|----|----|----|----|----|----|----|----|------------------------------------------|---|---|
| "CJ 10000888"         | - | -   | Ci0425  | -     | - | - | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative periplasmic protein             | - | - |
| "CJ 10000869"         | - | -   | Ci0565  | -     | - | - | 1  | 1  | 1  | -1 | -1 | 0  | -1 | -1 | -1 | -1 | pseudogene                               | - | - |
| "CJ 10000871"         | - | -   | Ci0566  | -     | _ | - | 0  | 1  | 1  | 1  | -1 | 1  | 1  | 0  | -1 | 1  | hypothetical protein                     | - | - |
| "CJ 10000873"         | - | -   | Cj0567  | -     | - | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | hypothetical protein                     | - | - |
| "CJ 10000876"         | - | -   | Cj0568  | -     | - | - | 1  | 1  | 1  | -1 | -1 | 1  | 1  | -1 | 1  | 1  | hypothetical protein                     | - | - |
| "CJ 10000880"         | - | -   | Cj0569  | -     | - | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | hypothetical protein                     | - | - |
| "CJ 10001016"         | - | -   | Ci0628  | -     | - | - | 1  | 1  | 1  | 1  | 0  | -1 | 1  | -1 | -1 | -1 | putative lipoprotein                     | - | - |
| "opCjjV010000         | - | -   | Ci0629  | -     | - | - | 1  | 1  | 0  | 1  | -1 | -1 | 1  | -1 | 1  | 1  | putative lipoprotein                     | - | - |
| 135"                  |   |     | 3       |       |   |   |    |    |    |    |    |    |    |    |    |    | r ·····                                  |   |   |
| "CJ 10000912"         | - | -   | Ci0747  | -     | - | - | 0  | -1 | 1  | 1  | -1 | 1  | 1  | 0  | 1  | 1  | hypothetical protein                     | - | - |
| "CJ_10000913"         | - | -   | Ci0748  | -     | - | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | hypothetical protein                     | - | - |
| "opCjjV010000<br>102" | - | -   | Cj0873c | -     | - | - | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | hypothetical protein                     | - | - |
| "CJ 10000254"         | - | -   | Ci0876c | -     | - | - | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | putative periplasmic protein             | - | - |
| "opCjjV010000         | _ | _   | Ci0877c | _     | - | _ | 1  | 1  | 0  | 1  | 1  | -1 | 0  | 0  | 1  | 1  | hypothetical protein                     | - | - |
| 034"<br>"opCjjV010000 |   | _   | Cj0969  |       |   |   |    | 1  | 1  | 1  | 0  | 1  | 1  | 0  | 1  | 1  |                                          |   |   |
| 204"                  | - | -   | ,       | -     | - | - |    |    | 1  |    |    | 1  | 1  |    | 1  | 1  | pseudogene                               | - | - |
| "CJ_10001208"         | - | -   | Cj0987c | -     | - | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | putative integral membrane protein       | - | - |
| "opCjjV010000<br>207" | i | -   | Cj0988c | -     | i | - | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | -                                        | - | - |
| "CJ_10001419"         | - | -   | Cj1055c | -     | - | - | 1  | 1  | 1  | 1  | -1 | -1 | 1  | 1  | 1  | 1  | putative integral membrane protein       | - | - |
| "CJ_10001116"         | - | -   | Cj1122c | wlaJ  | - | - | 0  | 1  | 1  | 1  | -1 | 1  | -1 | -1 | 1  | 1  | putative integral membrane<br>protein    | - | - |
| "CJ_10001159"         | - | -   | Cj1136  | -     | - | - | -1 | 1  | 1  | -1 | -1 | -1 | 1  | 1  | 1  | 1  | putative<br>galactosyltransferase        | - | - |
| "CJ_10001160"         | - | -   | Cj1137c | -     | - | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | -1 | 1  | hypothetcal protein Cj1137c              | - | - |
| "CJ 10001194"         | - | -   | Cj1138  | -     | - | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | putative                                 | - | - |
| _                     |   |     |         |       |   |   |    |    |    |    |    |    |    |    |    |    | galactosyltransferase                    |   |   |
| "CJ_10001198"         | - | -   | Cj1140  | -     | - | - | 0  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | hypothetical protein                     | - | - |
| "CJ_10001200"         | - | -   | Cj1141  | neuB1 | - | - | 1  | 1  | 1  | 1  | -1 | -1 | -1 | -1 | 1  | 1  | N-acetylneuraminic acid<br>synthetase    | - | - |
| "CJ_10001202"         | - | -   | Cj1142  | neuC1 | - | - | 1  | 1  | 1  | 1  | 1  | 1  | 0  | -1 | 1  | 1  | putative N-                              |   | - |
|                       |   |     |         |       |   |   |    |    |    |    |    |    |    |    |    |    | acetylglucosamine-6-<br>phosphate        |   |   |
| "CJ_10001203"         | - | -   | Cj1143  | neuA1 | - | - | 1  | 1  | -1 | 1  | -1 | -1 | 0  | -1 | 1  | -1 | acylneuraminate<br>cytidylyltransferase  | - | - |
| "CJ 10001204"         | - | 1 - | Cj1144c | -     | - | - | 1  | 1  | 1  | -1 | -1 | 1  | 1  | 1  | 1  | -1 | hypothetical protein                     | - | - |
| "CJ 10001205"         | - | -   | Cj1145c | -     | - | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 0  | 1  | -1 | hypothetical protein                     | - | - |
| "CJ_10001270"         | - | -   | Cj1301  | -     | - | - | 1  | -1 | 1  | 1  | -1 | 1  | -1 | 1  | 1  | 1  | hypothetical protein                     | - | - |
| "CJ_10001336"         | - | -   | Cj1321  | -     | - | - | 1  | 1  | 1  | 1  | -1 | 0  | 1  | -1 | 1  | 1  | putative transferase                     | - | - |
| "CJ_10001339"         | - | -   | Cj1322  | -     | - | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | hypothetical protein                     | - | - |
| "CJ_10001342"         | - | -   | Cj1323  | -     | - | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | -1 | hypothetical protein                     | - | - |
| "CJ_10001344"         | - | -   | Cj1324  | -     | - | - | 1  | 1  | -1 | 1  | -1 | 1  | 1  | -1 | 1  | 1  | hypothetical protein                     | - | - |
| "CJ_10001345"         | - | -   | Cj1325  | -     | - | - |    | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | hypothetical protein                     | - | - |
| "CJ_10001346"         | - | -   | Cj1326  | -     | - | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | hypothetical protein                     | - | - |
| "CJ_10000499"         | - | -   | Cj1415c | cysC  | - | - | 1  | 1  | 1  | 1  | -1 | 1  | 0  | -1 | 1  | 1  | possible adenylylsulfate<br>kinase       | - | - |
| "CJ_10000500"         | - | -   | Cj1416c | -     | - | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | putative sugar<br>nucleotidyltransferase | - | - |

| Commonweight   Comm   |               |   |          |         |      |   |          |    |    |    |          |          |         |          |          |          |          |                              |   |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---|----------|---------|------|---|----------|----|----|----|----------|----------|---------|----------|----------|----------|----------|------------------------------|---|---|
| Company   Comp   | "CJ_10000501" | - | -        | Cj1417c | -    | - | -        | 1  | 1  | 1  | 1        | -1       | 1       | 1        | -1       | 1        | 1        | hypothetical protein         | - | - |
| "C1 1000550"   C1   C1   C1   C1   C1   C1   C1   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | "CJ_10000502" | - | -        | Cj1418c | -    | - | -        | 1  | 1  | 1  | 1        | -1       | 1       | 1        | -1       | 1        | -1       |                              | - | - |
| "C1 1000550"   C1   C1   C1   C1   C1   C1   C1   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | "CJ_10000503" | - | -        | Cj1419c | -    | - | -        | 1  | 1  | 1  | 1        | -1       | 1       | 1        | -1       | 1        | 1        | possible methyltransferase   | - | - |
| Composition      | "CJ_10000504" | - | -        | Cj1420c | -    | - | -        | 1  | 1  | 1  | 1        | 1        | 1       | 1        | -1       | 1        | 1        |                              | - | - |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | "CJ_10000505" | - | -        | Cj1421c | -    | - | -        | 1  | 1  | 1  | 1        | -1       | 1       | -1       |          | -1       | -1       | possible sugar transferase   | - | - |
| Column   C   | "CJ_10000506" | - | -        | Cj1422c | -    | - | -        | 1  | 1  | 1  | 1        |          | 1       | 1        | -1       | 1        | 1        | possible sugar transferase   | - | - |
| Control   Cont   | "CJ_10000529" | - | -        | Cj1426c | -    | - | -        |    | 1  | 0  | 1        | 1        | 1       | -1       | -1       | 1        | 1        | hypothetical protein         | - | - |
| Composition      | "CJ_10000530" | - | -        | Cj1427c | -    | - | -        |    | 1  | 1  | 1        | -1       | -1      | 1        | -1       | 1        | 1        | putative sugar-nucleotide    | - | - |
| C.     C.     C.     C.     C.     C.     C.     C.     C.   C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.   | "CJ_10000531" | - | -        | Cj1428c | fcl  | - | -        | 1  | 1  | 1  | 1        | 1        | 0       | 1        | -1       | 1        | 1        | putative fucose synthetase   | - | - |
| C.     C.     C.     C.     C.     C.     C.     C.     C.   C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.     C.   | "CJ_10000532" | - | -        | Cj1429c | -    | - | -        | -1 | 1  | 1  | 1        | -1       | 1       | 1        | -1       | 1        | 1        | hypothetical protein         | - | - |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | "CJ_10000533" | - | -        | Cj1430c | -    | - | -        | 1  | 1  | 1  | 1        | 1        | 1       | -1       | -1       | 1        | 1        |                              | - | - |
| C   1000555   .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _             |   |          |         |      |   |          |    |    |    |          |          |         |          |          |          |          |                              |   |   |
| C   1000555     C   C   1438   C   C   C   C   C   C   C   C   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | "CJ_10000534" | - | -        | Cj1431c | -    | - | -        | 1  | 1  | 1  | 1        | 1        | -1      | -1       | -1       | 1        | 1        | hypothetical protein         | - | - |
| C   1000555   .   C   1486   .   .   .   .   .   .   .   .   .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | "CJ_10000535" | - | -        | Cj1432c | -    | - | -        | 1  | 1  | 1  | 1        | -1       | -1      | -1       | -1       | 1        | 1        | putative sugar transferase   | - | - |
| C.   1.000556   -   C.   C.   C.   C.   C.   C.   C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | "CJ_10000553" | - | -        | Cj1433c | -    | - | -        | 1  | 1  | 1  | 1        | -1       | 1       | 1        | 1        | 1        | -1       | hypothetical protein         | - | - |
| Fig.      | "CJ_10000554" | - | -        | Cj1434c | -    | - | -        |    | 1  | 0  | 1        | 1        | 1       | 1        | -1       | 1        | 1        | putative sugar transferase   | - | - |
| Colorosis   Color      | "CJ_10000556" | - | -        | Cj1435c | -    | - | -        | 1  | 1  | 0  | -1       | -1       | 1       | 1        | -1       | 1        | -1       | hypothetical protein         | - | - |
| C.   1000559°   C.   C.   C.   C.   C.   C.   C.   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | "CJ_10000557" | - | -        | Cj1436c | -    | - | -        | 0  | 1  | 0  | 1        | -1       | 1       | 1        | -1       | 1        | 1        |                              | - | - |
| C.   C.   C.   C.   C.   C.   C.   C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | "CJ 10000558" | - | -        | Cj1437c | -    | - | -        | 1  | 1  | 1  | 1        | -1       | 1       | 1        | -1       | 1        | 1        | •                            | - | - |
| CJ   10000560   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | "CJ 10000559" | - | -        |         | -    | - | -        | 1  | 1  | 1  |          | -1       | -1      | 1        | 1        |          |          |                              | - | - |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | - | -        |         | glf  | - | -        | 1  | 1  | 1  | -1       | -1       | 1       | 1        | -1       | -1       |          |                              | - | - |
| C_1,000563   -     C_1,000563    |               |   |          | .,      |      |   |          |    |    |    |          |          |         |          |          |          |          |                              |   |   |
| C_1,000563   -     C_1,000563    | "CJ 10000561" | - | -        | Ci1440c | -    | - | -        | 1  | 1  | 1  | 1        | -1       | 1       | 1        | -1       | 1        | 0        | putative sugar transferase   | - | - |
| C_1,0000563*   -   C_1,000142*   -   C_1,000152*   -   C_1,00015   |               | - | -        |         | kfiD | - | -        | 1  | 1  | 1  |          | -1       | 1       | 1        | 1        | -1       | 1        |                              | - | - |
| C.   10001462"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _             |   |          | 3       |      |   |          |    |    |    |          |          |         |          |          |          |          |                              |   |   |
| Col.      | "CJ_10000563" | - | -        | Cj1442c | -    | - | -        | 1  | 1  | 1  | 1        | -1       | 1       | 1        | -1       | 1        | 1        | hypothetical protein         | - | - |
| Col.      | "CJ 10001462" | - | -        | Cj1520  | -    | - | -        | 0  | 1  | -1 | 0        | 1        | 1       | 0        | 1        | -1       | 1        |                              | - | - |
| "CJ_10001525" CJ1550c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | "CJ 10001523" | - | -        | Ci1549c | -    | - | -        | 1  | 1  | 0  | 1        | -1       | 1       | 1        | -1       | 1        | 1        |                              | - | - |
| C_1   C_1   C_2   C_3   C_5    | _             |   |          | 3       |      |   |          |    |    |    |          |          |         |          |          |          |          |                              |   |   |
| "CI_10001551" Cj1552c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | "CJ_10001525" | - | -        | Cj1550c | -    | - | -        | 1  | 1  | 0  | 1        | -1       | 1       | -1       | -1       | 1        | 1        | putative ATP/GTP-binding     | - | - |
| CZ_10001551"   -   -   C_11552e   -   -   -   -   -   -   -   -   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _             |   |          |         |      |   |          |    |    |    |          |          |         |          |          |          |          |                              |   |   |
| CL_10001551"   CL_10001552"   CL_10001553"   CL_100015533"   CL_   | "CJ_10001549" | - | -        | Cj1551c | -    | - | -        | 1  | 1  | 0  | 1        | -1       | 0       | 1        | -1       | 1        | 1        | putative type I restriction  | - | - |
| "CL_10001554" -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |   |          |         |      |   |          |    |    |    |          |          |         |          |          |          |          |                              |   |   |
| "CJ_10001557" Cj1556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | "CJ_10001551" | - | -        | Cj1552c | -    | - | -        | 1  | -  | 0  |          |          | 1       | 1        |          |          | -1       | hypothetical protein         | - | - |
| "CJ_1001557" -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | "CJ_10001554" | - | -        | Cj1553c | -    | - | -        | 1  | 1  | 1  | 1        | -1       | 1       | 1        | -1       | -1       | -1       | putative type I restriction  | - | - |
| "CJ_10001478" -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _             |   |          |         |      |   |          |    |    |    |          |          |         |          |          |          |          | enzyme M protein             |   |   |
| "opCjjV010000   -         -         Cj1678   -         -         -         1         1         0         -1         -1         0         -1         -1         1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | "CJ_10001557" | - | -        | Cj1556  | -    | - | -        | 1  | 1  | 1  | 1        | -1       | 1       | 1        | -1       | 1        | 1        | hypothetical protein         | - | - |
| No.    | "CJ_10001478" | - | -        | Cj1677  | -    | - | -        | 1  | 1  | 1  | 1        | -1       | 1       | 1        | -1       | 1        | -1       | putative lipoprotein         | - | - |
| No.    | "opCjjV010000 | - | -        | Cj1678  | -    | - | -        | 1  | 1  | 0  | -1       | -1       | 0       | -1       | -1       | 1        | -1       | -                            | - | - |
| "opCjjV010000 or O72"         -         -         Cj1723c         -         -         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 086"          |   | <u> </u> |         |      |   | <u> </u> |    |    |    | <u> </u> | <u> </u> | <u></u> | <u> </u> | <u> </u> | <u> </u> | <u> </u> |                              |   |   |
| O72"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | "CJ_10001481" | - | -        | Cj1679  | -    | - | -        | 1  | 1  | 1  | 1        | -1       | 1       | 1        | -1       | 1        | 1        | hypothetical protein         | - | - |
| "opCjjV010000 - Cjp04 - Cjp04 - C Cjp05 - C Cjp04 - C Cjp05 - C Cj |               | - | -        | Cj1723c | -    | - | -        | 1  | 1  | 1  | 1        | -1       | 1       | 1        | -1       | 1        | 1        | putative periplasmic protein | - | - |
| O36"   CJ_1000463"   -   Cjp04   -   -   Cjp04   -   -   -   -   -   -   -   -   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |   |          |         |      |   |          |    |    |    |          |          |         |          |          |          |          |                              |   |   |
| O36"   CJ_1000463"   -   Cjp04   -   -   Cjp04   -   -   -   -   -   -   -   -   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | "opCjjV010000 | - | -        | Cjp03   | -    | - | -        | 1  | 1  | 1  | 1        | 0        | 1       | 1        | 1        | 1        | 1        | hypothetical protein         | - | - |
| "opCjjV010000 or 083"         -         -         Cjp04         -         -         -         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |   |          |         |      |   |          |    |    |    |          |          |         |          |          |          |          |                              |   |   |
| 083"         -         Cjp04         -         -         -         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | - | -        | Cjp04   | -    | - | -        | -1 | -1 | 0  | 1        | 1        | 1       | 1        | 0        | 1        | 1        | hypothetical protein         | - | - |
| "opCjjV010000         -         Cjp04         -         Cjp04         -         -         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | "opCjjV010000 | - | -        | Cjp04   | -    | - | -        | 1  | 1  | 1  | 1        | 1        | 1       | 1        | 1        | 1        | 1        | hypothetical protein         | - | - |
| 099"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |   | 1        |         |      |   |          |    |    |    |          | <u> </u> |         | <u> </u> | <u> </u> |          |          |                              |   |   |
| 099"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | - | -        | Cjp04   | -    | - | -        | 1  | 1  | 1  | 1        | 1        | 1       | 1        | 1        | 1        | 1        | hypothetical protein         | - | - |
| 008"         -         -         Cjp06         -         -         -         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 099"          |   | 1        |         |      |   |          |    |    |    |          | <u> </u> |         | <u> </u> | <u> </u> |          |          |                              |   |   |
| 008"         -         -         Cjp06         -         -         -         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | "opCjjV010000 | - | -        | Cjp05   | -    | - | -        | 1  | 1  | 1  | 1        | 1        | 1       | 1        | 1        | 1        | 1        | hypothetical protein         | - | - |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 008"          |   |          |         |      |   |          |    |    |    |          |          |         |          |          |          |          |                              |   |   |
| 046"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | - | -        | Cjp06   | -    | - | -        | 1  | 1  | 1  | 1        | 1        | 1       | 1        | 1        | 1        | 1        | hypothetical protein         | - | - |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 046"          |   |          |         |      |   |          |    |    |    |          |          |         |          |          |          |          |                              |   |   |

| "opCjjV010000<br>040" | - | - | Cjp07 | -    | - | - | 1 | 1 | 1 | -1 | -1 | 1  | -1 | 1  | 0  | 1  | hypothetical protein             | - | - |
|-----------------------|---|---|-------|------|---|---|---|---|---|----|----|----|----|----|----|----|----------------------------------|---|---|
| "opCjjV010000<br>067" | - | - | Cjp07 | -    | - | - | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein             | - | - |
| "CJ_10000467"         | - | - | Cjp08 | -    | - | - | 1 | 1 | 1 | 1  | -1 | 1  | 1  | 1  | 1  | 1  | hypothetical protein             | - | - |
| "opCjjV010000<br>024" | - | - | Cjp08 | -    | - | - | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein             | - | - |
| "CJ_10000469"         | - | - | Cjp09 | -    | - | - | 1 | 1 | 1 | 1  | -1 | 1  | 1  | -1 | 1  | 1  | hypothetical protein             | - | - |
| "opCjjV010000<br>004" | - | - | Cjp09 | -    | - | - | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein             | - | - |
| "CJ_10000752"         | - | - | Cjp10 | -    | - | - | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein             | - | - |
| "opCjjV010000<br>073" | - | - | Cjp10 | -    | - | - | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein             | - | - |
| "opCjjV010000<br>103" | - | - | Cjp11 | rnpB | - | - | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | ribonuclease P, RNA<br>component | - | - |
| "CJ_10000754"         | - | - | Cjp12 | -    | - | - | 1 | 1 | 1 | 1  | -1 | 1  | 1  | -1 | 1  | -1 | hypothetical protein             | - | - |
| "opCjjV010000<br>022" | - | - | Cjp13 | -    | - | - | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein             | - | - |
| "CJ_10000758"         | - | - | Cjp14 | -    | - | - | 0 | 0 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein             | - | - |
| "CJ_10000760"         | - | - | Cjp15 | -    | - | - | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein             | - | - |
| "CJ_10000762"         | - | - | Cjp16 | -    | - | - | 1 | 1 | 1 | 1  | -1 | 1  | 1  | 1  | -1 | 1  | hypothetical protein             | - | - |
| "CJ_10000764"         | - | - | Cjp17 | -    | - | - | 1 | 1 | 1 | 1  | -1 | 1  | -1 | -1 | 1  | -1 | hypothetical protein             | - | - |
| "CJ_10000766"         | - | - | Cjp18 | -    | - | - | 1 | 1 | 1 | 1  | -1 | 1  | 1  | 0  | 1  | 1  | hypothetical protein             | - | - |
| "opCjjV010000<br>110" | - | - | Cjp19 | -    | - | - | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein             | - | - |
| "opCjjV010000<br>113" | - | - | Cjp19 | -    | - | - | 1 | 1 | 1 | 0  | 1  |    | -1 | 1  | 1  | -1 | hypothetical protein             | - | - |
| "CJ_10000785"         | - | - | Cjp20 | -    | - | - | 1 | 1 | 1 | 1  | -1 |    |    | -1 | 1  | 1  | hypothetical protein             | - | - |
| "opCjjV010000<br>141" | 1 | - | Cjp20 | -    | - | - | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein             | - | - |
| "CJ_10000787"         | - | - | Cjp21 | -    | - | - | 1 | 1 | 1 | 1  | 1  | -1 | -1 | -1 | -1 | -1 | hypothetical protein             | - | - |
| "opCjjV010000<br>005" | - | - | Cjp21 | -    | - | - | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein             | - | - |
| "CJ_10000789"         | - | - | Cjp22 | -    | - | - | 1 | 0 | 0 | 1  | -1 | 1  | -1 | -1 | 1  | 1  | hypothetical protein             | - | - |
| "opCjjV010000<br>206" | - | - | Cjp22 | -    | - | - | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein             | - | - |
| "CJ_10000792"         | - | - | Cjp23 | -    | - | - | 1 | 1 | 1 | 1  | -1 | 1  | 1  | 1  | 1  | -1 | hypothetical protein             | - | - |
| "opCjjV010000<br>205" | - | - | Cjp23 | -    | - | - | 0 | 1 | 0 | 1  | 1  | 1  | 0  | 1  | 1  | 1  | hypothetical protein             | - | - |
| "CJ_10000795"         | - | - | Cjp24 | -    | - | - | 0 | 1 | 1 | 1  | -1 | 0  | 1  | 1  | 1  | 1  | hypothetical protein             | - | - |
| "opCjjV010000<br>014" | - | - | Cjp24 | -    | - | - | 0 | 1 | 0 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein             | - | - |
| "opCjjV010000<br>006" | - | - | Cjp25 | -    | - | - | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein             | - | - |
| "opCjjV010000<br>079" | • | - | Cjp25 | -    | - | - | 1 | 1 | 0 | -1 | -1 | 1  | 0  | 1  | 1  | -1 | hypothetical protein             | - | - |
| "CJ_10000799"         | - | - | Cjp26 | -    | - | - | 1 | 1 | 1 | -1 | -1 | -1 | 1  | -1 | 1  | 1  | hypothetical protein             | - | - |
| "opCjjV010000<br>179" | - | - | Cjp26 | -    | - | - | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein             | - | - |
| "CJ_10000801"         | - | - | Cjp27 | -    | - | - | 1 | 1 | 1 | 1  | 0  | 1  | 1  | 1  | -1 | 1  | hypothetical protein             |   | - |
| "opCjjV010000<br>070" | - | - | Cjp27 | -    | - | - | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein             | - | - |
| "opCjjV010000<br>080" | - | - | Cjp28 | -    | - | - | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein             | - | - |

| "CJ 10000805"         |   |    | Cim20 |     | 1       | 1          | 1  | 1  | 1 | 1  | -1 | 0   | 1  | -1 | 1  | 1  | hymathatiaal muatain |   |                                     |
|-----------------------|---|----|-------|-----|---------|------------|----|----|---|----|----|-----|----|----|----|----|----------------------|---|-------------------------------------|
|                       | - | +- | Cjp29 | -   | -       | -          | 1  | 1  | 1 | 1  | 1  | 1   | 1  | -1 | 0  | 1  | hypothetical protein | - | -                                   |
| "opCjjV010000<br>023" | - | -  | Cjp29 | -   | -       | -          | 1  | 1  | 1 | 1  | 1  | 1   | 1  | 1  | 0  | 1  | hypothetical protein | - | -                                   |
| "CJ_10000814"         | - | -  | Cjp30 | -   | -       | -          | 1  | 1  | 1 | 1  | -1 | 1   | -1 | -1 | 1  | -1 | hypothetical protein | - | -                                   |
| "opCjjV010000<br>064" | - | -  | Cjp30 | -   | -       | -          | 1  | 1  | 1 | 1  | 1  | 1   | 1  | 1  | 1  | 1  | hypothetical protein | - | -                                   |
| "CJ 10000816"         | - | -  | Cjp31 | -   | -       | _          | 0  | 1  | 1 | 1  | 1  | 1   | 1  | 1  | 1  | 1  | hypothetical protein | - | -                                   |
| "CJ_10000818"         | - | -  | Cjp32 | -   | -       | -          | 0  | 1  | 1 | 1  | -1 | -1  | -1 | -1 | 1  | 1  | hypothetical protein | - | -                                   |
| "opCjjV010000<br>052" | - | -  | Cjp32 | -   | -       | -          | 1  | 1  | 1 | 1  | 1  | 1   | 1  | 1  | 1  | 1  | hypothetical protein | - | -                                   |
| "CJ_10000821"         | _ | -  | Cjp33 | -   | _       | † <u>-</u> | 1  | 1  | 1 | 1  | 1  | 1   | 1  | -1 | 1  | 1  | hypothetical protein | _ | _                                   |
| "opCjjV010000<br>051" | - | -  | Cjp33 | -   | -       | -          | 1  | 1  | 1 | 1  | 1  | 1   | 1  | 1  | 1  | 1  | hypothetical protein | - | -                                   |
| "CJ_10000824"         | - | _  | Cjp34 | -   | _       | _          | 1  | 1  | 1 | 1  | 0  | 1   | 1  | -1 | 1  | 1  | hypothetical protein |   | _                                   |
| "opCjjV010000         | _ | -  | Cjp34 | -   | -       | _          | 0  | 1  | 0 | 1  | 1  | T î | 1  | 1  | 1  | 1  | hypothetical protein |   | _                                   |
| 050"                  |   |    |       |     |         |            | Ů  |    |   | •  |    | 1   | •  | 1  |    | 1  |                      |   |                                     |
| "CJ_10000827"         | - | -  | Cjp35 | -   | -       | -          | 1  | 1  | 1 | 1  | -1 | 1   | 1  | 1  | 1  | 1  | hypothetical protein | - | -                                   |
| "opCjjV010000<br>197" | - | -  | Cjp35 | -   | -       | -          | 1  | 1  | 1 | 1  | 1  | 1   | 1  | 1  | 1  | 1  | hypothetical protein | - | -                                   |
| "CJ_10000829"         | - | -  | Cjp36 | -   | -       | -          | 1  | 1  | 1 | 1  | 0  | 1   | 1  | 1  | 1  | 1  | hypothetical protein | - | -                                   |
| "opCjjV010000<br>175" | - | -  | Cjp36 | -   | -       | -          | 0  | 1  | 1 | 1  | 1  | 1   | 1  | 1  | 1  | 1  | hypothetical protein | - | -                                   |
| "CJ 10000830"         | - | -  | Cjp37 | -   | _       | _          | 1  | 1  | 1 | 1  | 1  | 1   | 1  | -1 | 1  | 1  | hypothetical protein | - | -                                   |
| "CJ 10000831"         | - | -  | Cjp38 | -   | _       | -          | 1  | 1  | 1 | 0  | -1 | 1   | -1 | -1 | -1 | 1  | hypothetical protein | - | -                                   |
| "CJ 10000832"         | _ | _  | Cjp39 | 1 - | -       | -          | 1  | 1  | 1 | 1  | -1 | 1   | -1 | -1 | -1 | 1  | hypothetical protein | _ | _                                   |
| "CJ 10000841"         | _ | _  | Cjp40 | -   | _       | _          | 1  | 1  | 1 | 1  | -1 | 1   | 1  | -1 | 1  | 1  | hypothetical protein | _ | _                                   |
| "CJ 10000843"         | _ | _  | Cjp41 | -   | _       | _          | -  | 0  | 1 | 1  | 1  | 1   | 0  | 1  | 0  | 0  | hypothetical protein | _ | _                                   |
| "CJ 10000848"         | _ | _  | Cjp43 | -   | _       | _          | 1  | 1  | 1 | 1  | -1 | -   | -1 | 1  | 1  | -1 | hypothetical protein | _ | _                                   |
| "CJ 10000851"         | - | -  | Cjp44 | -   | _       | -          | 1  | 1  | 1 | 1  | 1  | 1   | 1  | -1 | 1  | 1  | hypothetical protein | - | -                                   |
| "CJ 10000854"         | _ | _  | Cjp45 | 1 - | -       | -          | 1  | 1  | 1 | 1  | 1  | 1   | 1  | 1  | 1  | 0  | hypothetical protein | _ | _                                   |
| "CJ_10000856"         | _ | _  | Cjp46 | -   | _       | _          | 1  | 0  | 1 | -1 | -1 | 1   | 1  | 0  | -1 | -1 | hypothetical protein | _ | _                                   |
| "CJ 10000858"         | _ | _  | Cjp47 | 1 - | -       | -          | 1  | 1  | 1 | 1  | -1 | 1   | 1  | 1  | 1  | 1  | hypothetical protein | _ | _                                   |
| "CJ_10000860"         | _ | _  | Cjp48 | -   | _       | _          | 0  | 1  | 1 | 1  | 0  | 1   | 0  | -1 | 1  | 1  | hypothetical protein | _ | _                                   |
| "CJ_10000863"         | - | -  | Cjp49 | -   | _       | -          | 1  | 1  | 1 | 1  | 1  | 1   | 1  | 1  | 1  | 0  | hypothetical protein | - | -                                   |
| "CJ 10000870"         | - | -  | Cjp50 | -   | -       | -          | 1  | -1 | 1 | 1  | 1  | -1  | 1  | -1 | 1  | 1  | hypothetical protein | = | -                                   |
| "CJ 10000872"         | - | -  | Cjp51 | -   | -       | -          | -1 | 1  | 1 |    | -1 | 1   | 1  | -1 | 1  | 1  | hypothetical protein | = | -                                   |
| "CJ 10000874"         | _ | _  | Cjp52 | -   | _       | _          | 1  | 1  | 1 | 1  | -1 | -1  | 1  | 1  | 1  | 1  | hypothetical protein | - | _                                   |
| "CJ_10000879"         | _ | _  | Cjp54 | 1 - | -       | -          | 1  | 1  | 1 | 1  | -1 | 1   | 1  | -1 | 1  | -1 | VirB7                | _ | _                                   |
| "opCjjV010000<br>109" | - | -  | Cjr03 | -   | -       | -          | 1  | 1  | 1 | 1  | 0  | 1   | 1  | 1  | 1  | 1  | hypothetical protein | - | -                                   |
| "opCjjV010000<br>127" | - | -  | Cjr06 | -   | -       | -          | 1  | 1  | 1 | 1  | 1  | 1   | 1  | 1  | 1  | 1  | hypothetical protein | - | -                                   |
| "opCjjV010000<br>130" | - | -  | Cjr09 | -   | -       | -          | 1  | 1  | 1 | 1  | 1  | 1   | 1  | 1  | 1  | 1  | hypothetical protein | - | -                                   |
| "opCjjV010000<br>105" | - | -  | Cjt02 | -   | -       | -          | 1  | 1  | 1 | 0  | 0  | 1   | 1  | 1  | 1  | 1  | hypothetical protein | - | -                                   |
| "opCcV010000<br>0317" | - | -  | -     | -   | CCO0001 | -          | 1  | 1  | 1 | 1  | 1  | 1   | 1  | 1  | 1  | 1  | -                    | - | similar to 50S ribosomal protein L3 |
| "opCcV010000<br>0640" | - | -  | -     | -   | CCO0011 | -          | -1 | -1 | 1 | -1 | 1  | 1   | 1  | 1  | -1 | -1 | -                    | - | pseudogene                          |
| "opCcV010000<br>1650" | - | -  | -     | -   | CCO0025 | -          | 1  | 1  | 1 | -1 | 1  | 1   | 1  | 1  | -1 | 1  | -                    | - | conserved hypothetical protein      |
| "opCcV010000<br>1876" | - | -  | -     | -   | CCO0026 | -          | 1  | 1  | 1 | 1  | 1  | 1   | 1  | -1 | 1  | -1 | -                    | - | YeeE/YedE family protein family     |

| "opCcV010000<br>2071" | - | - | - | - | CCO0035 | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | - | - | Tat (twin-arginine<br>translocation) pathway<br>signal |
|-----------------------|---|---|---|---|---------|---|----|----|----|----|----|----|----|----|----|----|---|---|--------------------------------------------------------|
| "opCcV010000<br>2054" | - | - | - | - | CCO0036 | - | 0  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | 1  | - | - | Chain B, Stru                                          |
| "opCcV010000<br>1228" | - | - | - | - | CCO0037 | - | 1  | 1  | 1  | 0  | -1 |    | 1  | -1 | 1  | 0  | - | - | Chain B, Stru                                          |
| "opCcV010000<br>1744" | - | - | - | - | CCO0038 | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | -1 | - | - | hypothetical protein                                   |
| "opCcV010000<br>1285" | - | - | - | - | CCO0039 | - | -1 | 1  | 1  | 0  | 1  | 1  | -1 | 1  | 0  | 0  | - | - | sodium:solute symporter family protein                 |
| "opCcV010000<br>0410" | - | - | - | - | CCO0040 | - | 1  | 1  | 1  | 1  | 1  | -1 | -1 | 1  | 1  | -1 | - | - | Protein of unknown<br>function, DUF485<br>superfamily  |
| "opCcV010000<br>0937" | - | - | - | - | CCO0048 | - | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | - | - | hypothetical protein                                   |
| "opCcV010000<br>0276" | - | - | - | - | CCO0067 | - | 1  | 1  | 0  | 1  | -1 | -1 | -1 | 1  | 1  | -1 | - | - | conserved hypothetical protein                         |
| "opCcV010000<br>0178" | - | - | - | - | CCO0068 | - | 1  | 1  | 0  | 1  | -1 | -1 | -1 | 1  | 1  | -1 | - | - | conserved hypothetical protein                         |
| "opCcV010000<br>1696" | - | - | - | - | CCO0069 | - | 1  | 1  | 0  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | - | - | conserved hypothetical protein                         |
| "opCcV010000<br>0483" | - | - | - | - | CCO0072 | - | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | - | - | probable integral membrane<br>protein Cj0033           |
| "opCcV010000<br>1621" | - | - | - | - | CCO0074 | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 0  | - | - | conserved hypothetical protein                         |
| "opCcV010000<br>1498" | - | - | - | - | CCO0092 | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 0  | 1  | 1  | - | - | hypothetical protein                                   |
| "opCcV010000<br>0901" | - | - | - | - | CCO0093 | - | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | - | - | probable periplasmic<br>protein Cj0057                 |
| "opCcV010000<br>1086" | - | - | - | - | CCO0094 | - | 1  | 1  | -1 | 1  | 1  | -1 | -1 | 1  | 1  | 1  | - | - | hypothetical protein                                   |
| "opCcV010000<br>0235" | - | - | - | - | CCO0095 | - | 1  | 1  | 0  | -1 | 1  | 1  | -1 | 1  | -1 | 1  | - | - | probable periplasmic<br>protein Cj0057                 |
| "opCcV010000<br>0045" | - | - | = | - | CCO0096 | - | 1  | 1  | 0  | -1 | 1  | 1  | -1 | 1  | 1  | 1  | - | - | conserved hypothetical protein                         |
| "opCcV010000<br>0580" | - | - | - | - | CCO0097 | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | - | - | hypothetical protein                                   |
| "opCcV010000<br>0649" | - | - | - | - | CCO0098 | - | 1  | 1  | -1 | 1  | -1 | 1  | 0  | -1 | 1  | 1  | - | - | hypothetical protein                                   |
| "opCcV010000<br>0634" | - | - | - | - | CCO0099 | - | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 0  | 1  | -1 | - | - | probable periplasmic<br>protein Cj0057                 |
| "opCcV010000<br>0623" | - | - | - | - | CCO0100 | - | -1 | -1 | 1  | -1 | 1  | -1 | -1 | 1  | -1 | -1 | - | - | conserved hypothetical protein                         |
| "opCcV010000<br>0499" | - | - | - | - | CCO0101 | - | 1  | 1  | 1  | -1 | -1 | 1  | -1 | 1  | 0  | 1  | - | - | conserved hypothetical protein                         |
| "opCcV010000<br>1681" | - | - | - | - | CCO0102 | - | 1  | 1  | 0  | 1  | -1 | 0  | 1  | -1 | 1  | 1  | - | - | hypothetical protein                                   |
| "opCcV010000<br>0103" | - | - | - | - | CCO0104 | - | 1  | 1  | 0  | -1 | 1  | 0  | 1  | 1  | 1  | -1 | - | - | conserved hypothetical protein                         |
| "opCcV010000<br>1477" | - | - | - | - | CCO0105 | - | 1  | 1  | 0  | -1 | -1 | 1  | 1  | -1 | 1  | -1 | - | - | hypothetical protein                                   |
| "opCcV010000<br>1918" | - | - | - | - | CCO0106 | - | 0  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | - | - | hypothetical protein                                   |
| "opCcV010000          | - | - | - | - | CCO0107 | - | 1  | 1  | 1  | -1 | 1  | -1 | 1  | 1  | 1  | 0  | - | - | conserved hypothetical                                 |

| 1220"                 |   |   |   |   |         |   |    |    |    |    |    |    |    |    |    |    |   |   | protein                                            |
|-----------------------|---|---|---|---|---------|---|----|----|----|----|----|----|----|----|----|----|---|---|----------------------------------------------------|
| "opCcV010000<br>0418" | - | - | - | - | CCO0108 | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | -1 | - | - | conserved hypothetical protein                     |
| "opCcV010000<br>0721" | - | - | - | - | CCO0109 | - | 1  | 1  | 0  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | - | - | hypothetical protein                               |
| "opCcV010000<br>1335" | - | - | - | - | CCO0110 | - | 1  | 1  | 0  |    | -1 | 1  | 1  | 1  | 1  | 1  | - | - | probable periplasmic<br>protein Cj0057             |
| "opCcV010000<br>0581" | - | - | - | - | CCO0111 | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 0  | 1  | -1 | - | - | conserved hypothetical protein                     |
| "opCcV010000<br>1091" | - | - | - | - | CCO0112 | - | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | - | - | hypothetical protein                               |
| "opCcV010000<br>0775" | - | - | - | - | CCO0127 | - | 1  | 1  | 0  | 1  | 1  | 1  | 0  | 1  | 1  | -1 | - | - | methyl-accepting chemotaxis protein, putative      |
| "opCcV010000<br>0715" | - | - | - | - | CCO0128 | - | 1  | 1  | 0  | 1  | -1 | 1  | -1 | 0  | 1  | 1  | - | - | conserved hypothetical protein                     |
| "opCcV010000<br>1622" | - | - | - | - | CCO0136 | - | -1 | -1 | -1 | 0  | 1  | 1  | -1 | 1  | -1 | 0  | - | - | hypothetical protein                               |
| "opCcV010000<br>1293" | - | - | - | - | CCO0137 | - | 1  | -1 | 0  | 1  | 1  | 1  | -1 | 1  | -1 | 1  | - | - | transcriptional regulator,<br>Crp family, putative |
| "opCcV010000<br>0793" | - | - | - | - | CCO0138 | - | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | -1 | -1 | - | - | conserved hypothetical protein                     |
| "opCcV010000<br>0316" | - | - | - | - | CCO0181 | - | 1  | 1  | 0  | -1 | -1 | 1  | 0  | 1  | 1  | 1  | - | - | filamentous hemagglutinin, intein-containing,      |
| "opCcV010000<br>1392" | - | - | - | - | CCO0182 | - |    | -1 | 0  |    |    | 1  |    | -1 |    |    | - | - | hemagglutinin/hemolysin-<br>related protein        |
| "opCcV010000<br>1501" | - | - | - | - | CCO0183 | - | 0  | 0  | 0  | 1  | 1  | -1 | 0  | 1  | 1  | 1  | - | - | Hemolysin, putative                                |
| "opCcV010000<br>1076" | - | - | - | - | CCO0184 | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | -1 | - | - | Hemolysin, putative                                |
| "opCcV010000<br>1872" | - | - | - | - | CCO0185 | - |    | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 0  | 1  | - | - | hypothetical protein                               |
| "opCcV010000<br>1181" | - | - | - | - | CCO0186 | - | 1  | 1  | 1  | 1  | -1 | 1  | -1 | 1  | 1  | 1  | - | - | hypothetical protein                               |
| "opCcV010000<br>0939" | - | - | - | - | CCO0187 | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 0  | 1  | 1  | - | - | filamentous hemagglutinin 1, putative              |
| "opCcV010000<br>2052" | - | - | - | - | CCO0188 | - | 0  | 1  | 1  | -1 | -1 | 1  | 1  | 0  | 1  | 1  | - | - | hypothetical protein                               |
| "opCcV010000<br>0029" | - | - | - | - | CCO0189 | - |    |    | -1 |    |    | -1 | -1 | 1  | 1  | -1 | - | - | hypothetical protein                               |
| "opCcV010000<br>1039" | - | - | - | - | CCO0190 | - | 1  | 1  | 1  | 1  | 0  | 0  | 0  | -1 | 1  | 1  | - | - | hemolysin activation protein<br>HecB, putative     |
| "opCcV010000<br>1254" | - | - | - | - | CCO0203 | - | 1  | 1  | 1  |    | 1  | 0  | 1  | 1  | 1  | -1 | - | - | hypothetical protein                               |
| "opCcV010000<br>0013" | - | - | - | - | CCO0204 | - | 1  | 1  | 1  | 0  | -1 | 1  | -1 | 1  | 0  | -1 | - | - | hypothetical protein                               |
| "opCcV010000<br>0114" | - | - | - | - | CCO0210 | - | 1  | -1 | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | - | - | conserved hypothetical protein                     |
| "opCcV010000<br>1920" | - | - | - | - | CCO0212 | - | 1  | 1  | 1  | 1  | -1 | -1 | 1  | -1 | -1 | -1 | - | - | conserved hypothetical protein                     |
| "opCcV010000<br>1217" | - | - | - | = | CCO0213 | - | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | - | - | methyl-accepting chemotaxis protein, putative      |
| "opCcV010000<br>0117" | - | - | - | - | CCO0231 | - | 1  | 1  | 1  | 1  | -1 | 1  | -1 | -1 | 1  | -1 | - | - | hypothetical protein                               |
| "opCcV010000<br>0991" | - | - | - | - | CCO0246 | - | 1  | 1  | 1  | 1  | -1 | -1 | 1  | 1  | 1  | -1 | - | - | hypothetical protein                               |

|                       |   |   |   |   |         |       | ,  |    |    | ,  | ,  |    |    |    |    |    |   |   |                                                  |
|-----------------------|---|---|---|---|---------|-------|----|----|----|----|----|----|----|----|----|----|---|---|--------------------------------------------------|
| "opCcV010000<br>0193" | - | - | - | - | CCO0248 | -     | 1  | 1  | 1  | 0  | -1 | 0  | 0  | -1 | 1  | -1 | - | - | conserved hypothetical protein                   |
| "opCcV010000<br>0024" | - | - | - | - | CCO0249 | -     | 1  | 1  | 1  | 0  | 1  | -1 | 1  | -1 | 0  | -1 | - | - | conserved hypothetical protein                   |
| "opCcV010000<br>0266" | - | - | - | - | CCO0250 | -     | 1  | 1  | 1  | 1  | -1 | -1 | 1  | 1  | 0  | 1  | - | - | hypothetical protein                             |
| "opCcV010000<br>0545" | - | - | - | - | CCO0251 | -     | 1  | 1  | 1  | 1  | 0  | 1  | 1  | -1 | 1  | 1  | - | - | lipoprotein, putative                            |
| "opCcV010000<br>0645" | - | - | - | - | CCO0252 | -     | -1 | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | - | - | probable integral membrane<br>protein Cj0564     |
| "opCcV010000<br>1358" | - | - | - | - | CCO0253 | -     | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 1  | - | - | hypothetical protein                             |
| "opCcV010000<br>0876" | - | - | - | - | CCO0254 | -     | 1  | 1  | 1  | 1  | -1 | 1  | -1 | 1  | 1  | 1  | - | - | hypothetical protein                             |
| "opCcV010000<br>0630" | - | - | - | - | CCO0257 | -     | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | - | - | glcG protein                                     |
| "opCcV010000<br>0875" | - | - | - | - | CCO0280 | -     | 0  | 0  | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | - | - | methyl-accepting<br>chemotaxis protein (tlpA)    |
| "opCcV010000<br>0323" | - | - | - | - | CCO0281 | -     | 1  | 1  | 1  | -1 | -1 | 0  | -1 | 1  | -1 | 1  | - | - | hypothetical protein                             |
| "opCcV010000<br>0310" | - | - | - | - | CCO0284 | -     | 1  | 1  | 1  | 1  | -1 | -1 | 1  | 0  | 1  | 1  | - | - | hypothetical protein                             |
| "opCcV010000<br>0982" | - | - | - | - | CCO0285 | -     | 1  | 1  | 1  | 1  |    | 1  | 1  |    |    | 1  | - | - | CAAX amino terminal protease family protein      |
| "opCcV010000<br>1967" | - | - | - | - | CCO0291 | -     | 1  | 1  | 1  | -1 | 0  | 1  | 1  | 1  | -1 | -1 | - | - | Hypothetical cytosolic protein, putative         |
| "opCcV010000<br>0695" | - | - | - | - | CCO0292 | -     | 1  | -1 | 1  | 1  | -1 | 1  | 1  | 1  | 1  | -1 | - | - | conserved hypothetical protein                   |
| "opCcV010000<br>0694" | - | - | - | - | CCO0293 | -     | 1  | 1  | 1  | -1 | -1 | -1 | 0  | 1  | -1 | -1 | - | - | penicillin-binding protein,<br>putative          |
| "opCcV010000<br>1345" | - | - | - | - | CCO0332 | -     | 1  | 1  | 1  | 1  | 0  | 1  | 0  | 1  | 1  | 1  | - | - | TM2 domain protein, putative                     |
| "opCcV010000<br>0810" | - | - | - | - | CCO0347 | -     | 1  | 1  | 0  | -1 | -1 | 1  | -1 | -1 | 1  | 1  | - | - | hypothetical protein                             |
| "opCcV010000<br>1609" | - | - | - | - | CCO0349 | -     | 1  | 1  | -1 | -1 | 1  | 1  | 1  | 0  | 1  | 1  | - | - | carboxyphosphonoenolpyru<br>vate phosphonomutase |
| "opCcV010000<br>0265" | - | - | - | - | CCO0350 | citZ  | 1  | 1  | 1  | -1 | -1 | 1  | 0  | -1 | 1  | 0  | - | - | 2-methylcitrate synthase                         |
| "opCcV010000<br>0345" | - | - | - | - | CCO0351 | b0334 | 1  | 1  | 0  | -1 | 1  | 1  | 0  | 1  | -1 | -1 | - | - | pseudogene                                       |
| "opCcV010000<br>1597" | - | - | - | - | CCO0352 | -     | 1  | 1  | 1  | -1 | 0  | 0  | 1  | 0  | 1  | 1  | - | - | ID867                                            |
| "opCcV010000<br>1722" | - |   | - | - | CCO0353 | -     | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | -1 | 1  | - | - | membrane protein , putative                      |
| "opCcV010000<br>1475" | - |   | - | - | CCO0354 | -     | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | -1 | -1 | - | - | hypothetical protein                             |
| "opCcV010000<br>1552" | - | - | - | - | CCO0355 | -     | 1  | -1 | 0  | -1 | 1  | 1  | 1  | -1 | 1  | 1  | - | - | probable periplasmic protein Cj0413, putative    |
| "opCcV010000<br>1845" | - | - | - | - | CCO0356 | -     | 1  | 1  | -1 | -1 | 1  |    | 1  | 1  | 1  | -1 | - | - | hypothetical protein                             |
| "opCcV010000<br>1068" | - | - | - | - | CCO0368 | cdtC  | 1  | -1 | 0  | -1 | 1  | 1  | -1 | 1  | 1  | 1  | - | - | cytolethal distending toxin<br>C                 |
| "opCcV010000<br>1565" | - | - | - | - | CCO0382 | -     | 1  | 1  | 0  | -1 | -1 | 1  | 0  | -1 | 1  | -1 | - | - | lipoprotein, putative                            |
| "opCcV010000          | - | - | - | - | CCO0383 | -     | 1  | 1  | 1  | 0  | -1 | -1 | -1 | 1  | 1  | -1 | - | - | conserved hypothetical                           |

| 00.100                | Т |   |   | 1 | 1       |   |    |    |    |    |    |    |    |    |    | 1  | 1 |   |                                                    |
|-----------------------|---|---|---|---|---------|---|----|----|----|----|----|----|----|----|----|----|---|---|----------------------------------------------------|
| 0043"                 |   |   |   |   | GG00004 |   |    |    |    |    |    |    |    |    |    |    |   |   | protein                                            |
| "opCcV010000<br>0228" | - | - | - | - | CCO0384 | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | -1 | - | - | Helix-turn-helix domain protein                    |
| "opCcV010000<br>1055" | - | - | - | - | CCO0411 | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 0  | - | - | tricarboxylate transport protein TctA, putative    |
| "opCcV010000<br>0706" | - | - | - | 1 | CCO0412 | - | 1  | 1  | 1  | -1 | -1 | 1  | -1 | 1  | 1  | -1 | - | - | tricarboxylate transport<br>protein TctB, putative |
| "opCcV010000<br>0550" | - | - | - | - | CCO0413 | - | 1  | 1  | 0  | -1 | 1  | 1  | 1  | 1  | 1  | 1  | - | - | tricarboxylate transport protein TctC, putative    |
| "opCcV010000<br>0263" | - | - | - | - | CCO0428 | - | 1  | 1  | 1  | 1  | -1 | -1 | -1 | 1  | 1  | 1  | - | - | membrane protein, putative                         |
| "opCcV010000<br>0869" | - | - | - | - | CCO0429 | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | - | - | membrane protein, putative                         |
| "opCcV010000<br>0673" | - | - | - | - | CCO0430 | - | -1 | -1 | 0  | 0  | 1  | -1 | 0  | 1  | -1 | -1 | - | - | membrane protein, putative                         |
| "opCcV010000<br>1556" | - | - | - | - | CCO0508 | - |    | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 0  | -1 | - | - | integral membrane protein                          |
| "opCcV010000<br>0214" | - | - | - | - | CCO0509 | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | -1 | - | - | lipoprotein, putative                              |
| "opCcV010000<br>1612" | - | - | - | - | CCO0510 | - | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 0  | - | - | integral membrane protein                          |
| "opCcV010000<br>1340" | - | - | - | - | CCO0511 | - | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | - | - | integral membrane protein                          |
| "opCcV010000<br>1167" | - | - | - | - | CCO0518 | - | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | -1 | - | - | methyl-accepting chemotaxis protein, putative      |
| "opCcV010000<br>0166" | - | - | - | - | CCO0533 | - | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | - | - | membrane protein , putative                        |
| "opCcV010000<br>0566" | - | - | - | - | CCO0534 | - |    |    | 0  | 1  | 0  | -1 | -1 | 1  | 1  | 1  | - | - | conserved hypothetical protein                     |
| "opCcV010000<br>1168" | - | - | - | - | CCO0535 | - | 1  | 1  | 1  | -1 | -1 | 1  | 1  | 1  | 1  | -1 | - | - | L-carnitine dehydratase                            |
| "opCcV010000<br>0692" | - | - | - | - | CCO0536 | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | -1 | - | - | citE, putative                                     |
| "opCcV010000<br>0378" | - | - | - | - | CCO0601 | - | 1  | 1  | 0  | -1 | 0  | 1  | 1  | -1 | 1  | 1  | - | - | conserved hypothetical protein                     |
| "opCcV010000<br>1123" | - | - | - | - | CCO0603 | - | 1  | 1  | 0  | -1 | -1 | 1  | 0  | 1  | 1  | -1 | - | - | B. subtilis YxjH and YxjG proteins homolog         |
| "opCcV010000<br>0398" | - | - | - | - | CCO0610 | - | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | -1 | 1  | - | - | conserved hypothetical protein                     |
| "opCcV010000<br>1104" | - | - | - | - | CCO0654 | - | 1  | 0  | 1  | 0  | 1  | 1  | 0  | 1  | 0  | 1  | - | - | hypothetical protein                               |
| "opCcV010000<br>1383" | - | - | - | - | CCO0658 | - | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | - | - | conserved hypothetical protein                     |
| "opCcV010000<br>1296" | - | - | - | - | CCO0751 | - | 1  | 1  | -1 | -1 | 1  | 1  | 1  | 1  | 1  | -1 | - | - | hypothetical protein                               |
| "opCcV010000<br>1853" | - | - | - | - | CCO0764 | - | 1  | 1  | 1  | 1  | -1 | 1  | 0  | 0  | 1  | 1  | - | - | hypothetical protein                               |
| "opCcV010000<br>0207" | - | - | - | - | CCO0804 | - | 1  | 1  | 0  | 1  | -1 |    | 1  | 1  | 1  | 1  | - | - | hypothetical protein                               |
| "opCcV010000<br>1158" | - | - | - | - | CCO0807 | - | 1  | 1  | -1 | 1  | 1  | -1 | -1 | 1  | 1  | 1  | - | - | conserved hypothetical protein                     |
| "opCcV010000<br>0865" | - | - | - | - | CCO0808 | - | 1  | 1  | -1 | 1  | 1  | -1 | -1 | 1  | 1  | 1  | - | - | pseudogene                                         |
| "opCcV010000<br>1674" | - | - | - | - | CCO0814 | - | 1  | 1  | 1  | 1  | 1  | 1  | -1 | 1  | 0  | -1 | - | - | hypothetical protein                               |

|                       |   |   |   |   | ,       |      |    |    |    |    |    |    |    |    |    |    |   | T |                                              |
|-----------------------|---|---|---|---|---------|------|----|----|----|----|----|----|----|----|----|----|---|---|----------------------------------------------|
| "opCcV010000<br>1532" | - | - | - | - | CCO0815 | -    | 1  | 1  | 0  | -1 | 0  | -1 | 0  | 1  | 1  | 1  | - | - | hypothetical protein                         |
| "opCcV010000<br>0380" | - | - | - | - | CCO0845 | -    | 1  | 1  | 1  | 1  | 0  | 1  | 1  | -1 | 1  | 1  | - | - | azlC protein, putative                       |
| "opCcV010000<br>0914" | - |   | - | - | CCO0846 | -    | 1  | 0  | 0  | 1  | -1 | 1  | 1  | 1  | -1 | 1  | - | - | Branched-chain amino acid transport protein, |
| "opCcV010000<br>1559" | - |   | - | - | CCO0847 | -    | 0  | -1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | - | - | transporter, LysE family                     |
| "opCcV010000<br>1442" | - | - | - | - | CCO0865 | dapA | 1  | -1 | 1  | 1  | 1  | 1  | 0  | 1  | -1 | 1  | - | - | dihydrodipicolinate<br>synthase              |
| "opCcV010000<br>2024" | - | - | - | - | CCO0866 | -    | 1  | 1  | 1  | -1 | -1 | 1  | 1  | 0  | 1  | 1  | - | - | probable oxidoreductase<br>Cj0807            |
| "opCcV010000<br>0315" | - | - | - | - | CCO0867 | -    | 0  | -1 | 1  | 1  | 1  | 1  | 1  | 1  | -1 | 1  | - | - | small hydrophobic protein<br>Cj0808c         |
| "opCcV010000<br>0086" | - | - | - | - | CCO0868 | -    | 1  | 1  | 1  | -1 | -1 | -1 | 1  | 1  | -1 | 1  | - | - | probable hydrolase Cj0809c                   |
| "opCcV010000<br>1659" | - | - | - | - | CCO0869 | nadE | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | - | - | NAD+ synthetase                              |
| "opCcV010000<br>1955" | - | - | - | - | CCO0870 | lpxK | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | - | - | tetraacyldisaccharide-1-P 4'-<br>kinase      |
| "opCcV010000<br>1395" | - | - | - | - | CCO0917 | -    | 1  | 1  | -1 | 1  | 1  | 1  | 1  | -1 | 1  | 1  | - | - | ferric uptake regulation protein, putative   |
| "opCcV010000<br>1593" | ı | - | - | - | CCO0918 | -    | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | 1  | -1 | - | - | hypothetical protein                         |
| "opCcV010000<br>1708" | ı | - | - | - | CCO0919 | fimA | 1  | 1  | 1  | 0  | -1 | -1 | 0  | -1 | 0  | 1  | - | - | periplasmic solute binding protein for ABC   |
| "opCcV010000<br>0916" | 1 | = | - | - | CCO0921 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | - | - | membrane protein, putative                   |
| "opCcV010000<br>1855" | ı | i | - | - | CCO0922 | -    | 1  | 1  |    | 1  | 1  | 1  | 1  | 1  | 0  | 1  | - | - | hypothetical protein                         |
| "opCcV010000<br>1245" | - | - | - | - | CCO0923 | -    | 0  | -1 | 0  | 1  | 1  | 0  | 1  | 1  | 0  | 1  | - | - | hypothetical protein                         |
| "opCcV010000<br>0808" | 1 | = | - | - | CCO0924 | -    | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | 1  | - | - | hypothetical protein                         |
| "opCcV010000<br>0122" | ı | - | - | - | CCO0925 | -    |    | -1 | -1 | -1 |    | -1 | -1 | -1 | 1  | -1 | - | - | hypothetical protein                         |
| "opCcV010000<br>1262" | 1 | - | - | - | CCO0926 | -    | 1  | 1  | 1  | 0  | 1  | -1 | -1 | 1  | 1  | 0  | - | - | hypothetical protein                         |
| "opCcV010000<br>0529" | - | - | - | - | CCO0927 | -    |    | 1  | -1 | -1 | 1  | -1 | -1 | 1  | 1  | 1  | - | - | hypothetical protein                         |
| "opCcV010000<br>1870" | - | - | - | - | CCO0928 | -    | -1 | -1 | 1  | -1 | 1  | -1 | -1 | 1  | -1 | -1 | - | - | hypothetical protein                         |
| "opCcV010000<br>1938" | - | - | - | - | CCO0929 | -    | 1  | 1  | 1  | -1 | -1 | 1  | 1  | 1  | 1  | 1  | - | - | hypothetical protein                         |
| "opCcV010000<br>0722" | - | - | - | - | CCO0955 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | -1 | - | - | inner membrane protein, putative             |
| "opCcV010000<br>1617" | - | - | - | - | CCO0956 | -    |    | 1  | 1  | 1  | 0  | 0  | 0  | 1  | -1 | 0  | - | - | conserved hypothetical protein               |
| "opCcV010000<br>1038" | - | - | - | - | CCO0968 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | - | - | conserved hypothetical protein               |
| "opCcV010000<br>1944" | - | - | - | - | CCO0970 | -    | 1  | 1  | 1  | 1  | -1 | 1  | -1 | 1  | 1  | 1  | - | - | hypothetical protein                         |
| "opCcV010000<br>0061" | - | - | - | - | CCO1005 | -    | 1  | 1  | 1  | 1  | -1 | 0  | 1  | 1  | 1  | -1 | - | - | sodium/alanine symporter<br>VC2356           |
| "opCcV010000          | - | - | - | - | CCO1040 | -    | 1  | 1  | 0  | -1 | -1 | 1  | 0  | -1 | 1  | 0  | - | - | conserved hypothetical                       |

| 1105"                 |   |   |   |   |         |   |    |    |    |    |    |    |    |    |    |    |   |   | protein                                           |
|-----------------------|---|---|---|---|---------|---|----|----|----|----|----|----|----|----|----|----|---|---|---------------------------------------------------|
| "opCcV010000<br>0131" | - | - | - | - | CCO1041 | - | 1  | 1  | 0  | -1 | 1  | -1 | 1  | 1  | 1  | 1  | - | - | conserved hypothetical protein                    |
| "opCcV010000<br>1819" | - | - | - | - | CCO1049 | - | 1  | -1 | 0  | -1 | 1  | 0  | -1 | 1  | 0  | 1  | - | - | surface-exposed lipoprotein                       |
| "opCcV010000<br>1438" | - | - | - | - | CCO1075 | - | 1  | 1  | 1  | -1 | -1 | 1  | 0  | 1  |    | -1 | - | - | conserved hypothetical protein                    |
| "opCcV010000<br>1590" | - | - | - | - | CCO1076 | - | 1  | 1  | 1  | 0  | -1 | 1  | 1  | -1 | 1  | 1  | - | - | hypothetical protein                              |
| "opCcV010000<br>1714" | - | - | - | - | CCO1077 | - | 1  | 1  | -1 | 1  | 0  | 1  | -1 | 1  | 1  | 1  | - | - | hypothetical protein                              |
| "opCcV010000<br>0376" | - | - | - | - | CCO1078 | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 0  | - | - | hypothetical protein                              |
| "opCcV010000<br>0365" | - | - | - | - | CCO1115 | - | 1  | 1  | 0  | 0  | -1 | 1  | -1 | -1 | 1  | 1  | - | - | adenine specific DNA<br>methyltransferase         |
| "opCcV010000<br>1628" | - | - | - | - | CCO1123 | - | 1  | 0  | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | - | - | hypothetical protein                              |
| "opCcV010000<br>0022" | - | - | - | - | CCO1124 | - | 1  | 1  | 1  | 1  | -1 | 1  | 0  | 1  | 1  | 1  | - | - | hypothetical protein                              |
| "opCcV010000<br>1229" | - | - | - | - | CCO1125 | - | 1  | -1 | 1  | 1  | 0  | 1  | 1  | 1  | 0  | 1  | - | - | VgrG protein, putative                            |
| "opCcV010000<br>0141" | - | - | - | - | CCO1126 | - | 1  | -1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | - | - | pseudogene                                        |
| "opCcV010000<br>0525" | - | - | - | - | CCO1142 | - | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | 0  | 1  | - | - | conserved hypothetical protein                    |
| "opCcV010000<br>1697" | - | - | - | - | CCO1143 | - | 1  | 1  | 0  |    | 1  | -1 | 1  | 1  | 1  | 1  | - | - | transporter, MFS<br>superfamily                   |
| "opCcV010000<br>1165" | - | - | - | - | CCO1170 | - | 1  | 1  | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | - | - | oxidoreductase, short-chain                       |
| "opCcV010000<br>2057" | - | - | - | - | CCO1171 | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | - | - | hypothetical protein                              |
| "opCcV010000<br>0357" | - | - | - | - | CCO1172 | - | 1  | 1  | 1  | 1  | -1 | -1 | 1  | 1  | 1  | 1  | - | - | conserved hypothetical protein                    |
| "opCcV010000<br>0331" | - | - | - | - | CCO1173 | - | 1  | 1  | 1  | 1  | -1 | 0  | 1  | -1 | 1  | -1 | - | - | hypothetical protein                              |
| "opCcV010000<br>0771" | - | - | - | - | CCO1211 | - | 1  | 1  | 1  | 1  | -1 | -1 | 0  | -1 | 1  | -1 | - | - | glycosyl transferase, group<br>1 family protein   |
| "opCcV010000<br>1761" | - | - | - | - | CCO1212 | - | 1  | 0  | 1  | -1 | -1 | 1  | -1 | 1  | 1  | -1 | - | - | general stress protein A, putative                |
| "opCcV010000<br>1473" | - | - | - | - | CCO1214 | - | 1  | 1  | -1 | 0  | -1 | 1  | -1 | 1  | 1  | -1 | - | - | conserved hypothetical protein                    |
| "opCcV010000<br>0308" | - | - | - | - | CCO1215 | - | 1  | 1  | 1  | -1 | 1  | -1 | 1  | 1  | -1 | -1 | - | - | bifunctional alpha-2,3/-2,8-<br>sialyltransferase |
| "opCcV010000<br>0837" | - | - | - | - | CCO1216 | - | -1 | 1  | 1  | 0  | 1  | 1  | -1 | 1  | 0  | 0  | - | - | hypothetical protein                              |
| "opCcV010000<br>0084" | - | - | - | - | CCO1217 | - | 1  | 1  | 0  | 0  | -1 | 1  | -1 | 1  | 1  | 0  | - | - | sialyl transferase                                |
| "opCcV010000<br>1797" | - | - | - | - | CCO1218 | - | 1  | 1  | 1  | 0  | 0  | 1  | 1  | 0  | 1  | 1  | - | - | conserved hypothetical protein                    |
| "opCcV010000<br>1035" | - | - | - | - | CCO1221 | - | -1 |    |    |    | 1  | 1  | 1  |    |    |    | - | - | lipooligosaccharide 5G8<br>epitope                |
| "opCcV010000<br>0093" | - | - | - | - | CCO1277 | - | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | -1 | - | - | hypothetical protein                              |
| "opCcV010000<br>0726" | - | - | - | - | CCO1278 | - | 1  | 1  | 1  | 1  | -1 | -1 | 1  | -1 | -1 | 1  | - | - | hydrolase, carbon-nitrogen family                 |

|                       |   | 1 |   |   |         | 1 |   |    |    |    |    |    |    |    |    |    | T |   | 1                                                  |
|-----------------------|---|---|---|---|---------|---|---|----|----|----|----|----|----|----|----|----|---|---|----------------------------------------------------|
| "opCcV010000<br>0994" | - | - | - | - | CCO1279 | - | 1 | 1  | 1  | 1  | -1 | 1  | 0  | -1 | 1  | 1  | - | - | polysaccharide deacetylase family protein          |
| "opCcV010000<br>1233" | - | - | - | - | CCO1280 | - | 0 | 0  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 1  | - | - | conserved hypothetical protein                     |
| "opCcV010000<br>1155" | - | - | - | - | CCO1281 | - | 1 | 1  | 0  | 1  | 0  | 1  | 1  | -1 | 1  | 1  | - | - | cobalamin synthesis<br>protein/P47K family protein |
| "opCcV010000<br>0977" | - | - | - | - | CCO1298 | - | 1 | 1  | 0  | -1 | 1  | 0  | 0  | 1  | -1 | 1  | - | - | sodium/pantothenate<br>symporter , putative        |
| "opCcV010000<br>0688" | - | - | - | - | CCO1299 | - | 1 | 1  | 0  | 1  | 1  | -1 | -1 | 1  | -1 | 1  | - | - | hypothetical protein                               |
| "opCcV010000<br>0196" | - | - | - | - | CCO1303 | - | 1 | 1  | -1 | -1 |    | 1  | 1  | 1  | 1  | -1 | - | - | Ribbon-helix-helix protein,<br>copG family domain  |
| "opCcV010000<br>0897" | - | - | - | - | CCO1304 | - | 1 | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | - | - | conserved hypothetical protein                     |
| "opCcV010000<br>2006" | - | - | - | - | CCO1305 | - | 1 | 1  | 1  | -1 | 0  | 1  | 1  | 1  | 1  | 1  | - | - | conserved hypothetical protein                     |
| "opCcV010000<br>0805" | - | - | - | - | CCO1306 | - | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | -1 | 1  | - | - | cytochrome c family protein                        |
| "opCcV010000<br>1726" | - | - | - | - | CCO1307 | - | 1 | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 1  | -1 | - | - | conserved hypothetical protein                     |
| "opCcV010000<br>1573" | - | - | - | - | CCO1308 | - | 1 | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | 1  | - | - | putative periplasmic protein                       |
| "opCcV010000<br>1188" | - | - | - | - | CCO1309 | - | 1 | 1  | 1  | 1  | -1 | 1  | -1 | 1  | 1  | -1 | - | - | putative periplasmic protein                       |
| "opCcV010000<br>0386" | - | - | - | - | CCO1310 | - | 1 | 1  | 1  | 0  | -1 | 1  | 1  | -1 | 1  | 1  | - | - | putative periplasmic protein                       |
| "opCcV010000<br>0226" | - | - | - | - | CCO1311 | - | 1 | -1 | 1  | 1  | 1  | 1  | 1  | 1  | -1 | 1  | - | - | hypothetical protein                               |
| "opCcV010000<br>1368" | - | - | - | - | CCO1312 | - | 1 | -  | 0  |    | 1  | 1  | -1 | 1  |    | -1 | - | - | filamentous haemagglutinin<br>domain protein       |
| "opCcV010000<br>0823" | - | - | - | - | CCO1325 | - | 1 | 1  | 1  | -1 | -1 | -1 | 1  | 1  | 1  | 1  | - | - | hypothetical protein                               |
| "opCcV010000<br>0145" | - | - | - | - | CCO1326 | - | 1 | 1  | 1  | -1 | 1  | 1  | -1 | 1  | -1 | -1 | - | - | hypothetical protein                               |
| "opCcV010000<br>0048" | - | - | - | - | CCO1331 | - | 1 | 1  | 1  | 0  | -1 | 1  | 1  | -1 | 1  | -1 | - | - | hypothetical protein                               |
| "opCcV010000<br>1666" | - | - | - | - | CCO1339 | - | 1 | 1  | 1  | 0  | -1 | 1  | -1 | 1  | 1  | 1  | - | - | ISCco1, transposase                                |
| "opCcV010000<br>0302" | - | - | - | - | CCO1340 | - | 1 | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | -1 | - | - | methyltransferase Atu0936, putative                |
| "opCcV010000<br>1923" | - | - | - | - | CCO1341 | - | 1 | -1 | 1  | 0  | -1 | 1  | 1  | 1  | 1  | 1  | - | - | phospholipid N-<br>methyltransferase, putative     |
| "opCcV010000<br>0839" | - | - | - | - | CCO1342 | - | 1 | 1  | 1  | 1  | -1 | -1 | 0  | -1 | 1  | -1 | - | - | hypothetical protein                               |
| "opCcV010000<br>0125" | - | - | - | - | CCO1349 | - | 1 | 1  | -1 | -1 | 1  | 1  | 1  | 1  | 1  | -1 | - | - | membrane protein, putative                         |
| "opCcV010000<br>0978" | - | - | - | - | CCO1369 | - | 1 | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | - | - | conserved domain protein                           |
| "opCcV010000<br>0088" | - | - | - | - | CCO1370 | - | 1 | 1  | 1  | 1  |    | 1  | 0  | 1  | 1  | -1 | - | - | ABC transporter ATP-<br>binding protein            |
| "opCcV010000<br>2007" | - | - | - | - | CCO1409 | - | 1 | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | -1 | - | - | conserved hypothetical protein                     |
| "opCcV010000<br>1457" | - | - | - | - | CCO1412 | - |   | -1 | -1 | -1 | 0  | -1 | -1 | 1  | 0  | -1 | - | - | acetyltransferase, GNAT<br>family family           |
| "opCcV010000          | - | - | - | - | CCO1413 | - | 0 | -1 | 0  | 1  | 1  | 0  | 1  | 1  | -1 | 0  | - | - | formyltransferase, putative                        |

| 1412"                 |   |   |   | 1 |         |      |    | I  | I  | 1  | 1  |          |    |    |    |    |   |   | 1                                                     |
|-----------------------|---|---|---|---|---------|------|----|----|----|----|----|----------|----|----|----|----|---|---|-------------------------------------------------------|
|                       |   |   |   |   | 0001416 | 1    | -  |    |    |    |    | <b>-</b> |    | -  | +  | +  |   |   | 11 1 1                                                |
| "opCcV010000<br>0663" | - | - | - | - | CCO1416 | -    | 1  | 1  | 0  | 1  | -1 | 1        | 1  | -1 | 1  | 1  | - | - | conserved hypothetical protein                        |
| "opCcV010000<br>0913" | - | - | - | - | CCO1417 | -    | 1  | 1  | 1  | 1  | -1 | 1        | -1 | -1 | 1  | 1  | - | - | conserved hypothetical protein                        |
| "opCcV010000<br>0752" | - | - | - | - | CCO1418 | -    | 1  | 1  | 1  | 1  |    | 1        |    | 1  | 1  | 1  | - | - | 3-oxoacyl-(acyl-carrier-<br>protein) synthase III,    |
| "opCcV010000<br>0923" | - | - | - | - | CCO1432 | -    | -1 | -1 | -1 | -1 | 1  | -1       | -1 | 1  | 0  | -1 | - | - | hypothetical protein                                  |
| "opCcV010000<br>1279" | - | - | - | - | CCO1443 | -    | 0  | 0  | -1 | 1  | 1  | 1        | 1  | -1 | 1  | 1  | - | - | flagellin Cj1338c                                     |
| "opCcV010000<br>1264" | - | - | - | - | CCO1444 | -    | -1 | -1 | -1 | 0  | 1  | 1        | 1  | 1  | 1  | 0  | - | - | flagellin (flaA)                                      |
| "opCcV010000<br>1857" | - | - | - | - | CCO1446 | -    | 0  | 0  | -1 | 1  | 1  | 0        | -1 | -1 | 1  | 1  | - | - | conserved hypothetical protein                        |
| "opCcV010000<br>2050" | - | - | - | - | CCO1447 | -    | 1  | 0  | 1  | 1  | -1 | 1        | 1  | 1  | 1  | 1  | - | - | conserved hypothetical protein                        |
| "opCcV010000<br>0979" | - | - | - | - | CCO1467 | -    | 1  | -1 | 1  | -1 | 1  | 1        | 1  | 1  | -1 | -1 | - | - | toxin-like outer membrane<br>protein, putative        |
| "opCcV010000<br>0464" | - | - | - | - | CCO1468 | -    | 1  | -1 | 1  | -1 | 1  | 1        | 1  | 1  | -1 | -1 | - | - | vacuolating cytotoxin<br>precursor, putative          |
| "opCcV010000<br>0890" | - | - | - | - | CCO1469 | -    | 1  | -1 | 1  | -1 | 1  | 1        | -1 | 1  | -1 | -1 | - | - | hypothetical protein                                  |
| "opCcV010000<br>1571" | - | - | - | - | CCO1484 | -    | 1  | 1  | -1 | -1 | 1  | 1        | -1 | 1  | 1  | 1  | - | - | integral membrane protein, putative                   |
| "opCcV010000<br>0355" | - |   | - | - | CCO1485 | -    | -1 | -1 | 0  | 0  | 1  | 1        | 0  | 1  | 1  | 0  | - | - | probable efflux protein<br>Cj1375                     |
| "opCcV010000<br>1484" | - | - | - | - | CCO1514 | -    | 1  | 1  | -1 | 1  | -1 | 0        | 0  | 1  | 0  | 1  | - | - | hypothetical protein                                  |
| "opCcV010000<br>0262" | - |   | - | - | CCO1523 | -    |    | -1 | -1 | -1 | -1 | 1        | -1 | 1  | 1  | -1 | - | - | Nucleotidyl transferase family                        |
| "opCcV010000<br>1218" | - | - | - | - | CCO1524 | -    | -1 | -1 | -1 | -1 | -1 | -1       | 1  | 1  | 0  | -1 | - | - | hypothetical protein                                  |
| "opCcV010000<br>0342" | - | - | - | - | CCO1525 | -    |    | -1 | -1 | -1 |    | -1       | 1  | -1 | -1 | -1 | - | - | Phosphoribulokinase /<br>Uridine kinase family        |
| "opCcV010000<br>1239" | - | - | - | - | CCO1526 | -    | 1  | 1  | 1  |    |    |          |    | -1 | 1  | -1 | - | - | hypothetical protein                                  |
| "opCcV010000<br>1514" | - | - | - | - | CCO1527 | -    | 1  | 1  | 0  | 0  | 0  | 1        | 1  | -1 | 1  | 1  | - | - | alpha-2,3-sialyltransferase                           |
| "opCcV010000<br>1172" | - | - | - | - | CCO1528 | -    | 1  | 1  |    | 0  | 1  | -1       | 1  | 1  | 0  | 1  | - | - | haloacid dehalogenase-like<br>hydrolase, putative     |
| "opCcV010000<br>0209" | - | - | - | - | CCO1529 | -    | 1  | 1  | 1  | 1  | -1 | -1       | 1  | -1 | 1  | -1 | - | - | Domain of unknown<br>function (DUF386)<br>superfamily |
| "opCcV010000<br>1274" | - | - | - | - | CCO1530 | -    | 1  | 1  | 0  | 1  | 1  | 0        | 1  | 1  | 1  | -1 | - | - | Putative cyclase superfamily                          |
| "opCcV010000<br>0032" | - | - | - | - | CCO1531 | -    | 1  | 1  | 1  | 1  | -1 | 1        | -1 | 1  | -1 | -1 | - | - | UDP-glucose 4-epimerase, putative                     |
| "opCcV010000<br>1588" | - | - | - | - | CCO1532 | serA | 1  | 1  | -1 | -1 | 1  | 1        | 0  | 1  | 0  | 0  | - | - | D-3-phosphoglycerate dehydrogenase                    |
| "opCcV010000<br>0872" | - |   | - | - | CCO1533 | -    | 1  | 1  | 1  | 1  | -1 | 1        | 1  | -1 | 1  | -1 | - | - | 2,4-dihydroxyhept-2-ene-<br>1,7-dioic acid aldolase,  |
| "opCcV010000<br>1550" | - | - | - | - | CCO1534 | -    | 1  | 1  | 1  | 1  | -1 | 1        | 1  | 1  | 1  | 0  |   | - | acylneuraminate<br>cytidylyltransferase,<br>putative  |

| "opCcV010000          | - | - | - | - | CCO1535 | -    | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 1  | -1 | 1  | - | - | glycosyl transferase, group                       |
|-----------------------|---|---|---|---|---------|------|----|----|----|----|----|----|----|----|----|----|---|---|---------------------------------------------------|
| 0382"<br>"opCcV010000 | - | - | - | - | CCO1536 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 0  | 1  | 1  | -1 | - | - | 2 family protein<br>hypothetical protein          |
| 1735"                 |   |   |   |   | 0001527 |      | 1  | 1  | 0  | 1  |    | 1  | L. | 1  |    | 1  |   |   |                                                   |
| "opCcV010000<br>0112" | - | - | - | - | CCO1537 | -    | 1  | 1  | 0  | -1 | 1  | 1  | -1 | 1  | 0  | -1 | - | - | DcbE, putative                                    |
| "opCcV010000<br>0971" | - | - | - | - | CCO1538 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | -1 | - | - | alpha-2,3-sialyltransferase                       |
| "opCcV010000<br>0350" | - | - | - | - | CCO1539 | cysC | 1  | -1 | 0  | 1  | 1  | 1  | 0  | 1  | -1 | 0  | - | - | adenylylsulfate kinase                            |
| "opCcV010000<br>1905" | - | - | - | - | CCO1540 | -    | 1  | 1  | 1  | 1  | -1 | 0  | 1  | -1 | 1  | 1  | - | - | transporter, sodium/sulfate<br>symporter family,  |
| "opCcV010000<br>0496" | - | - | - | - | CCO1541 | -    | 1  | 1  | -1 | -1 | 1  | 0  | 0  | 1  | 1  | 0  | - | - | sulfate adenylyltransferase,<br>subunit           |
| "opCcV010000<br>1898" | - | - | - | - | CCO1542 | -    | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | -1 | 0  | - | - | sulfate adenylyltransferase,<br>subunit 2         |
| "opCcV010000<br>0677" | - | - | - | - | CCO1543 | cysQ | 1  | 1  | 1  | 1  | -1 | 1  | -1 | -1 | 1  | -1 | - | - | 3'(2'),5'-bisphosphate<br>nucleotidase            |
| "opCcV010000<br>1820" | - | - | - | - | CCO1544 | -    | 1  | 1  | 0  | 1  | -1 | 0  | 1  | -1 | 1  | -1 | - | - | alpha-2,3-sialyltransferase                       |
| "opCcV010000<br>0849" | - | - | - | - | CCO1546 | -    | 1  | 1  | 1  | -1 | -1 | 1  | -1 | 0  | 1  | -1 | - | - | Glycosyl transferase family<br>8 family           |
| "opCcV010000<br>0616" | - | - | - | - | CCO1547 | ggaB | 1  | 1  | 1  | 0  | -1 | 0  | -1 | 1  | 1  | -1 | - | - | capsular polysaccharide<br>synthesis-C            |
| "opCcV010000<br>0636" | - | - | - | - | CCO1548 | ggaB | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | -1 | - | - | minor teichoic acids<br>biosynthesis protein ggab |
| "opCcV010000<br>2058" | - | - | - | - | CCO1549 | -    | -1 | 1  | 1  | 1  | -1 | -1 | 1  | 0  | 1  | 1  | - | - | capsule biosynthesis protein, putative            |
| "opCcV010000<br>1140" | - | - | - | - | CCO1587 | -    | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | - | - | DnaJ-related protein                              |
| "opCcV010000<br>0059" | - | - | - | - | CCO1588 | -    | 1  | -1 | 0  | -1 | 1  | -1 | 1  | 1  | -1 | 0  | - | - | conserved hypothetical protein                    |
| "opCcV010000<br>2045" | - | - | - | - | CCO1610 | -    | 0  | 1  | 1  | 1  | -1 | 0  | -1 | 1  | 1  | 1  | - | - | hypothetical protein                              |
| "opCcV010000<br>0233" | - | - | - | - | CCO1627 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | -1 | - | - | AgrC, putative                                    |
| "opCcV010000<br>0893" | - | - | - | - | CCO1628 | -    | 1  | 1  | 0  | -1 | -1 | 1  | 1  | -1 | 1  | 0  | - | - | hypothetical protein                              |
| "opCcV010000<br>1511" | - | - | - | - | CCO1629 | -    | 1  | -1 | 1  |    | 0  | 1  | 1  | 1  | 1  | -1 | - | - | hypothetical protein                              |
| "opCcV010000<br>0974" | - | - | - | - | CCO1631 | -    | 1  | 1  | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | - | - | hypothetical protein                              |
| "opCcV010000<br>0632" | - | - | - | - | CCO1637 | -    | 1  | 1  | 0  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | - | - | hypothetical protein                              |
| "opCcV010000<br>0523" | - | - | - | - | CCO1638 | -    | 1  | 0  | 1  | 1  | -1 | -1 | 0  | 1  | 1  | 0  | - | - | ISCco1, transposase orfB                          |
| "opCcV010000<br>1018" | - | - | - | - | CCO1639 | -    | 1  | 1  | 0  | -1 | 1  | 1  | 0  | 1  | 1  | -1 | - | - | ISCco1, transposase orfA                          |
| "opCcV010000<br>0802" | - | - | - | - | CCO1651 | -    | 1  | 1  | 1  | -1 | 0  | -1 | 1  | 1  | 1  | 1  | - | - | pseudogene                                        |
| "opCcV010000<br>0373" | - | - | - | - | CCO1654 | -    | 1  | 1  | 1  | -1 | -1 | 1  | 1  | 1  | 1  | 1  | - | - | conserved hypothetical protein                    |
| "opCcV010000<br>1856" | - | - | - | - | CCO1656 | mdaB | 1  | -1 | 1  | 0  | 1  | 1  | 1  | 1  | -1 | 0  | - | - | modulator of drug activity<br>(mda66)             |
| "opCcV010000          | - | - | - | - | CCO1657 | mdaB | 0  | 1  | -1 | 0  | 1  | 1  | 1  | 1  | 1  | -1 | - | - | modulator of drug activity                        |

| 1037"                 |   |   |   |   |         |      |    |    |    |    |    |    |    |    |    |    |   |   | (mda66)                                          |
|-----------------------|---|---|---|---|---------|------|----|----|----|----|----|----|----|----|----|----|---|---|--------------------------------------------------|
| "opCcV010000<br>1139" | - | - | - | - | CCO1658 | -    | 1  | 1  | 1  | -1 | 1  | -1 | -1 | 1  | 1  | 0  | - | - | major facilitator family transporter, putative   |
| "opCcV010000<br>1384" | - | - | - | - | CCO1661 | -    | 1  | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | - | - | HsdR                                             |
| "opCcV010000<br>0533" | - | - | - | - | CCO1662 | -    | 1  | 1  | 0  | 1  | -1 | 0  | 1  | -1 | 1  | 1  | - | - | conserved hypothetical protein                   |
| "opCcV010000<br>1548" | - | - | - | - | CCO1663 | -    | 1  | 1  | 1  | 1  |    | 1  |    | 1  | 1  | 0  | - | - | Helicase conserved C-<br>terminal domain protein |
| "opCcV010000<br>0565" | - | - | - | - | CCO1664 | -    | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | -1 | - | - | HsdS                                             |
| "opCcV010000<br>1895" | - | - | - | - | CCO1665 | -    | 1  | -1 | 1  | -1 | 1  | -1 | -1 | 1  | -1 | -1 | - | - | MloA                                             |
| "opCcV010000<br>0986" | - | - | - | - | CCO1666 | -    | 1  | -  | 0  | -1 | 1  | 0  | 1  | 1  | 1  | -1 | - | - | HsdM                                             |
| "opCcV010000<br>1132" | - | - | - | - | CCO1667 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | - | - | conserved hypothetical protein                   |
| "opCcV010000<br>0572" | - | - | - | - | CCO1668 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | - | - | sarcosine oxidase, putative                      |
| "opCcV010000<br>1564" | - | - | - | - | CCO1669 | -    | 1  | -1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | - | - | NADP(H) oxidoreductase<br>CC0205                 |
| "opCcV010000<br>1197" | - | - | - | - | CCO1670 | -    | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 0  | 1  | - | - | hypothetical protein                             |
| "opCcV010000<br>1574" | - | - | - | - | CCO1671 | -    | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | 1  | - | - | catalase-like protein                            |
| "opCcV010000<br>0460" | - | - | - | - | CCO1674 | arsC | 1  | -1 | -1 | -1 | 0  | 1  | 1  | 1  | -1 | -1 | - | - | arsC                                             |
| "opCcV010000<br>2074" | - | - | - | - | CCO1675 | arsC | 0  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | - | - | arsenite efflux transporter                      |
| "opCcV010000<br>1754" | - | - | - | - | CCO1676 | arsC | 1  | -1 | -1 | -1 | 1  | 1  | 1  | 1  | -1 | -1 | - | - | arsenite efflux transporter                      |
| "opCcV010000<br>0794" | - | - | - | - | CCO1688 | -    | 1  | 1  | 1  | 1  | -1 | 1  | -1 | 1  | -1 | -1 | - | - | hypothetical protein                             |
| "opCcV010000<br>1259" | - | - | - | - | CCO1689 | -    | 1  | 1  | 1  | -1 | -1 | 1  | -1 | 1  | 1  | 1  | - | - | hypothetical protein                             |
| "opCcV010000<br>0936" | - | - | - | - | CCO1694 | -    | 1  | 1  | 1  | -1 | -1 | 0  | -1 | 1  | 1  | -1 | - | - | major facilitator family transporter, putative   |
| "opCcV010000<br>1518" | - | - | - | - | CCO1707 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | - | - | integral membrane protein, putative              |
| "opCcV010000<br>2061" | - | - | - | - | CCO1708 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | - | - | integral membrane protein, putative              |
| "opCcV010000<br>2049" | - | - | - | - | CCO1710 | -    | 1  | 1  | 1  | 1  | -1 | -1 | 1  | 1  | 1  | 1  | - | - | hypothetical protein                             |
| "opCcV010000<br>2027" | - | - | - | - | CCO1734 | -    | 0  | 1  | 1  | 1  | -1 | 1  | -1 | 1  | 1  | -1 | - | - | conserved hypothetical protein                   |
| "opCcV010000<br>1016" | - | - | - | - | CCO1738 | -    | 1  | 1  | 1  | 1  | -1 | -1 | -1 | 1  | 1  | 1  | - | - | Protein of unknown function DUF262 family        |
| "opCcV010000<br>1826" | - | - | - | - | CCO1739 | -    | 1  | 1  | 1  | 0  | -1 | 1  | -1 | -1 | 1  | 1  | - | - | hypothetical protein                             |
| "opCcV010000<br>1409" | - | - | - | - | CCO1740 | -    | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | -1 | -1 | - | - | hypothetical protein                             |
| "opCcV010000<br>0462" | - | - | - | - | CCO1758 | -    | 1  | -1 | 0  | 0  | 1  | 1  | 1  | 1  | 1  | -1 | - | - | conserved hypothetical protein                   |
| "opCcV010000<br>1365" | - | - | - | - | CCO1784 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  |    | 1  | 1  | - | - | hypothetical protein                             |

| "opCcV010000          | 1 |   |   | 1 | CCO1785           |   | I 1 | 1  | 1 | T 1 | 0  | I 1 | Ι. | -1 | Ι. | -1 | T |   | hymothetical mustain                            |
|-----------------------|---|---|---|---|-------------------|---|-----|----|---|-----|----|-----|----|----|----|----|---|---|-------------------------------------------------|
| 1864"                 | _ | - | - | - |                   | _ | 1   | 1  | 1 | 1   | U  | 1   | 1  | -1 | 1  | -1 | - | - | hypothetical protein                            |
| "opCcV010000<br>2070" | - | - | - | - | CCO1786           | - | 1   | 1  | 1 | 1   | 1  | 1   | 1  | 1  | 1  | 1  | - | - | hypothetical protein                            |
| "opCcV010000<br>0420" | - | - | - | - | CCO1801           | - | 1   | 1  | 1 | 0   | -1 | 1   | 1  | 1  | 1  | -1 | - | - | hypothetical protein                            |
| "opCcV010000<br>0124" | - | - | - | - | CCOA_Ccr<br>npB2  | - |     | -1 | 0 | -1  | 1  | -1  | -1 | 1  | 1  | 1  | - | - | sRNA                                            |
| "opCcV010000<br>1087" | - |   | - | - | CCOA_Ccr<br>npB3  | - | -1  | -1 | 0 | -1  | 1  | -1  | -1 | 1  | -1 | 0  | - | - | sRNA                                            |
| "opCcV010000<br>1665" | - | - | - | - | CCOA_Cct<br>mRNA2 | - | 1   | 1  | 0 | 1   | 1  | 1   | 1  | 0  | 1  | 1  | - | - | sRNA                                            |
| "opCcV010000<br>1861" | - | - | - | - | CCOA0001          | - | 1   | 1  | 0 | -1  | 1  | 1   | 0  | 1  | -1 | 1  | - | - | replication protein                             |
| "opCcV010000<br>0083" | - |   | - | - | CCOA0002          | - | 1   | 1  | 0 | -1  | -1 | 1   | 1  | 1  | 1  | 1  | - | - | conserved hypothetical protein                  |
| "opCcV010000<br>0854" | - |   | - | - | CCOA0003          | - | 1   | 1  | 1 | 0   | -1 | 1   | -1 | -1 | 1  | -1 | - | - | conserved hypothetical protein                  |
| "opCcV010000<br>1773" | - | - | - | - | CCOA0004          | - | 1   | 1  | 1 | -1  | -1 | -1  | -1 | 1  | 0  | 1  | - | - | hypothetical protein                            |
| "opCcV010000<br>1736" | - |   | - | - | CCOA0005          | - | -1  | 1  | 1 | 1   | 1  | 1   | 1  | 1  | 0  | 1  | - | - | hypothetical protein                            |
| "opCcV010000<br>0493" | - | - | - | - | CCOA0006          | - | 1   | 1  | 1 | 1   | -1 | -1  | -1 | 1  | 1  |    | - | - | conserved hypothetical protein                  |
| "opCcV010000<br>0042" | - | - | - | - | CCOA0007          | - |     |    | 0 | -1  | -1 | -1  | -1 | 1  | 1  | -1 | - | - | hypothetical protein                            |
| "opCcV010000<br>0980" | - |   | - | - | CCOA0010          | - | 1   | 1  | 1 | 1   | -1 | 1   | -1 | 1  | 1  | -1 | - | - | helicase, Snf2 family                           |
| "opCcV010000<br>0134" | - |   | - | - | CCOA0011          | - | 1   | 1  | 1 | -1  | 1  | 1   | -1 | 1  | 1  | -1 | - | - | hypothetical protein                            |
| "opCcV010000<br>0200" | - |   | - | - | CCOA0012          | - | 1   | 1  | 1 | 0   | -1 | 1   | 1  | 1  | 1  | 1  | - | - | hypothetical protein                            |
| "opCcV010000<br>0902" | - |   | - | - | CCOA0013          | - | 1   | 1  | 1 | -1  | 1  | 1   | 1  | 1  | 1  | -1 | - | - | conserved hypothetical protein                  |
| "opCcV010000<br>1913" | - | - | - | - | CCOA0016          | - | 1   | 1  | 1 | 1   | -1 | 1   | -1 | -1 | -1 | 1  | - | - | TraH protein                                    |
| "opCcV010000<br>1144" | - |   | - | - | CCOA0017          | - | 1   | 1  | 1 | 1   | -1 | 1   | -1 | 1  | -1 | -1 | - | - | hypothetical protein                            |
| "opCcV010000<br>0842" | - | - | - | - | CCOA0018          | - | 1   | 1  | 1 | 0   | -1 | 1   | 0  | 1  | 1  | -1 | - | - | conserved hypothetical protein                  |
| "opCcV010000<br>2059" | - |   | - | - | CCOA0019          | - | 1   | 1  | 1 | 1   | -1 | 0   | 1  | -1 | 1  | 1  | - | - | conserved hypothetical protein                  |
| "opCcV010000<br>1136" | - |   | - | - | CCOA0020          | - | 1   | 1  | 1 | 1   | 1  | -1  | 1  | 1  | 1  | -1 | - | - | 882aa long hypothetical purine NTPase, putative |
| "opCcV010000<br>1603" | - |   | - | - | CCOA0021          | - |     | -1 | 1 | -1  | 1  | -1  | -1 | 1  | -1 | -1 | - | - | DNA primase TraC                                |
| "opCcV010000<br>0729" | - | - | - | - | CCOA0022          | - |     | -1 | 0 | -1  | 1  | -1  | -1 | 1  | -1 | -1 | - | - | DNA primase, putative                           |
| "opCcV010000<br>1108" | - | - | - | - | CCOA0023          | - | 1   | 1  | 1 | 1   | 1  | 1   | -1 | 1  | 1  | 1  | - | - | hypothetical protein                            |
| "opCcV010000<br>1673" | - | - | - | - | CCOA0024          | - |     | -1 | 0 |     | -1 | 1   | 1  | -1 | 1  | -1 | - | - | hypothetical protein                            |
| "opCcV010000<br>0619" | - | - | - | - | CCOA0025          | - |     |    | 1 | -1  | -1 | -1  | 1  | -1 | -1 | -1 | - | - | hypothetical protein                            |
| "opCcV010000          | - | - | - | - | CCOA0026          | - | 1   | 1  | 1 | 1   | -1 | 1   | 1  | -1 | -1 | -1 | - | - | conserved hypothetical                          |

|                       |   |   |   |   | •        |   |    |    |    |    |    |    |    |    |    |    |   |   |                                    |
|-----------------------|---|---|---|---|----------|---|----|----|----|----|----|----|----|----|----|----|---|---|------------------------------------|
| 1721"                 |   |   |   |   |          |   |    |    |    |    |    |    |    |    |    |    |   |   | protein                            |
| "opCcV010000<br>1306" | - | - | - | - | CCOA0027 | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 0  | 1  | - | - | hypothetical protein               |
| "opCcV010000<br>1844" | - | - | - | - | CCOA0028 | - | -1 | -1 | 1  | -1 | -1 | -1 | 1  | 1  | 1  | -1 | - | - | hypothetical protein               |
| "opCcV010000<br>0173" | - | - | - | - | CCOA0029 | - |    |    | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | - | - | hypothetical protein               |
| "opCcV010000<br>1116" | - | - | - | - | CCOA0030 | - |    | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | -1 | - | - | hypothetical protein               |
| "opCcV010000<br>2023" | - | - | - | - | CCOA0031 | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | - | - | hypothetical protein               |
| "opCcV010000<br>1560" | - | - | - | - | CCOA0032 | - | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | -1 | - | - | hypothetical protein               |
| "opCcV010000<br>2082" | - | - | - | - | CCOA0033 | - | 1  | 1  | 1  | 1  | 1  | 1  | -1 | -1 | 1  | -1 | - | - | hypothetical protein               |
| "opCcV010000<br>0028" | - | - | - | - | CCOA0034 | - |    |    | 0  |    |    |    |    | -1 | 1  | -1 | - | - | hypothetical protein               |
| "opCcV010000<br>1968" | - | - | - | - | CCOA0035 | - | 0  | 1  | 1  | -1 | -1 | 1  | 1  | 1  | 1  | 1  | - | - | hypothetical protein               |
| "opCcV010000<br>1381" | - | - | - | - | CCOA0036 | - | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | - | - | hypothetical protein               |
| "opCcV010000<br>0052" | - | - | - | - | CCOA0039 | - |    | 1  | 1  | 1  | 1  | -1 |    | 1  | 1  | -1 | - | - | hypothetical protein               |
| "opCcV010000<br>0466" | - | - | - | - | CCOA0046 | - | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | -1 | - | - | hypothetical protein               |
| "opCcV010000<br>0891" | - | - | - | - | CCOA0048 | - | 1  | 1  | 0  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | - | - | hypothetical protein               |
| "opCcV010000<br>0012" | - | - | - | - | CCOA0049 | - | 1  | 1  | 1  | -1 | 0  | 1  | 1  | 1  | -1 | -1 | - | - | hypothetical protein               |
| "opCcV010000<br>0224" | - | - | - | - | CCOA0050 | - | 1  | -1 | 1  |    | -1 | 0  | 1  | 1  | 1  | -1 | - | - | hypothetical protein               |
| "opCcV010000<br>0332" | - | - | - | - | CCOA0051 | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 0  | 0  | - | - | conserved hypothetical protein     |
| "opCcV010000<br>1725" | - | - | - | - | CCOA0052 | - | 1  | 1  | 1  | -1 | 1  | 0  | -1 | 1  | -1 | 1  | - | - | hypothetical protein               |
| "opCcV010000<br>1608" | - | - | - | - | CCOA0053 | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | -1 | - | - | conserved hypothetical protein     |
| "opCcV010000<br>0456" | - | - | - | - | CCOA0054 | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | - | - | hypothetical protein               |
| "opCcV010000<br>0146" | - | - | - | - | CCOA0055 | - | 1  | 1  | 0  | 0  |    | 1  | 1  | -1 | 1  | -1 | - | - | hypothetical protein               |
| "opCcV010000<br>2055" | - | - | - | - | CCOA0057 | - | 0  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | - | - | DNA repair protein RAD50, putative |
| "opCcV010000<br>1777" | - | - | - | - | CCOA0058 | - | 1  | 1  | 1  | 1  | -1 | 1  | -1 | 1  | 1  | -1 | - | - | hypothetical protein               |
| "opCcV010000<br>0712" | - | - | - | - | CCOA0059 | - | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | 1  | - | - | hypothetical protein               |
| "opCcV010000<br>2018" | - | - | - | - | CCOA0060 | - | 0  | 1  | 1  | -1 | -1 | 1  | 1  | 1  | 0  | -1 | - | - | hypothetical protein               |
| "opCcV010000<br>0880" | - | - | - | - | CCOA0061 | - | 1  | 1  | 1  | -1 | -1 | -1 | 1  | 0  | 1  | -1 | - | - | hypothetical protein               |
| "opCcV010000<br>1073" | - | - | - | - | CCOA0062 | - | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 1  | - | - | conserved hypothetical protein     |
| "opCcV010000<br>0740" | - | - | - | - | CCOA0063 | - | 1  | -1 | 0  | -1 | 1  | 1  | -1 | 1  | -1 | -1 | - | - | TnpY                               |

| "opCcV010000          | - | - | - | - | CCOA0064 | - | 1 | 1  | 1  | 1  | -1 | -1 | 0  | -1 | 0  | -1 | - | - | hypothetical protein                                  |
|-----------------------|---|---|---|---|----------|---|---|----|----|----|----|----|----|----|----|----|---|---|-------------------------------------------------------|
| 1142"<br>"opCcV010000 | - | - | - | - | CCOA0065 | - | 1 | -1 | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | - | - | mobilization/transfer protein                         |
| 1700"<br>"opCcV010000 | - | - | - | - | CCOA0066 | - | 1 | 0  | 1  | -1 | 1  | 1  | 1  | 1  | -1 | 1  | - | - | conserved hypothetical                                |
| 1662"<br>"opCcV010000 | - | - | - | - | CCOA0067 | - | 1 | 1  | 1  | 1  | 0  | -1 | 1  | 1  | 1  | 1  | - | - | protein<br>aminoglycoside 3'-                         |
| 0366"<br>"opCcV010000 | _ | _ | _ | _ | CCOA0068 | _ | 1 | 1  | 0  | -1 | 1  | -1 | 0  | 1  | 0  | 1  | - | _ | phosphotransferase<br>aminoglycoside 3'-              |
| 1497"                 |   |   |   |   |          |   |   |    | 1  |    |    | -1 | 1  | 1  | 1  |    |   | _ | phosphotransferase,                                   |
| "opCcV010000<br>0812" | - | - | - | - | CCOA0069 | - | 1 | 1  | 1  | -1 | -1 | 1  | 1  | 1  | 1  | -1 | - | - | pyrrolidone-carboxylate<br>peptidase                  |
| "opCcV010000<br>1534" | - | - | - | - | CCOA0070 | - | 1 | 1  | -1 | -1 | -1 | 1  | 0  | 1  | 1  | -1 | - | - | hygromycin-B-<br>phosphotransferase                   |
| "opCcV010000<br>0960" | - | - | - | - | CCOA0071 | - | 1 | 1  | 1  | -1 |    | -1 | -1 | -1 | 1  | -1 | - | - | conserved hypothetical protein                        |
| "opCcV010000<br>1317" | - | - | - | - | CCOA0072 | - | 1 | 1  | 1  | -1 | 0  | 1  | 1  | 1  | -1 | 1  | - | - | TnpV                                                  |
| "opCcV010000<br>1506" | - |   | - | - | CCOA0073 | - | 1 | -1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | - | - | site-specific recombinase, resolvase family,          |
| "opCcV010000          | - | - | - | - | CCOA0074 | - | 1 | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | - | - | conserved hypothetical                                |
| 1341"<br>"opCcV010000 | - | - | - | - | CCOA0075 | - | 1 | 1  | 1  | 1  | 0  | 1  | -1 | 1  | 1  | 1  | - | - | protein<br>transcriptional regulator,                 |
| 0522"<br>"opCcV010000 | - | - | - | - | CCOA0076 | - | 1 | 1  | 1  | -1 | 0  | 1  | 1  | -1 | 1  | 1  | - | - | Cro/CI family hypothetical protein                    |
| 0944"<br>"opCcV010000 | - | - | - | - | CCOA0077 | - | 1 | 1  | 1  | 1  | -1 | 0  | -1 | -1 | 1  | 1  | - | - | hypothetical protein                                  |
| 0407"<br>"opCcV010000 | _ | - | _ | _ | CCOA0078 | _ | 0 | -1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | _ |   | hypothetical protein                                  |
| 0685"                 |   | _ | _ |   |          |   |   |    | 1  | 1  |    | 1  | 1  | 1  | 1  | 1  |   |   |                                                       |
| "opCcV010000<br>0016" | - |   | - | - | CCOA0079 | - | 1 | 1  |    | -1 | -1 | •  | 1  |    |    | -1 | - | - | hypothetical protein                                  |
| "opCcV010000<br>0543" | - | - | - | - | CCOA0080 | - | 1 | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | -1 | - | - | hypothetical protein                                  |
| "opCcV010000<br>1312" | - | - | - | - | CCOA0081 | - | 1 | 0  | 1  | 1  | 1  | -1 | -1 | 1  | -1 | 1  | - | - | hypothetical protein                                  |
| "opCcV010000<br>1690" | - | - | - | - | CCOA0083 | - | 1 | 1  | 1  | 1  | 0  | 1  | -1 | 1  | 1  | 1  | - | - | hypothetical protein                                  |
| "opCcV010000<br>1250" | - | - | - | - | CCOA0084 | - | 1 | 1  | 1  | -1 | -1 | 0  | 1  | 1  | -1 | 1  | - | - | Domain of unknown<br>function (DUF332)<br>superfamily |
| "opCcV010000<br>0139" | - | - | - | - | CCOA0101 | - | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | -1 | - | - | hypothetical protein                                  |
| "opCcV010000<br>2042" | - | - | - | - | CCOA0102 | - | 0 | -1 | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 0  | - | - | conserved hypothetical protein                        |
| "opCcV010000<br>1766" | - | - | - | - | CCOA0103 | - | 1 | 1  | -1 | 1  | -1 | 1  | 1  | -1 | 1  | 0  | - | - | conserved hypothetical protein                        |
| "opCcV010000<br>0705" | - | - | - | - | CCOA0104 | - | 1 | 1  | 1  | -1 | -1 | 0  | -1 | -1 | 1  | 1  | - | - | hypothetical protein                                  |
| "opCcV010000<br>1289" | - | - | - | - | CCOA0105 | - | 1 | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | -1 | - | - | hypothetical protein                                  |
| "opCcV010000<br>2072" | - | - | - | - | CCOA0106 | - | 0 | 1  | 1  | -1 | -1 | 1  | 1  | 1  | 1  | 1  | - | - | conserved hypothetical protein                        |
| "opCcV010000<br>0094" | - | - | - | - | CCOA0107 | - | 1 | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | -1 | - | - | hypothetical protein                                  |

| "opCcV010000          | Τ. | <u> </u> |   | 1. | CCOA0108 | T . | 1 | 1  | 0  | 1  | -1 | 0  | 1  | 1  | -1 | 1 1 | _ | T_ | hypothetical protein           |
|-----------------------|----|----------|---|----|----------|-----|---|----|----|----|----|----|----|----|----|-----|---|----|--------------------------------|
| 1675"                 | _  | _        | _ | -  | CCOA0108 | -   | 1 | 1  | U  | 1  | -1 | U  | 1  | 1  | -1 | 1   |   |    | nypometicai protein            |
| "opCcV010000<br>1626" | -  | i        | - | -  | CCOA0109 | -   | 0 | 0  | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1   | - | -  | conserved hypothetical protein |
| "opCcV010000<br>0453" | -  | -        | - | -  | CCOA0110 | -   | 1 | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | -1  | - | -  | hypothetical protein           |
| "opCcV010000<br>1929" | -  | -        | - | -  | CCOA0111 | -   | 1 | 1  | 1  | -1 | 0  | -1 | 1  | -1 | 0  | 1   | - | -  | hypothetical protein           |
| "opCcV010000<br>2037" | -  | -        | - | -  | CCOA0112 | -   | 1 | -1 | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1   | - | -  | hypothetical protein           |
| "opCcV010000<br>0811" | -  |          | - | -  | CCOA0113 | -   | 1 | 1  | 1  | -1 | 1  | 1  | -1 | -1 | -1 | 1   | - | -  | hypothetical protein           |
| "opCcV010000<br>0556" | -  | -        | - | -  | CCOA0114 | -   | 1 | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | -1  | - | -  | hypothetical protein           |
| "opCcV010000<br>0251" | -  | -        | - | -  | CCOA0115 | -   | 1 | 1  | 1  |    | -1 | 1  | 0  | 1  | 1  | 1   | - | -  | hypothetical protein           |
| "opCcV010000<br>1717" | -  | -        | - | -  | CCOA0116 | -   | 1 | 1  | 1  |    | -1 | 1  | -1 | 1  | 0  | -1  | - | -  | hypothetical protein           |
| "opCcV010000<br>1258" | -  | -        | - | -  | CCOA0117 | -   | 1 | 1  | 1  | -1 | -1 | 1  | -1 | 1  | 0  | 0   | - | -  | hypothetical protein           |
| "opCcV010000<br>1028" | -  | -        | - | -  | CCOA0118 | -   | 1 | 1  | 1  |    | 1  | 1  | 1  | 1  | 1  | 1   | - | -  | hypothetical protein           |
| "opCcV010000<br>0289" | -  | -        | - | -  | CCOA0119 | -   | 1 | 1  | 0  | 1  | -1 | 1  | 0  | -1 | 1  | -1  | - | -  | hypothetical protein           |
| "opCcV010000<br>1894" | -  |          | - | -  | CCOA0120 | -   | 1 | -1 | 0  | 1  | 1  | 1  | 1  | 1  | 0  | 0   | - | -  | hypothetical protein           |
| "opCcV010000<br>0073" | -  | -        | - | -  | CCOA0121 | -   | 1 | 1  | 1  | -1 | -1 | 1  | 1  | 1  | 1  | -1  | - | -  | hypothetical protein           |
| "opCcV010000<br>0906" | -  | -        | - | -  | CCOA0122 | -   | 1 | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | -1  | - | -  | hypothetical protein           |
| "opCcV010000<br>0799" | -  | -        | - | -  | CCOA0123 | -   | 1 | 1  | 1  | 1  | 0  | 1  | -1 | 1  |    | 1   | - | -  | hypothetical protein           |
| "opCcV010000<br>0283" | -  | -        | - | -  | CCOA0124 | -   | 1 | 1  | 1  | -1 | -1 | 1  | -1 | 1  | 1  | -1  | - | -  | hypothetical protein           |
| "opCcV010000<br>1464" | -  | -        | - | -  | CCOA0125 | -   | 1 | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | -1  | - | -  | hypothetical protein           |
| "opCcV010000<br>0189" | -  | -        | - | -  | CCOA0126 | -   | 1 | 1  | 0  | 1  | -1 | 1  | -1 | 1  | 1  | 1   | - | -  | hypothetical protein           |
| "opCcV010000<br>0285" | -  | -        | - | -  | CCOA0127 | -   | 1 | 1  | -1 | -1 | 0  | -1 | 0  | -1 | -1 | 1   | - | -  | conserved hypothetical protein |
| "opCcV010000<br>0270" | -  | -        | - | -  | CCOA0128 | -   | 1 | 1  | 1  | 1  | -1 | 1  | -1 | 1  | -1 | 1   | - | -  | hypothetical protein           |
| "opCcV010000<br>1759" | -  | -        | - | -  | CCOA0130 | -   | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | -1  | - | -  | conserved hypothetical protein |
| "opCcV010000<br>0641" | -  | -        | - | -  | CCOA0131 | -   | 1 | 0  | 1  | -1 | -1 | 1  | -1 | 1  | 1  | -1  | - | -  | conserved hypothetical protein |
| "opCcV010000<br>1107" | -  | -        | - | -  | CCOA0132 | -   | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1   | - | -  | conserved hypothetical protein |
| "opCcV010000<br>1807" | -  | -        | - | -  | CCOA0133 | -   |   | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1   | - | -  | conserved hypothetical protein |
| "opCcV010000<br>1253" | -  | -        | - | -  | CCOA0134 | -   | 1 | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1   | - | -  | conserved hypothetical protein |
| "opCcV010000<br>0724" | -  | -        | - | -  | CCOA0135 | -   | 1 | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1   | - | -  | hypothetical protein           |
| 'opCcV010000          | -  | -        | - | -  | CCOA0136 | -   |   | 1  | 1  | 0  | 0  | 1  | 1  | 1  | 1  | 1   | - | -  | lipoprotein, putative          |

|                       |   |   |   | , | •        |   |    |    |    |    |    |    | 1  |    | 1  | 1  | T |   | <del>, , , , , , , , , , , , , , , , , , , </del> |
|-----------------------|---|---|---|---|----------|---|----|----|----|----|----|----|----|----|----|----|---|---|---------------------------------------------------|
| 0477"                 |   |   |   |   |          |   |    |    |    |    |    |    |    |    |    |    |   |   |                                                   |
| "opCcV010000<br>0468" | i | - | - | - | CCOA0137 | - | 1  | 1  | 1  | 1  | -1 | -1 | 1  | -1 | 1  | 1  | - | - | conserved hypothetical protein                    |
| "opCcV010000<br>0670" | - | - | - | - | CCOA0138 | - | 1  | 1  | 1  | 1  | -1 | -1 | 0  | 1  | 1  | -1 | - | - | conserved hypothetical protein                    |
| "opCcV010000<br>0044" | - | - | - | - | CCOA0139 | - | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | - | - | hcp protein                                       |
| "opCcV010000<br>1716" | - | - | - | - | CCOA0140 | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | - | - | conserved hypothetical protein                    |
| "opCcV010000<br>1906" | - | - | - | - | CCOA0142 | - | -1 | 1  | 1  | 1  | -1 | 0  | 1  | 1  | 1  | 1  | - | - | hypothetical protein                              |
| "opCcV010000<br>0920" | - | - | - | - | CCOA0145 | - | 1  | 1  | 1  | 1  |    | 0  | -1 | 1  | 1  | 1  | - | - | pseudogene                                        |
| "opCcV010000<br>0347" | - | - | - | - | CCOA0146 | - | 1  | 1  | 1  | 1  | 0  |    | -1 | 1  | 1  | 1  | - | - | ISCco1, transposase orfB                          |
| "opCcV010000<br>0938" | - | - | - | - | CCOA0147 | - | 1  | 1  | 1  | -1 | -1 | -1 | 1  | 1  | 1  | -1 | - | - | Fic family protein, putative                      |
| "opCcV010000<br>1282" | - | - | - | - | CCOA0148 | - | 1  | 1  | 1  | -1 | 1  | -1 | -1 | 1  | -1 | 0  | - | - | pseudogene                                        |
| "opCcV010000<br>0502" | - | - | - | - | CCOA0149 | - | 1  | 1  | 0  | 1  | 1  |    | -1 | 1  | 1  | 1  | - | - | ISCco1, transposase orfB                          |
| "opCcV010000<br>0442" | - | - | - | - | CCOA0151 | - |    |    | 0  | 1  | -1 | -1 | -1 | 1  | 1  | -1 | - | - | lipase family protein                             |
| "opCcV010000<br>0253" | - | - | - | - | CCOA0152 | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | - | - | hypothetical protein                              |
| "opCcV010000<br>0500" | - | - | - | - | CCOA0153 | - | 1  | 1  | 1  | 0  | -1 | -1 | 1  | 1  | 1  | 0  | - | - | hypothetical protein                              |
| "opCcV010000<br>1883" | - | - | - | - | CCOA0154 | - | 1  | 1  | 1  | 0  | -1 | 1  | 1  | -1 | 1  | 1  | - | - | hypothetical protein                              |
| "opCcV010000<br>0306" | - | - | - | - | CCOA0155 | - | 1  | 1  | 1  | 1  | -1 | 0  | -1 | 1  | 1  | 1  | - | - | conserved hypothetical protein                    |
| "opCcV010000<br>0892" | - | - | - | - | CCOA0156 | - | 1  | 1  | 1  | -1 | -1 | 1  | -1 | 0  | 1  | -1 | - | - | hypothetical protein                              |
| "opCcV010000<br>1354" | - | - | - | - | CCOA0157 | - | 1  | -1 | 1  | 1  | 1  | 0  | 1  | 1  | -1 | 0  | - | - | conserved hypothetical protein                    |
| "opCcV010000<br>1811" | - | - | - | - | CCOA0158 | - | 1  | 1  | 1  | -1 | -1 | 1  | 1  | -1 | 1  | -1 | - | - | hypothetical protein                              |
| "opCcV010000<br>0322" | - | - | - | - | CCOA0159 | - |    | -1 | 0  | -1 | 1  | 1  | -1 | 1  | 1  | -1 | - | - | DNA primase, putative                             |
| "opCcV010000<br>1892" | - | - | - | - | CCOA0160 | - | -1 | -1 | 0  | -1 | 1  | -1 | -1 | 1  | -1 | -1 | - | - | hypothetical protein                              |
| "opCcV010000<br>0646" | - | - | - | - | CCOA0161 | - |    |    | 0  | -1 | 1  | -1 | -1 | 1  | 1  | -1 | - | - | DNA primase, putative                             |
| "opCcV010000<br>0935" | - | - | - | - | CCOA0162 | - |    | -1 | 1  | -1 | 1  | -1 | -1 | 1  | -1 | -1 | - | - | DNA primase trac                                  |
| "opCcV010000<br>0552" | - | - | - | - | CCOA0163 | - |    | -1 | 1  | -1 | 0  | -1 | -1 | 1  | -1 | 1  | - | - | conserved hypothetical protein                    |
| "opCcV010000<br>1496" | - | - | - | - | CCOA0164 | - |    | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | -1 | - | - | conserved hypothetical protein                    |
| "opCcV010000<br>0772" | - | - | - | - | CCOA0165 | - |    |    | 1  |    | -1 | 1  | -1 | 1  | 1  | -1 | - | - | hypothetical protein                              |
| "opCcV010000<br>1485" | - | - | - | - | CCOA0167 | - |    |    | 1  |    |    | 1  | -1 | -1 | 1  | -1 | - | - | hypothetical protein                              |
| "opCcV010000<br>2017" | - | - | - | - | CCOA0168 | - | 1  | 0  | 1  | 1  | 1  | 1  | 1  | -1 | 1  | 1  | - | - | conserved hypothetical protein                    |

| "opCcV010000<br>2056" | - | - | - | - | CCOA0169 | - | 1  | 1  | 1  | 0  | -1 | 1  | -1 | -1 | 1  | 1  | - | - | conserved hypothetical protein                 |
|-----------------------|---|---|---|---|----------|---|----|----|----|----|----|----|----|----|----|----|---|---|------------------------------------------------|
| "opCcV010000<br>1829" | - | - | - | - | CCOA0170 | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 0  | - | - | hypothetical protein                           |
| "opCcV010000<br>1579" | - | - | - | - | CCOA0171 | - | 1  | 0  | 1  | -1 | 1  | 1  | 1  | -1 | 1  | 1  | - | - | conserved hypothetical protein                 |
| "opCcV010000<br>0325" | - | - | - | - | CCOA0172 | - | 1  | 1  | 1  | 1  | -1 | 1  | -1 | 1  | -1 | 1  | - | - | hypothetical protein                           |
| "opCcV010000<br>0449" | - | - | - | - | CCOA0173 | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | - | - | conserved hypothetical protein                 |
| "opCcV010000<br>1185" | - | - | - | - | CCOA0174 | - | 1  | -1 | 1  | -1 | 1  | 1  | 1  | 1  | -1 | 1  | - | - | conserved hypothetical protein                 |
| "opCcV010000<br>0097" | - | - | - | - | CCOA0175 | - | 1  | 0  | 0  | -1 | -1 | -1 | 0  | -1 | 1  | 0  | - | - | VapD-related protein                           |
| "opCcV010000<br>2075" | - | - | - | - | CCOA0176 | - | -1 | -1 | 1  | 1  | -1 | 1  | 1  | 0  | 1  | -1 | - | - | plasmid replication protein, putative          |
| "opCcV010000<br>0102" | - | - | - | - | CCOA0177 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | -1 | 1  | -1 | - | - | site-specific recombinase,<br>resolvase family |
| "opCcV010000<br>1361" | - | - | - | - | CCOA0178 | 1 | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | - | - | virulence-associated protein 2                 |
| "opCcV010000<br>0271" | - | - | - | - | CCOA0179 | - | 1  | 1  | -1 | 1  | -1 | 1  | 1  | 1  |    | -1 | - | - | hypothetical protein                           |
| "opCcV010000<br>1182" | - | - | - | - | CCOA0180 | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | -1 | - | - | TraC protein                                   |
| "opCcV010000<br>0528" | - | - | - | - | CCOA0181 | 1 | 1  | -1 | 1  | 1  | 0  | 0  | 0  | 1  | -1 | 0  | - | - | type IV secretion system protein VirB4         |
| "opCcV010000<br>1249" | - | = | - | - | CCOA0182 | 1 | 1  | 1  | 0  | 1  | 1  | 1  | 1  | -1 | 1  | -1 | - | - | antirepressor, putative                        |
| "opCcV010000<br>0515" | - | - | - | - | CCOA0184 | 1 |    | 1  | 0  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | - | - | single-strand binding protein, putative        |
| "opCcV010000<br>0773" | - | - | - | - | CCOA0185 | 1 | 1  | 1  | 0  | -1 | 1  | -1 | -1 | 1  | 0  | -1 | - | - | conserved hypothetical protein                 |
| "opCcV010000<br>2012" | - | = | - | - | CCOA0186 | 1 | 0  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | - | - | type IV secretion system protein, putative     |
| "opCcV010000<br>1201" | - | = | - | - | CCOA0187 | 1 | 1  | 1  | 0  | 0  | -1 | -1 | -1 | 1  | 1  | -1 | - | - | TrbL/VirB6 plasmid conjugal transfer protein   |
| "opCcV010000<br>1056" | - | - | - | - | CCOA0188 | - | 1  | 1  | 0  | -1 | -1 | 1  | 0  | -1 | 1  | -1 | - | - | lipoprotein, putative                          |
| "opCcV010000<br>0925" | - | - | = | - | CCOA0189 | 1 | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | 1  | - | - | type IV secretion system protein VirB8,        |
| "opCcV010000<br>2034" | - | - | - | - | CCOA0190 | - | 1  | 1  | 1  | -1 | -1 | 1  | 1  | 1  | 1  | 0  | - | - | type IV secretion system<br>protein VirB9      |
| "opCcV010000<br>1206" | - | - | - | - | CCOA0191 | 1 | 1  | 1  | 1  | -1 | 1  | -1 | 0  | 1  | -1 | 1  | - | - | type IV secretion system protein VirB10,       |
| "opCcV010000<br>1020" | - | - | - | - | CCOA0192 | 1 | 1  | 1  | 1  | -1 | -1 | 1  | -1 | 1  | 1  | 1  | - | - | type IV secretion system protein VirB11        |
| "opCcV010000<br>1962" | - | - | - | - | CCOA0193 | - | 1  | 1  | 1  | 1  | 0  | 1  | 1  | -1 | 1  | 1  | - | - | cag pathogenicity island protein (cag5),       |
| "opCcV010000<br>0388" | - | - | - | - | CCOA0194 | - | 1  | 1  | -1 | -1 | 1  | 0  | 1  | 1  | 1  | 1  | - | - | cag island protein, putative                   |
| "opCcV010000<br>0537" | - | - | - | - | CCOA0195 | - | 1  | 1  | 1  | 0  | -1 | 1  | 1  | -1 | 1  | -1 | - | - | YggA-like protein                              |
| "opCcV010000<br>1638" | - | - | - | - | CCOA0196 | - | 1  | 1  | 1  | 1  | 0  | -1 | 0  | 1  | -1 | 1  | - | - | conserved hypothetical protein                 |
| "opCcV010000          | - |   | - | - | CCOA0197 | - | 1  | 1  | 1  | 1  | 1  | 1  | 1  | -1 | 1  | 1  | - | - | hypothetical protein                           |

|                       |   |   |   |   |          |      |    |    |    |    |    |    |    | 1  |    | 1  | <b>r</b> | 1 | 1                                  |
|-----------------------|---|---|---|---|----------|------|----|----|----|----|----|----|----|----|----|----|----------|---|------------------------------------|
| 0099"                 |   |   |   |   |          |      |    | _  |    | _  |    |    | _  |    |    |    |          |   |                                    |
| "opCcV010000<br>1852" | - | - | - | - | CCOA0198 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | -        | - | hypothetical protein               |
| "opCcV010000<br>1613" | - | - | - | - | CCOA0199 | -    | 1  | -1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | -        | - | DNA topoisomerase III              |
| "opCcV010000<br>0185" | - | - | - | - | CCOA0200 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | -1 | -        | - | hypothetical protein               |
| "opCcV010000<br>1723" | - | - | - | - | CCOA0201 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 0  | 0  | -        | - | conserved hypothetical protein     |
| "opCcV010000<br>0363" | - | - | - | - | CCOA0203 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 0  | -        | - | ISCco1, transposase orfA           |
| "opCcV010000<br>0605" | - | - | - | - | CCOA0204 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | -1 | -        | - | conserved hypothetical protein     |
| "opCcV010000<br>0119" | - | - | - | - | CCOA0205 | -    |    | 1  | 0  | 0  | 1  | -1 | -1 | 1  | 1  | 1  | -        | - | conserved hypothetical protein     |
| "opCcV010000<br>0667" | - | - | - | - | CCOA0206 | tetO | 1  | 1  | 0  | -1 | 1  | 1  | 1  | 1  | 0  | -1 | -        | - | tetracycline resistance<br>protein |
| "opCcV010000<br>0942" | - | - | - | - | CCOA0207 | -    | 1  | 1  | 1  | 1  | -1 | 1  | -1 | 1  | 1  | -1 | -        | - | conserved hypothetical protein     |
| "opCcV010000<br>0952" | - | - | - | - | CCOA0208 | -    | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 0  | 1  | -        | - | hypothetical protein               |
| "opCcV010000<br>1706" | - | - | - | - | p3384_01 | mob  | 1  | 1  | 1  |    | -1 |    | -1 | 1  | 1  | -1 | -        | - | mob                                |
| "opCcV010000<br>1047" | - | - | - | - | p3384_02 | repA | 1  | 1  | -1 | 1  | 1  | -1 | -1 | 1  | 1  | 1  | -        | - | repA                               |
| "opCcV010000<br>0254" | - | - | - | - | p3384_03 | repB | 1  | 1  | 0  | 1  | -1 | 1  | 0  | -1 | 1  | -1 | -        | - | repB                               |
| "opCcV010000<br>1624" | - | - | - | - | p3386_01 | -    | 0  | -1 | 1  | 1  | 0  | 1  | 0  | 1  | 0  | 1  | -        | - | hypothetical protein               |
| "opCcV010000<br>1751" | - |   | - | - | p3386_02 | -    | 1  | 0  | 0  | 1  | -1 | 1  | 0  | 1  | 1  | 1  | -        | - | putative Rep                       |
| "opCcV010000<br>1221" | - | - | - | - | p3386_03 | -    | -1 | -1 | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 0  | -        | - | hypothetical protein               |
| "opCcV010000<br>0229" | ı | - | - | - | pCC31p01 | -    | 1  | 0  | 1  | -1 | -1 | -1 | 1  | 1  | -1 | -1 | -        | - | teto                               |
| "opCcV010000<br>1062" | - | - | - | - | pCC31p02 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | -        | - | cpp2                               |
| "opCcV010000<br>1209" | - | - | - | - | pCC31p03 | -    | 1  | 1  | 0  | 1  | 1  | 0  | 1  | 1  | 1  | 1  | -        | - | срр3                               |
| "opCcV010000<br>1902" | - | - | - | - | pCC31p04 | -    | 1  | 1  | 1  | -1 | -1 | 1  | 1  | -1 | 1  | 0  | -        | - | cpp4                               |
| "opCcV010000<br>2004" | - | - | - | - | pCC31p05 | -    | 0  | -1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | -        | - | repa                               |
| "opCcV010000<br>0353" | - | - | - | - | pCC31p06 | -    | 1  | 0  | -1 | 1  | 1  | 1  | 1  | 1  | -1 | 1  | -        | - | срр6                               |
| "opCcV010000<br>1022" | - | - | - | - | pCC31p07 | -    | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | -        | - | срр7                               |
| "opCcV010000<br>1878" | - | - | - | - | pCC31p08 | -    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |    | 1  | -        | - | cpp8                               |
| "opCcV010000<br>0179" | - | - | - | - | pCC31p09 | -    | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 1  | -1 | -        | - | срр9                               |
| "opCcV010000<br>0034" | - | - | - | - | pCC31p10 | -    |    | -1 | 0  | 1  | 1  | 0  | 1  | 1  | 0  | 1  | -        | - | cpp10                              |
| "opCcV010000<br>2067" | - |   | - | - | pCC31p12 | -    | -1 | 1  | 1  | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -        | - | cpp12                              |

| "opCcV010000<br>1321" | - | - | - | - | pCC31p13 | - | -1 | -1 | 1  | -1 | 1  | 1  | -1 | 1  | 1  | -1 | - | - | cpp13   |
|-----------------------|---|---|---|---|----------|---|----|----|----|----|----|----|----|----|----|----|---|---|---------|
| "opCcV010000<br>2080" | - | - | - | - | pCC31p14 | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | - | - | cpp14   |
| "opCcV010000<br>1336" | - | - | - | - | pCC31p15 | - | 1  | 0  | 0  | -1 | -1 | 0  | -1 | 1  | 0  | 1  | - | - | cpp15   |
| "opCcV010000<br>0825" | - | - | - | - | pCC31p16 | - | 1  | 1  | 1  | 1  | 0  | 1  | 1  | -1 | 1  | -1 | - | - | cpp16   |
| "opCcV010000<br>1960" | - | - | - | - | pCC31p17 | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | - | - | cpp17   |
| "opCcV010000<br>1732" | - | - | - | - | pCC31p18 | - | 1  | 1  | 1  | 1  | -1 |    |    | 0  | 1  | -1 | - | - | cpp18   |
| "opCcV010000<br>1909" | - | - | - | - | pCC31p19 | - | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | - | - | cpp19   |
| "opCcV010000<br>2068" | - | - | - | - | pCC31p21 | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 0  | 1  | 1  | - | - | cpp22   |
| "opCcV010000<br>0675" | - | - | - | - | pCC31p22 | - |    |    | 0  |    |    | 1  | 1  | 1  |    | -1 | - | - | cpp23   |
| "opCcV010000<br>1373" | - | - | - | - | pCC31p23 | - | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | - | - | cpp24   |
| "opCcV010000<br>1757" | - | - | - | - | pCC31p24 | - |    | 0  | 1  |    | -1 |    | -1 | 1  | -1 | -1 | - | - | cpp25   |
| "opCcV010000<br>0985" | - | - | - | - | pCC31p25 | - | 1  | 1  | -1 | 1  | -1 | 1  | 1  | -1 | 1  | 0  | - | - | cpp26   |
| "opCcV010000<br>2035" | - | - | - | - | pCC31p26 | - | 1  | 0  | 1  | 1  | -1 | 1  | -1 | 0  | 1  | 1  | - | - | cpp27   |
| "opCcV010000<br>1362" | - | - | - | - | pCC31p27 | - | 1  | 1  | 1  | 0  | -1 | 1  | 1  | -1 | 1  | 1  | - | - | vapd    |
| "opCcV010000<br>1318" | - | - | - | - | pCC31p28 | - | 1  | 0  | 0  | 1  | 1  | 1  | 1  | 1  | -1 | 0  | - | - | cpp29   |
| "opCcV010000<br>1969" | - | - | - | - | pCC31p29 | - | 1  | 0  | 1  | 1  | 0  | 1  | 1  | 1  | 1  | 1  | - | - | cmgb2   |
| "opCcV010000<br>1153" | - | - | - | - | pCC31p30 | - | 1  | 1  | -1 | -1 | -1 | 1  | 1  | -1 | 1  | -1 | - | - | cmgb3/4 |
| "opCcV010000<br>1760" | - | - | - | - | pCC31p31 | - | 1  | 1  | 0  | -1 | 0  | 1  | -1 | 1  | 1  | 1  | - | - | cpp32   |
| "opCcV010000<br>0972" | - | - | - | - | pCC31p32 | - | 1  | 1  | 1  | -1 | 0  | 0  | 1  | 1  | 1  | -1 | - | - | cpp33   |
| "opCcV010000<br>0194" | - | - | - | - | pCC31p33 | - | 1  | 1  | 1  |    | 0  | -1 | 1  | 1  | 1  | 1  | - | - | ssb1    |
| "opCcV010000<br>1287" | - | - | - | - | pCC31p34 | - | 1  | 1  | 0  | -1 | -1 | 1  | 1  |    | 1  | -1 | - | - | cpp35   |
| "opCcV010000<br>1463" | - | - | - | - | pCC31p35 | - | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 1  | -1 | 1  | - | - | cmgb5   |
| "opCcV010000<br>1487" | - | - | - | - | pCC31p36 | - | 1  | 1  | 0  | 1  |    | 0  | -1 | 1  | 1  | 1  | - | - | cmgb6   |
| "opCcV010000<br>0790" | - | - | - | - | pCC31p38 | - | 1  | 1  | 1  | -1 | -1 | 1  | -1 | 1  | -1 | 1  | - | - | cmgb8   |
| "opCcV010000<br>2021" | - | - | - | - | pCC31p39 | - | 1  | 1  | 1  | 0  | -1 | 1  | 1  | 0  | 1  | 1  | - | - | cmgb9   |
| "opCcV010000<br>2005" | - | - | - | - | pCC31p40 | - | 1  | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | - | - | cmgb10  |
| "opCcV010000<br>0177" | - | - | - | - | pCC31p41 | - |    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | - | - | cmgb11  |
| "opCcV010000          | - | - | - | - | pCC31p42 | - | 1  | 0  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | - | - | cmgd4   |

| 1025!!                | ı | 1   | _        | 1 | 1        | 1 |   | 1  | 1  |    |    |    | 1  |    |    |    | T                    | 1 | T     |
|-----------------------|---|-----|----------|---|----------|---|---|----|----|----|----|----|----|----|----|----|----------------------|---|-------|
| 1935"<br>"opCcV010000 | _ | 1 - | <u> </u> | _ | pCC31p43 | _ | 1 | 1  | 1  | -1 | -1 | 1  | 1  | 1  | 1  | 1  | _                    | _ | cpp44 |
| 0524"                 | _ |     |          |   |          |   |   |    | 1  |    |    |    | 1  | 1  | •  | •  | _                    |   |       |
| "opCcV010000<br>0026" | - | -   | -        | - | pCC31p44 | - | 1 | 1  | 1  | -1 | -1 | 0  | -1 | 1  | 1  | 1  | -                    | - | cpp45 |
| "opCcV010000<br>0421" | - | -   | -        | - | pCC31p45 | - | 1 | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | -1 | -                    | - | cpp46 |
| "opCcV010000<br>0761" | - | -   | -        | - | pCC31p46 | - | 1 | 1  | 1  | -1 | -1 | 1  | 1  | 1  | -1 | 0  | -                    | - | cpp47 |
| "opCcV010000<br>1366" | - | -   | -        | - | pCC31p47 | - | 1 | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | -1 | -                    | - | cpp48 |
| "opCcV010000<br>1779" | - | -   | -        | - | pCC31p48 | - | 1 | 1  | 1  | 1  | -1 | 1  | 1  | -1 | 1  | 1  | -                    | - | срр49 |
| "opCcV010000<br>0546" | - | -   | -        | - | pCC31p49 | - | 1 | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | -                    | - | cpp50 |
| "opCcV010000<br>1347" | - | -   | -        | - | pCC31p50 | - | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | -                    | - | cpp51 |
| "opCjjV010000<br>019" | - | -   | pTet_02  | - | -        | - | 1 | 1  | -1 | 1  | -1 | 1  | 0  | 0  | 1  | -1 | hypothetical protein | - | -     |
| "opCjjV010000<br>037" | - | -   | pTet_03  | - | -        | - | 1 | 1  | 1  | 1  | -1 | 1  | -1 | 1  | 1  | 1  | hypothetical protein | - | -     |
| "opCjjV010000<br>112" | - | -   | pTet_04  | - | -        | - | 1 | 1  | 1  | 0  | -1 | 1  | 1  | 1  | 1  | -1 | hypothetical protein | - | -     |
| "opCjjV010000<br>194" | - | -   | pTet_05  | - | -        | - | 1 | 1  | 0  |    | -1 | 1  | -1 | 1  | -1 | -1 | hypothetical protein | - | -     |
| "opCjjV010000<br>183" | - | -   | pTet_06  | - | -        | - | 1 | 1  | 0  | 1  | 1  | 1  | 1  | 1  | -1 | 1  | hypothetical protein | - | -     |
| "opCjjV010000<br>090" | - | -   | pTet_07  | - | -        | - |   |    | 1  |    | -1 | 1  |    | -1 |    | -1 | hypothetical protein | - | -     |
| "opCjjV010000<br>199" | - | -   | pTet_08  | - | -        | - |   | -1 | 0  | -1 | 1  | -1 | -1 | 1  | -1 | -1 | hypothetical protein | - | -     |
| "opCjjV010000<br>096" | - | -   | pTet_09  | - | -        | - |   |    | 0  | -1 | -1 | -1 | -1 | -1 | -1 | 1  | hypothetical protein | - | -     |
| "opCjjV010000<br>054" | - | -   | pTet_10  | - | -        | - | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein | - | -     |
| "opCjjV010000<br>139" | - | -   | pTet_11  | - | -        | - | 1 | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | -1 | hypothetical protein | - | -     |
| "opCjjV010000<br>107" | - | -   | pTet_12  | - | -        | - | 1 | 1  | 1  | -1 | -1 | 1  | 1  | -1 | 1  | 1  | hypothetical protein | - | -     |
| "opCjjV010000<br>116" | - | -   | pTet_13  | - | -        | - | 1 | 1  | 1  | 1  | 1  | -1 | 0  | 1  | -1 | 1  | hypothetical protein | - | -     |
| "opCjjV010000<br>048" | - | -   | pTet_14  | - | -        | - | 1 | 1  | 1  | -1 | 1  | -1 | -1 | 1  | 1  | -1 | hypothetical protein | - | -     |
| "opCjjV010000<br>173" | - | -   | pTet_15  | - | -        | - | 1 | 1  | 1  | 1  | -1 | 0  | -1 | 1  | 1  | 1  | hypothetical protein | - | -     |
| "opCjjV010000<br>148" | - | -   | pTet_16  | - | -        | - | 1 | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 1  | hypothetical protein | - | -     |
| "opCjjV010000<br>150" | - | -   | pTet_17  | - | -        | - | 1 | 1  | 1  | 1  | 1  | -1 | -1 | 1  | -1 | 1  | hypothetical protein | - | -     |
| "opCjjV010000<br>114" | - | -   | pTet_18  | - | -        | - | 1 | 1  | 1  | -1 | -1 | -1 | -1 | 1  | 1  | 1  | hypothetical protein | - | -     |
| "opCjjV010000<br>002" | - | -   | pTet_19  | - | -        | - | 1 | 1  | 1  | 1  | 1  | -1 | -1 | 1  | 1  | 1  | hypothetical protein | - | -     |
| "opCjjV010000<br>059" | - | -   | pTet_20  | - | -        | - | 1 | 1  | -1 | -1 | 0  | 1  | 1  | 1  | 1  | -1 | hypothetical protein | - | -     |

| "opCjjV010000<br>053" | -               | -    | pTet_21 | - | -              | -    |   |    | 1  | -1 |    |    | -1 | 1  |    |    | hypothetical protein | -                 | -                 |
|-----------------------|-----------------|------|---------|---|----------------|------|---|----|----|----|----|----|----|----|----|----|----------------------|-------------------|-------------------|
| "opCjjV010000<br>043" | -               | -    | pTet_22 | - | -              | -    | 1 | 1  | 1  | -1 | 0  | 1  | -1 | -1 | 0  | -1 | hypothetical protein | -                 | -                 |
| "opCjjV010000<br>069" | -               | -    | pTet_23 | - | -              | -    | 1 | 1  | 1  | 1  | 1  | 1  | -1 | -1 | 1  | 1  | hypothetical protein | -                 | -                 |
| "opCjjV010000<br>029" | -               | -    | pTet_24 | - | -              | -    | 1 | 1  | 0  | -1 | 1  | 1  | -1 | 1  | 1  | -1 | hypothetical protein | -                 | -                 |
| "opCjjV010000<br>202" | -               | -    | pTet_25 | - | -              | -    | 1 | -  | 0  | 1  | 1  | -1 | 0  | 1  | 1  | 0  | hypothetical protein | -                 | -                 |
| "opCjjV010000<br>063" | -               | -    | pTet_26 | - | -              | -    | 1 | 1  | 1  | 1  | -1 | 1  | 1  | 1  |    | 0  | hypothetical protein | -                 | -                 |
| "opCjjV010000<br>178" | -               | -    | pTet_27 | - | -              | -    | 1 | 1  | 1  | 1  | -1 | 1  | 1  | 1  | 1  | 1  | hypothetical protein | -                 | -                 |
| "opCjjV010000<br>129" | -               | -    | pTet_28 | - | -              | -    | 1 | 1  | 0  |    | -1 | 0  | -1 | 1  | 1  | 1  | hypothetical protein | -                 | -                 |
| "opCjjV010000<br>153" | -               | -    | pTet_29 | - | -              | -    | 1 | 1  |    | 1  | -1 | 0  | 1  | -1 | 1  | 1  | hypothetical protein | -                 | -                 |
| "opCjjV010000<br>111" | -               | -    | pTet_30 | - | -              | -    | 1 | -  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | hypothetical protein | -                 | -                 |
| "opCjjV010000<br>056" | -               | -    | pTet_31 | - | -              | -    | 1 | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | hypothetical protein | -                 | -                 |
| "opCjjV010000<br>106" | -               | -    | pTet_32 | - | -              | -    | 1 | -1 | 1  | 0  | 1  | -1 | -1 | 1  | 1  | 1  | hypothetical protein | -                 | -                 |
| "opCjjV010000<br>190" | -               | -    | pTet_33 | - | -              | -    | 1 | 1  | 1  | 1  | -1 | 1  | -1 | 1  | -1 | -1 | hypothetical protein | -                 | -                 |
| "opCjjV010000<br>140" | -               | -    | pTet_34 | - | -              | -    | 0 | -1 | 1  | -1 | 1  | 1  | 0  | 1  | -1 | 1  | hypothetical protein | -                 | -                 |
| "opCjjV010000<br>042" | -               | -    | pTet_35 | - | -              | -    | 1 | 1  | 1  | 0  | -1 | 1  | 0  | 1  | 1  | -1 | hypothetical protein | -                 | -                 |
| "opCjjV010000<br>145" | -               | -    | pTet_36 | - | -              | -    | 1 | 1  | -1 | -1 | -1 | -1 | 1  | 1  | 1  | 1  | hypothetical protein | -                 | -                 |
| "opCjjV010000<br>185" | -               | -    | pTet_37 | - | -              | -    | 1 | 1  | 1  | 1  | -1 | 1  | 1  | 1  | -1 | 1  | hypothetical protein | -                 | -                 |
| "opCjjV010000<br>015" | -               | -    | pTet_38 | - | -              | -    | 1 | 1  | 1  | 1  | 1  | 0  | -1 | 1  | -1 | 1  | hypothetical protein | -                 | -                 |
| "opCjjV010000<br>149" | -               | -    | pTet_39 | - | -              | -    | 1 | 1  | 1  | -1 | 1  | 1  | 0  | 1  | 1  | 1  | hypothetical protein | -                 | -                 |
| "opCjjV010000<br>077" | -               | -    | pTet_40 | - | -              | -    | 1 | 1  | 1  | -1 | 1  | 1  | 1  | -1 | 1  | -1 | hypothetical protein | -                 | -                 |
| "opCjjV010000<br>118" | -               | -    | pTet_41 | - | -              | -    | 1 | 0  | 1  | -1 | 1  | -1 | -1 | 1  |    | 1  | hypothetical protein | -                 | -                 |
| "opCjjV010000<br>057" | -               | -    | pTet_42 | - | -              | -    | 1 | 1  | 1  | 1  | 0  | 1  | 1  | -1 | 1  | -1 | hypothetical protein | -                 | -                 |
| "opCjjV010000<br>012" | -               | -    | pTet_43 | - | -              | -    |   |    | 1  | -1 |    | 1  | 1  | 1  | 1  |    | hypothetical protein | -                 | -                 |
| "opCjjV010000<br>097" | -               | =    | pTet_44 | - | -              | -    |   |    | 1  |    | -1 |    |    | 1  | 1  |    | hypothetical protein | -                 | -                 |
| "opCcV010000<br>0864" | CJE_Cj16S<br>A  | rrsA | Cjr01   | - | CCO_Cc16<br>SB | rrsB | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 16S ribosomal RNA    | 16S ribosomal RNA | 16S ribosomal RNA |
| "opCcV010000<br>0237" | CJE_Cj23S<br>A  | rrlA | Cjr05   | - | CCO_Cc23<br>SB | rrlB | 1 | 1  | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 23S ribosomal RNA    | 23S ribosomal RNA | 23S ribosomal RNA |
| "opCjV010000<br>1047" | CJE_Cjrnp<br>B1 | -    | -       | - | -              | -    | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | -                    | sRNA              | -                 |
| "opCjjV010000         | CJE_Cjtm        | -    | Cjs01   | - | -              | -    | 1 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | tmRNA                | sRNA              | -                 |

|                       | •                  |   |       |   | •                            |   |    |    |    |   |   |   |          |   |    |   |           |          |          |
|-----------------------|--------------------|---|-------|---|------------------------------|---|----|----|----|---|---|---|----------|---|----|---|-----------|----------|----------|
| 026"                  | RNA1               |   |       |   |                              |   |    |    |    |   |   |   |          |   |    |   |           |          |          |
| "opCcV010000<br>0497" | CJE_tRNA<br>-Ala-1 | - | -     | - | CCO_tRNA<br>-Ala-1           | - | 1  | 1  | 1  | 1 | 1 | 1 | 1        | 1 | 1  | 1 | -         | tRNA-Ala | tRNA-Ala |
| "opCjV010000<br>0055" | CJE_tRNA<br>-Ala-4 | - | -     | - | -                            | - | 1  | 1  | 1  | 1 | 1 | 1 | 1        | 1 | 1  | 1 | -         | tRNA-Ala | -        |
| "opCcV010000          | CJE_tRNA           | - | -     | - | CCO_tRNA                     | - | -1 | 0  | -1 | 1 | 1 | 0 | -1       | 1 | 0  | 1 | -         | tRNA-Arg | tRNA-Arg |
| 1071"                 | -Arg-1             |   |       |   | -Arg-1                       |   |    |    |    |   |   |   |          |   |    |   |           |          |          |
| "opCcV010000<br>0019" | CJE_tRNA<br>-Arg-3 | - | -     | - | CCO_tRNA<br>-Arg-3           | - | 1  | 1  | 1  | 1 | 1 | 1 | 1        | 1 | 1  | 1 | -         | tRNA-Arg | tRNA-Arg |
| "opCcV010000<br>0101" | CJE_tRNA<br>-Arg-4 | - | Cjt3  | - | CCO_tRNA<br>-Arg-4           | - | 1  | 1  | 1  | 1 | 1 | 1 | 1        | 1 | 1  | 1 | tRNA-Arg  | tRNA-Arg | tRNA-Arg |
| "opCcV010000<br>1196" | CJE_tRNA<br>-Arg-5 | - | Cjt4  | - | CCO_tRNA<br>-Arg-5           | - | 1  | 1  | 1  | 1 | 1 | 1 | 1        | 1 | 1  | 1 | tRNA-Arg  | tRNA-Arg | tRNA-Arg |
| "opCcV010000          | CJE_tRNA           | - | -     | - | CCO_tRNA                     | - | 1  | 1  | 1  | 1 | 1 | 1 | 1        | 1 | 1  | 1 | -         | tRNA-Asn | tRNA-Asn |
| 0195"<br>"opCcV010000 | -Asn-1<br>CJE_tRNA | - | Cjt2  | - | -Asn-1<br>CCO_tRNA           | - | 1  | -1 | 0  | 1 | 1 | 1 | 1        | 1 | -1 | 1 | tRNA-Asp  | tRNA-Asp | tRNA-Asp |
| 1356"<br>"opCcV010000 | -Asp-1<br>CJE_tRNA | _ | -     | - | -Asp-1<br>CCO_tRNA           | - | 1  | 1  | 1  | 1 | 1 | 1 | 1        | 1 | 1  | 1 | -         | tRNA-Cys | tRNA-Cys |
| 0079"<br>"opCcV010000 | -Cys-1<br>CJE_tRNA | _ | _     |   | -Cys-1<br>CCO_tRNA           | _ | 1  | 1  | 1  | 1 | 0 | 1 | 1        | 1 | 1  | 1 |           | tRNA-Gln | tRNA-Gln |
| 0222"                 | -Gln-1             |   | -     | _ | -Gln-1                       | - |    |    | 1  | • |   | 1 | Ĺ        | Ĺ |    |   | -         |          |          |
| "opCcV010000<br>0336" | CJE_tRNA<br>-Glu-1 | - | -     | - | CCO_tRNA<br>-Glu-1           | - | 1  | 1  | 1  | 1 | 1 | 1 | 1        | 1 | 1  | 1 | -         | tRNA-Glu | tRNA-Glu |
| "opCcV010000<br>1543" | CJE_tRNA<br>-Gly-1 | - | -     | - | CCO_tRNA<br>-Gly-1           | - | 1  | 1  | 1  | 1 | 1 | 1 | 1        | 1 | 1  | 1 | -         | tRNA-Gly | tRNA-Gly |
| "opCcV010000<br>0428" | CJE_tRNA<br>-Gly-3 | - | -     | - | CCO_tRNA<br>-Gly-3           | - | 1  | 1  | 1  | 1 | 1 | 1 | 1        | 1 | 1  | 1 | -         | tRNA-Gly | tRNA-Gly |
| "opCcV010000<br>1173" | CJE_tRNA           | - | -     | - | CCO_tRNA                     | - | 1  | 1  | 1  | 1 | 1 | 1 | 1        | 1 | 1  | 1 | -         | tRNA-His | tRNA-His |
| "opCcV010000<br>1786" | -His-1<br>CJE_tRNA | - | -     | - | -His-1<br>CCO_tRNA<br>-Ile-1 | - | 1  | 1  | 1  | 1 | 1 | 1 | 1        | 1 | 1  | 1 | -         | tRNA-Ile | tRNA-Ile |
| "opCcV010000          | -Ile-1<br>CJE_tRNA | - | -     | - | CCO_tRNA                     | - | 1  | 1  | 1  | 1 | 1 | 1 | 1        | 1 | 1  | 1 | -         | tRNA-Leu | tRNA-Leu |
| 1686"<br>"opCcV010000 | -Leu-1<br>CJE_tRNA | - | Cjt01 | - | -Leu-1<br>CCO_tRNA           | - | 1  | 0  | 0  | 1 | 1 | 1 | 1        | 1 | 1  | 1 | tRNA-Leu  | tRNA-Leu | tRNA-Leu |
| 1080"<br>"opCcV010000 | -Leu-2<br>CJE tRNA | - | -     | - | -Leu-2<br>CCO tRNA           | - | 1  | 1  | 1  | 1 | 0 | 1 | 1        | 1 | 1  | 1 | -         | tRNA-Leu | tRNA-Leu |
| 1893"<br>"opCcV010000 | -Leu-3<br>CJE_tRNA |   | Cit05 |   | -Leu-3<br>CCO_tRNA           |   | 1  | 1  | 1  | 1 | 1 | 1 | 1        | 1 | 1  | 1 | tRNA-Leu  | tRNA-Leu | tRNA-Leu |
| 0918"                 | -Leu-4             |   | Cjios |   | -Leu-4                       | _ |    |    | 1  | 1 |   | 1 | <u>'</u> |   | 1  | 1 | uxiva-Leu |          |          |
| "opCcV010000<br>0151" | CJE_tRNA<br>-Lys-1 | - | -     | - | CCO_tRNA<br>-Lys-1           | - | 1  | 1  | 1  | 1 | 1 | 1 | 1        | 1 | 1  | 1 | -         | tRNA-Lys | tRNA-Lys |
| "opCcV010000<br>1079" | CJE_tRNA<br>-Met-1 | - | -     | - | CCO_tRNA<br>-Met-1           | - | 1  | 1  | 1  | 1 | 1 | 1 | 1        | 1 | 1  | 1 | -         | tRNA-Met | tRNA-Met |
| "opCcV010000<br>1981" | CJE_tRNA<br>-Met-2 | - | -     | - | CCO_tRNA<br>-Met-2           | - | 1  | 1  | 1  | 1 | 0 | 1 | 1        | 0 | 1  | 1 | -         | tRNA-Met | tRNA-Met |
| "opCcV010000<br>0391" | CJE_tRNA           | - | -     | - | CCO_tRNA<br>-Met-3           | - | 1  | 1  | 1  | 1 | 0 | 1 | 1        | 1 | 1  | 1 | -         | tRNA-Met | tRNA-Met |
| "opCcV010000          | -Met-3<br>CJE_tRNA | - | -     | - | CCO_tRNA                     | - | 0  | 1  | 0  | 0 | 1 | 1 | 1        | 1 | 1  | 1 | -         | tRNA-Phe | tRNA-Phe |
| 0776" "opCcV010000    | -Phe-1<br>CJE_tRNA | - | -     | - | -Phe-1<br>CCO_tRNA           | - | 1  | 1  | 1  | 1 | 1 | 1 | 1        | 1 | 1  | 1 | -         | tRNA-Pro | tRNA-Pro |
| 0458"<br>"opCcV010000 | -Pro-1<br>CJE_tRNA | - | -     | - | -Pro-1<br>CCO_tRNA           | - | 1  | 1  | 1  | 1 | 1 | 1 | 1        | 1 | 1  | 1 | -         | tRNA-SeC | tRNA-SeC |
| 0055" "opCcV010000    | -SeC-1<br>CJE_tRNA | - | -     | - | -SeC-1<br>CCO_tRNA           | _ | 1  | 1  | 1  | 1 | 1 | 1 | 1        | 1 | 1  | 1 | -         | tRNA-Ser | tRNA-Ser |
| 0787"                 | -Ser-1             |   |       |   | -Ser-1                       |   |    |    |    |   |   |   |          |   |    |   |           |          |          |

| "opCcV010000<br>1380" | CJE_tRNA<br>-Ser-2 | - | -     | - | CCO_tRNA<br>-Ser-2 | - |    | 0  | 0  | 1 | 1  | -1 | 0  | 0 | 1 | 1  | -        | tRNA-Ser | tRNA-Ser |
|-----------------------|--------------------|---|-------|---|--------------------|---|----|----|----|---|----|----|----|---|---|----|----------|----------|----------|
| "opCcV010000<br>1987" | CJE_tRNA<br>-Ser-3 | - | Cjt06 | - | CCO_tRNA<br>-Ser-3 | - |    | -1 | -1 |   | -1 | -1 | -1 | 1 | 1 | -1 | tRNA-Ser | tRNA-Ser | tRNA-Ser |
| "opCcV010000<br>1276" | CJE_tRNA<br>-Thr-1 |   | -     | - | CCO_tRNA<br>-Thr-1 | - | 1  | 1  | 1  | 1 | 1  | 1  | 1  | 1 | 1 | 1  | -        | tRNA-Thr | tRNA-Thr |
| "opCjjV010000<br>157" | CJE_tRNA<br>-Thr-2 | - | Cjt1  | - | -                  | - | 1  | 1  | 1  | 1 | 1  | 1  | 1  | 1 | 1 | 1  | tRNA-Thr | tRNA-Thr | -        |
| "opCcV010000<br>1423" | CJE_tRNA<br>-Trp-1 | - | -     | - | CCO_tRNA<br>-Trp-1 | - | 1  | 1  | 1  | 1 | 1  | 1  | 1  | 1 | 1 | 1  | -        | tRNA-Trp | tRNA-Trp |
| "opCcV010000<br>1928" | CJE_tRNA<br>-Tyr-1 | - | -     | - | CCO_tRNA<br>-Tyr-1 | - | 1  | 0  | 1  | 1 | -1 | 1  | 1  | 1 | 1 | -1 | -        | tRNA-Tyr | tRNA-Tyr |
| "opCcV010000<br>1203" | CJE_tRNA<br>-Val-1 | - | -     | - | CCO_tRNA<br>-Val-1 | - | -1 | 1  | 1  | 1 | 0  | 1  | 1  | 1 | 1 | 1  | -        | tRNA-Val | tRNA-Val |
| "opCcV010000<br>0443" | CJE_tRNA<br>-Val-3 | - | -     | - | CCO_tRNA<br>-Val-3 | - | 1  | 1  | 1  | 1 | 1  | 1  | 1  | 1 | 1 | 1  | -        | tRNA-Val | tRNA-Val |

1=present; -1=absent/highly divergent; 0=slightly divergent

Lipooligosaccharide region

Flagellar modification region

Capsule region in *C. jejuni* RM1221

C. jejuni NCTC11168 specific capsule genes

Supplementary table 4: Genes present and highly divergent/absent in the hyperinvasive and low invasive *C. jejuni*.

|                         | Gene name/numb                                            | ber                                         |       | I     | Iyperinva | sive <i>C. jeji</i> | uni   |       | ]     | Low-invas | ve <i>C. jejur</i> | ıi    |                                                  | Role/function                                     |                                                        | COG<br>functional<br>grouping                 |
|-------------------------|-----------------------------------------------------------|---------------------------------------------|-------|-------|-----------|---------------------|-------|-------|-------|-----------|--------------------|-------|--------------------------------------------------|---------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|
|                         | es present in all lov<br>sent/highly diverge<br>C. jejuni |                                             | 01_10 | 01_35 | 01_04     | 01_41               | 01_51 | EX114 | 01_30 | 01_32     | 01_46              | 01_39 | C. jejuni<br>NCTC11168                           | C. jejuni<br>RM1221                               | C. coli<br>RM2228                                      | Fouts <i>et al.</i> , 2005                    |
| C. jejuni<br>NCTC 11168 | C. jejuni<br>RM1221                                       | C. coli RM2228                              |       |       |           |                     |       | _     |       |           |                    |       |                                                  |                                                   |                                                        |                                               |
| accA(Cj0443)            | accA(CJE0495)                                             | accA(CCO0532)                               | 1     | -1    | -1        | -1                  | -1    | -1    | 1     | 1         | 1                  | 1     | acetyl-<br>coenzyme A<br>carboxylase<br>carboxyl | acetyl-CoA<br>carboxylase alpha<br>subunit        | acetyl-CoA<br>carboxylase,<br>carboxyl<br>transferase, | Lipid transport and metabolism                |
| Cj0911                  | CJE0989                                                   | CCO1012                                     | 1     | -1    | -1        | -1                  | -1    | -1    | 1     | 1         | 1                  | 1     | putative<br>periplasmic<br>protein               | SCO1/SenC family protein                          | probable<br>periplasmic<br>protein Cj0911              | General function prediction only              |
|                         |                                                           | CCOA0043                                    | -1    | -1    | -1        | -1                  | 1     | -1    | 1     | 1         | 1                  | 1     |                                                  | hypothetical protein                              | hypothetical protein                                   | Hypothetical                                  |
| Cj1720                  | CJE1890                                                   | CCO0019                                     | -1    | 1     | -1        | -1                  | -1    | -1    | 1     | 1         | 1                  | 1     | hypothetical protein                             | hypothetical protein                              | conserved<br>hypothetical<br>protein                   | Hypothetical                                  |
|                         | es absent/highly di<br>ni and present in fiv<br>jejuni    |                                             |       |       |           |                     |       |       |       |           |                    |       |                                                  |                                                   |                                                        |                                               |
| infB(Cj0136)            | infB(CJE0131)                                             | infB(CCO1743)                               | 1     | 1     | 1         | -1                  | 1     | 1     | -1    | -1        | -1                 | -1    | translation<br>initiation factor<br>IF-2         | translation<br>initiation factor<br>IF-2          | translation<br>initiation factor<br>IF-2               | Translation                                   |
| Cj0380c                 |                                                           |                                             | 1     | 1     | 1         | 1                   | 1     | -1    | -1    | -1        | -1                 | -1    | hypothetical protein                             | hypothetical protein                              | conserved<br>hypothetical<br>protein                   | Hypothetical                                  |
| Cip21                   |                                                           |                                             | 1     | 1     | 1         | 1                   | 1     | -1    | -1    | -1        | -1                 | -1    | hypothetical protein                             |                                                   |                                                        | Hypothetical                                  |
|                         | sent/highly diverge                                       | f six hyperinvasive<br>ent in three of four |       |       |           |                     |       |       |       |           |                    |       |                                                  |                                                   |                                                        |                                               |
| Cj1002c                 | sixA(CJE1082)                                             | sixA(CCO1064)                               | -1    | 1     | 1         | 1                   | 1     | 1     | -1    | -1        | 1                  | -1    | conserved<br>hypothetical<br>protein             | phosphohistidine<br>phosphatase SixA              | phosphohistidin<br>e phosphatase<br>SixA, putative     | Signal<br>transduction<br>mechanism           |
| Cj1176c                 | CJE1310                                                   | CCO1245                                     | 1     | -1    | 1         | 1                   | 1     | 1     | 1     | -1        | -1                 | -1    | hypothetical<br>protein                          | twin-arginine<br>translocation<br>protein, TatA/E | Sec-independent<br>protein<br>translocase<br>protein   | Intracellular<br>trafficking and<br>secretion |

| Сј1343с               | ctsG(CJE1532) | ctsG(CCO1449)       | 1 | -1 | 1  | 1  | 1  | 1 | -1       | 1       | -1 | -1 | putative<br>periplasmic<br>protein                        | transformation<br>system protein                        | transformation<br>system protein                        | Cell<br>wall/membrane<br>biogenesis       |
|-----------------------|---------------|---------------------|---|----|----|----|----|---|----------|---------|----|----|-----------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------|
| Cj1287c               | CJE1479       | таеВ (CCO1392)      | 1 | -1 | 1  | 1  | 1  | 1 | -1       | 1       | -1 | -1 | malate<br>oxidoreductase                                  | NADP-dependent<br>malic enzyme,<br>truncation           | malic enzyme                                            | Energy<br>production and<br>conversion    |
| Cj1476c               | CJE1649       | CCO1582             | 1 | -1 | 1  | 1  | 1  | 1 | -1       | 1       | -1 | -1 | pyruvate-<br>flavodoxin<br>oxidoreductase                 | pyruvate<br>ferredoxin/flavod<br>oxin<br>oxidoreductase | pyruvate<br>ferredoxin/flavo<br>doxin<br>oxidoreductase | Energy<br>production and<br>conversion    |
| Cj0544                | CJE0648       | CCO0641             | 1 | 1  | -1 | 1  | 1  | 1 | -1       | 1       | -1 | -1 | putative integral<br>membrane<br>protein                  | hypothetical protein                                    | probable integral<br>memnbrane<br>protein Cj0544        | Cell<br>wall/membrane<br>biogenesis       |
| Cj0943                | lolA(CJE1021) | CCO0952             | 1 | 1  | -1 | 1  | 1  | 1 | -1       | 1       | -1 | -1 | putative<br>periplasmic<br>protein                        | outer-membrane<br>lipoprotein carrier<br>protein        | probable<br>periplasmic<br>protein Cj0943               | Cell<br>wall/membrane<br>biogenesis       |
|                       |               | CCO1326             | 1 | 1  | 1  | -1 | 1  | 1 | -1       | 1       | -1 | -1 |                                                           |                                                         | hypothetical protein                                    | Hypothetical                              |
| Cj0717                | CJE0817       | CCO0783             | 1 | 1  | 1  | -1 | 1  | 1 | -1       | -1      | 1  | -1 | hypothetical<br>protein                                   | hypothetical protein                                    | arsC family protein hypothetical                        | Arsenic resistance                        |
| Cj0151c               | CJE0147       | CCOA0113<br>CCO1726 | 1 | 1  | 1  | -1 | 1  | 1 | -1<br>-1 | -1<br>1 | -1 | -1 | putative<br>periplasmic<br>protein                        | hypothetical protein                                    | protein  probable periplasmic protein Cj0151c           | Hypothetical<br>Hypothetical              |
| <i>pyrC</i> 2(Cj1195c | CJE1329       | CCO1265             | 1 | 1  | 1  | -1 | 1  | 1 | -1       | 1       | -1 | -1 | putative<br>dihydroorotase                                | dihydroorotase                                          | dihydroorotase,<br>putative                             | Nucleotide<br>transport and<br>metabolism |
| Cjp17                 |               |                     | 1 | 1  | 1  | 1  | -1 | 1 | -1       | -1      | 1  | -1 | hypothetical<br>protein                                   |                                                         |                                                         | Hypothetical                              |
| sucD(Cj0534)          | sucD(CJE0638) | sucD(CCO0631)       | 1 | 1  | 1  | 1  | -1 | 1 | -1       | -1      | 1  | -1 | succinyl-coA<br>synthetase<br>alpha chain<br>hypothetical | succinyl-CoA<br>synthase, alpha<br>subunit              | SucD                                                    | Energy<br>production and<br>conversion    |
| Cjp30                 |               |                     | 1 | 1  | 1  | 1  | -1 | 1 | -1       | -1      | 1  | -1 | protein<br>hypothetical                                   |                                                         |                                                         | Hypothetical                              |
| Cjp39                 |               |                     | 1 | 1  | 1  | 1  | -1 | 1 | -1       | -1      | -1 | 1  | protein                                                   |                                                         |                                                         | Hypothetical                              |

| Cj0581               | nidH (CJE0684) | mutT (CCO1375)      | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1  | -1 | putative<br>NTPase                                    | dinucleoside<br>polyphosphate<br>hydrolase        | (di)nucleoside<br>polyphosphate<br>hydrolase                                     | General function prediction only                                |
|----------------------|----------------|---------------------|---|---|---|---|----|---|----|----|----|----|-------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------|
| <i>cfrA</i> (Cj0755) | cfrA(CJE0847)  | CCO0810             | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1  | -1 | -1 | putative iron<br>uptake protein                       | ferric receptor<br>CfrA                           | ferric receptor<br>CfrA                                                          | Inorganic iron<br>transport and<br>metabolism                   |
| Cj1553c"hsdM         |                |                     | 1 | 1 | 1 | 1 | -1 | 1 | 1  | -1 | -1 | -1 | putative type I<br>restriction<br>enzyme M<br>protein |                                                   |                                                                                  | Defense<br>mechanisms                                           |
|                      |                | CCO1531             | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1  | -1 | -1 |                                                       |                                                   | UDP-glucose 4-<br>epimerase,<br>putative                                         | Amino acid<br>transport and<br>metabolism                       |
|                      |                | CCO0231             | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1  | -1 |                                                       |                                                   | hypothetical protein                                                             | Hypothetical                                                    |
|                      |                | cysQ in RM2228 only | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1  | -1 |                                                       |                                                   | 3'(2'),5'-<br>bisphosphate<br>nucleotidase                                       |                                                                 |
|                      |                | CCO1688             | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1  | -1 | -1 |                                                       |                                                   | hypothetical protein                                                             | Hypothetical                                                    |
|                      |                | CCOA0017            | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1  | -1 | -1 |                                                       |                                                   | hypothetical<br>protein                                                          | Hypothetical                                                    |
|                      |                | CCOA0026            | 1 | 1 | 1 | 1 | -1 | 1 | 1  | -1 | -1 | -1 |                                                       |                                                   | conserved<br>hypothetical<br>protein                                             | Hypothetical                                                    |
|                      |                | CCO1269             | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1  |                                                       |                                                   | TraH protein,<br>Conjugative<br>relaxosome<br>accessory<br>transposon<br>protein |                                                                 |
| fliE(Cj0526c)        | fliE(CJE0630)  | fliE(CCO0623)       | 1 | 1 | 1 | 1 | -1 | 1 | 1  | -1 | -1 | -1 | putative<br>flagellar hook-<br>basal body<br>complex  | flagellar basal<br>body protein                   | flagellar hook-<br>basal body<br>complex protein                                 | Cell<br>motility/Intracellu<br>lar trafficking and<br>secretion |
|                      | CJE1333        | CCO1269             | 1 | 1 | 1 | 1 | -1 | 1 | 1  | -1 | -1 | -1 | putative<br>iron/ascorbate-<br>dependent              | oxidoreductase,<br>2OG-Fe(II)<br>oxygenase family | oxidoreductase,<br>2OG-Fe(II)<br>oxygenase<br>family                             | General function prediction only                                |
| pTet_33              |                |                     | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1  | -1 | -1 | hypothetical protein                                  |                                                   |                                                                                  | Hypothetical                                                    |

| <i>tsf</i> (Cj1181c) | <i>tsf</i> (CJE1315) | tsf (CCO1250)                                | 1 | 1  | 1  | 1  | 1  | -1 | 1  | -1 | -1 | -1 | elongation<br>factor TS                 | elongation factor                                    | translation<br>elongation factor<br>Ts                     | Translation                                   |
|----------------------|----------------------|----------------------------------------------|---|----|----|----|----|----|----|----|----|----|-----------------------------------------|------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------|
| Cj0182               | CJE0175              | CCO1695                                      | 1 | 1  | 1  | 1  | 1  | -1 | -1 | 1  | -1 | -1 | transmembrane<br>transport<br>protein   | antibiotic<br>transport protein,<br>putative         | transmembrane<br>transport protein<br>Cj0182               | Lipid transport and metabolism                |
| Cj0605               | CJE0708              | CCO0688                                      | 1 | 1  | 1  | 1  | 1  | -1 | -1 | 1  | -1 | -1 | putative<br>amidohydrolase              | carboxypeptidase                                     | peptidase,<br>M20/M25/M40<br>family                        | General function prediction only              |
| Cj0111               | CJE0106              | CCO1770                                      | 1 | 1  | 1  | 1  | 1  | -1 | 1  | -1 | -1 | -1 | periplasmic<br>protein                  | TonB domain protein                                  | periplasmic<br>protein Cj0111                              | Transport and binding protein                 |
| nusB(Cj0382c)        | nusB(CJE0431)        | nusB(CCO0471)                                | 1 | 1  | 1  | 1  | 1  | -1 | -1 | 1  | -1 | -1 | transcription<br>termination<br>protein | transcription<br>antitermination<br>protein NusB     | transcription<br>antitermination<br>factor NusB            | Transcription                                 |
| selD(Cj1504c)        | selD(CJE1677)        | selD(CCO1613)                                | 1 | 1  | 1  | 1  | 1  | -1 | -1 | 1  | -1 | -1 | putative<br>selenide,water<br>dikinase  | selenide, water<br>dikinase                          | selenide, water<br>dikinase                                | Translation                                   |
| ceuB(Cj1352)         | ceuB(CJE1541)        | ceuB(CCO1458)                                | 1 | 1  | 1  | 1  | 1  | -1 | -1 | 1  | -1 | -1 | enterochelin<br>uptake<br>permease      | enterochelin ABC<br>transporter,<br>permease protein | enterochelin<br>ABC<br>transporter,<br>permease<br>protein | Inorganic iron<br>transport and<br>metabolism |
|                      | . jejuni and present | vergent in five of six<br>t in three of four |   |    |    |    |    |    |    |    |    |    |                                         |                                                      |                                                            |                                               |
| Cj1021c              | CJE1165              | CCO1088                                      | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1  | 1  | 1  | putative<br>periplasmic<br>protein      | porin domain                                         | probable<br>periplasmic<br>protein Cj1021c<br>-related     | Cell<br>wall/membrane<br>biogenesis           |
|                      |                      |                                              |   |    |    |    |    |    |    |    |    | 1  | ATP synthase<br>F0 sector B'            | ATP synthase                                         | ATP synthase F0, subunit b'                                | Energy production and                         |
| Cj0102               | CJE0097              | CCO1779                                      | 1 | -1 | -1 | -1 | -1 | -1 |    | 1  | -1 | 1  | subunit                                 | subunit B                                            | (atpF'), putative                                          | conversion                                    |
| ispA(Cj1644)         | ispA(CJE1816)        | ispA(CCO0170)                                | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1  | 1  | 1  | geranyltranstran<br>sferase             | geranyltranstransf<br>erase                          | geranyltranstran<br>sferase (ispA)                         | Coenzyme<br>transport and<br>metabolism       |

| Cj1247c       | CJE1383      | CCO1337       | -1 | 1  | -1 | -1 | -1 | -1 | 1 | 1 | 1  | -1 | hypothetical protein                                   | hypothetical protein                               | conserved<br>hypothetical<br>protein                   | Hypothetical                              |
|---------------|--------------|---------------|----|----|----|----|----|----|---|---|----|----|--------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------|-------------------------------------------|
|               |              | CCOA0028      | -1 | -1 | 1  | -1 | -1 | -1 | 1 | 1 | 1  | -1 |                                                        |                                                    | hypothetical protein                                   | Hypothetical                              |
| Cj0208        | CJE0328      | CCO0358       | -1 | -1 | -1 | -1 | 1  | -1 | 1 | 1 | 1  | -1 | hypothetical protein                                   | hypothetical<br>protein                            | conserved<br>hypothetical<br>protein                   | Hypothetical                              |
| purN(Cj0187c) | purN(CJE0180 | purN(CCO1687) | -1 | -1 | -1 | -1 | 1  | -1 | 1 | 1 | -1 | 1  | phosphoribosyl<br>glycinamide<br>formyltransferas<br>e | phosphoribosylgly<br>cinamide<br>formyltransferase | phosphoribosyl<br>glycinamide<br>formyltransfera<br>se | Nucleotide<br>transport and<br>metabolism |
| Cj0974        | CJE1055      |               | -1 | -1 | -1 | -1 | 1  | -1 | 1 | 1 | -1 | 1  | hypothetical protein                                   | hypothetical protein                               |                                                        | Hypothetical                              |
| Cj0997        | gidB(CJE1077 | gidB(CCO1059) | -1 | -1 | -1 | -1 | -1 | 1  | 1 | 1 | 1  | -1 | gidB homolog                                           | methyltransferase<br>GidB                          | methyltransfera<br>se GidB                             | Cell<br>wall/membrane<br>biogenesis       |

1=present;-1=absent/highly divergent

Supplementary table 5: *C. jejuni* 01/10 prophage 1 and 2 genes, ORFs with best match in campylobacters other than *C. jejuni* RM1221 and LOS biosynthesis loci identified by BLASTx annotation tool.

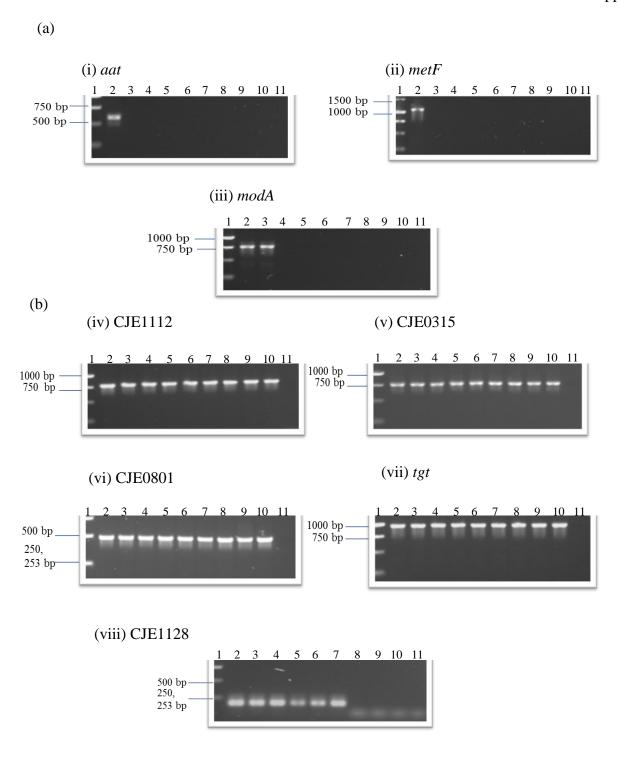
| Gene homolog/ortholog          | Annotated function                                                                                        |  |  |  |  |  |
|--------------------------------|-----------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Prophage                       |                                                                                                           |  |  |  |  |  |
| CJJ81176_1532                  | putative homolog of BLC protein [Campylobacter jejuni subsp. jejuni 81-176]                               |  |  |  |  |  |
|                                | replication-associated A domain protein [Vibrio cholerae HE39]                                            |  |  |  |  |  |
| MOY_16467                      | hypothetical protein [Halomonas strain GFAJ-1]                                                            |  |  |  |  |  |
| MOY_16472                      | hypothetical protein [Halomonas strain GFAJ-1]                                                            |  |  |  |  |  |
| MOY_16477                      | hypothetical protein [Halomonas strain GFAJ-1]                                                            |  |  |  |  |  |
| MOY_16482                      | hypothetical protein, partial [Halomonas strain GFAJ-1]                                                   |  |  |  |  |  |
| CJJ81176_1534                  | type I restriction-modification enzyme, R subunit [Campylobacter jejuni subsp. jejuni 81-176]             |  |  |  |  |  |
| Other genes                    |                                                                                                           |  |  |  |  |  |
| conserved hypothetical protein | Campylobacter jejuni subsp. jejuni CF93-6                                                                 |  |  |  |  |  |
| conserved hypothetical protein | Campylobacter jejuni subsp. jejuni CF93-6                                                                 |  |  |  |  |  |
| CJSA_0241                      | molybdopterin containing oxidoreductase in [ Campylobacter jejuni subsp. jejuni IA3902]                   |  |  |  |  |  |
| Cj0264c                        | molybdopterin containing oxidoreductase [ Campylobacter jejuni subsp. jejuni NCTC 11168]                  |  |  |  |  |  |
| Cj1679                         | hypothetical protein in C. jejuni NCTC 11168                                                              |  |  |  |  |  |
| ICDCCJ07001_615                | K+-transporting ATPase, B subunit [ Campylobacter jejuni subsp. jejuni ICDCCJ07001]. Two component system |  |  |  |  |  |

| Cj0736           | hypothetical protein [ Campylobacter jejuni subsp. jejuni NCTC 11168]                                                                     |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| CJ1055c          | sulfatase family protein [ Campylobacter jejuni subsp. jejuni NCTC 11168]                                                                 |
| CJSA_1363        |                                                                                                                                           |
| CJSA_1303        | putative sugar transferase [ Campylobacter jejuni subsp. jejuni IA3902]                                                                   |
| CJSA_1352        | putative sugar transferase [ Campylobacter jejuni subsp. jejuni IA3902]                                                                   |
| ICDCCJ07001_1325 | cryptic C4-dicarboxylate transporter DcuD [ Campylobacter jejuni subsp. jejuni ICDCCJ07001]                                               |
| Cj0628           | lipoprotein [ Campylobacter jejuni subsp. jejuni NCTC 11168]                                                                              |
| Cj1137c          | glycosyltransferase [ Campylobacter jejuni subsp. jejuni NCTC 11168]                                                                      |
| Cj1136           | Cj1136 in <i>C. jejuni</i> NCTC1168 except 2 nucleotide bases mismatch in the beginning atgaaaaccgt in 01/51 and atgaaaaaagt in NCTC11168 |
| Cj1324           | hypothetical protein [ Campylobacter jejuni subsp. jejuni NCTC 11168]                                                                     |
| Cj1323           | hypothetical protein [ Campylobacter jejuni subsp. jejuni NCTC 11168]                                                                     |
| Cj1321           | transferase [ Campylobacter jejuni subsp. jejuni NCTC 11168]                                                                              |
|                  | putative glysosyltransferase Campylobacter jejuni subsp. jejuni 87330                                                                     |
| CJJ81176_1534    | type I restriction-modification enzyme, R subunit [ Campylobacter jejuni subsp. jejuni 81-176]                                            |
| CJJ81176_1534    | type I restriction-modification enzyme, R subunit [ Campylobacter jejuni subsp. jejuni 81-176]                                            |
| CJJ81176_1536    | hypothetical protein in [ Campylobacter jejuni subsp. jejuni 81-176]                                                                      |
| Cj1552c          | mloB hypothetical protein [ Campylobacter jejuni subsp. jejuni NCTC 11168]                                                                |
| CJJ81176_1539    | type I restriction-modification system, M subunit [ Campylobacter jejuni subsp. jejuni 81-176]                                            |

| Gene name                                                                             | Gene homolog Annotated function                                                                |  |  |  |  |  |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                                       | LOS region C. jejuni 01/51                                                                     |  |  |  |  |  |
| CJJ81176_0291 biotin sulfoxide reductase [ Campylobacter jejuni subsp. jejuni 81-176] |                                                                                                |  |  |  |  |  |
| Cj0055c                                                                               | hypothetical protein [ Campylobacter jejuni subsp. jejuni NCTC 11168]                          |  |  |  |  |  |
| CJSA_1357                                                                             | putative sugar nucleotidyltransferase [ Campylobacter jejuni subsp. jejuni IA3902]             |  |  |  |  |  |
| CJS3_0200                                                                             | putative integral membrane protein [ Campylobacter jejuni subsp. jejuni S3]                    |  |  |  |  |  |
| СЈ1305с                                                                               | hypothetical protein [ Campylobacter jejuni subsp. jejuni NCTC 11168]                          |  |  |  |  |  |
| CJ0628                                                                                | lipoprotein [ Campylobacter jejuni subsp. jejuni NCTC 11168]                                   |  |  |  |  |  |
| CJSA_1247                                                                             | hypothetical protein [ Campylobacter jejuni subsp. jejuni IA3902]                              |  |  |  |  |  |
| Cj1420c                                                                               | methyltransferase [ Campylobacter jejuni subsp. jejuni NCTC 11168]                             |  |  |  |  |  |
| Cj1419c                                                                               | methyltransferase [ Campylobacter jejuni subsp. jejuni NCTC 11168]                             |  |  |  |  |  |
| Cj1418c                                                                               | hypothetical protein [ Campylobacter jejuni subsp. jejuni NCTC 11168]                          |  |  |  |  |  |
| CJJ81176_1416                                                                         | class I glutamine amidotransferase, putative [ Campylobacter jejuni subsp. jejuni 81-176]      |  |  |  |  |  |
| JJD26997_1749                                                                         | putative sugar-1-phosphate nucleotidyltransferase [ Campylobacter jejuni subsp. doylei 269.97] |  |  |  |  |  |
| CJSA_1346                                                                             | cysC adenylylsulfate kinase [ Campylobacter jejuni subsp. jejuni IA3902]                       |  |  |  |  |  |
| CJE1601_KpsC                                                                          | kpsC capsule polysaccharide export protein KpsC [ Campylobacter jejuni RM1221]                 |  |  |  |  |  |
| CJE1600_KpsS                                                                          | kpsS capsule polysaccharide export protein KpsS [ Campylobacter jejuni RM1221]                 |  |  |  |  |  |

| wlaB   | CJE1272 | ABC transporter, ATP-binding/permease protein [Campylobacter jejuni RM1221]                                   |
|--------|---------|---------------------------------------------------------------------------------------------------------------|
| galE   | CJE1273 | UDP-glucose 4-epimerase [Campylobacter jejuni RM1221]                                                         |
| wlaX   | CJE1274 | polysaccharide biosynthesis protein [Campylobacter jejuni RM1221]                                             |
| waaC   | CJE1275 | lipopolysaccharide heptosyltransferase I [Campylobacter jejuni RM1221]                                        |
| waaM   | CJE1276 | lipid A biosynthesis lauroyl acyltransferase [Campylobacter jejuni RM1221]                                    |
|        | CJE1277 | lipooligosaccharide biosynthesis glycosyltransferase, putative [Campylobacter jejuni RM1221]                  |
|        | CJE1278 | lipooligosaccharide biosynthesis galactosyltransferase, putative [Campylobacter jejuni RM1221]                |
|        | CJ1138  | galactosyltransferase in NCTC11168 and putative galactosyltransferase in 84-25                                |
| wlaN   |         | beta-1,3 galactosyltransferase [Campylobacter jejuni subsp. jejuni NCTC 11168]                                |
| cgtB   |         | glycosyltransferase [Campylobacter jejuni DFVF1099]                                                           |
| cstIII |         | alpha-2,3-/2,8-sialyltransferase [Campylobacter jejuni subsp. jejuni 84-25]                                   |
| neuB1  |         | N-acetylneuraminic acid synthetase [Campylobacter jejuni subsp. jejuni 84-25]                                 |
| neuC1  |         | UDP-N-acetylglucosamine 2-epimerase [Campylobacter jejuni subsp. jejuni 84-25]                                |
| neuA1  |         | two-domain bifunctional protein [beta-1,4-N-acetylgalactosaminyltransferase/CMP-Neu5Acsynthase [Campylobacter |

|        |         | jejuni subsp. jejuni NCTC 11168]                                                             |
|--------|---------|----------------------------------------------------------------------------------------------|
|        | CJE1281 | conserved hypothetical protein [Campylobacter jejuni RM1221]                                 |
| waaV   | CJE1282 | lipooligosaccharide biosynthesis glycosyltransferase [Campylobacter jejuni RM1221]           |
| waaF   | CJE1283 | ADP-heptoseLPS heptosyltransferase II [Campylobacter jejuni RM1221]                          |
| gmhA-1 | CJE1285 | phosphoheptose isomerase [Campylobacter jejuni RM1221]                                       |
| hldE   | CJE1286 | D,D-heptose 1-phosphate adenosyltransferase/7-phosphate kinase [Campylobacter jejuni RM1221] |
| waaD   | CJE1287 | ADP-L-glycero-D-mannoheptose-6-epimerase [Campylobacter jejuni RM1221]                       |
|        | CJE1288 | hydrolase, putative [Campylobacter jejuni RM1221]                                            |


Supplementary table 6: *C. jejuni* 01/10 prophage 1 and 2 genes, ORFs with best match in campylobacters other than *C. jejuni* RM1221 and LOS biosynthesis loci identified by BLASTx annotation tool.

| Gene<br>homolog/ortholog | Annotated function                                                                                         |
|--------------------------|------------------------------------------------------------------------------------------------------------|
| Prophage 1               |                                                                                                            |
| JJD26997_0292            | phage integrase family site specific recombinase [Campylobacter jejuni subsp. doylei 269.97]               |
| Cje102_04044             | hypothetical protein [Campylobacter jejuni subsp. jejuni LMG 23218]                                        |
| Cje102_04054             | hypothetical protein [Campylobacter jejuni subsp. jejuni LMG 23218]                                        |
| Type I RM system         | type I restriction-modification system, M subunit [Campylobacter jejuni subsp. jejuni LMG 23218]           |
| Anticodon nuclease       | anticodon nuclease [Campylobacter jejuni subsp. jejuni LMG 23218]                                          |
| RM system                | restriction modification system DNA specificity subunit [Campylobacter jejuni subsp. jejuni LMG 23218]     |
| HsdR                     | type I site-specific deoxyribonuclease, HsdR family protein [Campylobacter jejuni subsp. jejuni LMG 23218] |
| Prophage 2               |                                                                                                            |
| CJS3_0736                | phage repressor protein, putative [Campylobacter jejuni subsp. jejuni S3]                                  |
| dam                      | DNA adenine methylase [Campylobacter jejuni RM1221]                                                        |
| CJE0221                  | phage virion morphogenesis protein, putative [Campylobacter jejuni RM1221]                                 |
| CJE0221                  | phage virion morphogenesis protein, putative [Campylobacter jejuni RM1221]                                 |
| CJE0225                  | hypothetical protein [Campylobacter jejuni RM1221 ]                                                        |
| CJE0226                  | phage major tail tube protein [Campylobacter jejuni RM1221]                                                |
| CJE0227                  | major tail sheath protein [Campylobacter jejuni RM1221]                                                    |
| Cje140_03187             | hypothetical protein [Campylobacter jejuni subsp. jejuni LMG 9217]                                         |
| CJJ26094_0481            | hypothetical protein [Campylobacter jejuni subsp.jejuni 260.94]                                            |
| ICDCCJ07001_687          | tail fiber protein H [Campylobacter jejuni subsp. jejuni ICDCCJ07001]                                      |

| ICDCCJ07001_686 | phage tail protein [Campylobacter jejuni subsp. jejuni ICDCCJ07001]                         |
|-----------------|---------------------------------------------------------------------------------------------|
| CJS3_0717       | baseplate assembly protein J, putative [Campylobacter jejuni subsp. jejuni S3]              |
| ICDCCJ07001_684 | baseplate assembly protein V [Campylobacter jejuni subsp. jejuni ICDCCJ07001]               |
| Cje120_04436    | hypothetical protein cje120_04436 [Campylobacter jejuni subsp. jejuni LMG 9879]             |
| CJE0244         | Mu-like prophage I protein [Campylobacter jejuni RM1221]                                    |
| Cje104_04971    | hypothetical protein [Campylobacter jejuni subsp. jejuni LMG 23223]                         |
| Cje109_07168    | hypothetical protein [Campylobacter jejuni subsp. jejuni LMG 23263]                         |
| ICDCCJ07001_676 | hypothetical protein [Campylobacter jejuni subsp. jejuni ICDCCJ07001]                       |
| CJE0248         | hypothetical protein [Campylobacter jejuni RM1221]                                          |
| Cje160_04023    | hypothetical protein [Campylobacter jejuni subsp. jejuni 2008-979]                          |
| Cje34_01110     | hypothetical protein [Campylobacter jejuni subsp. jejuni 87459]                             |
| ICDCCJ07001_672 | prophage MuSo1, F protein [Campylobacter jejuni subsp. jejuni ICDCCJ07001]                  |
| CJE0252         | phage tail protein [Campylobacter jejuni RM1221]                                            |
| ICDCCJ07001_670 | tail protein D [Campylobacter jejuni subsp. jejuni ICDCCJ07001]                             |
| Cje145_09019    | hypothetical protein [Campylobacter jejuni subsp. jejuni 2008-1025]                         |
| dns             | extracellular deoxyribonuclease [Campylobacter jejuni RM1221]                               |
| Cco16_02733     | hypothetical protein [Campylobacter coli 86119]                                             |
| CSS_0559        | hypothetical protein [Campylobacter jejuni subsp. jejuni 305]                               |
| Cje160_04285    | hypothetical protein [Campylobacter jejuni subsp. jejuni 2008-979]                          |
| ICDCCJ07001_665 | host-nuclease inhibitor protein Gam [Campylobacter jejuni subsp. jejuni ICDCCJ07001]        |
| ICDCCJ07001_663 | bacteriophage DNA transposition protein B [ Campylobacter jejuni subsp. jejuni ICDCCJ07001] |
| CJE0269         | bacteriophage DNA transposition protein B [ Campylobacter jejuni RM1221]                    |
| CJE0270         | bacteriophage DNA transposition protein A [ Campylobacter jejuni RM1221]                    |
| Other genes     |                                                                                             |
| C8J_0013        | putative integral membrane protein [Campylobacter jejuni subsp. jejuni 81116]               |

| cipA             | invasion protein CipA [Campylobacter jejuni subsp. jejuni NCTC 11168]                                |
|------------------|------------------------------------------------------------------------------------------------------|
| Cje102_08266     | hypothetical protein [Campylobacter jejuni subsp. jejuni LMG 23218]                                  |
| Cje52_03044      | conserved domain protein [Campylobacter jejuni subsp. jejuni CF93-6]                                 |
| CJ81176_0764     | putative outer membrane protein [Campylobacter jejuni subsp. jejuni 81-176]                          |
| Cje11_06363      | hypothetical protein [Campylobacter jejuni subsp. jejuni 60004]                                      |
| Cje102_01575     | hypothetical protein [Campylobacter jejuni subsp. jejuni LMG 23218]                                  |
| Cj1055c          | sulfatase family protein [Campylobacter jejuni subsp. jejuni NCTC 11168]                             |
| Cje135_06326     | hypothetical protein [Campylobacter jejuni subsp. jejuni ATCC 33560]                                 |
| ICDCCJ07001_1244 | hypothetical protein [Campylobacter jejuni subsp. jejuni ICDCCJ07001]                                |
| Cje14_08577      | hypothetical protein [Campylobacter jejuni subsp. jejuni 53161]                                      |
| Cj1324           | hypothetical protein [Campylobacter jejuni subsp. jejuni NCTC 11168]                                 |
| Cj1355           | ceuE enterochelin uptake periplasmic binding protein [Campylobacter jejuni subsp. jejuni NCTC 11168] |
| C8J_1278         | hypothetical protein [Campylobacter jejuni subsp. jejuni 81116]                                      |
| Cje160_07455     | hypothetical protein [Campylobacter jejuni subsp. jejuni 2008-979]                                   |
| Cje102_05088     | hypothetical protein [Campylobacter jejuni subsp. jejuni LMG 23218]                                  |
| ICDCCJ07001_660  | signal peptidase I [Campylobacter jejuni subsp. jejuni ICDCCJ07001]                                  |
| ICDCCJ07001_659  | hypothetical protein [Campylobacter jejuni subsp. jejuni ICDCCJ07001]                                |
| Cco19_02101      | hypothetical protein [Campylobacter coli 1091]                                                       |
| Cje135_02178     | hypothetical protein [Campylobacter jejuni subsp. jejuni ATCC 33560]                                 |
| Cco76_02321      | hypothetical protein [Campylobacter coli LMG 23336]                                                  |
| type I RM system | type I restriction-modification system, S subunit, putative [Campylobacter coli 317/04]              |
| mloA             | MloA protein, putative [Campylobacter jejuni subsp. jejuni 1336]                                     |
| hsdM             | type I restriction-modification system, M subunit [Campylobacter jejuni subsp. jejuni 1997-4]        |
| Cje102_06884     | hypothetical protein [Campylobacter jejuni subsp. jejuni LMG 23218]                                  |
| C8J_1455         | transporter, putative [ Campylobacter jejuni subsp. jejuni 81116]                                    |
| fkbM             | JJD26997_1251_FkbM family methyltransferase [Campylobacter jejuni subsp. doylei 269.97]              |

| tet              |              | tetracycline gene [Campylobacter jejuni subsp. jejuni NCTC 11168]                                  |  |
|------------------|--------------|----------------------------------------------------------------------------------------------------|--|
| LOS region 01/10 |              |                                                                                                    |  |
| Gene name        | Gene homolog | Annotated function                                                                                 |  |
| wlaB             | CJE1272      | ABC transporter, ATP-binding/permease protein [Campylobacter jejuni RM1221]                        |  |
| galE             | CJE1273      | UDP-glucose 4-epimerase [Campylobacter jejuni RM1221]                                              |  |
| wlaX             | CJE1274      | polysaccharide biosynthesis protein [Campylobacter jejuni RM1221]                                  |  |
| waaC             | CJE1275      | lipopolysaccharide heptosyltransferase I [Campylobacter jejuni RM1221]                             |  |
| waaM             | CJE1276      | lipid A biosynthesis lauroyl acyltransferase [Campylobacter jejuni RM1221]                         |  |
|                  | CJE1277      | lipooligosaccharide biosynthesis glycosyltransferase, putative [Campylobacter jejuni RM1221]       |  |
|                  | CJ1138       | galactosyltransferase in C. jejuni NCTC11168 and putative galactosyltransferase in C. jejuni 84-25 |  |
| cgtA             |              | beta-1,4-N-acetylgalactosaminyltransferase (CgtA) [Campylobacter jejuni subsp. jejuni M1]          |  |
| wlaN             |              | beta-1,3 galactosyltransferase [Campylobacter jejuni subsp. jejuni NCTC 11168]                     |  |
| CJJ81176_1157    |              | alpha-2,3-sialyltransferase [Campylobacter jejuni subsp. jejuni 81-176]                            |  |
| ICDCCJ07001_1099 |              | sialic acid synthase [Campylobacter jejuni ICDCCJ07001]                                            |  |
| CJ81176_1159     |              | UDP-N-acetylglucosamine 2-epimerase [Campylobacter jejuni subsp. jejuni 81-176]                    |  |
| CJ81176_1160     |              | beta-1,4-N-acetylgalactosaminyltransferase [Campylobacter jejuni subsp. jejuni 81-176]             |  |
| CJ81176_1161     |              | CMP-Neu5Ac synthetase [Campylobacter jejuni subsp. jejuni 81-176]                                  |  |
| CJ81176_1162     |              | acetyltransferase [Campylobacter jejuni subsp. jejuni 81-176]                                      |  |
| waaV             | CJE1282      | lipooligosaccharide biosynthesis glycosyltransferase [Campylobacter jejuni RM1221]                 |  |
| waaF             | CJE1283      | ADP-heptoseLPS heptosyltransferase II [Campylobacter jejuni RM1221]                                |  |
| gmhA-1           | CJE1285      | phosphoheptose isomerase [Campylobacter jejuni RM1221]                                             |  |
| hldE             | CJE1286      | D,D-heptose 1-phosphate adenosyltransferase/7-phosphate kinase [Campylobacter jejuni RM1221]       |  |
| waaD             | CJE1287      | ADP-L-glycero-D-mannoheptose-6-epimerase [Campylobacter jejuni RM1221]                             |  |
|                  | CJE1288      | hydrolase, putative [Campylobacter jejuni RM1221]                                                  |  |



Supplementary figure 1: Detection of 15 genes by PCR analysis identified by CGH.

(a) Genes present in all hyperinvasive *C. jejuni* (Group 1; table 4.1a); (i) *aat* (ii) *metF* (iii) *modA*. Other six genes (*i.e. hisS*, *proC*, CJE0838, CJE0669, CCOA0033 and CJE0320) were not detected in any of nine low invasive *C. jejuni* strains therefore no gel images are shown. (b) Genes highly divergent/absent from all the hyperinvasive *C. jejuni* strains (Group 2; table 4.1b); (iv) CJE1112 (v) CJE0315 (vi) CJE0801 (vii) *tgt* (viii) CJE1128. One gene, CJE0731 yielded no PCR product for

any of the nine low invasive *C. jejuni* hence the gel image is now presented. The PCR primers and expected product sizes are listed in table 2.2.1.

Each gel was loaded: Lane 1; 1kbp DNA marker (Promega, UK); lanes 2-10; *C. jejuni* 01/05, 01/08, 01/11, 01/36, C2/3, C12/11, C27/14, C69/2, C110/4; Lane 11; negative control.

Supplementary file 1: The analysis run to identify loci specific to the hyperinvasive *C. jejuni* strains.

```
program data_preproc;
uses windows;
{$R+}
{$X+}
label mm1,mm2;
const
   n_seq=10;
   tab=#09;
var
  inf,inf1,inf2:text;
  tt1:string[1];
  name:string;
  name1:string;
  tt2:string;
  i,j,k,current,al,kk,tab_name:integer;
  name_tab:array[1..45000] of string;
  tab_tab:array[1..45000] of string;
  name_name:array[1..10] of string;
  high:array[1..45000,1..10] of integer;
  status:integer;
  high1,high0,low1,low0:integer;
begin
 Writeln('Start');
 readln;
name_name[1]:='01_10';
name_name[2]:='01_35';
name_name[3]:='01_04';
name_name[4]:='01_41';
```

```
name_name[5]:='01_51';
name_name[6]:='EX114';
name_name[7]:='01_30';
name_name[8]:='01_32';
name_name[9]:='01_46';
name_name[10]:='01_39';
tab_name:=0;
current:=0;
assignfile(inf1,'c:\Alan\all_data');rewrite(inf1);{append(inf1); }
for al:=1 to n_seq do
begin
name:='c:\ALAN\ata\'+copy(name\_name[al],1,length(name\_name[al]))+'.dat';
writeln(name);
assignfile(inf,name);reset(inf);
readln(inf,tt2);
repeat
name:=";
repeat
read(inf,tt1);
name:=name+tt1;
until tt1=tab;
{writeln(name, '#'); }
if tab_name=0 then begin tab_name:=1;name_tab[tab_name]:=name;current:=1;goto mm1;end else
     begin
     for k:=1 to tab_name do
     begin
```

```
if
            (copy(name,1,length(name))=copy(name_tab[k],1,length(name)))
                                                                                             begin
                                                                                   then
current:=k;goto mm1;end;
     end;
     tab_name:=tab_name+1;
     name_tab[tab_name]:=name;current:=tab_name;
     end;
mm1:
name1:=";
repeat
read(inf,tt1);
name1:=name1+tt1;
until tt1=tab;
tab_tab[current]:=name1;
tt2:=";
repeat
read(inf,tt1);
tt2:=tt2+tt1;
until ((tt1=tab) or (EOLN=TRUE));
status:=2;
if copy(tt2,1,1)='1' then status:=1;
if copy(tt2,1,1)='-' then status:=0;
{val(tt2,status,kk);
writeln(tt2); }
readln(inf,tt2);
high[current,al]:=status;
until EOF(inf)=TRUE;
closefile(inf);
```

end; for i:=1 to current do begin name:=name\_tab[i]+tab+tab\_tab[i]+tab; for j:=1 to 10 do begin str(high[i,j]:1,name1); if high[i,j]<>2 then name:=name+name1+tab else goto mm2; end; writeln(inf1,name); mm2: end; closefile(inf1); assignfile(inf2,'c:\Alan\res.txt');{rewrite(inf2);}append(inf2); for i:=1 to current do begin name:=name\_tab[i]+tab+tab\_tab[i]+tab; high1:=0;high0:=0; low1:=0;low0:=0; for j:=1 to 6 do begin if high[i,j]=1 then high1:=high1+1; if high[i,j]=0 then high0:=high0+1; end; for j:=7 to 10 do begin if high[i,j]=1 then low1:=low1+1;

end.