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GM-CSF Granulocyte-Macrophage Colony-Stimulating Factor 

HSP Heat Shock Protein 

HTP High Throughput 
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ICAT Isotope-Coded Affinity Tagging 

iTRAQ Isobaric Tags for Relative and Absolute Quantitation 

kDa Kilodaltons 

LCM Laser Capture Microdissection 

LMW Low Molecular Weight 

m/z Mass-to-charge ratio 

MALDI  Matrix-Assisted Laser Desorption Ionisation  
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MS Mass Spectrometry 

MSI Microsatellite Instability 
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PCA Principal Components Analysis 

PCR Polymerase Chain Reaction 

PDVB Polystyrenedivinylbenzene 

PFU Plaque Forming Unit 
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PSA Prostate Specific Antigen 
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RP-SPE Reversed Phase-Solid Phase Extraction 

SELDI Surface-Enhanced Laser Desorption Ionisation  

SNP Single-Nucleotide Polymorphism 

SPA Sinapinic Acid 
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T+V Trypsin and Versine 

TAA Tumour Associated Antigens 

TB Tumour Bearer 

TFA Tri-Fluoro Acetic Acid 

TNM  Tumor Node Metastasis  
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TOF Time-Of-Flight 
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Abstract 
Emergence of proteomics and high-throughput technologies has allowed the identification 

of protein expression patterns of disease that potentially hold clinical importance in 

predictive medicine. The analysis of complex data generated by these technologies 

incorporates the use of computer algorithms for data mining and identification of important 

protein biomarkers. Such candidate biomarkers can potentially be used for diagnosis, 

prognosis and monitoring a variety of diseases as well as the prediction of therapy 

response.   

Mass spectrometry has been used widely, for the discovery and quantitation of disease 

associated biomarkers using a variety of samples such as serum and tissue. In particular, 

matrix assisted laser desorption/ionisation time of flight mass spectrometry (MALDI-TOF 

MS)  has been used to generate proteomic profiles or “fingerprints” from serum to 

distinguish patients at different clinical stages of disease. Currently, early stage disease is 

difficult to diagnose in most cancers as current cancer markers have limited sensitivity and 

specificity. In advanced stage metastatic disease, treatment options are limited, although it 

is recognised that some patients may benefit from immunotherapy and in particular vaccine 

therapy.  

The use of animal models is critical to evaluate the efficacy of immunotherapies and to 

investigate tumour immunity in general and the mechanisms involved in tumour 

progression. These models provide an in vivo environment which cannot be reproduced in 

vitro, which results in more accurate and reliable information on the host response to 

immunotherapy and the mechanisms involved.  

The research presented in this thesis has introduced the use of MALDI-TOF MS proteome 

profiling and bioinformatic analysis, to detect candidate biomarkers of tumour progression 

and responce to immunotherapy in a CT26 murine model of colorectal carcinoma. 

Proteomic profiles from serum and tissue were generated by MALDI-TOF MS followed by 

artificial neural networks (ANNs) analysis of the complex data. The methods used in this 

study for sample preparation and analysis demonstrates that good quality proteomic data 

from serum and tissue can be obtained, and that it is possible to generate discriminatory 

protein profiles that correlate with clinical outcomes. In the first instance, using the CT26 

progression model, serum and tissue samples were collected at four time-points from 

tumour-bearer and control mice, providing the opportunity to assess the tumour proteome 
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changes with in a time-course from tumour initiation and through different stages of 

growth. Through the analysis of serum and tissue it is possible to classify samples based on 

their stage of tumour growth and the discriminatory patterns may reveal novel pathways 

associated with tumour progression. In addition, this study employed two separate mouse 

models of colon carcinoma immunotherapy (CT26 tumour model), to investigate 

biomarkers that are associated with therapy response. Using either disabled infectious 

single cycle-herpes simplex virus (DISC-HSV) or dendritic cell-based vaccination therapy 

with CTLA-4 and blockade of VEGFR-2 immunotherapy, up to 70% of the treated tumours 

tend to regress after receiving the immunotherapy (tumour regressors). Therefore, these 

models of immunotherapy were used to screen and evaluate serum protein and peptide 

biomarkers for the detection of progressors from regressors by using MALDI-MS coupled 

with an ANN algorithm. Comprehensive clean-up methods were conducted on the sera 

prior to MALDI analysis to reduce the complexity of the specimens. A panel of 4 

biomarkers associated with response to DISC-HSV therapy was identified and successfully 

validated using non-mass spectrometry techniques. Furtheremore, discriminatory patterns 

corresponding to different stages of tumour progression and immunotherapy were identified 

in the mouse model with DC-based immunotherapy. Moreover, potential markers 

associated with response to therapy were proposed using this model. The work presented 

demonstrates a proof-of-principle that the different types of information that can be 

obtained from animal models can be expanded and applied to human studies.  
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Chapter 1 – Introduction 

 

1.1 Cancer and carcinogenesis   
Cancer is a collection of diseases, involving dynamic changes in the genome that stimulate 

uncontrolled cell proliferation and invasion of cells from the primary site, to other organs 

(metastasis), which results in secondary tumours. The process of cancer development and 

formation is known as carcinogenesis. Cancers originating from epithelial cells, mesoderm 

cells and glandular tissue are termed carcinoma, sarcoma and adenocarcinoma respectively. 

The ability of cancer cells to invade other organs is what makes them lethal because this 

results in tissue instability and disrupted organ function. Disrupted cellular regulation in 

cancer is commonly caused by genetic damage to two broad groups of genes named proto-

oncogenes and tumour suppressor genes (TSGs), which are responsible for cell growth or 

death. The net number of cells in tissue is tightly controlled by equilibration between cell 

proliferation, cell death and cell differentiation. These physiological events are governed by 

cell cycle machinery. A normal cell cycle consists of 4 steps (G1, S phase, G2 and M) 

which are coordinated and regulated by a number of proteins and pathways (e.g. cyclins 

and cyclin-dependent kinases). At the end of each cell cycle event, checkpoints ensure the 

maintenance of the integrity of DNA. If any alteration or damage in DNA occurs, the 

process is halted and the damage is either repaired or the cell will be programmed to die 

(apoptosis).  These molecular apoptotic machinery components act as sensors of DNA 

damage, signal transducers and effectors (executing the cell death) and determine whether 

the cell proliferates, becomes quiescent or differentiates (Lundberg and Weinberg 1998). 

Mutations in the genes involved in the production of the apoptotic machinery result in 

damaged cells continuing to proliferate and potentially adopting a malignant phenotype 

(Bertman 2000).    

Cancer is a generic term for a group of heterogeneous diseases that can potentially occur in 

almost every type of tissue and each cancer type has unique characteristics which depend 

on the tissue of origin (Pedraza-Farina 2006). For example, pancreatic tumours are highly 

aggressive, while prostate tumours are more organ-confined. In addition, the tumour cell 

aggression varies from benign to highly malignant. Despite diversity in the properties of 

different tumours, six fundamental alterations in the normal cell physiology are required for 
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transformation to a malignant form. These essential cellular alterations during 

carcinogenesis have been illustrated by Hanahan and Weinberg and are known as 

‘hallmarks of cancer’ (Hanahan and Weinberg 2000): 1) self-sufficiency in growth 

signalling, 2) insensitivity to antigrowth signals, 3) evasion of apoptosis, 4) limitless 

replicative potential, 5) tissue invasion and metastasis and 6) sustained angiogenesis 

(capacity to form new blood vessels). Although these properties are required by malignant 

cells and arise through genetic mutations, they can occur at different stages of tumour 

progression.   

 

1.1.1 Oncogenes and tumour suppressor genes 
Cancer is a genetic disease and, as previously mentioned, mutations in the proto-oncogenes 

and TSGs results in carcinogenesis (Weinberg 1994). Proto-oncogenes (e.g. ras) and TSGs 

(e.g. APC) are essential functional genes in the normal cells that produce proteins involved 

in regulation of cell proliferation, apoptosis or DNA damage repair pathways. Genetic 

alterations in these genes results in gain or loss of functionality and disruption of cell 

proliferation.  

 

1.1.1.1 Gain of function- mutation in proto-oncogenes and conversion to oncogenes   

By definition, an oncogene is a gene which is abnormally expressed or mutated in (genomic 

alteration) transformed cells. Normal cellular genes that potentially can give rise to 

oncogenes are known as proto-oncogenes and the process of transformation is associated 

with oncogene activation (Diamandis 1997). There are four main mechanisms that 

transform proto-oncogenes into the corresponding carcinogenic oncogene. These include 

gene amplification, chromosomal translocation, point mutations and chromosome 

rearrangement and the activation of proto-oncogenes leads to an unrestrained progression 

of the cell cycle and cell growth (Rieger 2004). Oncogenes are highly conserved genes 

which are mainly involved in cell division and differentiation pathways as well as cell 

signaling networks. The oncogene products can locate to the cell surface (acting as ligands 

or growth factors), the cell membrane (acting as receptors and signal transducers), the 

cytoplasm (acting as messenger proteins) and the nucleus (involving in transcription). 

Mutations in any of these genes can result in uncontrolled cell proliferation and 

independent growth potential. For example, in normal conditions, cells produce growth 

factors (GFs) to stimulate the proliferation of other cells; mutation in the GF gene can 
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enable the cell to produce excessive amounts of growth factors that stimulates its growth 

independent of other cells. For example, platelet-derived growth factor (PDGF) and tumour 

growth factor-α (TGF-α) are produced by sarcomas (Hanahan and Weinburg 2000). 

Oncogenes are dominant genes and only 1 allele needs to acquire a point mutation to cause 

a gain-of-function (activating) mutation in cancer (Fearon and Dang 1999). A number of 

oncogenes have been identified in humans and some of these are listed in table 1-1. 

 

Gene Gene product function Mechanism of 
activation Tumour associations 

erb B1 Growth factor receptor Amplification Mammary carcinoma, 
glioblastoma 

erb B2 Cell surface growth factor 
receptor Amplification Mammary, ovarian, stomach  

Raf Cytoplasmic serine/threonine 
kinase Rearrangement Stomach  

H-Ras GDP/GTP binding Point mutation Bladder   

K-ras GDP/GTP binding Point mutation Lung, colon  

N-ras GDP/GTP binding Point mutation Leukaemia 

bcl 2 Cytoplasmic perhaps 
mitochondrial 

Chromosomal 
translocation 

Follicular and undifferentiated 
lymphomas 

Myc 
Nuclear transcription 

Factor 

Amplification, 
chromosomal 
translocation 

Lymphomas, carcinomas 

Hst Growth factor Rearrangement Stomach  

sis  Growth factor Over expression Prostate, lung 

cdk4 Cyclin dependent kinase Amplification, 
point mutation Sarcoma, familial melanoma 

Table 1-1.  Examples of human oncogenes and their associated carcinomas.  

 

One of the well charecterised oncogenes is ras, which produces a protein (RAS), important 

in several signal transduction pathways involved in cell growth. Around half of the colon 

carcinomas, 90% of the pancreatic carcinomas (Goodsell 1999) and 30% of lung 

carcinomas and leukemias acquire a ras mutation (Diamandis 1997). Normally, RAS 

protein is responsible for delivering signals from receptors situated on the surface of cell 

(e.g. GF and G-protein receptors). These signals transmitted through various proteins to 

ultimately participate in DNA synthesis, cytoskeletal organisation and lipid metabolism. In 

the natural state, RAS binds to GDP and is inactivated or “switched off”. A signal from the 
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cell surface receptors such as guanine nucleotide exchange factors (GEFs) or G-proteins is 

transmitted to RAS, resulting in the ejection of GDP which is replaced by GTP, now the 

RAS is switched on. Binding of GTP causes a change in protein conformation which results 

in interaction of RAS with downstream signaling molecules that eventually results in 

transcription factor activation and cell proliferation. The RAS protein subsequently 

switches itself off by hydrolysing GTP to GDP, assisted by GTPase activation. Point 

mutations in the ras gene affect GTPase activation and the RAS protein is activated for 

longer and therefore leads to initiation of cancer.   

 

1.1.1.2 Loss of function-mutation in tumour suppressor genes can be oncogenic 

The normal version of TSGs encoded proteins, act directly or indirectly as an inhibitor of 

progressive cell growth. The TSGs become oncogenic as a result of mutations that 

eliminate their function in cell growth control. Alteration in two copies of TSG is required 

for the loss of function of the gene and cells can normally proliferate when only one copy 

of the TSG is altered (Weinberg 1994).  Several mechanisms can result in loss of function 

of TSGs that includes: cytogenic aberrations, genetic mutations, polymorphisms, loss of 

heterozygosity (LOH) and methylation (Wang et al. 2008, Zingde 2001). Some examples 

of TSGs are presented in table 1-2. Among the TSG, the p53 and RB1 are the best 

characterised.  

The p53 gene is responsible for cell cycle regulation and functions as the checkpoint of the 

cell cycle. A point mutation in the p53 gene has been shown to be present in approximately 

50% of human tumours (Bueter et al. 2006). The p53 gene is activated by DNA damage, 

oncogene activation, aberrant growth signals and cell stress (e.g. hypoxia and nucleotide 

depletion). Moreover, activation of p53 affects cell cycle arrest, apoptosis, DNA repair and 

inhibition of angiogenesis (Vogelstein and Kinzler 2004). Mutation in p53, either by 

deletion or loss of function of p53 protein, disrupts the normal function of p53 in the cell, 

leading to accumulation of DNA damage and inhibition of apoptosis and finally to the 

development of cancer.  
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Tumour 

suppressor 

gene 
Gene production function 

Associated human 

tumour 
Associated cancer 

syndrome 

p53 
Transcriptional 

regulator/growth/ 
arrest/apoptosis 

Sarcoma, breast, 

brain 
Li-Fraumeni 

BRCA1 
Transcriptional regulator/DNA 

repair 
Breast, ovarian Familial breast cancer 

BRCA2 
Transcriptional regulator/DNA 

repair 
Breast, ovarian Familial breast cancer 

LKB1 Serine/threonine kinase Colorectal, breast Peutz-Jeghers 
PMS1 Mismatch repair Colorectal HNPCC 
PMS2 Mismatch repair Colorectal HNPCC 

RB1 
Transcriptional regulation of 

cell cycle 

Retinoblastoma, 

osteosarcoma 
Retinoblastoma 

APC 
Binds/regulates β-catenin 

activity 
Colon  

Familial adenomatous 

polyposis 

PTEN Dual specificity phosphatise 
Breast, prostate, 

glioblastoma 
Cowden syndrome, 

BZS,LDD 
DPC4 TGF-β signal transducer Colon, pancreatic Juvenile polyposis 

Table 1-2. Examples of human cancer suppressor genes and their associated carcinomas.  

 

1.1.2 Cancer a multistep disease 
Transformation of a normal cell to an aggressive malignant form is a multistep process in 

which the end result is the accumulation of several genetic and epigenetic alterations. 

Evidence suggests that a single mutation in oncogenes and/or TSGs is not sufficient for 

carcinogenesis initiation. The genetic basis (acquired mutations) and the multistep 

development of colon cancer is well defined by Fearon and colleagues (Fearon et al. 1990) 

and is presented in figure 1.1. Briefly, mutation of the tumour suppressor gene APC allows 

the growth of polyps in the colon, subsequently a somatic mutation in the k-ras oncogene 

activates the gene and a more advanced, benign polyp may then eventually gain mutations 

in its DCC and p53 tumour suppressor genes causing the uncontrolled growth of the colon 

carcinoma cell. 
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Figure 1-1. Genetic pathways of colorectal tumourogenesis. A mutation in tumour suppressor gene APC 
initiates growth of small polyps and sequential mutation in k-ras and DCC results in loss of p53 functionality 
and formation of highly aggressive tumours that start to metastasise to other organs. The diagram is adapted 
from Lodish et al. 2004.  
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1.1.3 Cancer treatment 

There are a number of therapies currently available for the treatment of cancer, including 

surgery, radiotherapy, chemotherapy, hormone therapy and immunotherapy. The choice of 

treatment usually depends on several factors including the type and stage of the cancer. 

They have been used in different ways for various type of cancer. However, despite recent 

improvements to enhance the efficiency of these treatments they still have their limitations. 

For example, surgery is effective in cancer patients where the tumour is localised and there 

is no metastasis to the surrounding tissues. Chemotherapy and radiotherapy are directed 

toward rapidly dividing cells and therefore can affect normal as well as the cancerous cells 

and significant toxicity can occur. Immunotherapy has several advantages over other types 

of treatment since it has low toxicity because it is highly specific and can be optimised to 

target only the cancer cells. However, the use of immunotherapy is not widespread and 

several approaches have only recently reached clinical trials and therefore improvements 

are required to fully develop the technology. Treatments such as hormone therapy are only 

effective on certain types of cancer.  

Despite substantial recent effort in development and improvement for different cancer 

therapy approaches, to date no therapy has been shown to prolong the survival of patients 

with advanced disease. Therefore, diagnosis of cancer in early stages may significantly 

improve treatment and survival because treatments are more likely to be effective in the 

early stages (Wagner et al. 2005).  

Recently there has been growing evidence supporting the idea that, cancer is a stem cell 

disease and the cancer stem cell (CSC) population within the solid tumour may have 

implications for diagnosis and treatment of cancer (Dalerba et al. 2007). According to the 

CSC theory, malignancies initiate from a small subpopulation of cancer cells (CSC) that 

have acquired tumour-related features, but on the other hand have maintained their self-

renewal and pluripotency (Ricci-Vitiani et al. 2009). Cancer stem cells (CSCs) initially 

were identified in hematologic malignancies and recently have been identified in a number 

of solid tumours such as breast, colon, head and neck, brain and pancreatic cancer (Dalerba 

et al. 2007). If tumour formation is driven by these cells, then the goal of therapy would be 

to identify and target this population (Clarke et al. 2006). Isolation of CSCs from 

nontumourigenic tissues can be performed by flow cytometry, based on their distinctive 

surface markers. Identification and characterisation of CSCs would contribute to the 
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development of novel cancer therapies that target the CSCs (Kai et al. 2009, Ricci-Vitiani 

et al. 2009).   

 

1.1.4 Immunotherapy and cancer treatment 

Immunotherapy, as a treatment for cancer, was initiated in the 1890s, when William Coley 

administered live bacteria, capable of producing an acute streptococcal infection in the host 

that was followed by the regression of the cancer in some patients (Kim et al. 2002). The 

immune system of the host is capable of initiating an immune response toward tumour 

cells, which is the basic principle that is employed in the development of cancer vaccines. 

The identification of tumour antigens has allowed us, for the first time, to tailor therapies to 

specific molecular targets expressed on tumour cells. However, most tumours are 

considered to be “weak” antigens and consequently, the immune response against them is 

not strong. Furthermore, recent investigations in the field of cancer immunotherapy are to 

make the tumour cells more antigenic.  

 

1.1.4.1 Tumour vaccines  

 

1. Whole-cell vaccines 

Prior to the identification of tumour-associated antigens (TAAs), many investigators 

believed that the best source of antigen was the tumour itself. The advantages of this 

approach to activate anti-tumour immunity is that all the tumour antigens regardless of 

being specific or shared, are presented to the immune system. However, the downside of 

this technique is that tumour antigens that are present in a low abundance might be ‘under-

presented’ to the immune system (de Gruijl et al. 2008). In addition, whole-cell vaccines 

are often costly to produce. Use of irradiated whole tumour cell combined with adjuvants 

such as bacilli Calmette-Guerin (BCG) has been examined in colon and renal cancer 

therapy and is one of the early developed whole-cell vaccines. This strategy for tumour 

vaccination was able to generate a tumour-cell-specific immune response which was 

measured by delayed-type cutaneous hypersensitivity (DTCH) but showed insignificant 

effect on patient survival. More recent approaches to whole-tumour cell vaccines focus on 

the genetic modification of the tumour cell to enhance antigen-presentation by altering the 

microenvironmental conditions at the site of the tumour. Several clinical trails of GM-CSF 

modified tumour cell vaccines have been performed and shown to be successful in 
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pancreatic and renal cell carcinoma. The benefit of genetically modified whole tumour cells 

is that cross-presentation of antigen to T cells by antigen presenting cells does not require 

the tumour cells to be MHC matched with the recipient. Clinical trails in melanoma and 

renal cancer were carried out using genetically modified tumour cells engineered to express 

cytokines such as IL-2, IFN-γ or GM-CSF; however, only 20-30% of the patients showed a 

DTCH that is not significant (Parmiani et al. 2000). The production of whole-cell vaccines 

for cancer should be strictly controlled as they can evolve over multi passages with the 

potential loss of immunogenicity. 

   

2. Heat-shock-protein-based vaccines 

Cancer vaccines using heat shock proteins (HSPs) from tumour cells have been developed. 

These proteins are known to be involved in the folding of newly synthesised proteins and 

also in the transport of peptides and delivery into the MHC class I presentation pathway. 

Moreover, HSP-peptide complexes have also been used as cancer vaccines. Vaccination of 

rodents with these HSP-peptide complexes have resulted in powerful immune responses 

against peptides bound to HSP but not HSP itself (Srivastava and Udono 1994). As with all 

types of vaccination, these have advantages and disadvantages. These complexes have the 

ability to elicit a specific CTL response in mice of any haplotype. However, this approach 

requires patient-specific vaccines to be developed which can prove costly and difficult. 

  

3. Peptide vaccines 

Recently many TAAs have been identified and, when bound to MHC molecules, these 

TAA peptides are recognised by T cells (Parmiani et al. 2002). The efficiency of active 

immunisation or vaccination with TAA peptides has been tested in melanoma patients 

where 10-30% of the patients exhibited partial to complete regression. However, this 

response did not correlate with a detectable T cell specific antitumour response when 

patient T cells were evaluated with ex vivo assays. In murine models, most of the studies 

have concentrated on administrating single TAA epitopes with a variety of adjuvants. For 

virally induced tumours, prophalytic vaccination with synthetic peptides recognised by T 

cells was effective. However, for non-virally induced tumours this strategy was less 

effective.  
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4. Dendritic-cell vaccines 

Dendritic cells (DCs) as antigen presenting cells have a crucial function of presenting 

antigens, including TAAs to naïve T cells in the lymph nodes. At the tumour site, DCs can 

internalise and process TAAs and then take them to the draining lymph nodes where they 

present with high efficiency, peptide-MHC complexes to T cell (Dalla and Lotze 2000). 

Hence DCs loaded with antigen act as potential activators of antitumour response. 

Mayordomo et al. (1995) showed that the mice injected with antigen loaded DCs were 

protected against subsequent challenge with the same tumour and even when given as a 

vaccine, in a therapeutic setting, was effective. It should be noted that the route of 

administration is also very important to the eventual outcome of therapy. Murine bone 

marrow derived DCs loaded with peptide when given subcutaneously had greater 

antitumour activity when compared to intravenously injected DCs as they homed to T cell 

areas of the draining lymph nodes whereas the intravenous injected DCs homed to the 

spleen (Eggert et al. 1999). However when similar studies carried out in cancer patients, the 

induced immunity was to be independent of the route of administration.   

 

5. DNA vaccines 

The DNA vaccine is an antigen-encoding gene on a bacterial plasmid and can elicit an 

antigen specific immune response. The usual route of administration involves direct 

inoculation of expression plasmids, which result in the induction of long lasting immune 

responses against the expressed antigen. The DNA vaccine administration is performed 

intramuscularly, intranasally, intramucosally or into the dermis by utilising gene gun. In a 

study carried out by Fynan et al. (1995) six routes of inoculation of naked DNA were 

compared for efficacy. Intramuscular injection of DNA generated the most potent responses 

whereas DNA coated gold particles using gene gun approach significantly lowered doses of 

DNA. DNA vaccines have several advantages over peptide vaccines, they are simple and 

cheap to produce and also they have the ability to generate long lasting immune responses.   

 

6. Recombinant viral and bacterial vaccines 

In recent years, the potency of recombinant viral and bacterial vectors has been examined 

in animal models and clinical trials as gene delivery systems. Several research groups have 

attempted to deliver the genes of IL-2 and GM-CSF to the tumour site via different 

methods such as using viral vectors. Many viruses have been used to construct recombinant 
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vaccines. The advantage of using this approach includes the induction of both humoural 

and cell mediated immunity. However, the disadvantages include the possibility of 

immunosuppression, conversion to virulence and the oncogenic potential. Therefore as the 

viral vectors have a high efficiency of delivering gene, they have to be safe and have low 

intrinsic immunogenicity such that the administration could be carried out to boost relevant 

specific immune response. To date, a number of recombinant viruses have been used 

successfully in animal models and proven useful as vectors and safe to use, these include 

pox viruses, retroviruses, adenoviruses and adeno-associated viruses (AAV).  

Retroviruses are small RNA viruses that can replicate through a DNA intermediate and 

they can only infect actively proliferating cells (El-Aneed 2004). Retrovirus carriers are 

developed by replacing the viral proteins (gag, pol and env) with therapeutic substitutes. 

Recently a study describing tumour regression was achieved by use of encapsulated 

retrovirus with IL-12 and HSV-tk genes. Moreover, herpes simplex virus (HSV) vectors 

have been used successfully to deliver cytokines such as GM-CSF to the tumour site and 

provoke an immune response in animals with subcutaneous tumours and prolong life span 

of the treated animals. The CT26 mouse model of colon carcinoma has been extensively 

used in laboratories to study many aspects of cancer biology and therapeutics. This tumor 

model was used by a number of research groups to investigate the mechanisms involved in 

colorectal carcinoma metastasis to organs such as liver and lung. In addition, it has been 

widely used to examine the efficiency of novel cancer vaccines. The CT26 mouse model is 

a well established model in our laboratory for the past few years which was firstly used to 

assess a novel immunogene therapy using DISC-HSV as a vector which encodes mGM-

CSF cytokine gene. Results of the direct injection of DISC-HSV into the established CT26 

colon tumours were remarkable and up to 70% of the animals who received the vaccine 

showed complete regression of the tumour (tumour regressors) leaving the rest of the 

animals with progressive tumours (tumor progressors) (Ahmad et al. 2005).            

 

1.2 Biomarker identification for cancer    
A biomarker is defined as a biochemical molecule with specific characteristics that can be 

measured and then be used as an indicator of the health status, disease initiation, 

progression or response to treatment (Chatterjee and Zetter 2005, Holch et al. 2005). 

Significant efforts have been made to identify biomarkers in various types of diseases, in 
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particular cardiovascular disease, neurodegenerative disease and cancer. Different types of 

molecules (e.g. DNA, mRNA, metabolites and proteins) and biological processes (e.g. 

apoptosis, angiogenesis and proliferation) can potentially serve as biomarkers (Kulasingam 

and Diamandis 2008). Although biomarkers are used as indicators of biological status in 

both normal and pathological conditions, here cancer biomarkers are discussed. A potential 

cancer biomarker can be produced from the tumour itself or from other tissues as a 

response to the presence of the tumour and is therefore detectable in the tissue itself and in 

various biofluids (Holch et al. 2005). Defining specific and sensitive cancer biomarkers 

would contribute significantly to the clinical management of cancer patients in various 

ways. These include better understanding of the physiology and pathology of cancers, early 

detection of cancer, efficient disease screening, and development of novel and/or better 

cancer treatments and therapy outcome prediction which could result in patient tailored 

treatment. Cancer biomarkers can be divided into four main groups (Kulasingam and 

Diamandis 2008, Ludwig and Weinstein 2005) which include: 

 

1) Risk assessment and screening biomarkers: This group of biomarkers have 

implications for the identification of individuals that are more likely to develop a 

specific type of cancer. Detection of patients that are at higher risk of cancer which 

will improve prevention and management of the disease.  

2) Diagnostic biomarkers: Used in early detection and diagnosis of malignant disease 

and a good example of this type of biomarker is the detection of Bence-Jones 

protein in urine of myeloma patients. 

3) Prognostic biomarkers: These types of markers are used to evaluate the course of 

the disease and probability of disease recurrence or recovery. Markers can 

potentially facilitate a clinician’s decision of how aggressively to treat the disease 

(Swayers 2008). For example, Oncotype DX (Genomic Health) is an assay that is 

currently used to detect the likelihood of breast cancer relapse after surgical removal 

of tumour. The assay generates gene expression signatures (from 12 genes) that can 

be used to detect patients that can benefit from systematic therapy after surgical 

removal of the primary tumour, to eliminate any remaining tumour cells 

(Hornberger et al. 2005). Moreover, serum levels of human chorionic gonadotropin 

and α-fetoprotein is used to classify testicular teratoma patients with higher survival 

rate (Kulasingam and Diamandis 2008).  
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4) Predictive biomarkers: This type of biomarker is used to predict a patients’ 

response to therapy prior to administration of therapy and assessment of therapeutic 

efficiency and toxicity. These markers have promise for developing patient tailored 

therapies and that can classify patients into responders and non-responders (predict 

therapy response).   

 

In 1958, a combination of tumour size or depth (T), lympho node spread (N) and presence 

or absence of metastasis (M), known as TNM staging, was introduced as a system to 

classify cancer patients based on the progression of disease (Ludwig and Weinstein 2005). 

The TNM staging system is still used to stage cancer and is the basis for diagnosis, 

progression, predicting survival and deciding the choice of treatment for cancer patients. 

Furthermore, histological evaluation of tissue is then used to make a definitive diagnosis of 

the cancer (Chatterjee and Zetter 2005). The ability to subdivide tumour stages into subsets 

with distinct biological characterisations and distinctive genetic profiles has enabled the 

classification of patients that are more likely to respond to a specific therapy.      

An ideal tumour marker would be a protein or protein fragment that is specific to cancer 

(high specificity), can be detected in majority of the caner patients (high sensitivity), can be 

easily measured by use of non-invasive tests (Schulte et al. 2005) and is cost-effective. 

Although detection of genetic changes in tumour tissue, such as mutation, amplification and 

translocation, may be potential tumour biomarkers, invasive procedures such as biopsy of 

the tumour may be required for their identification. Several techniques have been utilised to 

detect tumour markers without using invasive sampling by biopsy and/or surgery. For 

instance, analysis of circulating tumour cells, detection of mutations via analysis of 

circulating DNA, proteomic profiling of biofluids, assessment of tumour specific or 

tumour-associated antibodies and molecular evaluation of tumours by in situ imaging are 

among common techniques (Sawyers 2008). Advances in various areas of biology over the 

past decades, has significantly enhanced knowledge of the mechanisms involved in cancer 

initiation and progression. However, the number of biomarkers accepted into the clinic is 

not significant when compared to the level of scientific effort in the field.  

Cancer biomarker discovery was initiated with the search for single blood biomarkers 

specific for one disease. However, considering the complexity of the biological 

mechanisms involved in cancer initiation and progression, it is unlikely that a single protein 

will reliably provide high specificity and sensitivity. The first tumour marker was reported 
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in 1848, which was the light chain of immunoglobulin, present in the urine of 75% of the 

myeloma cancer patients (Kulasingam and Diamandis 2008). The first recognised cancer 

biomarker was carcinoembryonic antigen (CEA), reported in 1965 by Dr Joseph Gold 

(Gold and Freedman 1965) which was present in the blood of colon cancer patients. The 

CEA is only expressed significantly in the fetal tissue and in very low amounts in intestinal 

adult cells. Cancer biomarkers that are currently in clinical use and their utility are shown in 

table 1-3.   
 

Biomarker Cancer type Clinical application Specificity 
CA125 Ovarian, fallopian tube, uterine, 

cervical 

Monitoring therapy, screening Moderate 

CA15-3 Breast Monitoring therapy Poor  

CA19-9 Gastro, pancreatic, stomach Monitoring therapy Poor 

CA27-29 Breast  Disease monitoring  

CEA Colorectal, pancreatic, breast, 

medullary thyroid, lung 

Disease monitoring, prognosis, 

monitoring therapy 

Low 

Epidermal growth 

factor receptor 

Colon, non-small cell lung 

cancer 

Selection of therapy Low 

Her2/Neu Breast, ovarian Disease monitoring, selection 

of therapy 

Moderate 

Human chrionic 

gonadotropin-β 

Testicular, ovarian Staging, diagnosis, monitoring 

therapy 

Low 

PSA Prostate  Screening, disease monitoring Moderate 

Calcitonin Medullary thyroid carcinoma Diagnosis, monitoring therapy  

Lactate 

dehydrogenase 

Germ cell Diagnosis, monitoring therapy  

Thyroglobulin  Thyroid Disease monitoring Poor 

α-fetoprotein Non-seminomatous testicular n, 

Hepatocellular 

Diagnosis, staging, detecting 

recurrence, monitoring therapy  

Moderate  

Table 1-3. Examples of human cancer serum biomarkers in clinic use.  

 

These findings encouraged researchers to search for novel cancer biomarkers and develop 

blood based tests for diagnosis of different types of cancer; Prostate specific antigen (PSA) 

for prostate cancer, CA 15-3 for breast cancer and CA 19-9 for pancreatic and colorectal 

cancer are examples. Although these early defined cancer biomarkers were encouraging, 

further investigations revealed a number of problems. For example, PSA is a prostate 
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tumour marker and a marker of disease recurrence, but lacks specificity due to high 

concentrations in both benign and malignant disease which results in false positives. CA 

15-3 has only 23% sensitivity and 69% specificity for the diagnosis of breast cancer (Jinong 

et al. 2002). Furthermore, CA 125 for ovarian cancer can also be elevated in pre and post 

menopausal women as well as individuals with ovarian cancer (Kong et al. 2006). All the 

above mentioned biomarkers have been approved by the US Food and Drug 

Administration, but are recommended to be used for screening therapy response and 

recurrence rather than diagnosis.  

The second phase for biomarker identification was to identify mutations that are involved 

in carcinogenesis. As genetic changes are initiators of carcinogenesis, detection of the 

molecular changes benefits the early detection of cancer or the risk of disease initiation. 

The “signature” changes of genetic material occur prior to the symptoms of the disease and 

can be identified by a number of methods (discussed later). The next generation of 

biomarker research developed following the introduction of high-throughput technologies 

which includes genomic and proteomic based biomarkers. There are a number of gene-

based biomarkers currently being used in the clinical management of cancer. For example, 

the presence of the amplified ERBB2 gene (also known as HER2 or NEU) and the 

expression of oestrogen receptor gene in breast cancer patients are used to determine which 

therapy to administer. In the case of leukaemia, the presence of the Philadelphia 

chromosome or the PML-RARA translocation can be used to prescribe therapy with trans-

retinoic acid or imatinib mesylate.  

Despite the breakthroughs in technologies used for identification of biomarkers, very few 

serum markers have been accepted into routine clinical practice. An approach that 

incorporates different technologies may prove to be key to identifying biomarkers that have 

real clinical significance. The lack of biomarkers with desirable specificity and sensitivity 

is believed to reflect tumour heterogeneity, which is due to both epidemiological and 

pathological variations (Petricoin et al. 2006). Therefore, identification of “sets” of tumour 

markers and tumour associated markers (genetic, proteomic or both) holds promise for the 

future. Defining panels of biomarkers may allow an increase in specificity and sensitivity 

which may be more applicable for general clinical use.   
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1.2.1 Current trends in cancer biomarker identification 

In the past decades, a number of strategies have been adapted to detect cancer biomarkers. 

These strategies may provide novel areas for cancer screening, diagnosis and treatment. 

The ultimate goal of cancer biomarker discovery is to define a panel of markers with high 

specificity and sensitivity for different types of cancer. The emergence of new genomic and 

proteomic based technologies such as mass spectrometry based profiling and identification, 

gene and protein arrays, high-resolution 2D electrophoresis and high-throughput gene 

sequencing has encouraged researchers to identify and validate novel cancer biomarkers 

(Nicolette and Miller 2003). The following discussion focuses on commonly used 

approaches for the identification of cancer biomarker, outlining their limitations.   

 

1.2.2 Genetic and molecular signatures 

A number of commonly used genetic and molecular signatures used for biomarker 

discovery are discussed below.  

 

1.2.2.1 Microsatellite instability (MSI) 

Microsatellites are repeated sequences of DNA (less than six bases), the length of which 

may vary in individuals. The appearance of abnormally long or short microsatellites in an 

individual's DNA is referred to as MSI which is caused by inefficiency in the DNA repair 

process. They proved to be significant in identification of individuals that have a higher 

chance of developing cancer. The presence of MSI has been thought to increase the risk of 

colon, endometrium, breast and ovarian cancer. 

 

1.2.2.2 Hypermethylation 

An increase in the epigenetic methylation of cytosine and adenosine residues of DNA is 

known as hypermethylation. A number of tumour genes have increased levels of 

methylation specific genes, which makes them good targets for tumour therapy. A number 

of studies reported that using methylation inhibitors, the growth of the tumour can be 

suppressed. Some of the well know hypermethylated tumour genes are BRCA1 in breast, 

VHL in renal, APC in colon and PRB in retinoblastoma cancers. 

 

 

http://en.wikipedia.org/wiki/Microsatellites
http://en.wiktionary.org/wiki/increase
http://en.wiktionary.org/wiki/epigenetic
http://en.wiktionary.org/wiki/methylation
http://en.wiktionary.org/wiki/cytosine
http://en.wiktionary.org/wiki/adenosine
http://en.wiktionary.org/wiki/residue
http://en.wiktionary.org/wiki/DNA
http://en.wiktionary.org/wiki/methylation
http://en.wiktionary.org/wiki/methylation
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1.2.2.3 Single-nucleotide polymorphisms 

Single-nucleotide polymorphisms (SNPs) are alterations in single nucleotides of the DNA 

sequence, which occurs in at least 1% of the population (Negm et al. 2002). Considering 

the frequency of SNP occurrence in the DNA (approximately are every 100-300 bases), the 

majority of the SNPs are synonymous and do not affect the function of the gene and its 

encoded protein (Martin and Nelson 2001). However, non-synonymous SNP change the 

function and/or structure of the encoded protein and may predispose individuals to cancer 

or other disease. For example, novel SNPs in the gene encoding the regulatory subunit 3 of 

the protein phosphatase 1 have been associated with tumour formation in cancer patients 

(Srinivas et al. 2001). Detecting these SNPs as candidate cancer biomarkers is challenging, 

but maybe useful in screening, diagnosis, prediction and designing future therapies for 

cancer. 

  

1.2.3 Omics technologies 
The commercial techniques for detection and screening of altered protein and genes in 

various diseases are often expensive, time-consuming and labour intensive. There is a need 

for the development of methodologies which are automated, cost-effective and high-

throughput. ‘Omics’ is the general term, referring to a group of high-throughput techniques 

which are used in the field of biology for various research purposes, these include: 

genomics, transcriptomics, proteomics and metabolomics. These technologies offer the 

ability of simultaneous detection of a number of proteins/genes from a complex mixture, in 

the form of protein/gene expression profiles. They have been extensively used to provide a 

better understanding of molecules and molecular pathways. Each of these four technologies 

is distinct and presents a different perspective on the processes underlying disease initiation 

and progression as well as on ways of predicting, preventing, or treating disease.  

 

Biological
sample

Omics
experiment

Bioinformatic
analysis

Biomarker 
discovery

Biomarker 
validation

Pretreatment

Clinical use
 

Figure 1-2. General workflow for cancer biomarker identification via omics technologies.  
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By definition the term ‘genomics’ was coined by Tom Roderick and it refers to high 

throughput analysis of the whole genome, regions of genome or multiple genes. The study 

of gene expression profiles is known as ‘transcriptomics’. A surface (often glass) is spotted 

with DNA fragments or oligonucleotides (up to 200000 spots/cm2) that represent specific 

gene coding regions. The interaction of the array with the RNA or DNA extract reveals the 

alterations of these materials in the sample.  

 

1.2.4 Proteomics 
The proteome refers to the whole protein concept of cell, tissue or organism. The term 

‘proteomics’ was first coined in 1994 by Mark Wilkins and co-workers and is the study of 

complete protein component or the proteome of the cell (Wu et al. 2002). Proteomics is the 

complementary step for genomics, however, because genes are the producers of proteins, 

genomic studies facilitate proteomic studies. Although the initial interpretation of proteome 

imply that there is a one-to-one relation between the genome and proteome, it soon 

becomes apparent that the proteome is far more complex that the genome. This 

complication is due to several biological facts that are briefly discussed here. The estimated 

number of human genes is approximately 45000, however the approximate number of 

human proteins is 1.5 million (Alaoui-Jamali et al. 2006). Moreover, analysing the global 

gene expression at the messenger RNA (mRNA) level (transcriptomics) revealed that there 

are around 250000 variants of RNA which does not correspond to the number of human 

proteins. Therefore the RNA expression levels do not necessarily correlate to protein 

expression levels. The large increase in protein diversity is due to post-translational 

modifications (i.e. phosphorylation and glycosylation) and protein splicing that occurs on 

the initial proteins (Martin et al. 2001). Therefore the complexity of the proteome is partly 

due to production of variety of proteins from one gene. Moreover, the genomic sequence 

does not provide information on protein interactions and localisations and even if a gene 

eventually translates to protein. The advantage of proteomic over genomic evaluation is 

that the identified proteins represent the “end” products of a biological system whereas 

detecting a gene requires further investigations on its functionality after translation; 

proteomic studies are highly complex but more specific. Despite the great potential of 

proteomic research in biomedical studies, there are difficulties which are related to the 

dynamic properties of the proteome that adds another level of complexity for proteome 
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analysis. Quantity and type of proteins produced by a cell may vary at different time 

periods to react to its environmental changes or developmental programs which results in 

variation in protein abundance (Heck and Krijgsveld 2004). Moreover, protein expression 

is cell-type dependent and differs between different type of cells and this expression can 

further change as a result of disease initiation which is an additional factor to proteome 

complexity.      

There are three main areas related to proteomic studies: protein expression profiling, 

functional and structural proteomics (Pastwa et al. 2006). Using “expression” proteomics, 

the aim is to identify proteins that are differentially displayed in a certain biological 

condition, e.g., cancer versus normal. This approach provides the identity of proteins that 

may then become clinically significant as disease biomarkers which can be utilised in 

diagnosis, prognosis and prediction of response to therapy. Protein expression profiling is 

the most commonly used strategy in clinical proteomics. Functional proteomics investigates 

how proteins interact with each other and/or with DNA and RNA. Proteins can be further 

modified by post-translational processes, which results in various proteins from one gene, 

each protein can participate or mediate up to 5-10 interactions in a cell (Pastwa et al. 2006). 

This approach provides insights into how proteins interact and function in complex 

biological pathways that determine cell-cell interactions. This may define protein function 

in biological pathways involved in disease progression and potential targets for drugs in 

treatment. Structural proteomics provides information on the tertiary structure of proteins as 

well as functional structure and may facilitate the production and design of drugs that are 

more selective and specific.   

The general trend in analysis of a complex biochemical system, such as proteins of 

importance in a disease state, involves the identification of their molecular weight (MW), 

amino acid sequences, determination of any existing post-translational modifications and 

finally their localisation and function in a given system. The methodologies and 

instrumentation used in proteomics aim to define the properties of proteins and are 

categorised into methods used to define protein expression, function or structure. Both gel-

based and non-gel-based (e.g. chromatography) techniques coupled with a variety of mass 

spectrometry instrumentation are generally used for protein expression profiling. Protein 

arrays, protein chips and yeast two-hybrid systems are common methods used in functional 

proteomic studies and determination of posttranslational modifications. Finally, X-ray 

crystallography, nuclear magnetic resonance (NMR) spectroscopy and de novo structure 
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prediction are strategies used in structural proteomics. In addition, bioinformatics play a 

crucial role in design and/or analysis of data when most of the mentioned techniques are 

applied.  

 

1.3 Proteomics and its applications in cancer research 
The potency of proteomic technologies has been exploited in the field of oncology. 

Although cancer is initially caused by DNA changes, detection of the abnormalities at the 

DNA and RNA levels do not reveal the complete picture of mechanisms involved in 

cancer. The genomic abnormalities in neoplasia, result in changes at the protein level, 

which include altered protein expression, function, modification, localisation and ultimately 

disrupted cell signalling pathways. In addition, cancer patients often show altered 

phenotypes compared to healthy individuals, which is a reflection of the changes in the 

proteome.  

The advent of novel proteomic strategies, specifically high throughput methods, to detect 

cancer biomarkers has allowed significant progress to be made in the field of cancer 

biomarker identification. The development and application of novel technologies have 

enabled researchers to detect proteome differences between cancer patients and healthy 

individuals, utilisation of variety of biological samples ranging from biofluids, such as 

serum, plasma, cerebrospinal fluid (CSF) and urine, tumour biopsies and cell lines. 

Furthermore, other “exotic” body fluids with minimal availability, such as bronchoalveolar 

lavage fluid (BALF), breath condensation and breast aspirant have been used in proteomic 

studies (Wattiez and Falmage 2005). One of the remaining challenges in the proteomic 

based studies in cancer is the collection of high quality patient-derived material, where 

degradation of the proteome is minimal.     

In cancer, it is reasonable to expect biomarkers to be present in tissue interstitial fluid and 

blood since biomarkers that originate from the tumour itself or its microenvironment can be 

released from the tumour cells into the blood. For example, alteration in the basement 

membranes corresponding to the presence of prostate cancer results in release of PSA into 

blood (Simpson et al. 2008). Serum and plasma are easily accessible and carry blood 

specific proteins as well as protein and peptides derived from a variety of tissues. 

According to “peptidome hypothesis” (figure1-3), protein fragments (resulting from the 

proteolytic cascades in the cell) and peptides are shed from normal and cancerous cells into 
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the tissue microenvironment. These diffuse into the bloodstream where some may combine 

with carrier proteins such as albumin. Therefore, analysis of the serum/plasma proteome 

may reveal protein/peptide fingerprints that might be associated with the presence of cancer 

and/or be specific to the disease. A number of these protein/peptides may also be present in 

urine.    

 

      

Figure 1-3. The peptidome hypothesis. Circulating protein and peptides are shed from the tumour cell and 
other cell types in the tissue microenvironment and then cleaved by proteases and enter the blood or other 
surrounding biofluids.    

 

Serum and plasma proteomic profiling studies are possibly diverse and challenging, due to 

the dynamic range of protein and peptides present. There can be ten orders of magnitude 

difference between the most abundant serum protein and the low abundant ones. For 

example, the concentration of albumin in human serum is normally 40 mg/mL whereas 

proteins such as cytokines are present at approximately 5 ng/mL or even pg/mL 

concentrations (Schult et al. 2005). Fractionation methods have been applied to overcome 

these difficulties and some of these technologies are discussed in the following sections. 

Regardless of the technique used to identify biomarkers, proteomic studies consist of three 

main steps: 1) sample preparation, 2) protein separation, and 3) protein identification.  

 

1.3.1 Two-Dimensional Polyacrylamide Gel Electrophoresis (2D PAGE) 
For the last 25 years, 2D PAGE has been utilised for separating thousands of different 

proteins (up to 5000) in a single analysis according to two independent physicochemical 
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properties: isoelectric point (pI) and molecular weight. Proteins are firstly separated (first 

dimension) based on their pI called isoelectric focusing (IEF) and then in the second 

dimension using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

according to their molecular weight. The first dimensional IEF is performed by applying a 

pH gradient strip and then an electric potential is applied across the gel, making one end 

more positive than the other. At all pHs other than their pI, proteins will be charged and are 

drawn towards the opposite electrical charge. The proteins will arrive at the point in the 

gradient equal to its pI where the net charge of protein is zero. After IEF separation, the gel 

strips are immediately equilibrated in a buffer containing SDS, transferred and separated 

using SDS PAGE. SDS is an anionic detergent with capability of binding to proteins and 

the resulting complex is soluble in water and can migrate in the polyacrylamide gel. The 

incorporation of SDS to the gel masks the charge of the protein and therefore protein 

migration on the gel is just based on the molecular weight only.  

2D gel electrophoresis is generally capable of separating proteins with pI range of 3.5-10 

and molecular weight of 6-300 kDa (Ashcroft 2003). For the last two decades, 2-D PAGE 

has been the technique of choice for analysing the protein content of human samples and 

over this time there have been many improvements applied to increase in resolving power. 

These improvements include the use of immobilised pH gradient (IPG) strips (increases the 

resolution and the reproducibility), the introduction of new reducing agents and new 

surfactants to improve sample solubilisation (Cristea et al. 2009). Once the gel is run, it can 

be stained by techniques such as silver, coomassie blue and fluorescent staining. Following 

separation of proteins by 2D gels, each protein spot can be excised from the gel and 

digested into peptides. Various types of proteases (e.g. trypsin, chymotrypsin, 

endoproteinase Glu C, endoproteinase Lys C and endoproteinase Asp N) can be used 

however trypsin in the most widely used (Wu et al. 2002). The tryptic peptides from the gel 

can be characterised by mass spectrometry using peptide mass fingerprinting (PMF). The 

combination of 2D PAGE and mass spectrometry has been used to study protein expression 

differences between cancer patients and healthy individuals. The methodology described 

above was used recently to analyse serum proteome of patients with nasopharyngeal 

carcinoma to identify biomarkers associated with carcinogenesis and lymph node 

metastasis (Liao et al. 2008).  

The new variant of 2D PAGE is 2D difference gel electrophoresis (DIGE). The principle of 

DIGE technology is based on covalent labeling of proteins with different fluorescent dyes. 

http://en.wikipedia.org/wiki/Isoelectric_focusing
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Cyanine (Cy2, Cy3 or Cy5) and Alexa dyes are commonly used materials for DIGE 

analysis. Briefly, the first sample (e.g. cancer serum) is labeled with Cy3 and the second 

sample (e.g. healthy serum) is labeled with Cy5. In addition, the two samples are mixed 

with the equal concentrations and then labeled with Cy5; this would be used to assess the 

variation between different runs. The three labeled samples are then run as a normal 2D 

process and then the gel is scanned with the free wavelengths and this will generate an 

image of the gel in which quantitative measurement of content of each gel spot is possible. 

The intensity of Cy3 or Cy5 in each spot represents the protein concentration and shows 

differential expression of that protein in each sample (Pastwa et al. 2006). 

Despite the advances, the use of 2D electrophoresis in conjunction with mass spectrometry 

and its application in proteomic studies is subject of debate due to a number of limitations. 

Difficulties in automation of the procedure, low-throughput, difficulty in detection of low 

abundant proteins in the presence of high abundant proteins such as albumin and 

immunoglobulin in serum samples, gel-to-gel variation, requirement of high volume of 

sample are just to name few (Matharoo-Ball et al. 2007, Wu et al. 2002). The issue of 

presence of high abundant proteins in serum and plasma samples was partly addressed by 

the use of immunoaffinity depletion columns prior to 2D electrophoresis. A recent study 

utilised combination of immunoaffinity depletion of high abundant proteins from serum, 

2D DIGE analysis and mass spectrometry analysis, to identify 13 human serum markers of 

progression of prostate cancer (Byrne et al. 2009). The expression of these 13 proteins in 

the serum were significantly changed between the healthy and cancer patients and 2 of the 

proteins, pigment epithelium-derived factor (PEDF) and zinc-α-glycoprotein (ZAG) were 

further validated in tissues and a different cohort of samples.    

 

1.3.2 Protein microarray 
In recent years, microarray technologies have been applied to genomics as well as 

proteomics. Protein microarrays allow the systematic analysis of several thousands of 

proteins simultaneously and determine the posttranslational modifications of the proteins 

analysed, their levels in biological samples and their selective interaction with other 

proteins and antibodies. The technology is shown to be high throughput for screening yeast 

proteome molecular interactions (Zhu et al. 2001) and there are two general trends to 

design protein arrays which are forward phase arrays (FPAs) and reverse phase arrays 

(RPAs). The most commonly used technique is FPAs, where antibodies are arrayed and are 
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probed with the sample; RPAs are where proteins of the sample are arrayed and then 

probed with the antibody. These have been used in relatively few studies. The limitations 

with the use of RPAs are due to instability of the structure of the proteins and their 

physiochemical diversities toward their interacting partners on the array (Kolch et al. 

2005). Hudelist et al. (2004) employed a FPA (using 378 monoclonal antibodies) to assess 

the protein expression of human breast tissue compared with healthy breast tissue. 

Overexpression of a number of proteins including casein kinase I, p53, annexin XI, 

CDC25C, eIF-4E and mitogen-activated protein kinase (MAPK) was shown and these were 

then validated by immunohistochemistry analysis (Hudelist et al. 2004). The use of RPAs 

has been commonly used for studying phosphoproteome (Conrad et al. 2005). Currently the 

main problems in using this approach, is the lack of available antibodies and low 

sensitivity. Also, post-translational modifications are not captured using recombinant 

proteins or antibodies that do not distinctly recognize specific conformational forms of a 

protein (Misek et al. 2004, Pastwa et al. 2007).  Finally, there is also a problem with cross-

reactivity of the proteins with affinity agents (Baak et al. 2003). 

 

1.3.3 Mass spectrometry 
Mass spectrometry (MS) is an analytical technique which provides information on the mass 

of the molecules and their relative abundances. In addition, using tandem mass 

spectrometry it is possible to obtain partial amino acid sequence of the protein of interest. 

Currently, there are two main strategies for protein identification by mass spectrometry: 

top-down approach and bottom-up approach (Chen 2008). The top-down approach involves 

direct gas phase fragmentation of intact proteins, followed by mass spectrometry analysis 

whereas bottom-up approach involves enzymatic or chemical cleavage of a complex 

mixture followed by mass spectrometry analysis of the produced peptides. Briefly, a mass 

spectrometer converts the sample to gas-phase ions, separates them based on their mass-to-

charge (m/z) ratio and detects them qualitatively or quantitatively and produces a mass 

spectrum. Regardless of the type of instrument or the type of analysis, a mass spectrometer 

(figure 1-4) consists of three main separated compartments: the ion source, which produces 

ions from the sample; the mass analyser, that resolves ions based on their m/z ratio; and the 

detector, which detects the resolved ions and the data processing system will produces the 

mass spectrum. 
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Figure 1-4. Basic diagram of a mass spectrometer. Ionisation of the sample occurs in the ion source. The 
source can be under vacuum or atmospheric pressure. The generated ions are separated based on their mass-
to-charge (m/z) ratio by the mass analyser and detected ions produce a mass spectrum.  
 

There are various types of techniques that can be used for sample ionisation, ion mass 

analysis and detection of ions which will be discussed.  

  

1.3.3.1 Ionisation 

The ion source of a mass spectrometer is where the ionisation of the analyte occurs and this 

part can be under atmospheric or vacuum pressure. Ions are formed from a neutral molecule 

in the gas-phase by various techniques. In the process of ionisation, the internal energy 

transferred during the process and the ability of the analyte to ionise is important. There are 

two types of ionisation; firstly techniques that only produce ions of molecular species 

which is referred to as soft ionisation methods and secondly, techniques that cause 

extensive fragmentation and are very energetic (Hoffmann and Stroobant 2007). One way 

of ionising a molecule is to add or remove electrons from/to the molecule. This process can 

be initiated using techniques such as electron ionisation (EI), bombarding the sample with 

atoms or ions (Fast Bombardment Ionization, FAB), or by photons (Laser 

desorption/Ionization, LDI). Techniques such as plasma desorption ionisation introduced 

by Macfarlane and Torgerson (Macfarlane and Torgerson 1976) and fast atom 

bombardment (FAB), introduced by Barber and colleagues in 1981 are probably the first 

methods for ionisation for large biomolecules. The use of radioactive material (i.e. 252Cf) in 

plasma desorption ionisation was the limitation and therefore it is not commonly used in 

laboratory practices. Despite the diverse techniques of ionisation only few of these have 

been used for analysis of biomolecules. These include FAB, ESI and MALDI. Although 

FAB ionisation is a relatively soft ionisation technique it has now been replaced by 
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electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) 

methods. Detailed principles of ESI and MALDI will be discussed later in this chapter.  

  

1.3.3.2 Mass analyser 

Once the sample is ionised in the source of the mass spectrometer, the ions are separated in 

the mass analyser according to their m/z ratio. The most important features of a mass 

analyser are mass accuracy, mass resolution, sensitivity, mass range limits and signal-to-

noise (S/N) ratio. The different types of mass analyser include: quadrupole, ion trap, time-

of-flight (TOF) and Fourier transform ion cyclotron resonance (FT-ICR) mass analysers. 

The most commonly used mass analysers are the ion trap and TOF mass analysers. The 

quadrupole consists of 4 circular rods, set parallel to each other. Ions are separated in a 

quadrupole based on the stability of their trajectories in the oscillating electric fields that 

are applied to the rods. 

 

1.3.3.3 Ion detection 

Several types of detectors currently exist, and the choice of detector depends on the 

analytical applications of instrument and the design of the mass spectrometer. The detection 

of ions is based on their charge, mass or velocity. Photographic plate, Faraday cup, 

electron-optical and electron multiplier are the commonly used detectors.   

 

1.4 MALDI-MS 
The term MALDI was introduced simultaneously by Franz Hillenkamp and Michael Karas 

and Tanaka et al. in 1988 (Karas and Hillenkamp 1988, Tanaka et al. 1988) and rapidly 

became one of the widely used techniques for analysis of non-volatile, high-molecular 

weight compounds. Analysing a variety of biomolecules such as proteins, peptides, 

oligonucleotides, oligosaccharides, carbohydrates and lipids and large synthetic polymers is 

possible by use of MALDI (Knochenmuss and Zenobi 2003). The general principal of 

MALDI revolves around co-crystallisation of analyte with matrix which is usually a low 

mass, weak organic acid that is capable of absorbing laser at a specific wavelength. The 

choice of matrix used for MALDI analysis depends on the nature of analyte and the laser 

type used in the MALDI instrument. Common matrices for various types of analytes are 

described in Table 1-4. 
 

http://en.wikipedia.org/wiki/Electric_fields
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Matrix Analyte 
2,4,6-trihydroxyacetophenone (THAP) 
 

Oligonucleotide 

2,5-dihydroxybenzoic acid (DHB) 
 

Protein digests and proteins, 
oligosaccharides 

2,6-dihydroxyacetophenone (DHBP) 
 

Protein and peptides 

4-hydroxy-3,5-dimethoxycinnamic acid 
(Sinapinic acid, SA) 
 

Large polypeptides and proteins 
 

α-cyano-4-hydroxycinnamic acid (CHCA) 
 

Peptide and protein digests 
 

Table 1-4. MALDI matrices and their applications.  

 

The mixture of matrix and analyte are then spotted onto the MALDI target plate and the 

solvents are evaporated in the air which causes the formation of matrix crystals. The ratio 

of mixing the matrix with analyte does vary but a ratio of 1 to 1 is often used. A well 

functioning matrix will incorporate the analyte in the crystals in a homogenous distribution. 

The target plate is then placed into the source of the mass spectrometer and irradiated with 

a laser beam. Lasers at wavelengths ranging from ultraviolet (UV) to infra-red (IR) can be 

used but UV nitrogen lasers (337 nm) are the most common. The homogenous 

incorporation of analyte and matrix in conjunction with matrix’s capability to absorb the 

laser light energy, results in the formation of a gas-phase plume containing analyte 

molecules, which then become ionised via gas-phase proton transfer reactions. The MALDI 

process is illustrated in figure 1-5. 

 

 

 



Chapter 1 

                                    
Figure 1-5. MALDI ionisation process. Laser irradiation to the analyte/matrix mixture leads to generation of 
gas phase ions which then are accelerated into the mass analyser.   
 

The mechanism of ion formation in MALDI is poorly understood but several processes 

have been proposed in the literature. The ionisation mechanisms in MALDI are generally 

divided into two categories which are ‘primary’ and ‘secondary’ ionisations. The primary 

ionisation is referred to initial ions, generated from the natural molecules in the sample and 

they are usually matrix-derived species. The secondary ionisation is the process that ions 

are produced by ion-molecule reactions (matrix-matrix and matrix-analyte interactions) in 

the expanding plume. Some of the proposed primary ionisation mechanisms include 

multiphoton ionisation, energy pooling and multicenter models, excited-state proton 

transfer and thermal ionisation. The most acceptable mechanism is the multiphoton 

ionisations in which upon absorption of laser beam photons by matrix, the matrix becomes 

electrically excited. The excess energy from the matrix is then transferred to the analyte 

(e.g. protein or peptide) and in the gas phase, each molecule picks a single proton and 

therefore they become singly charged. The predominant generated ions in MALDI are 

singly charged and generations of multiple charged ions are very rare.  

The generated ions are then accelerated into the mass analyser due to an electrical field. 

The mass analyser in a MALDI instrument is usually a time-of–flight (TOF) device. There 

are 2 types of TOF analysers typically used in MALDI mass spectrometers, a linear TOF 

(figure 1-6) and a reflectron TOF (figure 1-7).  The principal of mass analysis in a TOF 

analyser is based on the fact that accelerated ions from the source to the flight tube have 
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different m/z values, same energy but different velocities. Therefore, while the ions are 

accelerated with the same potential at a fixed point and a fixed initial time and drift, the 

ions will separate according to their mass to charge ratios; higher m/z in comparison to 

lower m/z travel the drift region in a longer time. In the linear TOF, the detector is situated 

at the end of the flight tube (figure 1-6). The main drawback of linear TOF analysers is 

their poor mass resolution as a consequence of space (size of the space that the ions are 

formed), time (length of the ion formation) and kinetic energy (difference in the kinetic 

energy between the ions of same mass) distribution of the ions with the same m/z value.  

 

                       
Figure 1-6. Schematic of a linear TOF mass analyser in MALDI.  Separation of the ions occurs based on 
the fact that ions that are accelerated into the draft region have same energy but different m/z and velocity. 
Therefore, ions with higher m/z travel the flight tube slower that the lighter ions and they will hit the detector 
at the end of the flight tube.    
 

Higher resolution can be achieved in TOF mass analyser by increasing the flight time of the 

ions. Reduction of acceleration voltage or increasing the length of the drift region would 

lead to higher resolution which is the basic principal of reflectron TOF mass analyser. The 

samples with the same mass can be accelerated into the flight tube with different kinetic 

energies or have different initial kinetic energies (known as kinetic energy distribution). In 

the reflectron TOF as shown in figure 1-7, there is an ion mirror which will turn the ions to 

the second detector.   
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Figure 1-7. Schematic of a reflectron TOF mass analyser in MALDI.   
 

Ions that have higher energy can continue flying and reach the detector. The benefit of 

using reflectron TOF mass analyser is generation of spectra with higher resolution. 

However, the mass range that can be analysed in compromised in comparison to linear TOF 

mass analyser. The reflectron mode is often used for peptide analysis.  

 

1.5 SELDI 
The surface-enhanced laser desorption/ionisation time-of-flight mass spectrometry (SELDI-

TOF MS) is an array based method introduced by Hutchens and Yip (1993). This novel 

analytical high throughput technology is currently used in the development of a 

ProteinChip system, Ciphergen Biosystems Inc (Freemont, CA, USA). The principle of this 

approach is based on capturing a specific group of proteins on a solid-phase protein chip 

chromatographic surface. Although the sample preparation of SELDI is different to 

MALDI, the two techniques are similar in the ionisation and mass analysis procedures. The 

captured proteins on the chromatographic surface are co-crystallised with matrix and the 

laser beam ionises the sample in the same manner that occurs in MALDI and their 

molecular weight is then measured by TOF MS.  

The SELDI-TOF MS consists of three major components: protein chip array, mass analyser 

and software for data analysis. Each chip consists of 8 or 16 spots with a specific 

chromatographic surface. There are number of different protein chips types that can be used 

in SELDI based analysis and are shown in figure 1-8. Different types of samples such as 

body fluids and cell extracts can be analysed using various SELDI chips. The different 
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chips are designed to retain proteins with specific or general physiochemical properties 

from a complex mixture.  
 

 
Figure 1-8. The variety of common protein chips used in SELDI sample preparation. The top row shows 

the chemically modified chips which capture group of proteins with similar physical properties. The bottom 

row shows the biochemically modified chips that retain the protein of interest.  

    

The chips are either chemically or biochemically treated (Bischoff et al. 2004). The 

chemically treated surfaces include hydrophobic, hydrophilic, anionic and cationic. These 

will separate a whole class of proteins with a specific physicochemical property. This will 

facilitate the analysis of complex biological specimens such as biofluids that consist of an 

immense number of proteins with different properties. For instance, the hydrophobic chips 

are designed to capture all the hydrophobic proteins in a complex mixture, the unbound 

proteins are then removed by sequential washes, and after application of the matrix, the 

retained hydrophobic proteins on the surface are analysed using mass spectrometry.    

The biochemical chips are treated with an antibody or affinity reagents and unlike the 

chemical chips, binds specifically to the protein of interest or the functional class of 

proteins. The biochemical treated chips are often custom made and are used for 

investigations of protein-protein, protein-DNA, antigen-antibody and receptor-ligand 

interactions. Once the proteins of interest are retained on the surface, a series of washes are 

carried out to remove the unbound proteins and contamination. This matrix is then applied 

on the chip and the retained proteins are then analysed by a linear-TOF mass spectrometer 

in a similar way to MALDI analysis. In recent years SELDI has been used for recognition 

and biomarker identification in the field of cancer, through the analysis of body fluids such 

as plasma, serum and urine as well as tissue samples.   

There are number of limitations to this technique. The main limitation of SELDI 

technology is that the individual proteins cannot be identified. For protein identification, it 
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is required to perform conventional chromatography techniques to purify the protein of 

interest. Poor resolution and the sensitivity for proteins with molecular weights greater than 

30 kDa is another limitation. Although SELDI has been classed as one of the high 

throughput techniques, the maximum number of samples that can be analysed in a day 

would be up to 100 (including control standards) whereas MALDI target plates can hold 

384 samples. In addition tryptic digestion of the retained proteins on the chip is not 

possible; therefore peptide fingerprints of retained proteins cannot be obtained. Also, due to 

the difficulty in protein quantification the expression levels of identified protein peaks is 

not possible. Despite these limitations the SELDI ProteinChips’ strengths lie in the 

systematic identification and characterization of proteins for diagnostic and prognostic 

markers in tissues and body fluids and the speed at which potential targets for therapy can 

be identified is increased (Seibert et al. 2004). Improvements in the instrumentation and 

bioinformatics methods associated with SELDI will be needed.  

 

1.6 ESI MS/MS 
Electrospray ionisation (ESI) is used for analysis of large biomolecules such as protein and 

peptides. This technique of ionisation was first reported in 1968 by Dole and significantly 

evolved over the years to become one of the key mass spectrometry techniques in 

proteomics. The mechanism of ESI is illustrated in figure 1-9. The source of ESI mass 

spectrometer is under atmospheric pressure. Typically, an analyte is dissolved in an 

appropriate volatile solvent and can be introduced to the source by two means, from a 

syringe pump or as the eluent flow from liquid chromatography (LC). The analyte is then 

passed through a narrow metal coated capillary under a strong electrical field. The potential 

difference between the capillary and the core (counter-electrode) produces the electrical 

field, which is normally held around 3-6 kV (can be positive or negative potential). The 

electrical field at the end of the capillary tip induces an accumulation of charge (ions with 

same polarity) at the liquid surface of the droplet emerging from the end of the capillary 

and the formation of a Taylor cone. Moreover, a fine aerosol containing charged droplets is 

released from the Taylor core. Evaporation of the solvent contained in the droplets occurs 

which leads to a reduction of the droplet size and an increase in their charge per unit 

volume. The solvent evaporation continues until the surface tension can no longer sustain 

the charge and the droplet becomes unstable (the Rayleigh limit), then the droplet explodes 
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into smaller droplets (the Coulombic explosion). The same procedure is repeated on the 

smaller droplets until individually charged ‘naked’ analyte ions are produced and extracted 

to the mass analyser system.  

 

                         
 

Figure 1-9. A schematic diagram of ESI method. 

 

The mass analyser of the ESI mass spectrometer used for the experimentation discussed in 

this thesis was a quadrupole ion trap.   

The ESI mass spectrometry is beneficial in several ways as it can be used in conjunction 

with chromatographic and electrophoretic techniques. In addition, ESI generates multiply 

charged ions of the type [M+nH]n+ as well as the singly charged [M+H]+ species and 

therefore analysis of analytes with high molecular mass is possible by quadrupole mass 

analysers (Ashcroft 2003).  

 

1.7 Quantitative mass spectrometry in proteomics 
The major aim of proteomics in cancer biomarker detection is to investigate global 

proteomic expression changes between healthy and disease, using a variety of complex 

sample types such as biofluids and tissue via high throughput techniques such as mass 

spectrometry. Since biomarker detection is often based on quantity differences among 

samples, accurate measurement of protein in complex samples is crucial, although 

particularly difficult and challenging. In the field of molecular biology, quantitative 

measurement of protein expression relies on use of antibodies. However, commercial 

antibody based molecular techniques (i.e. western blotting and ELISA) are considered more 
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semiquantitative due to quality and binding affinity of antibodies (Ong et al. 2002). The 

potential of current antibody based molecular techniques to develop high throughput assays 

is limited due to production cost and quality and specificity of the antibodies. Advance in 

proteomic technologies and investigations toward adaptation of current tools for 

quantification of proteins provides better insight and more accurate measurement of 

potential biomarkers in complex samples. Gel-based and non-gel-based strategies are the 

main two fundamental approaches used in quantitative proteomics (Lilley et al. 2002). 

Application of 2D gel electrophoresis is probably the first proteomic based technique, 

potential of analysing global protein expression in complex samples and simultaneous 

quantification of all proteins in the gel. However, cross-comparison of protein expression 

changes requires running a gel for each sample and therefore introduces variation. 

However, introduction of 2D-DIGE gel electrophoresis provides the ability of protein 

expression profiling of two set of samples on one gel via the use of internal standards. 

Despite the power of 2D gels, limited dynamic range and limited detection of low abundant 

proteins and reproducibility are the main drawbacks of this technique. Over the last few 

years alternative strategies for accurate measurement of protein abundance in complex 

mixtures have been introduced, mostly mass spectrometry based (MS-based) which 

potentially provides information that is missing from gel-based techniques. The MS-based 

strategies for protein quantification fall into two main categories: 1) label-free approaches 

which rely on measurement of ion signal intensity of protein and peptides or peak 

frequency count, 2) labelling approach that employs isotope labelling of samples prior to 

MS analysis (Choi et al. 2002, Lui et al. 2004). Some of the MS-based quantitative 

approaches and their applications are discussed here.  

The label-free strategies are commonly used for quantification of proteins in LC-MS 

experiments. However, as the technique is based on peptide ion intensity count or by 

spectral count, the accuracy of quantification is often compromised due to chromatography 

conditions and ionisation efficiency (Heck and Krijgsveld 2004). The ion intensity count 

strategy presumes that there is a linear relationship between the peak height/area and the 

abundance of a protein or peptide in a specific sample and by counting the ions of a 

selected protein, the relative abundance of it can be determined. The spectral count 

approach relies simply by counting the number of MS/MS obtained from a selected 

proteolytic peptide ion. In both of these approaches this data can be obtained for a protein 

in different samples and then quantitatively compared between the groups. Despite relative 
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cost effectiveness of the label-free strategies to the isotope labelling techniques, there are 

several disadvantages to the use of label-free techniques. Ionisation of a specific protein can 

vary in different environments and slight variation in the chromatography conditions can 

affect the time of the elution of peptides from the chromatography column, both resulting in 

irreproducible spectra and peptide separation. In addition, the absolute intensity of a peak 

corresponding to the selected protein is determined by its efficiency of ionisation (this is 

associated to the physiochemical properties of protein/peptide) and suppression effects of 

other proteins present in the complex sample mixture on the selected protein. However, 

some of these limitations can be overcome by strict sample preparation and analysis 

procedures and over the past years several investigations were carried out by various 

research groups to improve the label-free proteomic quantification strategies. Known 

concentrations of a certain protein have been spiked into the complex sample mixture as an 

internal control to insure the reproducibility and reliability of the peak counts or ion 

intensity counts. Huang and coworkers utilised LC-MS label-free proteomic quantification 

approach to detect protein biomarkers associated with melanoma metastasis from paraffin-

embedded tissues. After protein extraction from primary and metastatic paraffin-embedded 

melanoma tissues, they used LC-MS/MS to generate proteomic profiles and used an 

intensity based algorithm to detect the differentially expressed proteins. This study 

identified 120 significant proteins that were significantly different between the primary and 

metastatic melanoma tissues (Huang et al. 2009). Chelius and Bondarenko determined that 

their quantification method based on peak areas can be reproducibly used as long as the 

measured and expected protein ratio differs by less than 20% (Heck and Krijgsveld 2004).    

Applications of various stable isotope labeling strategies have shown great promise for 

quantification of proteins present in a complex mixture by the use of mass spectrometry. 

The main sources of variation in MS-based studies are associated with sample preparation 

procedures and variations in ionisation efficiency in MS analysis. These errors can be 

significantly reduced by the use of internal standards. A desired internal standard has 

similar physical and chemical properties to the analyte (Heck and Krijgsveld 2004). 

Therefore, in order to quantify a peptide using MS, it is optimal to use the same peptide that 

is labeled with stable isotope which leads to a mass shift in the mass spectrum. 

Differentially labeled samples (usually one is labeled with a heavy isotope and one with 

light isotope) are combined and analyzed together. The differences in the peak intensities of 
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the isotope pairs accurately reflect differences in the abundance of the corresponding 

proteins (Sechi and Oda 2003). 

Isotope-Coded Affinity Tagging (ICAT) uses mass spectrometry for protein separation and 

different isotope tags for distinguishing populations of proteins. ICAT reagents label the 

thiol group of cysteine residues contained within the protein during the alkylation step of 

sample preparation (Gygi et al. 1999). These labelled proteins then go on to be 

enzymatically or chemically digested, or separated using a gel based system prior to 

digestion.  The prepared sample is then subjected to tandem mass spectrometry (MS/MS) 

allowing sequence identification and accurate quantification of the proteins contained 

within complex mixtures (Shiio and Aebersold 2006). In addition to ICAT , other stable 

isotope coding techniques applied to quantitative proteomics have been reported including 

a more recent approach that is analogous to ICAT termed Isobaric Tags for Relative and 

Absolute Quantitation (iTRAQ). iTRAQ reagents consist of a set of amine reactive isobaric 

tags that derivatize peptides at the N-terminus and the lysine side chains and allow for the 

simultaneous identification and quantitiation of up to four different samples. Even though 

iTRAQ is a relatively new technique it is gaining in popularity compared to ICAT because 

of the advantages it offers over ICAT. A comparative study of these two techniques along 

with 2D gel based systems is given in a review by Wu et al (Wu et al. 2006). 

 

1.8 Bioinformatic approaches in clinical proteomics 
The emergence of high throughput ‘omics’ technologies has led to a surge of extremely 

complex data sets, which posed a new challenge for detection of clinically relevant 

biomarkers. Interrogation of the high throughput genomic and proteomic data sets became 

impossible by manual means and therefore the use of computational algorithms suitable for 

large-scale data handling and analysis became a necessity (Krutchinsky et al. 2001). 

Development and applications of bioinformatics facilitated the data management and 

mining of high throughput technologies. Bioinformatics aims to create databases, 

algorithms, computational and statistical techniques, and theory to solve practical problems 

arising from the management and analysis of biological data. Although computational data 

analysis algorithms are applicable for both genomic and proteomic data analysis, here the 

focus would be on the methodologies applied in MS data analysis.  
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The clinical proteomics studies that aim to identify cancer biomarkers use large cohort of 

samples for each of the control and case groups. This is particularly important to ensure the 

generality and specificity of the identified biomarkers for the specific case study. Most 

proteomic studies employ some type of sample fractionation prior to MS analysis and then 

the resulting data is subjected to pattern recognition algorithm which generates the potential 

set of biomarkers. The strength of the results from these types of studies depends on a 

number of critical elements which includes careful study design, strict protocols for sample 

processing and data acquisition procedures and conservative approach to data mining. 

Automation and the use of robotics in high throughput proteomic instruments such as MS, 

enables processing of large numbers of samples in a short period of time and generation of 

large complex data sets. Several methods are available and have been applied to MS data to 

detect the discriminatory futures between cases and controls. However, selection of an 

appropriate method to analyse the MS data is crucial as different algorithms are not 

superior to one or another and they come with their own advantages and biases. Here, some 

of the strategies that are commonly implemented for MS based data analysis for biomarker 

identification are discussed. The general workflow of MS based proteomic for 

bioinformatics identification is shown in figure 10 and is illustrated in the diagram, the 

process of data analysis fall into two main stages, data pre-processing which reduces the 

dimensionality of the data set and allows the detection and locating spectral peaks, and data 

mining which is the statistical analysis of the data and ultimate biomarker detection.    
   

 

Proteomic Analysis 
• Mass spectrometry 
i.e. MALDI, SELDI, ESI 

Data Pre-processing 
• Baseline correction 
• Peak alignment 
• Peak detection 
• Smoothing 

Data Mining 
• Feature selection 
• Supervised and 
unsupervised learning 

Biomarker Identification 

BIOINFORMATIC 

Figure 1-10. General framework of mass spectrometry data analysis.  
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The use and suitability of any of the pre-processing and data mining algorithms depend 

experimental design, the biological and the type of methodology used in sample preparation 

for MS analysis. 

 

1.8.1      Data pre-processing 

The aim of data pre-processing is to generate a more manageable data set for downstream 

data mining (Hilario et al. 2006). A number of strategies are available for data pre-

processing that include spectrum alignment, smoothing, baseline correction, normalisation 

and peak detection (Yu et al. 2006). Selecting appropriate methods for data pre-processing 

is key to obtaining optimal results from the data mining algorithm. A number of 

investigators prefer to employ minimum or no pre-processing (using the raw m/z and 

relative intensities from MS analysis), whereas others extract a short peak list using peak 

detection algorithms which can then be processed for data mining. Excessive MS data pre-

processing may create bias however, due to high number of samples and utilisation of 

highly sensitive instrumentations with high resolution, generally only mild data 

manipulation is required to create manageable data sets. Some of the strategies for MS data 

pre-processing are illustrated above (figure 1-10).    

   

1.8.1.1  Smoothing  

The raw spectrum from a typical MALDI analysis contains thousands of data points (i.e. 

m/z values) and the large scale of spectra in high throughput experiments and data handling 

is very challenging. Smoothing is one of the methodologies used to reduce the 

dimensionality of the data as well as removing noise. The strategy which is commonly used 

is by binning the data set to a specific mass range with a defined median intensity 

(Matharoo-Ball et al. 2007). This produces a more manageable data set to be proceeding to 

the data mining step.  

 

1.8.1.2  Peak alignment 

Inaccurate calibration of the MS instrument results in intersample shifts of the location of 

the peaks (m/z values) and inaccurate mass measurement. Moreover, the peak shift is often 

observed even when internal calibration is used due to experimental and instrumental 

complexities (Yu et al. 2005). This is because the relation between the mass error and the 

m/z is not linear. The accuracy of a peak in MALDI-MS analysis is reported to be between 
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0.15% and 0.3% (Lin et al. 2005). Generally, the MS data mining for biomarker discovery 

compares large groups of samples and therefore accurate mass of each spectral peak is 

crucial. It is absolutely essential to correct any misalignment as the data mining algorithms 

classify samples based on the location of the m/z values. Several algorithms have been 

developed to overcome this challenging problem (Torgrip et al. 2003). Wong and 

coworkers developed an algorithm that generate a reference spectrum and aligns all the 

spectra to this reference spectrum (Wong et al. 2005). Randolph and Yasui applied coarse 

scale-specific peaks (extracted by multiscale wavelet decomposition) to align MALDI data 

(Randolph and Yasui 2006). A number of groups use a set of known peaks which are 

common among the samples and use these set of peaks to align the spectra across the 

samples (Lin et al. 2005). 

 

1.8.1.3  Baseline correction and baseline subtraction 

Presence of noise in MALDI or SELDI spectra is inevitable and generally varies between 

the spectra. The source of noise in MS spectra is often chemical and electronic. Noisy 

spectra do not represent relatively accurate intensity values and show shifted baseline (base 

line is an offset of the intensities of masses). Therefore, it is essential to remove the 

baseline to flatten the baseline of spectrum. For instance, Wu and colleagues used a local 

linear regression algorithm to calculate the intensity of the background and eliminate it 

from the spectra (Wu et al. 2003). Determination of the noise threshold in spectra and 

subtraction of it from the data is another approach used by some groups (Fung et al. 2005). 

Although this method is generally used for MS data pre-processing, it is highly specific to 

the instrument in use. 

 

1.8.1.4 Data normalisation 

The normalisation step is applied to reduce the variation among the samples that are 

associated with operator and instruments errors (Marcuson et al. 1982). Elimination of 

these experimental variations from the data prior to data mining reduces the chance of 

detecting differences that are due to artifacts and not relevant biological differences. Data 

normalisation is applicable for samples analysed in one experiment and between runs and 

therefore makes independent data sets comparable.   
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1.8.1.5 Peak detection 

The peak detection algorithms help to reduce the size of the spectral data by converting the 

raw mass spectra list to a more manageable list of monoisotopic mass and intensities. 

Coombes and coworkers proposed a method that generated a preliminary peak list and then 

from this list the candidate peaks of importance were excluded (Coombes et al. 2003). The 

disadvantage of this technique is that some of the lower abundant peaks with low intensities 

can be considered as noise and removed from further analysis.   

 

1.8.2      Data mining 
Once MS data have been pre-processed, they are submitted to a data mining algorithm. It is 

crucial to note that it is not necessary to use all the pre-processing procedures and 

undertaking these procedures needs to be selective. Various computational algorithms have 

been developed to interrogate the data in faster and efficient manner for detection of 

potential biomarkers in MS-based proteomic studies. Although different biomaterials are 

analysed in these studies, in principal similar data mining algorithms can be applied for 

data analysis. The data mining systems fall into two main categories: supervised and 

unsupervised learning approaches. The supervised learning approaches requires the class 

labels (i.e. cancer and control), meaning that they classify the data while the outcome is 

known whereas unsupervised learning systems cluster data and do not require class label 

(Fung et al. 2005). Classification and regression trees, neural networks, genetic algorithms 

and support vector machines (SVMs) are a number of supervised learning systems.  

Examples of unsupervised learning systems include k-means clustering, principal 

components analysis (PCA) and hierarchal clustering. A selection of both supervised and 

unsupervised methods will be briefly discussed in the following section. 

 

1.8.2.1 Cluster analysis 

Cluster analysis is an unsupervised learning technique, used for visualisation of data 

distribution. Cluster analysis is a general term for a group of classification algorithms that 

assign individual samples into groups (or clusters) that the members of that group have 

similarities to each other and to the new sample assigned (Fung et al. 2005). Therefore, 

samples that are more similar are closer together. The similarities among the samples are 

based on the distance between the samples that can be calculated in various ways based on 
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the algorithm used to classify the samples. The analysis starts with the two samples of the 

population that have the most similarity (i.e. shortest distance between them) and the 

sample arrangement is continued iteratively until all the samples are completely arranged. 

The results of the cluster analysis are commonly depicted as a dendrogram.  

 

1.8.2.2 Principal component analysis 

Principal components analysis (PCA) is a commonly used unsupervised learning technique 

for classification of data that can significantly reduce the dimensionality of data (i.e. by 

reducing the number of input variables) to make it more manageable. PCA analysis defines 

structure in the relationships between the variables, thereby having the ability to classify 

them (White et al. 2004). The reduction of data dimension by PCA is achieved by creating 

principal components (linear combinations), which accounts for the majority of the 

variability in the data, allowing better separation of data using few variables. In the first 

instance, the first principal component is created that explains the data better than any other 

principal component and subsequently other principal components are added to enhance the 

data explanation. Once the directions of the principal components are plotted, the values of 

the individual samples can be expressed as linear summations of the original data 

multiplied by the coefficient that best describes the principal components, these new values 

are known as Eigenvalues and each sample will have a score for each principal component 

(Fung et al. 2005). The PCA has been used in a number of studies for example it was 

utilised by Lancashire and co-workers to classify different species of Neisseria based on 

their SELDI proteomic profiles (Lancashire et al. 2005). 

 

1.8.2.3 Artificial neural networks 

Artificial neural networks (ANNs) are a form of artificial intelligence (AI) and are an 

example of computer-based algorithms used in this study for analysis and modelling 

complex proteomic data to identify discriminatory patterns. ANNs have been used in a 

variety of applications including modeling, classification, pattern recognition, and 

multivariate analysis (Krogh 2008; Matharoo-Ball et al. 2007). There are advantages to 

ANNs that makes them attractive to be used in analysis of complex proteomic data where 

there is considerable degree of variations (Fung et al. 2005). Complex systems, contain 

complicated interactions which are non-linear and difficult to interpret; however ANNs are 
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non-linear statistical data modeling tools and capable of dealing with this issue (Mian et al. 

2003). Furthermore, ANNs can cope with data containing high levels of background noise 

and the results of ANNs can be generalised and provide a “real-world” solution (Lancashire 

et al. 2005, Matharoo-Ball et al. 2007). These characteristics make ANNs suitable to be 

used for analysis of mass spectrometry data. The structure of ANNs is based on the 

biological neurons and are designed to mimic the behaviour of neurons in the human brain 

therefore are capable of being trained and subsequently recognise complex systems 

(Agatonvic-Kustrin and Beresford 2000). ANNs can be created computationally by 

applying algorithms and adjusting parameters that stimulates the way that neurons in 

human brain process information. They gain the pattern recognition ability through a 

process called learning or training which resembles the process of learning in human. 

ANNs learn by experiencing with appropriate examples and minimising the errors in 

classification and recognition of patterns (Chen et al. 2004).  

There are several types of ANNs however; one commonly used algorithm is the back-

propagation (BP) algorithm applied to the multi-layer perceptron (MLP) architecture. 

ANNs are made up of units known as nodes that can be arranged in several layers (hence 

named MLP) that are: an input layer, a hidden layer and an output layer and each of these 

layers and nodes are connected with a series of weighted links, see figure 1.11 (Agatonvic-

Kustrin and Beresford 2000). The input layer receives and represents the independent 

variables which could be the m/z value and intensity from a set of mass spectral profile 

data. The hidden layer is the processing element of the ANNs and it is not connected to the 

external environment and it just mathematically processes the information that it received 

from the input layer. The output layer represents the results.  
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Figure 1-11. Structure of a multi-layer perceptron artificial neural network. Three layers and the 
weighted links are shown in which each node in each layer is connected to the nodes in the next layer via the 
weighted links. Adopted from Ball et al. 2002.   
 

Training or learning process in ANNs is similar to the human learning process which 

involves adjustment of synaptic connections between the neuron cells. The process of 

learning in ANNs can be supervised (where input with known output are used for training) 

or unsupervised (where inputs with unknown output is used for training) however in this 

study BP algorithms (form of supervised learning method) have been used. The ANNs are 

trained by iterative adjustment of the weights between the layers to minimise the error in 

correct classification of data. The principle of supervised network with BP learning rule is 

shown in figure 1-12.  

 

Error

Input Network output
Network output

Adaptive network

Actual output
Adjustment of

parameters Error

Input Network output
Network output

Adaptive network

Actual output
Adjustment of

parameters  
Figure 1-12. Supervised artificial neural network with backpropagation algorithm learning rule. Input 
is fed forward through the network as examples to train the model, in hidden layer the class of the input is 
calculated and put through the output layer. The network predicted class of output is compared to the actual 
output class and an error is calculated. The error is fed back through the network and the backpropagation of 
the error to the network improves the weights and eventually the output of the network.     

 

In the first step of ANN training process with BP learning rule, information from the inputs 

(i.e. the m/z value and intensity from a set of mass spectral profile data of cancer or control 
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samples) is fed forward through the network (forward step). In this step, inputs are used as 

examples to train the network and output (i.e. classification of the sample, whether is a 

cancer or control) is calculated in the hidden layer and presented to the output layer 

(networks output). This is then compared to the actual output (the actual class of that 

particular sample) and an error is calculated. In the second step, the difference between the 

network and actual output is calculated and the weights are updated in proportion to the 

error calculated. The weights between the different layers are then modified and the 

training process is repeated until the minimum error is achieved or the outcome prediction 

of the network failure to improve after a certain amount of training cycles named epochs 

(Lancashire et al. 2005, Agatonvic-Kustrin and Beresford 2000).   

In order to analyse a dataset using ANNs, the data input for the ANN analysis is often split 

into training, test and validation sets. The training set is used to train the model and the 

output prediction is validated using the test set. Once the training is completed, the 

accuracy and efficiency of the model is further tested using input cases that are completely 

unseen by the model (validation set) and an output is calculated based upon the new data 

(blind dataset). The accuracy of neural network to classify the blind dataset indicates 

whether the model can be generalised on unseen independent data. Obtaining a generalised 

model is often problematic. One solution to this problem which has been applied in this 

study is by using multiple models with different unseen datasets (random sample cross 

validation) a more generalised model may be obtained. Random sample cross validation 

randomly selects different samples sets (inputs) to be used in the process of training and 

testing of number of models. ANNs as mentioned before can be used for pattern 

recognition and classification of mass spectrometry data in which thousands of inputs (i.e. 

the m/z and their corresponding intensities) are presented to the neural network system. 

However, for the purpose of biomarker discovery and detection of patterns which are 

discriminatory, it is important to determine the importance and influence of each of the 

individual inputs on the created model. This is possible via a parameterisation process. 

Parameterisation is a process that reduces the complexity of the dataset and increases the 

performance and accuracy of the models. This process allows the identification of the most 

important inputs and elimination of inputs that are of little or no importance. 

Parameterisation can be achieved by performing a weightings analysis, sensitivity analysis 

or by stepwise approaches (Lancashire et al. 2005). ANNs work by weighting the links 

from the inputs to the outputs; the stronger the weight leading from a particular output, the 
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greater the influence it has on the model. A stepwise approach was used in this study which 

allows the determination of the minimum subset of ions that are required to predict a 

particular outcome and correctly assign individuals to their relevant groups. In addition, 

utilising this approach, the interaction between the ions may also be identified. Briefly, this 

analysis is based on training a number of models where in the first instant, each input is 

used as a single input and an error is determined for each model. The input that gives the 

lowest error is selected and put with all of the remaining inputs sequentially in a number of 

sub models once more. This process continues until addition of further inputs does not 

improve the model’s performance.   

Despite the advantages of ANN in analysis of various datasets including mass spectrometry 

data, there are two major limitations to ANNs; firstly, they do not explain how they reach 

the conclusions and therefore are often described as a “black box” and secondly ANNs are 

prone to overparameterisation where the network is left to train for too long and the 

problem of overtraining or overfitting has been emerged therefore the results cannot be 

generalised (Krogh 2008). This issue is often addressed by use of random sample cross 

validation. Nevertheless, neural networks have been successfully applied to many 

interesting areas of biomedical science for analysis of complex data obtained from 

proteomic analysis (Li et al. 2004). The ANNs have been utilised to model recurrence post 

radical prostatectomy (Mattfeldt et al. 1999) and therapy response prediction (Michael et 

al. 2005).  In addition, ANNs have been successfully applied on SELDI and MALDI data 

for detection of brain, melanoma and breast cancer biomarkers (Matharoo-Ball et al. 2007, 

Mian et al. 2005, Ball et al. 2002, Liu et al. 2004, Lancashire et al. 2003, Lancashire et. al. 

2005) and bacterial species classifications (Lancashire et al. 2005, Schmid et al. 2005, 

Iversen et al. 2006).    

 

 

1.9 Personalised medicine and proteomics 

The aim of personalised medicine is to use biomarkers to select the most effective treatment 

for each individual patient, which improves the clinical management of the disease. 

Diagnosis and staging of the solid tumours in the current clinical practise is through 

physical examination, imaging and pathological evaluation. The appropriate treatment is 

prescribed based on these morphological assessments, although patients that were classified 
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at the same stage often respond differently to the same treatment. This is probably due to 

the heterogenousity of cancer and unique “molecular qualities” of the individuals. The 

current strategies for diagnosis of cancer are often inadequate and provide limited 

information on the molecular profiles of individuals that may affect the therapy results. 

Molecular based diagnosis techniques such as immunohistochemistry, in situ hybridisation 

and chromosomal analysis have been developed for better assessment of the individual 

patient tumours however they are time consuming, low throughput and have limited 

specificity and sensitivity (Geho et al. 2006). The field of personalised medicine has been 

significantly progressed by emerging novel high throughput tools in genomics and 

proteomics, offering the ability of molecular profiling in a broader range. Such technologies 

are typically classed as multiple biomarker discovery approaches that divert the idea of 

single biomarker of disease to a new perspective. These novel technologies provide 

genotype and phenotype information on the nature of the tumour, genetic background of the 

patient and how each individual’s body interact with the presence of the disease. The 

genotype and phenotype information are often in the format of gene and protein expression 

profiles. This will allow clinicians to decide on a treatment based on both the tumour type 

and susceptibility of individuals to the selected treatment. As genomic and proteomic 

profiling do not present a complete molecular information individually, it is essential to use 

them hand-in-hand (Petricoin et al. 2004). There are number of trials based on gene 

microarray to identify gene signatures in breast and prostate cancer to stratify individuals 

for therapy. Although gene profiling is promising technique for detection of individual 

molecular profiles, the DNA code often does not reflect the protein product due to post-

translational modifications such as phosphorylation and glycosylation. There are a number 

of ways proteomics can be of use in the personalized management of cancer. Investigating 

the global changes in the protein expression patterns reveals all the post translational 

modifications and as mentioned previously these make up the functional components that 

could be used as markers for diagnosis/prognosis or as novel targets for drug delivery.  

 

1.10 Aims and objectives 

The large scale, high-throughput study of proteins in various patient samples by MALDI 

mass spectrometry to generate proteomic profiles, has experienced an explosive growth in 

the last decade. In addition, development and application of computational algorithms has 
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aided the identification of patterns within the proteomic profiles that are potentially useful 

in diagnosis and prognosis of cancer patients and prescription of suitable treatment 

regimens with high efficiency. Despite the wider use of MALDI mass spectrometry in 

conjunction with bioinformatic analysis in the field of cancer biomarker discovery and 

generation of valuable results, the technology has not been sufficiently validated for clinical 

use.  

The aim of this research was to address the issues related to sample preparation strategies 

and reproducibility of the MALDI mass spectrometry and the robotic sample handler which 

was used for sample processing. Over the past few years, reproducibility of MALDI mass 

spectrometry and sample preparation strategies have been the subject of some criticisms. 

Therefore, the aims of the first part of this study was to optimise and standardise the 

protocols for future sample preparation and processing which involves reverse-phase 

chromatography tips followed by MALDI-MS analysis. Generation of standard operating 

procedures are important to obtain consistency of results over a period of time. 

Furthermore, the reproducibility of instruments in use will be assessed within and between 

runs using QC samples.  

Following optimisation of protocols, these strategies would be applied to identify serum 

proteomic patterns that may correlate to tumour progression in CT26 tumour bearer mice. 

By identifying biomarkers that may correspond to tumour progression, these markers can 

be indicative of tumour initiation and may applicable for early diagnosis of cancer. 

The research will further investigate whether it is possible to use the principles of MALDI 

mass spectrometry and artificial neural networks as tools to identify patterns that correlate 

to immunotherapy (i.e. DISC-GM-CSF immunotherapy) outcome in a CT26 mouse model. 

As research into personalised medicine seeks to identify patterns that can indicate certain 

therapy outcomes, human patient material is sometimes limited and difficult to obtain in 

sufficient quantity and numbers to make the findings statistically significant. Therefore, 

initially this study aims to identify whether serum samples can be used for proteomic 

studies to identify biomarkers correlating with therapy response. In addition, validation of 

any candidate biomarkers that were discovered by proteomic analysis would be carried out 

using non-MS based methodologies. Success in validation of discoveries from the 

proteomic studies would be valuable as the majority of critisms in the field of biomarker 

discovery using mass spectrometry is directed towards failure of validation.  
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The final part of this research will use serum samples from CT26 mouse model where a 

different immunotherapy (i.e. DC-based vaccination) was used and serum samples were 

collected pre and post therapy. Serum proteomic patterns will be obtained using MALDI 

mass spectrometry and will then be analysed using ANNs to determine candidate 

biomarkers that differentiate different time-points and therapy responder and non-

responders. The results of this study can be compared with the previous immunotherapy 

model as well as independently for discovery of biomarkers that may associate with therapy 

responses. 
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Chapter 2 - Materials & Methods 

 
 
 
 
2.1 Materials 

2.1.1 Reagents  

All the reagents were stored in accordance to manufactures instructions and were used 

before the expiry date.  

Sample preparation reagents Company 

Acrylamide Genflow  

Ammonium persulphate  National Diagnosis 

Benzamidine Sigma-Aldrich 

Bovine serum albumin (BSA) Sigma-Aldrich 

Coomasie Blue PhiBio Fisons 

Deoxycholic acid Sigma-Aldrich 

Dithiothreitol Apollo Scientific 

Ethanol Sigma-Aldrich 

Glycine Fischer Scientific 

IGEPAL CA-630 Sigma-Aldrich 

Marvel Premier International Foods   

Methanol Sigma-Aldrich 

Octyl glucopyranoside Apollo Scientific 

Phenylmethanesulphonylfluoride (PMSF) Sigma-Aldrich 

Protein assay BCA solution Sigma-Aldrich 

Protein assay copper(II) sulfate pentahydrate 4% solution Sigma-Aldrich 

Sodium Azide Sigma-Aldrich 

Sodium Dodecyl Sulphate Sigma-Aldrich 

Sodium ortho-vanadate Sigma-Aldrich 

Sodium Tetraborate Sigma-Aldrich 

Trizma Base Sigma-Aldrich 

Tween 20 Sigma-Aldrich 
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Urea Sigma-Aldrich 

Water Sigma-Aldrich 

  

Tissue culture reagents Company 

1640 RPMI Bio Whittaker Europe 

DMEM Bio Whittaker Europe 

DPBS Bio Whittaker Europe 

Ethanol BDH 

Foetal Calf Serum  Bio Whittaker Europe 

Trypan blue Sigma-Aldrich 

Trypsin Gibco 

Versene Gibco 

  

Proteomics reagents Company 

Aceton HPLC grade Fisher Scientific 

Acetonitrile HPLC grade Fisher Scientific 

CHCA (α-Cyano-4-hydroxycinnamic acid) Laser Bio Labs 

Dichloromethane HPLC grade Fisher Scientific 

Formic acid Fisher Scientific 

Hexane HPLC grade Fisher Scientific 

Methanol HPLC grade Fisher Scientific 

Peptide calibrant Mix 4 Laser Bio Labs 

Propanaol HPLC grade Fisher Scientific 

Protein calibrant Mix 2 Laser Bio Labs 

Sinapinic Acid (3,5 Dimethoxy 4-hydroxycinnamic acid) Laser Bio Labs 

Trifluoroacetic acid  Fisher Scientific 

Trypsin Gold Promega 

Water HPLC grade Fisher Scientific 
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2.1.2 Buffers   

Buffers were prepared as indicated below: 

Name Composition 

0.5M Tris HCl Buffer (pH 6.8) (stacking gel 
buffer) 
(1-D PAGE) Stored at room temperature 

6g Trizma base 
0.4g SDS 
make up to 100ml with option 4 H2O 
adjust pH to 6.8 with HCl 
 

1.5M Tris HCl Buffer (pH 8.8) (resolving gel 
buffer) 
(1-D PAGE) Stored at room temperature 

18.16g Trizma base 
0.4g SDS 
make up to 100ml with option 4 H2O 
adjust pH to 8.8 with HCl 
 

10x Running Buffer 
(1-D PAGE) Stored at room temperature 

0.25M Trizma base  
2M Glycine  
1% (w/v) SDS  
 

1x TBS Buffer 
(Western blotting) Stored at room temperature 

2.422g Tris 
29.22g NaCl 
make up to 100ml with option 4 H2O 
adjust pH to 7.5 
 

1x TBST Buffer 
(Western blotting) Stored at room temperature 

2.422g Tris 
29.22g NaCl 
500µl Tween 20 
make up to 100ml with option 4 H2O 
adjust pH to 7.5 
 

Bjerrum & Schafer-Nielsen Transfer Buffer 
(Western blotting) Stored at 4°C 

5.82gr  Tris (48mM) 
2.93g Glycine (39mM) 
200ml Methanol 
make up to 100ml with option 4 H2O 
 

Blocking Buffer 
(Western blotting) Prepared fresh 

5g Marvel 
100ml TBS buffer 
50µl Tween 20 
 

Modified RIPA buffer 
(protein extraction) Prepared fresh 

5ml RIPA buffer 
50µl IGEPAL CA-630 
25mg Deoxycholic acid  
50µl Urea (10%) 
10µl Benzamidine (500mM) 
5µl PMSF (100mM) 
25µl Sodium ortho-vanadate 
(200mM) 
5µl Sodium azide (1mM) 
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RIPA Buffer 
(protein extraction) Stored at 4°C 

4.38g NaCl (150mM) 
3.03g Tris (50mM) 
0.93g EDTA (5mM) 
make up to 500ml with option 4 H2O 
 

Sample Reducing Buffer 
Stored at room temperature 

2.5ml 0.5M Tris HCl buffer (pH 6.8) 
400mg SDS 
2ml Glycerol 
200mg DTT 
A few grains of bromophenol blue 
make up to 20ml with option 4 H2O 
 

 
2.1.3 General laboratory consumables  

Plastic and non-plastic Ware Company 

0.5ml microtube Sarstedt 

1.5ml microtube Sarstedt 

10ml pipette Sarstedt 

10ml syringe BD Biosciences 

12 – well tissue culture (TC) plate Sarstedt 

1ml cryovials TPP 

25ml pipette Sarstedt 

300µl glass vials Chromacol 

30ml universal tube Sarstedt 

384 – plate  Sarstedt 

384 MALDI target plate Shimadzu 

Bruker Daltonic 

50ml centrifuge tube Sarstedt 

5ml pipette Sarstedt 

7ml Bijou tube Sarstedt 

96 – well plate Sarstedt 

C18 Solid Phase Extraction Colums Phenomenex 

C18 ZipTip Millipore 

C4 ZipTip Millipore 

ELISA plate Sarstedt 

FACS tube Elkay 

Glass slides Menzel GmBH 
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Pasteur Pipette SLS 

PVDF membrane GH Healthcare 

T175 TC flask Sarstedt 

T25 TC flask Sarstedt 

T75 TC flask Sarstedt 

High Performance Chemiluminescence film Amersham 

 
 

2.1.4 Equipment  

Hardware Model, Company 

-80°C freezer Ultima II, Revco 

U570 Premium, New Brunswick Scientific 

Absorbance plate reader Model 680, Biorad 

Centrifuge Mistral 1000, MSE 

Mistral 2000R, MSE 

Falcon 6/300, MSE 

Cryostat CM 1900, Leica 

Cryostore Cryo 200, Forma Scientific 

Liquid chromatography (LC) Dionex UltiMate 3000 nanoflow, Dionex 

Xograph Imaging System Compact X4,  

WB  

WB  

Electrophoresis gel tank GeneFlow 

Incubators CO2 water jacketed incubator, Forma Scientific 

Mass Spectrometers Ultraflex III TOF/TOF, Bruker Daltonic Inc 

Axima CFR+, Kratos 

LTQ, ThermoFisher Scientific 

Microcentrifuge Microcentaur, MSE 

Mikro 22R, Hettich Zentrifugen 

Microscope and Camera Model PIM, World Precision Instruments 

 

Power supply for electrophoresis Consort E122, GeneFlow 

Robotic sample processer  XCISE, Proteome Systems/Shimadzu  
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Safety cabinet Microflow biological safety cabinet, Walker 

Sonicators Precision Ultrasonic Cleaning, Ultawave 

Ultrasonic Cleaner, VWR 

Vortex Whirlimixer, Fisher Brand 

Water bath Y14, Grant 

 

2.1.5 Softwares 

Software Product Company 

BioTools Bruker Daltonics 

ClinProTools Bruker Daltonics 

FlexAnalysis Bruker Daltonics 

FlexControl Bruker Daltonics 

Kompact Launchpad v2.4.1 Kratos Analytical Ltd 

Mascot Matrix Science Ltd 

SpecAlign v2.4 Cartwright Group 

SEQUEST ThermoFisher Scientific 

Statistica v6.1 StatSoft Inc 

 

2.1.6 Antibodies 

Specificity Conjugated Host Company 

Chicken IgY HRP Goat Immune Systems Ltd 

Mouse HBB None Goat Santa Cruz Biotechnology Inc 

Mouse HPX None Chicken Immune Systems Ltd 

Mouse SAA1 None Goat R&D System 

Mouse SAP  None Rabbit Abcam 

Precision Strep Tactin HRP  BioRad 

Rabbit Immunoglobulins HRP Swine Dako 

Rabbit Immunoglobulins Biotinylated Goat  Dako 
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2.1.7 Kits 

Product Company 

Amersham ECL Western blotting 
detection reagent  GE Healthcare 

Bicinchoninic acid (BCA) protein Assay Sigma-Aldrich 

Mouse serum amyloid A ELISA Immunology Consultant Laboratory Inc 

Mouse serum amyloid P ELISA Immunology Consultant Laboratory Inc 

Mouse serum hemopexin ELISA Immunology Consultant Laboratory Inc 

VECTASTAIN® Elite® ABC Vector Laboratories Inc 

 

2.1.8 Company addresses 

Company Address 

Abcam Inc Cambridge, USA 

Acros Loughborough, UK 

BD Cowley, UK 

BDH Leicester, UK 

Beckman Coulter High Wycombe, Bucks, UK 

Bio Whittaker Europe Wokingham, UK 

Biorad Hemel Hempstead, UK 

Bruker Daltonics Inc Bremen, Germany 

Cambrex Nottingham, UK 

Chromacol Welwyn Garden City, Herts, UK 

Ciphergen Guildford, Surrey, UK 

Dako UK Ltd Ely, UK 

Dionex Corporation Surrey, UK 

Elkay Basingstoke, UK 

Fischer Scientific Loughborough, UK 

Forma Scientific (Thermo) Basingstoke, UK 

GeneFlow Fradley, Staffs, UK 

Gibco Paisley, UK 

Greiner Bio-One Gloucestershire, UK 

Hettich Zentrifugen Tuttlingen, Germany 
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Immunology Consultant Laboratory Newberg, USA 

Kratos Analytical Ltd Manchester, UK 

Laser Bio Labs Cedex, France 

Leica Milton Keynes, UK 

Menzel GmBH Braunschweig, Germany 

MSE London, UK 

New Brunswick Scientific Edison, New Jersey, USA 

Proteome Systems North Ryde, New South Wales, Australia 

Revco Asheville, North Carolina, USA 

Santa Cruz Biotechnology Inc Santa Cruz, USA 

Sarstedt Leicester, Leicestershire, UK 

Scientific Laboratory Supplies (SLS) Nottingham, Notts, UK 

Shimadzu Milton Keynes, UK 

Sigma-Aldrich Gillingham, Surrey, UK 

StatSoft Inc Bedford, UK 

Stratec Birkenfeld, Germany 

ThermoFisher Scientific Loughborough, UK 

TPP Switzerland 

Ultrawave Cardiff, UK 

Vector Laboratories Inc Burlingame, USA 

VWR Poole, Dorset, UK 

Walker Massachusetts, USA 

Ward Systems Group, Inc Frederick, Maryland, USA 

World Precision Instruments Stevenage, Herts, UK 
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2.2 Methods 

2.2.1 Animals, cell lines and DISC virus 

2.2.1.1 Animals 

Male and female BALB/c mice (H2Ld) were purchased from Harlan Olac (Oxon, UK) and 

bred at the Nottingham Trent University animal house in accordance with the Home Office 

Codes of Practice for the housing and care of animals.  

 

2.2.1.1 Cell lines 

The CT26 cell line used in this study were purchased from two sources: 1) The CT26 cell 

line purchased from American Type Culture Collection (ATCC) and was maintained by 

serial in vitro passage in RPMI 1640 tissue culture medium supplemented with 5ml L-

glutamine and 10% FCS. 2) The CT26 cell line provided by Prof. I. Hart, Imperial Cancer 

Research Fund and was maintained by serial in vitro passage in DMEM tissue culture 

medium supplemented with 10% FCS. The cell were remained at 37ºC supplemented with 

5% CO2 humidity chamber.  

Once the cultured cells were 70-80% confluent, they were maintained by harvesting and 

splitting them in tissue culture flasks. The CT26 are adherent cell lines and their harvesting 

from the tissue culture flask was by using a combination of trypsin and versine (T+V). 

Firstly, the culture media was disposed to waste and the cells were washed with sterile PBS 

three times. According to the volume of the tissue culture flask, 0.5-2ml of T+V was added 

to the cells and incubated at 37°C for 5-10 minutes. During the incubation period, cells 

were detached by tapping the flask few times which also avoids cell clamping. Following 

the process of detaching cells by T+V, 5-10ml of media was added to the flask and the cell 

suspension was re-cultured in a new flask with appropriate volume of fresh medium. If the 

CT26 cells were prepared for in vivo injections, they were counted and then the appropriate 

numbers of cells were resuspended in FCS-free medium.  

 

2.2.1.2 DISC virus 
The DISC-mGM-CSF-HSV was constructed as described by Ali et al. (Ali et al. 2000a). 

The DISC virus was propagated using CR1 cells (African green monkey kidney cells). The 

CR1 cells were cultured with DISC virus (0.1pfu/cell) and incubated at 37ºC. The cells 
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were scraped from the culture flask and followed by sonication in a water bath (4-5ºC) for 1 

minute.  

The virus titration was carried out by initial growth of CR1 cells in a 96 well plate 

(4.5x105/100µl/well) overnight. This was followed by adding the virus to the plate at 

different concentrations ranging from 10-1 to 10-10, and the plate was incubated at 37ºC for 

3 days. The number of infected cells were determined under the microscope using TCID50 

computer software the titer of the virus was determined.  

 

2.2.2 Animal models  
Two different CT26 colorectal carcinoma murine models were used out in the present 

project. The first one was a CT26 progression study and the second one was the CT26 

tumour therapy model. Balb/c mice (female and male) were purchased from Harlan Olac, 

Oxon, UK. The animals were maintained and bred in accordance with Home Office Codes 

of Practice for the housing and care of animals. 

 

2.2.2.1 CT26 progression model 

Prior to start of the experiment, male Balb/c mice, aged 6-8 weeks (n = 60), were randomly 

assigned to one of the two groups: tumour bearer (TB) (n = 45) and control (n = 15). The 

CT26 tumours were harvested, counted, resuspended in FCS-free RPMI 1640 tissue culture 

medium and then used to inject the TB group of mice. Prior to injection of the cells, the site 

of the injection was shaved and subcutaneous (s.c.) CT26 tumour were induced by injection 

of 8 x 104 cells into the right hand side flank of the mice. The tumours were allowed to 

develop and the tumour size was measured at 2-3 day interval. The tumour was allowed to 

grow to reach a maximum 1 cm2 in size.  

 

2.2.2.2 CT26 therapy model 

 CT26 retrospective DISC immunotherapy  

A series of CT26 immunotherapy mouse model experiments with DISC-HSV were carried 

out previously in our laboratory by Dr Murrium Ahmad during the period 2002-2004 where 

the procedures were exactly the same to those described below. The CT26 cell line used in 

these experiments were from those provided by Prof. I. Hart, Imperial Cancer Research 

Fund. Blood samples were collected from each of these experiments at the end of the 
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therapy outcome which resulted in n = 50 regressors (mice that responded to therapy) and n 

= 50 progressor animals that were therapy resistant. The samples from these models in the 

present thesis were referred to as retrospective models.     

 

CT26 prospective DISC immunotherapy models 

Two independent experiments were carried out in this project and both experiments were 

conducted in a similar manner and in accordance to strict procedures to reduce any bias. 

The first experiment was conducted in February 2007 and the second one in January 2008. 

The CT26 cell line used in 2007 experiment was provided by provided by Prof. I. Hart, 

Imperial Cancer Research Fund and in the 2008 experiment both provided by Prof. I. Hart, 

Imperial Cancer Research Fund provided cells and also a second one purchased from 

American Type Culture Collection (ATCC) CT26 cell lines were used. The experiment 

conducted in 2007/2008 was referred to as the prospective model in this thesis.    

Prior to start of the experiment, Balb/c mice, aged 6-8 weeks, were randomly assigned to 

one of the three groups: DISC therapy (injected with CT26 and receiving DISC therapy), 

TB and control (received no CT26 tumour injection and no therapy). A week later, 

following the growth of the CT26 cell line in vitro, trypsinised cells were harvested, 

counted and resuspended in serum free DMEM media. A suspension of 8 x 104 cells in 

serum free DMEM media was inoculated s.c. into the right flank of the mice (to both DISC 

therapy and TB groups). After tumours developed to approximately 0.04-0.36 cm2 surface 

area (approximately in 7-10 days), tumour therapy was initiated by intra-tumour (i.t.) 

injection of 2.5 x 107 PFU of DISC-mGM-CSF (this was applied only to DISC therapy 

group). The DISC-HSV-mGM-CSF used for therapy, was constructed as previously 

described (Ali et al. 2000). Treatment was repeated 2-3 days later and animals were 

monitored to assess the response to therapy at 3-4 day interval. Mice that responded to the 

therapy (regressors) were characterized by reduction of tumour size which resulted in 

complete rejection of tumour. However, failure to DISC therapy resulted in aggressive 

growth of tumours (progressors). The number of animals used in each experiment is shown 

in table 2-1. 
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 DISC therapy TB Control 

 Male Female Male Female Male Female 

Experiment 1 (February 2007) 20 20 5 5 5 5 

Experiment 2 (January 2008) 40 - 20 - 11 - 

Table 2-1.  Table showing the number of animals used in each category for the two CT26 murine DISC 
immunotherapy model.  

 

2.2.2.3 Immunotherapy of CT26 tumour-bearer mice with dendritic cell vaccine in 

combination with blockade of vascular endothelial growth factor receptor 2 and CTLA-4 

This study was conducted by our collaborators in Denmark, University of Copenhagen ad 

details of the therapy procedures were published by this group (Pedersen et al. 2006). A 

total number of 37 samples were received from this group that included serum samples 

from 21 regressors, 6 progressors and 10 tumour-bearer mice.   

 

2.2.3 Mouse serum and tissue collection 
Serum samples from all the animal models (experiment 1 conducted at February 2007, 

retrospective, prospective DISC immunotherapy, CT26 progression model and Denmark 

immunotherapy model) and tissue samples from experiment 1 conducted at February 2007 

and prospective DISC-HSV immunotherapy models and CT26 progression model were 

collected as follow: 

 

2.2.3.1 Blood Sample Collection 

The tail bleeding procedure was carried out in accordance with the Home Office 

regulations. Blood samples were taken from the naïve, tumour bearer, progressor and 

regressor mice from all experiments. In order to locally anaesthesise the tails, EMLA cream 

was applied and animals were kept at 37°C for approximately 15 minutes. Blood was 

collected by nicking the tip of the tail and approximately 200µl of blood was collected from 

each mouse in 1.5ml eppendorfs. Collected blood was clotted on the bench for 30 minutes 

and serum was harvested after spinning the blood at 3500 rpm for 10 minutes. Repetitive 

freeze and thaw of serum samples was prevented by aliquoting serum samples into required 

volumes and then immediately frozen at -80°C.  
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2.2.3.2 Surgical excision of tissues 

The animals were culled using S1 procedure and tumour, spleen, liver, heart, intestine, lung 

and kidneys were removed from the animal, placed into the cryovials and snap-frozen in 

liquid nitrogen and immediately stored at -80°C. The spleen, liver and the tumour were 

weighed prior to snap freezing the samples. 

 

2.2.4 Tissue homogenisation and protein extraction from tissue  
For total protein extracting from frozen tissues, the tissue was ground under liquid nitrogen 

in a Class II safety cabinet using a mortar and pestle to a powder. The powder then 

transferred to a 1.5 ml Eppendorf tube to which 0.5-1ml of RIPA buffer was added directly 

to the powder for protein extraction from the tissue by vortexing the tube followed by two 

30 sec sonication cycles and finally the samples were stored on ice for 30 minutes. The 

samples were then centrifuged at 14,000 rpm for 20 minutes at 4°C. The supernatant was 

separated and stored at -80°C until use. Prior to protein assay, 3 cycles of freeze/thaw were 

carried out.  

 

2.2.5 Protein assays 

The BCA 96-well plate protein assay was used to determine the protein concentration of all 

of the samples (tissue and serum) used in this study. The assay was performed in duplicates 

for individual samples. A BSA protein standard curve was used with concentrations of 0, 

0.2, 0.4, 0.6, 0.8 and 1 mg/ml in water. For serum samples, they were diluted 1:2100 and 

tissue lysates 1:200 in water. 25µl of different sample and BSA standards were transferred 

to individual wells of a 96-well plate (flat bottom) and 200µl of BCA working reagent was 

added to each well and left to incubate for 30 minutes at 37°C. The absorbance was 

determined using a spectrophotometer at 562nm. The BSA standard curve was calculated 

and produced and sample protein concentrations were calculated from this using Microsoft 

Excel. 

 

2.2.6 Mass spectrometry 
2.2.6.1 Xcise automated sample processing system 

Sample processing and preparation for mass spectrometry was preformed using the Xcise 

robotic system to ensure consistency of sample processing. Moreover, to reduce the risk of 
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bias correlated to the position of the samples on the target plate, the sample position on the 

96 well plate of the Xcise and the MALDI target plate was randomly selected using a 

Microsoft Excel computer program. Subsequently, samples (serum or tissue lysates) were 

thawed on ice prior to analysis. Serum samples were diluted 1:20 in 0.1% TFA and protein 

concentration of tissue lysates were equalised to 1 mg/ml in 0.1% TFA. Typically, 25 µl of 

the diluted sample was used for the analysis and placed into a 96 well plate according to the 

randomized order. For protein/peptide analysis, samples were initially fractionated by C18 

ZipTip reversed-phase chromatography according to manufacturer’s instructions. The 

samples were bound to the C18 ZipTip with 15 cycles of binding, followed by two washes 

in 0.1% TFA, where the washes were discarded.  The samples were eluted off of the ZipTip 

in 8 µl of 80% ACN/0.1% TFA. This was followed by spotting 1 µl of the eluted sample 

with 1 µl of matrix solution containing 10 mg of sinapinic acid (SA) in 1 ml of 50% ACN 

in 0.1% TFA on the MALDI target plate, which was then allowed to air dry at room 

temperature. The remaining eluted sample (7 µl), was used for peptide analysis which was 

mixed with 16.6 µl of ammonium bicarbonate and 7.6 µl of water. This was transferred to 

an eppendorf and 0.7 µl of mass spectrometry grade trypsin gold (100 µg/100 µl) was 

added manually. Samples were incubated at 37°C overnight and the reaction was stopped 

by adding 1 µl of 1% TFA. Samples were cleaned by use of C18 ZipTip and 1 µl of the 

eluted sample was spotted on the MALDI target plate with 1 µl of matrix solution of 10mg 

α-cyano-4-hydroxycinnamic acid (CHCA) in 1 ml of 50% ACN/0.1%TFA and allowed to 

air dry at room temperature. For analysis of the tryptic peptides with ESI MS/MS, sample 

preparation was as described, except that 105 µl of 0.1%TFA or 0.1% formic acid was 

added to the eluted samples by Xcise robotic system.    

 

2.2.6.2 MALDI mass spectrometry 

The majority of the MALDI mass spectrometry analysis in this study has been preformed 

using the Shimadzu instrument however, Bruker Daltonic MALDI instrument was utilised 

for the analysis of the CT26 progression model. Although the methodology used for sample 

preparation and analysis of these two instruments were identical, there were slight 

differences in calibration strategies.  
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2.2.6.2.1 Shimadzu MALDI instrument 

The serum sand tissue samples were analysed using an Axima CFR+ mass spectrometer 

operated in linear or reflectron modes. To calibrate the instrument close external calibration 

was performed in which for every 4 sample spots on the MALDI target plate, 1 calibration 

spot was used; this was used to ensures the mass accuracy of the instrument. An appropriate 

calibration mixture in accordance to the MALDI operation mode (i.e. linear or reflectron) 

was made-up fresh for each experiment. The two operation modes are described bellow:   

 

1. Linear MALDI-TOF MS. For the analysis of the proteins, the instrument was 

operated in linear mode mass range of 1000-30000 Da. The calibration mixture used in this 

mode was the calibration mix 2, that contained cytochrome C (horse heart) m/z 12361.12, 

myoglobin, (horse) m/z 16181.06, trypsinogen m/z 23981.98 and insulin beta chain m/z 

3494.65 (5 μl of 5mM). The mass spectral data was collected in ‘raster mode’ and the raw 

data was exported as ASCII text files and processed for bioinformatic analysis. 

 

2. Reflectron MALDI-TOF MS. Peptides were analyzed in reflectron mode 

mass range of 800-3500 Da and peptide calibration mix 4 was used for calibration of the 

instrument which was based on monoisotopic masses and contained bradykinin fragment 1-

5 m/z 573.31, angiotensin ΙΙ m/z 1046.54, neurotensin m/z 1672.91, ACTH clip (18-39) m/z 

2465.19 and insulin B-chain oxidized m/z 3494.65. The mass spectral data was obtained 

using ‘auto quality’ in which the instrument performs a scan over each spot to find the hot 

spots and then the mass spectral data is collected from these areas. The raw data was then 

exported as ASCII text files and processed for bioinformatic analysis.  

 

2.2.6.2.2 Bruker Daltonic MALDI instrument 

The serum and tissue samples were analysed using an Ultraflex III TOF/TOF mass 

spectrometer operated in reflectron mode. To calibrate the instrument internal calibration 

was performed in which trypsin autolysis peaks in the tryptic digest peptide samples were 

used for calibration. Tryptic peptides were analyzed in reflectron mode mass range of 800-

3500 Da. 
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2.2.6.3 ESI-MS/MS 

For identification of the predictive peptides, ESI-MS/MS was carried out using a 

ThermoFinnigan LTQ linear ion-trap mass spectrometer attached to a Dionex UltiMate 

3000 nanoflow liquid chromatography system after using identical sample preparation to 

that described above for MALDI-MS analysis. Samples were de-salted and pre-

concentrated online using a precolumn at a flow rate of 30 μL/min (LC Packings, C18-

PepMap, 100 Å, 3µm particle size, 300 µm ID x 5 mm, Dionex Ltd, UK) and then switched 

to an analytical column (LC Packings, C18-PepMap, 100 Å, 3µm particle size, 300 µm ID x 

5 mm, Dionex Ltd, UK) at a flow rate of 180 nL/min connected to the nanospray interface 

of the mass spectrometer. Following analysis, an automated database searching of fragment 

ion spectra was carried out using the SEQUEST algorithm to allow peptide identification.  

 

2.2.7 Bioinformatic analysis 
2.2.7.1 Data pre-processing 

Once the data was obtained by the MALDI, the profiles of each sample were exported from 

the mass spectrometer as ASCII text files. The data was then smoothed and bucketed to 

values by taking median intensities of 1 Dalton. Furthermore, the data was baseline 

corrected using a rolling baseline determination method that used the noise around non-

peak regions.  Once the data had been smoothed and base line corrected, peaks were 

aligned using Specalign software. In addition, the data was transported into STATISTICA7 

software to be analyzed by ANNs.  

 

2.2.7.2 Artificial neural networks (ANNs) stepwise approach 

Prior to ANNs analysis, one group of samples were coded as 1, and the other group of 

samples were coded as 2. The ANNs were trained with 1 hidden layer and 2 hidden nodes 

at a learning rate of 0.1 and a momentum of 0.5. The models were trained using random 

sample cross validation, where the samples were randomly split into three groups; 60% for 

the training set, 20% for the test set and 20% for the validation set. The models were 

trained using random sample cross validation, as described above, using the training set, 

and the network error with regards to predictive performance was monitored with the test 

set, which was unseen during training. Once this error failed to improve for a pre-

determined number of training events, training was terminated, and the model validated on 

the blind data set.  This process was repeated 50 times; so that each sample was treated as 
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truly blind a number of times, enabling confidence intervals to be calculated for the 

network predictions on blind data.  Initially, each variable from the dataset was used as an 

individual input in a network. These models were then trained over 50 randomly selected 

subsets and the network predictions and mean squared error values for these predictions 

were calculated for each model with regards to the separate validation set. The inputs were 

ranked in ascending order based on the mean squared error values for test data and the 

model input which performed with the lowest error was selected for inclusion into the 

subsequent step. Thus, approximately 1 million models were trained and tested at each step 

of model development.  Next, each of the remaining inputs were then sequentially added to 

the previous best input, creating n-1 models each containing two inputs. Training was 

repeated and performance evaluated. The model which showed the best capabilities to 

model the data was then selected and the process repeated, creating n-2 models each 

containing three inputs. This process was repeated until no significant improvement was 

gained from the addition of further inputs resulting in a final model containing the 

proteomic pattern which most accurately predicted between the two outcomes. 

 

2.2.7.3 Cluster analysis of quality control (QC) samples 

The spectra obtained from QC samples were visually checked as described before and for 

the cluster analysis of protein spectra, m/z values 6000-7000 Da and 9000-10000 Da were 

used and for the peptides from 800 to 3500 Da. The approved spectra were imported as 

ASCII files and the data was smoothed to reduce the dimensionality using SpecAlign 

software which was available online. The cluster analysis was performed using Statistica 

7.0 software. In contrast to principal component analysis, cluster analysis does not reduce 

the number of characters but it will reduce the number of the subjects by placing them in 

groups. If the different runs are seen to mix together well it means that the instrument and 

protocols are working properly, but if one run is not mixing with the other runs it means 

some thing is wrong with the instrumentation or the protocols and the run was rejected. 

 

2.2.8 RP-SPE fractionation  

This experiment was carried out in collaboration with Dr Robert Layfield and Dr David 

Tooth at University of Nottingham. Briefly, serum fractionation was performed using SPE 

large pore (1000 Å) polystyrenedivinylbenzene (PDVB) 25mg resin (International Sorbent 

Technologies, mid-Glamorgan, UK). MS grade mobile phase (Riedel de Haën, Sigma) was 
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applied by vacuum, to condition the column using 70% (v/v) ACN (acetonitrile)/0.1% (v/v) 

TFA (trifluroacetate) and equilibrated with 0.1% TFA. Serum samples (100 μL, 7 mg of 

total protein) were then applied and washed through with 0.1% (v/v) TFA. Bound proteins 

were eluted using a stepwise 5−100% (v/v) ACN gradient. Eluates were dried using 

SpeedVac, re-suspended in loading buffer, and denatured prior to SDS-PAGE analysis. 

Samples were analysed using precast 4−12% acrylamide bis-tris SDS-PAGE gels 

(Invitrogen, Paisley, UK). Gels were stained with Coomassie blue.  

 

2.2.9 1-Dimensional Sodium Dodecyl Sulphate Polyacrylamide Gel 

Electrophoresis (1-D SDS PAGE) 

A 12.5% resolving gel was made up by placing 8.76 ml 30% (w/v) Acrylamide (0.8% (w/v) 

Bis-Acrylamide stock solution (37.5:1)), 5.25 ml 1.5M Tris HCl buffer (pH 8.8), 7 ml 

water, 210μl of 0.1% ammonium persulphate (100mg in 1ml water) and 21μl TEMED, this 

was enough for 4 gels.  6ml of this mix was then placed in each of the four protein gel casts 

and 100μl of butanol was placed on top to keep the gel even and to stop dehydration while 

it set.  Once set, the butanol was removed using filter paper and the appropriate combs were 

put on top of the casts.  A 4% stacking gel was made up by adding 933μl of Acrylamide, 

1.75 ml of 0.5M Tris HCl buffer (pH 6.8), 4.32 ml water, 70μl ammonium persulphate and 

7μl TEMED and then 2ml of this mix was placed on top of the resolving gel in each cast.  

Once set, the combs were removed and the gels and casts were placed in to a tank 

containing 1 x running buffer. 

The samples were prepared by mixing 40μg of sample with approximately 5μl of reducing 

sample buffer and denaturing the proteins for 5 minutes at 95°C.   

The gels were completely covered in running buffer in the tanks and the samples were 

loaded into the wells, 5μl of a ProtoMetrics protein ladder was added in one well into each 

gel.  Once loaded, the gels were run at 100V until the dye front reached the bottom of the 

stacking gel, approximately 30-40 minutes, the voltage was then increased to 150V until 

the dye front reached 1cm from the bottom of the gel, approximately 1 hour.  The gels were 

stained with coomasie blue for 30-60 minutes and the excess stain was removed by placing 

the gels in destain (10% acetic acid and 30% methanol in HPLC grade water) over night. 
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2.2.10 Gel spot tryptic digestion 

The gel spot was excised manually from the gel using a scalpel. Each gel piece was placed 

into an eppendorf with 500µl distilled water on a shaker. This was followed by distaining 

with 500µl of 50%ACN/40mM NH4HCO3 for 10 minutes on shaker. The solution was 

discarded and the distaining step was repeated once again. The gel piece was then 

dehydrated by adding 200µl of 100%ACN for 15 minutes while shaking. In addition, 

15.2µl of distilled water, 33.2µl of NH4HCO3 (100 mM) and 2.3µl of 0.5µg/µl trypsin gold 

was added to the gel piece and this was incubated at 37°C overnight. The trypsinisation was 

stopped by adding 2µl of 1%TFA and samples were C18 ZipTipped (using Xcise robotic 

system) and prepared for ESI or MALDI mass spectrometry analysis as described 

previously.   

 

2.2.11 Western Blot analysis 

Serum samples were separated on a 12.5% SDS-PAGE (previously described). Gels were 

equilibrated in chilled transfer buffer for 5 minutes while shaking. The transfer buffer was 

discarded and equilibration step was repeated once with fresh buffer. Filter papers (8 pieces 

for each gel) were cut into required size (the size is based on the dimentions of the gels). 

One PVDF membrane per each gel was pre-wetted according to manufacturer’s guide, 

briefly this was done by placing the PVDF membrane in 100% methanol (10 seconds), 

washed by water (5 minutes) and transfer buffer for 15-30 minutes. The transfer units were 

assembled as follow: 4 pieces of filter paper (remove the air bubbles in-between the filter 

papers), the PVDF membrane, the SDS gel and 4 pieces of filter paper on top. The SDS gel 

was transferred onto the PVDF membrane for 1 hour at 13 Volt. The membrane was stained 

with Ponceau S to ensure the complete transfer and then removed by placing them in water 

for 20 minutes. The PVDF membrane was washed twice with TBS each for 5 minutes. 

Membranes were blocked with a 5% milk solution containing 0.05% Tween 20 in TBS 

overnight followed by incubation with primary antibody at 4˚C overnight. Primary 

antibody was made in TBST with an appropriate dilution and incubated at 4˚C overnight. 

The primary antibodies used in this study included rabbit anti-mouse serum amyloid P (1 in 

10000), chicken anti-mouse hemopexin (1 in 20000), goat anti-mouse haemoglobin (HBB 

1:200) and goat anti-mouse serum amyloid A-1 (1 in 2000). The primary antibody was 

discarded and membrane was washed in TBST for 5 minutes and this was repeated once 
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more. The membranes were incubated with appropriate peroxidase-conjugated secondary 

antibody (made in TBST) at 1:1000 (SAA1, SAP and HBB) and 1:200000 (HPX) 

respectively for 2 hours at room temperature. This was followed by 4 washes with TBST, 

each 15 minutes to get cleaner background. To detect the membrane on the autoradiography 

film, the Amersham ECL Western blotting detection reagent was used. Equal volumes of 

solution 1 and 2 of this kit was mixed together prior to developing and was added to the 

protein side of the membrane, sufficient to cover the membrane surface. Membrane was 

incubated at room temperature for precisely 1 minute. The excess solution was removed 

and membrane was placed in a film cassette and an autoradiography film was placed on top 

of the membrane for the required time which varies for each experiment. Imaging and 

quantitation using densitometry were performed on Fuji image station as well as 

developing the film with a developer. Densitometric analysis was preformed using AIDA 

software. 

 

2.2.12 Immunohistochemistry (IHC) 

The CT26 colorectal tumours from progressor and TB animals collected from the 

prospective experiment were used for IHC staining. Frozen tissues were embedded directly 

onto the cork using OCT and were frozen in isopantane and liquid nitrogen. A piece of 

tumour tissue on cork was fixed directly onto the metal chuck using a small drop of OCT 

and freezing spray and then the chuck was placed onto the specimen holder of the cryostat. 

The tissues were then sectioned using a Leica 1900 cryostat while the specimen holder was 

cooled down to -20ºC and the cryochamber cooled down to -20ºC prior to use. The blade 

and the anti-roll plate were wiped with a small amount of acetone to prevent static and the 

specimen holder was set to cut 7µm sections and sections were transferred onto 

microscopic glass slides. The slides were air dried, and fixed with acetone for 15 minutes 

and stored at -80°C. Immunohistochemistry was performed using the ABC kit. After 

leaving the tissues in 0.5-1ml of hydrogen peroxide (0.03%) for 5 minutes, hydrogen 

peroxide was tipped of and the sections were blocked with diluted goat serum (10% goat 

serum in PBS) for 15 minutes. The primary antibody (rabbit polyclonal anti-mouse SAP, 

1:100 in 5% goat serum/PBS) was added to the sections (approximately 50µl per tissue) 

and this was left at 4°C overnight. The excess antibody from the slide was washed by 

rinsing PBS and this was followed by incubation for 30 minutes with diluted biotinylated 
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secondary antibody (polyclonal goat anti-rabbit immunoglobulins/biotinylated, 1:1000 in 

5% goat serum/PBS) solution and then 1ml ABC reagent was added for 30 minutes at room 

temperature. The slide was rinsed with PBS and 1ml of DAB reagent (for visualization) 

was added to the slides for 10 minutes at room temperature. The slide was then rinsed with 

PBS and this was followed by leaving the slides in distiled H2O for 5 minutes. The slides 

were dried at room temperature which was followed by Harris staining (placing the slides 

in Harris staining for 8-10 seconds). The DAB and Harris staining was then alcohol fixed 

by sequentially placing the slides in 70% ethanol (1 minute), 100% ethanol (1 minute), 

100% ethanol (2 minutes), 100% xylene (I minute) and 100% xylene (2 minutes). The slide 

was air dried in the hood followed by mounting the slide with a cover-slip using few drops 

of premount. Once the slide was dried, then it was examined using a microscope. 

 

2.2.13 ELISA assay 
Absolute quantification of mouse serum amyloid P (SAP), mouse serum amyloid A (SAA) 

and mouse hemopexin (HPX) in serum samples were determined using ELISA.  

 

2.2.13.1 SAP ELISA assay  

Commercially available sandwich ELISA for SAP was purchased from Immunology 

Consultant Laboratory (Immunology Consultant Laboratory, Inc., US). The assay was 

performed according to manufacturer’s protocols. In the typical assay procedure, all 

incubations were performed at room temperature. Serum samples were diluted in s 1:50000.  

This assay was carried out on samples from the retrospective experiment and validated 

using the prospective samples. Each calibrator or serum samples (100 µl) was added to the 

wells and incubated for 1 hour. After that the wells were aspirated and washed 5 times with 

washing buffer (600 µL), enzyme-antibody conjugate (100 µL) was added to the wells and 

incubated for 1 hour. The wells were aspirated and washed again, and then TMB substrate 

solution (100 µl) was added to each well. After 10 minutes of incubation (enzyme reaction), 

stop solution (100 µl) was added, and the absorbance at 450 nm was measured with a 

microplate reader system. Experiments were performed in duplicate. 
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2.2.13.2 SAA ELISA assay  

Commercially available sandwich ELISA for SAA was purchased from Immunology 

Consultant Laboratory (Immunology Consultant Laboratory, Inc., US). The assay was 

performed according to manufacturer’s protocols. In the typical assay procedure, all 

incubations were performed at room temperature. Serum samples were diluted in s 1:20000.  

This assay was carried out on samples from the retrospective experiment and validated 

using the prospective samples. Each calibrator or serum samples (100 µl) was added to the 

wells and incubated for 1 hour. After the wells were aspirated and washed 5 times with 

washing buffer (600 µL), enzyme-antibody conjugate (100 µL) was added to the wells and 

incubated for 1 hour. The wells were aspirated and washed again, and then TMB substrate 

solution (100 µl) was added to each well. After 10 minutes of incubation (enzyme reaction), 

stop solution (100 µl) was added, and the absorbance at 450 nm was measured with a 

microplate reader system. Experiments were performed in duplicate. 

 
2.2.13.3 HPX ELISA assay  

Commercially available sandwich ELISA for HPX was purchased from Immunology 

Consultant Laboratory (Immunology Consultant Laboratory, Inc., US). The assay was 

performed according to manufacturer’s protocols. In the typical assay procedure, all 

incubations were performed at room temperature. Serum samples were diluted 1 in 50000.  

This assay was carried out on samples from the retrospective experiment and validated 

using the prospective samples. Each calibrator or serum samples (100 µl) was added to the 

wells and incubated for 1 hour. After the wells were aspirated and washed 5 times with 

washing buffer (600 µL), enzyme-antibody conjugate (100 µL) was added to the wells and 

incubated for 1 hour. The wells were aspirated and washed again, and then TMB substrate 

solution (100 µl) was added to each well. After 10 minutes of incubation (enzyme reaction), 

stop solution (100 µl) was added, and the absorbance at 450 nm was measured with a 

microplate reader system. Experiments were performed in duplicate. 

 

2.2.14 RNA isolation and Real-Time Polymerase Chain Reaction (RT-PCR) 
Total RNA was isolated from the CT26 cell lines and the different tissues using RNA 

STAT-60™ according to the manufacturer's protocol. For extracting RNA from frozen 

tissues, the tissue was ground under liquid nitrogen in a Class II safety cabinet using a 
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mortar and pestle to a powder. The powder then transferred to a 1.5 ml Eppendorf tube to 

which 1ml of RNA STAT-60™ was added and stored at room temperature (RT) for 5 

minutes. For extracting RNA from the adherent CT26 cells, 1ml RNA STAT-60™ was 

directly added to the culture vessel to lyse them. The homogenate was then transferred to a 

1.5 ml Eppendorf tube and stored at room temperature (RT) for 5 minutes. Chloroform (0.2 

ml) was added to the homogenate in the hood and the tube was shaken vigorously by hand 

for 60 seconds and left at RT for 3 minutes. The samples were then centrifuged at 14,000 

rpm for 15 minutes at 4°C. The colourless upper aqueous phase which contained the RNA 

was transferred to a fresh 1.5 ml Eppendorf tube, mixed with 0.5 ml of isopropanol and the 

tube stored at RT for 8 minutes. The samples were then again centrifuged at 12,000 rpm for 

10 minutes at 4°C. The supernatant was discarded and the white pellet was washed with 

1ml 75% ethanol. The RNA pellet was dried in the fume hood and re-suspended in double-

distilled water (ddH2O) by passing pipetting up and down a few times. The concentration 

and purity of the isolated RNA was measured using a UV spectrophotometer. Samples were 

stored at -80°C until use. 

Total RNA was reverse transcribed into cDNA using M-MLV RT and random primers 

(Promega, UK) following manufacturer's instructions. Briefly, in a 0.5 ml Eppendorf tube, 

2 μg of total RNA (or all the RNA solution if less than 2 μg available) was mixed with 0.5 

μl of random primer solution and ddH2O was added to make the final volume to 10 μl. The 

tube was heated in a thermal block at 70°C for 5 minutes and immediately cooled on ice 

followed by a brief spin in a microcentifuge. The following mix of components was added 

to the tube at RT: 5 μl of 5X M-MLV RT buffer (Promega, UK), 1 μl of dNTP (12.5 mM), 

0.7 μl of RNasin® ribonuclease inhibitor (Promega, UK), 1 μl of M-MLV RT and 7.3 μl of 

ddH2O. The tube was gently mixed and incubated in a waterbath at 37°C for 60 minutes. 

The tube was then immediately cooled on ice, spun briefly and the reverse transcription 

reaction was stopped by heating to 95°C for 5 min. Finally, cDNA was stored at -20°C until 

use. 

Real-time quantitative PCR: Primer sequences for HBB, SAA-1, SAP, HPX and the house 

keeping genes glyceraldehyde-3-phosphate dehydrogenase (Gapdh) and hypoxanthine 

guanine phosphoribosyl transferase 1 (Hprt1) were either taken from literature when 

available or designed to cover two different exons in the sequence to eliminate 

amplification of trace amounts of genomic DNA in the cDNA samples where possible. 

Also all primers were designed to generate PCR products under 250 base pairs in size to 
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optimise the quantitative RT-PCR. Primer design was carried out with the assistance of the 

Primer-BLAST program (http://www.ncbi.nlm.nih.gov/tools/primer-blast/). The primers 

were supplied by Eurofins MWG Operon (UK). The name, the sequences and the 

temperature of annealing (Ta) of all the primers used in this study are listed in table 2-2. 
 

Gene 
Accession 
number Forward Primer Reverse Primer Ta 

GAPDH NM_008084.2 TGACGTGCCGCCTGGAGAA
A 

AGTGTAGCCCAAGATGCCCTT
CAG 

60 

HPRT1 NM_013556.2 GCTTGCTGGTGAAAAGGAC
CTCTCGAAG 

CCCTGAAGTACTCATTATAGTC
AAGGGCAT 

60 

HBB XM_903245.1 TCAGAAACAGACATCATGG
TGC 

TAGACAATAGCAGAAAAGGG
GC 

60 

HPX NM_017371.2 ATCTCAGCGAGGTGGAAGA
A 

AACCACTTGCGGTTACCTTG 60 

SAA1 NM_009117.3 CCCAGGAGACACCAGGATG TCATGTCAGTGTAGGCTCGC 60 
SAP NM_011318.2 AGCCTTTTGTCAGACAGAC

CTC 
TGTCTCTGCCCTTGACACTG 60 

Table 2-2. The name, the sequences and the temperature of annealing (Ta) of the primers.  

 

The Real-time quantitative PCR reactions were performed using the Rotor-Gene 6000 

(Corbett Research, UK) with iQ™ SYBR® Green Supermix. The samples were run in 

duplicates. Thermocycling for each reaction was done in a final volume of 12.5 μl 

containing 0.5 μl of template or standard, 6.25 μl of SYBR® Green Supermix, 0.5 μl of 

gene-specific forward primer, 0.5 μl of gene-specific reverse primer and 4.75 μl of ddH2O. 

In each experiment, 4 no template controls for each individual mastermix were included to 

ensure there was no contamination and also to indicate the degree of amplification due to 

primer dimers. The cycling conditions were as follows: melting step at 95°C for 3 minutes, 

(denaturation at 95°C for 30 seconds,  annealing at primer-specific Ta for 30 seconds, 

extension at 72°C for 30 seconds) x 40 cycles (house keeping genes) or x 45 cycles (genes 

of interest). Finally, a melting (dissociation) curve was acquired by slowly ramping the 

temperature from Ta to 95°C by 1°C increment. The fluorescence of each sample was 

measured at the end of extension step and at the end of each cycle in the case of the 

dissociation curve. The Ct value, which corresponds to the number of cycles at which the 

reaction crosses a threshold value (fluorescence exceeds the background level), was 

calculated by the software to give the standard curve. Following completion of the 

quantitative RT-PCR reaction, the Ct value for each sample was recorded. Assuming that 

primer efficiencies are similar for the genes studied, the standard curve can be omitted from 

the assay, allowing more samples to be screened. The comparative Ct method was therefore 

http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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used for the quantification of the results. Following completion of the quantitative RT-PCR 

that did not include a standard curve, the analysis of the results was carried out using the 

comparative Ct method, also known as the 2-[delta][delta]Ct method, where 

[delta][delta]Ct=[delta]Ct,sample-[delta]Ct, reference. Here, [delta]Ct,sample is the Ct value for any 

sample normalised to the housekeeping gene and [delta]Ct, reference is the Ct value for the 

calibrator also normalised to the housekeeping gene.  

The result is given as a relative gene expression level of the gene of interest in the tissues or 

cell lines. Calculations were performed with Microsoft® Office Excel 2003 (Microsoft Inc., 

Redwood, Wash.). 
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Chapter 3 – Development, Optimisation and Evaluation of 

Methodology for MALDI Serum Proteome Profiling  

 

 

 

3.1 Introduction   

 

3.1.1 The debate over reproducibility of serum proteomic profiling by 

MALDI/SELDI MS for cancer biomarker discovery 
The recent emergence of high throughput technologies such as MALDI and SELDI mass 

spectrometry opened new horizons in clinical proteomics for rapid biomarker discovery by 

serum proteome profiling and produced exciting and encouraging results (Matharoo-Ball et 

al. 2008, Munro et al. 2006, Ricolleau et al. 2006, Taguchi et al. 2007). The MS-based 

studies aimed to compare serum proteomic patterns of healthy and cancerous individuals to 

detect discriminatory diagnostic signatures that can be adapted for clinical use. However, 

shortly after publication of the early investigations, concerns were raised regarding the 

reproducibility of the results as well as the technical and experimental design. In addition, 

the ability of MALDI/SELDI to detect low abundant proteins/peptides as tumour 

biomarkers have been questioned (Diamandis 2006, Ransohoff 2005, Diamandis and van 

der Merwe 2005).  

In 2002 Petricoin et al. was the first group, to demonstrate serum proteomic profiling by 

SELDI as a new approach for diagnosis of ovarian cancer. They reported a panel of 

anonymous markers that correctly classified ovarian cancer patients from healthy 

individuals based on the SELDI serum proteomic patterns with 100% sensitivity, a 

specificity of 95% and a positive predictive value of 94% (Petricoin et al. 2002). The 

classification algorithm used by Petricoin et al. to analyse the SELDI proteomic patterns 

was generated using 50 healthy and 50 ovarian tumour samples and subsequently tested the 

model on a blind set of samples which was able to classify 50/50 of the ovarian patients, 

47/50 of the healthy correctly. In addition, the classification algorithm was tested on 16 

benign patient samples, all of which were classified separately from healthy or cancer 
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patient samples. Since this encouraging publication, numerous investigators have applied 

similar MS-based technology to identify biomarkers for other cancers such as prostate, 

colon, breast, bladder, head and neck and melanoma (Simpkins et al. 2005, Hortin 2006), 

mostly reporting high sensitivity and specificity for classification. However, shortly after 

these publications the technology was the subject of criticism when attempts to reproduce 

and validate some of the previous results failed (Li et al. 2005, Karsan et al. 2005, Baggerly 

et al. 2004, Sorace and Zhan 2003). The most well-known study that was subjected to 

several criticisms was SELDI serum profiling of ovarian cancer study by Petricoin and 

colleagues (Petricoin et al. 2002). There are three datasets available online from the SELDI 

serum profiling of ovarian cancer samples analysed by Petricoin and coworker which are 

referred as datasets 1-3 (Baggerly et al. 2004). The first dataset is the initial ovarian cancer 

paper published by Petricoin et al. using Ciphergen H4 ProteinChip arrays to obtain SELDI 

profiles from serum samples and 216baseline subtracted  spectra were used for the analysis 

which were divided into training cancer, training healthy, test cancer, test healthy and test 

healthy and benign disease (Petricoin et al. 2002). The second data set used the same 216 

samples from the first dataset and SELDI profiles were obtained using Ciphergen WCX2 

ProteinChip array and spectra were baseline subtracted. The final dataset available from 

Petricoin et al. used new set of samples, prepared robotically on Ciphergen WCX2 

ProteinChip array and no baseline subtraction was carried out on the spectra. The ovarian 

cancer data provided by Petricoin and coworkers was reassessed by Baggerly et al. to 

determine the reproducibility of the technology. Baggerly et al. (2004) compared the two 

ovarian datasets (dataset 1 and dataset 2) obtained from the same set of samples and made 

the assumption that although there were discriminatory differences between the cancer and 

control subjects within each data set, these differences were not the same between the two 

experiments. They suggested that pre-analytical and analytical variations may introduce 

variations within and between experiments and that these artifacts were then be picked up 

as differences between the groups by the classification algorithm while they were not truly 

related to the disease. Parallel with Baggerly et al. unsuccessful attempts to reproduce the 

ovarian results of Petricoin and coworkers, a study by Sorace and Zhan on the third ovarian 

data set also failed to find reproducible diagnostic patterns for ovarian cancer (Sorace and 

Zhan 2003). Both these and similar studies suggest that inconsistency in experimental 

design and preanalytical procedures introduce artifacts within and between experiments that 
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might account for failure to reproduce and validate some of the MS-based proteomic 

profiling studies.  

A more recent study by Li et al. assessed the validation and reproducibility of three 

previously identified biomarkers (three biomarkers termed BC1, BC2 and BC3) for breast 

cancer by SELDI serum proteomic profiling (Li et al. 2005). They used an independent set 

of sera from breast and healthy patients collected in a different institute from the original 

study samples. They were able to reproduce two (i.e. BC2 and BC3) out of the three 

biomarkers however, they identified the proteins corresponding to the two protein peaks as 

fragments of complement C3a which is one of the most abundant serum proteins produced 

by liver. In addition, attempts to identify discriminatory peaks in serum in different 

biomarker discovery experiments revealed that these discriminatory peaks were mostly 

fragments of abundant proteins and therefore not specific enough to be considered as 

disease biomarkers originating from the tumour (Diamandis 2006). Furthermore, a study by 

Honda et al. reported a panel of four biomarkers that classified plasma protein SELDI 

profiles of pancreatic cancer patients from healthy individuals with a sensitivity of 97.2% 

and a specificity of 94.4% (Honda et al. 2005). They attempted to improve their study by 

validating their findings on an independent set of samples and succeeded in validating their 

classification algorithm with a sensitivity of 90.9% and a specificity of 91.1%, although the 

small numbers of samples used in the validation set restricted the generalisation of the 

findings and therefore no significant conclusion could be drawn.   

The above studies are representative of experiments carried out by various research groups, 

raising critical questions regarding the reproducibility of the technique. The evidence that 

pre-analytical and analytical variability has a significant impact on protein/peptide profiles 

cannot be denied and shows the susceptibility of this technology to production of artifacts 

which manipulates the final results. The unsuccessful validation studies prompted 

researchers to improve the shortcomings of MS-based serum proteomic profiling methods 

by applying standardised and carefully designed protocols. A number of recently published 

reports have addressed various aspects of the reproducibility, pre-analytical variability and 

analytical issues in MS-based proteomics in order to avoid previous shortcomings and 

facilitate the progress in the field (Matharoo-Ball et al. 2007, Tiss et al. 2007, Callesen et 

al. 2008, Peng et al. 2009, Semmes et al. 2005).      
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3.1.2 Effects of preanalytical, analytical and postanalytical variability in 

MS-based serum proteomic profiling: How to overcome the issues 
The preanalytical step refers to all the procedures performed prior to analysis of the 

specimen by mass spectrometer. The analytical phase includes the mass spectrometry 

analysis and the postanalytical phase refers to the bioinformatic tools used for data mining 

(Rai and Vitzthum 2006).  

Little effort has been made to investigate the reproducibility of the spectra generated by 

MALDI-TOF-MS instrumentation which has a higher resolution when compared to 

SELDI-TOF-MS (Coombes et al. 2005). In the proposed study, MALDI-MS was used as 

the method of choice (due to its high-throughput and high sensitivity) for the analysis of the 

mouse and QC serum peptides and proteins. In addition, the initial results of reproducibility 

studies on the MALDI-MS instrument and effects of automated sample handling on both 

protein and peptide patterns acquired from naïve mice and QC serum is presented. 

Preliminary results of novel method development for enrichment of low molecular weight 

(LMW) peptides are also reported which uses C4 ZipTip in conjugation with C18 ZipTip 

fractionation prior to tryptic digestion of human serum. Standardisation and optimisation of 

these protocols is essential before further experiments are preformed on limited material.       

 

3.1.3 Aims and objectives 
Detailed objectives for this part of the study were as follow: 

• To programme the Xcise robotic liquide handler to perform the required sample 

preparation strategies involving the use of C18 ZipTips.  

• To optimise the optimum dilution for serum prior C18 ZipTip clean-up. 

• To investigate the effects of C18 ZipTips on removal of high molecular mass 

proteins from serum. 

• To investigate the use of C4 ZipTip in conjunction with C18 ZipTip for serum 

sample preparation. 

• To investigate the reproducibility of Xcise robotic system and MALDI mass 

spectrometry within and between runs, using QC sampl 
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3.2 Results 

 

3.2.1 Optimised sample volume and dilution for Xcise robotic system  

sample processing 
An automated system for sample preparation prior to MALDI-MS analysis was utilised in 

this study. The robotic system was programmed to carry out a previously established 

manual sample preparation and processing protocol described by Matharoo-Ball and 

colleagues (Matharoo-Ball et al. 2007). Briefly, a 1:10 dilution of serum samples in 0.1% 

TFA were subjected to C18 ZipTip clean-up and then spotted on the MALDI plate for 

protein profiling. In addition, tryptic digestion was performed and samples were analysed 

by MALDI for peptide profiling. Moreover, in this study protein profiles of 1:10 dilution of 

serum without C18 ZipTip clean-up were also examined. Initially, the effects of sample 

dilution and volume used on the robotic system were examined and optimised and the 

workflow is presented in figure 3-1.  

 

Serum sample
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Figure 3-1. Workflow of sample preparation.  
 

Serum was diluted 1:10 and 1:20 with 0.1% TFA and different volumes (10µl, 15µl, 20µl 

and 25µl) of each were used on the robotic system which either directly spotted onto the 
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sample plate or subjected the sample to C18 ZipTip clean-up. This was followed by tryptic 

digestion of serum and peptide analysis. Figure 3-2 shows the results of different serum 

dilution and the protein spectra obtained from peaks that were prominent for in the 1:20 

dilution of the sample compared to the 1:10 dilution of serum. This demonstrated that both 

dilutions showed similar profiles that could be reproduced. Therefore, the 1:20 dilution of 

serum was used in future experiments.  
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Figure 3-2. Dilution of serum samples with subsequent C18 ZipTip clean-up. Replicate MALDI-TOF 
analysis of 1:10 and 1:20 dilution of same sample after C18 ZipTip obtained from MALDI linear mood. The 
1:20 dilution of sample showed higher number of peaks and better intensity compare to 1:10 dilution of 
sample.  
 

Use of different starting volumes of diluted serum processed by the Xcise robotic system 

was also examined. The results of the 1:20 dilution of serum after C18 ZipTip clean-up 

using different starting volumes (10 μl, 15 μl, 20 μl and 25 μl) are presented in figure 3-3 

and the regions with significant differences are highlighted. Use of different starting 

volume on the Xcise robotic system appeared to affect the quality of both protein and 

peptide MALDI spectra. The MALDI-TOF analysis of serum protein profiles after C18 

ZipTip clean-up using volumes of 20 μl and 25 μl were shown to give the best protein 

profiles with higher numbers of peaks and of higher intensities (figure 3-3A). The same 

samples were subjected to tryptic digestion and peptide profiles were obtained by MALDI-

MS and the results are presented in figure 3-3B. As shown in the figure 3-3B, using an 

initial volume of 25 μl results in superior spectra (figure 3-2B). Spectra obtained from the 
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using 25 μl show higher number of peaks with higher intensities in the lower mass range 

(1000-1200 Da) of spectra as highlighted, compare to the use of other volumes. These low 

mass peaks as shown in figure 3-3B,  are not present or present in lower intensities in the 

spectra obtained from 10 μl, 15 μl and 20 μl samples. In conclusion, a significant number 

of peaks are present in both protein and peptide spectra when 25 μl of sample were utilised 

for processing, which are not apparent using other volumes and therefore this volume was 

optimum and was applied in all future experiments.      
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Figure 3-3. Impacts of different sample volumes used on the Xcise system, on the quality of serum 
protein (A) and tryptic peptide (B) MALDI spectra. A serum sample was diluted 1:20 in 0.1% TFA and 
25μl (1), 20μl (2), 15μl (3) and 10μl (4) of this was used as the initial volume of sample on the Xcise robotic 
system prior to MALDI-TOF analysis. Figure A shows serum protein spectra after C18 ZipTip clean-up 
corresponding to each of the initial volumes used on Xcise and figure B is the MALDI-TOF tryptic peptide 
profiles of the same samples. The best spectra for both protein and tryptic peptides were obtained from the 
initial sample volume of 25μl which showed spectra with higher number of peaks and better intensities in 
comparison to other initial sample volumes and some of these differences are highlighted.  
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3.2.2 Evaluation of C18 ZipTip solid phase extraction for MS serum 

profiling 
As C18 ZipTip chromatography is the main method used in this study and as part of 

standardization of the protocols in use, we examined the efficiency of this column in 

removal of high mass proteins such as albumin from serum samples. In order to examine 

this, the 1:20 dilution of mouse serum was spotted with SA before C18 ZipTip clean-up on 

the MALDI plate. Then the same aliquot of sample was put through C18 ZipTip clean-up 

and the eluted material from the column was spotted with SA on the MALDI plate. In 

addition, the remnant serum sample which was left behind after C18 ZipTip binding was 

spotted with SA on the MALDI plate. The samples were analysed with MALDI-TOF 

operated in linear mode and representative spectra are shown in figure 3-4. The mass value 

for albumin is approximately 66 kDa and as it can be seen in figure 3-4, spectra obtained 

from 1:20 dilution without any clean-up contains a high amount of albumin however, 

significant removal of albumin after use of C18 ZipTips was achieved. There are also more 

peaks with higher resolution with low molecular weights (LMW) observed which 

demonstrates that with the use of C18 ZipTips we can to some extent enrich the LMW 

components of serum samples.  
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1:20 dilution C18 ZipTip eluate 
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Figure 3-4. Effects of C 18 ZipTip on removal of serum albumin. Figure A represents MALDI-MS protein 
profile of 1 in 20 dilution of serum sample spotted with SA and analysd in linear mode. Figure B represents 
the same aliquot of sample after C 18 ZipTip spotted with SA and analysed in linear mode in which significant 
removal of albumin is observed. Figure C represents spectra from remain of sample after C 18 ZipTip spotted 
on the plate with SA. 
 

 

3.2.3 Within run reproducibility of protein and peptide MALDI 

spectra profiles of mouse serum 

Reproducibility studies were preformed on replicate aliquots of the same serum, which 

were spotted and analysed by MALDI-TOF before and after C18 ZipTip chromatography 

clean-up (protein profiling) and after tryptic digestion (peptide profiling). This study allows 

the assessment of spot-to-spot variation within a single MALDI run for the same aliquot of 

mouse serum sample. The analytical procedures were carried out using a robotic system, 

followed by MALDI-TOF analysis of proteins in linear mode and peptide analysis in 

reflectron mode. Representative spectra of protein profiles without C18 ZipTip clean-up (n = 
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8), after C18 ZipTip clean-up (n = 8) and tryptic peptide (n = 6) analysis are show in figure 

3-5. Visual inspection of both protein and tryptic peptide spectra indicated a satisfactory 

spectra quality and reproducible for both protein replicates. 
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Figure 3-5. Replicate MALDI-TOF analysis of serum protein and tryptic peptides processed by Xcise 
robotic system. Replicate MALDI-TOF analysis of aliquots of the same sample diluted 1:20 in 0.1% TFA 
and analysed in linear mode (A) without C18 ZipTip clean-up and (B) after C18 ZipTip. (C) Replicates of 
tryptic peptide profiles following digestion and MALDI-TOF analysis in reflectron mode.  
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As can be seen from table 3-1, the mass accuracy both in linear and reflectron mode is very 

high with CVs for linear mode showing less than 0.06% and in reflectron mode showing 

CVs less than 0.05%. For each of these three types of profiling experiments, 5 peaks that 

were constantly present in the spectra were identified and used to assess the reproducibility. 

The peaks range from a low to high mass and for the protein profiles these 5 peaks were 

selected within the range of 1000-15000 Da and 800-3500 Da for the tryptic peptides. The 

mean and CV for the m/z values and normalised intensity ratios were calculated and shown 

in table 1-1A for the serum protein profiles without C18 ZipTip (n = 8), table 1-1B for 

serum protein profiles after C18 ZipTip clean-up (n = 8) and table 1-1C for digested serum 

profiles (n = 6). The CVs for serum protein profiles without C18 ZipTip were between 15-

25.3%, after C18 ZipTip ranged from 13.6-44.5% and for the serum tryptic digested peptides 

ranged from 16.2-33.3%. The mass accuracy and resolution increased for the peptide 

profiles because they can be measured in the reflectron mode by a TOF mass analyser 

however, range of CV is wider for proteins. Although, these results are promising but it is 

essential to determine the reproducibility of peaks between runs which will be carried out in 

future experiments.  
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Linear mode Mass 
Normalized 

intensity ratio Mass 
Normalized 

intensity ratio Mass 
Normalized 

intensity ratio Mass 
Normalized 

intensity ratio Mass 
Normalized 

intensity ratio 
  2244.1 2.46 4244.5 3.32 6004.0 0.96 7915.8 2.29 8424.8 1.22 
  2241.8 2.37 4243.6 3.75 6004.4 1.03 7916.4 2.21 8425.4 1.67 
  2243.6 2.23 4245.2 2.38 6005.5 0.58 7917.0 0.86 8426.1 0.89 
  2243.9 2.59 4245.1 4.07 6005.3 1.05 7916.9 1.29 8426.1 1.44 
  2245.0 1.87 4246.1 2.55 6007.0 0.69 7917.6 1.15 8427.8 1.25 
  2243.5 1.99 4245.0 2.33 6005.8 0.65 7917.4 0.72 8427.0 1.02 
  2241.9 2.39 4243.7 2.95 6004.3 0.75 7916.9 2.23 8425.9 1.03 
  2240.0 1.76 4241.2 2.80 6002.2 1.14 7914.6 1.08 8423.0 2.24 
Mean 2242.96 2.21 4244.31 3.02 6004.81 0.86 7916.57 1.48 8425.75 1.35 
CV% 0.07 13.60 0.04 21.28 0.02 24.79 0.01 44.54 0.02 32.61 

Reflectron 
mode Mass 

Normalized 
intensity ratio Mass 

Normalized 
intensity ratio Mass 

Normalized 
intensity ratio Mass 

Normalized 
intensity ratio Mass 

Normalized 
intensity ratio 

  1048.8 0.64 1194.0 0.49 1610.3 1.40 2241.0 0.38 2812.3 0.11 
  1048.8 0.45 1194.0 0.41 1610.2 2.47 2240.9 0.33 2810.8 0.13 
  1048.9 0.75 1194.0 0.59 1610.4 2.05 2241.0 0.33 2812.6 0.15 
  1048.7 0.88 1193.9 0.75 1610.3 2.22 2240.9 0.43 2808.8 0.12 
  1048.8 0.56 1194.0 0.51 1610.3 1.45 2240.9 0.29 2810.3 0.11 
  1048.8 0.49 1194.0 0.43 1610.3 0.93 2241.0 0.29 2812.4 0.07 
Mean 1048.79 0.63 1193.98 0.53 1610.31 1.75 2240.92 0.34 2811.18 0.11 
CV% 0.004 25.69 0.003 23.66 0.002 33.25 0.002 16.15 0.05 23.90 

Linear mode Mass 
Normalized 

intensity ratio Mass 
Normalized 

intensity ratio Mass 
Normalized 

intensity ratio Mass 
Normalized 

intensity ratio Mass 
Normalized 

intensity ratio 
  2244.8 0.62 4245.7 2.68 5557.4 1.13 8426.2 6.88 10377.3 0.12 
  2245.5 0.91 4241.8 3.77 5557.6 1.80 8428.3 8.36 10386.0 0.18 
  2243.8 0.95 4242.2 3.08 5555.3 1.56 8428.6 8.32 10371.2 0.12 
  2243.8 0.99 4246.6 3.36 5559.3 1.51 8428.9 7.63 10364.3 0.09 
  2242.6 0.97 4246.7 3.28 5562.3 1.30 8429.1 7.62 10371.8 0.12 
  2244.0 1.28 4243.9 4.32 5556.3 1.60 8428.3 10.17 10370.3 0.16 
  2246.7 0.97 4247.6 4.02 5559.1 2.14 8429.1 10.34 10369.7 0.20 
  2244.3 1.11 4246.6 3.49 5557.5 1.67 8428.3 9.78 10370.5 0.16 
Mean 2244.44 0.98 4245.14 3.50 5558.10 1.59 8428.35 8.64 10372.64 0.14 
CV% 0.06 19.04 0.05 15.02 0.04 19.26 0.01 15.10 0.06 25.33 

 

 

 

 

Table 3-1. Reproducibility data for serum protein and tryptic peptides. Masses (m/z) and intensities (after normalisation) acquired by MALDI-TOF-MS in linear 
mode for proteins and in reflectron mode for the digested peptides are shown as mean values and their respective CV. The CV for five selected protein peaks with 
normalized intensities in each of the regions between the range of m/z 1000-15000 Da was less than 25.3% (A) and 44.5% (B) for the protein profiles without C18 ZipTip 
and after C18 ZipTip respectively. The tryptic peptides lead to CV of normalised intensities between 16.2-33.3% in the regions between the range of m/z 800-3500 Da 
(C).   

A 

C 

B 
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3.2.4 Method development for enrichment of low molecular weight 

peptides using C4 and C18 ZipTips 
We examined the efficiency of a new sample preparation protocol and compared it with the 

established protocol that employs the use of C18 ZipTip. Briefly, the proposed protocol 

involved the use of C4 ZipTips in conjugation with C18 ZipTips clean-up that aimed to 

remove the higher molecular weight compounds and enrich the LMW peptides and/or 

proteins. Serum was passed through the C4 ZipTips and the eluate was then passed through 

C18 ZipTips. This was followed by spotting the eluate with SA and on the MALDI target 

plate and MALDI analysis in linear mode. Tryptic digestion was carried out on the eluate 

overnight and after C18 ZipTips clean-up the samples were spotted with CHCA on the 

MALDI target plate for peptide profiling in reflectron mode. The use of C4 ZipTips instead 

of the C18 ZipTips was also investigated in which serum was C4 ZipTipped and then 

digested which was followed by a C4 ZipTip clean-up and MALDI analysis. Representative 

spectra of the different sample preparation prior to MALDI analysis are shown in figure 3-

6.   
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Figure 3-6. Comparison of protein and tryptic peptide MALDI spectra with different sample 
preparation protocols. (A) Representative MALDI-TOF spectra of same serum proteins after either C4, C18 
or C4 followed by C18 ZipTip clean-up, acquired in  linear mode. (B) Representative spectra of tryptic peptide 
profiles following digestion and MALDI-TOF analysis in reflectron mode.  
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Comparison of the 3 types of serum preparation protocol produced slightly different results. 

As seen in figures 3-6 A and B above.  The protein profiles of serum sample after C4 or C18 

and combined C4/C18 ZipTip clean-up show that there are more low mass range peaks 

(figure 3-6A) with higher intensity and better resolution for C18 ZipTip clean-up compared 

to the other 2 methods. Similarly for the peptides if we home in on the area between 800-

1500 Da (figure 3-6B) there appear to be greater number of peaks and of higher intensity in 

the samples post C18 ZipTip compared to C4 ZipTip and combined C4/C18 ZipTip. 

Therefore; for this reason the protocol involving C18 ZipTip for both protein and peptide 

processing was chosen for future experiments.  

 

3.2.5 Between run reproducibility of protein and peptide MALDI 

spectra profiles of QC samples 
We assessed the performance and reproducibility of both instruments (MALDI-MS and 

Xcise robotic system) used in our study by including QC samples in each run, to ensure that 

the protocols that we used for sample preparation and data acquisition were robust. The QC 

samples were diluted and processed on Xcise as described before and all samples were 

analyzed in duplicate. The spectra were checked visually and cluster analysis was 

performed on the spectra that had the acceptance criteria. The spectra below are 

representative of an acceptable QC spectrum for proteins without any clean-up procedure, 

proteins after ZipTipping and the peptide profile. The following data from cluster analysis 

will explain the procedure better.  

Proteins without C18 ZipTip clean-up: The protein profiles of QC samples spotted directly 

with SA on the plate were analyzed in linear mode on a daily basis and after checking the 

profiles they were smoothed and cluster analysis was performed. This was repeated on 8 

different days and they were named run 1 to 8 and figure 3-6 shows one representative 

spectrum from each day. As shown, there is a good reproducibility in the spectra obtained 

from different runs on individual days and the cluster analysis (figure 3-6) show good 

integration of spectra from different runs. We selected mass range of 6-7 kDa and 9-10 kDa 

to be used for cluster analysis. 

 

 



Chapter 3 
 

 110 

 
Figure 3-7. The figure on top represents the reproducibility of QC samples without C18 ZipTip clean-up, run 
in linear mode. Each spectrum is a representative of a QC sample run on different days. The bottom figure 
represent the cluster analysis for the same samples which shows that samples are similar to each other 
irrespective to day that they were run.   
 
Protein data after C18 ZipTip clean-up: Figure 3-7 shows the 5 runs collected from QC 

samples on separate days and the result of the cluster analysis is also shown in figure 5. As 

can be seen from the spectra data reproducible peaks can be observed. The cluster analysis 

shows how similar each separate runs are together. In the cluster analysis all the runs are 

mixing together which demonstrates that these runs although have been carried out in 

separate days, there is not much variation between them and are similar to each other.  For 

the cluster analysis of these samples also m/z of 6-8 and 9-10 kDa was used.  
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Figure 3-8. The top figure represents the reproducibility of QC samples after C18 ZipTip clean-up, run in 
linear mode. Each spectrum is a representative of a QC sample run on different days. The bottom figures 
represent the cluster analysis for the same samples which shows that samples are similar to each other 
irrespective to the day that they were run.   
 
Peptide data after C18 fractionation: The peptides were run on 4 different days and a 

representative QC peptide profiles and the relevant cluster analysis is shown in figure 3-8. 

Our previous reproducibility studies showed that, CVs of peptide profiles were slightly 

higher that the protein profiles which can be due to the fact that these samples go through 

the cleaning procedure twice using C18 ZipTips and this may increase the variability 

between the samples. This also has an impact on the cluster analysis of the tryptic QC 

peptides. The QC peptides did not cluster as well as the two other datasets shown. The 

problem lies in the fact that although the selected spectra have similar patterns, a significant 
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difference in the intensity of the peaks were observed which might be correlated to the use 

of different laser power in different runs, experimental conditions, difference in quality of 

the matrix and its crystallisation.   

 

 
Figure 3-9. The top figure represents the reproducibility of QC samples after tryptic digest, run in reflectron 
mode. Each spectrum is a representative of a QC sample run on different days. The bottom figures represent 
the cluster analysis for the same samples which shows that there is a difference between the samples run in 
different days however the pattern of the spectra is similar with considerable differences in their intensities. 
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3.4 Discussion 
The objective of the investigation described in this chapter was the development of a high 

throughput method for the analysis of LMW serum peptides. In order to achieve the 

sensitivity and reproducibility required, multi-stage clean-up procedures were developed 

for both native and tryptic peptides. This section details the various methods explored, their 

efficiency and optimisation. 

Despite recent investigations on proteomic profiling of biological fluids and tissue aiming 

to identify candidate tumour markers, few have been approved and utilised in clinical 

practice (Taylor et al. 2006). The main concerns in the use of this technology are due to 

debates over the reproducibility and reliability of generated data (de Noo et al. 2005). 

Proteomic expression profiling by MALDI-MS is clearly high throughput with high mass 

accuracy (Dekker et al. 2005), but the stability of proteomic patterns over multiple 

experiments remains a question. To qualify the serum proteome profiling technique as a 

future diagnostic test, use of simple and robust techniques is more desirable than the use of 

more complex multi-step tools. The use of one step fractionation protocols such as various 

reversed-phase magnetic beads and pre-packed ZipTips have been proved to reduce serum 

complexity. Although number of studies has focused on standardisation of sample 

preparation protocols for MALDI, limited number of investigations has been reported 

regarding the reproducibility and rigorousness of the technique (de Noo et al. 2005 & Tiss 

at al. 2007). Within this study, we used a systematic automated sample preparation 

protocol (to minimise the impacts of preanalytical procedures on the final outcomes) for the 

high-throughput MALDI analysis of serum proteome and the technical reproducibility of 

this approach was examined at various levels of analysis. An established protocol utilising 

pre-packed C18 ZipTips (Matharoo-Ball et al. 2007) have been applied for serum 

fractionation using Xcise robotic sample handling system and we compared this with the 

use of C4 and C18 ZipTips in conjunction for serum sample fractionation prior to MALDI 

analysis of serum samples.  

Optimisation experiments showed Analysis show that utilisation of 1:20 dilution of serum 

in 0.1% TFA followed by C18 ZipTips fractionation prior to MALDI analysis obtained rich 

spectra containing high number lower molecular weight peaks and showed much details in 

spectra which then preceded for tryptic digestion and peptide profiling. Therefore this 
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protocol was adapted for further studies. In addition, use of C18 ZipTip clean-up on the 1:20 

dilution of serum significantly reduced the concentration of albumin in serum.  

Moreover, more detailed investigations regarding the robustness of the instrumentation 

used in the proposed protocol were carried out by assessing the reproducibility of final 

result which is the MALDI spectra. Batch-to-batch variation in the C18 ZipTips, the robotic 

sample processing system and the MALDI instrument are potential factors that affect 

reproducibility. The reproducibility of automated sample preparation and spotting and 

MALDI measurement in this study was assessed and the CVs for NIR mouse serum 

MALDI spectra without C18 ZipTip were 15-25% (mean CVs value of 18.75%), after C18 

ZipTip clean-up was 13-44% (mean CVs value of 18.75%) and for tryptic peptides was 23-

33% (mean CVs value of 24.53%). Reproducibility of (mean CVs value of 18.75%) 

MALDI investigated The CVs of the human serum MALDI-TOF-MS profiles using C8 

magnetic bead sample preparation in recent study (de Noo et al 2005) was reported to range 

between 17% and 26% which is similar to our observation despite the fact that they used 

different sample preparation method. Our results are promising and show acceptable levels 

of reproducibility from one run although further analyses on the reproducibility of the same 

samples over multiple experiments will be carried out in the future.    



Chapter 4 
 

 115 

Chapter 4 – Serum and Tissue Proteomic Profiling in the 

Murine CT26 Colon Carcinoma Progression Model  

 

 

 

4.1 Introduction 
 

4.1.1 Tumour progression and survival 
Cancer cells must obtain the ability to generate their own mitogenic signals in order to 

resist to exogenous growth inhibitory signals. This allows cancer cells to avoid apoptosis, 

infinitely proliferate, and acquire vasculature and to invade and metastasize in order to 

survive and progress (Eccles 2005, Rieger 2004). Normal cells move from a quiescent into 

a proliferative state, growth signals are transmitted into the cell via transmembrane 

receptors. Oncogenes are capable of producing growth signals, similar to signals produced 

by the normal cell which disrupts mechanisms involved in normal behavior of cells within 

the tissue (Hanahash and Weinberg 2000). During the course of carcinogenesis, growth 

factor receptors are over expressed and cancer cells to become hyper-responsive to levels of 

growth factors that would not normally trigger proliferation (Fedi et al. 1997). In normal 

cells, extracellular matrix (ECM) receptors (integrins) link cells to the ECM and transducer 

signals into the cytoplasm that influence activities such as cell motility, resistance to 

apoptosis and entrance into the cell cycle. However, cancer cells acquire the ability to alter 

the expression of the ECM receptors (integrins), favoring receptors that transmit growth 

factors into the cytoplasm from the ECM. Soluble growth factor inhibitors and immobilised 

inhibitors are molecules that are embedded in the ECM and associated with receptors on the 

surfaces of nearby cells acting as an anti-proliferative signal that functions to maintain 

normal cellular quiescence and tissue homeostasis.   
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Since proteins are involved in structural changes and catalysis in tissue, and because they 

are the most commonly targeted molecules for therapeutics, a proteome analysis was 

performed on the CT26 murine colorectal solid tumour. In this study, the whole tumour 

proteome at three different stages (7, 14 and 20 days post tumour implantation) was 

analysed using MALDI-MS and C18 ZipTip fractionation. The MS data was interpreted by 

ANN analysis to generate a panel of ions, most discriminatory between the different stages 

of CT26 tumour progression. The candidate biomarkers identified in early stages (both 

serum and tissue studies) may have the potential to serve as early diagnostic biomarkers 

and the late stage candidate biomarkers may provide a better understanding of the 

mechanisms involved in tumour progression or act as therapeutic putative targets.   
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performed on the CT26 murine colorectal solid tumour. In this study, the whole tumour 

proteome at three different stages (7, 14 and 20 days post tumour implantation) was 

analysed using MALDI-MS and C18 ZipTip fractionation. The MS data was interpreted by 

ANN analysis to generate a panel of ions, most discriminatory between the different stages 

of CT26 tumour progression. The candidate biomarkers identified in early stages (both 
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analysed using MALDI-MS and C18 ZipTip fractionation. The MS data was interpreted by 

ANN analysis to generate a panel of ions, most discriminatory between the different stages 

of CT26 tumour progression. The candidate biomarkers identified in early stages (both 

serum and tissue studies) may have the potential to serve as early diagnostic biomarkers 

and the late stage candidate biomarkers may provide a better understanding of the 

mechanisms involved in tumour progression or act as therapeutic putative targets.   

 

 

 

 

 

Since proteins are involved in structural changes and catalysis in tissue, and because they 

are the most commonly targeted molecules for therapeutics, a proteome analysis was 

performed on the CT26 murine colorectal solid tumour. In this study, the whole tumour 

proteome at three different stages (7, 14 and 20 days post tumour implantation) was 

analysed using MALDI-MS and C18 ZipTip fractionation. The MS data was interpreted by 

ANN analysis to generate a panel of ions, most discriminatory between the different stages 

of CT26 tumour progression. The candidate biomarkers identified in early stages (both 

serum and tissue studies) may have the potential to serve as early diagnostic biomarkers 

and the late stage candidate biomarkers may provide a better understanding of the 

mechanisms involved in tumour progression or act as therapeutic putative targets.   

 

 

4.1.2 Aims and objectives 

Detailed aims for this part of the study were: 

• To collect serum samples from individual CT26 tumour-bearing mice in four 

different time points (i.e. naïve satus and 7, 14 and 21 days post tumour 

implantation). 

• To obtain serum peptide profiles using MALDI-MS followed by ANN analysis to 

investigate whether is possible to obtain a panel of markers that are discriminatory 

between the different time-points of tumour progression. 

• To identify the proteins associated with the candidate panel of biomarkers. 
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• Validate the proteomic based results using independent methods.  
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4.2 Summary of methods 

 
A) CT26 progression murine model and sample collection 
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B) Sample preparation for proteomic analysis 

C18 ZipTip clean-up 

NH4HCO3, dH2O nad trypsin are 
added to the eluent 

Incubation in 37°C overnight 

C18 ZipTip clean-up 

MALDI-MS 
analysis 

Protein & Peptide 
profiles 

Bioinformatics 
(ANNs analysis) 

Identification 
(ESI MS/MS) 

Serum sample 
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4.3  Results 

 

4.3.1 Peptide analysis of serum and tissue from the CT26 progression 

model by MALDI-MS 
Serum and tissue samples from the CT26 progression model were subjected to MS 

analysis. Using MALDI-MS profiling, the serum and tumour samples were subjected to C18 

ZipTip clean-up followed by tryptic digestion and a second C18 ZipTip chromatography; in 

addition, peptide profiles at different time-points were compared and analysed by ANNs. 

The proteomic analysis by MALDI is divided into serum and tissue analysis; the details are 

described in the following sections.   

 

4.3.1.1 Time-Dependent Tryptic Peptide Analysis of Serum from the CT26 Progression 

Model. 

Serum samples from 15 control (n = 15 TP0, n = 15 TP1, n = 10 TP2 and n = 5 TP3) and 

45 tumour-bearer (n = 45 TP0, n = 45 TP1, n = 30 TP2 and n = 15 TP3) mice were 

subjected to MS analysis. The sample preparation procedure utilising C18 ZipTip was 

described previously and the tryptic peptide serum profiles were generated by MALDI-

TOF MS (Bruker Daltonic, Bremen, Germany), operated in reflectron mode. Visual 

assessment of the MALDI spectra was necessary to determine the quality of the produced 

spectra and the reproducibility of sample preparation procedures. In addition, all the 

acquired MALDI spectra were visually assessed according to strict criteria (described in 

chapter 3) prior to statistical analysis for biomarker discovery to ensure the high quality of 

the data. Overall, there appeared to be visual spectral differences between the tryptic 

peptide proteomic profiles of serum sample from different time-points, and especially 

noticeable variation in the TP3 proteomic profiles in comparison to the other time-points. 

The methodology used here was relatively high-throughput and very high resolution spectra 

were obtained, therefore it is not possible to analyse multiple samples for each experiment 

by visual assessment of the spectra. Most of the spectral variation can be visualised when 

the spectra is “zoomed in” and here only the overall differences are shown. Moreover, the 

visual spectral differences highlighted in figure 4-1 show peaks that have higher abundance 

and therefore it is relatively easy to detect differences between the groups. In each 

spectrum, there were a number of peaks with lower intensities which may be significant 
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and possibly discriminatory between the groups, but it was not possible to assess these 

visually with any degree of accuracy. Therefore, these complex data sets from the CT26 

progression model were subjected to a competitive algorithm (i.e. ANN) analysis to 

identify differences.  
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Figure 4-1. Figure showing tryptic peptide MALDI spectra obtained from serum samples from TP0, 
TP1, TP2 and TP3 tumour-bearer mice. The X axis represents the m/z ratio and the Y axis represents 
relative intensity. Representative MALDI-TOF mass spectra of TP0, TP1, TP2 and TP3 tumour-bearer mice 
serum tryptic digest mass range of 800-3000 Da, acquired in reflectron mode. Serum samples were spotted 
with CHCA on the MALDI steel plate and allowed to air dry. Peptide peaks in the regions highlighted in the 
figure appears to be up or down regulated when a four-way comparison was carried out on the different time-
points. 
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4.3.1.2 Time-dependent tryptic peptide analysis of tissue from the CT26 progression model. 

Liver and spleen tissue samples from 15 controls (n = 5 TP1, n = 5 TP2 and n = 5 TP3 for 

each tissue) and CT26 tumour, liver and spleen tissue samples from 45 tumour-bearers (n = 

15 TP1, n = 15 TP2, n = 15 TP3 for each tissue) were subjected to MS analysis. The 

tumour tissue as described was ground to a fine powder under liquid nitrogen and buffers 

added for protein extraction. The tissue homogenate was then subjected to C18 ZipTip 

separation as described previously and the tryptic peptide serum profiles were generated by 

MALDI-MS. Visual spectral differences between the different tissue types were observed 

and a representative tryptic peptide MALDI spectrum for each of the tissue samples 

obtained from the tumour-bearer animals is presented in figure 4-2. Interestingly, the tryptic 

peptide spectrum of liver tissue is very different compared to spleen and CT26 tumour 

tissue spectra. Spectra obtained from the tumour and spleen tissues show similarities 

specially in the region of 2200-4000 Da as highlighted in figure 4-2 however, the main 

visual differences between these tissues was observed in lower mass ranges (1300-2200 

Da).  
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Figure 4-2. Figure showing tryptic peptide MALDI spectra obtained from liver, spleen and CT26 
tumour samples from TP1, TP2 and TP3 of tumour-bearer mice. The X axis represents the m/z ratio and 
the Y axis represents relative intensity. Representative MALDI-TOF tryptic digest mass spectra of liver, 
spleen and CT26 tumour of tumour-bearer mice, mass range of 1400-3600 Da was acquired in reflectron 
mode. Tissue samples were spotted with CHCA on the MALDI steel plate and allowed to air dry. The spectra 
acquired from different tissue samples show significant different patterns. Intriguing observations is similarity 
in the above spectra between the spleen and tumour but are visually very different when compared to the 
liver.  
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4.3.2 Discovery of discriminatory serum biomarkers of tumour 

progression using ANN modeling. 
To define changes in the serum proteome over a time course of tumour progression, we 

charted the plasma proteome of CT26 tumour-bearing mice at 4 different time points. In 

order to identify candidate biomarkers associating with tumour progression, initially we 

compared serum samples collected from 15 tumour-bearer mice at 4 different time points 

by generating various ANN models. Three models were developed to identify candidate 

biomarkers of tumour progression; the first model was based on serum TP0 and TP1 serum 

samples from the tumour-bearer mice, in which the TP0 serum was collected from 15 

tumour free (naïve) animals and the TP1 serum samples were collected 7 days post tumour 

implantation. The second model was based on TP1 and TP2 (collected 14 days post tumour 

implantation) serum samples and the third model was TP2 and TP3 (collected 21 days post 

tumour implantation) serum samples.    

The MALDI serum tryptic peptide profiles (mass range of 1000-3500 Da) of tumour-bearer 

mice from four different time points (n = 15 in each group) were subjected to ANN 

modeling using 12267 inputs for each sample (each input corresponds to intensity at a 

specific m/z value). Initially each input was used as a single input to train 50 models and in 

each model the total number of cases were randomly split into training (60%), testing 

(20%) and validation (20%) sets (random cross validation), after which the best performing 

model was selected for further analysis and all the remaining inputs were added 

sequentially to the first input to train the model. This procedure was continued until no 

further improvement in the model was observed.  

The first stepwise analysis was carried out on the TP0 and TP1 serum samples from the 

tumour-bearer mice, using a total of 6 steps. The best performance was achieved at step 5 

and the results are shown in table 4-1 which shows the median accuracies and mean 

squared errors of training, test and validation for each best performed model in each of the 

5 steps. The highest accuracy of prediction that distinguished TP0 from TP1 sera was 

observed at step 5 (highlighted in red in table 4-1), with peaks with m/z values of 3181, 

2659.8, 2600.8, 3187 and 1797 with an accuracy of 92%, sensitivity 93.75% and specificity 

of 100%. 
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Input m/z 
Training 

Perf. 

Test 

Perf. 

Validation 

Perf. 

Training

Error 

Test 

error 

Validation 

Error 

Presence of 

ion 

1 3181 67% 67% 67% 0.22 0.22 0.24 ↑TP0 

2 2659.8 78% 75% 75% 0.17 0.16 0.19 ↑TP1 

3 2600.8 92% 83% 83% 0.08 0.11 0.14 ↑TP1 

4 3187 100% 100% 83% 0.05 0.07 0.10 ↑TP0 

5 1797 100% 100% 92% 0.04 0.05 0.10 ↑TP0 

6 1474.8 100% 100% 83% 0.04 0.05 0.11 ─ 
 
Table 4-1. The table represents the data obtained from the stepwise analysis of MALDI data generated 
from serum tryptic peptide profiling of TP0 (naïve) and TP1 tumour-bearer mice. The table shows a 
summary of the median accuracies and the mean squared error for the training, test and validation data sets as 
each input is added to the model. The highest accuracy was achieved in step 5, highlighted in red, with 
median accuracy of 92% and mean squared test error value of 0.05 and further addition of ions did not affect 
the accuracy of model.     
 

Some of the MALDI tryptic peptide spectra differences between the TP0 and TP1 serum 

profiles for the top ions identified by ANN analysis are shown in figure 4-3. The m/z value 

of 1797 and 3181 show higher intensities in TP0 serum samples compare to TP1 serum 

samples whereas, ion with value of 2659.8 showed considerable higher intensity in TP1 

samples. 
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Figure 4-3. Figure showing visual spectral differences for some of the top discriminatory ions between 
TP0 and TP1 serum samples from tumour-bearer mice based on MALDI tryptic peptide profiles and 
ANNs analysis. The 1797 and 3181 discriminatory ions show higher intensity in TP0 samples whereas a peak 
with m/z of 2659.8 shows significant higher intensity in TP1 serum samples.   
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Furthermore, the potency of ANNs correctly classifying TP0 from TP1 based on the 5 ion 

model was further examined and is shown as a population chart in Figure 4-4. The ratios 

below 1.5 were assigned to the TP0 group and ratios above 1.5 were classified as TP1 

(figure 4-4). Based on the 5 ion model, all the TP0 and TP1 samples were correctly 

classified, demonstrating that this model was able to stratify individual mice correctly.  
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Figure 4-4. Predictive capability of ANNs to recognise tryptic peptide profiles based on 5 ion ANNs model. 
The dark bars indicate TP0 samples, and the light bars indicate TP1 samples. A predictive value below 1.5 
indicates a TP10 sample, while a prediction greater than 1.5 indicates a TP1 sample. 
 

 

The second step for identification of the candidate progression biomarkers was to compare 

TP1 and TP2 serum samples. The MALDI spectra of serum tryptic peptides of TP1 and 

TP2 mice were visually checked (according to the criteria previously described) for 

acceptance of the spectra. A total of 15 TP1 and 15 TP2 tryptic peptide profiles were 

accepted and used for bioinformatic analysis. Stepwise analysis was performed on these 

profiles to assess the ability of ANNs to classify tryptic peptide serum profiles of TP1 and 

TP2 mice serum. A total of 4 steps were carried out and the results of the stepwise analysis 

are illustrated in table 4-2. The best ANN prediction was achieved with 4 peptide peaks 

(m/z 2838.4, 3441.4, 2733.6 and 1197.8) that discriminated between the TP1 and TP2 

serum samples with an accuracy of 98%, sensitivity of 86.7% and specificity of 100% and 

the mean test error of 0.07. Comparison between the discriminatory ions from the TP1/TP2 

model and panel of ions from the TP0/TP1 model show no similarity between the panels of 

biomarkers associated with each of these models.    
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Input m/z 
Training 

Perf. 

Test 

Perf. 

Validation 

Perf. 

Training 

Error 

Test 

error 

Validation 

Error 

Presence of 

ion 

1 2838.4 72% 67% 67% 0.20 0.20 0.23 ↑TP1 

2 3441.4 89% 100% 83% 0.12 0.11 0.16 ↑TP2 

3 2733.6 89% 100% 88% 0.10 0.09 0.14 ↑TP2 

4 1197.8 94% 100% 98% 0.06 0.07 0.12 ↑TP1 

Table 4-2. The table represents the data obtained from the stepwise analysis of MALDI data generated 
from serum tryptic peptides of TP1 and TP2 mice. The table shows a summary of the median accuracies 
and the mean squared error for the training, test and validation data sets as each input is added to the model. 
The highest accuracy was achieved in the fourth step, highlighted in red, with median accuracy of 98% and 
mean squared value of 0.07 and further addition of ions did not affect the accuracy of model.     
 

The MALDI tryptic peptide spectra differences between the TP1 and TP2 profiles for the 

top 4 ions identified by ANN analysis are shown in figure 4-5. The m/z value of 2838.4, 

represents the first discriminatory ion (figure 4-5), is present in the TP1 and absent in the 

TP2 serum spectra. In addition, similar scenario is true for the ion with m/z value of 1197.8 

which is presented in figure 4-5. The second discriminatory ion was m/z values of 3441.4 

which show slightly higher intensity in the TP2 spectra.  
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Figure 4-5. Figure showing representative visual spectral differences for the top discriminatory ion 
between TP1 and TP2 based on MALDI tryptic peptide profiles and ANNs analysis. The discriminatory 
ions for the TP1 and TP2 were 233.4 and 1197.3 which is present in the spectra corresponding to TP1 and 
absent in the spectra obtained from the TP2. The ion with m/z of 3441.4 was present with higher intensity in 
TP2 compare to TP1 spectra.  
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The ANNs ability to classify TP1 and TP2 was examined by generating a population chart 

and the results are shown in figure 4-6. ANN analysis classified 100% of the TP2 

progression samples correctly whereas two TP1 serum samples were misclassified.  
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Figure 4-6. Predictive capability of ANNs to recognise tryptic peptide profiles based on 4 ion ANNs model. 
The dark bars indicate TP2 samples, and the light bars indicate TP1 samples. A predictive value below 1.5 
indicates a TP2 sample, while a prediction greater than 1.5 indicates a TP1 sample. 
 

The final step for identification of the candidate progression biomarkers was to compare 

TP2 and TP3 serum samples. The back propagation algorithm was used to identify patterns 

in the data and 18 samples were randomly selected for training, 6 for the test set and 6 for 

the blind dataset for each model, with 50 models run. A total of 9 steps was performed on 

the TP2/TP3 serum samples and the ANNs correctly classified the serum samples 

originating from either TP2 or TP3 tumour-bearer mice with an accuracy of 100% and a 

sensitivity and specificity of 98% and 99%, respectively and the mean test error of 0.04 

which was reached at step 3 and table 4-3 shows the step wise results. Addition of ions after 

step 3 did not improve the models performance and resulted in over fitting of data. 
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Input m/z 
Training 

Perf. 

Test 

Perf. 

Validation 

Perf. 

Training 

error 

Test 

error 

Validation 

error 

Presence of 

ion 

1 2837.4 72% 83% 67% 0.19 0.17 0.22 ↑TP3 

2 3125.8 83% 92% 83% 0.12 0.10 0.14 ↑TP2 

3 2916.4 100% 100% 100% 0.05 0.04 0.09 ↑TP3 

4 2985.8 100% 100% 92% 0.04 0.03 0.08 ─ 

5 1413.2 100% 100% 100% 0.03 0.04 0.08 ─ 

6 3011.2 100% 100% 100% 0.03 0.04 0.07 ─ 

7 1594.6 100% 100% 100% 0.03 0.04 0.09 ─ 

8 2769.4 100% 100% 100% 0.03 0.05 0.10 ─ 

9 1890.4 100% 100% 83% 0.04 0.05 0.10 ─ 
 

Table 4-3. The table represents the data obtained from the stepwise analysis of MALDI data generated 
from serum tryptic peptides of TP2 and TP3 mice. The table shows a summary of the median accuracies 
and the mean squared error for the training, test and validation data sets as each input is added to the model. 
The highest accuracy was achieved in step 3, highlighted in red, with median accuracy of 100% and mean 
squared test error value of 0.04 and further addition of ions did not affect the accuracy of model.      
 

Figure 4-7 shows the response curve of the top three ions identified by ANN in the 

TP2/TP3 model. The response curve shows that ion m/z 2837.4 has higher intensity in TP3 

samples (figure 4-7 A) whereas the m/z 3125.8 ion appears to have significantly higher 

intensity in the TP2 sample (figure 4-7 B). In addition, the m/z 2916.4 shows considerable 

higher intensity in the TP3 samples (figure 4-7 C). These differences can be seen in the 

spectra corresponding to TP2 and TP3 samples and representative spectra are shown in 

figure 4-7 D and the differences are highlighted.  
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Figure 4-7. Response graphs generated singly for each of the 2 peptide biomarker ions used in the 
TP2/TP3 tumour model and the visual tryptic peptide MALDI spectral differences for the top three 
discriminatory ions. (A) Response graph for m/z 2837.4 indicating the relationship between intensity of the 
ion and the probability of predicted TP2 or TP3. (B) Response graph for m/z 3125.8 indicating the 
relationship between intensity of the ion and the probability of predicted TP2 or TP3. (C) Response graph for 
m/z 2916.4 indicating the relationship between intensity of the ion and the probability of predicted TP2 or 
TP3. (D) Representative MALDI spectra indicating discriminatory ions identified by the three ion ANN 
model of TP2/TP3. 
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Figure 4-8 shows the population distribution of the predicted outputs for all 30 samples.  

Samples originating from TP2 are highlighted in dark and TP3 are highlighted in lighter 

colour. The figure shows that all of the serum samples were correctly classified based on 

the 3 ANNs predicted ions. 
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Figure 4-8. Predictive capability of ANNs to recognise tryptic peptide profiles based on 3 ion ANNs model. 
The dark bars indicate TP2 samples, and the light bars indicate TP3 samples. A predictive value below 1.5 
indicates a TP2 sample, while a prediction greater than 1.5 indicates a TP3 sample. 
 

As mentioned above at each time point of the experimental design also included naïve 

(control) mice to ensure that the markers were truly reflective of tumour burden and not the 

age of the animal. ANNs analysis was however, not possible due to small samples (n = 5) at 

each time-point.  

 

4.3.3 Time-course analysis of CT26 tumour proteome changes during 

tumour progression using ANN modeling. 

The goal of the study was to identify candidate tumour, spleen and liver tissue biomarkers 

that may associate with CT26 tumour progression. An experimental Balb/c murine 

progression model was established by CT26 tumour implantation and this was used to 

investigate tissue proteome changes in tumour-bearing mice over three different time-

points. Tissue specimens were collected from 15 mice at three different time points: 7 

(TP1), 14 (TP2) and 21 (TP3) days post tumour implantation. Tumour tissues were 
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homogenised and total protein extraction was performed as described in chapter 2. To 

identify candidate tumour tissue biomarkers, tumour proteome extracts were analysed using 

MALDI-MS in conjunction with ANN analysis. Following tumour protein extraction, the 

total protein concentrations for all tissues were equalised to 1mg/ml in 0.1%TFA. Tissue 

samples were passed through C18 ZipTip columns to remove high mass proteins. Tryptic 

digestion was carried overnight, followed by a second C18 ZipTip clean-up procedure. The 

final eluate was spotted on to a MALDI a plate with 10 mg/ml CHCA and tryptic peptide 

profiles were generated by MALDI-MS, operated in reflectron mode. The tryptic peptide 

profiles were visually checked and spectra with poor quality were eliminated from the 

study; the remaining spectra were subjected to proceed for further bioinformatic analysis, 

using ANN modeling. 

The MALDI-MS tumour tissue tryptic peptide profiles (mass range of 1-4 kDa) of 9 TP1, 

15 TP2 and 15 TP3 samples were used for ANN modeling. A stepwise approach was 

utilised to identify the minimum number of ions capable of assigning samples correctly to 

their respective groups. Prior to the ANN analysis, the data was smoothed, aligned and 

baseline corrected as described in materials and methods (chapter 2). As each sample was 

spotted on the MALDI plate in duplicate, one spot for each sample was randomly selected 

to be used in ANNs modeling. Three different ANN modes were generated to identify 

candidate biomarkers which are discriminatory of tumours at different time-points of 

tumour progression; the first model was a TP1 tissues versus TP2 tissues, the second model 

was TP2 tissues versus TP3 tissues and finally TP1 tissues versus TP3 tissues model were 

generated. In order to generate ANN models from MALDI tryptic peptide profiles of 

various time-point tumour samples, the stepwise approach was utilised which involves 

training a number of models using 14841 inputs for each sample (each input corresponds to 

intensity at a specific m/z value). Initially each input was used as single input to train 50 

models and for each model, the total number of cases were randomly split into training 

(60%), test (20%) and validation (20%) sets; this allows random cross validation analysis to 

be performed. After training 50 models, the best performing model was selected for further 

analysis and all the remaining inputs were added sequentially to the first input to train the 

model. This procedure was continued until no further improvement in the model was 

observed.  
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The first model was TP1/TP2 in which the tryptic peptide profiles from 7 days (n = 9) and 

14 days (n = 15) CT26 tumours were used to generate the ANN model and a total of 4 steps 

were carried out. The results of the 4 steps are shown in table 4-4 that presents the median 

accuracies and mean squared errors of training, test and validation for each best performed 

model in each of the 4 steps. The highest accuracy that predicted TP1 tumours from TP2 

tumours was generated in step 2 (highlighted in red in table 4-4, using two peaks with m/z 

values of 1517 and 3548.8 with an accuracy of 80%, a sensitivity of 66.7% and specificity 

of 86.7%. The addition of further ions did not improve the prediction of the model and 

therefore the first 2 ions were considered biomarkers that can best predict TP1 tumours 

from TP2 tumours based on MALDI tryptic peptide profiles. 
 

Input m/z 
Training 

Perf. 

Test 

Perf. 

Validation 

Perf. 

Training 

Error 

Test 

error 

Validation 

Error 

Presence of 

ion 

1 1517 64% 80% 60% 0.21 0.20 0.26 ↑TP2 

2 3548.8 86% 100% 80% 0.10 0.08 0.17 ↑TP1 

3 3985.6 100% 100% 80% 0.05 0.06 0.11 ─ 

4 3607.2 100% 100% 80% 0.05 0.06 0.11 ─ 
 
Table 4-4. The table represents the data obtained from the stepwise analysis of MALDI data generated 
from CT26 tumour tissue tryptic peptide profiling of 7 (TP1) and 14 (TP2) day tumours. The table 
shows a summary of the median accuracies and the mean squared error for the training, test and validation 
data sets as each input is added to the model. The highest accuracy was achieved in step 2, highlighted in red, 
with median accuracy of 80% and mean squared value of 0.08 and further addition of ions did not affect the 
accuracy of model.     
 

Response curves were generated for each of the ions in the 2 ion model by presenting the 

model with varying values within the range of those found in the data and maintaining the 

other ions as the mean value. In this way the responses of ions were investigated singly for 

m/z values of 1517 and 3548.8 (figures 4-9 A & B). These analyses indicated that there is 

an increase in the intensity of ion m/z 1517 in the tumour tissue samples of TP2 in 

comparison to TP1 samples. As the intensity of this ion increases, the tumour tissue is more 

likely to belong to TP2 and may be a candidate biomarker, associated with tumour 

progression between day 7 to 14 post tumour implantation. In contrast to this, the ion with 

m/z value of 3548.8 shows a higher intensity in TP1 tumours and a decrease in TP2 tumour 

samples. Intensity differences associated with the top 2 discriminatory ion for TP1 and TP2 

tumour tissues can be visualised in the MALDI tryptic peptide profiles and are shown in 

figure 4-9 C and D.    
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Figure 4-9. Response graphs generated singly for each of the 2 peptide biomarker ions used in the 
TP1/TP2 tumour model and the visual tryptic peptide MALDI spectral differences for the top two 
discriminatory ions. (A) Response graph for m/z 1517 indicating the relationship between intensity of the ion 
and the probability of predicted TP1. Increase in the intensity of this ion has a negative influence in the 
probability of samples to be a TP1 tumour. (B) Response graph for m/z 3548.8 indicating the relationship 
between intensity of the ion and the probability of predicted TP1. Increase in the intensity of this ion has a 
positive influence in the probability of samples to be a TP1 tumour. (C) Representative MALDI spectra 
indicating the significant increase in the intensity of m/z 1517 in the TP2 tumour tissue samples. (D) MALDI 
spectra indicating higher intensity of m/z 3548.8 in the TP1 tumour tissue samples. 
 

The potency of ANNs to correctly predict tryptic peptide profiles based on 2 predictive ions 

obtained from TP1 and TP2 tumour tissue modeling was further examined by generating a 

population chart. The chart represents cases classified based on the 2 ion ANNs modeling 

of tryptic peptide MALDI profiles and the results are illustrated in figure 4-10. The ratios 

below 1.5 were assigned as TP1 tumours whilst a ratio above 1.5 was used to classify TP2 

tumours. Based on the panel of biomarkers, three TP1 and one TP2 tumours were 

misclassified.   
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Figure 4-10. Predictive capability of ANNs to recognise tryptic peptide profiles based on a 2 ion ANN model. 
The white bars indicate TP1 tumours, and the gray bars indicate TP2 tumours. A predictive value below 1.5 
indicates a TP1 tumour, while a prediction greater than 1.5 indicates a TP2 tumour. 
 
 

Once the discriminatory candidate biomarkers between tumour tissue from TP1 and TP2 

had been identified, the second model for TP2/TP3 was generated in which the tryptic 

peptide profiles from 14 days (n = 15) and 20 days (n = 15) CT26 tumours were used to 

train the ANN models and a total of 3 steps were carried out as described previously. The 

results of the 3 steps are shown in table 4-6 that presents the median accuracies and mean 

squared errors of training, test and validation for each best performing model in each of the 

3 steps. In step 2, the highest accuracy for the prediction of TP2 tumours form TP3 tumours 

was reached (highlighted in red in table 4-5). The top two peaks, identified by ANN 

analysis were m/z 1333.6 and 1013.6 which were able to discriminate TP2 and TP3 tumour 

tissues with an accuracy of 83%, sensitivity of 76.7% and specificity of 87.5%. The 

addition of further ions did not improve the prediction of the model and therefore the first 2 

ions were considered biomarkers that can best predict TP2 tumours from TP3 tumours 

based on MALDI tryptic peptide profiles. None of these markers were common with the 

top discriminatory ions from the previously described TP1/TP2 model which indicates that 

during tumour progression, different biomarkers may be more dominant and stronger and 

therefore better predictors of tumour progress.  
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Input m/z 
Training 

Perf. 

Test 

Perf. 

Validation 

Perf. 

Training 

Error 

Test 

error 

Validation 

Error 

Presence of 

ion 

1 1333.6 74% 83% 67% 0.18 0.15 0.23 ↑TP3 

2 1013.6 84% 83% 83% 0.13 0.13 0.19 ↑TP2 

3 2727.2 84% 83% 75% 0.12 0.11 0.18 ─ 

Table 4-5. The table represents the data obtained from the stepwise analysis of MALDI data generated 
from CT26 tumour tissue tryptic peptide profiling of 14 (TP2) and 21 (TP3) day tumours. The table 
shows a summary of the median accuracies and the mean squared error for the training, test and validation 
data sets as each input is added to the model. The highest accuracy was achieved in step 2, highlighted in red, 
with median accuracy of 83% and mean squared value of 0.13 and further addition of ions did not affect the 
accuracy of model.     
 

Response curves were generated for each of the ions in the 2 ion of TP2/TP3 model and are 

illustrated in figure 4-11. These analyses indicated that as the intensity of the ion m/z 

1333.6 increases; the probability of a sample associated with TP3 is higher whereas, the 

intensity of the ion with mass value of 1013.6 is higher in the TP2 tumours MALDI tryptic 

peptide profiles.  
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A B

Figure 4-11. Response graphs generated singly for each of the 2 peptide biomarker ions used in the 
model indicating the relationship between intensity for an ion of a given m/z value and the probability 
of predicted TP2 tumour tissue. (A) The single ion m/z 1333.6 had a weak influence at lower intensities and 
a stronger influence at higher intensities with respect to TP2 tumours. (B) The single ion m/z 1013.6 had a 
strong positive influence at lower intensities and a weaker influence at higher intensities with respect to TP2 
tumours. 
 
 
The discriminate ability of the model was tested on individual TP2 and TP3 tumour tissue 

samples based on their associated tryptic peptide MALDI profiles with the top 2 predicted 

ions was examined by generating the population charts, presented in figure 4-12. The ratio 

below 1.5 is representative of a TP2 tumour and ratio above 1.5 is representative of a TP3 

tumour. Based on the 2 ion model, two of the TP2 and TP3 tumours were misclassified. It 
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appear that there might be slight differences between the TP2 and TP3 tryptic peptide 

MALDI profiles of this study, but for same samples was no distinct separation between the 

TP2 and TP3 sample groups in the population charts.      
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Figure 4-12. Predictive capability of ANNs to recognise tryptic peptide profiles based on a 2 ion ANNs 
model. The gray bars indicate TP2 tumours, and the black bars indicate TP3 tumours. A predictive value 
below 1.5 indicates a TP2 tumour, while a prediction greater than 1.5 indicates a TP3 tumour. 
 

The final ANN modeling attempt was to compare the early stage CT26 tumour tissues and 

the late stage tumours. The final model was generated for the TP1/TP3 tumour tissues in 

which the tryptic peptide profiles from day 7 (n = 9) and day 20 (n = 15) CT26 tumours 

were used to train the ANN models. A total of 10 steps were carried out (as described 

previously) and the results are demonstrated in table 4-5. A single ion model had a median 

predictive performance of 100% and mean squared value of 0.06 for the test error. The top 

discriminatory peaks, identified by ANN analysis was m/z 3907.4 and no further 

improvement in the model was achieved by the further addition of ions.   
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Input m/z 
Training 

Perf. 

Test 

Perf. 

Validation 

Perf. 

Training 

Error 

Test 

error 

Validation 

Error 

Presence of 

ion 

1 3907.4 93% 100% 100% 0.07 0.06 0.08 ↑TP3 

2 1334.8 100% 100% 100% 0.03 0.03 0.07 ─ 

3 1613.8 100% 100% 100% 0.03 0.03 0.06 ─ 

4 1327.8 100% 100% 100% 0.03 0.03 0.05 ─ 

5 1161 100% 100% 100% 0.04 0.03 0.09 ─ 

6 1030.8 100% 100% 100% 0.02 0.03 0.07 ─ 

7 1132.4 100% 100% 100% 0.03 0.04 0.07 ─ 

8 1516 100% 100% 100% 0.03 0.04 0.09 ─ 

9 1055 100% 100% 100% 0.03 0.04 0.11 ─ 

10 2971.8 100% 100% 100% 0.04 0.04 0.08 ─ 

Table 4-6. The table represents the data obtained from the stepwise analysis of MALDI data generated 
from CT26 tumour tissue tryptic peptide profiling of 7 (TP1) and 21 (TP3) day tumours. The table 
shows a summary of the median accuracies and the mean squared error for the training, test and validation 
data sets as each input is added to the model. The highest accuracy was achieved in step 1, highlighted in red, 
with median accuracy of 100% and mean squared value of 0.06 and further addition of ions did not affect the 
accuracy of model.     
 

The response curves for the 1 ion model was generated and this showed that an increase in 

the intensity of ion m/z 3907.4 increases, the probability of tumour to be a TP3 is higher 

(figure 4-13 A). The visual differences for the ion m/z 3907.4 is presented in figure 4-10 B 

showing that this peak is present in the TP3 tumour tissues and absent in the TP1 tumour 

tissues.  
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Figure 4-13. Response graphs generated singly for the 1 peptide biomarker ions used in the TP1/TP3 
tumour model and the visual tryptic peptide MALDI spectral differences for the top two 
discriminatory ions. (A) Response graph for m/z 3907.4 indicating the relationship between intensity of the 
ion and the probability of predicted TP1. Increase in the intensity of this ion has a negative influence in the 
probability of samples to be a TP1 tumour. (B) MALDI spectra indicating the significant increase in the 
intensity of m/z 3907.4 in the TP3 tumour tissue samples.  
 
 
A population chart for discrimination between TP1 and TP3 tumour tissue samples shows 

the correct classification of all cases (figure 4-14). Comparison between the two extreme 

cases of CT26 tumour time-points (i.e. TP1 and TP2) shows better classification of the 

individuals by ANN analysis and a distinction between the two groups.   
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Figure 4-14. Predictive capability of ANNs to recognise tryptic peptide profiles based on a 1 ion ANN model. 
The white bars indicate TP1 tumours, and the black bars indicate TP3 tumours. A predictive value below 1.5 
indicates a TP1 tumour, while a prediction greater than 1.5 indicates a TP3 tumour. 
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During the time course of tumour progression, spleen and liver tissues were also collected 

from the tumour-bearer and control mice. The samples were homogenised and protein 

extraction was carried out. Tryptic peptide profiles were obtained using MALDI-MS 

analysis. However, ANN analysis and modeling of these samples would not be presented in 

this thesis due to the limited time. Visual spectral differences can be seen when different 

time-points are compared although these differences may not be of clinical importance and 

sophisticated computational algorithms such as ANNs may reveal markers that are 

associated with tumour progression in liver and spleen.    
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4.4 Discussion 
The tumour microenvironment consists of tumour and non-tumour cells, extracellular 

matrix components (e.g. collagens and elastins) and soluble components such as cytokines, 

chemokines and growth factors. Quantity of these components is likely to change as a result 

of the presence of tumour. The presence of several different biological products in the 

tumour microenvironment facilitates tumour progression. In addition, the non-tumour cells 

(e.g. fibroblasts, endothelial cells and immune cells), present in the tumour 

microenvironment, are involved in tumour progression through tumour-stroma interactions. 

Current therapeutics mainly target interactions and pathways involved in tumour 

progression; however, studying the tumour as it progresses in vivo, and using high 

throughput “omic” technologies may reveal new additional targets for therapy and early 

diagnosis of cancer.  

High-throughput approaches that enable the profiling of large numbers of samples has 

allowed the complexity of cancer to be investigated. It is widely thought that a combination 

of markers is likely to be more sensitive and specific for patient diagnosis and predicting 

prognosis and response to treatment than a single biomarker (Bertucci et al. 2006). 

Application of the novel peptide methodology developed by Matharoo-Ball and colleagues 

(Matharoo-Ball et al. 2007), enabled visual differences in the region 800-3500 Da of the 

peptide profiles in melanoma samples compared with controls. This methodology proved to 

have good reproducibility and potential to be adapted for proteomic analysis of mouse 

serum samples as shown in chapter 3. The present study was a proteome analysis of serum 

and tumour tissue samples collected from 4 stages in the progression of the CT26 mouse 

colorectal model. The 4 stage investigation of the serum proteome change in this study is 

unique as the 4 different time-point samples were collected from the same individuals and 

15 tumour-bearer animals at each time-point were used in this study. Our results show that 

ANN algorithms in conjunction with MALDI peptide profiling can discriminate between 

the serum protein expression patters from different time points of tumour progression. 

Initially MALDI tryptic peptide profiles of serum samples from TP0 (naïve mice) and TP1 

(7 days post tumour implantation) were compared. Here, ANNs analysis identified 5 

discriminatory ions capable of classifying 92% of the TP0 from TP1 and these peptide 

biomarker ions may indicate early biomarkers for cancer in the CT26 colorectal mouse 

model as the naïve mice were compared to an early tumour initiation where the size of the 
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tumour was an average size of 0.2 mm. Possible markers of CT26 tumour progression were 

investigated via ANN modelling of TP1 versus TP2 (serum samples collected 7 and 14 

days post tumour implantation respectively) and TP2 versus TP3 (serum samples collected 

14 and 21 days post tumour implantation) serum samples. The ANN analysis of TP1/TP2 

and TP2/TP3 revealed a 4 ion model with accuracy of 98% and a 3 ion model with 

accuracy of 100% respectively. These biomarkers may serve as potential progression serum 

biomarkers that can be used as therapeutic targets. Comparison between the panel of 

biomarkers from the TP0/TP1, TP1/TP2 and TP2/TP3 models did not show any common 

ions except the ion with m/z of 2837.4±1 was common between the TP1/TP2 and TP2/TP3 

panel of biomarkers. In both models this ion was the first discriminatory ion between the 

associated groups and could predict 67% of the samples correctly. This marker could be a 

late stage tumour progression marker as it is not of important in the early stage model 

(TP0/TP1). As the other panel of biomarkers appear to be unique to each model, it can be 

concluded that these panel of biomarkers may be specific to each time point, although 

further investigations and identification of proteins associated to each ion is required to 

validate these invesitgations. The significance of these markers is beyond the limitation of 

the present study as they have not been identified. The technology illustrates the necessity 

of peptide sequencing and the advantages of a combination of MS techniques to reliably 

and unambiguously establish the identity of predictive biomarkers in cancer studies. In 

addition, attempts to identify some of the proteins corresponding to the discriminatory ions 

using MALDI MS/MS failed to identify the proteins with high level of confidence. This 

seems to be due to the complexity of samples. In some cases, there are several overlapping 

peptides around the ion of interest with close masses which can undergo fragmentation with 

the ion of interest during the MS/MS procedure and presence of their fragments in the 

MS/MS spectra of ion of interest will interfere in the database search and obtaining reliable 

identities. Further fractionation of samples utilising techniques such as LC prior to MALDI 

MS/MS analysis would significantly reduce the complexity of samples and separates the 

overlapping proteins. Limited numbers of studies have investigated serum proteome change 

in mouse tumour models in a time-dependent manner during the progression of tumour. 

Sandoval et al. used mouse model of human high-risk neuroblastoma and collected serum 

samples at three time-points (2, 4 and 6 weeks post tumour implantation) during the tumour 

progression. They used 2D gel electrophoresis and identified 6 proteins (5 up-regulated and 
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1 down-regulated) that were uniquely expressed in the tumour-bearing mice compared to 

control individuals. Furthermore, the expression of the up-regulated proteins (α1-acid 

glycoprotein, α1-antitrypsin, α2-microglobin, serum amyloid P and serum amyloid A) 

shown to increase as the tumour progressed. All the 5 up-regulated proteins represent acute-

phase proteins that represent common serum proteins. The advantage of our study to the 

use of 2D gel electrophoresis based studies is firstly the ability of analysing a high number 

of samples for proteomic analysis (n = 15 CT26 tumour-bearing mice at each time point) 

which leads to more generalised results that are more representative of the different groups 

(i.e. serum samples from different time-points). In addition, the use of a simple, high 

throughput, automated sample preparation reduced the bias due to sample handling in this 

study. However, further studies could reveal the identity of proteins that may allow new 

biomarkers to be identified or the biological pathways involved in the disease progression 

to be further understood and may be applicable to human cancers. 

Utilising the same strategy for analysing the serum samples, CT26 tumour tissue samples 

were also used to identify tissue biomarkers of progression. The advantage of analysing 

tissue proteins over serum proteome is that any identified candidate biomarkers from the 

tissue analysis may have the potential to be used as a direct tumour target for therapy. 

However, biomarkers discovery by serum proteomic analysis reveals markers that are 

secreted from either tumour or other tissues (i.e. liver and spleen) as a response to the 

presence of tumour. In this study CT26 murine colorectal tumour tissues were collected at 

three different time-points TP1 (7 days post tumour implantation), TP2 (14 days post 

tumour implantation) and TP3 (20 days post tumour implantation). The average tumour 

size for TP1, TP2 and TP3 tumours were 0.2, 0.5 and 1 mm respectively. In this study, 

identification of potential tumour tissue biomarkers of progression was investigated in a 

time-dependent manner in a CT26 colorectal tumour-bearing mouse model. High 

throughput MALDI-MS proteomic profiling and ANN algorithms for data processing and 

interpretation was utilised to detect candidate biomarkers from different tumours, collected 

at 3 time-points. ANN analysis of tryptic peptide profiles from day 7 (TP1) and day 14 

(TP2) tumours produced 2 ions that were based on these ions, 80% of the TP1 and TP2 

tumours were correctly classified. The ANNs modelling of day 14 (TP2) and day 20 (TP3) 

tumour tissues resulted in a 2 ion model that accurately classified 83% of the samples. In 

general, although the classification accuracy for both of the models was relatively high, 
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there was no significant clear-cut difference between the time-points (based on the 

population charts) and as these proteins have not been identified, suggestive of their 

possible involvement in tumour progression process needs to be investigated. Tumours 

from early stage (TP1) and late stage (TP3) were also compared and based on one ion ANN 

model (m/z value of 3907.4) all the TP1 and TP3 samples were correctly classified. This 

ion was present in the TP3 tryptic peptide spectra and absent in the TP1 spectra. Moreover, 

the ions identified in each model were exclusive to the corresponding model and no similar 

ions were observed. However, the relatively high accuracy of ANN analysis for 

classification of different time-points is promising and further studies may disclose possible 

tumour tissue markers. ANN analysis shows sample outliers that may contain distinct 

tumour features and represent subtypes of tumour. To our knowledge, only one study by 

Culp and colleagues (Culp et al. 2006) carried out a similar approach to ourselves, where 

they analysed tumour tissue proteome changes in a time-dependent manner in the B16-F10 

mouse melanoma model. Tumour proteome changes in tumour tissue collected at different 

time-points were analysed by 2D gel electrophoresis to obtain a protein map and they 

identified several proteins that were up or down regulated over the course of tumour 

progression. The identified proteins were all involved in pathways occurring in tumour 

progression such as molecules involved in protein folding, cell cycle regulation, RNA 

processing and angiogenesis, many of which belong to high concentration proteins. It is 

estimated that number of expressed proteins in mammalian cells or tissues is in the order of 

106 in magnitude. This is far exceeds the dynamic range of 2D gels and therefore for 

detection of low abundant proteins more sensitive approaches are required (Gygi et al. 

2000). The methodology used in this study of CT26 progression model was the use of C18 

ZipTip clean-up prior to MALDI-MS profiling which remove the high abundant proteins as 

already demonstrated in Chapter 2. Therefore, by de-convoluting the sample via C18 

ZipTips it is more plausible to detect lower abundant proteins although further 

investigations are required to identify the proposed biomarkers and to verify our findings. 

However, our methodology for analysis of tissue lysates could benefit from additional 

fractionation to reveal a complete map of the proteins in the tumour tissues obtained from 

each time-point. A study by Whiteaker et al. (Whiteaker et al. 2007) demonstrated the use 

of fractionation methods to enhance the number of protein detection. The sudy by 

Whiteaker et al. used tumour and normal tissues from a conditional HER2/Neu-driven 
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mouse model of cancer and identified approximately 700 proteins by LC-MS/MS. This was 

followed by statistical approach that detected differentially expressed proteins in the 

tumour tissues (i.e. proteins that were under or over expressed compared to the normal 

tissue based on the LC-MS/MS data) and the discriminatory proteins were then validated 

using antibody-based and multiple reaction monitoring-mass spectrometry. A number of 

proteins including fibrinogen-γ, Osteopontin, plastin-2 and kappa-casein were identified 

that were over expressed in the breast tumour tissues.  

In conclusion, our data shows that an integrated approach to tryptic peptide profiling of 

serum and tumour tissue samples, with MALDI-MS combined with ANNs, leads to 

identification of panel of biomarkers capable of classifying different samples collected at 

different time-points during tumour progression. However, further investigations are 

required to identify the corresponding proteins to the identified discriminatory ions, 

followed by studies on the relevance of the proteins in the tumour progression process. The 

identified candidate biomarkers have the potential as prognostic markers or can be used as 

targets of therapy. In addition, better understanding of mechanisms involved in tumour 

progression can be achieved by these biomarkers. The use of this methodology can be 

refined and extended to be used for human tissue specimens in order to detect tumour 

biomarkers.         
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Chapter 5 – Serum and Tissue Proteomic Profiling in the 

Murine CT26 Colon Carcinoma Model of DISC-mGM-CSF-

HSV Immunotherapy   

 

 

 

5.1 Introduction 
The syngeneic CT26 mouse model of colon carcinoma has been extensively used to study 

aspects of cancer biology, therapeutics and to investigate the mechanisms involved in 

colorectal carcinoma metastasis to organs such as liver (Wen et al. 2007) and lungs 

(Heinrich et al. 2006). In addition, it has been widely used to examine the efficiency of 

novel cancer vaccines (Schanzer et al. 1997, Suh et al. 1999 and Levy et al. 2006). The 

CT26 mouse model is established in our laboratory and was used to assess a novel 

immunogene therapy using DISC-HSV as a vector which encoding the gene for mGM-CSF 

(Rees et al. 2002). Direct injection of DISC-HSV into the established CT26 colon tumours 

induced regression in up to 70% of the mice receiving the vaccine; complete regression of 

the tumour (tumour regressors) was observed with the remaining animals leaving 

progressive tumours (tumor progressors) (Ali et al. 2002). The use of DISC-HSV infected 

whole cell vaccine in CT26 tumour bearer was successful and this model was used to study 

the molecular/immunological mechanisms involved in the regression/progression following 

DISC immunotherapy (Ahmad et al. 2005). This resulted in the identification and isolation 

of a CD3+ effector T cell population from the spleen of the regressor animals that were 

cytotoxic for tumour cells and essential for tumour regression. A suppressed or very low 

CTL activity was observed in progressor animals co-incidential with the production of high 

levels of IL-10 and low expression of IFN-gamma. In addition, it was shown that depletion 

of CD3+CD4+ T cells resulted in an increase in production of IFN-gamma and a drop in 

IL-10 production and finally restoration of CTL activity. To advance our understanding of 

mechanisms involved in tumour progression/regression, this model was used to investigate 

protein biomarkers in serum and tissue which associate with regression or progression of 

CT26 tumour following DISC-HSV-mGM-CSF therapy. 
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5.1.1 DISC-HSV in cancer immunotherapy of murine CT26 colorectal 

carcinoma 
The application of viral vectors, to delivering a range of immunomodulatory genes to 

autologous and allogeneic tumour cell lines has been investigated. Genetically engineered 

cells expressing immunomodulatory genes, such as cytokines, tumour antigens and 

costimulatory molecules, have been used in cell based vaccines for cancer therapy. For 

example, vaccination with transfected tumour cell lines encoding interlukin-4 (IL-4), 

tumour necrosis factor-alpha (TNF-α), granulocyte-macrophage colony-stimulating factor 

(GM-CSF), IL-6, IL-7 and interferon-gamma (IFN-γ) show enhanced antitumour immunity 

in mice (Ali et al. 2000a). Moreover, viral vectors have been used for direct delivery of 

immunomodulatory genes to solid tumours and antigen presenting cells (APCs). 

Genetically modified adenovirus and herpes simplex virus (HSV) have been used for the 

purpose of cancer therapy and show significant efficacy and safety in humans and mice. 

Disabled infectious single-cycle herpes simplex virus (DISC-HSV) is a genetically 

modified HSV, which is attenuated and was developed initially as a vaccine candidate 

against genital herpes infection (Dilloo et al. 1997). Additional studies inferred DISC-HSV 

to be a suitable vector for cancer immunotherapy. DISC-HSV is a virus lacking the 

glycoprotein H (gH) that is essential for production of infectious progeny hence, deletion of 

the gH gene restricts virus replication to one cycle. This property prevents the spread of 

DISC-HSV from cell to cell and although the virus can proliferate after infecting the cell, 

its progeny are non-infectious (Assudani et al. 2005). In addition, DISC-HSV is capable of 

infecting a broad range of dividing (mitotic) and non-dividing (non-mitotic) cell lines 

including human carcinoma cell lines (e.g. breast and prostate), murine tumour cell lines 

(colorectal and renal carcinoma) and primary human leukaemia and neuroblastomes with 

high efficiency (Ali et al. 2000, Dilloo et al. 1997). DISC-HSV contains a relatively small 

genome (approximately 150 kb), making it suitable for insertion of genetic material of 30-

50 kb size without compromising virus replication (Latchman 2001). DISC-HSV can infect 

both human and murine cancerous cell line and tissue, making it an attractive vector for 

delivering immunomodulatory genes to solid tumours. A number of DISC-HSV vectors 

have been developed to deliver cytokines such as IL-2 and GM-CSF and the co-stimulatory 

molecule B-7.1 to the tumour site (Rees et al. 2002). Experimental studies demonstrate that 

the majority of the infected cells die from necrosis while a small percentage (approximately 
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5-10%) of cells die by apoptosis; following infection the expression of the therapeutic gene 

delivered to cells by DISC-HSV lasts up to 72 hours. Moreover, the DISC-HSV empty 

vector has the ability to enhance the immune response against tumours in vivo, acting as an 

immune adjuvant (Rees et al. 2002).  

The efficacy of genetically engineered DISC-HSV for cancer immunotherapy has been 

investigated using a number strategies in mouse RENCA (murine renal cancer cells) and 

CT26 (murine colorectal carcinoma) tumour models (Ali et al. 2002, Ali et al. 2000 and 

Todryk et al. 1999). Initially, RENCA cells were infected ex vivo with DISC-HSV virus 

encoding for either IL-2 or mGM-CSF. Mice received two prophylactic immunisations 

prior to tumour challenge. Both DISC-HSV-IL-2 and mGM-CSF showed similar enhanced 

immunity to tumour challenge as demonstrated by a reduced tumour incidence and growth 

rate. Subsequently, the DISC-mGM-CSF-HSV infected RENCA tumour cells were used as 

a whole cell vaccine to treat established RENCA tumours, resulting in a reduced or delayed 

tumour growth up to 9 weeks post vaccination (Ali et al. 2000). Further investigations 

verified that the antitumour activity in these models required antigen-specific cytotoxic T 

lymphocytes and T helper lymphocytes. When DISC-mGM-CSF-HSV was directly 

injected intra-tumourally into established CT26 murine colorectal carcinoma tumours, 

complete tumour regression occurred in up to 70% of the treated animals (Ali et al. 2002 

and Ahmad et al. 2005) while same animals also regressing their tumours following 

injection of the empty DISC-HSV vector or DISC-HSV carrying an irrelevant gene 

(Assudani et al. 2005).   

 

5.1.2 Aims and objectives 

The main aims are as follow: 

• To use a prospective cohort of samples collected at the end of therapy outcome as a 

discoveriy set to obtain MALDI-MS profiles. To interrogate these profiles using 

ANNs to investigate whether is possible to obtain panel of markers that are 

discriminatory between the responder, non-responder and naïve mice and may 

associate with outcome of therapy. 

• To identify the proteins associated with the candidate panel of biomarkers. 
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• To collect prospective set of samples from the CT26 colorectal cancer model of 

DISC-HSV therapy model as a validation set both prior to therapy and at the end of 

therapy outcome. 

• To validate the proteomic based results using non-MS based methods (i.e. Western 

blotting, ELISA, IHC and qRT-PCR) in the discovery set as well as a prospective 

set of samples.  
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5.2   Summary of methods    

 
A) CT26 Murine immunotherapy model and sample collection 

CT26 Murine Immunotherapy Model 

CT26 
implantation 

Monitoring therapy response 
i.e. regressor/progressor 

Therapy 
> DISC-HSV 
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B) Sample preparation for proteomic analysis 

Serum sample collection 
> End time point (ETP) 
Tissue collection 

Day 1 Day 8

Serum sample collection 
> First time point (FTP) 

Serum sample 
Diluted 1:20 in 0.1%TFA 

C18 ZipTip clean-up 

NH4HCO3, dH2O and trypsin are 
added to the eluent 

Incubation in 37°C overnight 

C18 ZipTip clean-up 

MALDI-MS 
analysis 

Protein & Peptide 
profiles 

 

Bioinformatics 
(ANNs analysis) 

Identification 
(ESI MS/MS) 

Validation 
(WB, ELISA & IHC) 
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5.3    Results 

 

5.3.1 Protein and peptide analysis of serum from the retrospective 

model by MALDI-MS. 
Serum samples (from the retrospective model) from 14 regressors, 21 progressors and 35 

control mice were subjected to MS analysis. Using MALDI-TOF MS serum profiling, the 

serum protein (after C18 ZipTip clean-up) and peptide profiles of DISC therapy responder 

mice (regressors), DISC therapy non-responder mice (progressors) and control healthy 

mice (naïve) with no therapy or tumour were compared. The reproducibility of the sample 

preparation for MALDI-MS analysis and both MALDI and Xcise instruments were 

previously shown in chapter 3 and reported by Matharoo-Ball and colleagues (Matharoo-

Ball et al. 2007). Representative serum protein and tryptic peptide MALDI profiles are 

shown in figure 5-1 A and B respectively. The protein serum spectra after C18 ZipTip clean-

up was generated by MALDI-MS, operated in linear mode and the tryptic peptide serum 

profiles were generated by MALDI-MS, operated in reflectron mode. Several visual 

differences were observed between the protein serum spectra after C18 ZipTip clean-up and 

the related tryptic peptides and a number of of these are highlighted in figure 5-1. For 

example, visual spectral differences can be observed in the protein profile between the three 

different groups (figure 5-1A), in the mass range of 3200-3800 Da. Peaks present in this 

range showed higher intensity in the spectra obtained from the progressors when compared 

with regressor and controls which showed similarities. In addition, the relative intensity of 

peak having an m/z value of 6400 Da appears to gradually decrease from the control to 

regressors and then progressors. An example of visual spectral differences for the tryptic 

peptide profiles can be observed in the mass range of 1750-2000 Da (figure 5-1B). The 

spectra in this region showed considerable similarities between the control and regressors 

whereas the intensity of the peaks was significantly higher in the spectra obtained from 

progressor mice.  

Visual assessment of the MALDI spectra was necessary to determine the quality of the 

produced spectra and the reproducibility of sample preparation procedures. In addition, all 

the acquired MALDI spectra were visually assessed according to strict criteria (described in 

chapter 3) prior to statistical analysis for biomarker discovery to insure the high quality of 

the data. Over all, there appeared to be slight visual spectral differences between the 
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proteomic profiles of regressor and control mice in the protein profile after C18 ZipTip and 

tryptic peptide profiles. However, there was more noticeable variation in the progressor 

proteomic profiles in comparison to regressor and controls. 

The methodology used here was relatively high-throughput and therefore it is not possible 

to analyse multiple samples for each experiment by visual assessment of the spectra. 

Moreover, the visual spectral differences highlighted in figure 5-1 show peaks that have 

higher abundance and therefore it is easy to detect differences between the groups. In each 

spectrum, there were a number of peaks with lower intensities which may be significant 

and possibly discriminatory between the groups, but it was not possible to assess these 

visually with any degree of accuracy. Therefore, these complex data sets from the 

retrospective model were subjected to competitive algorithm (i.e. ANN) analysis to identify 

differences. Here, serum samples collected from the retrospective model was used for 

ANNs modeling. Although serum samples from 14 regressors, 21 progressors and 35 

control mice was used for MALDI proteomic profiling, the number of samples used to 

generate the ANN models may be lower in each analysis. This is due to the visual spectral 

checks prior to the ANNs modeling which eliminates spectra with poor quality. 



Chapter 5 
 

 

 

A 

B 

Figure 5-1. Figure showing protein and tryptic peptide MALDI spectra obtained from control, 
regressor and progressor mice. The X axis represents the m/z ratio and the Y axis represents relative 
intensity. A) Representative MALDI-TOF mass spectra of regressor, progressor and control mouse serum 
proteins after C18 ZipTip clean-up mass range of 1000-8000 Da, acquired in linear mode. Serum samples were 
spotted with SA on the MALDI steel plate and allowed to air dry. Protein peaks in the regions highlighted in 
the figure appears to be up or down regulated visually, when a three-way comparison was carried out on the 
progressor, regressor and control mice. B) Representative MALDI-TOF mass spectra of regressor, progressor 
and control mouse serum tryptic digest mass range of 800-3000 Da, acquired in reflectron mode. Serum 
samples were spotted with CHCA on the MALDI steel plate and allowed to air dry. Peptide peaks in the 
regions highlighted in the figure appears to be up or down regulated when a three-way comparison was 
carried out on the progressor, regressor and control mice.  
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5.3.2 Discovery of discriminatory biomarkers using ANN modeling for 

the regressor/progressor retrospective model. 
The goal of the study was to identify biomarkers that may predict the outcome of DISC-

mGM-CSF-HSV therapy and/or may associated with tumour progression/regression. To 

identify serum biomarkers we used MALDI-MS profiling in conjunction with ANN 

analysis. Initially, we examined the capability of ANNs to identify and correctly classify 

regressors from progressors. Hence, a stepwise approach was utilized which produced the 

minimum number of ions with the potential of detecting regressors from progressors based 

on the MALDI protein/peptide profiles.  

The biomarker discovery experiments were carried out on serum samples which were 

collected from the retrospective CT26 immunotherapy model (samples collected in 2004) 

which included 35 serum samples, 21 progressors and 14 regressors. The protein and 

tryptic peptide profiles were generated via MALDI-MS following C18 ZipTip 

chromatography and processed and analysed as described previously. The generated protein 

and tryptic peptide profiles were visually checked and spectra with poor quality were 

eliminated from the study; the remaining spectra were subjected to proceed for further 

bioinformatic analysis, using ANN modeling. The results of these findings were then 

validated using serum samples from a prospective CT26 immunotherapy model (sample 

collection carried out in 2008).  

 

5.3.2.1 Discriminatory serum protein biomarkers identified in the regressor/progressor 

retrospective model  

The MALDI-MS serum protein profiles following C18 ZipTip (mass range of 1-20 kDa) of 

17 progressors and 12 regressors were used for ANN modeling. A stepwise approach was 

utilised to identify the minimum number of ions capable of assigning samples correctly to 

their respective groups. Prior to the ANN analysis, the data was smoothed, aligned and 

baseline corrected as described in materials and methods (chapter 2). As each sample was 

spotted on the MALDI plate in duplicate, one spot for each sample was randomly selected 

to be used in ANNs modeling. In order to detect a fingerprint based on the MALDI spectra 

that assigns samples to their respective groups, a stepwise approach was utilised and 

regressors were labeled as 1 and the progressors were labeled as 2 prior to analysis. The 

stepwise approach is based on training a number of different ANN models and the general 
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principles of stepwise approach have been described previously in detail in chapter 3. In 

order to generate ANN models from MALDI protein profiles of regressor and progressor 

mice, the stepwise approach involves training a number of models using 19000 inputs for 

each sample (each input corresponds to intensity at a specific m/z value). Initially each 

input is used as single input to train 50 models and for each model a total of 29 cases (n = 

17 progressors and n = 12 regressors) were randomly split into 17 samples for training 

(60%), 6 for testing (20%) and 6 as a validation set (20%); this allows random cross 

validation analysis to be performed. After training 50 models, the best performing model 

was selected for further analysis and all the remaining inputs were added sequentially to the 

first input to train the model. This procedure was continued until no further improvement in 

the model was observed. In the case of modeling the protein profiles after C18 ZipTip clean-

up from the regressor and progressor mice, a total of 5 steps were carried out. The results of 

the 5 steps are shown in table 5-1 that presents the median accuracies and mean squared 

errors of training, test and validation for each best performed model in each of the 5 steps. 

The highest accuracy that predicted progressors from regressors was generated in step 2 

(highlighted in red in table 5-1), using two peaks with m/z values of 4804 and 11053 with 

an accuracy of 86%, a sensitivity of 100% and specificity of 94%. The addition of further 

ions did not improve the prediction of the model and therefore the first 2 ions were 

considered biomarkers that can best predict regressors from progressors based on MALDI 

protein profiles. 
 

Input m/z 
Training 

Perf. 

Test 

Perf. 

Validation 

Perf. 

Training 

error 

Test 

error 

Validation 

Error 

1 4804 84% 86% 80% 0.29 0.16 0.2 

2 11053 88% 94% 86% 0.27 0.11 0.21 

3 7203 91% 93% 82% 0.19 0.05 0.19 

4 9791 90% 92% 84% 0.16 0.08 0.19 

5 5790 88% 91% 81% 0.21 0.14 0.28 
 
Table 5-1. The table represents the data obtained from the stepwise analysis of MALDI data generated 
from serum protein profiling after C18 ZipTip clean-up of regressor and progressor mice. The table 
shows a summary of the median accuracies and the mean squared error for the training, test and validation 
data sets as each input is added to the model. The highest accuracy was achieved in step 2, highlighted in red, 
with median accuracy of 86% and mean squared value of 0.11 and further addition of ions did not affect the 
accuracy of model.     
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The MALDI protein spectra differences between the regressor and progressor profiles for 

the top two m/z identified by ANN analysis are shown in figure 5-2. The m/z value of 4804 

is present in the progressor profiles but absent in the regressors (figure 5-2A) and based on 

this ion ANNs can accurately classify 80% of the progressor and regressor samples. 

However, the mass value of 11053 (figure 5-2B) is present in the regressor protein profiles 

(after C18 ZipTip clean-up) but cannot be detected in the progressor profiles. Addition of 

this ion to the first discriminatory ion, improved the progressor/regressor classification by 

6%, achieving the accuracy of 86%.    

 
A 

 158 

0

50

100

4600 4620 4640 4660 4680 4700 4720 4740 4760 4780 4800 4820 4840 4860 4880 4900
Mass/Charge

0

50

100

10500 10600 10700 10800 10900 11000 11100 11200 11300 11400 11500 11600
Mass/Charge

regressor

regressor

progresso

regressor

progresso

regressor

progresso

progresso

regressor

progresso

4804

r

progressor

r

regressor

r

r

r

11053

0

50

100

4600 4620 4640 4660 4680 4700 4720 4740 4760 4780 4800 4820 4840 4860 4880 4900
Mass/Charge

0

50

100

10500 10600 10700 10800 10900 11000 11100 11200 11300 11400 11500 11600
Mass/Charge

regressor

regressor

progresso

regressor

progresso

regressor

progresso

progresso

regressor

progresso

4804

r

progressor

r

regressor

r

r

r

11053

B 

 
 

Figure 5-2. Figure showing visual spectral differences for the top two discriminatory ions between 
regressor and progressors based on MALDI protein profiles after C18 ZipTip and ANNs analysis. A) 
The first discriminatory ion between the regressor and progressor serum MALDI protein profiles was 4804 
which is present in the progressor profiles and not in the regressor protein MALDI profiles. B) The second 
discriminatory ion for the progressor and regressor serum protein profiles was 11053 which is present in the 
regressors protein profiles and not in the progressor profiles.    
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In order to assess how individual samples were classified by the 2 ion ANNs model, a 

population chart was generated. Figure 5-3 shows the population distribution of the 

predicted outputs for all 29 mice using m/z values of 4804 and 11053. Samples from 

progressor animals are highlighted in red (assigned as number 2) and samples from 

regressor animals are shown in green (assigned as number 1). The ratios below 1.5 were 

assigned as regressors whilst a ratio above 1.5 was used to classify progressors. The figure 

shows that all the regressors were correctly classified whereas one of the progressors 

(mouse number 112) was misclassified as regressor.  

0

0.5

1

1.5

2

A
N

N
 p

re
di

ct
io

n

P
R

O
-1

12
-E

19

R
E

G
-1

1-
I1

4

R
E

G
-1

14
-M

20

R
E

G
-1

22
-C

20

R
E

G
-1

24
-G

16

R
E

G
-6

1-
C

13

R
E

G
-6

4-
A

18

R
E

G
-7

3-
D

15

R
E

G
-7

4-
H

15

R
E

G
-1

10
-E

23

R
E

G
-7

2-
I2

0

R
EG

-1
21

-L
17

R
E

G
-1

0-
C

21

P
R

O
-7

1-
N

19

P
R

O
-9

-L
14

P
R

O
-4

8-
B1

9

PR
O

-1
19

-A
14

PR
O

-1
13

-I1
5

PR
O

-1
18

-L
20

P
R

O
-1

20
-O

15

PR
O

-1
23

-A
15

P
R

O
-1

5-
N

18

P
R

O
-1

6-
G

18

P
R

O
-1

7-
E1

5

P
R

O
-6

0-
N

13

P
R

O
-6

2-
L1

5

P
R

O
-6

3-
C

24

P
R

O
-6

5-
E2

2

P
R

O
-6

6-
H

14

Sample

Progressor 

Regressor 

0

0.5

1

1.5

2

A
N

N
 p

re
di

ct
io

n

P
R

O
-1

12
-E

19

R
E

G
-1

1-
I1

4

R
E

G
-1

14
-M

20

R
E

G
-1

22
-C

20

R
E

G
-1

24
-G

16

R
E

G
-6

1-
C

13

R
E

G
-6

4-
A

18

R
E

G
-7

3-
D

15

R
E

G
-7

4-
H

15

R
E

G
-1

10
-E

23

R
E

G
-7

2-
I2

0

R
EG

-1
21

-L
17

R
E

G
-1

0-
C

21

P
R

O
-7

1-
N

19

P
R

O
-9

-L
14

P
R

O
-4

8-
B1

9

PR
O

-1
19

-A
14

PR
O

-1
13

-I1
5

PR
O

-1
18

-L
20

P
R

O
-1

20
-O

15

PR
O

-1
23

-A
15

P
R

O
-1

5-
N

18

P
R

O
-1

6-
G

18

P
R

O
-1

7-
E1

5

P
R

O
-6

0-
N

13

P
R

O
-6

2-
L1

5

P
R

O
-6

3-
C

24

P
R

O
-6

5-
E2

2

P
R

O
-6

6-
H

14

Sample

Progressor 

Regressor 

Figure 5-3. Predictive capability of ANNs to recognise protein profiles after C18 ZipTip clean-up based on a 2 
ion ANNs model. The red bars indicate progressor samples, and the green bars indicate regressor samples. A 
predictive value below 1.5 indicates a regressor sample, while a prediction greater than 1.5 indicates a 
progressor sample.  
 
 
 
5.3.2.2 Discriminatory serum peptide biomarkers identified in the regressor/progressor 

retrospective model  

In order to identify discriminatory ions between the regressor and progressors based on 

MALDI tryptic peptide profiles (mass range 800-3500 Da), the same ANN modeling 

procedure (outlined above) was preformed (27 cases, n = 10 regressors and n = 17 

progressors). The ANN model was trained as described previously using 2667 inputs and 

the stepwise approach was applied using 5 ions; the results are illustrated in table 5-2. A 

combination of four peaks (m/z 1312, m/z 1132, m/z 1192 and m/z 2133) was identified as 
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being discriminatory between the two groups with the lowest test error. The median 

accuracy for this analysis was 86%, with a sensitivity 90% and specificity 81%.  
 

Input m/z 
Training 

Perf. 

Test 

Perf. 

Validation 

Perf. 

Training 

error 

Test 

error 

Validation 

Error 

1 1312 81% 81% 78% 0.34 0.25 0.26 

2 1132 84% 87% 80% 0.26 0.16 0.25 

3 1192 89% 92% 90% 0.18 0.08 0.07 

4 2133 89% 91% 86% 0.2 0.08 0.07 

5 2808 88% 92% 83% 0.21 0.13 0.24 
 
Table 5-2. The table represents the data obtained from the stepwise analysis of MALDI data generated 
from serum tryptic peptides of regressor and progressor mice. The table shows a summary of the median 
accuracies and the mean squared error for the training, test and validation data sets as each input is added to 
the model. The highest accuracy was achieved in step 4, highlighted in red, with median accuracy of 86% and 
mean squared value of 0.08 and further addition of ions did not affect the accuracy of model.     
 

The MALDI tryptic peptide spectra differences between the regressor and progressor 

profiles for the top 4 ions identified by ANN analysis are shown in figure 5-4. The m/z 

value of 1312, which represents the first discriminatory ion (figure 5-4C), showed higher 

relative intensity in the regressor spectra when compared to the progressors. This ion was 

able to discriminate 78% of the regressors from the progressor. The second and third 

discriminatory ions were m/z values of 1132 and 1192 and the visual spectral differences 

for these two peaks are shown in figure 5-4A. The peak with a mass value of 1132 was 

present in the tryptic peptide profiles of progressors and absent in the regressor spectra, 

whereas the 1192 peak show slightly higher intensity in the regressor spectra. The final m/z 

value of the panel of discriminatory ions was a peak with a mass value of 2133 (figure 5-

4B), which was detectable in the tryptic peptide MALDI spectra of progressor mice and 

absent in the regressor profiles.       
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Figure 5-4. Figure showing visual spectral differences for the top 4 discriminatory ions between 
regressor and progressors based on MALDI tryptic peptide profiles and ANNs analysis. A) The m/z 
values of 1132 and 1192 were two of the panel of discriminatory ions for regressor and progressors based on 
the tryptic peptide profiles. The 1132 peak is present in the progressor profiles and not in the regressor 
profiles however the relative intensity of the 1192 peak appears to be higher in the regressor tryptic peptide 
profiles. B) The last discriminatory ion between the regressor and progressors was 2133 which is present in 
the progressors and not in the regressor profiles. C) The first discriminatory ion for the regressor and 
progressors was 1312 which shows a significant higher relative intensity in the regressor spectra when 
compared to the progressors.  
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The potency of ANN analysis to correctly predict tryptic peptide profiled based on the 4 

predictive ions obtained from regressor and progressor modeling was further examined by 

generating a population chart. The chart represents cases were classified based on the 4 ion 

ANNs modeling of tryptic peptide MALDI profiles and the results are illustrated in figure 

5-5. The ratios below 1.5 were assigned as regressors whilst a ratio above 1.5 was used to 

classify progressors. Based on the panel of biomarkers, only one regressor and two 

progressors were misclassified.   
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Figure 5-5. Predictive capability of ANNs to recognise tryptic peptide profiles based on a 4 ion ANNs model. 
The red bars indicate progressor samples, and the green bars indicate regressor samples. A predictive value 
below 1.5 indicates a regressor sample, while a prediction greater than 1.5 indicates a progressor sample. 
 
 

5.3.3 Biomarker identification by ANN analysis discriminating controls   

from progressors.  
Once the discriminatory biomarkers between the regressors and progressors had been 

identified, it was important to identify biomarkers that potentially were involved in tumour 

progression by comparing proteomic data from healthy mice with the progressors. Serum 

samples from 21 progressors and 35 control mice were used to generate MALDI proteomic 

profiles (after C18 ZipTip clean-up) and tryptic peptide profiles. Following MALDI analysis 

and visual evaluation of the spectra and elimination of poor quality spectra, the stepwise 

approach was used to identify candidate biomarkers between progressor and control healthy 

mice.  
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5.3.3.1 Discriminatory serum protein biomarkers identified in the progressor/control  

retrospective model  

The MALDI serum protein profiles (mass range of 1-20 kDa) of 17 progressors and 29 

control (naïve) mice were proceed for ANN modeling using 19000 inputs for each sample 

(each input corresponds to intensity at a specific m/z value). Initially each input is used as a 

single input to train 50 models and in each model the 46 cases (n = 17 progressors and n = 

29 controls) were randomly split into 27 samples for training (60%), 9 for testing (20%) 

and 10 as validation set (20%) (random cross validation). After which the best performing 

model is selected for further analysis and all the remaining inputs were added sequentially 

to the first input to train the model. This procedure was continued until no further 

improvement in the model was observed. The stepwise analysis was stopped at the end of 

step 3, were no significant improvement was achieved by addition of new inputs and the 

results shown in table 5-3 presents the median accuracies and mean squared errors of 

training, test and validation for each best performed model in each of the 3 steps. The 

highest accuracy of prediction that distinguished progressors form controls was generated 

in step 2 (highlighted in red in table 5-3), using two peaks with m/z values of 4515 and 

18318 with an accuracy of 83%, sensitivity 100% and specificity of 94%. 
 

Input m/z 
Training 

Perf. 

Test 

Perf. 

Validation 

Perf. 

Training 

Error 

Test 

error 

Validation 

Error 

1 4515 83% 86% 80% 0.28 0.13 0.24 

2 18318 85% 88% 83% 0.28 0.17 0.24 

3 5076 85% 88% 83% 0.26 0.19 0.23 
 
Table 5-3. The table represents the data obtained from the stepwise analysis of MALDI data generated 
from serum protein profiling after C18 ZipTip clean-up of control (naïve) and progressor mice. The 
table shows a summary of the median accuracies and the mean squared error for the training, test and 
validation data sets as each input is added to the model. The highest accuracy was achieved in step 2, 
highlighted in red, with median accuracy of 83% and mean squared value of 0.17 and further addition of ions 
did not affect the accuracy of model.     
 
 

5.3.3.2 Discriminatory serum tryptic peptide biomarkers identified in the 

progressor/control retrospective model  

The MALDI spectra of serum tryptic peptides of regressors and control mice were visually 

checked (according to the criteria previously described) for acceptance of the spectra. A 

total of 26 control and 17 progressor tryptic peptide profiles were accepted and used for 
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bioinformatic analysis. Stepwise analysis was performed on these profiles to assess the 

ability of ANNs to classify tryptic peptide serum profiles of progressors and control mice. 

A total of 5 steps were carried out and the results of the stepwise analysis are illustrated in 

table 5-4. The best ANN prediction with one peptide peak (m/z 1130) that discriminated 

between the controls and progressors with an accuracy of 85%, sensitivity of 88% and 

specificity of 96%.  
 

Input m/z 
Training 

Perf. 

Test 

Perf. 

Validation 

Perf. 

Training 

Error 

Test 

error 

Validation 

Error 

1 1130 86% 87% 85% 0.26 0.21 0.24 

2 1956 89% 90% 87% 0.23 0.12 0.20 

3 3149 87% 89% 86% 0.2 0.09 0.13 

4 3082 87% 89% 85% 0.16 0.08 0.13 

5 2432 94% 94% 87% 0.15 0.07 0.2 
 
Table 5-4. The table represents the data obtained from the stepwise analysis of MALDI data generated 
from serum tryptic peptides of control (naïve) and progressor mice. The table shows a summary of the 
median accuracies and the mean squared error for the training, test and validation data sets as each input is 
added to the model. The highest accuracy was achieved in the first step, highlighted in red, with median 
accuracy of 85% and mean squared value of 0.21 and further addition of ions did not affect the accuracy of 
model.     
 

The MALDI tryptic peptide spectra differences between the control and progressor profiles 

for the top ions identified by ANN analysis are shown in figure 5-6. The m/z value of 1130 

which was (the first discriminatory ion) was is present in the spectra obtained from 

progressors while this peak cannot be detected in the spectra of control mice. This ion 

predicted progressors from the controls with an accuracy of 85%.  
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Figure 5-6. Figure showing visual spectral differences for the top discriminatory ion between control 
(naïve) and progressors based on MALDI tryptic peptide profiles and ANNs analysis. The 
discriminatory ion for the control and progressors was 1130 which is present in the spectra corresponding to 
progressors and absent in the spectra obtained from the controls.  
 

Furthermore, the potency of ANNs correctly classifying controls from progressors based on 

the one ion was further examined and shown in population charts for protein and peptides. 

The ratios below 1.5 were assigned to the control group and ratios above 1.5 were classified 

as progressors (figure 5-7). Two progressors and one control were misclassified using 

based on one ion. The chart shows that one control and 2 progressors were misclassified 

based on the one discriminatory ion. 
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Figure 5-7. Predictive capability of ANNs to recognise tryptic peptide profiles based on 1 ion ANNs model. 
The red bars indicate progressor samples, and the yellow bars indicate control (naïve) samples. A predictive 
value below 1.5 indicates a control sample, while a prediction greater than 1.5 indicates a progressor sample. 
 
 

5.3.4 Biomarker Identification by ANN analysis discriminating controls 

from regressors.  

Once the spectra of control and regressor tryptic peptides were checked visually, 26 control 

and 10 regressor spectra that met the criteria were subjected to stepwise analysis (as 

described above). The capability of ANN analysis to classify naive and regressor samples 

was low with just over 50% of the data being correctly classified.  
 

Input m/z 
Training 

Perf. 

Test 

Perf. 

Validation 

Perf. 

Training 

error 

Test 

error 

Validation 

error 

1 1611 56% 57% 56% 0.42 0.33 0.43 

2 1458 56% 56% 52% 0.44 0.29 0.41 

3 1287 50% 48% 47% 0.48 0.28 0.41 
 

Table 5-5. The table represents the data obtained from the stepwise analysis of MALDI data generated 
from serum tryptic peptides of control (naïve) and regressor mice. The table shows a summary of the 
median accuracies and the mean squared error for the training, test and validation data sets as each input is 
added to the model. The model failed to classify regressors from the progressors and no significant 
discriminatory ion was identified by ANNs analysis.     
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The ANNs ability to classify control and progressors was examined by generating a 

population chart and the results are shown in figure 5-8. ANN analysis classified 100% of 

the naive samples correctly whereas all the regressor samples were misclassified. These 

results indicate that the regressor peptide profiles could not be discriminated from healthy 

controls, whereas progressor profiles were significantly different from controls. The 

analysis suggests that there are no or insignificant differences between the MALDI tryptic 

peptide profiles of control and regressor animals with the inference that regressor mice 

reverted to a normal proteomic phenotype. 
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Figure 5-8. Predictive capability of ANNs trained with the top 1 discriminatory ion. The black bars represent 
regressors and the white bars are naives. Sample with predictive values below 1.5 are regressors and those 
with values above 1.5 are naives. 
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5.3.5 Identification of predicted biomarkers that discriminated 

progressors from regressors, using ESI MS/MS.  
The four top ions from tryptic digest predicted by ANN analysis were identified by LC-

ESI-QIT MS/MS and the results are summarised in table 5-6. The samples for ESI analysis 

were prepared using the same method used for MALDI-MS analysis; pooled serum samples 

were then run on the ESI to identify the ions.  
 

m/z 
Test 

Perf. 
Protein Sequence Score pI 

1312 78% Haemoglobin β-2 subunit VNPDEVGGEALGR 126.1 8.22 

1132 80% Serum amyloid A-1 protein precursor EAFQEFFGR 251.2 6.61 

1192 90% Hemopexin precursor NPITSVDAAFR  178.1 7.63 

2133 86% Serum amyloid P component precursor APPSIVLGQEQDNYGGGFQR 196.3 5.95 
 

Table 5-6. Protein identification by LC-ESI-QIT MS/MS using ANNs predicted tryptic peptide ions for 
discrimination of progressors from regressors. 
 

The top 4 tryptic peptide peaks predicted by ANNs (m/z 1312, m/z 1132, m/z 1192 and m/z 

2133) were analysed by ESI MS/MS to obtain sequence data (figure 5-9). The doubly 

charged peptide from peak m/z 1312 was m/z 656.5 and the amino acid sequence was 

identified as VNPDEVGGEALGR which corresponds to part of the haemoglobin β-2 

subunit. Sequence analysis of doubly charged peaks of mass values of m/z 1132 with amino 

acid sequence of EAFQEFFGR verified that this protein was serum amyloid A-1 (SAA-1). 

Peaks with m/z 2133 and m/z 1192 were identified as fragments of serum amyloid P (SAP) 

and hemopexin (HPX) respectively; the amino acid sequence corresponding to SAP was 

APPSIVLGQEQDNYGGGFQR and for HPX was NPITSVDAAFR.  
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A B 

C D 

Figure 5-9. Sequence analysis of serum tryptic peptide by LC-ESI-QIT MS/MS for the biomarkers 
derived from the ANNs modeling of progressors and regressors. The ion with m/z of A) 1312 was derived 
from haemoglobin β-2 and amino acid sequence of VNPDEVGGEALGR, B) 1132 was derived from serum 
amyloid A-1 (SAA1) and amino acid sequence of EAFQEFFGR, C) 1192 was derived from hemopexin 
(HPX) with amino acid sequence of NPITSVDAAFR and D) 2133 was derived from serum amyloid P (SAP) 
with amino acid sequence of APPSIVLGQEQDNYGGGFQR. 
 
 
 

5.3.6 Identification of predicted biomarkers that discriminated 

progressors from controls, using ESI MS/MS.  
The discriminatory peak from the ANN model of progressors versus controls was m/z 1130 

and this was targeted in both pooled naïve and progressor serum by LC-ESI-QIT MS/MS 

(table 5-7). The sample for ESI analysis was prepared as described previously and the 

amino acid sequence of the doubly charged peptide from peak m/z 1130 was m/z 565.5 and 

identified as WFWDFART, a sequence of the hemopexin protein. 
 

m/z Test Perf. Test Error Protein Sequence pI 

1312 86% 0.21 Hemopexin precursor WFWDFART 7.63 
 

Table 5-7. Protein identification by LC-ESI-QIT MS/MS using ANNs predicted tryptic peptide ions for 
discrimination of progressors from regressors. 
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5.3.7 Analysis of RP-SPE serum fractions. 

In order to identify proteins that were specific to the progressors (failure of 

immunotherapy), we compared the serum protein expression of progressors with serum of 

tumour bearer (TB) animals. The hypothesis was that proteins that are differentially 

expressed might be correlated to failure of therapy and not only to the tumour expression. 

Serum samples from 4 TB and 4 progressors from the prospective mice model were 

prefractionated using RP-SPE columns and by sequential elution, 10 fractions for each 

sample were collected. The first fraction eluted with 20% ACN did not contain any bands 

meaning that no protein was eluting from the RP-SPE column with the lowest 

concentration of ACN. The equivalent ACN concentration fractions were analysed by SDS-

PAGE and stained with Coomassie blue and the results are presented in figure 5-11 (the 

fraction eluted with 20%ACN is not shown in this figure). Visual analysis of the gels 

reveals 19 pronounced differences between the TB and progressors and these were excised 

from the gel and tryptically digested. The peptide mass fingerprints of the gel band digests 

were generated by MALDI-TOF MS analysis. A representative SDS-PAGE containing all 

the 10 fractions collected from one serum sample is presented in figure 5-10. In addition, 

figure 5-10 show the location, identity number and approximate mass of the excised bands 

that were differently expressed between the equivalent ACN concentration fractions of TB 

and progressor samples. The list of the identified proteins from band 1-19 (shown in figure 

5-10) is represented in table 5-8.        
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Figure 5-10. Representative SDS-PAGE 
containing all the 10 fractions collected from 
progressor serum sample. The figure show the 
location, identity number and approximate mass 
of the excised bands that were differently 
expressed between the equivalent ACN 
concentration fractions of TB and progressor 
samples. 
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Figure 5-11. Comassie blue stained image of the SDS-PAGE showing the 30%, 35%, 40%, 43%, 45%, 48%, 
50%, 70% and 90% ACN wash fractions from RP-SPE analysis of serum samples from tumour bearer (TB) 
and progressor mice. Numbers 1-4 are TB and 5-8 are progressors.    
 

 

 

 

 
 

 171 



Chapter 5 

 172 

Gel band No. Protein name  

1 hemoglobin alpha chains 
hemoglobin beta major chain 

2 haptoglobin precursor 
Adult male stomach cDNA, RIKEN full-length enriched library 
Bone marrow macrophage cDNA, RIKEN full-length enriched library 

3 Apob protein 
Pregnancy zone protein 
Fibronectin precursor 

4 Pregnancy zone protein 
Murinoglobulin  
complement C3 precursor 
Trio protein 

5 Pregnancy zone protein 
Golgin subfamily A member 3 (Golgin-160) 

6 complement C3 precursor 
Pregnancy zone protein 
Adult male liver tumor cDNA, RIKEN full-length enriched library 

7 Serine 
complement C3 precursor 
Activated spleen cDNA 

8 complement C3 precursor 
Serine 
Krt2-5 protein 

9 Alpha-1-antitrypsin 1-6 precursor 
Serpina1a protein 
alpha-1 proteinase inhibitor 
Immunoglobulin gamma1 heavy chain 
Ig gamma-2b chain precursor 
Ig gamma-3 chain C region 
alpha-1-antichymotrypsin-like protein 

10 haptoglobin precursor 
11 Pregnancy zone protein 

complement C3 precursor 
Hydrocephalus-inducing protein 

12 Pregnancy zone protein 
13 Serum amyloid P-component 
14 ANTIBODY LIGHT CHAIN FAB (FRAGMENT) 

fabe8a fab, chain L 
idiotypic fab 730.1.4 (igg1) of virus neutralizing antibody, chain L 
Ig kappa chain V-C region (Fab fragment with N9 neuraminidase-NC41), chain L 
antibody desire-1 fab cleaved by papain, chain L 

15 Murinoglobulin 1 
16 Serpina1a protein 
17 complement C3 precursor 
18 Serum amyloid P-component 
19 Hemopexin precursor 
 

Table 5-8. Peptide mass fingerprint of differentially expressed proteins between serum samples from 
progressor and tumour bearer mice by MALDI-TOF MS.  
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Many of the proteins identified were immune response related, for example, complement C 

and apolipoprotein. However, SAP, HPX and HBB were also identified as proteins 

differentially expressed between tumour-bearer and progressor serum samples and were 

identified discriminatory biomarkers between regressor and progressor sera by ANN 

modeling. These results further suggest that there is a correlation between these three 

proteins (SAP, HPX and HBB) and failure of immunotherapy in the progressor animals.  

 

5.3.8 Validation of serum biomarkers corresponding to tumour 

progression and regression, using Western blot analysis.  
The results of both MALDI serum profiling and RP-SPE fractionation identified SAP, 

HPX, SAA1 and HBB as important discriminatory biomarkers and therefore further 

validation studies using immunoassays were conducted for these proteins. A unique aspect 

of our validation study is the use of both serum samples from prospective and retrospective 

CT26 immunotherapy model. Using samples collected form the retrospective murine model 

(conducted in 2004) which was used for biomarker discovery and serum samples from the 

prospective model (conducted in 2008). The three proteins (SAP, SAA-1, HPX and HBB) 

identified by ANN analysis of the regressor versus progressor model were further analysed 

by semi-quantitative Western blotting analysis. In the first instant, western blot analysis 

was carried out on the serum samples of regressor (n = 7), progressor (n = 17) and 

control/naïve (n = 16) mice from the retrospective murine model used for biomarker 

discovery. Serum protein (10mg/ml) from regressor, progressor and control mice were 

separated by SDS-PAGE and transferred to PVDF membranes, and probed with the 

appropriate antibodies. Western blotting using HBB antibody and ECL reagent revealed a 

major band of approximately 16 kDa which is the expected mass for mouse HBB. Western 

blots were preformed on all the retrospective samples and a representative result is shown 

in figure 5-12A. In the case of haemoglobin, a band was observed at 16 kDa (figure 5-

12A), however no differential pattern of expression for this protein was observed despite it 

being the first top discriminatory protein identified by ANN analysis, distinguishing 

progressor from regressors serum. Western analysis for SAA-1 revealed bands around 15 

kDa as shown in figure 5-12B. There was a significant (P < 0.05, P < 0.01) up-regulation 

of SAA-1 protein expression in the progressor animals in comparison to regressor and 

control animals. Western blot analysis of HPX was also carried out on the same samples 
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and revealed a band at 50 kDa, which is the expected mass of HPX; a representative result 

is shown in figure 5-12C with a noticeable increase in HPX band intensity in the progressor 

samples although the difference is less apparent than shown for SAA-1. Western blotting 

for SAP revealed a band of approximately 25 kDa, as shown in figure 5-12D. There was a 

significant (P < 0.05, P < 0.01) up-regulation SAP protein expression in the progressor 

animals in comparison to regressor and control mice.   
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Figure 5-12.  Western blot analysis of HBB, HPX, SAA-1 and SAP in mouse serum sample. A) SAP was 
detected at 25kDa and it was highly expressed in the serum samples from animals with a progressive tumour 
compared to naïve and regressors. B) There was an increase in the expression of HPX in the progressor 
animals compared to naive and regressors. C) Western blot of HBB in serum samples which shows variation 
in expression between the three groups of animals. D) There was a significant increase in the expression of 
SAA1 in the progressor animals compared to naive and regressors. Relative intensity:  A QC sample was run 
on every single western blot experiment and the density of each sample was normalised to the density of the 
QC sample.  
 

 

Validation of SAP using western blotting was carried out on the prospective serum samples 

(n = 6 progressors and n = 5 regressors) from the CT26 murine model of immunotherapy. 

Two sets of serum sample was collected from individual mice: first time point (FTP) 

collected prior to tumour implantation and end time point (ETP) collected at the end of the 
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tumour immunotherapy experiment when tumour regression or progression was confirmed. 

The FTP and ETP serum samples from individual animals were used to assess SAP 

concentration in the serum by western blotting. Densitometry results of SAP blots are 

presented in figure 5-13 and show a significant increase of SAP in the ETP of all progressor 

animals. There were no significant differences between the FTP and ETP for individual 

regressor mouse.  
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Figure 5-13. Western blot analysis of SAP on serum samples obtained from regressor/progressor 
animals in the prospective CT26 immunotherapy model. Serum samples from each animal were taken in 
the naive state (FTP) and also after success or failure of therapy (ETP). Results of SAP western blotting 
showed that there was a significant increase in the protein levels in the ETP compared to the FTP in animals 
that rejected the tumour after immunotherapy. However, the levels remained constant in the animals that 
responded to therapy.  
 

These results are supported by the previously proposed suggestion that serum proteome of 

regressor and control (naïve) animals are similar although they are very different to 

proteome of mice with progressive tumours. However, it would be interesting to follow the 

changes in the SAP pattern throughout the period of immunotherapy experiment by 

collecting serum samples in different time points.    

 

5.3.9 Quantification of SAP, SAA and HPX using ELISA and 

immunohistochemistry.  
SAP was further quantitated using serum from individual animals from the prospective 

model (figure 5-14A). There was no significant difference in the concentration of SAP in 

the FTP serum samples of progressor and regressor animals; however SAP levels were 

significantly increased after failure of therapy but the concentration remained similar in the 

serum samples of animals that responded to therapy. The level of SAP increased by an 

average of 2.3 fold in the ETP compared to FTP of the progressor animals. SAP 

concentration was assessed at the terminal stage of therapy in the retrospective model 
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(figure 5-14B). While the concentration of SAP in control and regressor animals was 

similar, there was a significant increase in SAP in progressor serum samples, which 

validated the findings from proteomic based studies.  
 

FTP
n=6

ETP
n=6

FTP
n=6

ETP
n=6

C
on

ce
nt

ra
tio

n 
ug

/m
l

Regressor
p = 0.2

Progressor
p = 0.001

** p = 0.001

** p = 0.001

FTP
n=6

ETP
n=6

FTP
n=6

ETP
n=6

C
on

ce
nt

ra
tio

n 
ug

/m
l

Regressor
p = 0.2

Progressor
p = 0.001

FTP
n=6

ETP
n=6

FTP
n=6

ETP
n=6

C
on

ce
nt

ra
tio

n 
ug

/m
l

Regressor
p = 0.2

Progressor
p = 0.001

** p = 0.001

** p = 0.001

1.716

1.718

1.720

1.722

1.724

1.726

1.728

0 0.5 1 1.5 2

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

C
on

ce
nt

ra
tio

n 
ug

/m
l

naive
n=4

progressor
n=4

regressor
n=4

1.716

1.718

1.720

1.722

1.724

1.726

1.728

0 0.5 1 1.5 2

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

1.716

1.718

1.720

1.722

1.724

1.726

1.728

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

Naive
n=6

Progressor
n=6

Regressor
n=6

1.716

1.718

1.720

1.722

1.724

1.726

1.728

0 0.5 1 1.5 2

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

C
on

ce
nt

ra
tio

n 
ug

/m
l

naive
n=4

progressor
n=4

regressor
n=4

1.716

1.718

1.720

1.722

1.724

1.726

1.728

0 0.5 1 1.5 2

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

1.716

1.718

1.720

1.722

1.724

1.726

1.728

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

1.716

1.718

1.720

1.722

1.724

1.726

1.728

0 0.5 1 1.5 2

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

C
on

ce
nt

ra
tio

n 
ug

/m
l

naive
n=4

progressor
n=4

regressor
n=4

1.716

1.718

1.720

1.722

1.724

1.726

1.728

0 0.5 1 1.5 2

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

1.716

1.718

1.720

1.722

1.724

1.726

1.728

0 0.5 1 1.5 2

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

C
on

ce
nt

ra
tio

n 
ug

/m
l

naive
n=4

progressor
n=4

regressor
n=4

1.716

1.718

1.720

1.722

1.724

1.726

1.728

0 0.5 1 1.5 2

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

1.716

1.718

1.720

1.722

1.724

1.726

1.728

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

Naive
n=6

Progressor
n=6

Regressor
n=6

Naive
n=6

Progressor
n=6

Regressor
n=6

* p = 0.05 * p = 0.05

FTP
n=6

ETP
n=6

FTP
n=6

ETP
n=6

C
on

ce
nt

ra
tio

n 
ug

/m
l

Regressor
p = 0.2

Progressor
p = 0.001

** p = 0.001

** p = 0.001

FTP
n=6

ETP
n=6

FTP
n=6

ETP
n=6

C
on

ce
nt

ra
tio

n 
ug

/m
l

Regressor
p = 0.2

Progressor
p = 0.001

FTP
n=6

ETP
n=6

FTP
n=6

ETP
n=6

C
on

ce
nt

ra
tio

n 
ug

/m
l

Regressor
p = 0.2

Progressor
p = 0.001

** p = 0.001

** p = 0.001

1.716

1.718

1.720

1.722

1.724

1.726

1.728

0 0.5 1 1.5 2

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

C
on

ce
nt

ra
tio

n 
ug

/m
l

naive
n=4

progressor
n=4

regressor
n=4

1.716

1.718

1.720

1.722

1.724

1.726

1.728

0 0.5 1 1.5 2

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

1.716

1.718

1.720

1.722

1.724

1.726

1.728

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

Naive
n=6

Progressor
n=6

Regressor
n=6

1.716

1.718

1.720

1.722

1.724

1.726

1.728

0 0.5 1 1.5 2

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

C
on

ce
nt

ra
tio

n 
ug

/m
l

naive
n=4

progressor
n=4

regressor
n=4

1.716

1.718

1.720

1.722

1.724

1.726

1.728

0 0.5 1 1.5 2

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

1.716

1.718

1.720

1.722

1.724

1.726

1.728

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

1.716

1.718

1.720

1.722

1.724

1.726

1.728

0 0.5 1 1.5 2

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

C
on

ce
nt

ra
tio

n 
ug

/m
l

naive
n=4

progressor
n=4

regressor
n=4

1.716

1.718

1.720

1.722

1.724

1.726

1.728

0 0.5 1 1.5 2

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

1.716

1.718

1.720

1.722

1.724

1.726

1.728

0 0.5 1 1.5 2

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

C
on

ce
nt

ra
tio

n 
ug

/m
l

naive
n=4

progressor
n=4

regressor
n=4

1.716

1.718

1.720

1.722

1.724

1.726

1.728

0 0.5 1 1.5 2

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

1.716

1.718

1.720

1.722

1.724

1.726

1.728

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

Naive
n=6

Progressor
n=6

Regressor
n=6

Naive
n=6

Progressor
n=6

Regressor
n=6

* p = 0.05 * p = 0.05

 
Figure 5-14. ELISA assay on SAP. A) Serum samples from each individual mouse (prospective model) from 
its healthy status (FTP) and after failure or response to therapy (ETP) were also assessed for SAP 
concentration using ELISA. There was no significant difference between the healthy statuses (FTP) of 
animals that did not respond to therapy in comparison to therapy responders. However, SAP levels were 
significantly higher (p = 0.05) for ETP in therapy non-responders compared with FTP of the same animal. 
The levels of SAP however, remained at similar levels for both time points in therapy responders. B) The 
serum sample from retrospective animal model were quantified for SAP which resulted in a significant 
increase (p = 0.001) in the SAP in the progressor animals when compared to regressor and control animals. 
 

Since the differential expression of SAA-1 was clearly confirmed in the western analysis 

we further analysed the SAA protein levels in sera via ELISA. We assessed SAA 

concentration in the serum samples collected from the prospective study (figure 5-15A). 

The SAA levels in sera was quantified in the individual animals in the naive state (FTP) for 

a baseline level as well as at the end of tumour progression or regression (ETP) following 

DISC-HSV therapy (figure 5-15A). There was no significant difference in the concentration 

of SAA in the FTP serum samples of progressor and regressor animals. However, SAA 

levels were significantly (p < 0.001) increased in the ETP sample after failure of therapy 

whilst their concentration remained similar in the serum samples of animals that responded 

to therapy. We were further able to show that the levels of SAA increased by an average of 

A B 
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11.7 fold respectively in the ETP compared to FTP of the progressor animals. We further 

assessed SAA concentration in the serum samples collected at the end of the retrospective 

study (figure 5-15B). While the concentration of SAA in the control and regressor animals 

was similar, there was a drastic increase in the progressors which also confirmed and 

validated our finding from the proteomic based studies as well as western blotting.  

 

 177 

0.6

0.7

0.8

0.9

1.0

1.1

0 1 2 3 4

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

Naïve
n = 4

Progressor 
n = 4

Regressor
n = 5

SA
A

 c
on

ce
nt

ra
tio

n 
m

g/
m

l

* *

0.6

0.7

0.8

0.9

1.0

1.1

0 1 2 3 4

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

Naïve
n = 4

Progressor 
n = 4

Regressor
n = 5

0.6

0.7

0.8

0.9

1.0

1.1

0 1 2 3 4

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

Naïve
n = 4

Progressor 
n = 4

Regressor
n = 5

SA
A

 c
on

ce
nt

ra
tio

n 
m

g/
m

l

* *

 
 
Figure 5-15. ELISA assay on SAA. A) Serum samples from each individual mouse (prospective model) 
from its healthy status (FTP) and after failure or response to therapy (ETP) were also assessed for SAA 
concentration using ELISA. There was no significant difference between the healthy statuses (FTP) of 
animals that did not respond to therapy in comparison to therapy responders. However, SAA levels were 
significantly higher (p = 0.05) for ETP in therapy non-responders compared with FTP of the same animal. 
The levels of SAA however, remained at similar levels for both time points in therapy responders. B) The 
serum sample from retrospective animal model were quantified for SAA which resulted in a significant 
increase (p = 0.001) in the SAA in the progressor animals when compared to regressor and control animals. 
 

 

Finally, the quantification of serum HPX in the serum samples from FTP and ETP of 
regressor and progressor animals (prospective model) showed similar results to SAP and 
SAA (figure 5-16A). While the HPX levels in both FTP and ETP of the regressor animals 
remain the same, there was an average of 14.4 fold increases in the ETP samples of 
progressors compare to FTP progressor samples. However, HPX levels in FTP progressors 
show similarity to FTP and ETP regressor samples. Moreover, the HPX concentration in 
the serum samples collected at the end of the retrospective study from the naïve, regressor 
and progressor (Figure 5-16B). The concentraction of HPX in the serum sample of 
progressor animals was significantly higher compared to regressor and naïve animals. 
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Figure 5-16. ELISA assay on HPX. A) Serum samples from each individual mouse (prospective model) 
from its healthy status (FTP) and after failure or response to therapy (ETP) were also assessed for HPX 
concentration using ELISA. There was no significant difference between the healthy statuses (FTP) of 
animals that did not respond to therapy in comparison to therapy responders. However, HPX levels were 
significantly higher (p = 0.001) for ETP in therapy non-responders compared with FTP of the same animal. 
The levels of HPX however, remained at similar levels for both time points in therapy responders. B) The 
serum sample from retrospective animal model were quantified for HPX which resulted in a significant 
increase (p = 0.05) in the HPX in the progressor animals when compared to regressor and control animals. 
 

 

We examined whether SAP was present in tumour tissue by immunohistochemistry (IHC). 

Tumour tissue sections (CT26 colorectal carcinoma tumours) form progressor were from 

the prospective experiment were immunostained with polyclonal rabbit anti mouse SAP 

antibody (figure 5-17B1-5), or with biotinylated polyclonal goat anti-rabbit 

immunoglobulin (figure 5-17C). The H&E stain for the tumour tissue is shown in figure 5-

17A. Low to intense SAP protein expression was evident in the cytoplasm of the CT26 

tumour cells from the progressor (figure 5-17B1-5) and a summary of the intensity scores 

of the tissue staining for SAP is summarised in table 5-9.  

.  
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Figure 5-17. Immunohistochemistry demonstrating serum amyloid P (SAP) protein expression in CT26 
colorectal tumour tissue. Tissue sections were immunostained with polyclonal rabbit anti mouse SAP 
antibody. The reddish-brown staining represents a positive SAP protein signal, counterstaining was shown as 
blue-purple. A) H&E stain of the tissu, B1-B5) Demonstrate intense SAP protein expression is evident in the 
cytoplasm of the tumour cells. B1 is representative of a tissue with 1-20% positive cells therefore a score of 1 
is given, B2 = score 2 (21-40% positive cells), B3 score 3 (41-60% positivity of cells), B4 score 4 (61-80% 
positive cells) and B5 score 5 (81-100% cells positive) for SAP protein expression. It is can be seen from the 
table that 16/21 tissues from progressor mice showed 20 – 60% (scores of 3 and 4) protein staining for SAP. 
C) Negative control, stained with secondary antibody only.  
 

Table 5-9. Summary of the IHC expression scores for SAP in tumour tissues.  

score Percentage cells showing positive staining No. tissues  

0 0% 1 
1 1-20% 1 
2 21-40% 5 
3 41-60% 11 
4 61-80% 2 
5 81-100% 1 
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5.3.10 Validation of serum biomarkers corresponding to tumour progression 

and regression in the CT26 tumour and liver using RT-PCR analysis  
Due to positive staining for the protein expression of SAP and SAA-1 in the tumour tissues 

of progressor and TB animals we investigated further whether the transcript mRNA for all 

four discriminatory biomarkers was also present in tumour and liver using quantitative RT-

PCR. Interestingly none of the tumour tissues either from TB or progressors showed a 

positive mRNA for any of the four biomarkers investigated. A graphic representation of the 

mRNA transcript levels in the liver for HBB, SAA-1, HPX and SAP are shown in figure 5-

18. As can be seen from the graphs there is a significant increase in mRNA levels of SAP, 

SAA-1 and HPX in the liver of TB and progressor animals (p < 0.05, p < 0.01) 

respectively compared with both naïve and regressors. Whilst HBB mRNA expression does 

not show a clear pattern of expression in liver, in the spleen (Table 5-10) the site of protein 

production there is a significant increase of the mRNA (p < 0.05) in both the TB and 

progressors compared with naïve animals but there was not a significant difference between 

TB and progressors versus regressors. The other three proteins showed negligible 

expression in the spleen. The CT26 cell line used to induce tumour growth was also 

analysed as well as the kidney which demonstrated little or no mRNA presence for the four 

proteins (HBB, SAA-1, HPX and SAP).  
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Figure 5-18. RT-PCR demonstrating expression of HBB (A), SAA (B), HPX (C) and SAP (D) genes in 
liver of the CT26 mouse model. RNA was extracted from the liver of mice prior to CT26 tumour 
implantation (Naïve), without therapy (Tumour bearer, TB) and those which received DISC-HSV 
immunotherapy and responded to the treatment (Regressors) or those that were therapy resistant and where 
the tumour progressed (Progressors). As can be seen there was a significant increase in the mRNA transcripts 
of SAA, HPX and SAP genes in the progressors and TB compared to both naïve and regressor animals. ∗ p = 
<0.05 and ∗∗ p = < 0.001 
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Gene Tissue Mice Relative mRNA expression* 
naïve 23.17 

tumour bearer 109.06 
regressor 54.47 

spleen 

progressor 109.07 
tumour bearer 0.14 tumour 

progressor 0.05 
CT26 cell line  0.00 

kidney  0.35 

mHBB 

liver naïve 1* 
naïve 0.00 

tumour bearer 0.00 
regressor 0.00 

spleen 

progressor 0.00 
tumour bearer 0.00 tumour 

progressor 0.00 
CT26 cell line  0.00 

kidney  0.00 

mSAA1 

liver naïve 1000* 
naïve 0.17 

tumour bearer 0.03 
regressor 0.09 

spleen 

progressor 0.05 
tumour bearer 0.06 tumour 

progressor 0.06 
CT26 cell line  0.02 

kidney  0.22 

mHPX 

liver naïve 1000* 
naïve 0.12 

tumour bearer 0.00 
regressor 0.02 

spleen 

progressor 0.00 
tumour bearer 0.00 tumour 

progressor 0.00 
CT26 cell line  0.00 

kidney  0.45 

mSAP 

liver naïve 1000* 
Table 5-10. RT-PCR demonstrating relative mRNA expression of HBB (A), SAA (B), HPX (C) and SAP 
(D) genes in spleen, tumour, CT26 cell line, kidney and liver of mice.  
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4.5 Discussion 
Immunotherapy is rapidly developing as a potential treatment option for cancer, and 

previous studies demonstrated that the DISC-HSV vector encoding the mGM-CSF cytokine 

gene when administrated to mice with CT26 colorectal carcinoma (intra-tumour injection) 

induced tumour regression in a significant proportion of animals (Rees et al. 2002, Ali et 

al. 2002 and Ahmad et al. 2005). The model was subsequently used to study the immune 

mechanisms involved in tumour regression and to investigate pathways involve in tumour 

immunotherapy escape (Ahmad et al. 2005). The potency of DISC-HSV to infect human 

prostate cancer cell-lines and induce expression of reporter and therapeutic cytokine gene 

GM-SCF in a xenograft tumor model has also been studied (Parkinson et al. 2003). This 

demonstrated the ability of DISC-HSV to infect prostate cancer cells and express GM-CSF 

at significant levels. In the present study we demonstrate the ability of MALDI-MS serum 

profiling in conjunction with ANNs modeling to discover biomarkers that are associated 

with response or failure of immunotherapy in a CT26 colorectal murine immunotherapy 

model. We have used MALDI-MS and ANN algorithms with a comprehensive sample 

preparation procedure prior to mass spectrometry analysis with the aim of differentiating 

between tumour regressor and progressor mice by analysing the serum proteome and 

identifying distinguishing biomarkers.  

The discovery of biomarkers that predict therapeutic response is of increasing importance 

in the development and application of appropriate therapies for cancer. In this study we 

identified and confirmed serum peptide biomarkers (SAA-1, SAP and HPX) that associated 

with failure of immunotherapy and disease progression in a colorectal murine model, 

demonstrating the ability of MALDI-TOF-MS in conjunction with ANN bioinformatic 

modelling to discover biomarkers. We used “retrospective” CT26 colorectal cancer cohort 

samples, collected at the end of the study period for the discovery/identification of the 

peptides reflecting the outcome of therapy and in an independent “prospective” experiment 

used regressor/progressor/naïve/tumour bearer samples for the biological and immuno-

validation. Additionally for this sample set we were able to collect the blood prior to and 

following tumour implantation and therapy.  

In the discovery phase of the study, “retrospective” samples collected under strict standard 

operating protocols at the end of therapy trial were used to derive cumulative MALDI-MS 

protein and tryptic peptide data which were subsequently used to generate ANN models 
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which compared regressor versus progressors, progressor versus healthy controls and 

regressors versus controls. For protein analysis, two ions (m/z 4804 and m/z 11053) were 

identified to serve as final discriminating biomarkers with an accuracy of 86% and 

sensitivity 100% and specificity of 94%. Subsequently regressor/progressor peptide 

analysis demonstrated an 86% accuracy (sensitivity of 90% and specificity of 81%) with a 

panel of 4 predicted biomarkers. In the case of progressors versus healthy controls, 1 tryptic 

peptide peak classified samples with an accuracy of 85% (sensitivity of 88% and specificity 

of 96%), however, it was not possible to discern regressors from healthy controls, 

suggesting that following successful therapy the serum proteome reverted to a “healthy” 

status. Four predictive ions from the regressor/progressor analysis were identified as 

peptides derived from haemoglobin beta-2 subunit (HBB), serum amyloid A-1 (SAA-1), 

hemopexin (HPX) and serum amyloid P (SAP) proteins, while the tryptic peptide ion 

discriminating progressors from healthy controls was also identified as a component of 

HPX. Three out of the identified proteins (SAA-1, SAP and HPX) have been previously 

described as acute phase reactants in mice (Pepys et al. 1997).  

 Analysis by independent techniques, RT-PCR and immunoassays, were used to validate 

the respective expression of these biomarkers. The results suggest a role for SAA-1 and 

SAP as biomarkers related to tumour progression following immunotherapy, a premise 

supported by a recent study in a xenograft model of Balb/c mice, which reported that 

differential glycosylation patterns of acute phase proteins (APP) correlates with disease 

progression in breast and colon cancers (Diamandis 2006). In the present study, a mass 

value of 1132 was identified as SAA-1 with sequence of EAFQEFFGR which is identical 

to the reported biomarker peptide identified in the plasma of mice bearing tumours 

established from human gastric cancer cell lines (Juan et al. 2004). Elevated levels of SAA 

have been reported in the plasma/serum of mice bearing intestinal tumours (Hung et al. 

2006) and neuroblastomas (Sandoval et al. 2007), as well as in sera of patients with various 

types of human cancers including nasopharyngeal (Cho 2007), prostate (Kaneti et al. 1984), 

pancreatic (Müller et al. 1997). 

Serum amyloid A (SAA-1) is a member of the acute phase protein family which has been 

recently reported, using in situ hybridisation and IHC on paraffin tissue sections from 26 

colon cancer patients revealed barely detected SAA mRNA expression in normal looking 

colonic epithelium whilst expression was increased gradually as epithelial cells progressed 

through dysplasia to neoplasia (Gutfeld et al. 2006). Deeply invading colon carcinoma cells 
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showed the highest levels of SAA, although in most cases it is believed that the elevated 

levels of SAA-1 in the blood of cancer patients is derived from the liver (Gutfeld et al. 

2006). Cocco et al., (2009) reported that SAA was highly expressed in USPC; it is actively 

secreted in vitro and high concentrations of SAA are present in the serum of USPC patients. 

Moreover; serum SAA levels in USPC patients clinically diagnosed with early-stage 

disease are predictive of more advanced stage disease at the time of comprehensive surgical 

staging. Alternatively mediators derived from the tumour may stimulate SAA-1 synthesis 

in the liver resulting in high SAA-1 blood levels (Ghezzi et al. 1993). We were unable to 

detect SAP mRNA transcripts in CT26 tumour tissue suggesting that the tumour/tumour 

microenvironment produces mediators that increase SAA-1 production in the liver. RT-

PCR revealed a 1200 and 5500 fold increase in SAA-1 expression in the liver of progressor 

mice compared with naïve mice or mice responding to DISC immunotherapy respectively. 

Further to this, SAA-1 mRNA levels were increased 2.5 times in the liver of therapy 

resistant mice compared to tumour bearer mice (not receiving therapy). The positive protein 

expression of both SAA-1 and SAP in tumour cells is intriguing although the mechanism 

whereby they are taken up by tumour cells remains to be established. However; the increase 

in liver production could be due to an increase in the levels of IFN-γ in the progressor 

animals which our group have previously reported (Ahmad et al. 2005); it is known that 

IFN-γ, TNF-α, IL-1, IL-6 and other proinflammatory mediators induce the upregulation of 

acute phase proteins including SAA transcription (Steel et al. 1994). Up-regulation of 

proinflammatory cytokines and acute phase proteins in colonic mucosa has also been 

reported for individuals with inflammatory bowel disease (Niederau et al. 1997, 

Keshavarzian et al. 1999), who are at very high risk of developing colon cancer (Bachwich 

et al. 1994); epidemiologic observations also suggest that chronic inflammation predisposes 

to colorectal cancer (Rhodes and Campbell 2002, Farrell and Peppercorn 2002). Thus, the 

observation by Hao et al., (2005) of a down-regulation of PPAR-γ and up-regulation of IL-

8 and SAA1 in the normal mucosa of individuals with a family history of sporadic colon 

cancer and individuals with inflammatory bowel disease is perhaps indicative of the 

involvement of common pathways leading to colon carcinogenesis in these two groups.  

Although the biological importance of SAA is not well understood, previous reports have 

suggested multiple important biologic functions relevant to the mechanism of tumor cell 

invasion and metastasis. SAA plays a role in transportation of cholesterol to liver, 

recruitment of immune cells to the site of inflammation and the induction of extracellular 
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matrix degrading enzymes; it is possible therefore that SAA may influence tumor cell 

invasion through re-modelling of the extracellular matrix through the induction of matrix 

metalloproteinases (Migita et al. 1998, Hara et al. 2004). SAA may also play a role in p53-

induced apoptosis (Polyak et al. 1997), the mechanism of which is not yet known. There 

has been a renewed interest in the concept of inflammation-associated tumorigenesis 

(Balkwill and Mantovani 2001, Pikarsky et al. 2004, Clevers 2004). It has been suggested 

that local inflammation within the microenvironment of malignant tissue induces migration 

and tissue infiltration of inflammatory cells (Badolato et al. 1994, Xu et al. 1995), 

associating with the production of pro-inflammatory cytokines: tumour necrosis factor-α, 

interleukin-1ß, and interleukin-8 (Patel et al. 1998, Furlaneto et al. 2000).  

SAP is a glycoprotein that belongs to the APP family and it was thought to be uniquely 

present in the mouse serum (Duan et al. 2004). However, SAP has also been identified in 

atherosclerotic lesions and as a component of human amyloid deposits in the brains of 

Alzheimer’s patients (Kolstoe et al. 2009, Tennent et al. 1995, Nishiyama et al. 1996) and 

potentially a role in protecting individuals from autoimmune disorders (Soma et al. 2001). 

Serum amyloid P is involved in the clearance of DNA by binding to it when present in the 

extracellular environment released from cells undergoing necrosis or apoptosis which has 

an impact on protecting individuals from autoimmune disorders (Kravitz et al. 2005). As 

with SAA1, cytokines such as IL-1 and IL-6 stimulate SAP production in mouse hepatoma 

cell lines in vitro, and it has been recently reported that the expression of SAP and its 

homologue protein CRP are regulated by IL-1 and TNF-α (Zahedi and Whitehead 1993).  

In this study HPX was identified from m/z of 1192 with a sequence identity of 

NPITSVDAAFR a protein that is produced by the liver as was verified by the RT-PCR. 

Hemopexin is a protein produced by liver and part of APP family. It binds haem with the 

highest affinity among known proteins (Tolosano and Altruda 2002). The levels of HPX in 

blood reflect the amount of haem present and it participates in iron metabolism, protection 

against oxidative damage and is induced during inflammation. HPX, haptoglobin and 

transferrin are the most abundant protein complex in plasma after albumin, 

immunoglobulin and plasma proteases (Delanghe and Anglois 2001). The production of 

HPX is shown to be slightly increased as a response to IL-6 but not IL-1, and using 

MALDI-MS serum screening, it has been detected as a biomarker of human breast cancer 

patients with leptomeningeal metastasis (Rompp et al. 2007). It is interesting to note that 

the haem-hemopexin complex stimulates growth and proliferation of T-lymphocytes at the 
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site of inflammation, injury and infection (Smith et al. 1997), which suggests its 

involvement in inflammation-associated tumorigenesis, where chronic inflammation is 

proposed as a pre-requisite in the aetiology of neoplasia (Schottenfeld and Beebe-Dimmer 

2006, Cousses and Werb 2002).  

The sequence of the tryptic peptides were also identified by MS/MS analysis for the mass 

values of 1312 was related to haemoglobin β-2 chain subunit (HBB) and was 

VNPDEVGGEALGR. Haemoglobin is oxygen transporting molecules and there was an 

increase in its concentration during tumour progression due to angiogenesis around the 

tumour in proteomic analysis of melanoma tumour tissues obtained from B16-F10 murine 

melanoma model (Culp et al. 2006) however, our serum proteomic profiling of mouse with 

CT26 tumour after DISC-HSV therapy revealed that the average intensity of the peak 

identified as haemoglobin β-2 chain in regressor mice is higher compared to profiles of 

progressor mice. This interesting result was further suported by a recent study published by 

Komita and colleagues (Komita et al. 2008). This group reported that a CD8+ T-cell 

response against haemoglobin β-2 prevents solid tumour growth. They used a vaccine 

pulsed with haemoglobin β-2 subunit to vaccinate Balb/c mice prior to tumour challenge 

with sarcoma, breast and CT26 colon carcinoma. After the tumour challenge, there was a 

significant decrease in the growth of tumour in the animals receiving the vaccination prior 

to the tumour challenge. This vaccination induced complete regression of sarcoma tumour 

in the animals vaccinated prior to tumour challenge. Their in situ imaging suggest that the 

haemoglobin β-2 peptide pulsed vaccine limit or destabilise tumour-associated vascular 

structures by promoting immunity against haemoglobin β-2 positive vascular pericytes. In 

another recent study, SELDI analysis of the sera obtained from patients with ovarian cancer 

demonstrated that haemoglobin alpha and beta chain are potential biomarkers for ovarian 

cancer and the levels of haemoglobin was significantly different in patients with ovarian 

cancer from healthy specimens (Woong-Shick et al. 2005) however the patients in this 

study did not receive any therapy. In concurrence to our findings, Obermair and coworkers 

measured the serum haemoglobin levels of patients with advance uterine cervix carcinoma 

before administration of radiotherapy and showed that patients with serum haemoglobin 

levels > 12 g/dL have better survival rate compared with patients with haemoglobin levels 

lower than 12 g/dL (Obermair et al. 1998) and several other reports also confirmed in other 

types of cancer and therapy (Wagner et al. 2000). The reasons of this phenomenon are 

unclear; however, secretion of IL-1, TNF-α and IFN-gamma thought to have an impact on 
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appearance of tumour anemia by haemolysis. Therefore, the presence of aggressive tumour 

colonies in patients with low levels of haemoglobin may indirectly reduce the survival rate 

after administration of the therapy. 

Although SAA, SAP and HPX are not strictly “cancer-related” biomarkers, from the results 

shown here in an experimental model, these proteins hold potential value for the assessment 

of patients harbouring colorectal cancer as well as in the potential monitoring of therapeutic 

results. This premise is also inferred from a recent publication by Malle et al. (Malle et al. 

2009) who suggested a critical role for SAA as a marker for monitoring disease outcome 

and survival prediction. There is overwhelming evidence that elevation of SAA occurs 

during cancer relapse (Parle-McDermott et al. 2000, Hao et al. 2005, Nishie et al. 2001, 

Kosari et al. 2005, Vreughenhil et al. 1999, Liang et al. 2007, Kovacevic et al. 2008). 

Future studies are required to reveal the underlying mechanisms of how SAA could 

promote tumour development and accelerate tumour progression and metastasis. The 

results presented in this report demonstrate the utility of MALDI-TOF-MS serum 

(proteome) profiling and ANN analysis as a powerful tool for cancer biomarker discovery.  
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Chapter 6 – A Time Course Evaluation of Proteomic Changes in 

CT26 Immunotherapy with dendritic cell vaccine in 

combination with blockade of VEGFR-2 and CTLA-4. 

 
 
 
6.1 Introduction 

 

6.1.1 Treatment of CT26 tumour with dendritic cell vaccine in 

combination with blockade of VEGFR-2 and CTLA-4. 

Dendritic cells (DCs) represent the most potent antigen presenting cell (APC) type that are 

capable of producing immunomodulatory molecules (i.e. chemokines and cytokines) and 

stimulating the induction of cytotoxic lymphocytes (CTL) against tumours (Onji and Akbar 

2004, Muehlbauer and Schwartzentruber 2003). In addition, they can act as their own 

adjuvant, a further advantage when they are utilised as cancer vaccines. Several murine 

studies demonstrate the rejection of established tumours using DC-based vaccines. 

Moreover, in-vitro production of large quantities of functional autologous DCs from the 

patient (i.e. DCs derived from monocyte or from CD34+) was shown to be pretty 

straightforward, in the presence of GM-CSF and IL-4 in the culture media (Siena et al. 

1995). Therefore, these unique characteristics of DCs led to great interest in the utilisation 

of DCs as therapeutic agents, and development of new cancer vaccines for various human 

cancers. Several strategies have been demonstrated for loading DCs (ex-vivo) with tumour 

derived antigens in the form of peptides, protein, tumour cell lysates or RNA/DNA , where 

the DCs become capable of efficiently presenting tumour associated antigen (TAA) to T 

cells (Dermime et al. 2002, Moyer et al. 2006). Transfection with viral vectors expressing 

tumour antigen, and fusing with whole tumour cells, are additional demonstrated strategies 

for loading DCs with antigens and generation of CTLs (Muehlbauer and Schwartzentruber 

2003). The efficancy and safety of several experimentally designed DC-based vaccines, 

generated by loading different antigens and different antigen-loading techniques, have been 

further examined in multiple phase I and II human clinical trials in attempts to treat 

different type of cancers. The clinical trials carried out using DC-based vaccinations 
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includes melanoma, multiple myeloma, prostate cancer, non-Hodgkin lymphoma, renal-cell 

carcinoma, colorectal, liver, lung, bladder and breast cancer (Dermime et al. 2002, Saha et 

al. 2003). In most studies, only half or less of the patients undergoing the vaccination 

exhibit immune responses against the vaccinating antigen.  No significant results have been 

obtained from phase III clinical trials on the use of DC-based vaccinations, and the results 

from these studies are often inconclusive.  

In order to overcome the issues with the DC-based vaccinations, novel strategies have been 

explored, and different strategies have been developed, which include genetic alteration of 

DCs for production of cytokines, and combining DC vaccination with other therapies, to 

increase the efficacy of vaccination. The effects of DC-based vaccines can be suppressed 

due to secretion of immunosuppressive agents such as IL-6, IL-10 and vascular endothelial 

growth factor (VEGF) by tumour tissue, or because of low immunogenicity of the tumour 

epitope (Saha et al. 2003, Pedersen et al. 2006). These issues were addressed by Pedersen 

and coworkers, who investigated the efficiency of DC vaccination in combination with 

blockade of vascular endothelial growth factor receptor 2 (VEGFR-2) and CTL- associated 

antigen 4 (CTLA-4), for immunotherapy of established CT26 colorectal carcinoma tumours 

in murine (Pedersen et al.  2006). The DCs were pulsed with AH1 peptide, derived from 

MuL gp70 protein that is expressed by CT26 cells. The combination of this DC-based 

vaccination with blockade of VEGFR-2 and CTLA-4, resulted in rejection of CT26 

tumours in 80% of the treated mice.  

Angiogenesis plays an important role in the growth, invasion and metastasis of most solid 

tumours (Ferrara 2000). Among molecules that stimulate angiogenesis, VEGF and its 

receptor VEGF-2 are one of the key mediators of physiological and pathological vessel 

development. Abnormal production of VEGF by several types of tumour has previously 

been reported, and it has been proposed that blocking the VEGF/VEGFR-2 pathway may 

inhibit tumour growth (Taraboletti et al. 2005, Pedersen et al.  2006). In addition, VEGF 

could negatively affect the immune system’s response to the growth of tumour, by 

decreasing the ability of DCs to differentiate to functional forms; as a result of VEGF 

binding to a receptor (i.e. VEGFR-1/FLT1 receptor) of CD34+ bone marrow progenitor 

cells, as well as inhibiting T-cell development (Li et. al. 2006). Several studies investigated 

the use of VEGFR-2 blockade in conjunction with an independent immunotherapy which 

showed an enhancement in the efficacy of treatment (Pedersen et al. 2006, Li et. al. 2006). 



Chapter 6 

 191 

CTLA-4 is a member of the immunoglobulin superfamily, which is expressed on the 

surface of helper T-cells and transmits an inhibitory signal to T-cells. CTLA-4 is similar to 

the T-cell costimulatory protein CD28, and both molecules bind to CD80 on APCs. CTLA-

4 transmits an inhibitory signal to T cells, whereas CD28 transmits a stimulatory signal. 

Intracellular CTLA-4 is also found in regulatory T-cells and may be important to their 

function. T-cell activation through the T-cell receptor and CD28 leads to increased 

expression of CTLA-4, an inhibitory receptor for B7 molecules (i.e. CD80) (Pedersen and 

Ronchese 2007). It has been demonstrated that injection of anti CTLA-4 antibody, blocks 

the CTLA-4/CD80 interaction and enhances the antitumour immunity response, and 

therefore has been used in a combination therapy with other vaccination strategies to 

enhance the therapeutic T-cell immunity against weak immunogenic tumours (Pedersen et 

al. 2006). Moreover, human anti CTLA-4 monoclonal antibody has been entered in phase 

III clinical trials of melanoma and renal carcinoma (Bashyam 2007). 

  

6.1.2 Immunotherapy of CT26 tumour with DISC-mGM-CSF vaccine. 
The application of DISC-mGM-CSF vaccination in treatment of established murine CT26 

colorectal tumour has been previously described (chapter 5). Briefly, direct intratumour 

injection of DISC-mGM-CSF-HSV into CT26 tumours has been shown to induce complete 

tumour rejection in upto 70% of the treated animals (regressors), while the remaining mice 

had progressively growing tumours (progressors) (Ahmad et. al. 2005). Ahmed and 

coworkers proposed several molecular regulatory pathways that were involved in response 

to therapy.    

 

6.1.3 Importance of assessment of immune response and patient 

classification prior therapy administration 

Emergence of novel and improved targeted therapies, including various immunotherapies, 

complementary to classic chemotherapy and radiotherapies, proved promising and in some 

cases led to improved patient survival. The efficacy of proposed immunotherapy strategies 

is explored initially in animal models, and the most promising strategies are ultimately 

tested in human clinical trials. However, in addition to development of novel therapy 

protocols, it is important to develop assays that qualitatively and quantitatively assess the 

immune response after administration that potentially can be ultimately applied for 

http://en.wikipedia.org/wiki/Immunoglobulin
http://en.wikipedia.org/wiki/Helper_T_cells
http://en.wikipedia.org/wiki/T_cell
http://en.wikipedia.org/wiki/CD28
http://en.wikipedia.org/wiki/CD80
http://en.wikipedia.org/wiki/Regulatory_T_cells
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prediction of therapy response before treatment. In this regard, it is essential to identify 

biomarkers associated with therapy response and this will greatly accelerate progress 

toward novel diagnostic and predictive tools to track early disease and tailor treatments to 

specific patients (Alaoui-Jamali and Xu 2006). Identification of candidate biomarkers of 

therapy response prediction is possible by investigating biomolecules that are involved in 

cellular pathways that are integral to cell function, survival, proliferation, receptor 

expression and immune response, but biomarkers are not necessarily tumour-derived. 

Several approaches explore molecular strategies for evaluation of immune responses after 

therapy and some of these include identification of T-cell epitopes restricted to major MHC 

Class I and Class II haplotypes (Moingeon 2001). Emergence of high-throughput 

technologies such as proteomics and genomics enables screening of thousands of proteins 

and genes, and detection of differences between various samples (i.e. serum) obtained from 

patients. Animal models of immunotherapy (where reasonable proportions of therapy 

responder and non-responder mice are achieved) provide a unique opportunity to 

investigate the genomic or proteomic signatures that are associated to therapy responses. In 

this study, MALDI-MS proteome profiling of serum samples was utilised to generate 

proteomic fingerprints from different stages of immunotherapy in the CT26 mouse model 

of colorectal carcinoma. Peptide profiling of serum by MALDI-MS in conjunction with 

ANN analysis has been utilised to identify differentially expressed proteins/peptides over 

the course of disease initiation, treatment, and therapy outcome. The ANN analysis 

generates a panel of biomarkers that are discriminatory between therapy responders and 

non-responders at different stages of treatment. These candidate biomarkers may be 

associated with failure/response to therapy, and potentially used for classification of 

responders from non-responders to a specific therapy. The strategy used for biomarker 

discovery proved to be promising, and capable of discrimination between responders and 

non-responders in the DISC-HSV immunotherapy model (chapter 5), where biomarkers 

corresponding to therapy response were identified and validated. Here, we used two 

independent murine models of immunotherapy (DISC-HSV and dendritic vaccination) for 

CT26 colorectal carcinoma, to investigate proteome changes in a time-dependent manner 

throughout the immunotherapy process.     
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6.1.4 Aims and objectives 

Detailed objectives for this part of the study are as follow: 

• Serum samples from a CT26 colorectal cancer model undergoing a DC-based 

immunotherapy was used in this stuidy in which serum samples were collected from 

individual animals at the naïve status, 7 day post tumour implantation, 7 days post 

imuunotherapy administration and once failure or response of therapy had beein 

confirmed.  

• To obtain peptide profiles using MALDI-MS followed by ANN analysis to 

investigate whether is possible to obtain panel of markers that are discriminatory 

between the responder, non-responder and naïve mice in different time-points and 

may associate with outcome of therapy. 

• To identify the proteins associated with the candidate panel of biomarkers. 

• Validate the proteomic based results using independent methods. 
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6.2 Summary of methods 
 

1) CT26 Murine Immunotherapy Model 

 

TP0

Day1 Day7 Day8 Day14

CT26 
implantation

Therapy
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Monitoring 
therapy response

i.e. regressor/progressor

TP1 TP2 TP3

Timepoint Sampled

CT26 Murine Immunotherapy Model

Serum sample are diluted 1:20 in 0.1%TFA 

C18 ZipTip clean-up 

NH4HCO3, dH2O, trypsin
are added to the eluted sample 

Incubating at 37°C overnight 

C18 ZipTip clean-up 

1μl of the eluted 
sample is spotted
on MALDI plate

Peptide analysis

Bioinformatics

Ion identification with LC-MALDI MS/MS

 
 

 

2) Sample Preparation for Proteomic Analysis 
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6.3 Results 

 

6.3.1 Time-course analysis of mouse serum proteome change following 

CT26 tumour therapy with dendritic cell in combination with 

VEGFR-2 and CTLA-4 blockades using MALDI-MS. 
Using a MALDI-based protein profiling methodology, serum proteome from mice were 

analysed at four different time-points that included: serum samples collected pre and post 

tumour implantation and pre and post immunotherapy administration. The C18 ZipTip 

chromatography columns were used for deconvoluting serum samples and concentration of 

detectable low abundance protein/peptides by MALDI-MS. The tryptic peptide profiles of 

serum samples were generated using MALDI-MS and the profiles were analysed by ANN 

modeling. Serum samples were collected from four different time-points during a complete 

CT26 tumour immunotherapy with dendritic cell in combination with VEGFR-2 and 

CTLA-4 blockades. The first time-point (TP0) serum samples were collected at the naïve 

stage (one day before tumour implantation), where animals were healthy (n = 37). The 

second time-point (TP1) serum samples were collected 7 days post tumour implantation (n 

= 37). Subsequent to CT26 tumour implantation, animals were divided into two groups: 

tumour-bearers (n = 10) and those receiving therapy (n = 27). Following immunotherapy 

administration (except tumour bearer mice), serum samples were collected 7 (TP2, n = 10 

tumour bearer mice and n = 27 therapy mice) and 14 (TP3, n = 10 tumour bearer mice and 

n = 27 therapy mice) days post treatment. From the total number of 27 animals receiving 

the DC-based vaccination, 21 mice responded to therapy and tumours was completely 

disappeared and were termed regressors. The remaining 6 mice that failed to respond to 

therapy were termed progressors, where tumour continued to grow aggressively. 

Serum samples were subjected to C18 ZipTip chromatography and tryptic digestion, 

followed by MALDI-MS profiling of 800-3500 Da mass range in reflectron mode. 

Reproducible visual differences can be observed in the MALDI-TOF spectra obtained by 

the analysis of tryptic peptides derived from different time-point serum samples. Figure 6-1 

represents some of these visual spectral differences, in the tryptic peptide spectra of TP2 

and TP3 of progressor mice, although others were only detected through the use of ANNs.   
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TP2

TP2

TP2

TP3

TP3

TP3

Figure 6-1. Figure showing tryptic peptide MALDI spectra obtained from TP2 and TP3 progressor 
mice. The X axis represents the m/z ratio and Y axis relative intensity. Representative MALDI-TOF mass 
spectra of TP2 and TP3 progressor mouse serum tryptic digest mass range of 1000-3000 Da, acquired in 
reflectron mode. Serum samples were spotted with CHCA on the MALDI steel target plate and allow to air 
dry. Peptide peaks in the region highlighted in the figure appear to be up regulated in the TP3 progressor mice 
in compression to TP2 progressor mouse serum.   
 

Once the MALDI-MS tryptic peptide profiles were generated, it was necessary to visually 

assess the data and exclude spectra with poor quality from further analysis. In addition, the 

data were subjected to ANN analysis to detect discriminatory patterns between different 

sample groups. 
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6.3.2 Discovery of discriminatory candidate biomarkers for prediction 

of therapy response by ANN modeling. 
The goal of the study as a discovery experiment was to identify candidate biomarkers that 

may predict the outcome of DC-based vaccination with blockade of VEGFR-2 and CTLA-4 

therapy. To identify serum biomarkers we used MALDI-MS profiling in conjunction with 

ANN analysis. Samples were classified into two groups: progressor/tumour-bearers and 

regressors. The analysis aimed to compare the serum tryptic peptide patterns from each of 

the four time-points from the regressor mice to the associated time-point of 

progressor/tumour-bearer group. This may reveal discriminatory proteomic patterns 

between the regressor and progressor/tumour-bearers that may associate with therapy 

response at a specific time-point. In addition, this analysis may indicate the time point that 

is the most discriminatory between the two groups and therefore the best stage to assess 

patients for prediction of therapy outcome. Four separate ANN models were developed that 

included: TP0 of regressors versus TP0 of progressors/tumour-bearers, TP1 of regressors 

versus TP1 of progressors/tumour-bearers, TP2 of regressors versus TP2 of 

progressors/tumour-bearers and TP3 of regressors versus TP3 of progressors/tumour-

bearers. The following sections discuss the results of the ANN models.   

 

6.3.2.1 Discriminatory serum tryptic peptide biomarkers identified in the TP0 regressors 

vs. TP0 progressors/tumour-bearers model  

Initially, the ANN modeling was carried out by comparing TP0 of progressor/tumour-

bearer versus TP0 of regressors. Although the TP0 indicates the naïve status of the animals, 

this model was generated to investigate whether ANN modeling of tryptic peptide MALDI 

profiles is capable of revealing difference in the serum proteome of regressor and 

progressors that may be involved in failure or success in therapy. Hence, a stepwise 

approach was utilised which produced the minimum number of ions with the potential of 

assigning samples correctly into their respective groups based on the MALDI–MS peptide 

profiles (mass range of 800-3500 Da). A total number of 16 regressor samples from TP0 

and 14 progressor/tumour-bearer samples (n = 4 progressors and n = 10 tumour-bearers) 

were used in the stepwise analysis. The stepwise approach is based on training a number of 

different ANN models and the general principles of stepwise approach have been described 

previously in details in chapter 3. In order to generate ANN models from MALDI tryptic 
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peptide profiles of TP0 of regressor, progressor/tumour-bearer mice, the stepwise approach 

involves training a number of models using 2700 inputs for each sample (each input 

corresponds to intensity at a specific m/z value). Initially each input is used as single input 

to train 50 models and for each model a total of 30 cases (n = 16 TP0 regressors and n = 14 

progressors/tumour-bearers) were randomly split into 18 samples for training (60%), 6 for 

testing (20%) and 6 as a validation set (20%); this allows random cross validation analysis 

to be performed. After training 50 models, the best performing model was selected for 

further analysis and all the remaining inputs were added sequentially to the first input to 

train the model. This procedure was continued until no further improvement in the model 

was observed. In the case of modeling the tryptic peptide profiles from the TP0 of 

regressor, progressor/tumour-bearer mice, total of 8 steps were carried out. The results of 

the 8 steps are shown in table 6-1 that presents the median accuracies and mean squared 

errors of training, test and validation for each best performed model in each of the 8 steps. 

The highest accuracy that predicted progressors from regressors was generated in step 2 

(highlighted in red in table 6-1), using 2 peaks with m/z values of 2750 and 2877 with an 

accuracy of 83%, a sensitivity of 85.7% and specificity of 75%. The addition of further ions 

did not improve the prediction of the model and therefore the top 2ions were considered 

biomarkers that can best predict TP0 regressors from TP0 progressors/tumour-bearers 

based on MALDI tryptic peptide profiles.  
 

Input m/z 
Training 

Perf. 

Test 

Perf. 

Validation 

Perf. 

Training 

error 

Test 

Error 

Validation 

Error 

1 2750 72% 67% 67% 0.20 0.20 0.23 

2 2877 83% 83% 83% 0.14 0.14 0.17 

3 1577 89% 100% 83% 0.08 0.08 0.13 

4 3047 94% 100% 100% 0.07 0.06 0.11 

5 1912 94% 100% 83% 0.07 0.06 0.10 

6 1033 92% 100% 83% 0.07 0.05 0.10 

7 877 94% 100% 83% 0.04 0.04 0.10 

8 858 94% 100% 83% 0.04 0.04 0.09 

Table 6-1. The table represents the data obtained from the stepwise analysis of MALDI data generated 
from serum tryptic peptides of TP0 regressors and TP0 progressor/tumour-bearer mice. The table 
shows a summary of the median accuracies and the mean squared error for the training, test and validation 
data sets as each input is added to the model. The highest accuracy was achieved in step 2 highlighted in red, 
with median accuracy of 83% and mean squared value of 0.14 and further addition of ions did not affect the 
accuracy of model.     
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In order to assess how individual samples were classified by the 2 ion ANNs model, a 

population chart was generated. Figure 6-2 shows the population distribution of the 

predicted outputs for all 30 mice using the top 2 ANN model m/z values. Samples from TP0 

progressor/tumour-bearer animals are highlighted in red (assigned as number 2) and 

samples from TP0 regressor animals are shown in green (assigned as number 1). The ratios 

below 1.5 were assigned as TP0 progressors/tumour-bearer whilst a ratio above 1.5 was 

used to classify TP0 regressors. The figure shows that 2 TP0 progressors/tumour-bearer and 

4 TP0 regressors were incorrectly classified.  
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Figure 6-2. Predictive capability of ANNs to recognise MALDI serum tryptic peptide profiles based on a 2 
ion ANNs model. The black bars indicate TP0 progressor/tumour-bearer samples, and the white bars indicate 
TP0 regressor samples. A predictive value below 1.5 indicates a TP1 progressor/tumour-bearer sample, while 
a prediction greater than 1.5 indicates a TP0 regressor sample.  
 

Although majority of the sample have been correctly assigned to their associated groups, 

considerable number of samples have been misclassified and the 2 ion model has a low 

specificity (75%) which increases the chance of false positives. 
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6.3.2.2 Discriminatory serum tryptic peptide biomarkers identified in the TP1 regressors 

vs. TP1 progressors/tumour-bearers model  

The second ANN modeling was carried out on the serum tryptic peptide profiles of TP1 

regressors and TP1 progressors/tumour-bearers. Considering that time-point 1 is 7 days 

post CT26 tumour implantation, the hypothesis for the modeling here is to investigate 

whether the proteome of an animal that fails to respond to therapy is different to a therapy 

responder at this time-point. In addition, it may reveal that if the host reaction to the 

presence of tumour in early days plays a role in failure or response to therapy and whether 

these reactions are reflected in the serum and detected by MALDI profiling of serum. The 

ANN model was generated using 30 serum spectra (n = 17 TP1 regressors and n = 13 

progressors/tumour-bearers) and stepwise analysis was carried out as described before for a 

total number of 7 steps and the results are presented in table 6-2. The highest accuracy that 

predicted TP1 progressors/tumour-bearers form TP1 regressors was obtained in the second 

step (highlighted in red in table 6-2), using a peaks with m/z values of 2404 and 1373 with 

an accuracy of 90%, a sensitivity of 84%, specificity of 100% and mean error of 0.09. The 

addition of further ions did not improve the prediction of the model and although an 

accuracy of 100% is obtained at step 7 this is more likely to be due to a phenomenon 

termed over-fitting of data. Therefore the top 2 ions were considered to be the biomarker 

that can best predict TP1 regressors from TP1 progressors/tumour-bearers based on 

MALDI tryptic peptide profiles. 
    

Input m/z 
Training 

Perf. 

Test 

Perf. 

Validation 

Perf. 

Training 

error 

Test 

error 

Validation 

Error 

1 2404 83% 83% 83% 0.16 0.17 0.17 

2 1373 89% 100% 90% 0.09 0.09 0.11 

3 2987 89% 100% 83% 0.08 0.05 0.11 

4 1155 89% 100% 83% 0.08 0.06 0.11 

5 1997 92% 100% 83% 0.08 0.05 0.11 

6 1057 94% 100% 83% 0.07 0.05 0.13 

7 1705 100% 100% 100% 0.03 0.05 0.07 
 

Table 6-2. The table represents the data obtained from the stepwise analysis of MALDI data generated 
from serum tryptic peptides of TP1 regressors and TP1 progressor/tumour-bearer mice. The table 
shows a summary of the median accuracies and the mean squared error for the training, test and validation 
data sets as each input is added to the model. The highest accuracy was achieved in step 2, highlighted in red, 
with median accuracy of 90% and mean squared value of 0.09 and further addition of ions did not affect the 
accuracy of model.     
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The top discriminatory ion between TP1 regressors and TP1 progressor/tumour-bearer 

serum tryptic peptide fingerprints are presented in figure 6-3. The intensity of m/z value of 

2404 in slightly higher in the tryptic peptide profiles of TP1 progressors and tumour-bearer 

animals in comparison to TP1 of the regressors.  
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Figure 6-3. Figure showing visual spectral differences for the top discriminatory ion between TP1 
regressor and TP1 progressors/tumour-bearers based on MALDI tryptic peptide profiles and ANNs 
analysis. The m/z value of 2404 was the top ion of the panel of two discriminatory ions for TP1 regressor and 
TP1 progressors/tumour-bearers based on the tryptic peptide profiles. The 2404 peak has slightly a higher 
intensity in the TP1 progressor/tumour-bearer profiles and less relative intensity in the TP1 regressor profiles.  
 
 

The classification capacity of the model was further tested on individual animals by 

examining the population chart as shown in figure 6-4. The ratios below 1.5 were assigned 

to the TP1 progressors/tumour-bearers and ratios above 1.5 were classified as TP1 

regressors. Based on the 2 ion model, all the TP1 regressor samples were correctly 

classified however, 2 of the TP1 progressors/tumour-bearers samples were misclassified. 
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Figure 6-4. Predictive capability of ANNs to recognise MALDI serum tryptic peptide profiles based on a 2 
ion ANNs model. The black bars indicate TP1 progressor/tumour-bearer samples, and the white bars indicate 
TP1 regressor samples. A predictive value below 1.5 indicates a TP1 progressor/tumour-bearer sample, while 
a prediction greater than 1.5 indicates a TP1 regressor sample. 
 

This model shows that at the TP1 (7 days post tumour implantation) serum proteome of 

regressor and progressor mice are more defined and differentiated. In addition, these 

markers can be either therapy response predictors or early markers of tumour initiation; 

therefore more investigations are required to test this hypothesis.   

 

6.3.2.3 Discriminatory serum tryptic peptide biomarkers identified in the TP2 regressors 

vs. TP2 progressors/tumour-bearers model  

The third step for identification of the candidate therapy response biomarkers was to 

compare TP2 of regressors and progressors/tumour-bearers serum samples. Time-point 2 is 

7 days after administration of the DC vaccination for treatment of the CT26 tumours and 

possible differences between the therapy responders and non-responders has been 

investigated at this stage. The MALDI spectra of serum tryptic peptides of TP2 progressor, 

tumour-bearer and progressor mice were visually checked (according to the criteria 

previously described) for acceptance of the spectra. A total of 18 TP2 regressors and 13 

TP2 progressors/tumour-bearers (n = 6 progressors and n = 7 tumour-bearers) tryptic 

peptide profiles were accepted and used for bioinformatic analysis. Stepwise analysis was 
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performed on these profiles to assess the ability of ANNs to classify tryptic peptide serum 

profiles of TP2 regressor and progressor/tumour-bearer mice serum. At step 3 of stepwise 

analysis an accuracy of 100% was achieved and therefore no additional steps were carried 

out and the stepwise analysis results are illustrated in table 6-3. The best ANN prediction 

was achieved with 3 peptide peaks (m/z 1795, 1816 and 963) that discriminated between 

the TP1 regressor and progressor/tumour-bearer mice serum samples with an accuracy of 

100%, sensitivity of 100% and specificity of 100% and the mean test error of 0.07.  
 

Input m/z 
Training 

Perf. 

Test 

Perf. 

Validation 

Perf. 

Training 

Error 

Test 

error 

Validation 

Error 

1 1795 79% 83% 67% 0.18 0.16 0.22 

2 1816 89% 100% 83% 0.11 0.10 0.14 

3 963 95% 100% 100% 0.07 0.07 0.09 

Table 6-3. The table represents the data obtained from the stepwise analysis of MALDI data generated 
from serum tryptic peptides of TP2 regressor and TP2 progressor/tumour-bearer mice. The table shows 
a summary of the median accuracies and the mean squared error for the training, test and validation data sets 
as each input is added to the model. The highest accuracy was achieved in the third step, highlighted in red, 
with median accuracy of 100% and mean squared value of 0.07 and further addition of ions did not affect the 
accuracy of model.     
 
 

The MALDI tryptic peptide spectra differences between the TP2 regressor and 

progressor/tumour-bearer profiles for the top 2 ions identified by ANN analysis are shown 

in figure 6-5. Both the m/z values of 1795 and 1816 are present in the TP2 regressor 

profiles and not detected in the TP2 progressor/tumour-bearer peptide profiles. At this stage 

which is 7 days after therapy administration, more obvious differences are detected 

between the profiles of responder and non-responder mice.   



Chapter 6 

1770 1780 1790 1800 1810 1820 1830 1840 1850

Mass/Charge

Tumour-bearer_TP2

1795 1816

progressor_TP2

regressor_TP2

regressor_TP2

1770 1780 1790 1800 1810 1820 1830 1840 1850

Mass/Charge

1770 1780 1790 1800 1810 1820 1830 1840 1850

Mass/Charge

Tumour-bearer_TP2

1795 1816

progressor_TP2

regressor_TP2

regressor_TP2

 

 204 

0

50

100

0

100100

5050

0

Figure 6-5. Figure showing visual spectral differences for the top discriminatory ions between TP2 
regressor and TP2 progressors/tumour-bearers based on MALDI tryptic peptide profiles and ANNs 
analysis. The m/z values of 1795 and 1816 were two of the panel of discriminatory ions for regressor and 
progressors based on the tryptic peptide profiles. Both of these peaks are present in the regressors and absent 
in the progressor and tumour-bearer profiles.    
 
 
The ANN’s ability to classify TP2 regressors and TP2 regressor and progressor/tumour-

bearer was examined by generating a population chart and the results are shown in figure 6-

6. ANN analysis classified 100% of the samples correctly for both TP2 regressor and TP2 

progressor/tumour-bearer mice. These results indicate that the discrimination of serum 

samples from responders and nonresponders mice at this stage is the best and the proteome 

of the two groups are highly different from each other.  
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Figure 6-6. Predictive capability of ANNs to recognise MALDI serum tryptic peptide profiles based on a 3 
ion ANNs model. The black bars indicate TP2 progressor/tumour-bearer samples, and the white bars indicate 
TP2 regressor samples. A predictive value below 1.5 indicates a TP2 progressor/tumour-bearer sample, while 
a prediction greater than 1.5 indicates a TP2 regressor sample. 
 

 

6.3.2.4 Discriminatory serum tryptic peptide biomarkers identified in the TP3 regressors 

vs. TP3 progressors/tumour-bearers model  

The TP3 serum samples have been collected at the end of the immunotherapy procedure, 

where the failure or response to therapy was confirmed. After visual inspection 11 TP3 

regressors and 16 TP3 progressor/tumour-bearer (n = 6 progressors and n = 10 tumour-

bearer) spectra were subjected to stepwise analysis (as described previously). Eight steps 

were carried out and the best accuracy (100%) was obtained at step 4. The model sensitivity 

and specificity were 100%. The results demonstrate that the tryptic peptide profiles from 

the TP3 regressor and progressors are the most different compared to the other time points 

and the top 4 ions are selected as the best predictors.  
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Input m/z 
Training 

Perf. 

Test 

Perf. 

Validation 

Perf. 

Training 

Error 

Test 

error 

Validation 

Error 

1 855 81% 80% 83% 0.17 0.17 0.18 

2 3013 88% 80% 88% 0.09 0.09 0.14 

3 2631 100% 100% 92% 0.05 0.06 0.10 

4 963 100% 100% 100% 0.04 0.05 0.07 

5 942 100% 100% 92% 0.04 0.04 0.09 

6 2764 100% 100% 100% 0.04 0.04 0.09 

7 1496 100% 100% 100% 0.04 0.04 0.07 

8 3387 100% 100% 83% 0.04 0.04 0.09 

Table 6-4. The table represents the data obtained from the stepwise analysis of MALDI data generated 
from serum tryptic peptides of TP3 regressor and TP3 progressor/tumour-bearer mice. The table shows 
a summary of the median accuracies and the mean squared error for the training, test and validation data sets 
as each input is added to the model. The highest accuracy was achieved in the third step, highlighted in red, 
with median accuracy of 92% and mean squared value of 0.05 and further addition of ions did not affect the 
accuracy of model.     
 

A population chart was generated to test the predictive 3 ion model from TP3 regressors 

and TP3 progressors/tumour-bearers for which the results are shown in figure 6-7. ANN 

analysis classified 100% of the TP3 progressor/tumour-bearer samples correctly whereas 2 

of the TP3 regressor samples were misclassified. These results show that the 3 ion ANN 

model generated for this stage of the experiment is highly specific for classification of 

progressors from the regressors since most of the progressors have been correctly assigned 

during the 50 models and therefore have no or small variation indicated in figure 6-7 with 

lower error bars for progressor/tumour-bearer samples. However, the regressors have been 

generally classified correctly but they have higher error bars which indicate that this panel 

of markers is less specific and sensitive for detection of regressors from progressors.    
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Figure 6-7. Predictive capability of ANNs to recognise MALDI serum tryptic peptide profiles based on a 4 
ion ANNs model. The black bars indicate TP3 progressor/tumour-bearer samples, and the white bars indicate 
TP3 regressor samples. A predictive value below 1.5 indicates a TP3 progressor/tumour-bearer sample, while 
a prediction greater than 1.5 indicates a TP3 regressor sample. 
 

 

6.3.3 Time-course analysis of proteome change and identification of 

biomarkers of regression by ANN modeling.  

In order to define the proteome change over a time-course of tumour initiation, therapy 

administration and response, serum samples from therapy responder mice (regressors) at 4 

different time point were subjected to MALDI-MS tryptic peptide profiling, followed by 

interrogation of MS data by ANN modeling. This analysis investigates discriminatory 

markers in regressor animals at different stages of disease initiation and response to 

therapy. Through comparing these results to the same analysis but in progressor animals, 

the specificity of the markers for each stage of tumour initiation, immunotherapy and 

response to therapy for the regressors and progressors may be revealed. Sample processing 

prior to MALDI analysis and ANN modeling parameterisation was carried out as described 

before. The MALDI serum tryptic peptide profiles (mass range of 800-3500 Da) of 

regressor mice from four different time points (n = 16 TP0, n = 17 TP1, n = 18 TP2 and n 

= 11 TP3) were processed for ANN modeling using 2700 inputs for each sample (each 
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input corresponds to intensity at a specific m/z value). The ANN models generated for this 

analysis were: TP0 versus TP1, TP1 versus TP2 and TP2 versus TP3 of regressor mice.  

Results of stepwise analysis for each of the three generated ANN model is presented in 

table 6-5. The stepwise analysis was carried out on total of 2, 2 and 3 steps for the 

TP0/TP1, TP1/TP2 and TP2/TP3 models respectively. Table 6-5 presents the median 

accuracies and mean squared errors of training, test and validation for each best performed 

model in each of the three models. Stepwise analysis on the serum tryptic peptide profiles 

of TP0 and TP1 regressors resulted in a 2 ion model with accuracy of 77%, sensitivity of 

75% and specificity of 88.2% (table 6-5 A). Similarly, stepwise analysis on the serum 

tryptic peptide profiles of TP1 and TP2 regressors also resulted in a 2 ion model with 

accuracy of 83%, sensitivity of 77.8% and specificity of 84.4% (table 6-5 B). Finally, ANN 

modeling of tryptic peptide serum samples from TP2/TP3 regressors resulted in a 3 ion 

model with accuracy of 85%, sensitivity of 100% and specificity of 90% (table 6-5 C). 

None of the m/z values except m/z 2878, predicted by ANN modeling in this section, have 

been shown in the ANN generated models in the previous section and therefore these ions 

may be uniquely associated with prediction of regression in a CT26 colorectal cancer 

immunotherapy model.    
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Input Input m/z m/z 
Training Training 

Perf. Perf. 

Test Test 

Perf. Perf. 

Validation Validation 

Perf. Perf. 

Training Training 

Error Error 

Test Test 

error error 

Validation Validation 

Error Error 

A 

1 1901 70% 73% 64% 0.45 0.40 0.49 

2 1435 83% 84% 77% 0.35 0.34 0.43 

 

 

Input m/z 
Training 

Perf. 

Test 

Perf. 

Validation 

Perf. 

Training 

Error 

Test 

error 

Validation 

Error 

1 1276 80% 81% 80% 0.40 0.36 0.43 

2 1985 83% 87% 83% 0.40 0.26 0.38 

 

 

Input m/z 
Training 

Perf. 

Test 

Perf. 

Validation 

Perf. 

Training 

Error 

Test 

error 

Validation 

Error 

1 1127 70% 75% 66% 0.42 0.40 0.46 

2 2878 88% 85% 79% 0.29 0.28 0.36 

3 2298 88% 93% 85% 0.23 0.16 0.21 

B 

C 

Table 6-5. The table represents the data obtained from the stepwise analysis of MALDI data generated 
from serum tryptic peptides of TP0, TP1, TP2 and TP3 regressor mice. The table shows a summary of 
the median accuracies and the mean squared error for the training, test and validation data sets as each input is 
added to the model. A) Results of the TP0/TP1 regressor model where the highest accuracy was achieved in 
the second step, highlighted in red, with median accuracy of 77% and mean squared error value of 0.35. B) 
Results of the TP1/TP2 regressor model where the highest accuracy was achieved in the second step, 
highlighted in red, with median accuracy of 83% and mean squared error value of 0.26. C) Results of the 
TP2/TP3 regressor model where the highest accuracy was achieved in the third step, highlighted in red, with 
median accuracy of 85% and mean squared error value of 0.16.     
 

The MALDI tryptic peptide spectral differences between the different time-point serum 

samples of regressor profiles for some of the ANN identified ions are shown in figure 6-8. 

The m/z value of 1435 from the TP0/TP1 model is higher in the TP1 regressors compared 

to TP0 regressor. The m/z values of 1276 and 1985 from the TP1/TP2 regressor model are 

both significantly higher in the TP2 tryptic peptide profiles. Finally, the peak with m/z of 

1127, from the TP2/TP3 regressor model is present in TP2 and TP3 and absent in TP0 and 

TP1, however is significantly higher in TP3 regressors.    

 

 

 
 

 

 209 



Chapter 6 

regressor_TP1

regressor_TP1

regressor_TP2

regressor_TP2

regressor_TP3

regressor_TP3

regressor_TP0

regressor_TP0

1127 1276 1435 1901

regressor_TP1

regressor_TP1

regressor_TP2

regressor_TP2

regressor_TP3

regressor_TP3

regressor_TP0

regressor_TP0

1127 1276 1435 1901

 
Figure 6-8. Figure showing some of the visual spectral differences for the top discriminatory ions from 
the TP0/TP1, TP1/TP2 and TP2/TP3 regressor’s models, based on MALDI tryptic peptide profiles and 
ANNs analysis. The m/z value of 1435 from the TP0/TP1 model is higher in the TP1 regressors compare 
from TP0 regressor. The m/z values of 1276 and 1985 from the TP1/TP2 regressor model are both 
significantly higher in the TP2 tryptic peptide profiles. Finally, the peak with m/z of 1127, from the TP2/TP3 
regressor model is present in TP2 and TP3 and absent in TP0 and TP1, however is significantly higher in TP3 
regressors.    
 

The individual regressor samples for each time point were plotted as population charts to 

examine the predictive capability of the ANN models (figures 6-9A-C). The first ANN 

analysis was a 2 ion model of TP0/TP1 regressors that correctly classify 77% of the 

population (figure 6-9 A). The accuracy of this model is not significantly high, indicator of 

less discrimination between the TP0 and TP1 tryptic peptide serum samples of regressor 

mice. Moreover, figure 6-9 B is the population prediction of TP1/TP2 regressor model, 

using the top 2 discriminatory tryptic peptide ions. The dark blue bars represent TP2 and 

the yellow bars are representative of TP1. Sample with predictive values of 1.5 or below 

are TP2 and those with values above 1.5 are TP1. In this model 2 TP2 regressors and 3 TP1 

regressor samples were misclassified. Finally, the last analysis was the TP2/TP3 regressors 

and the population prediction using the top 3 discriminatory tryptic peptide ions are shown 

in figure 6-9 C. The dark blue bars represent TP2 and the yellow bars are representative of 

TP3. Sample with predictive values of 1.5 or below are TP2 and those with values above 

1.5 are TP3. 
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Figure 6-9. Predictive capability of ANNs to recognise MALDI serum tryptic peptide profiles based on top 
discriminatory ions of TP0/TP1 (A), TP1/TP2 (B) and TP2/TP3 (C) regressors ANN models. A) The dark 
blue bars indicate TP0 regressor samples, and the yellow bars indicate TP1 regressor samples. A predictive 
value below 1.5 indicates a TP0 regressor sample, while a prediction greater than 1.5 indicates a TP1 
regressor sample. B) The dark blue bars indicate TP2 regressor samples, and the yellow bars indicate TP1 
regressor samples. A predictive value below 1.5 indicates a TP2 regressor sample, while a prediction greater 
than 1.5 indicates a TP1 regressor sample. C) The dark blue bars indicate TP2 regressor samples, and the 
yellow bars indicate TP3 regressor samples. A predictive value below 1.5 indicates a TP2 regressor sample, 
while a prediction greater than 1.5 indicates a TP3 regressor sample. 
 
 

The TP2/TP3 regressor model is the best model in which only one sample was 

misclassified. These results indicate that during regression or response to the DC-based 

vaccination therapy in CT26 murine model, the serum proteomic patterns of TP2 (7 days 

post therapy) and the TP3 (14 days post therapy, complete regression of tumour) are highly 

different and therefore the discriminatory biomarkers identified in TP2/TP3 model might be 

associated with response to therapy. However, more investigations are required to confirm 

this hypothesis.  
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6.3.4 Assessment of the specificity of candidate biomarkers associated 

with regression 
In the previous section (6.3.3) potential biomarkers which may associate with tumour 

regression after therapy were identified. However, in order to determine the specificity of 

these markers for tumour regression after immunotherapy, the panel of predicted markers 

for each time-point model was applied to data from progressor and tumour-bearer mice. 

Failure of biomarkers from the three models (TP0/TP1, TP1/TP2 and TP2/TP3) to classify 

progressor and tumour-bearer will indicate the specificity of these markers for classification 

of different time-points of regressor mice.   

A two ion model was able to classify 77% of the TP0 and TP1 regressors correctly. In the 

fist instance, the data from TP0 and TP1 progressor and tumour-bearer mice was used as 

blind data and presented to this model to assess the ability of the model to correctly classify 

TP0 progressor and tumour-bearer from the TP1 progressor and tumour-bearer and the 

results are presented in figure 6-10. The dark blue, yellow, light blue and orange bars are 

corresponded to TP0 regressor, TP1 regressor, TP0 progressor/tumour-bearer and TP1 

progressor/tumour-bearer mice respectively.  
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Figure 6-10. Validation of TP0/TP1 regressor two ions ANN model using TP0 and TP1 
progressor/tumour-bearer samples. The dark blue, yellow, light blue and orange bars are corresponded to 
TP0 regressor, TP1 regressor, TP0 progressor/tumour-bearer and TP1 progressor/tumour-bearer mice 
respectively. Based on the two discriminatory ions of TP0/TP1 regressor model, all the TP0 and TP1 
progressor/tumour-bearer samples are classified as TP1 regressor.  
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As shown in figure 6-10, although all the TP1 progressor/tumour-bearer samples have been 

correctly classified along with the TP1 regressors, all the TP0 progressor/tumour-bearer are 

misclassified. All the TP0 progressor/tumour-bearer samples are classified as TP1 samples 

which indicate that the proteome of the TP0 progressor/tumour-bearer may be more similar 

to the TP1. In addition, correct classification of TP1 from both groups suggest that these 

marker may be associated with the presence of the tumour as the TP1 samples are 7 days 

post CT26 tumour implantation.   

Accordingly, the TP1/TP2 regressor model (a two ion model) was tested on the TP1 and 

TP2 progressor/tumour-bearer data and the classification of the samples are presented in 

figure 6-11. All the TP2 progressor/tumour-bearer samples are correctly classified however, 

majority of the TP1 progressor/tumour-bearer samples (9 out of 13) are misclassified based 

on the two-ion ANN model of regressors. As most of the TP2 samples from both groups are 

classified correctly based on the two discriminatory ions (m/z 1276 and 1985), it is possible 

that these markers are more therapy related as the TP2 is after therapy administration 

however, further investigations are required to confirm this hypothesis.  
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Figure 6-11. Validation of TP1/TP2 regressor two ions ANN model using TP1 and TP2 
progressor/tumour-bearer samples. The yellow, dark blue, orange and light blue bars are corresponded to 
TP1 regressor, TP2 regressor, TP1 progressor/tumour-bearer and TP2 progressor/tumour-bearer mice 
respectively. Based on the two discriminatory ions of TP1/TP2 regressor model, all the TP2 
progressor/tumour-bearer samples are correctly classified however, majority of the TP1 progressor/tumour-
bearer samples are misclassified.   
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Finally, the TP2/TP3 regressor model (a three-ion model) was tested using the data from 

TP2 and TP3 of progressor/tumour-bearer mice and the results are shown in figure 6-12. In 

this chart, the dark blue and yellow bars indicate TP2 and TP3 regressors respectively. The 

light blue and orange bars are corresponded to TP2 regressor and TP3 regressor mice 

respectively. 
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Figure 6-12. Validation of TP2/TP3 regressor two ions ANN model using TP2 and TP3 
progressor/tumour-bearer samples. The dark blue, yellow, light blue and orange bars are corresponded to 
TP2 regressor, TP3 regressor, TP2 progressor/tumour-bearer and TP3 progressor/tumour-bearer mice 
respectively. Based on the three discriminatory ions of TP2/TP3 regressor model, the model failed to classify 
TP2 and TP3 progressor/tumour-bearer from each other.  
 

The three discriminatory ions from the TP2/TP3 regressor model (m/z values of 1127, 2878 

and 2298), fail to classify the TP2 and TP3 progressor/tumour-bearer samples suggesting 

these ions may be more specific for classification of the regressor animals. 

 

6.3.5 Identification of predicted biomarkers from the DC-based 

immunotherapy of CT26 murine model.  

The top ions from the tryptic digest predicted by ANN analysis of all models were 

identified by LC-MALDI MS/MS and the results are summerised in table 6-7. The LC-

MALDI MS/MS analysis was carried out by our collaborators in Bruker Daltonics 

(Bremen, Germany). The samples for LC-MALDI testing were prepared using the same 

methodology used for MALDI-MS analysis except after tryptic digestion, serum samples 

were fractionated (384 fraction for each sample) with nano-C18 columns and each fraction 

was spotted on the MALDI plate and the top discriminatory ions were identified.   
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In some cases, there is more than one possible protein identity for each mass value. This is 

possibly due to the binning of the spectra data points to 1 Dalton prior to ANN analysis 

were the m/z value is a rounded number (no decimal places). Some proteins may have close 

m/z values that are different in decimals and therefore here for some m/z values there are 

more than one protein identity that the true identity requires further analysis and validation. 

The other issue of having different identities for one m/z value can be correlated to tryptic 

digestion which produces fragments that have similar sequences such as the peak with m/z 

value of 963 in the table 7-6. There are number of different proteins that have the same 

sequence of amino acids.    
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m/z Protein Sequence ANN model 

855 Identification not acquired Identification not acquired TP3 regressor / TP3 progressor and TB 
963 preprocomplement component C3 

Serine (or cysteine) peptidase inhibitor, clade A, member 1c [Mus musculus] 
Serpina1b protein [Mus musculus] 
alpha-1 protease inhibitor 2 [Mus musculus] 
alpha-1 antitrypsin precursor 

QPLTITVR 
VINDFVEK 
VINDFVEK 
VINDFVEK 
VINDFVEK 

TP2 regressor / TP2 progressor and TB 
TP3 regressor / TP3 progressor and TB 

1127 Hemoglobin subunit beta (Hemoglobin beta chain) (Beta-globin) LHVDPQDFR TP2/TP3 regressor 
1276 Kininogen-1 precursor [Contains: Kininogen-1 heavy chain; Bradykinin; 

Kininogen-1 light chain] 
MNEETASLLLR TP1/TP2 regressor 

1373 prepro complement component C3 [Bos taurus] 
serine (or cysteine) proteinase inhibitor, clade C (antithrombin), member 1 [Mus 
musculus] 

LEEDVLPEMGIK 
LEEDVLPEMGIK 

TP1 regressor / TP1 progressor and TB 

1435 PREDICTED: hypothetical protein [Ornithorhynchus anatinus] 
inter alpha-trypsin inhibitor, heavy chain 4 [Mus musculus] 

LVAGVASALAHKYH 
VVAGVATALAHKYH 

TP0/TP1 regressor 

1795 inter alpha-trypsin inhibitor, heavy chain 4 [Mus musculus] DIVWEPPVEPDNTKR TP2 regressor / TP2 progressor and TB 
1816 inter alpha-trypsin inhibitor, heavy chain 4 [Mus musculus] TYFPHFDVSHGSAQVK TP2 regressor / TP2 progressor and TB 
1901 TAGL-alpha [Mus musculus] ENPTTFMGHYLHEVAR TP0/TP1 regressor 
1985 histidine-rich glycoprotein [Mus musculus] 

Complement C4 precursor 
YFDSFGDLSSASAIMGNAK 
YFDSFGDLSSASAIMGNAK 

TP1/TP2 regressor 

2298 Identification not acquired Identification not acquired TP2/TP3 regressor 
2404 apolipoprotein C-II [Mus musculus] DQSPASHEIATNLGDFAISLYR TP1 regressor / TP1 progressor and TB 
2631 Identification not acquired Identification not acquired TP3 regressor / TP3 progressor and TB 
2750 Identification not acquired Identification not acquired TP0 regressor / TP0 progressor and TB 
2877 Zinc-alpha-2-glycoprotein precursor (Zn-alpha-2-glycoprotein) (Zn-alpha-2-GP) LQEHLKPYAVDLQDQINTQTQEMK TP0 regressor / TP0 progressor and TB 
2878 Zinc-alpha-2-glycoprotein precursor (Zn-alpha-2-glycoprotein) (Zn-alpha-2-GP) LQEHLKPYAVDLQDQINTQTQEMK TP2/TP3 regressor 
3013 Zinc-alpha-2-glycoprotein precursor (Zn-alpha-2-glycoprotein) (Zn-alpha-2-GP) WYDVQSVVPHPGSRPDSLEDDLILFK TP3 regressor / TP3 progressor and TB 

Table 6-6. Protein identification by LC-MALDI MS/MS using ANNs predicted tryptic peptide ions. 
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6.4 Discussion 
The discovery of biomarkers that predict therapeutic response is of increasing importance 

in the development and administration of appropriate therapies for cancer. The serum 

biomarker identified to date in mass spectrometry based proteomic studies have revealed 

that patient populations can be determined by the up or down regulation of inflammatory 

proteins and so the diagnosis of a patient could be determined by the presence of molecules 

that are not tumour cell specific. In this study we used serum samples collected from the 

CT26 murine model of immunotherapy where we are eliminating the differences such as 

genetic background, diet and age from our experiments. Moreover, using this model it is 

possible to collect serum samples in different time-points of the experiment. We have used 

MALDI-MS serum proteomic profiling to ascertain whether it would be possible to 

distinguish between different time-points of pre/post tumour implantation and post therapy 

serum samples by serum proteome analysis. The detection of proteomic changes in serum 

of these mice will allow us to predict the response of the mice to the immunotherapy or 

identification of markers which are correlated to tumour regression or progression.  

We report novel panels of multiparametirc proteins identified through proteomic phenomic 

fingerprinting and ANNs using sera collected from 4 different time-points during the course 

of pre/post tumour implantation and therapy administration. The finding of biomarkers is of 

fundamental relevance for detection of early tumour initiation, therapy response and the 

evolutions associated with therapy and tumour growth. In order to study serum proteome 

changes we used the CT26 mouse model of DC-based immunotherapy. MALDI-MS 

proteomic profiling coupled with ANN analysis was used to investigate proteins altered in 

expression in sera of therapy responder and non-responder mice. Proteome changes were 

monitored from day 0 (TP0), after tumour implantation (TP1), after therapy administration 

(TP2) and at the end of experiment where animals respond or fail to respond to the therapy 

(TP3). Initially, matching time-points of regressor and progressor/tumour bearer mice were 

compared together to investigate whether there is a difference in the serum proteome 

between the responder and non-responders. We observed that its possible to distinguish 

between the regressor and progressors in all the time-points by ANN modeling and 83%-

100% correct classification was achieved in different models. The smallest differences were 

between the TP0 regressor/ TP0 progressor and tumour-bearer profiles were 83% of the 

samples were correctly classified although this indicates differences between the serum 
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profiles of regressor and progressor mice. The best predictions (100%) were achieved for 

the late time-points (TP2 and TP3) which are after therapy, indicating the different status in 

animals that respond or fail to respond to therapy. Following this success, proteomic profile 

changes in the regressor animals (therapy responders) was investigated by modeling the 

different time-points from the regressor animals only. The results indicate that there are 

differences between the time-points and these markers can be candidates that may associate 

with therapy response in the mouse model. Moreover, the specificity of these panels was 

determined from the ANN model when progressor/tumour-bearer samples were used as a 

totally blind set and non of the ANN models were able to classify the progressor/tumour-

bearer samples correctly, which indicates that the regressor biomarkers are more specific 

for classification of the regressors. Numbers of the discriminatory peaks were identified 

using LC MALDI MS/MS (Bruker Daltonics, Bremen, Germany), all of which have been 

recognised as biologically relevant to the presence of tumour. Down- or up-regulation of 

several proteins, in the different time-points was shown which could prove to be good 

candidates to prognosis the evolution of tumours and response to therapy. Although some 

of these protein markers in serum or plasma individually have been tentatively linked with 

presence of tumour but not directly produced by them, their combination as a panel of 

protein biomarkers has not previously been associated with therapy response.    

Previously (chapter 5), HBB was shown to be discriminatory between the regressor and 

progressor mice in DISC-HSV therapy model. In the present study HBB is also the first 

discriminatory peak for the TP2/TP3 regressor model indicating the potential of this protein 

to be associated with tumour regression and therapy response. The peak intensity of HBB is 

increased from the TP0 to TP3 in the regressor mice undergo DC-based vaccination. 

Komita and coworkers shown that a CD8+ T-Cell response against HBB, prevents solid 

tumor growth after establishment of CMS4 sarcoma (Komita et al. 2008). Moreover, they 

suggested that vaccines limit or destabilise tumor-associated vascular structures, potentially 

by promoting immunity against HBB vascular pericytes. Although we were unable to 

validate our finding for HBB in both immunotherapy models by Western Blotting (WB), as 

future work WB should be carried out after samples are cleaned by C18 ZipTip which may 

show clear cut differences between the different time-points or groups of animals.  

Kininogen is another interesting protein that previously has been associated with induction 

of endothelial cell apoptosis and inhibition of angiogenesis (Zhang et al. 2000, Zhang et al. 
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2002). This was the first discriminatory ion between the TP1 and TP2 regressors. The 

intensity of this peak is also increases in the regressor animals from TP0 to TP3.   

Other proteins identified from different models includes complement proteins, 

apolipoproteins and zinc-alpha-2-glycoprotein which have been reported previously in 

number of accessions in mouse tumour models that use serum proteome profiling for 

biomarker identification. Although these proteins may not specific to tumour, a panel of 

these markers that are tumour associated can be used for screening of tumour progression 

or therapy response. However, more investigations are required to confirm this suggestion 

and it would be interesting to use different sample preparation methods to even more 

reduce the complexity of serum samples from different time-points. LC followed by 

MALDI analysis of sera from different time-points may reveal a more complete picture of 

proteins so that the differences can be detected much easily.  

In future experiments we believe it is going to be important that the biomarkers we have 

identified are validated by MS-independent assays. In addition, it is important to identify all 

the associated proteins to our panel of peaks using possibly different fractionation methods 

prior to MS/MS to reduce the complexity of serum for accurate targeting of the peaks. We 

will also explore the value of these markers in tumour conditions. One of the key 

limitations in biomarker discovery studies is the sample size. Given the level of replication 

it becomes necessary to reduce the number of components within the model in order to 

overcome dimensionality issues such as the ability of models to produce a generalised 

solution. Replication and generalisation issues in this study were overcome by the 

application of extensive random sample cross validation techniques.  In this study three 

data sets were utilised training data, test data and validation data.  The membership of the 

training and selection data are randomly reshuffled over 50 cross validations.  By stopping 

training on the predictive error of the test data maximum generality is achieved and 

overtraining prevented. This is verified by performance on validation data.  This double 

validation provides a more realistic representation of model performance than using a 

single validation data set.  

In conclusion we have identified a panel of candidate biomarkers which could be used for 

the diagnosis of early tumours or may be associated with immunotherapy response in a 

CT26 immunotherapy model. We have provided proof of principle evidence for the use of 

robust and standardised automated protocols for sample preparation and MALDI-MS 
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analysis in conjunction with ANN modelling for the study of serum samples collected from 

different time-points during tumour growth and therapy with high sensitivity and 

specificity.  
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Chapter 7 – Discussion and further studies  

   
 

Proteomic technologies have been successfully applied in a number of medical areas 

including infectious, cardiovascular and neurological diseases. Accumulation of DNA 

changes in genes is broadly accepted as a source of cancer initiation and development that 

leads to protein expression changes. Hence, investigating changes in protein expression in 

addition to gene expression could potentially result in the discovery of new cancer 

biomarkers of clinical utility. The research presented in this thesis has introduced the use of 

MALDI-MS proteome profiling and bioinformatic analysis, in detection of candidate 

biomarkers of tumour progression and response to immunotherapy in a CT26 murine model 

of colorectal carcinoma. Proteomic profiles from serum and tissue were generated by 

MALDI-MS followed by ANN analysis of the complex data. Candidate biomarkers were 

identified by ESI-MS/MS and in some cases validated using independent assays.       

 

7.1 Clinical proteomics: Applications in cancer research 
Diseases manifest themselves through alterations in the normal phenotype that is typically a 

reflection of a series of changes in the genome and proteome. Analysis of either the genome 

or proteome with emerging high throughput technologies can potentially reveal alterations 

which are associated with disease initiation and progression. Clinical proteomics refers to 

the applications of current proteomic technologies for clinical investigations which may 

affect both clinical practice and care by identification of novel biomarkers (Sahab et al. 

2007, Matharoo-Ball et al. 2007). Clinical proteomics aims to quantify and evaluate the 

proteome changes that are associated with disease initiation, progression or treatment and 

discover candidate diagnostic, prognostic and/or therapy predictor biomarkers (Fung et al. 

2005). The field of clinical proteomics to date has focused mainly on detection of disease 

biomarkers and especially cancer associated biomarkers. Identification of potential 

candidate cancer biomarkers is possible through utilising a variety of biological body fluids 

such as serum, plasma, urine and cerebrospinal fluid as well as tissue and cell lines. The 

research presented in this thesis has used both mouse serum and tumour tissue samples and 

several different analytical tools have been applied for the detection of biomarkers.   
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Proteomic profiling of a variety of complex biological samples by matrix assisted laser 

desorption ionisation-mass spectrometry (MALDI-MS) is one of the commonly used 

analytical technologies in the field of cancer proteomics in the last 10 years that potentially 

could yield in identification of multiple cancer biomarkers (Matharoo-Ball et al. 2007). 

Proteomic patterns represent a new paradigm that can potentially be used in clinical 

diagnosis independent of identity of the discriminatory peaks; however discovering the 

identity of discriminatory ions of clinical importance, can potentially facilitate and form the 

basis of developing independent serum antibody-based assays that can be easily used in 

clinical practice (Petricoin et al. 2004). MALDI-MS profiling of serum, plasma, tissue and 

cell lysates in conjunction with computational artificial intelligence systems has been 

successfully used in identification of cancer associated proteins. Presence of salts, lipids 

and high abundant proteins in complex mixtures can be problematic when MALDI-MS or 

other mass spectrometry instruments used for proteomic profiling (Tiss et al. 2007). The 

problem relies on the competition between the different protein and salts for ionisation 

which results in a phenomenon known as ion suppression that affects the number of 

detected ions as well as reducing the sensitivity of detection and suppressing the signal 

from lower abundant proteins (Callesen et al. 2009). In addition, salt and lipids introduce 

chemical noise to the spectrum where lower signals from molecules can be lost in the noise. 

In general, most proteins in complex mixtures such as plasma that can be detected by 

common mass spectrometric instruments have concentration higher that 1µmol/L; however, 

the tumour associated molecules that are released by the tumour in the blood stream is 

generally believed to be present in extremely low concentrations (Annesly 2003, Omenn 

2006). These limitations can be enhanced by applying a number of techniques to increase 

sensitivity and quality of proteomic profiling by reducing the dynamic range and 

complexity of samples by utilizing different pre-fractionation techniques prior to MALDI-

MS analysis. A number of common pre-fractionating techniques used by a variety of 

researchers include solid phase extractions (using different chemical properties of proteins), 

chromatography, fractionation or capture on magnetic beads, precipitation with organic 

solvents, gel filtration and gel electrophoresis (Callesen et al. 2009, Gilar et al. 2001, 

Hortin 2006, Jin et al. 2005). The use of MALDI-MS with different sample fractionation 

methods may prove to be more beneficial in biomarker discovery studies if these methods 

can be shown to be reproducible as well as high-throughput. There have been strong 
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debates about MALDI-MS reproducibility, however use of standard operation procedures 

(SOPs) that are carefully designed in conjunction with clear and continuous communication 

between the clinical staff that acquire clinical samples from the patients, with the technical 

staff performing the analytical procedures, will help to reduce errors due to pre-analytical 

procedures and sample handling. The present study used C18 ZipTip chromatography for 

sample preparation prior to MALDI analysis to remove high molecular weight proteins 

such as albumin, remove salts and separate hydrophobic proteins for analysis. Serum 

sample preparation using C18 ZipTip have proven to be the technique with good 

performance that results in higher number of peaks in the spectra with good signal-to-noise 

and significant reproducibility over  different experiments which has been also shown by 

several other reports (Matharoo-Ball et al. 2007, Tiss et al. 2007). In addition, use of 

quality control samples and constancy in the study design and operational procedures in 

this study has shown to provide clinically relevant results. The benefit of MALDI-MS in 

biomarker discovery to date cannot be confirmed as few groups managed to validate their 

results using multiple patient groups, between different research centres and independent 

techniques. However, the technology still needs to be explored in further detail and at a 

larger scale, before established as a robust tool in clinical practice.     

 

7.2 The potential use of mouse models in cancer proteomic analysis and 

biomarker identification 
Animal models played a critical role for pre-clinically evaluating and studying many 

aspects of cancer biology (i.e. tumour immunotherapy, drug efficiency testing and tumour 

physiology studies) by providing an in-vivo milieu that in many respects reflects human 

disease and complements in-vitro studies using patient material. Tissue, serum and plasma 

are easily accessible for bimolecular investigations and studying the emerging proteomic-

based strategies and their applications in oncology.  

Direct analysis of serum from cancer patients has been extensively studied to reveal new 

cancer biomarkers; however, the complexity and heterogeneity of human samples remains 

the major challenge and data interpretation is often difficult due to physiological 

differences among patients (Faca et al. 2008). Genetic backgrounds, age, gender and the 

presence of chronic illnesses are some of the factors that may affect biomarker discovery 

experiments. These factors influence the serum proteome concept and any detected 
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candidate biomarkers may by related to these factors rather than cancer itself (Juan et al. 

2004). These factors can be controlled to some extent by using inbred animal models where 

aged, gender and genetic background is to a large extent constant and where environmental 

conditions and diet can be controlled. Most biomarker studies are based on the comparison 

of healthy and disease patient groups and it is difficult to obtain clinical materials from the 

same individuals prior to cancer development and in some cases prior to therapy. This is 

particularly important in studies that aim to identify biomarkers that predict therapy 

outcome. Most clinical cancer therapy trials collect samples from patient’s pre and post 

treatment, but it is not possible to obtain pre-cancer samples from individual patients. 

Despite the use of animal tumour models for research, there are only relatively few reports 

on the use of these for biomarker discovery.     

The animal models used in this study involved a CT26 tumour progression model and two 

separate CT26 immunotherapy models. All the animals used were kept in controlled 

conditions and were aged and gender matched. In addition, higher numbers of mice is used, 

compare to similar published proteomic studies, to provide increased confidence and 

generalisation of the results. The sample size in the design of clinical proteomics that aim 

for discovery of biomarker is of highly importance and low number of samples in 

experiments may reduce the confidence on the final results (Cairns et al. 2009). The CT26 

mouse models used provided a platform to study proteome changes during tumour growth 

and identified biomarkers that may be involved in tumour rejection and progression. 

However, unlike human cancer, the CT26 cell line grows rapidly following implantation 

into mice; moreover, CT26 cells are implanted subcutaneously which is not the site of 

origin of the tumour. The use of genetically engineered mice (GEM) has increasingly 

become popular while recently sophisticated GEM models have been developed that are 

capable of mimicking the histological and biological behavior of human cancers (Gutmann 

et al.2006, Faca et al. 2008). An interesting study by Faca et al. described the use of a 

GEM model of human pancreatic cancer and identified a panel of five proteins from serum 

proteomic analysis of GEM mice for diagnosis of early stage cancer. Furthermore, this 

panel of five proteins was capable of discriminating human serum samples from pancreatic 

cancer patients from healthy controls. In addition, immunodeficient mice have been used to 

establish tumours from human tumour cell lines in order to detect tumour biomarkers in the 

serum (Juan et al. 2004, van den Bemd et al. 2006).             
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7.3 Discovery of cancer biomarkers through serum proteomic profiling 
Serum is readily and in large quantities obtained from patients and as a result serum-based 

studies are widespread. It is reasonable to expect biomarkers in interstitial tissue fluid and 

blood, originating from the tumour itself or its microenvironment. There are five different 

mechanisms during cancer initiation and progression which leads to the elevation of 

proteins in biological fluids such as serum and plasma (Kulasingam & Diamandis 2008). 

These mechanisms includes: gene over expression, increased protein secretion and 

shedding, tumour metastasis and invasion, angiogenesis and distortion of tissue structure. 

Over expression of human epididymal secretory protein 4 (HE4) gene in patients with 

ovarian cancer results in elevation of HE4 protein in the serum which can be quantified via 

immunoassays and therefore could potentially serve as a marker of ovarian cancer. Invasion 

and metastasis of normal tissue by tumour cells may permit release of molecules to the 

interstitial fluid which subsequently enters the lymphatic system and ultimately the blood 

(Kulasingam & Diamandis 2008). For example, in patients with prostate cancer, although 

transcription of the PSA gene in the prostatic epithelial cells is down regulated, alteration 

and disruption of the anatomic barriers such as lymphatic capillaries between the prostatic 

columnar epithelial cells and glandular lumen allows the release of abnormal amount of 

PSA into the blood stream (Simpson et al. 2008). In healthy males, such anatomic barriers 

(i.e. basement membrane, stromal layer, blood vessel walls and lymphatic capillaries) 

control the amount of secreted PSA from the prostatic columnar epithelial cells to the 

glandular lumen (Kulasingam & Diamandis 2008). Moreover, abnormal secretion and 

shedding of membrane bound proteins by the tumour cells may be detectable in biological 

fluids and a good example of such biomarkers is HER2 which is involved in cell growth 

and differentiation.  

For MS-based proteomic studies, serum is often described as a “dual-edged sword” as it 

contains high concentration of a wide range of proteins; however, high abundance proteins 

may mask the identification of low abundance ones and cancer ion suppression (Veenstra et 

al. 2005). In addition to small molecules such as amino acids, lipids, salts and sugars, 

human serum contains 60-80 mg/ml proteins and in rodents the protein concentration of 

serum is 40-60 mg/ml (Ziad et al. 2007). Proteins such as albumin and IgG, present in 

normal serum, account for >95% of the total protein content (Anderson & Anderson 2002) 

and approximately 12g of albumin is synthesised on a daily basis, constituting 50% (w/w) 
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of the total serum protein (McFarlane et al. 2000). Considering the broad dynamic range 

and complexity of serum proteome, sample treatment using a variety of analytical 

techniques (i.e. fractionation, chromatography and antibody-based immunoaffinity 

subtraction) is required prior to biomarker identification. However, the drawback of high 

abundant protein removal from serum is the possible elimination of low abundant small 

protein/peptides that are attached to the high abundant carrier proteins such as albumin. The 

proteomic profiling studies presented in this thesis have utilised pre-packed ZipTip 

chromatography columns for sample preparation prior to MALDI-MS analysis. This simple 

procedure of sample preparation for both tissue and serum samples have revealed MALDI 

proteomic profiles that can be used to identify the presence of certain proteins that classify 

different groups. A number of proteomic studies have been published where the authors 

have used serum to identify proteins of possible clinical significance.   

 

7.3.1 Biomarkers associated with tumour initiation and 

progression 
Using the CT26 progression model, serum and tissue samples were collected at four time-

points from tumour-bearing and control mice which provided the opportunity to assess the 

tumour proteome changes in a time-course from tumour initiation and at different stages of 

growth. The present study, using MALDI-MS and ANN analysis resulted in the 

identification of panels of candidate biomarkers capable of correctly classifying a high 

proportion of mice at different stages of tumour progression, and revealing important 

prognostic information. Classification of TP0 (no tumour) from the TP1 (7 days post 

tumour implantation) was possible using a panel of 5 ions based on their proteomic 

profiling. In addition, TP1 versus TP2 (14 days post tumour implantation) and TP2 versus 

TP3 (21 days post tumour implantation) classification based on the MALDI-MS proteomic 

profiles was possible using panels of 4 and 3 ions respectively. The discriminatory panel 

for each of these stages of tumour progression was unique to each model, except one ion 

(m/z 2837) which was present on the panel of markers corresponding to the TP1vsTP2 and 

TP2vsTP3 model. The m/z values in the panel from these models have not been presented 

in the discriminatory markers from the immunotherapy models and therefore may only be 

associated with tumour progression but these can be only confirmed once the identity of the 

proteins related to the ions are revealed. This aspect of the study still requires further 
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identification of the nature and characteristics of the biomarkers. Validation studies with 

samples from an independent model would strengthen the results and alternative assays 

should be used for validation of results. These biomarkers may be indicative of tumour 

progression and therefore could indicate important molecular species which could have 

relevance for human cancer. The use of MALDI-MS and ANNs represents an appropriate 

technology for biomarker assessment and identification, relative to tumour status and 

progression.   

 

7.3.2 Biomarkers associated with response to immunotherapy 
The protein and peptide biomarkers of biological samples from a CT26 murine colon 

cancer model that associate with response or failure to immunotherapy with DISC-HSV or 

DC-based vaccination therapy with CTLA-4 and blockade of VEGFR-2 was investigated. 

In both immunotherapy models, upto 70-80% of the treated mice responded to therapy 

(termed regressors) while the remaining animals showed progressive growth of their 

tumours; hence, it was possible to analyse differences between the responder and non-

responder animals which is an additional unique feature of this study. In the DISC-HSV 

immunotherapy model, serum samples from tumour-free and after failure or response to 

therapy from same individuals were used to determine whether it is possible to classify 

responders from non-responders using our strategy for serum proteomic profiling. In the 

DC-based vaccination model samples were collected from four different time-points over 

the period of tumour implantation, immunotherapy and response or failure to therapy. To 

the best of my knowledge this is the first study that uses animal immunotherapy models to 

identify biomarkers that may be associated with therapy outcome. The long term impact of 

identification of novel therapeutic cancer makers is critical to providing a means for patient 

stratification and a step closer to implementing personalised medicine. The data obtained in 

murine immunotherapy may indicate pathways, important in response to therapy, that may 

be translated to human or at least indicate important principles associated with the response.  

The first immunotherapy model investigated for the biomarker identification was the DISC 

therapy. In this study we identified and confirmed serum peptide biomarkers (SAA-1, SAP 

, HBB and HPX) that associate with failure of immunotherapy and progression in a 

colorectal murine model, demonstrating the ability of MALDI-MS in conjunction with 

ANN modeling to discover biomarkers. The uniqueness of our study was that we used a 
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retrospective CT26 colorectal cancer set of samples collected in 2004 at the end of the 

study period only for the discovery/identification of the peptide markers and in a separate 

independent prospective (2008) regressor/progressor/naïve/tumour bearer CT26 colorectal 

cancer set of samples collected 4 years later for the biological and immuno-validation of the 

biomarkers. Additionally with this cohort of samples we were able to collect the blood prior 

to any tumour/therapy in the healthy state of the animals and then following tumour/therapy 

outcome. This scenario provides the ideal experimental design to elucidate how the markers 

change in the same animal from a healthy state and after tumour/therapy outcome. In the 

case of regressor/progressor peptide analysis we were able to demonstrate 86% accuracy 

(sensitivity of 90% and specificity of 81%) with a panel of 4 ANN predicted biomarkers. In 

the case of progressors versus healthy controls 1 tryptic peptide peak identified by ANN 

analysis was able to predict the two groups with accuracy 85%, sensitivity of 88% and 

specificity of 96%. The ANNs however, failed to classify regressors from healthy controls, 

suggesting that the serum proteome of mice responding to therapy is similar to healthy 

individuals. Furthermore, we were able to identify by ESI MS/MS all four biomarker ions 

from the regressor/progressor ANN analysis as (1) ion m/z 1312 as a fragment of 

haemoglobin beta-2 subunit (HBB), (2) ion m/z 1132 as a peptide of serum amyloid A-1 

(SAA-1), (3) ion 1192 as a fragment of hemopexin (HPX) and finally (4) m/z 2133 as 

serum amyloid P (SAP) protein fragment. The one tryptic peptide ion from ANN analysis 

discriminating progressors from healthy controls was also identified as a component of 

HPX. The findings of this study were successfully validated using western blotting, IHC, 

ELISA and RT-PCR. Further investigations are required to define possible mechanism(s) 

and the involvement of these markers in failure or response to immunotherapy of CT26 

tumours in mice.  

In the second immunotherapy model, where mice received DC-based vaccination combined 

with anti CTLA4 therapy, serum samples were collected at four different time-points 

during the course of tumour initiation and immunotherapy with DC-based vaccine. In this 

study as proof-of-principle using MALDI-MS and ANN analysis we were able to detect a 

panel of discriminatory biomarkers between the time-point that were identified with ESI 

MS/MS that may be involved in tumour progression of therapy response. However, further 

studies are required to validate these findings.  
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7.4 Discovery of cancer biomarkers through tissue proteome profiling 
A number of proteomic studies have been published using cancer cell lines to identify 

proteins of possible clinical significance (Koike et al. 2005). Despite the widespread use of 

cell lines in the field of cancer proteomics to identify proteins with possible clinical 

significance, cell lines do not provide an exact model of a tumour, as the tumour 

microenvironment invokes changes upon the tumour genome and proteome and the 

molecules expressed and secreted by the host as well as tumour cells. The development of 

assays for detection and treatment of tumours may start with investigating molecules and 

mechanisms of tumour progression. The studies presented here utilised a CT26 murine 

model of progression and show that proteins extracted from CT26 tumour tissue could be 

used to classify tumours from 3 different time-point of tumour progression. This study 

provide a “proof-of-principle” for using MALDI-MS in conjunction with ANN analysis to 

successfully identify discriminatory pattern between CT26 tumour tissue extracts of 

different stage of growth. Future studies would necessitate the use of larger cohorts of 

samples and methodologies to identify discriminatory markers. Pre-clinical evaluation of 

biomarkers in tumour models forms a useful and essential pre-requisite for studies of 

human disease, where identification of discriminatory proteins (biomarkers) with clinical 

significant would have clinical utility. Thus, the translation of these methods to study 

human tumour tissues to detect stage specific candidate biomarkers involved in tumour 

progression, metastasis and/or predicting patient response to therapy is now possible. 

The method of tissue analysis used in this study involved homogenisation of whole tumour 

tissue and extraction of the total protein. As heterogeneity is one of the most important 

characteristics of cancer, manifested through diverse genetic and proteomic expression 

pathways, it has been stated that the use of whole tumour tissue extracts may not reflect 

accurately biomarker changes during tumour progression (Wang et al. 2009). Human 

tumour cell heterogeneity and the presence of subpopulations within the tumours will be 

reflected through patient (Heppner 1984). However, the use of technologies such as laser 

capture microdissection (LCM) combined with MALDI-MS profiling may increase the 

chance of identifying relevant proteins involved in tumour progression. Moreover, whole 

protein extraction from tissue does not allow determination of protein localisation within 

the tissue. Protein localisation is often possible using techniques such as 

immunohistochemistry, however previous knowledge of proteins of interest and the 
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availability of specific antibodies to the protein is required. Intact tissue profiling using 

MALDI-MS allows molecular weight specific maps or images of tissue sections to be 

obtained rapidly at high resolution and sensitivity. This method is still in the early stages of 

development but improvements in sample preparation, instrumentation and data analysis to 

increase sensitivity and specificity of this approach has made this possible (Caldwell & 

Caprioli 2005). So far this method has been applied to the profiling of glioblastoma, 

prostate and colon cancers, resulting in the discovery of numerous disease specific 

biomarkers and their spatial localization within the tumours (Stoeckli et al. 2001). 

 

7.5 Current technology challenges: independent validation of candidate 

biomarkers 
The discovery of biomarkers that predict therapeutic response is of increasing importance 

in the development and administration of appropriate therapies for cancer. The peptidome 

hypothesis states that many proteins and peptides are shed from the tumour cells into the 

tissue microenvironment and enter the circulatory systems therefore; direct screening of the 

serum proteome may provide protein signatures indicative of a specific state of disease or 

phenotype with high sensitivity and specificity (Petricoin et al. 2006). Serum is the most 

desirable and widely used biological fluid for this goal due to the presence of high 

concentrations of proteins and because it is easily obtainable. Therefore, the use of high 

throughput technologies such as MALDI-MS offers the opportunity for precise 

identification of proteins and peptides that cannot be resolved using methodologies such as 

2D gel electrophoresis (Petricoin & Liotta 2004). The ability of MALDI serum profiling 

combined with several different computer based algorithms for data analysis to classify and 

analyze different states of disease has been confirmed by a variety of groups however, 

important concerns were raised over the reproducibility and reliability of MS based 

proteomic profiling techniques. Experimental variations occurring in MALDI-MS 

experiments are well-known and are discussed by others and they addressed a number of 

important factors that influence serum proteome profiles. Individual and environmental 

differences (i.e. age, sex, general physical health, stress, diet, race and etc) and 

preanalytical conditions (i.e. sample handling and preparation, sample processing protocols 

etc) are two main factors that have significant impacts on the MALDI profiles (Baggerly et 

al. 2004 and Villanueva et al. 2005). Therefore, use of standardized and well designed 
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approaches for proteome profiling plays an important role in reduction of bias from MS 

based results and findings. Moreover, identification of the sources of variation which may 

initiate from the instrument in use, sample preparation or/and from individual differences 

and their influence on the proteome profiles may direct us to more accurate and relevant 

conclusions. Validation and reproduction of results by independent laboratories under 

highly strict conditions for SELDI and MALDI has been shown previously (Enqwegen et 

al. 2007). In our laboratory a standard workflow for serum proteome profiling by MALDI-

MS in conjunction with ANNs algorithms has been designed in which most of the issues 

and bias over MALDI-MS proteome profiling is taken into consideration. In this study we 

used serum samples collected from the CT26 murine model of immunotherapy where we 

are eliminating the differences such as genetic background, diet and age from our 

experiments. We have used two different strategies, one gel based and the other one non-

gel based, in conjunction with MALDI-MS to ascertain whether it would be possible to 

distinguish between tumour regressor and tumour progressor mice by serum proteome 

analysis. The detection of proteomic changes in serum of these mice will allow us to predict 

the response of the mice to the immunotherapy or identification of markers which are 

correlated to tumour regression or progression. Protein biomarkers in the serum hold great 

promise for disease detection and classification but often these biomarkers cannot be 

detected easily in the serum samples by mass spectrometry due to the presence of high 

abundance proteins such as albumin in the blood. The low molecular range of the serum 

proteome contains shed proteins and protein fragments originated from physiologic and 

pathologic events taking place in all tissues. As the larger protein molecules cannot enter 

the blood circulation, the low molecular weight region of serum is an attractive specimen to 

detect biomarkers associated with a specific disease (Geho et al. 2006) and recently novel 

methods have been applied by the researchers to eliminate the high molecular weight 

proteins present in the serum and analyse the low molecular weight proteins by mass 

spectrometry techniques (Tirumalai et al. 2003 and Chertov et al. 2005). Use of C18 

ZipTips for fractionation and concentration of serum samples prior to MALDI-MS analysis 

has been examined previously by a number of investigators also efficiency of these 

columns for removal of serum albumin has been shown in previous chapters of this study. 

The number of unique proteins and peptides that can be identified from complex mixtures 

such as serum depends on the fractionation procedures therefore we used C18 ZipTip to 
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reduce the complexity of the samples as well as concentrating and de-salting them. The C18 

ZipTip are chromatographic columns that hydrophobic proteins can bind to, and they have 

a preferable mass range that can bind to these columns letting behind proteins such as 

albumin in fact, 98% loss of protein for C18 ZipTips have been reported (Matharoo-Ball et 

al. 2007b). As sample handling and processing holds an important role in results of the 

MALDI-MS analysis, we utilised a robotics liquid sample handling system which ensures 

confidence and reliability in the instrument for reproducible sample processing. The results 

presented in this report demonstrate the use of MALDI-MS serum proteome profiling in 

conjunction with ANNs analysis for cancer biomarker identification and using robust 

analytical protocols can provide reproducible and meaningful data. We further validated 

three selected proteins (SAP, HPX and haemoglobin) by semi-quantitative Western blotting 

analysis. The resulting data for these proteins using an independent assay show the same 

general trends found by mass spectrometry analysis. Additionally, the identified potential 

biomarkers were further validated using sera obtained from an independent prospective 

experiment; moreover, SAP and SAA were quantified using ELISA. The findings of this 

study suggest that a panel of serum biomarkers identified by MALDI-MS in this 

experimented model of immunotherapy along with the clinical parameters may be used to 

predict treatment outcome. In addition, our findings demonstrate that a panel of APPs 

might serve as biomarkers for detection of therapy response. The mRNA levels of SAP, 

HPX and SAA expression was also validated using RT-PCR which shows increased levels 

of expression in progressors compared to naïve and regressors which confirmed the 

proteomic and WB findings. In addition, our findings demonstrate that a panel of APPs 

might serve as biomarkers for detection of therapy response.  

 

7.6 Bioinformatics 
The application of ANNs to identify patterns correlating with clinical parameters allows us 

to gain further understanding of the biological diversity of different cancers. The 

emergence of subtypes of disease also makes it difficult to determine the prognosis of 

patients and decide upon the most appropriate treatment.  Classifying tumours into distinct 

groups according to their protein profiles may provide additional information of diagnostic 

and prognostic benefit to the patient. ANN analysis also identified sample outliers that 

could represent new subtypes of the cancers. The stepwise analytical approaches used for 
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the studies presented here has resulted in the identification of multiple markers associated 

with, for example, the response to therapy. This highlights the fact that using a simplistic, 

single marker approach to describe very complex and heterogenous diseases is unrealistic 

and that the use of multi-marker models will allow much more accurate conclusions to be 

drawn.  Also, it has been revealed that predictive patterns can be identified to classify a 

high proportion of samples using different bioinformatics approaches. However, these 

approaches identify different groups of ions that could be used for prediction and so 

biomarker identification using these types of approaches is dependent upon which method 

is used for the analysis of the data.  This present study has shown that ANNs can be used to 

determine predictive markers of therapy in CT26 immunotherapy models and markers of 

tumour progression, but it has also been used in studies involving prostate and melanoma 

cancer. 

Sample handling and processing, instrument noise and data analysis all contribute to the 

challenges of reproducibility in any proteomics experiment (White et al. 2004).  Variability 

in sample handling and the mass spectrometer causes a baseline across the spectra as well 

as ‘noise’ and variability in the amount of protein bound onto the target also causes a 

fluctuation in the intensity scale of the spectra.  Variablilty in the spectra has the largest 

effect on small peaks as the baseline and instrument noise can be as large as the peak itself, 

yet it is possible that these small peaks contain much of the biological information; hence 

the standardisation of sample and data processing procedures should be of utmost 

importance when embarking upon biomarker discovery studies (Rodland 2004). 

 

7.7 Cancer diagnosis and treatment and personalised medicine 
The clinical and pathological biomarkers that are currently used poorly predict early disease 

development and response to treatment. The aim of this study and others was to attempt to 

identify biomarkers that can improve upon markers currently in use. 

Majority of the biomarkers generated by MALDI MS have been identified and these have 

studies have mainly concentrated on biomarkers present in serum and appear to be isoforms 

of ubiquitous proteins that occur as a result of secondary tumour effects, for example 

altered enzymatic activity; the specificity of these isoforms requires further investigation 

(Engwegen et al. 2006). Like normal cells, most cancer cells use multiple intracellular 

signaling pathways to ensure the maintenance of functions that are critical to their survival. 
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Thus, cellular pathways that are integral to cell function, survival, proliferation, and 

receptor expression are potential targets for therapeutic intervention but are not necessarily 

tumour cell specific, one example being the epidermal growth factor receptor signaling 

pathway. Molecules that mediate the production of angiogenic and invasion factors that 

allows tumor growth and metastasis, such as the vascular endothelial growth factor and 

downstream events that result in cellular apoptosis represent additional potential targeting 

pathways (Ajani and Allgood 2005). 

Standard diagnostic methods, including tissue histopathology are being replaced or 

complimented by the use of molecular diagnosis, which can identify proteins and their 

posttranslational modifications that occur in disease conditions, and hence greatly 

accelerate progress toward novel diagnostic and predictive tools to track early disease and 

tailor treatments to specific patients (personalised medicine) (Alaoui-Jamali and Xu 2006).  

In the clinic, new patients could be tested (either using serum or by isolating protein from a 

biopsy) by SELDI or MALDI analysis to generate protein or peptide fingerprints. The 

profiles of patients could then be compared to control or ‘baseline’ profiles from normal 

subjects in order to determine the diagnosis, or prognosis or to predict response to a 

particular treatment. Continued investigations may result in the development of proteomic 

profiling databases through which a patient could be matched with protein profiles relevant 

to the disease and potential benefits of treatment. In this way, clinicians would be able to 

recommend combinations of molecularly targeted agents and therapies on the basis of an 

individual patient's proteomic profile (Ajani and Allgood 2005). Samples compared to 

profiles in an existing database would have to be applicable to the general population, 

taking into consideration factors such as age, sex, ethnicity and nutritional status. The 

proteins identified to date in MALDI MS based proteomic studies have revealed that 

patient populations can be determined by the up or down regulation of inflammatory 

proteins and so the diagnosis of a patient could be determined by the presence of molecules 

that are not tumour cell specific. 

In conclusion, the MALDI approach utilised in the present research has the potential to be 

used as a clinical tool in the future for the diagnosis and prognosis of patients. The MALDI 

proteomic profiling strategy has the capability of producing reliable results that can be 

validated as shown here to be true results. However, further developmental work is required 

before this can become a reality, including the type of samples that could be analysed, the 
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bioinformatics approach used to analyse the data as well as the method used to generate the 

spectra. The work presented has shown that different types of samples can be used to derive 

clinically relevant information from a proteomic profile.  Different types of bioinformatics 

approaches can be used to analyse the data and to classify samples with the same accuracy; 

this is likely to be achieved using different ions/biomarkers to do this.  It has also been 

shown that different sample preparation methods can be utilised, each generating a different 

set of prominent ions; despite this, however, the patterns within these spectra allow the 

classification of samples with a similar degree of accuracy. Further work should determine 

the best method to use for sample preparation, proteome profiling and bioinformatics 

analysis, using the same sample set derived from a large cohort of samples.  To date 

proteome profiling and analysis of samples to establish reproducibility in several centres 

has not been carried out. There is a need to validate proteomic data using a multi-centre 

approach. 
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