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Abstract 

Speaker verification is an active research problem that has been addressed 

using a variety of different classification techniques. However, in general, methods 

inspired by the human auditory system tend to show better verification performance 

than other methods. In this thesis three biologically inspired speaker verification 

algorithms are presented. 

The first is a vowel-dependent speaker verification method that uses a 

modified Self Organising Map (SOM) algorithm. For each speaker, a seeded SOM 

is trained to produce representative Discrete Fourier Transform (DFT) models of 

three vowels from a spoken input using positive samples only. This SOM training is 

performed both during a registration phase and during each subsequent verification 

attempt. Speaker verification is achieved by computing the Euclidean distance 

between the registration and verification SOM trained weight sets. An analysis of 

the comparative system performance when using DFT input vectors, as well as 

Linear Prediction Code (LPC) spectrum and Mel Frequency Cepstrum Coefficients 

(MFCC) alternative input features indicates that the DFT spectrum outperforms both 

MFCC and LPC features. The algorithm was evaluated using 50 speakers from the 

Centre for Spoken Language Understanding (CSLU2002) speaker verification 

database. 

The second method consists of two neural network stages. The first stage is 

the modified SOM which now operates as a vowel clustering stage that filters the 

input speech data and separates it into three sets of vowel information. The second 

stage then contains three Multi Layer Perceptron (MLP) networks; each acting as a 

distinct vowel verifier. Adding this second stage allows the use of negative sample 

training. The input of each MLP network is the respective filtered output vowel data 

from the first stage. The DFT spectrum is again used as the input feature vector due 

to its optimal performance in the first algorithm. The overall system was evaluated 
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using the same dataset as used in the first algorithm, showing improved verification 

performance when compared to the algorithm without using the MLP stage. 

The third biologically plausible method is a speaker verification algorithm 

that uses a positive-sample-only trained self organising map composed of spiking 

neurons. The architecture of the system is inspired by the biomechanical mechanism 

of the human auditory system which converts speech into electrical spikes inside the 

cochlea. A spike-based rank order coding input feature vector is proposed that is 

designed to be representative of the real biological spike trains found within the 

human auditory nerve. The Spiking Self Organising Map (SSOM) updates its 

winner neuron only when its activity exceeds a specified threshold. The algorithm is 

evaluated using the same 50 speaker dataset from the CSLU2002 speaker 

verification database and the results indicate that the SSOM verification 

performance is comparable to the non-spike based SOM. 

Finally, a new speech detection technique to detect speech activity within 

speech signals is also proposed. This novel technique uses the linear correlation 

coefficient (Parson Coefficient). The correlation is calculated in the frequency 

domain between neighbouring frames of DFT spectrum feature vectors. By 

summing the correlation coefficients within a sliding window over time, a 

correlation envelope is produced, which can be used to identify speech activity. The 

proposed technique is compared with a conventional energy frame analysis method 

and shows greater robustness against changes in speech volume level. A comparison 

of the two techniques, in terms of speaker verification application performance, is 

presented in Appendix A using 240 speech waveforms from the CSLU2002 speaker 

verification database. 

 

 

 

iii 



 

Copyright Statement 

This work is the intellectual property of the author. You may copy up to 5% 

of this work for private study, or personal, non-commercial research. Any re-use of 

the information contained within this document should be fully referenced, quoting 

the author, title, university, degree level and pagination. Queries or requests for any 

other use, or if a more substantial copy is required, should be directed in the first 

instance to the owner(s) of the Intellectual Property Rights. 

 

 

 

 

 

 

 

 

 

 

 

 

 

iv 



 

Table of Content 

Acknowledgement .................................................................................................................. i 
Abstract .................................................................................................................................. ii 
Copyright Statement ............................................................................................................. iv 
Table of Content..................................................................................................................... v 
List of Figures ...................................................................................................................... vii 
List of Tables ......................................................................................................................... x 
List of Abbreviations ............................................................................................................ xi 
List of Publications ............................................................................................................. xiii 
Chapter One - Introduction ................................................................................................ 1 
1. Introduction........................................................................................................................ 1 
1.1 Research Motivation ........................................................................................................ 5 
1.2 Research Aim and Objectives .......................................................................................... 6 
1.3 Thesis Organisation.......................................................................................................... 7 
Chapter Two - Experimental Infrastructure..................................................................... 9 
2. Introduction........................................................................................................................ 9 
2.1 Self Organising Map ........................................................................................................ 9 
2.2 Learning Vector Quantisation........................................................................................ 11 
2.3 Feed Forward Multi Layer Perceptron........................................................................... 12 
2.4 CSLU2002 Speaker Verification Database.................................................................... 16 
2.5 Physiology of Hearing ................................................................................................... 17 
2.6 Summary ........................................................................................................................ 27 
Chapter Three - Literature Review.................................................................................. 28 
3. Introduction...................................................................................................................... 28 
3.1 Multi Layer Perceptron Classifier.................................................................................. 28 
   3.1.1 Phonemes-Based Multi Layer Perceptron Classifier ............................................... 29 
   3.1.2 Multi Layer Perceptron Classifiers with Different Feature Formats ....................... 32 
   3.1.3 Other Multi Layer Perceptron Classifiers ................................................................ 34 
      3.1.3.1 Genetically Optimised Multi Layer Perceptron Classifiers ............................... 36 
      3.1.3.2 Auto Associative Multi Layer Perceptron Classifiers........................................ 37 
   3.1.4 Comparative Research ............................................................................................. 41 
   3.1.5 Language-Based Multi Layer Perceptron Classifier ................................................ 42 
3.2 Self Organising Map Classifier...................................................................................... 45 
3.3 Spiking Neural Networks............................................................................................... 48 
3.4 Summary ........................................................................................................................ 51 
Chapter Four - Speech Features and Novel Speech Activity Detection ........................ 55 
4. Introduction...................................................................................................................... 55 
4.1 Phonemes and Vowels ................................................................................................... 56 
4.2 Feature Vectors for Speaker Verification ...................................................................... 60 
   4.2.1 Discrete Fourier Transform Spectrum ..................................................................... 61 
   4.2.2 Linear Prediction Coefficients Analysis/Spectrum.................................................. 64 
   4.2.3 Mel Frequency Cepstrum Coefficients .................................................................... 66 
4.3 Pre-Processing Techniques ............................................................................................ 67 
   4.3.1 Energy Frame Analysis ............................................................................................ 68 
   4.3.2 Zero Crossing Rate................................................................................................... 70 
   4.3.3 Linear Correlation .................................................................................................... 71 

v 



 

   4.3.4 Comparison between Linear Correlation and Energy Frame Analysis.................... 74 
   4.3.5 Comparison between Linear Correlation and a Correlation Function in the Time 
Domain................................................................................................................................. 77 
4.4 Summary ........................................................................................................................ 78 
Chapter Five - Self Organising Map Based Speaker Verification................................. 80 
5. Introduction...................................................................................................................... 80 
5.1 Proposed Algorithms...................................................................................................... 80 
5.2 Speaker Verification Using Modified Self Organising Map.......................................... 81 
   5.2.1 Pre-Processing and Feature Extraction .................................................................... 83 
   5.2.2 Self Organising Map Registration and Verification Training.................................. 84 
   5.2.3 Weighted Euclidian Distance between Self Organising Map Weight Set ............... 87 
   5.2.4 Results ...................................................................................................................... 88 
5.3 Speaker Verification Using Modified Self Organising Map and Multi Layer Perceptron
.............................................................................................................................................. 90 
   5.3.1 Multi Layer Perceptron Verifier............................................................................... 92 
   5.3.2 Testing and Results .................................................................................................. 93 
5.4 Summary ........................................................................................................................ 97 
Chapter Six - Speaker Verification Using Spiking Self Organising Map ................... 100 
6. Introduction.................................................................................................................... 100 
6.1 Delayed Rank Order Coding........................................................................................ 101 
6.2 Spiking Neural Networks............................................................................................. 103 
6.3 Spiking Self Organising Map....................................................................................... 103 
6.4 Results .......................................................................................................................... 107 
6.5 Summary ...................................................................................................................... 109 
Chapter Seven - Conclusions and Future Work ........................................................... 111 
7. Introduction.................................................................................................................... 111 
7.1 The Choice of Three Vowels ....................................................................................... 112 
7.2 The Choice of the Discret Fourier Transform as Feature Vector................................. 113 
7.3 The Choice of Self Organising Map ............................................................................ 113 
7.4 Spike-Based Features with Spiking Self Organising Map........................................... 114 
7.5 Future Work ................................................................................................................. 115 
   7.5.1 Spiking Self Organising Map with Spiking Multi Layer Perceptron..................... 116 
   7.5.2 Investigating Other Spike-Based Features ............................................................. 116 
   7.5.3 Inclusion of Temporal Speech Information ........................................................... 116 
   7.5.4 Further Investigation of the Human Auditory System........................................... 117 
References ......................................................................................................................... 118 
Appendix A – Comparison between Linear Correlation and Energy Frame Analysis 
Pre-Processing For Speaker Verification....................................................................... 124 

 

 

 

 

vi 



 

List of Figures 

Figure 2.1  An example of two dimensional (5 x 7) Self Organising Map. 

Figure 2.2  An example of Learning Vector Quantisation network. 

Figure 2.3  An example of three layer Multi Layer Perceptron network of (5 x 3 x 
1) neurons. 

Figure 2.4  The Sigmoid function at different temperatures. 

Figure 2.5  The structure of the ossicles. 

Figure 2.6  Different views of the basilar membrane a) Spiralled top view b) 
Unfolded top view, showing dimensions and frequency sensation 
positions c) Side view, showing how the movement of the stapes is 
propagated as a pressure wave inside the cochlea duct. 

Figure 2.7  The organ of Corti. 

Figure 2.8  The process of converting the captured spectrum into spike rates in the 
inner ear. 

Figure 2.9  Tonotopic representation of spectral envelope at normal conversation 
speech level (60-80 dB), black box size is related to the number of 
saturated nerve fibers. 

Figure 2.10  Cochlear Nucleus neurons, bold lines represent saturated nerve fibers 
while thin lines are non-saturated nerve fibers. NF is the number of 
nerve fibers connected to each neuron. 

Figure 3.1  Distribution of neural networks methods used in 43 studies in the 
literature. 

Figure 3.2  Distribution of feature vector types used in 43 studies in the literature. 

Figure 4.1  Spectrogram of ten vowels of American English (Rabiner and Schafer 
2010). 

Figure 4.2  Vowels distribution of wide range of speakers in term of first and 
second formant frequencies (Peterson and Barney 1952). 

Figure 4.3  Discrete Fourier Transform spectrum for vowel /æ/ spoken by a) 
different speakers b) same speaker twice. 

vii 



 

Figure 4.4  Discrete Fourier Transform spectrum for the words (five, eight, and 
two).The frequency spectrum for each of three vowel segments 
indicated are clearly distinct. 

Figure 4.5  Speech frame windowing a) frame of vowel speech signal b) 
Hamming window c) windowed speech signal. 

Figure 4.6  Different resolutions of Discrete Fourier Transform spectrum a) 64-
point b) 128-point c) 512-point, and d) 4096-point. 

Figure 4.7  Different resolutions of Linear Prediction Coefficients spectrum a) 
128-point Discrete Fourier Transform spectrum b) 10th order Linear 
Prediction Coefficients spectrum c) 40th order Linear Prediction 
Coefficients spectrum, and d) 128th order Linear Prediction 
Coefficients spectrum. 

Figure 4.8  Mel Frequency Cepstrum Coefficients extraction process. 

Figure 4.9  Discrete Fourier Transform spectrum of spoken digits (five/eight/two) 
from the CSLU2002 database. 

Figure 4.10  Linear Correlation Coefficient values map for illustrated speech 
waveform. 

Figure 4.11  Correlation Coefficient Envelope of spoken digits (five/eight/two) 
from CSLU2002 database a) time domain speech signal b) Correlation 
Coefficient Envelope. 

Figure 4.12  Speech waveforms in different volume levels represented using a) 
Energy Frame Analysis and b) Correlation Coefficient Envelope. 

Figure 4.13  Volume degradation over time in speech waveform represented using 
a) time domain speech signal b) Energy Frame Analysis envelope and 
c) correlation Coefficient Envelope. 

Figure 4.14  Comparison between time domain correlation envelope and frequency 
domain correlation envelope a) Time domain speech signal of spoken 
digits (five/eight/two) from CSLU2002 database b) Time domain 
correlation using Equation 4.9 c) Correlation Coefficient Envelope. 

Figure 5.1  Scheme diagram of the proposed algorithm. 

Figure 5.2  Self Organising Map training process. 

Figure 5.3  Self Organising Map structure for the proposed algorithm. 

Figure 5.4  Architecture of the proposed Self Organising Map + Multi Layer 
Perceptron speaker verification. 

viii 



 

Figure 5.5  Multi Layer Perceptron network structure. 

Figure 5.6  Speech data division for the proposed algorithm. 

Figure 5.7  Performance of using: SOM+ED, SOM+ weighted ED and 
SOM+MLP. 

Figure 6.1  Delayed rank order coding extracted from Discrete Fourier Transform 
spectrum, f1, f2, …, fN are frequency positions along the basilar 
membrane. The envelope on the left is the DFT spectrum values while 
the spikes on the right forms the delayed rank order coding feature 
vector. 

Figure 6.2  Proposed Spiking Self Organising Map algorithm a) Proposed Spiking 
Self Organising Map structure b) Spiking neuron showing a fully 
synchronised input vector. 

Figure 6.3  Performance of 50 speakers of CSLU2002 database. 

Figure A.1  Performance of SOM+ weighted ED speaker verification algorithm 
described in Chapter 5 using Energy Frame Analysis and Correlation 
Coefficient Envelope. 

 

 

 

 

 

 

 

 

 

 

ix 



 

List of Tables 

Table 5.1 Verification accuracy. 

Table 5.2 Speaker verification performance. 

Table 6.1 Average speaker verification performance. 

Table 7.1 Verification accuracy. 

Table 7.2 Speaker verification performance. 

Table 7.3 Average speaker verification performance. 

 

 

 

 

 

 

 

 

 

 

 

x 



 

List of Abbreviations  

AANN Auto Associative Neural Network 

AGC Automatic Gain Control 

ANN Artificial Neural Networks 

CCE Correlation Coefficient Envelope 

CSLU Centre for Spoken Language Understanding 

DCT Discrete Cosine Transform 

DFT Discrete Fourier Transform 

ED Euclidian Distance 

EER Equal Error Rate 

EFA Energy Frame Analysis 

FAR False Accept Rate 

FFMLP Feed Forward Multi Layer Perceptron 

FNN Fuzzy Neural Network 

FRR False Reject Rate 

GMM Gaussian Mixture Model 

GNN Generalised Neural Network 

HMM Hidden Markov Model 

LCC Linear Correlation Coefficient 

LP Linear Prediction 

LPC Linear Prediction Code 

xi 



 

LPCC Linear Predictive Cepstral Coefficients 

LVQ Learning Vector Quantisation 

MAER Minimum Average Error Rate 

MFCC Mel Frequency Cepstrum Coefficients 

MLP Multi Layer Perceptron 

PNN Probabilistic Neural Network 

RBF Radial Basis Function 

SNN Spiking Neural Network 

SOM Self Organising Map 

SSOM Spiking Self Organising Map 

SVM Support Vector Machine 

ZCR Zero Crossing Rate 

 

 

 

 

 

 

 

 

 

xii 



 

xiii 

List of Publications 

 
Journal paper: 
 
Tashan, T., T. Allen and L. Nolle (2012). "Speaker verification using heterogeneous 

neural network architecture with linear correlation speech activity detection." 

Accepted for publication in Expert Systems: The Journal of Knowledge 

Engineering. 

 
Conference papers: 
 
Tashan, T., T. Allen and L. Nolle (2011). Vowel based speaker verification using 

self organising map. The Eleventh IASTED International Conference on 

Artificial Intelligence and Applications (AIA 2011), Innsbruck, Austria, 

ACTA Press. 

 
Tashan, T. and T. Allen (2011). Two stage speaker verification using Self 

Organising Map and Multilayer Perceptron Neural Network. Research and 

Development in Intelligent Systems XXVIII. M. Bramer, M. Petridis and L. 

Nolle, Springer London: 109-122. 

 
Tashan, T., T. Allen and L. Nolle (2012). Biologically inspired speaker verification 

using Spiking Self-Organising Map. Research and Development in Intelligent 

Systems XXIX. M. Bramer and M. Petridis, Springer London. 

 

 



Chapter One - Introduction 

 

Chapter One 

Introduction 

 

 

1. Introduction 

Speaker recognition is the process of classifying individuals from their 

speech signals. This process can be sub-divided into two main application tasks; 

speaker identification and speaker verification. Speaker identification is when an 

unknown speech signal is identified as belonging to one speaker from a set of known 

speakers. Since no identity is claimed, the unknown speech signal must be compared 

to speech signals of all speakers in the known set. This type of problem is often 

called ‘closed-set’ due to the prior knowledge that the unknown speech signal 

belongs to one of the speakers in the set and the goal is to find the identity of the 

speaker. Speaker verification is when an unknown speech signal is classified as 

either belonging to or not belonging to a claimed known speaker. Here, the unknown 

speech signal either belongs to a claimed known speaker or belongs to an 
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‘impostor’. In this case, the impostor cannot be known a priori as in speaker 

identification. Therefore, speaker verification is referred to as an ‘open-set’ problem. 

When developing voice biometric authentication systems there are several 

design parameters that need consideration. The first is the type of classifier to use. 

Over the last two decades, speaker recognition (identification and verification) has 

been investigated using a wide range of methods. Some of the popular approaches 

being: probabilistic models such as Hidden Markov Model (HMM) and Gaussian 

Mixture Model (GMM) classifiers (Reynolds and Rose 1995), non-probabilistic 

binary linear models such as Support Vector Machine (SVM) classifier (Campbell et 

al. 2006) and non-linear statistical models i.e. Artificial Neural Networks (ANN) 

(Oglesby and Mason 1991; Farrell et al. 1994; Monte et al. 1996; Kishore and 

Yegnanarayana 2000; George et al. 2001; Kusumoputro et al. 2001; Mueen et al. 

2002; Seddik et al. 2004a). A variety of different types of neural networks have been 

used to perform the speaker recognition task: Multi Layer Perceptron (MLP) (Seddik 

et al. 2004a), Radial Basis Function (Oglesby and Mason 1991), Neural Tree 

Network (Farrell et al. 1994), Auto Associative Neural Network (Kishore and 

Yegnanarayana 2000), Recurrent neural networks (Mueen et al. 2002), Probabilistic 

neural networks (Kusumoputro et al. 2001), Dynamic synapse based neural 

networks (George et al. 2001) and Self Organising Map (SOM) (Monte et al. 1996). 

Most modern voice biometric authentication systems employ GMM based methods 

in the verification engine; an offshoot of earlier research into the use of HMM 

algorithms for speech recognition systems. SOM based speaker recognition systems, 
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on the other hand, are attractive alternatives to the conventional methods because 

they offer the potential of being able to do away with the need for the speech 

recognition front-end commonly included in speaker recognition systems 

(Ouzounov 1997). 

 Having decided on the classifier methodology to use, the next major decision 

is which morphological level is to be used to extract the features. Since speech 

signals contain both language information as well as speaker identity information, 

speaker recognition can be achieved by processing the speech signal at a variety of 

levels (sentence, word, syllable or phoneme). It has been shown that more 

information about the identity of the speaker can be obtained by processing the 

speech at the phoneme level (Han-Sheng and Mammone 1995a). However, the 

disadvantage of processing at this level is that an efficient speech recognition 

algorithm is required in order to locate the positions of the phonemes within the 

speech signal prior to the feature extraction stage. The penalty for using such speech 

recognition tools in speaker recognition systems is the need for substantial speech 

data in order to train the speech recognition engine. As a consequence, the speaker 

recognition performance of such systems has been shown to fall dramatically when 

only limited training data is available (Jayanna and Prasanna 2009). The limited data 

condition is when provided speech data is less than 15 seconds as defined in 

(Jayanna and Prasanna 2009) and (Angkititrakul and Hansen 2007). An alternative 

to this approach would be to detect the phoneme boundaries without using a speech 

recognition engine (Dong et al. 2002; Zhang et al. 2009). 
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 In addition to the level at which the speech recognition is processed, there are 

three major formats in which the features can be extracted from the speech sample. 

A straightforward and simple representation of the speech signal in the frequency 

domain is the Discrete Fourier Transform (DFT) spectrum. This type of format is 

commonly used in speech and speaker recognition applications (Rabiner and Schafer 

2010). The DFT spectrum can be obtained by calculating the magnitude of the DFT 

vector (Rabiner and Schafer 1978). Another feature format that preserves the speech 

signal characteristics are the Linear Prediction Coefficients (LPC); often used for 

speech compression tasks. The LPC spectrum is calculated by taking the magnitude 

value at the output of a filter whose coefficients are represented by the LPCs 

(Rabiner and Schafer 1978). Mathematically, the LPC spectrum represents a 

smoothed version of the DFT spectrum. In speech and speaker recognition 

applications the most widely used feature format are the Mel-Frequency Cepstrum 

Coefficients (MFCC). These features are calculated by firstly passing the DFT 

spectrum through a bank of triangular filters with Mel-frequency scale. The MFCC 

are then calculated by applying the Discrete Cosine Transform (DCT) to the 

logarithmic output of these filters (Davis and Mermelstein 1980). Although the 

MFCC are the most preferred input feature formats in the literature, there is 

evidence to suggest that these may not be optimal for neural network based systems 

(Sun et al. 1991).  

 The final design decision then is the sampling frequency that is to be used to 

produce the frames of data from which the features are to be extracted. Most modern 
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systems are required to use 8 kHz in order to be used over standard 

telecommunication channels. 

1.1 Research Motivation 

The human auditory system is a sophisticated mechanism, which enables 

people to both understand the speech signal and recognise the speaker. This implies 

that the human brain, in combination with its auditory system, contains both speech 

recognition and speaker verification processing capability. It is known that the 

speech recognition system is usually developed within an average period of four 

years after birth (Ramscar and Gitcho 2007). However, there is evidence that a 

speaker verification capability is developed in very early stages of development; i.e. 

babies can recognise their mothers’ voices well before they learn to understand even 

basic language (Mehler et al. 1978). This leads to the conclusion that the speaker 

verification system is effectively developed well before the speech recognition 

system, and that speaker verification in humans is thus language-independent and 

phoneme-based; in agreement with the study in (Han-Sheng and Mammone 1995a). 

Nevertheless, higher morphological level processing can provide extra information 

about the identity of the speaker through behavioural characteristics such as accent, 

rhythm, intonation style, pronunciation pattern and choice of vocabulary (Kinnunen 

and Li 2010). Inclusion of these parameters, within the mature human speaker 

verification system, potentially improves speaker verification accuracy but at the 

expense of adding complexity to the system. Another property of the human speaker 

verification processing capability is that it can make decisions using only very 
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limited speech data for both training and testing phases. This aspect of human 

speech processing also supports the idea that it is the lower morphological levels, 

phonemes etc., which are responsible for such decisions. 

Achieving speaker verification under limited speech data conditions is a 

commercially valuable requirement (Angkititrakul and Hansen 2007). However, it 

has been demonstrated that industrial speaker verification systems, which include a 

speech recognition engine, suffer from a substantial decrease in verification 

performance when implemented in limited speech data environments (Jayanna and 

Prasanna 2009).  

1.2 Research Aim and Objectives 

 Taking all the above into consideration, the aim of this work is to develop a 

speaker verification method that is inspired by the mechanism of the human auditory 

system in order that it can operate without the need for a speech recognition front-

end. This aim can be achieved through three main objectives: 

- Phoneme-based SOM speaker verification system: This investigates the use 

of an SOM for speaker verification based on the similarity between the 

tonotopic nature of the auditory nerve response (Young 2008) and the 

topological nature of the SOM (Kohonen 1990). Using a phoneme-based 

SOM for speaker verification will allow phoneme classification without the 

need for building a complete speech recognition engine. An SOM solution is 

also trainable using only positive samples. 
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- Hybrid speaker verification using SOM + MLP: This investigates how much 

extra verification performance can be gained by using negative training 

samples, when employing the phoneme-based SOM as a first coarse speaker 

verification stage, followed by an MLP network as second fine speaker 

verification system. 

- Spiking SOM speaker verification: This investigates a biologically plausible 

model that uses Spiking SOM for speaker verification with biologically 

inspired spike-based features. 

1.3 Thesis Organisation 

The rest of this thesis is structured as follows: Chapter 2 describes the 

experimental infrastructure including an introduction to the SOM and Learning 

Vector Quantisation (LVQ) algorithms in general and the speech database which is 

used in this research. Then an introduction of the physiology of hearing in the 

human auditory system is presented. Chapter 3 provides an overview of the speaker 

verification research, presented in the literature, using different types of neural 

networks. Chapter 4 then explains the different speech feature formats for speaker 

verification and how the sampled speech signal is pre-processed. Chapter 5 then 

proposes a modified SOM for speaker verification using only three vowels and DFT 

spectrum components as the input feature vector. The algorithm is evaluated using 

50 speakers from the CSLU2002 speaker verification database. Chapter 5 also 

presents a two-stage speaker verification using the modified SOM, followed by an 

MLP neural network, trained with both positive and negative speech training 
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samples, with evaluation of verification performance using CSLU2002 database. 

Chapter 6 then proposes a spike-based feature vector, which is inspired by the nature 

of transmitted spikes over the auditory nerve. The new feature vector is then used as 

input feature vector to a Spiking SOM. Finally the spiking SOM is evaluated using 

the same speakers set of the CSLU2002 speaker verification database. Chapter 7 

discusses the findings of the different experiments suggested in this research with 

final conclusions and recommendations for future work in this research area. 
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Experimental Infrastructure 

 

 

2. Introduction 

This chapter presents a brief background to the neural network methods used 

in this research, an introduction to the speech database used to evaluate the proposed 

algorithms, and an introduction to the physiology of hearing in the human auditory 

system. Section 2.1 provides theoretical background to the self organising map, 

Section 2.2 demonstrates the learning vector quantisation, Section 2.3 describes feed 

forward MLP neural networks, and Section 2.4 introduce the CSLU2002 speaker 

verification database, while Section 2.5 details the physiology of hearing in the 

human auditory system. Finally Section 2.6 provides a summary of this chapter. 

2.1 Self Organising Map 

The Self organising map or Kohonen map (Kohonen 1990) is a competitive 

neural network model that can classify input patterns into clusters without 

supervision. The SOM consists of an input layer that represents the input patterns 
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and an output layer or (Map) that represents the possible clusters which can be 

classified. The SOM can be implemented in one or multidimensional architectures. 

Figure 2.1 shows an example of a two dimensional (5 x 7) SOM (Pandya and Macy 

1995). The clustering algorithm can be described as follows: 

1) Initialising the weight links between the input layer and the output layer. 

2) A Euclidian distance is calculated between an input pattern in the input layer 

and all the weight vectors of the neurons in the output layer as shown below: 




N

i ii yxYXD
1

2)(),(      (2.1) 

where X=x1, x2, ..., xN is the input vector, Y=y1, y2, ..., yN is the output vector and N 

is the vector size. 

Winner neuron 

 

Input layer 

............... 

. . . . . 

Output layer 
 

 

 

 

 

 
Figure 2.1 – An example of two dimensional (5 x 7) Self Organising Map. 
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3) The neuron with the minimum distance is then designated as the winner 

neuron. 

4) After finding the winner neuron an update of the weights is applied for the 

winner neuron weight vectors and all neighbouring neuron weight vectors 

within a specific region R(t) using Equation 2.2. 





 otherwiseW

tRWWXtW
W

t

ttt
t

)(),()(
1

 
    (4.2) 

where Wt is the old weight, Wt+1 is the new weight, X is the input vector and β(t) is 

the learning rate. The learning rate value starts with a value of less than 0.25 and 

decreases over iterations. The neighbourhood region function R(t) also starts with 

the whole size of the map and decreases gradually to end with updating only the 

winner neuron (Pandya and Macy 1995). 

Steps 2 to 4 are applied for all input patterns for a specific number of 

iterations (epochs). After training each winning neuron is then a representative for 

the training patterns for which it is the designated winner. 

2.2 Learning Vector Quantisation 

The Learning Vector Quantisation (LVQ) is a self organising map with 

supervised learning. In the LVQ the map is split into groups of neurons, each group 

implementing one cluster. Figure 2.2 shows an example of an LVQ network. 
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 Group 2 Group N Group 1 

 

 

 

 

 

 

 

The clustering algorithm of the LVQ is similar to the clustering algorithm of 

the SOM except for step 4. After finding the winner neuron an update is applied for 

the winner neuron weight and all neurons weights within the same group using 

Equation 2.1. The weights for the other groups are updated using Equation 2.3. 
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The role of Equation 2.3 is to update the weights in the other groups in the 

opposite direction to the winner neuron and its group. Other versions of the LVQ 

system can be obtained by modifying Equation 2.2 and Equation 2.3; more details 

on such modifications can be found in (Pandya and Macy 1995). 

2.3 Feed Forward Multi Layer Perceptron 

A Feed Forward Multi Layer Perceptron (FFMLP) or MLP is one of the most 

popular neural networks used for pattern classification. An MLP must contain an 

input layer and an output layer, and can contain one hidden layer or more. Each 

......  ......  ......  . . . . . . .  Output layer 

...... Input layer 

Figure 2.2 – An example of Learning Vector Quantisation network. 
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layer consists of a number of neurons. The number of neurons in the input and 

output layers are commonly determined by the problem whilst the number of hidden 

layer neurons is optimised for a specific classification task. Figure 2.3 shows an 

example of a three layer MLP network of (5 x 3 x 1) neurons. 

After passing an input pattern vector to the input layer, the value of the vector 

at each node in the input layer is multiplied by weights corresponding to neurons in 

the next layer. Each neuron in the hidden layer and output layer operate by 

computing the sum of its weighted input, and passing the results into a nonlinear 

activation function. 

 
Hidden layer 
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Figure 2.3 – An example of three layer Multi Layer Perceptron network of (5 x 3 x 1) 
neurons. 

The mathematical representation of this neural process can be described as 

follows: 


j jijii outWbfout )(     (2.4) 
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where outi is the output of the ith neuron in the considered layer, outj is the output of 

the jth neuron in the previous layer, Wij is the weight connecting the two neurons and 

bi is the bias weight of the ith neuron-multiplied by a true neuron as shown in Figure 

2.3. There are several types of nonlinear activation function f. One of the most 

frequently used is the sigmoid function: 

Q
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e

xf 
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     (2.5) 

where x is the input of the activation function calculated in Equation 2.4 and Q is the 

temperature of the neuron. The sigmoid function changes more gently with higher 

temperatures, whilst at very low temperatures the sigmoid function behaves as a step 

function. Figure 2.4 shows the sigmoid function at different temperatures. 
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Figure 2.4 – The Sigmoid function at different temperatures. 
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The training of an MLP network is usually accomplished by using the Back 

Propagation algorithm. The back propagation training algorithm is employed 

through three main steps: 

i) Feed forward an input training pattern through the network using Equation 2.4 

at each neuron. 

ii) Calculate the error at the output layer and error in previous layers in the back 

propagation path. For each individual output layer neuron the error is 

calculated as: 

)()1( kkkkk outdoutouterror       (2.6) 

for the kth neuron errork is the error, outk is the output, dk is the desired output. And 

the error at the hidden layer node is: 

 jkkjjj tWerroroutouterror )()1(    (2.7) 

where W(t)jk is the weight connecting the jth neuron in the considered layer to the 

kth neuron the output layer.  

iii) Update the weights connecting neurons across different layers as below: 

])1()([)()1( tWtWouterrortWtW  jkjkjkjkjk     (2.8) 

])1()([)()1( ijijijijij tWtWouterrortWtW      (2.9) 
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where W(t+1)jk is the new weight value connecting the kth neuron in considered 

layer with the jth neuron from previous layer, W(t)jk is the present value of the same 

weight, W(t-1)jk is the old value of the same weight, τ is the momentum factor, β is 

the learning rate, errork is the error of the kth neuron as calculated in step (ii) and outj 

is the output of the jth neuron from previous layer. The weights, error and outputs in 

Equation 2.9 similarly correspond to the neurons in the ith and jth layer respectively. 

The three steps explained above represents one training step. A pass through 

all training patterns is one epoch. The training stops when a validation error 

(calculated using a separate validation dataset) starts to increase or remains constant 

over several epochs (Pandya and Macy 1995). 

2.4 CSLU2002 Speaker Verification Database 

Speaker verification problem has been investigated using different speech 

databases, such as the Texas Instrument and Massachusetts Institute of Technology 

(TIMIT) database, the National Institute of Standards and Technology (NIST) 

database, and the YOHO database. Speech databases usually updated over different 

releases. Some organisations release more than one speech database based on its 

application whether it is for speech recognition or speaker recognition. There are 

some key parameters that define the speaker recognition database, such as the 

sampling frequency which has been used to capture the speech signal, the recording 

channel, and the background environments. Due to availability, the proposed 

algorithms in this research were evaluated using the CSLU2002 speaker verification 

database. CSLU2002 is a commercially available speaker verification database from 
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the Oregon Graduate Institute of Science and Technology Research Centre in 

Spoken Language Technologies. The database consists of 91 speakers, from which 

50 speakers were arbitrarily selected (27 females and 23 males) for use in this work. 

Some speakers were not used due to missing recoding speech data over the two 

chosen sessions. The data were recorded over digital telephone lines with a sampling 

frequency of 8 kHz to produce 8-bit u-law files, which are then encoded into 8 kHz 

16-bit wave format file. Two recording sessions (Session 1 for registration and 

Session 2 for testing) samples are used for evaluation, each session containing four 

samples for each speaker. Proposed algorithms that use only positive samples in this 

research were evaluated using the 50 speakers, while the algorithm that uses both 

positive and negative samples was evaluated using the first 30 speakers, where the 

rest of the speakers were saved to be used as unseen speaker speech data for testing 

(see Section 5.3.2). More information on the CSLU2002 database can be obtained 

on the website "http://www.cslu.ogi.edu/corpora/spkrec/index.html". 

2.5 Physiology of Hearing 

Sound waves are captured in the human auditory system over three stages: 

outer ear, middle ear and inner ear (cochlea). The outer ear consists of the pinna or 

the ‘concha’ which is the external visible part of the ear and the ear canal. The main 

two tasks of the concha are to collect the sound vibrations and introduce position 

information into the incoming sound. The ear canal works as a resonator with a peak 

frequency of 3 kHz (Møller 2006). 
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The middle ear consists of the tympanic membrane (the first part in the 

auditory system that converts sound vibrations into mechanical movement) 

connected to a combination of three small bones (ossicles): the malleus, the incus 

and the stapes. The tympanic membrane moves according to the sound vibrations 

received at the end of the ear canal, transferring the movement freely across the 

ossicles. This movement reaches the stapes which has a footplate end which is 

connected to the cochlea through an oval window. Figure 2.5 shows the structure of 

the ossicles. The ossicles, shown in Figure 2.5, are supported inside the middle ear 

cavity by several ligaments. Two important ligaments are the anterior malleal 

ligament and the posterior incudal ligament. These uphold the movement axis of the 

ossicles during the transmission of the sound vibration waves. It is obvious from 

Figure 2.5 that the tympanic membrane surface area is larger than the rounded end 

of the stapes (footplate), this difference causes an amplification in the sound 

vibration waves. 

As well as the ligaments that support the ossicles, the tensor tympani muscle 

and the stapedius muscle also provide the malleus and the stapes with extra function. 

The tension of the tensor tympani muscle dampens the vibration of the tympanic 

membrane in a high intensity sound scenario (Møller 2006). The stapedius is the 

smallest muscle in the human body, its function is to protect the stapes from harsh 

movements and stabilise the amplitude of sound. Together the two muscles act as a 

first automatic gain controlling stage in the human auditory system; helping to 

moderate the received signal vibrations under high sound intensity conditions. 
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The cochlea is the auditory part of the inner ear. Its function is to convert the 

mechanical movement of the tympanic membrane and the ossicles into electrical 

signals within the auditory nerve. It has a snail-shaped bony structure of about two 

and a half turns with an uncoiled length of 3.1 to 3.3 cm. The hardness property of 

the cochlea makes it a perfect design for capturing sound vibrations without 

absorption. Along the fluid-filled tube inside the cochlea is the ‘basilar membrane’ 

(see Figure 2.6), which splits the tube into two parallel tubes connected at their end. 

The front-end of one tube is connected with the oval-shaped footplate of the stapes 

bone, via the tympanic membrane, receiving the vibrations in a piston like 

movement. This vibratory movement of the stapes is converted into fluid pressure 

waves that travel along the basilar membrane. The flexible membrane of the 

rounded window at the end of the cochlea duct allows the pressure wave to 

Tympanic 
membrane 

Sound vibration 
waves 
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Tensor tympani 
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Figure 2.5 – The structure of the ossicles. 
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propagate easily, following the piston movement of the stapes. These pressure 

waves, in turn, displace the basilar membrane at specific positions corresponding to 

the frequency components of the received signal (Møller 2006).  

 

 (a) Base 
 

Apex 
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 0.5 mm (b) 
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 The stapes 

 
(c) 

 

 Rounded window 

 

 

Figure 2.6 – Different views of the basilar membrane a) Spiralled top view b) Unfolded top 
view, showing dimensions and frequency sensation positions c) Side view, showing how 
the movement of the stapes is propagated as a pressure wave inside the cochlea duct. 

Along the basilar membrane lies the sensory organ of hearing called the 

organ of Corti. The Corti contains the ‘hair cells’ which are connected directly to the 

auditory nerve. When the basilar membrane vibrates the hair cells at that position 

‘bend’ converting the mechanical movement into electrical pulses through a bio-
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chemical process (Møller 2006). Figure 2.7 shows the organ of Corti in a cross-

sectional view of the basilar membrane. 

 

 

 

 

Tectorial membrane 

Outer hair cell 

Cochlear nerve 
Inner hair cell 

Basilar membrane 
 
Figure 2.7 – The organ of Corti. 

As shown above, the organ of Corti contains two types of hair cells, the inner 

hair cells and the outer hair cells. The outer hair cells are laid in 3-5 rows along the 

Corti, while the inner hair cells lie in one row. Both types are connected to the 

auditory nerve via the cochlear nerve. Each hair cell has a bundle of hairs 

(stereocilia) at its tip. The outer hair cells stereocilia are embedded in the Tectorial 

membrane, as shown in Figure 2.7, while the inner hair cell stereocilia are not. 

The main difference between the two types of hair cells is their function. The 

inner hair cells are responsible for capturing the mechanical movement of the basilar 

membrane and converting it into a train of spikes. As illustrated in Figure 2.6c, 

when the stapes transfers sound vibration energy into the cochlea, the basilar 

membrane will move at a position dependant on the frequency of the vibration. This 

movement occurs as a vertical displacement in the basilar membrane causing 

horizontal shear motion in the Tectorial membrane. This latter motion is then 
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transferred directly to the outer hair cells, and indirectly to the stereocilia of the 

inner hair cells through the Endolymph fluid. The inner hair stereocilia contain 

mechanically gated ion channels, which open when the stereocilia bend. This 

produces a membrane potential difference which, in turn, generates an electrical 

spike that travels through the efferent nerve fibers to the auditory nerve. 

The outer hair cells react to the same movement in different way. They are 

connected to the auditory nerve via afferent nerve fibers which control the stiffness 

of the outer hair stereocilia. The outer hair stereocilia become stiffer when excessive 

movement appears (i.e. high sound amplitude). The role of the outer hair cells here 

is as a second automatic gain control stage, damping the high amplitudes of sound in 

order to protect the inner hair cells from excessive movement. Mathematically 

speaking, the out hair cells provide logarithmic scale to the intensity of the sound 

wave. 

As each hair cell is connected to a unique auditory nerve, the position of the 

active inner hair cells on the basilar membrane provides frequency information to 

the cochlear nucleus section of the brain. At low sound levels, the intensity of 

frequency components are represented by the rate of spikes generated by the inner 

hair cells movement (Young 2008). Figure 2.8 shows how the captured spectrum by 

the basilar membrane is transformed into discharged spike trains travelling through 

the auditory nerve. 
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The human auditory system can capture understandable speech signals at 

variable intensities. This robustness is due to the Automatic Gain Control (AGC) 

mechanism, provided both by the muscles supporting the ossicles chain and the 

outer hair cells in the organ of Corti. In addition the spike discharge rate also plays a 

role in signal normalisation as a result of saturation in the nerve fibers. In Figure 2.8 

each auditory nerve fibre is connected to one hair cell. During the resting position of 

the basilar membrane, the auditory nerve fibres have a ‘resting’ discharge spike rate. 

When the hairs (stereocilia) of that hair cell ‘bend’ due to basilar membrane 

movement, an increased rate of spike discharge is transmitted via the associated 

auditory nerve fibre. At low sound pressure levels, the rate of spikes increases 

relatively to sound intensity. 
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mechanism, provided both by the muscles supporting the ossicles chain and the 

outer hair cells in the organ of Corti. In addition the spike discharge rate also plays a 

role in signal normalisation as a result of saturation in the nerve fibers. In Figure 2.8 

each auditory nerve fibre is connected to one hair cell. During the resting position of 

the basilar membrane, the auditory nerve fibres have a ‘resting’ discharge spike rate. 

When the hairs (stereocilia) of that hair cell ‘bend’ due to basilar membrane 

movement, an increased rate of spike discharge is transmitted via the associated 

auditory nerve fibre. At low sound pressure levels, the rate of spikes increases 

relatively to sound intensity. 
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Figure 2.8 – The process of converting the captured spectrum into spike rates in the inner 
ear. 
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At normal conversational speech levels (60-80 dB) (Rabiner and Schafer 

2010) the dominant hair cells spiking rates are saturated (Young 2008) and it is the 

number of phase locked saturated fibres that indicates the intensity of the central 

frequency (Greenberg et al. 2004). Figure 2.9 shows how a tonotopic representation 

can model the spectral envelope in terms of saturated nerve fibers. 
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 Figure 2.9 – Tonotopic representation of spectral envelope at normal conversation speech 
level (60-80 dB), black box size is related to the number of saturated nerve fibers. 

In Figure 2.9 the vertical axis represents the active formant frequencies along 

the basilar membrane (i.e. the DFT spectrum), while the horizontal axis represents 

the response at the auditory nerve, where centre frequencies are locked according to 

formant frequencies’ positions. Although, in Figure 2.9 only the formant frequencies 

are presented, each point along the spectrum envelope is presented in terms of the 
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number of saturated nerve fibers. Here a question can be raised: what is the highest 

amplitude that can be represented in terms of saturated nerve fibers? The answer is 

the number of nerve fibers that can be saturated at a specific frequency, this implies 

that the DFT spectrum, which is captured by the basilar membrane, will be 

normalised over the maximum number of saturated nerve fibers. The resultant 

envelope in terms of number of nerve fibers is the gray shaded area. 

However, not all nerve fibers are connected directly to the auditory lobe in 

the brain; many of them end at the Cochlear Nucleus. The auditory nerve connects 

the cochlea to the Cochlear Nucleus, which is the last section of the auditory system 

where the sound information is identifiably represented (Møller 2006). The neurons 

at the Cochlear Nucleus function as averaging nodes (Møller 2006) as shown in 

Figure 2.10. 

As shown in Figure 2.10, the middle Cochlear Nucleus neuron, with fully 

saturated nerve fibers, produces a higher spike rate, than the two other neurons with 

less number of saturated nerve fibers. This produces a train of spikes that starts 

(onset point) before the spike trains of the other neurons. Cells inside the brain are 

known to respond quicker to onset point than to continuous spikes discharge 

(Gerstner and Kistler 2002; Greenberg et al. 2004; Møller 2006). 

Beyond the cochlea, the exact form of signal processing employed by the 

human auditory system is currently uncertain. However, what is known is that the 

auditory cortex sections of the human brain are organised tonotopically (Young 
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2008) and that the phase locking of adjacent fibres is prominent within the auditory 

nerve (Greenberg et al. 2004). 

 

 

 

 

 

 

 

 

 

Consequently, the known physiology of hearing leads us to the conclusion 

that the lower levels of the human auditory processing system can be approximated 

by an N component DFT spectrum vector. In the following section, a spike-based 

feature vector, derived from the DFT spectrum, is presented that is inspired by the 

physiology of the human audio processing system. 
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Figure 2.10 – Cochlear Nucleus neurons, bold lines represent saturated nerve fibers while 
thin lines are non-saturated nerve fibers. NF is the number of nerve fibers connected to each 
neuron. 
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2.6 Summary 

In this chapter the experimental infrastructure of this research is 

demonstrated. This includes theoretical background to the neural networks used in 

this research such as the self organising map, learning vector quantisation, and feed 

forward multi layer perceptron. An introduction to the speaker verification database 

is presented with details of the CSLU2002 database which adopted in this research. 

The chapter also describes the physiology of hearing in the human auditory system, 

and how the sound vibrations are converted into a spike-based signal through bio-

chemical process. 
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3. Introduction 

Speaker recognition is a research problem that has been widely explored in 

the literature. Following the objectives of this thesis, the survey in this chapter 

focuses on research that employs different types of neural networks for speaker 

recognition tasks. Since speaker verification and identification share similar 

implementation methods, the terms speaker recognition, speaker verification, 

speaker identification and speaker authentication are used interchangeably 

throughout the following literature review. 

3.1 Multi Layer Perceptron Classifier 

The Multi Layer Perceptron (MLP) feed forward neural network is the most 

common type that has been adopted in the literature for speaker 

verification/identification. Different versions of speaker verification platforms can 

be obtained, as a result of using different types of MLP neural networks, or using 
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different feature vectors. The next sections are described as follows: Section 3.1.1 

addresses research that adopts phonemes/vowels as the feature vector in an MLP 

classifier system. Section 3.1.2 then focuses on studies that use different types of 

speech format as feature vector, whilst Section 3.1.3 cites studies that use common 

types of feature vectors in combination with different types of MLP neural 

networks. Section 3.1.4 addresses comparative studies, whilst Section 3.1.5 cites 

language-based MLP classifier studies. 

3.1.1 Phonemes-Based Multi Layer Perceptron Classifier 

A phoneme-based neural tree network for speaker verification is introduced 

in (Han-Sheng and Mammone 1995a). The paper uses HMM to segment the speech 

into phonemes, and uses a phonetic weighting scoring method to investigate the role 

of different phonemes in the speaker verification problem. The system is tested 

using 80 speakers from the YOHO database. The sampling frequency is 8 kHz with 

speech frame size of 25 msec. Twelve MFCC were used as feature vector inputs to 

the network. The system is claimed to overcome an equivalent HMM classifier 

system with Equal Error Rate (EER) of 0.13% over a 30 speaker test. Extended 

experimentation with the same algorithm is presented by the same authors on sub-

word morphological level in (Han-Sheng and Mammone 1995b). 

A speaker recognition system based on vowel spotting and neural networks is 

introduced in (Fakotakis and Sirigos 1996). The paper uses MLP networks as 

vowels spotters for each speaker in a speaker verification and identification problem. 

The proposed two hidden layer MLPs contain 15 input units, seven nodes in the first 
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hidden layer, four nodes in the second hidden layer and one unit in the output layer. 

The speech was sampled at 16 kHz and segmented into frames of 30 msec. For each 

frame, 15 Perceptual Linear Predictive coefficients were used as the feature vector. 

The system was tested using 76 speakers from the TIMIT database with test 

utterances of less than 2.5 sec. The claimed verification accuracy is 97.69%. The 

results in the paper also conclude that verification accuracy significantly increases 

when the length of the test utterance is increased. 

Specific phoneme MLP networks were investigated for the speaker 

verification task in (Delacretaz and Hennebert 1998). The paper uses HMM to 

provide the phoneme information from the speech data, and then each phoneme data 

is classified using an individual MLP network. Each MLP network contains 12 

inputs, 20 hidden nodes and two outputs. Twelve LPC cepstrum coefficients were 

used as the feature vectors. The system was tested using 25 speakers from a Swiss 

German telephone database called HER. The paper implies that for speaker 

verification, nasals, fricatives and vowels provide better performance than plosives 

and liquids.  

A neural network based on vowel phonemes is presented in (Badran and 

Selim 2000) for a speaker recognition task. First a vowel phoneme locating 

algorithm is introduced, then an MLP network classifier is suggested which contains 

10 inputs, four hidden nodes and one output. Speech was sampled at 8 kHz and 

segmented into frames of 20 msec using a Hamming window. Ten Adaptive 

Weighted Cepstrum coefficients were used as the feature vector and the system was 

30 



Chapter Three – Literature Review 

tested for speaker verification and identification using a self collected dataset of 10 

speakers (3 females and 7 males). The best claimed text-dependent verification rate 

is 95.67% and 92.2% for text-independent. The paper recommends the use of vowel 

phonemes, diphthongs and semi vowels phonemes instead of using vowel phonemes 

only, to increase recognition accuracy. 

The work in (Seddik et al. 2004a) presents a phoneme based MLP network 

for the speaker recognition task. The paper investigated the use of different numbers 

of phonemes (up to 48 phonemes). The network contains 12 inputs, 45 hidden nodes 

and one output. Twelve MFCC coefficients for each phoneme were used as feature 

vector. Each coefficient value in the feature vector represents the average value over 

a set of frames belonging to the phoneme. Speech was sampled at 16 kHz and 

segmented using a Hamming window. Phonemes positions were pre-extracted in the 

database. The system was tested using a dataset of 20 speakers from the TIMIT 

database. The paper conducts four experiments. The first three experiments use 5, 10 

and 48 phonemes while the fourth experiment uses 11 vowel phonemes and 4 output 

nodes instead of one. The claimed recognition rates are 98.57%, 97.05 and 87.23% 

for the first three experiments and 77% for the fourth experiment. In the second 

experiment, when the network is tested with phonemes of the same kind as used 

during training the recognition rate increased to 100%. The paper addresses some 

key points regarding the use of phonemes in speaker recognition problems. For 

example; the use of phonemes which are similar in pronunciation in the training 

phase can confuse the network in the testing phase. 
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An MLP is proposed in (Tan and Ting 2011) for Malay speaker 

identification. The network contains 24 inputs, 20 hidden nodes and one output. 

LPC coefficients are used as input feature vector. An experiment is conducted using 

six vowels of 10 speakers self collected dataset with no gender information. Speech 

is sampled at 20 kHz and segmented using a Hamming window. A maximum 

identification of 93.33% is claimed when one frame of 35 msec is examined. 

3.1.2 Multi Layer Perceptron Classifiers with Different Feature 
Formats 

Some key factors associated with speaker recognition using neural networks 

are discussed in (Sun et al. 1991). The paper presents an optimised MLP with a 

single hidden layer of 14 nodes. The paper also investigates the use of different 

features extracted from the speech signal (power spectrum, Mel-scaled power 

spectrum, Reflection coefficients, LPC, Autocorrelation coefficients, Cepstrum, 

Mel-scaled Cepstrum) and refers to the power spectrum as the most useful for neural 

network classification in a speaker recognition system. Two datasets of 6 and 9 male 

speakers were used to test the system. The speech was sampled at 10 kHz and the 

claimed verification and identification rate is 99% over 7 digits. 

An MLP is presented in (Seddik et al. 2004b) for speaker recognition task. 

The paper uses one network to classify speakers according to their first three 

fundamental frequencies positions and another network to classify the incorrectly 

classified cases from the first network by using the pitch feature. The network 

consists of input layer, two hidden layers with 12 nodes for each layer and output 
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node. The paper compares the first frame of the speech waveform to a reference 

speech signal in the classification phase, instead of comparing the whole sentence or 

word. This is claimed to save time in the testing phase. Speech was sampled at 16 

kHz and segmented into 256 samples (16 msec) frames. The formant features were 

extracted using two methods. The system was tested using a dataset of 40 speakers 

from the TIMIT database. The best claimed recognition rate is 95% when the 

proposed network structure is used. 

A Radial basis function neural network is suggested in (Lacerda et al. 2010) 

as a classifier for speaker verification task. Twenty one energy coefficients of 8th 

level Discrete Wavelet-Packet Transform were used as input features. Each 

coefficient is fed into one network (with no structure information). Speech is 

sampled at 16 kHz with no segmentation information. The algorithm is evaluated 

using self collected speech data of 40 speakers (20 females and 20 males) speaking a 

phrase in the Portuguese language. The paper claimed 10% FRR and 5% FAR. 

Another MLP neural network that uses Wavelet-based features is proposed in 

(Daqrouq 2011) for the speaker identification task. The network contains 35 inputs, 

two hidden layers of 20 nodes each and 5 outputs. Thirty five Wavelet Packet 

entropies were used as the input feature vector. Speech is sampled at 16 kHz. The 

algorithm is evaluated using self collected speech data of 29 speakers (10 females 

and 19 males), recorded in a normal office environments. The claimed average 

identification performance is 91.09%. 
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The author in (Pandiaraj et al. 2011) presents an auto associative neural 

network for a speaker identification task. The network consists of an input linear 

layer of 40 nodes, three non-linear hidden layers of 80, 20 and 80 nodes and an 

output linear layer of 40 nodes. The paper uses 40 coefficients which represents a 

“Pyknogram” (a time-frequency representation equivalent to the spectrogram) of the 

speech signal. No segmentation or sampling information is mentioned in the paper. 

Thirty six speakers from the CHAINS database were used to evaluate the algorithm 

without mentioning gender details. The best claimed identification rate is 92.1% for 

females and 89.9% for males. 

A generalised regression neural network is proposed in (Wu and Tsai 2011) 

for the speaker identification task. Empirical decomposition features were used as an 

input with no information about the input vector size. Speech is sampled at 16 kHz 

with no segmentation information. The algorithm is evaluated using a self collected 

database of 36 speakers (18 females and 18 males) uttering Chinese text. Claimed 

identification performance is 89%. 

3.1.3 Other Multi Layer Perceptron Classifiers 

Adaptively boosted MLP networks were introduced in (Say Wei and Eng 

Guan 2001). The boosted MLP can be described as traditional MLP with added 

weight parameter when calculating the error at the output of the network during the 

training. This weight amplifies the error values when misclassification occurs. The 

system was compared with traditional MLP network. Sampling frequency was not 

mentioned. Speech is segmented into 32 msec. Twenty components containing 10 
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Linear Predictive Cepstral Coefficients (LPCC) and 10 first derivatives of LPCC 

were used as the feature vector. The system was tested using 20 speakers from the 

YOHO database. The system was tested for verification and identification. For 

verification the same impostors used during the training were used in testing. The 

best claimed verification results were 0.75% False Reject Rate (FRR) and 0.079% 

False Accept Rate (FAR) when the proposed system is adopted while 4.75% FRR 

and 0.5% FAR when a traditional MLP is used. For identification the best claimed 

performance is 99.25% when the proposed system is used while 95.25% when a 

traditional MLP is used. 

An MLP is presented in (GuoBin et al. 2005) as a speaker identification 

classifier. Two MLP networks were used and designed according to the feature 

vector parameters. The first network is designed to use 13 MFCC coefficients as 

feature vector while the second network is designed to use 70 video image features 

of the lips. The first network contains 13 inputs, 30 hidden nodes and 20 outputs. 

The second network contains 70 inputs, 30 hidden nodes and 20 outputs. A 

combined network with 83 inputs, 40 hidden nodes and 20 outputs is also presented. 

Sampling frequency was not mentioned as well as speech pre-processing 

parameters. The system was tested using a self collected dataset of 20 speakers with 

no gender information. Claimed performance of the speech network is 75.38% with 

text dependent test and 66.67% with text independent test. The claimed 

identification accuracy increased to 100% when the combined network of speech 

and lip image data was used. 
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An MLP is employed for speaker identification to enhance the security of 

voice over internet protocol in (Ibrahim and Abdulghani 2012). The network 

contains 14 inputs, a hidden layer of 40 neurons and 4 outputs. Fourteen LPC 

coefficients were used as input feature vector. Speech is segmented using a 

Hamming window into frames of 30 msec with 10 msec shift. No information is 

mentioned regarding the sampling frequency. The algorithm is evaluated using a self 

collected dataset of four speakers (2 females and 2 males). Speaker identification 

performance is claimed to be 99.8%. 

3.1.3.1 Genetically Optimised Multi Layer Perceptron Classifiers 

A genetically optimised MLP network is presented in (Price et al. 2000) for 

speaker identification. The Genetic Algorithm is used to optimise the structure and 

parameters of the MLP network. Twenty cepstral coefficients were used as feature 

vector. No speech pre-processing parameters were mentioned. The system was 

tested on 21 speakers from the NIST96 database. The claimed EER is 5% when the 

same recording microphone is used to train and test, and 20% when using different 

microphones. The results shows comparable performance to the GMM based system 

with matched recording device and lower performance when different devices were 

used. 

Another genetically optimised radial basis function neural network is 

proposed in (Yan and Yunian 2010) for the speaker recognition (identification) task. 

The Genetic algorithm is used to optimise the weights and the structure of the 

network. After optimisation the network contained an input layer of 15 nodes, one 
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hidden layer of 18 nodes and an output layer of 15 nodes. Twelve MFCC 

coefficients are used as an input feature vector. Fifteen speakers from the TIMIT 

database were used to evaluate the network. The claimed results show improvement 

over the traditional radial basis function neural network, with fast learning 

generalisation capability and a claimed performance of 81.44% when 5 sec training 

speech data used, increasing to 95.01% when the training speech data is 20 sec. 

3.1.3.2 Auto Associative Multi Layer Perceptron Classifiers 

The work presented in (Kishore and Yegnanarayana 2000) suggests that auto-

associative neural network models can be used to minimise the channel effects in a 

speaker verification application. The auto-associative network contains 19 linear 

input layer nodes and 19 linear output layer nodes. The number of nonlinear hidden 

nodes is investigated to be less than input nodes. The output layer is designed to 

follow the input layer, while the role of the hidden layer is to compress the 

dimension of the feature vector. Sampling frequency was not mentioned. Nineteen 

cepstral coefficients were extracted from a 27.5 msec frame to form the feature 

vector. The paper experiments with 14 and 10 hidden node models as well as 

individual and universal background speaker models. More robustness is claimed 

against the channel effect when the hidden layer contains 10 hidden nodes. Speech 

data of 230 male speakers from the NIST-99 database is used to experiment the 

algorithm. The paper recommends the use of individual background models over a 

universal background model with equal error rate reduction of 23.4%. 
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An auto associative neural network is used in (Sri Rama Murty et al. 2004) to 

capture residual phase information in a speaker identification task. The network 

contains 40 linear input nodes, three nonlinear hidden layers of 48, 12 and 48 nodes 

respectively and 40 linear output nodes. Forty LP samples were used as the feature 

vector. Speech was sampled at 8 kHz. Segmentation size was not mentioned. The 

system was tested using two datasets of 38 speakers and 76 speakers from the 

TIMIT database. The paper claims that voiced speech segment regions neighbouring 

the glottal closure instant are more speaker specific than other regions. The best 

claimed performance is 87% for the first dataset and 76% for the second dataset. 

The work in (Kodukula et al. 2005) is an extension work of the system 

presented by the same author in (Sri Rama Murty et al. 2004). The paper repeats the 

previous experiment using 149 speakers from the NIST 2003 database and claims 

EER of 22%. Another experiment using 19 LPCC coefficients feature vector with a 

network of 19 linear inputs, three nonlinear hidden layers of 38, 9 and 38 nodes 

respectively and 19 linear outputs. Speech was sampled at 8 kHz and segmented into 

20 msec segment. The author demonstrates how residual phase information contains 

complementary speaker specific information. Claimed EER is 15.5% and 13.5% 

when the scores of the two experiments are combined. 

An auto associative neural network is presented in (Yegnanarayana et al. 

2005) for the speaker verification task. The author proposed previous experiments 

using the same network in (Yegnanarayana et al. 2001) and as co-author in 

(Kodukula et al. 2005), (Kishore and Yegnanarayana 2000) and (Kishore et al. 
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2001). The network contains 40 linear inputs, three nonlinear hidden layers of 48, 12 

and 48 nodes respectively and 40 linear outputs. Forty samples of Linear Prediction 

(LP) residual were used as feature vector. The paper highlights the use of features at 

supra-segmental level such as pitch and duration. The network is tested using a self 

collected dataset of 30 speakers (9 females and 21 males). The paper compares the 

results of the network with other types of features: vowel onset point spectral 

features (25 components as 20 weighted LPCC plus 5 delta weighted LPCC), 

duration and pitch. The comparison was not made using the same network, but by 

using a dynamic time warping method and other methods. The paper finally 

assembles the scores of the four methods in different combinations to train an MLP 

network. Best claimed EER is obtained when the four methods scores are combined. 

In the MLP testing phase the impostors are unseen impostors in the training phase. 

The author in (Jothilakshmi et al. 2009) employed an auto associative neural 

network to capture speaker specific information in a speaker diarisation task. The 

network contains a linear input layer of 19 nodes, three non-linear hidden layers of 

38, 5 and 38 nodes respectively and an output layer of 19 linear nodes. Nineteen 

MFCC were adopted as the input feature vector. The network is used first to detect 

speaker change in conversations, by training the network with features from one 

frame and testing the network with the next frame, and the difference in the output is 

then used to model a confidence score. Speaker change points can be detected using 

the confidence score. After segmenting the conversation into different durations, the 

network is secondly used to clustering these segments into speakers’ classes. Speech 
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was sampled at 8 kHz and segmented into frames of 16 msec with 50% overlap 

between adjacent frames. The system is evaluated using the NIST-RT’03S database, 

six broadcast news shows of about 10 min each were used as development dataset 

for training the system and tuning the parameters, the testing dataset consists of 

three 30 min shows. The claimed diarisation error measure is 12.01%. 

An auto associative neural network is used in (Rao et al. 2010) for speaker 

recognition (identification) in mobile devices. The paper suggests multi-SNR multi-

environments speaker models to improve the robustness against background and 

channel effects. The network contains a linear input layer of 39 nodes, three hidden 

non-linear layers of 60, 20, and 60 nodes respectively and linear output layer of 39 

nodes. Thirty nine LP coefficients are used as the input feature vector. Fifty speakers 

from the TIMIT database were used to evaluate the algorithm. NOISEX data were 

used to generate the noisy TIMIT data. Best claimed identification performance is 

98% using TIMIT clean speech data. 

An auto associative neural network is used for speaker identification task in 

(Mubeen et al. 2012). The network consists of 19 linear input nodes, three non-

linear hidden layers of 38, 4 and 38 nodes and an output linear layer of 19 nodes. 

Nineteen linearly weighted LPCC coefficients were used as input feature vector. The 

network is evaluated using a self collected database of 36 speakers with no gender 

details. Speech is captured using two types of microphones, a normal microphone 

and a Throat microphone. With no sampling frequency mentioned, speech is 

segmented using Hamming window into frames of 20 msec with a step of 5 msec. 
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the claimed performance over separated sessions is 84.9% for the normal 

microphone, 80.2% for the Throat microphone, and 88.7% when combining scores 

from both microphones. The paper addresses the difference in the spectral 

characteristics of the same speech signal between the two types of microphones, 

implying that it is due to the multi-capturing sensory conducted by the two devices. 

3.1.4 Comparative Research 

A comparative study between a Continuous Hidden Markov Model and MLP 

network is presented in (Kasuriya et al. 2001) for a speaker identification task. The 

MLP contains 60 input neurons, 20 neurons in the first hidden layer, 20 neurons in 

the second hidden layer and two output nodes. Speech was sampled at 11.025 kHz 

and segmented into 20 msec frames using a Hamming window. Fifteen MFCC from 

four frames were used to form a 60 coefficient feature vector. The two systems were 

evaluated using two self collected datasets of 50 speakers in office and telephone 

environment. The office dataset consists of 20 females and 30 males, whilst the 

telephone dataset consists of 25 females and 25 males. The paper considers using 

different recording sessions between training and testing modes as well as different 

recording environments (office and telephone). For the two environments condition 

the identification rate of the MLP network is claimed to outperform the continuous 

HMM method by 97.3% and 96.3% respectively. 

An experimental comparison of different modelling techniques for speaker 

recognition under limited data conditions is presented in (Jayanna and Prasanna 

2009). The paper shows that under limited data conditions (defined as 3 sec for 
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training and 3 sec for testing) the performance of many speaker recognition models 

will decrease. The paper compares the following methods: Crisp vector quantisation, 

Fuzzy vector quantisation, Self Organising Map, Learning vector quantisation and 

Gaussian mixture model. The methods were tested using two datasets. The first 

dataset consists of 138 speakers from the YOHO database while the second dataset 

consists of 168 speakers from the TIMIT database. The best claimed recognition rate 

is 80% when the LVQ technique was used and 86.67% when a hybrid system of 

LVQ-GMM with universal background model is considered. 

A comparison between the MLP neural network and the Radial basis function 

neural network in speaker identification scenario is presented in (Hmich et al. 2011). 

Twelve LPC coefficients are used as input feature vector for both networks. Two 

speech datasets were used to conduct the comparison. The first is a self collected 

speech data of nine males uttering two Japanese vowels, and speech in this dataset is 

sampled at 10 kHz with frame length of 25.6 msec and 6.4 msec step overlap. The 

second is ten speakers of the Numenta speech database with speech sampled at 16 

kHz. The paper compares only learning time and claims that the Radial basis 

function neural network outperforms the MLP network, especially when the number 

of hidden nodes is increased. 

3.1.5 Language-Based Multi Layer Perceptron Classifier 

A Probabilistic neural network is suggested for speaker recognition in (Ye 

and Yabin 2009). The experiment conducted in this paper is seen to serve as an 

identification problem. The network consists of an input layer of 15 nodes, samples 
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layer of 15 nerve cells, accumulated layer and an output layer. Fifteen MFCC 

coefficients were used as input feature vector. Speech is sampled at 8 kHz with no 

segmentation information. The method is evaluated using self collected speech data 

from 20 speakers (10 females and 10 males) with Chinese spoken digits from 0 to 9. 

The claimed classification accuracy is 97.5%. The paper recommends the 

probabilistic neural network for short duration testing environment and low mixture 

degree speaker identification. 

A Multilingual speaker identification is presented in (Ranjan et al. 2010). The 

MLP network has up to 360 inputs, two hidden layers of 42 and 38 nodes 

respectively and 20 outputs to identify 20 speakers. Different features were adopted 

in the input feature vector such as LPC coefficients, Reflection coefficients, Number 

of zero crossings, Average power spectral density and the first three formant 

frequencies. No details were mentioned regarding the order of LPC or the reflection 

coefficients. Speech is sampled at 44.1 kHz. A self collected speech data of 20 

speakers (10 females and 10 males) is used to evaluate the algorithm. One sentence 

is recorded in four different Indian languages. An average identification 

performance of 83.89% is claimed and with improved performance of 92.78% when 

a clustering algorithm is used. 

An Arabic speaker verification problem in mobile devices using MLP is 

investigated in (Alarifi et al. 2011). The paper experiments one and two hidden 

layers network with different numbers of hidden nodes. MFCC coefficients are used 

as feature vector with no details about the order. Self collected speech data of 15 
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speakers is used to evaluate the network. The best claimed network structure that 

results higher number of trials with 100% accuracy is when using one hidden layer. 

A Fuzzy min-max neural network is proposed in (Jawarkar et al. 2011) for 

the speaker identification task. This network utilises fuzzy sets as pattern classes. 

The network contains three layers, the hidden layer is growing adaptively to meet 

the problem demand. Eighteen MFCC coefficients are used as input feature vector. 

Speech is sampled at 22.05 kHz and segmented into frames of 23.33 msec with 50% 

overlap, then windowed using a Hamming window. The network is evaluated using 

self collected speech data of 50 speakers in one of Indian languages. The paper 

claims an identification accuracy of 99.99% when 15 sec testing speech data is used 

for experimentation. 

The work in (Ke and Salman 2011) proposes a Deep Neural Architecture to 

learn speaker-specific characteristics in speaker verification and speaker 

segmentation environment. The network consists of two identical subnets. Each 

network is a feed forward MLP network. One network is designed to capture 

dominant information for recognition, while the other network is designed to capture 

non-dominant information. The number of hidden layers and hidden nodes are 

optimised empirically into four layers of 100, 100, 100, and 200 nodes. Fifteen of 

nineteen MFCC coefficients were selected for the input feature vector. Speech is 

segmented using a Hamming window into frames of 20 msec with overlap of 10 

msec. The algorithm is evaluated using a total of 70 speakers from six databases 

TIMIT, NTMIT, KING, NKING, Chinese and Russian, with training speech data of 
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132 sec. The algorithm is compared with MFCC based GMM model and claimed to 

show better performance. 

3.2 Self Organising Map Classifier 

An SOM is proposed in (Monte et al. 1996) for the speaker identification 

problem. The paper uses a 25 x 25 Kohonen SOM to identify speakers based on 

comparing the histogram occupancy of each speaker’s SOM with other speakers in 

the database. LPC and MFCC coefficient were investigated as feature vectors and 

the speech was segmented into 30 msec frames. The sampling frequency was not 

mentioned. The system was tested using 100 speakers from the TI database under 

different signal to noise ratio levels. The proposed system was compared with 

Arithmetic-Harmonic Sphere Measure and the best claimed results for clean speech 

was 100% when MFCC vectors were used with the SOM. 

A two level classifier for speaker identification is presented in (Hadjitodorov 

et al. 1997). The paper investigates different versions of an SOM as a first stage 

classifier to obtain a prototype distribution map, which is then used to feed a second 

stage classifier of MLP network. The SOM is 15 x 15 in size, while the MLP 

contains two hidden layers. The first layer has 64 neurons and four neurons in the 

second layer, with one output neuron. Speech was sampled at 10.24 kHz, although 

framing information was not mentioned. Fifteen LPCC coefficients were used as the 

feature vector. The system was tested using two self collected datasets in the 

Bulgarian language; the first being clean speech data of 68 speakers (33 females and 

35 males), while the second dataset consists of 92 speakers (44 females and 48 
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males) speech data recorded over telephone lines. The best claimed error rate with 

first dataset is 1.47% and 2.17% with the second dataset. 

The work in (Voitovetsky et al. 1997) introduces a 6 x 10 SOM algorithm for 

speaker classification. Twelve cepstral coefficients were used as the feature vector. 

Two self collected datasets in the Hebrew language were used to test the algorithm. 

The first is high quality speech data of five speakers talking in different dialogue 

recordings, speech being sampled at 16 kHz. The second dataset is telephone quality 

type with 24 speakers participating in the dialogues. Speech was sampled at 8 kHz. 

Total classification error claimed using the first dataset is 5.6% and 6.2% for the 

second dataset. 

A hybrid system based on SOM and MLP is presented in (Ouzounov 1997) 

for a speaker identification task. The SOM is used to generate a statistical histogram, 

the histogram features then being used to feed the hidden layer of the MLP network. 

The SOM size was optimised into 3 x 3 to give best results. Speech was sampled at 

8 kHz and framed into 30 msec using a Hamming window. Twelve LPC derived 

cepstral coefficients were used as the feature vector. The best claimed identification 

error rate is 4%. 

An SOM and associative memory hybrid model is presented in (Inal and 

Fatihoglu 2002) in a speaker recognition application (the paper claims that speaker 

identification and verification experiments were conducted although only 

identification results were illustrated). In this paper an SOM followed by associative 
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memory neural network forms a speaker classifier model. The paper investigates a 

10 x 10 SOM for text dependent speaker identification and 20 x 20 SOM for text 

independent speaker identification. Twelve MFCC coefficients were used as the 

feature vector. For the text dependent experiment the system was tested using a 

dataset of 10 speakers while for text independent experiment the system was tested 

using 38 speakers from the TIMIT database (results show performance for up to 20 

speakers only). Sampling frequency was not mentioned. Speech was framed using a 

660 points Hamming window. The claimed performance for the first experiment is 

97.455% and 96.3% for the second experiment using 20 speakers of the TIMIT 

subset. 

An unsupervised speaker recognition system using an SOM is presented in 

(Lapidot et al. 2002). The paper investigates the use of different SOM network sizes 

to recognise speakers from conversations. Speech was sampled at 16 kHz and 

segmented into 15 msec frames using a Hamming window. Twelve LPCC 

coefficients plus 12 ∆LPCC coefficients were used as the feature vector. The system 

was tested using two types of self recorded conversation in the Hebrew language. 

Conversations of ten speakers (one female and nine males) were recorded over a 

high quality channel, and 12 conversations of 24 male speakers were recorded over a 

telephone quality channel. The sampling frequency was 8 kHz for the telephone 

quality channel. The optimised size of the SOM is 6 x 10. A comparison with a 

time-series clustering approach is made and the claimed accuracy is over 80% using 

the proposed SOM. 

47 



Chapter Three – Literature Review 

An SOM is presented in (Mafra and Simoes 2004) for speaker identification. 

The paper investigates different SOM sizes. Speech was sampled at 22.05 kHz and 

segmented into 32.22 msec frames using a Hamming window. Fourteen MFCC 

coefficients plus 14 ∆MFCC coefficients were used to provide a 28 component 

feature vector. The system was tested using a self collected dataset of 14 Brazilian 

speakers (8 females and 6 males). The best claimed identification rate is more than 

99% when the 16 x 16 SOM is used; requiring 17.5 sec training speech data and 

more than 2.8 sec testing speech data. 

3.3 Spiking Neural Networks 

A dynamic synapse neural network is presented in (George et al. 2001) in a 

speaker recognition application. The neurons in the dynamic synapse network 

transform a train of action potentials into another train of discrete release events. 

The network was trained using genetic algorithms. Gender classification is applied 

first using a rule based method. Two networks were designed for each gender; each 

network having an input layer of 16 nodes and an output layer of two nodes. The 16 

input potential actions are obtained by passing the speech into four filter banks. 

From the output of each filter, four wavelet features are calculated to form a 16 

coefficient feature vector. Speech was sampled at 12.5 kHz. The two networks were 

tested using 8 male speakers and 8 female speakers from the TI-26 database. The 

best claimed performance for the two networks is 100% and 67% for the female and 

male target speakers respectively and 87% and 84% for female and male non-target 

speakers. 
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A nonlinear dynamic neural network is presented in (Bing et al. 2006) for 

speaker identification. The paper uses a higher order synapse model for data transfer 

through the neurons. The network contains two dimensions. Each dimension 

represents a space of features. The main concept of the network is to capture the 

distinctive feature components and magnify their effect. Speech was segmented into 

frames of 10 msec. The network contains 20 neurons in each space and the memory 

size is 40 frames. Twenty MFCC coefficients were used as the feature vector. The 

network was trained using the Nelder Mead algorithm. The maximal log-likelihood 

is applied for testing. The system was tested using 40 speakers from the TIMIT 

database with a claimed identification rate of 92% to 97.5%. 

Speaker identification using pulse coupled and MLP neural networks is 

presented in (Timoszczuk and Cabral 2007). The paper proposes two layers of pulse 

coupled neural networks for feature extraction followed by an MLP network for 

classification. Pulse neurons are represented using a Spike response model. The first 

layer converts the inputs into a pulse modulated sequence while the second layer 

extracts the features for the MLP network. The first layer contains 16 pulse neurons 

fed by 16 MFCC coefficients. The second layer is a ring of SOMs of 100 pulse 

neurons, trained with the standard concept of SOM training. The MLP network has 

100 inputs, 300 hidden nodes and 10 outputs representing the ten speakers to be 

identified. Speech was sampled at 8 kHz and segmented into frames of 32 msec. The 

system was tested using 10 speakers from the CSLU v1.0 speaker recognition 

database. The claimed identification rate is 82%. 
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A spiking neural network is presented in (Wysoski et al. 2007) for speaker 

authentication. Each component of a 19 MFCC coefficients vector is encoded into 

train of spikes using Rank order coding. Speech was sampled at 16 kHz. The paper 

investigates two and three layer networks. Each neuron in the spiking neural 

network is an integrate-and-fire neuron. The first network contains 19 input neurons, 

two maps of 80 neurons in the first layer and two outputs neurons in the second 

layer. The two maps and the two output neurons represent the speaker model and the 

background model respectively. In the second network an additional layer is added 

to provide normalisation for the score similarity. The system was tested using 35 

speakers from the VidTimit database. Eight other speakers were saved as unseen 

impostors for testing. In the testing phase, 8 unseen impostors plus training 

impostors were used. The paper claims that the results are comparable to the 

performance of a vector quantisation system under the same conditions. 

An extended version of the spiking neural network presented in (Wysoski et 

al. 2007) is proposed in (Wysoski et al. 2010) as the auditory part in an audiovisual 

authentication process. The author argues that MFCC has been successfully used in 

speaker authentication, but that they may imprison other features which can 

uniquely describe a speaker. Therefore, the paper recommends other frequency 

domain features such as short time Fourier transform or Wavelets. However, for 

comparison with the previous work in (Wysoski et al. 2007) the author adopt MFCC 

coefficients in rank order coding format. Speech is sampled at 16 kHz with no 

segmentation information. Nineteen MFCC coefficients are converted into rank 
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order coding features and used as input feature vector. The input feature vector is 

fed into a first layer of two maps, representing the speaker model and background 

model. Each map consists of 80 neurons. The output layer contains two neurons 

which are fully connected to the two maps in the first layer. The network is 

evaluated using 35 speakers from the VidTimit database. The minimum total error 

rate (FRR+FAR) claimed is 31.1%. 

3.4 Summary 

In this chapter many different neural network methods applied to speaker 

verification have been reviewed. The literature review here focuses mainly on three 

main approaches which are adopted in this research: MLP neural networks, SOM 

and Spiking neural networks. Figures 3.1 and Figure 3.2 show the distribution of the 

research cited for a population of 43 studies in the literature according to the type of 

the neural network and the feature vector used in these studies. 
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Figure 3.1 – Distribution of neural networks methods used in 43 studies in the literature. 
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As shown in Figure 3.1 the MLP neural networks are extensively represented 

in the literature due to its easy implementation and code availability over different 

platforms, while SOM is less used as a speaker recognition platform. Spiking neural 

networks, on the other hand, are rarely used in speaker recognition applications. 

Despite the fact that the SOM is represented in the literature less than MLP systems, 

this research focuses on the use of SOM for speaker verification due to the 

correlation between the topological nature of the SOM (Kohonen 1990) and the 

tonotopic nature of the auditory nerve response (Young 2008). 

Another key parameter in any pattern recognition problem is the choice of the 

input feature vector. Two types of feature formats can be extracted from the speech 

signal: time domain and frequency domain features. Since the speech signal is 

analytically more intelligible in the frequency domain (Rabiner and Schafer 1978) 

than in time domain, frequency domain features dominate in the literature. Figure 

3.2 shows the feature type’s distribution cited in 43 studies in the literature.  
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 Figure 3.2 – Distribution of feature vector types used in 43 studies in the literature. 
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 Several feature formats have been adopted in the literature: MFCC, LPCC, 

Wavelet transform and other frequency domain features. The most commonly used 

feature formats used in literature are the MFCC-based and LPCC-based features as 

shown in Figure 3.2. These have been used successfully in speech recognition 

applications and then employed in speaker recognition scenarios. However, a recent 

publication (Wysoski et al. 2010) argues that the use of MFCC could occlude 

important information about speaker identity. For comparison purposes MFCC, LPC 

and DFT spectrum feature vectors are investigated as input to a speaker verification 

platform in Chapter 5 of this research. 

The speech signal can be captured with different audio qualities depending on 

the sampling frequency. Sampling frequencies ranging from 8 kHz to 44.1 kHz have 

been used. Considering 8 kHz is more demanding than using higher values, since 

less information is captured in the frequency domain. However, this work uses 8 

kHz sampled speech due to database availability. 

 Several speech databases have been used to evaluate the performance of 

speaker verification or identification systems. Using a standard speech database to 

evaluate any speaker verification method is a key factor to determine its 

effectiveness. Using a small number of speakers to test a speaker verification 

method leads to lower confidence in the evaluation results. It is noticed that the 

evaluation of some studies in literature was based self collected speech datasets with 

a small number of speakers. 

53 



Chapter Three – Literature Review 

54 

 For many of the speaker verification algorithms reviewed, substantial speech 

data is required to provide training phase (Mafra and Simoes 2004; Ke and Salman 

2011) and testing phase (Jawarkar et al. 2011), for both real speaker and impostors. 

Few papers have investigated limited speech data for the testing phase, with less 

investigating limited speech data condition for the training phase as well (Jayanna 

and Prasanna 2009). The importance of developing speaker verification systems in a 

limited speech data environment is that in commercial speaker verification 

applications, it is not preferable to collect substantial speech data from the client in 

order to enrol as a claimed speaker. 

 One of the main current challenges in the speaker verification process is the 

difference between the captured speech signal during enrolment and testing. This 

difference is expected due to the variability in the true speaker voice, but in many 

cases the difference occurs due other factors such as: channel effect (i.e. enrolling 

and testing using different devices) and environmental effect. These occur when 

enrolling and testing in different places with different background noise 

characteristics. Some of the cited references in the literature explored these 

conditions such as the multi environments scenario in mobile device channel (Rao et 

al. 2010), office/telephone environments (Kasuriya et al. 2001), different types of 

microphone (Price et al. 2000; Mubeen et al. 2012). In this research the difference 

between the recording environments over two different sessions is considered with 

in the speech database. However, the research does not explicitly investigate the 

channel effect (i.e. using different capturing device in enrolling and testing). 
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4. Introduction 

The speech signal can be processed at several different morphological levels: 

sentences, words, syllables or phonemes. The lowest is the phonemes level, which 

represents the smallest part in any language structure. In speaker verification the 

choice of the morphological level is essential, since speaker identity information is 

not embedded equally over these levels (Han-Sheng and Mammone 1995a). On the 

other hand, selecting the type of feature vector to be used to present the speaker 

identity information is also important. A wide range of frequency domain features 

have been used in the literature. In this chapter a demonstration of the general 

characteristics of phonemes and vowels is first presented in Section 4.1. Different 

types of feature vectors for speaker verification are then illustrated in Section 4.2. 
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Pre-processing techniques are explained in Section 4.3 with details of three 

techniques for speech/vowel detection: energy frame analysis as presented in 

Section 4.3.1, zero crossing rate technique as detailed in Section 4.3.2, and a new 

proposed technique called linear correlation technique described in Section 4.3.3. 

The new technique is compared to energy frame analysis technique in Section 4.3.4 

and compared to time domain correlation technique in Section 4.3.5. 

4.1 Phonemes and Vowels 

Phonemes are distinctive sounds that can be used to characterise most 

languages including English. Different languages may contain different phonemes, 

but many share the majority of them. Phonemes in American English for example, 

are classified mainly into consonants, vowels, semivowels and diphthongs (Rabiner 

and Schafer 2010). From among all phonemes, vowels are perhaps the more 

interesting patterns to classify sounds due to their distinctive spectral characteristics 

(Rabiner and Juang 1993). Although they are not vital to represent and classify 

written text, their role in speech/speaker recognition systems is very important. 

Vowels are produced by quasi-periodic pulses of air caused by excited vocal 

cord vibration with fixed vocal tract (Rabiner and Schafer 1978). Their consistent 

characteristics in the frequency domain make them valuable for speech applications 

in general and particularly valuable for speaker recognition. Figure 4.1 shows the 

spectrogram of the ten vowels in American English language. 
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Figure 4.1 – Spectrogram of ten vowels of American English (Rabiner and Schafer 2010). 

 Figure 4.1 presents a full scale frequency description of the ten vowels, with 

the darker areas representing higher energy. It can be noticed that some of these 

vowels are more distinctive than others. For example the vowels /æ/ as in (bat), /i/ as 

in (beet) and /u/ as in (boot) are the most the distinctive vowels, with vowel /æ/ 

containing the highest energy across the majority of the frequency range over time. 

Vowel /i/ contains two well separated energy regions (0-500 Hz) and (2000-4000 

Hz), and vowel /u/ contains only one well recognised energy region (0-1000 Hz). 

Figure 4.2 plots the same ten vowels for a wide range of speakers in term of the first 

and second formant frequencies. 

Although the rest of vowels in Figure 4.1 have their unique spectral 

representation, they can be confused with the three mentioned vowels. This can be 

easily spotted from Figure 4.2 where the overlapping regions show how vowels 

share common characteristics in term of the first and second formant frequencies. 
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Figure 4.2 – Vowels distribution of wide range of speakers in term of first and second 
formant frequencies (Peterson and Barney 1952). 

Vowels with overlapping regions are very likely to share similar 

pronunciation. A cited study in Chapter 3 (Seddik et al. 2004a) argues that the use of 

phonemes with similar pronunciation (i.e. similar spectral characteristics) in the 

training phase of phoneme-based neural network, can confuse the network in the 

testing phase, thereby reducing the recognition performance. This is not the case 

with the three mentioned vowels, since they are statistically well separated with no 

overlapping area. 

Figure 4.3 shows how the DFT spectrum can be used to differentiate between 

different speakers speaking the same vowel. Figure 4.3a shows an example of the 
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DFT spectrum of one vowel spoken by two different speakers whilst Figure 4.3b 

shows an example of the DFT spectrum of the same vowel spoken twice by one 

speaker. 
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 Figure 4.3 – Discrete Fourier Transform spectrum for vowel /æ/ spoken by a) different 
speakers b) same speaker twice. 

It is clear from Figure 4.3 that vowel DFT spectrum for the two vowel 

utterances is far more similar when spoken by the same speaker than when spoken 

by different speakers. In this work the three common vowels (/æ/ as in five, /u/ as in 

two, and /i/ as in eight) were chosen due to their intra-speaker and inter-speaker 

discrimination property (Rabiner and Schafer 1978). Figure 4.4 clearly shows that 

the frequency spectrums of these three vowels are distinct for a given speaker as the 

maximum frequency spectrum amplitude (dark gray) occurs in different frequency 

regions for each of the three vowels. 
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Results presented in (Han-Sheng and Mammone 1995a) also show that these 

vowels contain more speaker identity information than other vowels and non-vowel 

phonemes. In addition, although other vowels are distinct and do contain identity 

information for a given speaker, they are not used here because they are shorter in 

duration than the vowels chosen in this work. 

4.2 Feature Vectors for Speaker Verification 

The choice of the format of the feature vector to be used in any speaker 

verification process has a significant impact on the performance of that process 

(Kinnunen and Li 2010). As shown in Chapter 3, many different feature formats 

have been adopted in the literature to conduct speaker verification/identification. 

The speech signal is basically generated by a combination of vibrations travelling 

through the vocal tract, throat and mouth. The signal is captured in the time domain 

as a sampled waveform in term of samples. However, this time domain 

representation is rarely used as a feature vector in speaker verification and other 
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Figure 4.4 – Discrete Fourier Transform spectrum for the words (five, eight, and two).The 
frequency spectrum for each of three vowel segments indicated are clearly distinct. 



Chapter Four – Speech Features and Novel Speech Activity Detection 

speech applications. The frequency domain representation of the speech signal is 

more intelligible and offers a more meaningful picture than the time domain 

(Rabiner and Schafer 2010). The Discrete Fourier Transform DFT spectrum, 

sometimes called power spectrum or spectrogram when plotted over time axis, is the 

raw representation format of the speech signal in the frequency domain and the 

majority of the frequency feature formats are derived from the DFT spectrum with 

further transformations. In this section three main feature formats will be described: 

DFT spectrum, LPC analysis/spectrum and MFCC coefficients. 

4.2.1 Discrete Fourier Transform Spectrum 

One of the most popular representations of speech signals, which gives a full 

description of speech in the frequency domain is the DFT spectrum. The DFT vector 

for a frame of speech with N samples is shown in Equation 4.1. 
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where X[k] is the DFT vector and x[n] is the windowed speech signal. The DFT 

spectrum is the magnitude of the DFT vector (Rabiner and Schafer 1978). This is 

usually presented in logarithmic scale format. 

Figure 4.5 shows a frame of a vowel speech signal before and after the 

multiplication by a Hamming window. The Hamming window is commonly used in 

speech processing to minimise the discontinuity that occurs due to the segmentation 

in the speech waveform. 
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The size of the DFT spectrum vector produced from Equation 4.1 is the same 

size as the number of samples (N). However, the resolution of the DFT spectrum can 

be controlled. To produce a DFT spectrum with more points than the size of the 

speech frame, the speech signal can be padded with zero samples. On the other hand 

if the size of the DFT spectrum vector is less than the size of the speech frame, the 

speech signal is truncated. 

According to the derivation of the DFT spectrum, the size of the vector 

should always be two to the power of an integer number. The number of samples in 
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Figure 4.5 – Speech frame windowing a) frame of vowel speech signal b) Hamming 
window c) windowed speech signal. 
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Figure 4.5 is 128 samples. Figure 4.6 shows different resolutions of the DFT 

spectrum of the windowed speech signal shown in Figure 4.5c. 
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Figure 4.6 – Different resolutions of Discrete Fourier Transform spectrum a) 64-point b) 
128-point c) 512-point, and d) 4096-point. 

 

The DFT spectra shown in Figure 4.6 illustrate scenarios where the size of 

the DFT spectrum vector is less, equal to or more than the size of the speech frame. 

It is clear that the more points the DFT spectrum contains, the more resolution is 

obtained. However, the higher resolution is not necessarily adding extra information 

i.e. compare Figure 4.6c and Figure 4.6d to Figure 4.6b. Meanwhile decreasing the 

resolution effectively subtracts significant information since the original signal is 

truncated as shown in Figure 4.6a. In this research different DFT spectrum vector 

sizes were investigated, and it was found that increasing the resolution of the DFT 
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spectrum vector size does not improve the verification accuracy. Decreasing the 

resolution on the other hand significantly worsens the verification performance. 

Therefore a DFT spectrum size of 128 points (which is equal to the size of speech 

frame of 16 msec) is used throughout the rest of this thesis. 

4.2.2 Linear Prediction Coefficients Analysis/Spectrum 

Another popular feature vector format is the Linear Prediction Coefficients 

(LPC). Their significant use appears in speech compression applications due to the 

high compression ratio that can be obtained when representing a speech signal. The 

LPC spectrum can be obtained by taking the magnitude at the output of the transfer 

function of a filter whose coefficients are represented by the LPC coefficients as 

shown below: 
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where H[z] is the transfer function of the filter, G is the gain and ai (i=1,…, M) are 

the LPC coefficients of the M order (Rabiner and Schafer 1978). Mathematically, 

the LPC spectrum represents a smoothed version of the DFT spectrum for low LPC 

orders. Figure 4.7 shows LPC spectrum obtained using different M values 10, 40 

and 128 coefficients as well as the 128-point DFT spectrum vector. 
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Figure 4.7 – Different resolutions of Linear Prediction Coefficients spectrum a) 128-point 
Discrete Fourier Transform spectrum b) 10th order Linear Prediction Coefficients spectrum 
c) 40th order Linear Prediction Coefficients spectrum, and d) 128th order Linear Prediction 
Coefficients spectrum. 

 

 

It is noticed that the 10th order LPC spectrum in Figure 4.7b follows the main 

trend of the data when compared to the 128-point DFT spectrum in Figure 4.7a. By 

increasing the LPC order to 40 more detail appears that better follows the fine 

envelope of the formants in the DFT spectrum. Finally the 128th order LPC spectrum 

in Figure 4.7d shows a very similar image to the DFT spectrum in Figure 4.7a. This 

is expected to happen since no compression is applied, and the 128 speech samples 

are fully described as LPC coefficients. 
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4.2.3 Mel Frequency Cepstrum Coefficients 

Mel Frequency Cepstrum Coefficients, or MFCC, are one of the most used 

feature vector formats in the literature for both speech and speaker recognition, as 

illustrated in Section 3.4. After their successful usage in speech recognition, MFCC 

were extensively used in speaker verification and identification. As described in 

(Davis and Mermelstein 1980) the MFCC are calculated by applying a Mel-

frequency bank of triangular filters on the DFT spectrum, then a Discrete Cosine 

Transform (DCT) is applied on the logarithmic output of the filters to obtain the 

MFCC. Figure 4.8 shows the scheme diagram of the MFCC extraction process. 

 

 

 

 

As shown in Figure 4.8 the DFT spectrum is passed through a bank of 

triangular filters, the centres of these filters follow a mel-scale frequency which is 

described in (Memon et al. 2009) as: 
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Figure 4.8 – Mel Frequency Cepstrum Coefficients extraction process. 
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where fmel is the mel-scale frequency and f is the linear frequency. After multiplying 

the DFT spectrum by the bank of triangular filters, the DCT is applied to the 

logarithmic values of the filters output energies to produce the MFCC as follows: 
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where MFCCk is the kth MFCC coefficient with k=0, 1, 2, …, K-1 and E[i] is the 

logarithmic value of the output energy of the ith filter bank. Usually, for 

normalisation reasons, MFCC0 is excluded from the feature vector since it represents 

the energy within the speech frame (Molla and Hirose 2004). Similar to an LPC 

analysis, the MFCC describes a compressed version of the DFT spectrum. By 

increasing the order of the cepstrum coefficients K, the MFCC vector converges to 

the DFT spectrum vector. 

4.3 Pre-Processing Techniques 

Speech segmentation is an essential tool in many speech applications. For 

example, a speaker verification system that uses phoneme/vowel information to 

perform the verification operation, will need an accurate speech segmentation 

technique in order to detect the phoneme/vowel boundaries correctly and precisely. 

In traditional speech applications, Energy Frame Analysis (EFA) is 

commonly used to detect voiced regions in the speech signal (Dong et al. 2002; Qi 

et al. 2002). The Zero Crossing Rate (ZCR) of the speech signal is another technique 
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that is usually used in combination with energy frame analysis to locate unvoiced 

speech in the time domain (Rabiner and Schafer 1978). A time-domain based 

correlation function also had been used to detect speech activity; either on its own 

(Ta-Hsin and Gibson 1996; Zhang et al. 2009) or in combination with the ZCR 

technique (Shen and Chen 2011). However, one of the problems when using time-

domain speech detection techniques such as EFA and ZCR is how to set the 

respective energy frame and zero crossing rate thresholds. The energy threshold is 

impacted by the volume of the spoken words, whilst the zero crossing rate threshold 

is speaker dependent (Rabiner and Schafer 1978). To address this potential 

limitation, other speech detection techniques have been suggested that are based on 

frequency domain analysis features such as cepstral features (Haigh and Mason 

1993). The technique presented here extends this work. 

In the next three sections the following pre-processing techniques are 

demonstrated, Section 4.3.1 and Section 4.3.2 describe the EFA technique and the 

ZCR technique respectively, while Section 4.3.3 proposes a new DFT based pre-

processing technique using the linear correlation technique. Section 4.3.4 shows a 

comparison between the proposed technique and the EFA technique, whilst Section 

4.3.5 provides another comparison with a time-domain based correlation technique. 

4.3.1 Energy Frame Analysis 

Energy gives a good indication for voiced speech activity. To obtain the 

energy envelope of a speech signal the energy must be calculated within frames of 

up to 30 ms in order to ensure that the stationary assumption of the speech signal is 
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valid (Rabiner and Schafer 1978). Equation 4.5 shows the energy calculation for a 

frame of N samples in speech signal x[n]. 
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where Ei is the energy of the ith frame of speech signal and x[n] is the amplitude of 

the speech signal in the time domain. After calculating the energy envelope a 

threshold can be set to decide whether the frame represents voiced or unvoiced 

speech. 

The setting of the threshold value is highly affected by two parameters; the 

volume of the spoken speech and the background noise level. Speech waveforms of 

high volume need high threshold values in order to avoid detecting unvoiced speech 

segments. Meanwhile speech waveforms of low volume require lower threshold 

values in order to avoid miss-detecting voiced speech segments. This volume 

dependency means that a general threshold cannot be set for all speech waveforms. 

For example, a threshold value that would successfully detect the speech activity 

regions in high volume waveform may not be able to detect the similar activity in a 

lower volume waveform. The common way to address this is by re-tuning the 

threshold values according to the average volume of the speech waveform at a word 

or phrase level. 

One other limitation of using EFA based threshold values for detecting 

speech activity is the effect of the background noise level. In general the speech 
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activity thresholds need to be set such that they exceed the energy of the background 

noise. Unfortunately, such a solution means that in noisy environments, low volume 

speech activity is difficult to segment from the background noise. 

4.3.2 Zero Crossing Rate 

 Another speech signal property that can be extracted in the time domain is the 

zero crossing rate. When the ZCR is calculated for a speech waveform, it can be 

used to easily discriminate between low frequency voiced speech segments 

(especially vowels) and higher frequency unvoiced speech segments. The ZCR can 

be computed by counting the change in the sign of the speech samples within one 

frame as shown in Equation 4.6. 
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where ZCRi is the zero crossing rate of the ith frame of speech signal and x[n] is the 

amplitude of the speech signal in the time domain. By calculating the ZCR for each 

frame in the speech waveform a ZCR envelope is obtained. 

A threshold value can then be used to locate high frequency speech regions 

such as the /t/ at the end of the word (eight) and the beginning of the word (two). 

Although ZCR is a useful tool for isolating high frequency unvoiced speech 

(fricatives), it is still necessary to retune the threshold value for each new speaker, as 

the ZCR is dependent on the fundamental frequency of each speaker (Rabiner and 

Schafer 1978).  
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ZCR is usually used in combination with EFA to obtain an improved 

technique for voiced speech detection. In this combination, ZCR is used to detect the 

low energy high frequency fricative speech segments that normally cannot be 

detected using EFA. 

4.3.3 Linear Correlation 

The Linear Correlation Coefficient (LCC) or Parson product-moment 

correlation coefficient can compute the correlation between any two vectors 

(Rodgers and Nicewander 1988). The correlation coefficient is obtained by dividing 

the covariance of the two vectors by the product of their standard deviation as shown 

in Equation 4.7. 
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where xi and yi are two vectors of N samples. A value of 1 refers to fully correlated 

vectors and -1 refers to fully uncorrelated vectors. In this work it is suggested that 

the LCC in Equation 4.7 can be used to determine the correlation between DFT 

spectrum vectors in order to detect speech activity. 

Speech signals are easier to investigate in the frequency domain than in the 

time domain (Rabiner and Schafer 1978). This is because the DFT spectrum of a 

speech segment gives a distinctive image of the speech signal which can be used to 

provide sufficient information about different voice characteristics in the frequency 

domain. Figure 4.9 shows the DFT spectrum of the spoken digits (five/eight/two) 
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from the CSLU2002 database. By computing the LCC between each DFT spectrum 

vector and all other vectors, a two dimensional matrix will be obtained as shown in 

Figure 4.10. 

In Figure 4.10 the highly correlated speech frames are represented as dark 

regions (close to a value of 1), while the lighter regions represent the highly 

uncorrelated speech frames (close to a value of -1). Although Figure 4.10 shows the 

full cross-correlation map of the speech waveform, which could be useful in speech 

recognition applications, it is not necessary to use all of the elements of the two 

dimensional matrix in order to locate the speech segments in the waveform. 

To obtain detection ability, it is suggested here to slide a two dimensional 

window along the diagonal of the matrix, then sufficient information can be 

collected to locate the highly correlated speech regions precisely. 

 

 

 

 

 

 

Figure 4.9 – Discrete Fourier Transform spectrum of spoken digits (five/eight/two) from 
the CSLU2002 database.  
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 Figure 4.10 – Linear Correlation Coefficient values map for illustrated speech waveform. 

It is noticed that the summation of the LCC’s within the square window gives 

significant indication about the coherency between the speech frames inside the 

window. The proposed ith Correlation Coefficient Envelope (CCE) is suggested to 

be as follow: 

%100
),(

2
1 1    

D

XXLCC
CCE n m mn

i

D D

   (4.8) 

where D is the number of frames considered in the square time window, Xn and Xm 

are the DFT spectrum vectors along both dimensions of the time window. Equation 

4.8 produces a percentage scale that describes the LCC characteristic for the 
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assessed waveform. For fully correlated speech frames of LCC value of 1 inside the 

square window, the resultant CCE is 100%, whilst for fully uncorrelated speech 

frames of LCC value of -1, the resultant CCE is -100%. The CCE for the same 

speech waveform illustrated previously is shown in Figure 4.11. 

It is clear from Figure 4.11 that the highly correlated frames ( >80%) 

correspond to the speech regions of the displayed waveform. Moreover, a threshold 

of >90% indicates the vowel regions of the three spoken words. 

 

(a) 
 

 

 

 

(b) 

 

 

Figure 4.11 – Correlation Coefficient Envelope of spoken digits (five/eight/two) from 
SLU2002 database a) time domain speech signal b) Correlation Coefficient Envelope. C 

4.3.4 Comparison between Linear Correlation and Energy Frame 
Analysis 

Although the EFA algorithm is known to be highly biased by the energy of 

the signal, it can be shown that the LCC algorithm is robust to changes in energy. 
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Figure 4.12 shows the performance of the EFA and LCC under different volume 

levels. 

 

 

 

 

 

 

 

 

 Figure 4.12 – Speech waveforms in different volume levels represented using a) Energy 
Frame Analysis and b) Correlation Coefficient Envelope. 

It is clear from Figure 4.12a that when EFA is used a retuning is needed for 

the threshold that detects speech activity due to the shift in the average amplitude of 

the signal. However, when LCC is used there is no need to retune the threshold that 

detects speech activity because the LCC algorithm produces the same envelope 

irrespective of the volume of the spoken phrase as shown in Figure 4.12b (i.e. the 

three correlation envelopes overlay each other). 

The advantage of the LCC algorithm over the EFA algorithm is even more 

obvious when volume variation within a phrase is considered. In speech a speaker 
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often starts speaking with high volume, then allows the volume to decrease over 

time. Under such conditions, it is more difficult to set a phrase threshold value for 

the EFA algorithm, something that is not the problem when the LCC algorithm is 

used. Figure 4.13 shows the EFA and LCC performance against volume degradation 

within a speech waveform. 
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Figure 4.13 – Volume degradation over time in speech waveform represented using a) time 
domain speech signal b) Energy Frame Analysis envelope and c) correlation Coefficient 
Envelope. 

 

In Figure 4.13 the EFA plot shows how a typical phrase threshold value can 

easily miss the third word, while the CCE plot shows the advantage of using the 

LCC algorithm to detect speech activity – it is not affected by the change in volume 

even within the same speech waveform. 

76 



Chapter Four – Speech Features and Novel Speech Activity Detection 

4.3.5 Comparison between Linear Correlation and a Correlation 
Function in the Time Domain 

The auto correlation function can also be used to detect speech activity in the 

time domain. The system in (Zhang et al. 2009) uses the time correlation function to 

discriminate between speech and noise, as shown in Equation 4.9. 
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where Corr(i) is calculated per ith speech frame and N is the length of speech frame. 

The exclusion of (n=0) from Equation 4.9 is claimed to eliminate the effect of the 

embedded energy within the frame. In that research the correlation calculation is 

modified by dividing each Corr(i) value by the calculated energy for that frame. 

Figure 4.14 shows the correlation envelope obtained from Equation 4.9 and the 

proposed frequency domain correlation envelope for the same speech waveform 

used in this research. 

 It can be noticed from Figure 4.14 that the time-domain based correlation 

function does not provide the same level of coherency for the speech activity regions 

in different words (i.e. the peaks have different amplitudes). The frequency domain 

based correlation technique suggested in this thesis, on the other hand, does give a 

constant level of coherency for speech activity across different words. Consequently, 

with time domain based correlation there is still a need to set more than one 

threshold experimentally according to the speech waveform; unlike the case in the 
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frequency domain based correlation where a global speech activity detection 

threshold can be used. 
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Figure 4.14 – Comparison between time domain correlation envelope and frequency 
omain correlation envelope a) Time domain speech signal of spoken digits (five/eight/two) 
rom CSLU2002 database b) Time domain correlation using Equation 4.9 c) Correlation 

Coefficient Envelope. 
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4.4 Summary 

 This chapter details the general characteristics of phonemes, highlighting 

vowels and their impact in speaker verification process. A brief presentation of 

commonly used feature vectors is also presented. Following this a new technique for 

speech activity detection is then proposed. The technique employs a linear 

correlation coefficient algorithm between DFT spectrum feature vectors of 
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79 

overlapped frames of the speech signal. The key point of using this technique is that 

it requires minimal parameter setting. Two comparisons have been made with 

traditional speech detection techniques. The first is against the EFA algorithm and 

the second is against a time-domain based correlation function technique. The 

proposed LCC technique shows significant increase in robustness over EFA 

technique when the dynamic range of the volume of the speech signal increases. The 

LCC technique also shows a steady level of coherency when compared to time-

domain based correlation technique. 
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5. Introduction 

This chapter presents two proposed algorithms for speaker verification. The 

first is an SOM based algorithm, which employs a modified version of the SOM. 

The second algorithm then investigates the use of the modified SOM as a coarse 

verification stage, followed by a conventional MLP neural network as a fine second 

stage verifier. Section 5.1 demonstrates the two proposed algorithms with 

experimental results in Section 5.2 and Section 5.3, while Section 5.4 provides final 

conclusions from the two experiments. 

5.1 Proposed Algorithms 

In this chapter two vowel-based speaker verification algorithms are proposed. 

The first algorithm uses the outputs of a modified SOM for vowel clustering 

80 



Chapter Five – Self Organising Map Based Speaker Verification 

followed by a rule based Euclidian scoring method, while the second algorithm uses 

the modified SOM combined with MLP networks in order to benefit from the use of 

negative impostors’ training samples; thereby improving verification performance. 

5.2 Speaker Verification Using Modified Self Organising Map 

Self organising maps are an intelligent clustering technique that is based on 

biological principles. One of the most popular SOM for speech applications is 

Kohonen’s self Organising map since it clusters speech into a full scale of phonemes 

(Kohonen 1990). The authors in (Homayounpour and Chollet 1995) use the SOM in 

two stages to create a target speaker model and a general background speaker 

model; their paper uses LPCC as the feature vector parameters. The authors in (Ig-

Tae et al. 2000) use an SOM to extract MFCC features in order to generate input to 

an MLP for speaker verification. The authors in (Mafra and Simoes 2004) use an 

SOM to create a speaker model, for each individual speaker in a database, for 

speaker identification purposes. Their paper also uses MFCC’s as the input feature 

vector parameters. Finally Kinnunen et al in (Kinnunen et al. 2000) use an SOM as 

a clustering technique to obtain an MFCC vector based quantization codebook for an 

identification system. 

Kohonen also made modifications to the original SOM to present a Learning 

Vector Quantization (LVQ) system (Pandya and Macy 1995). The main difference 

between the original SOM and the LVQ system is that LVQ has a specific number 

of categories in its output, each category represents a cluster which consists of a 

group of neurons, whilst in the SOM the number of the clusters is found in an 
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unsupervised manner. More explanation on the LVQ with different versions LVQ1, 

LVQ2, and LVQ3 can be found in (Pandya and Macy 1995). 

In this research an SOM is modified to have a specific number of categories 

in its output as in the LVQ system, but it differs from the LVQ in that each category 

consists of only one neuron instead of a group of neurons in order to simplify the 

verification process. In addition, a winner only update criterion is employed with a 

specific distance threshold in order to automatically remove silence and non-voiced 

frames. 

The proposed algorithm will be described here using the DFT spectrum as the 

preferred input vector format. However, as described later, the system can easily be 

modified to use the LPC spectrum or MFCC as input vectors. The basic concept of 

the algorithm is based on the differences between the DFT spectrums of the same 

vowels for different speakers (Rabiner and Schafer 1978) as described in Chapter 4 

(Section 4.1). Figure 5.1 shows the scheme diagram of the proposed algorithm. In 

Figure 5.1, both the registration SOM and the verification SOM are trained each 

time a speech sample occurs at their inputs. Section 5.2.1, Section 5.2.2, and Section 

5.2.3 describe each stage of the proposed algorithm. 
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5.2.1 Pre-Processing and Feature Extraction 

The speech is segmented into frames of 16 msec. This frame size was chosen 

after studying different frame sizes from 5 to 32 msec. Frame sizes of less than 16 

msec produce a lower resolution in the frequency domain (resulting in poor 

clustering results), whilst frame sizes of more than 16 msec may contain transition 

between phonemes. An overlapping frame analysis was also used with a 4 msec 

step. This functions as a smoothing tool for the DFT spectrum over successive 

Create trained 

Verification SOM 

Speech signal Speech signal 
Registration Verification 

session 1 session 2 

Pre-processing and 

feature extraction 

Pre-processing and 

feature extraction 

Create trained 

Registration SOM 

Weighted Euclidian 
distance between SOM 

weight sets 

If (Distance < ThresholdEER) 

 Then (speaker= claimed speaker) 

else (speaker= impostor) 

Figure 5.1 – Scheme diagram of the proposed algorithm. 

83 



Chapter Five – Self Organising Map Based Speaker Verification 

frames. The contents of each frame are multiplied by a Hamming window, as in 

Equation 5.1, to reduce the distortion in the signal caused by the framing process. 
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N is the number of samples in one frame and w(n) is the Hamming window.  

Applying Equation 4.1 in Chapter 4 to each 16 msec frame of speech data 

produces 128 point DFT components. Due to the symmetry in the DFT spectrum 

only one half-side of the spectrum (64 components) is used. Three points smoothing, 

with average energy subtraction, is then applied to produce the input features vectors 

used in the clustering process. To determine the word boundaries, the energy frame 

analysis has been used. 

5.2.2 Self Organising Map Registration and Verification Training 

A one dimensional SOM of 64 input (DFT spectrum) and three output 

neurons (each output represents one vowel of size 64) is trained to produce weight 

vectors for the three output nodes that are representative of a given speaker. The 

three neurons are initially seeded with typical vowel samples taken from the three 

words (five, eight, and two) of the CSLU2002 database.  

It is worth repeating that each time the SOM is used, either during 

registration or verification, the SOM is trained using its respective input speech 

sample. During its training phase the SOM is designed to update the winner neuron 

only if the input pattern lies within a specific distance region of the winner’s current 
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weight vector. Figure 5.2 illustrates the training process of the three output neurons 

in two-dimensional weight space. 

 

 

 

 

 

 

/æ/ Winner neuron updating region 

As shown in Figure 5.2, at the onset of training, the weight vectors of the 

three output nodes of the SOM are first seeded with initial vowel information from 

predefined positions within the speech signal. As training progresses, the weight 

vectors of the output nodes respectively move through the weight space to a position 

representing the greatest density of input vectors for each vowel as exemplified by 

the darkest point in each vowel area in Figure 5.2. At the end of training, the SOM 

thus represents a statistical three vowel voice model of the training speaker. 

The update distance threshold 3.435 was optimised experimentally to achieve 

clustering of the vowel’s components whilst not clustering silence and non-vowel 

components as well so as to obtain the best verification accuracy within the speaker 

samples in the registration session. 

/u/ /i/ 

Initial seeded output position 

Final output position 

Figure 5.2 – Self Organising Map training process. 
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After experimenting with different numbers of epochs, 100 epochs with an 

initial learning rate of 0.1 (decreasing linearly to zero over time) was found to be 

sufficient to ensure a successful clustering results. At the end of the clustering 

process each output neuron represents a unique vowel model for a specific speaker. 

The structure of the SOM is shown in Figure 5.3. 

1 
 

 

 

 

 

 

When using alternative feature formats such as the LPC spectrum or MFCC, 

a couple of the SOM parameters need to be changed. For example if the LPC 

spectrum is used as the feature vector the update threshold optimised value would be 

2.189. While if MFCC features are used the update threshold optimised value would 

be 1.044 and the SOM would be re-designed to have 19 input features; i.e. the first 

20 MFCC with coefficient MFCC0 (frame energy) excluded. The rest of the system 

parameters are the same. 
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Figure 5.3 – Self Organising Map structure for the proposed algorithm. 
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5.2.3 Weighted Euclidian Distance between Self Organising Map 
Weight Set 

The standard Euclidian Distance (ED) measure determines the distance 

between any two vectors in multi-dimension space. The components within each 

vector are weighted equally as shown below: 
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    (5.2) 

where R=r1, r2, r3, …, r64 is the claimed user registration trained weight set for one 

neuron and V=v1, v2, v3, …, v64 is the verification trained weight set for the same 

neuron. To overcome speaker variability, Equation 5.2 is modified to form a 

weighted Euclidian distance. A weighting vector can be added to the Euclidian 

distance calculation for each vowel as shown in Equation 5.3 
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where α= α1, α2, α3, …, α64 is the weighting vector set. The role of αi is to give 

higher weight for DFT spectrum components with low variability for the claimed 

speaker and lower weight for DFT spectrum components with high variability for 

the claimed speaker. A suggested model for α is shown in Equation 5.4 
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where ∆i is the average absolute difference of the ith component over the four 

different registration SOM trained weight sets that belong to the claimed speaker in 

the registration session of the CSLU2002 database. 

The final Euclidian distance score between the verification sample SOM and 

the claimed speaker registration sample SOM is then the averaged sum of the three 

Euclidian distances. Using the distance values obtained from the Euclidian distance 

a decision can be made based on the use of an individual speaker model threshold 

derived from the Equal Error Rate (EER) position for the claimed speaker against 

the other speakers in the database. 

5.2.4 Results 

From the CSLU2002 database the words chosen for testing were 

(five/two/eight). Since the verification algorithm is a vowel based algorithm, these 

words were chosen as they include the desired vowels. Using the samples from the 

Session 1, the update distance threshold values and α vector were optimised based 

on the type of the feature vector input of the SOM. 

The testing phase is accomplished by using the claimed speaker and impostor 

samples from Session 2 as verification samples. Table 5.1 presents the average 

verification accuracy of 50 speakers within the CSLU2002 database at their 

respective EER threshold positions. 

Table 5.1 shows clearly that the DFT spectrum and the MFCC provide almost 

the same verification accuracy; followed by the LPC spectrum. Taking into 
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consideration the extra calculations required for the MFCC and LPC spectrum, the 

DFT spectrum represents the optimum input feature vector choice for the proposed 

system as it facilitates faster real-time training of the verification SOMs. 

Table 5.1 – Verification accuracy. 

Type of input for SOM Verification accuracy (%) 

DFT spectrum 92.47 

LPC spectrum 91.79 

MFCC 92.32 

The evaluation results presented here also show better performance when 

compared with the GMM based system described in (Reynolds and Rose 1995); 

specifically when testing with speech of (~1 sec) duration, where GMM classifier 

performance decreases to 80%. A similar comparison with a traditional SOM based 

system (Mafra and Simoes 2004) is also favourable when taking into consideration 

the fact that the SOM presented there needs substantial 17.5 sec speech data for 

training; whilst the proposed algorithm uses only four samples of three words taken 

from one registration session (~4 sec). 

The proposed algorithm in this work also represents a limited data condition 

scenario as it only uses short speech segments for training and testing. The 

experimental results in (Jayanna and Prasanna 2009) show that the performance of 

traditional speaker verification algorithms (including conventional SOM) falls 

significantly when limited 3 sec speech data is used for training and testing. Thus 
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under the similar limited data condition tested here the presented algorithm shows 

significant improvement to those presented in (Jayanna and Prasanna 2009). 

To improve the verification performance, the negative impostors’ samples 

can be used to provide better discrimination between the speaker model and the 

impostors’ model. In the next section, an MLP is combined with the SOM to 

produce a two-stage speaker verification algorithm. 

5.3 Speaker Verification Using Modified Self Organising Map and 
Multi Layer Perceptron 

The speaker verification algorithm presented in this section consists of two 

stages. The first stage is a frame filtering stage that uses the modified SOM, 

presented in Section 5.2.2, as a claimed user voice model for the three vowels 

considered in the experiment. The second stage then consists of three MLP 

networks; each of which has been trained to function as a claimed user vowel 

verifier. The main structure of the SOM+MLP system is shown in Figure 5.4. 

Both stages of the proposed algorithm in Figure 5.4 are trained first using 

Session 1 samples in a training phase. The testing phase is then applied after both 

SOM and MLP are trained. The two phases are described as follows: 

Training phase: each individual speaker in the training set has four speech samples. 

From each sample a single SOM is extracted as explained in the previous section 

producing four SOMs per speaker. The four speech samples are then filtered using 

the same four SOMs to select only those speech frames that lie within the 

empirically optimised distance threshold. The resultant speech frame sets N1, N2 and 
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N3 represent the vowel information that can be used to train the three MLP 

networks. 

SOM1,2,3,4 

 

 

 

 

 

 

 

 

 

 

 

 

Testing phase: to test a new speech sample, the sample is passed to the four 

registration SOMs and any speech frame that is within the distance threshold of any 

of the four SOMs is passed through for testing in the verification stage. At the 
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Figure 5.4 – Architecture of the proposed Self Organising Map + Multi Layer Perceptron 
speaker verification. 
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second stage the respective MLP networks are tested individually using the filtered 

frames of the test sample. Since each filtered frame represents an input pattern, the 

output of the MLP network is averaged over the number of filtered frames for that 

vowel to obtain a single output for each vowel. Finally the three averaged outputs of 

the three MLP networks are also averaged to achieve one output score for one test 

sample. 

5.3.1 Multi Layer Perceptron Verifier 

The second stage consists of three MLP networks. Each MLP is trained 

individually by using the filtered frames from the first stage. The MLP network 

suggested for each vowel consists of two layers, an input layer of 64 nodes, 

representing the DFT spectrum vector of each frame successfully filtered by any of 

the four registration SOMs for that vowel, and an output layer of one neuron with 

supervised binary output of 1 when the input vowel frame information belongs to 

the claimed speaker and output of 0 when the input vowel frame information 

belongs to an impostor. The structure of the MLP is shown in Figure 5.5. 

A simple MLP network architecture is possible here because the SOM 

filtering stage removes noise, non-vowel data and undesired other vowels data. Each 

MLP network was trained using the standard back-propagation learning algorithm 

with a learning rate of 0.1 and a sigmoid activation function with a temperature of 

1.0. To train and test the two stage speaker verification algorithm the same two 

sessions data from the CSLU2002 database, as used in the previous work, were used 

and divided as shown in the next sections. 
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5.3.2 Testing and Results 

To train and test each MLP, two types of speech data are needed, claimed 

speaker speech data and impostor speech data. Each type is then divided into three 

parts, training, validation, and testing. Data from Session 1 are used only for training 

and validation while data from Session 2 are used only for testing. The first 30 

speakers were used to evaluate the performance of the algorithm. The remaining 

speakers were kept aside to provide validation and testing data for impostors. Figure 

5.6 explains how the data was divided to implement the algorithm for the first 

speaker. Note this data represents the filtered speech data (N1, N2 and N3). As 

shown in Figure 5.6 the speaker data was split to provide training data for both 

claimed speaker and impostors, as well as to reserve unseen data for validation in 

Session 1 and unseen testing data in Session 2. 
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Figure 5.5 – Multi Layer Perceptron network structure. 
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For each individual vowel MLP verifier, the network was trained to give an 

output of 1 for filtered frames corresponding to the claimed speaker training data, 

and an output of 0 for filtered frames corresponding to the impostors training data. 
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Figure 5.6 – Speech data division for the proposed algorithm. 

94 



Chapter Five – Self Organising Map Based Speaker Verification 

At the end of each training epoch a validation error was calculated using the filtered 

validation data of the claimed speaker and impostors as shown in Equation 5.5. The 

network stops the training, if the validation error increases. 
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M1 and M2 are the numbers of filtered validation data frames for the claimed speaker 

and impostors respectively, Ti is the target output which is equal to 1 in the first term 

and equal to 0 in the second term and Ai is the actual output. In Equation 5.5 the 

validation error is calculated individually for the claimed speaker and impostors to 

eliminate the effect of the unbalance between M1 and M2. 

After training, the two stage speaker recognition system was tested using the 

unseen Session 2 data samples of the claimed speaker and impostors. Each frame of 

a test sample was presented sequentially to the trained system to produce a final 

output, representing the average of the three MLP averaged outputs over the whole 

sample, as a number between 0 and 1. Only filtered frames that are passed forward 

from the SOM stage are processed by the MLP stage, thus frames that were not 

passed forward by the first SOM stage do not contribute to the final output value. By 

applying speaker dependent variable thresholds to these values, the FRR and FAR 

can be calculated. Using the Minimum Average Error Rate (MAER) = 

min{(FRR+FAR)/2} the performance of the verification algorithm can be obtained 

as follows: 
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For direct comparison purposes, the same 30 speaker set were enrolled using 

the SOM+ weighted ED scoring system presented in Section 5.2.2. In addition, in 

order to gain an understanding of the results possible using an SOM only solution, 

the same data set was used to evaluate the performance of the SOM system in 

Section 5.2.2 with a conventional ED scoring mechanism. Figure 5.7 shows the 

performance of the first 30 speakers using: 

1. The SOM with ED scoring based system (SOM). 

2. The SOM with weighted ED scoring based system (SOM+ weighted ED). 

3. The proposed SOM+MLP algorithm (SOM+MLP). 

 

 

 

 

 

 
Figure 5.7 – Performance of using: SOM+ED, SOM+ weighted ED and SOM+MLP. 

From Figure 5.7, it is clear that the three investigated methods have the same 

behaviour towards many speakers in the dataset. Upon further investigation it was 

found that the speakers 4, 14 and 19 with the lowest performance in the SOM+MLP 
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curve showed high variability across the registration and verification sessions. The 

lowest performance occurs with speaker 19 when the SOM+MLP system was 

trained with two low variability samples from Session 1, i.e. the MLP networks have 

lost some of their robustness against speaker variability. The average performance of 

the three algorithms is shown in Table 5.2. 

Table 5.2 – Speaker verification performance. 

Method Performance (%) 

SOM+ED 89.79 

SOM+ weighted ED 92.73 

SOM+MLP 94.54 

From Table 5.2 it is clear that the SOM+MLP system has the best average 

performance rate. This is particularly impressive given that the SOM+ weighted ED 

system saw four real-user samples during the training whereas the SOM+MLP 

system saw only two real-user samples during the training. In addition, as the 

SOM+MLP system is a more biologically plausible solution than the hybrid 

SOM+rule based weighted ED scoring method it can form the basis of further work 

investigating the use of spiking neural networks for speaker recognition. 

5.4 Summary 

Two speaker verification experiments have been performed. The first 

experiment uses a modified version of the original SOM and LVQ systems. The 

SOM+ weighted ED results (Table 5.1 in Section 5.2.4) show 92.47% verification 

on 50 speakers of the CSLU2002 speaker verification database. These results show 

97 



Chapter Five – Self Organising Map Based Speaker Verification 

that a seeded SOM using a threshold distance criterion to update the winner neuron 

obviates the need to remove the silence and other phonemes from the input speech. 

They also show that the DFT spectrum alone contains sufficient features to achieve 

a plausible level of speaker verification performance. Using the simply calculated 

DFT spectrum of the input speech as an input to the SOM, rather than MFCC’s or 

LPC spectrum, as well as only clustering on three vowels considerably reduces the 

training time of the SOM such that a system can be trained in real-time each time the 

user performs a verification attempt. The average time required to train the SOM as 

used here was 0.26 sec using a Core 2 Duo processor of 2.4 GHz. 

The second experiment presents a novel two stage speaker verification 

system. The first stage employs a modified SOM to filter the input speech data into 

frames of three vowels information. The filtered frames are related to the claimed 

speaker since the SOM is designed to extract only claimed speaker vowel data 

frames. The second stage consists of three MLP networks, these networks act as 

fine-grained speaker verifiers, since they are trained with pure vowels information to 

accept the claimed speaker data frames and reject impostor data frames. The DFT 

spectrum was adopted as the input feature vector. Fifty speakers from the 

CSLU2002 speaker recognition database were used to evaluate the algorithm. Three 

experiments were conducted. The first experiment used an SOM and ED to compare 

the SOM weight sets. The second experiment used the SOM and weighted ED as 

described in Section 5.2.2. The third experiment was applied using the proposed 

SOM and MLP system. The first experiment shows a performance of 89.7% while 

98 



Chapter Five – Self Organising Map Based Speaker Verification 

99 

the second and the third experiments show performances of 92.7% and 94.54% 

respectively. In spite of being trained with 50% less speech data compared to the 

SOM+ weighted ED scoring based system, the proposed SOM+MLP algorithm 

gives the best average performance over the 30 enrolled speakers. 

In addition, since short speech data duration is used during training and 

testing in this work, the experiment presented here can be considered as a limited 

data condition case. In a recent comparative study (Jayanna and Prasanna 2009), 

different speaker recognition systems were investigated under limited data 

conditions. The study included popular speaker recognition systems such as GMM 

with universal background model, Learning vector quantisation, Fuzzy vector 

quantisation and SOM. It was shown there that the performance of these systems 

decreases dramatically when limited speech data 3 sec is used for training and 

testing. It can be inferred from that study that any other popular speaker recognition 

technique, which is normally trained using substantial speech data, may suffer from 

similar performance degradation when trained and tested using limited speech data. 

Thus the proposed system presented in this section shows better limited data 

condition performance than all the traditional methods described in (Jayanna and 

Prasanna 2009). 
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6. Introduction 

In this research the highest verification performance is not the ultimate goal. 

The potential target is to imitate the mechanism of the human auditory system. This 

is based on the evidence that babies can recognise their mothers’ voices (Mehler et 

al. 1978) before they can develop speech recognition capability (Ramscar and 

Gitcho 2007); thereby implying that the human auditory system can provide speaker 

verification functionality without the need for speech recognition process. Section 

6.1 presents a delayed rank order coding scheme as a suggested biologically 

plausible feature vector. Section 6.2 describes the theoretical background of spiking 

neural networks. Section 6.3 describes a proposed spiking SOM algorithm for 

speaker verification with evaluation and comparison to the non-spiking SOM based 
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algorithm presented in Section 6.4. Finally Section 6.5 provides final conclusions 

with recommendations for future work. 

6.1 Delayed Rank Order Coding 

Rank order coding (Thorpe and Gautrais 1998) is a common coding 

technique that has been used to encode spike-based signals in spiking neural 

networks for speech recognition (Loiselle et al. 2005) and speaker authentication 

(Wysoski et al. 2007) purposes. One major disadvantage of using rank order coding 

is that it only takes into account the order of components as a feature vector and 

ignores the relative timing information among components. In this research, timing 

information is considered as well as the order of the components in a ‘delayed’ rank 

order coding feature vector. Taking the DFT spectrum, shown in Figure 2.8 in 

Chapter 2, as an example, a spike representing the frequency component with the 

largest amplitude will be generated with zero delay time (Δ3) at a given onset point. 

A spike representing the second highest frequency component will be generated 

with a delay from this onset point (Δ2). This delay is equivalent to the difference 

between the intensities of the two frequency maxima. Here the delay is 

approximated by the difference between the spectrum components since it is 

proportional to the number of saturated fibres phase locked to the frequency 

maxima. Figure 6.1 shows the delayed rank order coding derived from the DFT 

spectrum. 

To explain how the delay rank order coding feature vector is calculated from 

a DFT spectrum feature vector, as shown in Figure 6.1; lets assume that for a given 
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frame of speech the DFT Spectrum vector is [5, 12, 15, 8, 9, …, 6]. This represents 

the amplitudes of frequency components f1 through to fN. 

 

 

 

 

 

 

 

 

 

To convert the DFT spectrum vector into a delayed rank order coding vector, 

the largest frequency component amplitude value is represented by a zero delay, as 

shown in Figure 6.1 (left hand side), with the rest of the components being 

represented by delay differences that are proportional to the difference between their 

amplitudes and the largest component value the Delayed rank order coding vector is 

[10, 3, 0, 7, 6, …, 9]. 

where the components of the delayed rank order coding vector are the delay values 

of frequency components f1 to fN as shown in the right hand side of Figure 6.1. 

One interesting aspect of the delayed rank order coding scheme is that it 

provides vector normalisation over the dynamic range of components values. In the 

standard DFT example the dynamic range is 15-5=10. The delayed rank order 
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Figure 6.1 – Delayed rank order coding extracted from Discrete Fourier Transform 
spectrum, f1, f2, …, fN are frequency positions along the basilar membrane. The envelope 
on the left is the DFT spectrum values while the spikes on the right forms the delayed rank 
order coding feature vector. 
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coding vector also has a dynamic range of 10, but this is normalised between 0 and 

Δmax .This process compensates for any DC offset change in the DFT spectrum (i.e. 

no volume normalisation pre-processing is required). 

6.2 Spiking Neural Networks 

An ideal spiking neuron is similar in structure to other types of neurons, with 

three main parts, dendrites, soma and axon. The dendrites act as an input stage 

transferring the received inputs into the soma. A non-linear process is then applied 

inside the soma to produce an output when the summation of the inputs exceeds a 

threshold. The axon transfers the resultant output to other neurons. The main 

difference between a spiking neuron and other types of neurons is that it is spike-

based operating neuron, where inputs and outputs are spikes rather than numeric 

values. In reality, in one cubic millimetre, there are approximately 104 cortical 

neurons with connection lengths of several kilometres (Gerstner and Kistler 2002). 

6.3 Spiking Self Organising Map 

Spiking neural networks for speaker recognition have been investigated in the 

literature using a variety of structures (George et al. 2003; Bing et al. 2006; 

Timoszczuk and Cabral 2007; Wysoski et al. 2007; Wysoski et al. 2010). A Spiking 

Self Organising Map (SSOM) is suggested in this thesis as a speaker verification 

platform. The one-dimensional SSOM contains three spiking neurons, each working 

under an integrate-and-fire mechanism. The SSOM has an input of 64 inputs that 

represents the delayed rank order coding of the DFT spectrum of one speech frame, 

as explained in Section 6.1. 

103 



Chapter Six – Speaker Verification Using Spiking Self Organising Map 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The structure of the SSOM (shown in Figure 6.2a) is the same as the 

modified SOM that presented in Section 5.2.2 except that it uses the delayed rank 

order coding input vectors rather than the raw DFT spectrum vector. The choice of a 

64 DFT spectrum component vector, rather than the 3600 component spike vector 

produced by the hair cells connected to the basilar membrane, is designed to 

approximate the frequency resolution down-scaling that is believed to occur as the 

signals move up through the various layers of the human auditory system (Møller 

2006). Using a 64 DFT component input vector also allows a direct comparison to 
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Figure 6.2 – Proposed Spiking Self Organising Map algorithm a) Proposed Spiking Self 
Organising Map structure b) Spiking neuron showing a fully synchronised input vector. 

104 



Chapter Six – Speaker Verification Using Spiking Self Organising Map 

be made between the results produced by the SSOM experiments presented here and 

those obtained in Chapter 5. 

Each spiking neuron in Figure 6.2a is initially seeded with a target vector. 

This vector is the delayed rank order coding of a selected speech frame from each of 

the three vowels (/u/, /æ/ and /i/). As before, the three vowels are contained in the 

words (two, five and eight) of the CSLU2002 database. The position of the target 

vector for each neuron is chosen after locating the vowel region within each word in 

the enrolment speech sample using the pre-processing linear correlation technique 

presented in Chapter 4. Once seeded, subsequent input vectors are then compared to 

the seed vector. When the spike timings of an input vector are fully synchronised 

with the spike timing of the target (seed) vector, each input synapse connected to the 

spiking neuron will respond with a maximum value of 1, resulting in an output of 1 

as shown in Figure 6.2b. If a spike is off-synchronised with respect to its 

corresponding spike timing in the target vector, the response of the synapse will 

decrease according to a Gaussian distribution function (shaded area in Figure 6.2b); 

as in a biological auditory nerve response (Greenberg et al. 2004) and (Panchev and 

Wermter 2004). In other words, the more off-synchronised the spikes in the input 

vector are, the lower will be the output response produced by the spiking neuron. 

Based on this configuration, the output response of the spiking neuron to an input 

vector ranges between 1 (fully synchronised with target vector) and 0 (fully off-

synchronised with target vector).  
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In the training phase, one SSOM is created for each enrolment sample. From 

that sample, the delayed rank order feature vector is calculated for each frame as 

explained previously and three target vectors (one for each vowel) are selected and 

used to seed the three output neurons of the SSOM. All other enrolment sample 

frames are then presented repeatedly to the SSOM in order to optimise the target 

delay vectors. During this training of the SSOM, the winner spiking neuron is 

updated only when the response at its output exceeds a specific threshold of 0.7, this 

threshold being optimised empirically to ensure correct clustering and include only 

pure vowel information. The threshold criterion also prevents the SSOM from 

clustering silence and non-vowel information. The update formula of the spiking 

neuron is similar to the standard SOM formula with weights replaced by delays as 

follows: 

  inputoldoldnew         (6.1) 

where ∆old is the old delay value of the synapse, ∆new is the new modified delay 

value, ∆input is the delayed rank order component of the current input vector 

corresponding to the same synapse and α is the learning rate. The SSOM training 

parameters are similar to the modified SOM presented in Chapter 5 with 100 epochs 

and a learning rate of 0.1 which decreases linearly to zero over time. At the end of 

the training phase, each spiking neuron output of the trained SSOM represents a 

typical delayed rank order vowel model for the claimed speaker. 
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In the testing phase, the SSOM is used to verify a test sample. For each 

speech frame input, the spike timing input vector is compared to the spike timing of 

the target vector. By summing the synchronised spikes, a spike is generated at the 

output of the neuron only if the normalised summation exceeds an empirically 

optimised threshold value of 0.5. Each spiking neuron in the SSOM is more active 

when its related vowel information appears at the input. This is expected to be 

maximised when the test sample belongs to the claimed speaker. A lower activity 

output would be produced when the test sample belongs to an impostor. 

To calculate a score for each vowel, the total number of spikes generated at 

the output over the number of frames presented, is then normalised over the duration 

of the vowel region within each word containing that vowel as follows: 

regionvowelithwithinframesofnumber
Si 

ineuronatgeneratedspikesofnumber  (6.2) 

and: 

3/)( 321 SSSS    (6.3) 

where Si is the score of the ith vowel and S is the final verification score averaged 

over the three individual output neuron scores. 

6.4 Results 

The proposed algorithm was evaluated using speech samples of 50 speakers 

(27 females and 23 males), where the speakers were arbitrarily selected from the 91 

speaker CSLU2002 speaker verification database. The speech samples in this 

107 



Chapter Six – Speaker Verification Using Spiking Self Organising Map 

database were recorded over digital telephone lines with a sampling frequency of 8 

kHz to produce 8-bit u-law files, which are then encoded into 8 kHz 16-bit wave 

format file. Two recording sessions samples are used for evaluation purposes, each 

session containing four samples for each speaker. Each speech sample contains the 

words (two, five & eight). 

Each sample in Session 1 can be used as an enrolment sample to create one 

SSOM. The network is then tested against Session 2 samples for both the claimed 

speaker and impostors (the remaining 49 speakers in the dataset). By applying 

speaker dependent variable thresholds to the different scores values, the FRR and 

the FAR can be calculated for each speaker. The verification performance is 

obtained as follows: 

MAERePerformanc 100(%)   (6.4) 

where Minimum Average Error Rate (MAER) =min{(FRR+FAR)/2}. Figure 6.3 

shows the results for the proposed delayed rank order based SSOM together with 

results from the DFT spectrum based SOM presented in Chapter 5. 

It is clear from Figure 6.3 that both algorithms have similar performance, 

with the DFT spectrum-based SOM outperforming on average. However, the 

delayed rank order coding SSOM improved the results for speaker 4 significantly. 

Speaker 4 is noticed to have low performance when previous algorithms have been 

used, due to high speaker variability over sessions. The average performance of the 

50 speakers for both algorithms is shown in Table 6.1. 
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F igure 6.3 – Performance of 50 speakers of CSLU2002 database. 

From Table 6.1 it is clear that the performance of the proposed algorithm is 

comparable to the DFT spectrum-based non-spiking SOM algorithm. No 

comparison has been made with the SOM+ weighted ED algorithm presented in 

Chapter 5 since this uses three additional positive samples during the training 

process in order to overcome user variability. The proposed SSOM here is trained 

using only one positive sample containing one example each of three vowels for 

each user. 

Table 6.1 – Average speaker verification performance. 

Method Feature vector type Performance (%)

SSOM Delayed rank order coding 90.1 

SOM+ED DFT spectrum 91.7 

6.5 Summary 

In this chapter a spiking neural network for speaker verification is proposed 

that is inspired by the physiology of the hearing in the human auditory system. This 
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SSOM system uses delayed rank order coding as the input feature vector. During the 

training phase the network updates the winner neuron only if it is active beyond a 

certain level. 

The proposed algorithm was evaluated using speech samples of 50 speakers 

from the CSLU2002 speaker verification database over two recording sessions. The 

algorithm shows an average speaker verification performance of 90.1%. In a direct 

comparison, the proposed biologically plausible SSOM is seen to be comparable to 

the non-spiking based SOM algorithm results 91.7% presented in Chapter 5 using 

the same speech dataset. Due to the short duration of speech data used in training 

and testing stages (~ 3 sec) of this experiment, the environment can be classified as a 

very limited data condition scenario. Consequently, the proposed biologically 

inspired algorithm, even with a slightly lower verification performance, is still 

preferable to traditional speaker recognition systems, where performance 

significantly decreases under such environments (Jayanna and Prasanna 2009). 
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7. Introduction 

The research in this thesis investigated biologically inspired plausible 

solutions for the speaker verification problem. Most current speaker verification 

platforms use a speech recognition engine as a pre-processing front-end. However, 

biologically, this is not the case, as babies are known to develop their speaker 

verification system (Mehler et al. 1978) before they develop their speech recognition 

capabilities (Ramscar and Gitcho 2007). This leads to the conclusion that speaker 

verification is possible without the need of a complete speech recognition system, 

and that, biologically, speaker verification must be based on a lower morphological 

level of features than sentences and/or words (i.e. phonemes). Based on that 

evidence, the research objective was to develop a biologically inspired speaker 

verification algorithm that is based purely on low level feature extraction processes. 
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Different experiments have been conducted to achieve this target and, in the 

following sections, the key points highlighted by this work are discussed.  

7.1 The Choice of Three Vowels 

 Three vowels were considered in this research. The choice of these vowels 

was based on the facts: 

- Vowels in general are more intelligible than phonemes (Rabiner and Schafer 

2010). 

- Vowels contain more information about the speaker identity than other 

phonemes (Han-Sheng and Mammone 1995a). 

- The three vowels adopted in this research are well separated among the ten 

vowels of English language. This has direct improvement on the clustering 

efficiency of the modified SOM. 

As a result of choosing only three vowels, great saving is accomplished in the 

training speech data. This is a preferable option for many commercial speaker 

verification application, where a limited speech data scenario occurs in training 

and/or testing (Angkititrakul and Hansen 2007). The two experiments using the 

SOM+ED and SSOM (mentioned in Chapter 6) represent an extreme limited data 

condition, where only one speech sample of the three vowels is used for registration 

and another speech sample of three vowels is used for verification. 
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7.2 The Choice of the Discrete Fourier Transform As Feature Vector 

All natural human speech signals are generated as compositions of modulated 

frequencies produced by resonances of the vocal tract. Therefore, they are fully 

describable in the frequency domain; making the DFT spectrum an excellent feature 

vector candidate. This choice of the DFT spectrum is in agreement with the basilar 

membrane function, which is known to act as a spectral analyser (Greenberg et al. 

2004; Møller 2006; Rabiner and Schafer 2010). 

Although other popular feature formats such as MFCC and LPCC can be 

derived from the DFT spectrum, they can occlude identity information (Wysoski et 

al. 2010). The results presented in this research (Table 5.1 in Section 5.2.4 and 

repeated below as Table 7.1) indicate that the DFT spectrum outperforms both the 

LPC spectrum and MFCC as input feature vector. 

Table 7.1 – Verification accuracy. 

Type of input for SOM Verification accuracy (%) 

DFT spectrum 92.47 

LPC spectrum 91.79 

MFCC 92.32 

7.3 The Choice of Self Organising Map 

An SOM is adopted in this research due to its topological nature which 

resembles the tonotopic nature of the human auditory system (Young 2008). The 

SOM also has the ability to extract low morphological levels of the speech signal 

such as phonemes (Kohonen 1990). This is in agreement with the known to ability 
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of babies to perform speaker verification before they understand speech (Mehler et 

al. 1978). 

The modified SOM presented in Section 5.2.2 of this thesis has a dual use. 

Basically, its main function is to cluster the input data into three output neurons that 

refer to the three vowels. When trained with one speech sample which belongs to a 

claimed speaker, the SOM uniquely describes the claimed speaker’s vowels 

characteristics. Therefore, the SOM itself act as speaker verification platform, using 

only positive samples for the verification process. The SOM in Section 5.3 functions 

as a coarse speaker verifier that filters frames of data based on the closeness of their 

input features to the claimed speaker, before feeding them to the MLP fine verifiers. 

By seeding its outputs, and updating the winner neuron only when the input is 

within a distance threshold, the SOM is efficiently trained using only the relative 

feature inputs to the three output patterns. A comparison of the results for the above 

algorithms is shown in Table 7.2 (repeated from Table 5.2 in Section 5.3.2). 

Table 7.2 – Speaker verification performance. 

Method Performance (%) 

SOM+ED 89.79 

SOM+ weighted ED 92.73 

SOM+MLP 94.54 

7.4 Spike-Based Features with Spiking Self Organising Map 

As explained in Chapter 2, the cochlea converts the audio speech signal from 

mechanical movement (captured by the tympanic membrane) into an electrical spike 
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discharge. The analysis presented in Section 6.1 demonstrates that the delayed rank 

order coding feature vector can describe the signal as it travels through the low level 

of the human auditory system. Although, the delayed rank order coding does not 

consider phase information, it can still provide an accurate description of the DFT 

spectrum envelope. A great advantage of using the delayed rank order feature vector 

is that it is automatically normalised over the dynamic range of the frequency 

components with in the vector. 

It is argued in Chapter 6 that a spiking SOM with the delayed rank order 

coding as input feature vector, represents a complete biologically plausible spike-

based tonotopic solution. The SSOM operates in similar manner to the SOM 

presented in Section 5.2.2, except that the distance to the target vector is expressed 

in term of synchronisation of spike train onset times as explained in Figure 5.8b. 

Table 7.3 (repeat of Table 6.1 Section 6.4) shows that the SSOM has a comparable 

verification performance to that of the SOM+ED. 

Table 7.3 – Average speaker verification performance. 

Method Feature vector type Performance (%)

SSOM Delayed rank order coding 90.1 

SOM+ED DFT spectrum 91.7 

7.5 Future Work 

The results presented in this thesis provide an encouraging baseline for 

further exploration of biologically plausible speech processing systems. This can be 

accomplished by following different research trends such as: 
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7.5.1 Spiking Self Organising Map with Spiking Multi Layer 
Perceptron 

Similar to the SOM in Section 5.3, the SSOM can be combined with spiking 

MLP neural networks. Spiking MLP networks will allow the use of negative 

impostors’ samples in the training phase. This is expected to improve the 

verification accuracy in a similar manner to the experiment in Section 5.3. However, 

implementing a spiking MLP network is not a straight forward task, as a training 

algorithm is needed which is more sophisticated than the traditional back-

propagation. Spiking neural network training algorithms can be found in (Gerstner 

and Kistler 2002) and (Bohte 2003). 

7.5.2 Investigating Other Spike-Based Features 

Rank order coding is only one of several spike based feature formats. Other 

biologically inspired, spike-based features such as Phase, Correlations and 

synchrony, Stimulus reconstruction and reverse correlation (Gerstner and Kistler 

2002), can also be investigated as a spike-based speaker verification platform. 

However, if spike-based features are used, a spiking neural network classifier is 

required to produce a feasible system. 

7.5.3 Inclusion of Temporal Speech Information 

Temporal embedded data within the speech signal also contains useful 

behavioural characteristics of the speaker such as: accent, rhythm, intonation style, 

and pronunciation pattern. A good start to investigate the inclusion of temporal data, 

would be to explore a non-linear movement model of the basilar membrane (Møller 
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2006). When a temporal pattern is considered, special types of neural networks, that 

work more efficiently with sequential pattern classification, are recommended for 

the task: i.e. recurrent neural networks (Briciu 2010) and liquid state machine (Uysal 

et al. 2008). 

7.5.4 Further Investigation of the Human Auditory System 

Different aspects of the human auditory system are also worth further 

exploration. This may include investigating the effects of increasing the number of 

input vector components up to the 3600 component (i.e. full scale of inner hair cells 

in the basilar membrane) as well as including non-linear input signal processing 

derived from a more detailed model of the basilar membrane and the non-linear 

temporal encoding of spikes (Møller 2006). Another potential research area would 

be to study the dynamic role of outer hair cells in sound normalisation. 
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Appendix A 

Appendix A 

Comparison between Linear Correlation and Energy Frame 
Analysis Pre-Processing For Speaker Verification 

To evaluate the application level performance of the proposed LCC pre-

processing technique presented in Chapter 4, the technique was applied as part of the 

pre-processing stage of the SOM+ weighted ED speaker verification algorithm 

presented in Chapter 5. The correlation envelope proposed in this thesis was used to 

replace the EFA technique which had previously been used to locate the words 

boundaries. After computing the DFT spectrum for a frame size of 16 msec with an 

overlap step of 4 msec, the CCE in Equation 4.6 was then calculated using a window 

size of D=5 (which represents a time interval of 32 msec). 

A global correlation speech activity threshold of 91% was set to detect the 

boundaries of the vowels in the 240 speech waveforms that represent 30 speakers 

uttering the phrase five/eight/two four times over two sessions. These speech 

samples were taken from the CSLU2002 speaker verification database. Figure A.1 

shows the performance obtained in terms of verification performance (100-

minimum average error rate %), where the average error rate is the average of the 

false reject rate and the false accept rate. For each speaker, the false reject rate was 

calculated over four real user samples, whilst the false accept rate was calculated 

over 116 impostor samples (i.e. 29 × 4 other speakers samples). 
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Figure A.1 – Performance of SOM+ weighted ED speaker verification algorithm described 
in Chapter 5 using Energy Frame Analysis and Correlation Coefficient Envelope. 

In general, Figure A.1 shows almost similar verification performance when 

using EFA or CCE to locate words boundaries. The average performance over the 

30 speakers is 92.73% when using EFA and 92.75% when using CCE. However, the 

advantage of using CCE over EFA is not only the marginal improvement in the 

average performance, but the simplicity and robustness in word boundary detection 

when using CCE with a global threshold compared to the need to perform individual 

word normalisation (with associated individual energy thresholds) required when 

using EFA. The ability to use a global threshold eases the processing overhead of 

the CCE algorithm resulting in faster execution. 

The EFA and LCC techniques were then evaluated in terms of their 

performance within a speaker verification application and the LCC technique shows 

equivalent performance (with reduced processing overhead) compared to the EFA 

technique previously used in the same application. 
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