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ABSTRACT 

 

Microseismic data is used by companies to analyze and check numerous processes, 

including horizontal well performance, directional drilling and, most recently, hydraulic 

fracturing. The microseismic data analysis approach is important and there is a lot more 

to discover within microseismic technology with an application of the correct data analysis 

approach. For example, different visualization methods could potentially contain hidden 

structures, not visible by traditional methods. 

This work proposes a new methodology to access those hidden structures. In 

particular, machine learning tools, such as Tensor Decomposition (TD) and Multiway 

Component Analysis (MWCA), were utilized to gain more information from a previously 

existing pool of microseismic data. The extracted hidden structures can be used to learn 

more about source location, from which the information about fracture propagation could 

be inferred within the reservoir. This potentially gives a fast and cost-effective technique 

to analyze hydraulic fracturing processes. 

The work further illustrates applicability to a real microseismic study of the noise 

reduction and model reduction methods, based on the same machine learning techniques. 

A special case of TD, Higher-Order Singular Value Decomposition (HOSVD) is used to 

decompose the data, while MWCA is used to show the relationship between the 

decomposed structure and hidden structures within the dataset. Finally, possible steps to 

improve the technology are outlined. Since the applications of MWCA and TD are still 

emerging, future enhancements to this methodology are expected. 
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1. INTRODUCTION  

 

1.1. Preface 

Unconventional reservoirs, such as shales and tight gas, continue to play an ever-

increasing role in the world with the volume of crude oil production from these reservoirs 

steadily increasing year after year, in a nearly exponential fashion. This can be seen from 

Figure 1.1, where the US conventional crude curve is on a declining trend, whilst the US 

tight crude grows considerably and is expected to grow in similar manner in the future. 

 

Figure 1.1 U.S. Crude and Natural Gas Liquids (NGLs) production. From [29], 

distributed for educational and other non-commercial purposes. 

 

The growth of unconventional reservoirs production is mainly connected to the 

progress made with hydraulic fracturing, which is an important part of tight crude oil 

extraction. Despite the recent advances with technology, however, there are still issues 

that should be addressed. Currently, the great concern surrounds the environmental effect 

of hydraulic fracturing operations [24, 37]. The environmental effect is mostly connected 
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to the ineffectiveness of the oil industry to guarantee well integrity and control over 

fracture propagation. As a consequence, the potential contamination and poisoning of 

local water sources is a great concern in society [37]. 

The key to address this concern is to ensure well integrity and high standards of 

safety and responsibility, while performing fluid injection operations. That can be 

achieved by imposing a set of rigorous operating principles within a company, but more 

importantly, by improving the technologies such as microseismic data, and improving 

understanding of their connection to hydraulic fracturing. Ideally, there should be an 

efficient and fast quality control of fracture propagation during fracturing operations that 

does not rely on conventional time-consuming simulations. 

Microseismic data can be connected to hydraulic fracturing processes. It was 

recently found that natural fractures during hydraulic operations can play a minor role in 

generating the microseismicity or guiding fracture growth, hence indicating that the 

microseismic shearing is associated with hydraulic fractures [36]. To this end, 

microseismic technology is arguably the most effective way to understand underground 

processes during hydraulic operations [1, 5] and to get insights about rock structure and 

geometry [2, 25], as well as stratigraphic deformations. The paper from Schlumberger [4] 

emphasizes this idea by providing case studies from Texas that further illustrate the value 

microseismic data has given to geoscientists and petroleum engineers dealing with 

stimulation operations. 

This thesis concentrates on the application of recent advances in machine learning, 

more specifically tensor decompositions, to analyze high-dimensional microseismic data. 
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It is shown that with a decomposed representation of microseismic data, hidden structures, 

that were not visible by traditional visualization methods, could be extracted. These 

structures, for example, include the data matrix that corresponds to a variation of 

parameters with time. This helps track and predict changes in source location, which could 

potentially be tied to fracture propagation. Additionally, the structure of the decomposition 

can hint to a seismic wave source mechanism, which can imply some information about 

fractures and potentially help with their visualization and characterization. Furthermore, 

the application of tensor decompositions is an efficient model reduction technique, and it 

helped to achieve 73% data compression, which simplifies real-time research during 

hydraulic operations. These ideas are explored further in Section 3 of the paper. 

1.2. Summary of Literature Review 

The research in the area of microseismic data connection to hydraulic fracturing is 

currently very active [6], with recent papers proposing ways to analyze fractures [27] or 

estimate rock permeability [28]. However, despite the research done with microseismic 

data technology, there is a vast room for improvement both in terms of the physics behind 

microseismic imaging, and in terms of the current data science approach to microseismic 

data processing [26]. 

It is possible to use tools from modern data science and machine learning to further 

advance research in this area. This work is focused on a specific type of machine learning 

techniques called Blind Signal Separation (BSS). Several machine learning techniques 

within BSS, such as tensor decompositions and multiway component analysis, can be a 
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promising tool to obtain more information from microseismic data while improving safety 

and efficiency of hydraulic fracturing. 

Tensor decompositions, and Tucker decompositions (TD) in particular, have been 

successfully applied to various fields. Examples of TD applications to other fields include 

epidemiology, where HOSVD (a type of TD) was utilized as a basis for a real-time event 

detection software, particularly for early detection of disease outbreaks [9]. Additionally, 

the HOSVD technique has been used for image and face recognition [10, 38] as it is 

possible to extract certain parts of a picture and recombine it in a specific way. This helps 

to create a compilation of various faces which can potentially be used for suspect 

sketching. Also, there are cases of using HOSVD in neuroscience to track changes in brain 

and help detect problems at an early stage [11]. In petroleum engineering the HOSVD has 

been used as a permeability reparametrization tool tied to history matching processes [30, 

31].  

Despite the successful application of tensor decompositions in other areas, 

however, an insufficient amount of research is done to apply the HOSVD and MWCA 

techniques to microseismic data analysis. 

The fMRI and EEG recordings used in [11] are visually similar to general 

microseismic data structures. Considering that the decomposed data analysis approach 

used in [11] helped to see hidden structures related to changes in brain, the HOSVD 

technique has a big potential with hidden structures extraction for microseismic data, 

given their structural similarities.  
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This is the main reason behind the choice of HOSVD and MWCA as a data 

analysis tool for microseismic data and the main reason why the application of the 

HOSVD technique to microseismic data is relevant and important. 

1.3. Thesis Objective and Scope 

The main objective of this research is, hence, to apply HOSVD and MWCA to 

microseismic data and propose a workflow to extract more information from the 

decomposed structure alone, which leads to more insights about seismic signal source, 

which ultimately can infer information about fractures without using conventional time-

consuming simulations. 

Other goals include investigation of a possibility to simultaneously compress and 

denoise multidimensional microseismic data, as well as to outline steps for further 

research connected to the technology. Given how recent the technology is, there is vast 

opportunity for possible improvements of both HOSVD and MWCA, which could help to 

discover even more hidden information from microseismic data. Hence, tensor 

decomposition can be an important addition to a set of hydraulic fracturing quality 

assessment tools. 

1.4. Thesis Organization 

The thesis proposal is organized as follows. In Section 2, a brief introduction to 

the important concepts related to the proposed workflow is given. The concepts include 

microseismic monitoring, seismic inversion, overview of machine learning techniques, 

SVD, HOSVD and MWCA. Additionally, in Section 2 a brief mathematical background 

for tensors and tensor products is presented. 
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Section 3 offers an exact workflow, its practical application to a numerical 

example, results and main findings. The section consists of three different subsections 

representing each step of the proposed methodology. Subsection 3.4 includes a complete 

overview of the methodology. 

Conclusions are summarized in Section 4. Parts of this work are based on the 

technical paper SPE-195522-MS that is expected to be published and presented during the 

SPE Europec featured at 81st EAGE Annual Conference & Exhibition. 
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2. PROBLEM BACKGROUND 

 

This section gives a brief introduction to important concepts underlying the theory 

of the proposed workflow. 

2.1. Introduction to Microseismic Monitoring 

Microseismic monitoring is a technique that records and locates microseismic 

events, thus generating microseismic data. Those events are generated by a seismic wave, 

which, in turn, could be caused by high rates and high pressures of hydraulic fracturing 

[3]. An example of a physical set up of a microseismic experiment is depicted in Figure 

2.1, where treatment well represents a well upon which the fracturing is performed, while 

monitoring well is used to detect seismic wave with a set of receivers. 

 

Figure 2.1 Graphical description of a possible microseismic event. 
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The set of sensors, or receivers, depicted on the right side of the Figure 2.1, are 

used to record the time and intensity of seismic wave arrivals. Each sensor measures 

displacement caused by a seismic wave in X- Y- and Z-directions. 

There are two types of waves of interest: P-wave, or Primary wave, and S-wave, 

or Secondary wave [39]. The primary wave is a longitudinal wave with motion along the 

line of propagation in the case of isotropic and homogeneous solids. It is generally faster 

and, therefore, it is the first one to appear on a seismogram. The secondary wave is a 

transverse wave where the motion is perpendicular to the direction of propagation. It 

follows the Primary wave.  

 

Figure 2.2. General structure of microseismic data. 

 

An example of recorded data for one location is shown in Figure 2.2, where x-axis 

represents variation of receivers and y-axis represents change in time, in milliseconds. 
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2.2. The Problem and Mathematical Framework / Seismic Inversion 

2.2.1. Seismic Inversion 

With a correct analysis of microseismic data recorded by sensors it is possible to 

get information about rock structure, faults and fractures. The process of transforming 

recorded seismic data into a meaningful description of a reservoir is called seismic 

inversion [40]. Therefore, the problem, as stated in subsection 1.3, is connected to seismic 

inversion. In order to proceed with a solution to the stated problem, it is important to give 

a brief background of the appropriate mathematical framework. 

2.2.2. Mathematical Framework 

Subsection 2.2.2.1 starts with an introduction to general tensor notation used in the 

workflow. 

In this work, Tensor Diagrams were used, as defined in [12]. Subsection 2.2.2.2 is 

intended to give a brief introduction to the notation, since there are no general rules for 

tensor diagrams representation in the literature. 

The subsequent sections (2.2.2.3-2.2.2.8) provide clarification to some of the 

concepts of tensor algebra, such as unfolding, as it could be performed in several ways. 

Subsection 2.2.2.8 is followed by subsection 2.2.2.9 which contains Table 2.1 that 

summarizes the main mathematical concepts. 

2.2.2.1. Tensor Notation 

In this work, vectors are described with underlined letters (a), while matrices are 

denoted with double-underlined letters (𝐵). Tensors are denoted with triple-underlined 

letters (𝐺). Tensors with four and more modes (also called ways, or dimensions) are also 
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triple-underlined. It is important to emphasize that the number of lines does not depend on 

a mode of a tensor. 

Additionally, a matrix could be denoted as such: 𝐵(𝑛). This is a representation of 

component matrices, or factor matrices. This should not be confused with 𝑋(𝑛), which 

stands for a mode-n unfolding of a tensor 𝑋. 

2.2.2.2. Tensor Diagrams 

Tensor diagrams are useful for visualization of complex tensors. There is no 

general standard for tensor diagrams representation, therefore in this work the definitions 

presented in [12] were used. They are shown in Figures 2.3-2.6. 

 

Figure 2.3 Fourth-order tensor and its tensor diagram representation. From [12], 

distributed with author’s permission. 

 

 

Figure 2.4 Fifth-order tensor and its tensor diagram representation. From [12], 

distributed with author’s permission. 
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Figure 2.5 Sixth-order tensor and its tensor diagram representation. From [12], 

distributed with author’s permission. 

 

 

Figure 2.6 Graphical tensor diagrams representations of higher-order tensors. 

From [12], distributed with author’s permission. 

 

2.2.2.3. Mode-N Product 

The mode-n product of a general tensor 𝐴 ∈ 𝑅𝐼1×…×𝐼𝑁 and a general vector 𝑏 ∈ 𝑅𝐼𝑛  

is defined as a tensor 𝐶 = 𝐴 ×𝑛 𝑏, where 𝐶 ∈ 𝑅𝐼1×…×𝐼𝑛−1×𝐼𝑛+1×…×𝐼𝑁. 

For example, 3-dimentional tensor mode-1 multiplication with a vector will reduce 

the rank of a tensor to 2 (Fig. 2.7). 
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Figure 2.7 Mode-N product example. From [14], distributed under a Creative 

Commons license (Attribution-Noncommercial) 

 

A mode-1 or mode-2 multiplication of a 3-dimensional tensor with a matrix instead 

of a vector is based on the similar principles. However, one mode of the matrix will add 

up to the tensor and, therefore, the rank of the tensor will be the same as prior to the mode-

n product. 

2.2.2.4. Outer Product 

The outer product of a tensor 𝐴 ∈ 𝑅𝐼1×…×𝐼𝑁 and a tensor 𝐵 ∈ 𝑅𝐽1×…×𝐽𝑀 , as defined 

in Eq. 2.1, is a tensor 𝐶 that has (N+M)th order. 

𝐶 = 𝐴 ∘ 𝐵 (2.1) 

In other words, the result of an outer product contains all modes of all matrices (or 

vectors, or tensors) that the product contained. Outer product of two vectors will produce 

a matrix. 

2.2.2.5. Kronecker Product 

The Kronecker product of a tensor 𝐴 ∈ 𝑅𝐼1×…×𝐼𝑁 and a tensor 𝐵 ∈ 𝑅𝐽1×…×𝐽𝑁 , is 

defined in Eq. 2.2, where the tensor 𝐶 has an (N∙N)th order. 
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𝐶 = 𝐴 ⊗ 𝐵 (2.2) 

In other words, the traditional matrix multiplication contrasts the Kronecker 

Product, since instead of actual multiplication of 2x2 matrix 𝐴 and 2x2 matrix 𝐵, each 

element of 𝐴 is multiplied by the whole matrix 𝐵. As a result, a product of two 2x2 

matrices will result in one 4x4 matrix, as it is shown in Eq. 2.3. 

𝐴 ⊗ 𝐵 = [
𝑎 𝑏
𝑐 𝑑

] ⊗ [
𝑒 𝑓

𝑔 ℎ
] = [

𝑎 ∙ [
𝑒 𝑓
𝑔 ℎ

] 𝑏 ∙ [
𝑒 𝑓
𝑔 ℎ

]

𝑐 ∙ [
𝑒 𝑓
𝑔 ℎ

] 𝑑 ∙ [
𝑒 𝑓
𝑔 ℎ

]
] (2.3) 

2.2.2.6. Khatri-Rao Product 

The Khatri-Rao product is the “matching column-wise” Kronecker product [15]. 

The Khatri-Rao product of a matrix 𝐴 ∈ 𝑅𝐼×𝐽 and a matrix 𝐵 ∈ 𝑅𝐾×𝐽 is defined in equation 

2.4, where the matrix 𝐶 ∈ 𝑅𝐼𝐾×𝐽. 

𝐶 = 𝐴 ⊙ 𝐵 (2.4) 

To simplify the definition above, the Khatri-Rao product can be considered an 

attempt to do a Kronecker product column-wise. An example is given in Eq. 2.5, where 

the columns of 𝐴 are taken to perform a Kronecker product with columns from 𝐵. 

𝐴 ⊙ 𝐵 = [
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓

] ⊙ [
𝑔 ℎ 𝑖
𝑗 𝑘 𝑙

] = [

𝑎𝑔 𝑏ℎ 𝑐𝑖
𝑎𝑗 𝑏𝑘 𝑐𝑙
𝑑𝑔 𝑒ℎ 𝑓𝑖

𝑑𝑗 𝑒𝑘 𝑓𝑙

] (2.5) 
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2.2.2.7. Hadamard Product 

The Hadamard product of a matrix 𝐴 ∈ 𝑅𝐼×𝐽 and a matrix 𝐵 ∈ 𝑅𝐼×𝐽 is defined in 

Eq. 2.6, where the matrix 𝐶 ∈ 𝑅𝐼×𝐽. 

𝐶 = 𝐴 ⊛ 𝐵 (2.6) 

The Hadamard product, as defined in Eq. 2.6, is simply an elementwise 

multiplication of matrices A and B, which could be extended to tensors without changes 

to the approach. Because of the definition, it is important to have two matrices, or tensors, 

of the same size. An example of Hadamard product is given in Eq. 2.7. 

𝐴 ⊛ 𝐵 = [
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓

] ⊛ [
𝑔 ℎ 𝑖
𝑗 𝑘 𝑙

] = [
𝑎𝑔 𝑏ℎ 𝑐𝑖
𝑑𝑗 𝑒𝑘 𝑓𝑙

] (2.7) 

2.2.2.8. Mode-N Unfolding 

For a tensor 𝐴 ∈ 𝑅𝐼1×𝐼2×…×𝐼𝑁 mode-n unfolding (also called matricization, or 

flattening) is defined as 𝐴(𝑛) ∈ 𝑅𝐼𝑛×(𝐼1×𝐼2×𝐼𝑛−1×𝐼𝑛+1×…×𝐼𝑁). Therefore, the result of a mode-

n unfolding of a tensor 𝐴 is a matrix. The process of unfolding is presented in Figure 2.8 

with tensor diagrams, as well as clarified with an example, presented in equations 2.10-

2.14. The background to the Tensor Diagrams notation is detailed further in subsection 

2.2.2.2. 

 

Figure 2.8 Tensor diagram of general n-mode unfolding. Modified from [12]. 
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It should be noted that the definition of unfolding used in this work is based on the 

definition in [15]. However, there are different ways to define unfolding. For example, 

Python TensorLy (high level API for tensor methods in Python) is based on a different 

definition of unfolding, for the reasons of improved computational power in comparison 

to standard methods [17]. 

An example of three-modes (3x4x2) tensor 𝑋 suitable for unfolding is given in 

equations 2.10-2.11, where each of the equation is a representation of the tensor’s slice. 

Possible unfoldings of the tensor 𝑋 are given in equations 2.12-2.14. 

𝑋(: , : ,1) = [
0 2
8 10

16 18

4 6
12 14
20 22

] (2.10) 

𝑋(: , : ,2) = [
1 3
9 11

17 19

5 7
13 15
21 23

] (2.11) 

Mode-1 unfolding: 

𝑋(1) = [
0 2 4
8 10 12

16 18 20

6 1 3
14 9 11
22 17 19

5 7
13 15
21 23

] (2.12) 

Mode-2 unfolding: 

𝑋(2) = [

0 8 16
2 10 18
4 12 20
6 14 22

1 9 17
3 11 19
5 13 21
7 15 23

] (2.13) 

Mode-3 unfolding: 

𝑋(3) = [
0 8
1 9

16 2
17 3

10 18
11 19

4 12
5 13

20 6
21 7

14 22
15 23

] (2.14) 
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2.2.2.9. Notation Summary Table 

Table 2.1 is a quick summary of all the concepts described in subsections 2.2.2.3-

2.2.2.8. 

Table 2.1 Tensor Notation Summary Table 

Notation Meaning 

𝑿(𝒏) 
Mode-n unfolding of 𝑋 

𝑪 = 𝑨 ×𝒏 𝒃 Mode-n product 

𝑪 = 𝒂 ∘ 𝒃 Outer product 

𝑪 = 𝑨 ⊗ 𝑩 Kronecker product 

𝑪 = 𝑨 ⊙ 𝑩 Khatri-Rao product 

𝑪 = 𝑨 ⊛ 𝑩 Hadamard product 

𝑿 = [[𝑨; 𝑩(𝟏), … , 𝑩(𝒏)]]  The same as: 𝑋 = 𝐴 ×1 𝐵(1) ×2 𝐵(2). . .×𝑛 𝐵(𝑛) 

 

2.3. Machine Learning Through HOSVD – Introduction to HOSVD / MWCA 

2.3.1. Machine Learning Techniques 

Machine learning, which is a part of a data science toolkit, is an emerging and 

powerful tool that gives a framework to work with microseismic data. The specific type 

of machine learning techniques that are intended to implement to the workflow are 

generally referred to as Blind Signal Separation (BSS), also known as Blind Source 

Separation [8]. 
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BSS is a machine learning technique of original data recovery from mixed signals 

generated by several sources [18]. An example of a mixed signals source is depicted in 

Fig. 2.9 [32], where a transparent picture of a standing person is printed on top of another 

picture. The idea is to use BSS techniques to separate them and restore two original 

pictures. Another practical application of BSS is noise and speech recognition in recording 

devices [18]. 

 

 

Figure 2.9. An example of a mixed signal. From [32], distributed under the terms of 

the Creative Commons Attribution 4.0 International License. 

 

There are various tools within BSS, including tensor decompositions, Singular 

Value Decomposition (SVD) and component analysis. Moreover, there are different ways 

to analyze components, however, the emphasis of this research is on MWCA and Principal 

Component Analysis (PCA). PCA is sometimes referred as Proper Orthogonal 

Decomposition (POD) in petroleum industry and history matching [19, 23]. 
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2.3.2. Singular Value Decomposition (SVD) 

The SVD of a matrix A is defined in equation (2.15), where U is a matrix with left 

singular vectors, V is a matrix with right singular vectors and D is a diagonal matrix with 

singular values [16]. 

𝐴 = 𝑈 𝐷 𝑉𝑇 (2.15) 

The most important properties to note here are as follows:  

• U and V are orthogonal matrices, therefore, 𝑈𝑇 = 𝑈−1and 𝑉𝑇 = 𝑉−1. 

• D is a diagonal matrix with a diagonal structured in a decreasing order. 

2.3.3. Tucker Decompositions 

With extensive usage of tensor data structures, tensor decomposition techniques 

rapidly emerged. The tensor decompositions can be considered to be the next important 

step in data analysis [12] and this work shows the applicability of the methods to current 

microseismic data research. This work is concentrated on Tucker Decomposition. The 

general structure of Tucker decomposition is shown in Figure 2.10 in the form of Tensor 

Diagram notation with core tensor 𝑆 ∈ 𝑅𝑅1×𝑅2×…×𝑅5 and five factor matrices 𝐵(𝑛) ∈

𝑅𝐼𝑛×𝑅𝑛 . As seen from the diagram, the number of factor matrices depends on the order of 

the core tensor 𝑆. Mathematically, Tucker Decomposition could be written as in Eq. 2.16, 

where 𝑇 ∈ 𝑅𝐼1×𝐼2×…×𝐼5 is the original tensor before decomposition. 



 

19 

 

 

Figure 2.10 Tensor diagram representation of a general Tucker Decomposition. 

Modified from [12] 

 

𝑇  ≅ 𝑆 ×1 𝐵(1) ×2 𝐵(2) ×3 … ×5 𝐵(5) = [[𝑆; 𝐵(1), 𝐵(2), … , 𝐵(5)]] (2.16) 

Additionally, the Tucker decomposition can be expressed as a Kronecker product 

as in Eq. 2.17, with numbering of factor matrices from 1 to N. It is generally nonunique, 

although constrains may be imposed and the rule will not hold true [12]. 

𝑇(𝑛)
 ≅ 𝐵(𝑛)𝑆(𝑛) (𝐵(1) ⊗ … ⊗ 𝐵(𝑛−1) ⊗ 𝐵(𝑛+1) ⊗ … ⊗ 𝐵(𝑁))

𝑇
(2.17) 

Some selected factor matrices can be identity matrices. If this holds true, the 

decomposition is called Tucker-(K,N), where N is the order of the core tensor and K is the 

number of non-identity factor matrices. For example, Tucker-(2,3) has 3-2=1 identity 

matrix. This particular case with only one factor matrix is often called Tucker-2 

Decomposition [12]. Tucker-2 decomposition narrows to Eq. 2.18 [22]. 

𝑇  ≅ 𝑆 ×1 𝐵(1) ×2 𝐵(2) = [[𝐺; 𝐵(1), 𝐵(2)]] (2.18) 
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2.3.4. Higher-Order Singular Value Decomposition (HOSVD) 

Higher-Order Singular Value Decomposition (HOSVD), also known as 

Multilinear Singular Value Decomposition (MLSVD), is a special form of a Tucker 

decomposition where all factor matrices B(n) are orthogonal and the core tensor 𝑆 ∈

𝑅𝑅1×𝑅2×𝑅3×𝑅4  is orthogonal, as shown in Figure 2.11 and Eq. 2.19. The symbol  

represents orthogonality. It is not to confuse the symbol with a type of motion on a fracture 

representation common in geophysics. 

 

Figure 2.11 Tensor diagram representation of a Higher-Order Singular Value 

Decomposition. Modified from [12] 

 

 𝑇  ≅ 𝑆 ×1 𝐵(1) ×2 𝐵(2) ×3 𝐵(3) ×4 𝐵(4) = [[𝑆;  𝐵(1), 𝐵(2), 𝐵(3), 𝐵(4)]] (2.19) 

Orthogonality of the core tensor implies that each slice of the core tensor is 

orthogonal with its every other slice, as shown in Eq. 2.20. Additionally, the Frobenius 

norm of the first slice is the biggest. The Frobenius norm decreases whilst marching along 

slices. In that sense, the structure reminds the SVD, since the values of the diagonal matrix 
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𝐷  in the SVD are likewise in a decreasing order (see subsection 2.3.2 for details). The 

Frobenius norm of a general matrix A is defined in Eq. 2.21. The <…> notation, used in 

Eq. 2.20, represents an inner product of all the objects enclosed in brackets. 

〈𝑆:,𝑘,: 𝑆:,𝑙,:〉 = 0, 𝑓𝑜𝑟 𝑘 ≠ 𝑙 (2.20) 

‖𝐴‖
𝐹

= √∑ ∑|𝑎𝑖𝑗|
2

𝑛

𝑗=1

𝑚

𝑖=1

(2.21) 

The factor matrices could be computed while performing the SVD with mode-n 

unfoldings of 𝑇  . That way, the factor matrices B(n) could be found which can later be used 

to approximate the core tensor 𝑆 by consecutive mode-n multiplication of the original 

tensor 𝑇   with all transposed factor matrices, as shown in equation 2.22 [12]. 

𝑆  = 𝑇 ×1 𝐵(1)𝑇
×2 𝐵(2)𝑇

×3 … ×𝑛 𝐵(𝑛)𝑇
= [[𝑇; 𝐵(1)𝑇

, 𝐵(2)𝑇
, … , 𝐵(𝑛)𝑇

]] (2.22) 

Another method to compute the core tensor is to use a modified version of 

Grassman Manifolds [20], where mode-n unfoldings of 𝑇  are transposed before applying 

the SVD and then to use the matrix V instead (the notation is as defined in subsection 

2.3.2). More information about the method can be found in [20]. 

2.3.5. Multiway Component Analysis and Principal Component Analysis 

The Principal Component Analysis (PCA) is a type of group analysis and an 

important technology to identify links between data. With PCA, hidden structures can be 
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found, while analyzing correlation and variability of the components across data structures 

[12, 21]. 

Another term for principal components is singular vectors or eigenvectors. The 

values, by which the principal components are scaled, are determined by eigenvalues, or 

singular values. Singular vectors can help to see principal axes, which could be used to 

describe the dataset [33]. For example, a distorted one-dimensional dataset can be 

described with only one eigenvector, as shown in Figure 2.12, while the second 

eigenvector, and a smaller vector, helps to describe the dataset variation completely. 

 

Figure 2.12. Principal axes of a linear dataset. Reproduced using the code from 

[33], distributed under The MIT License. 

 

The PCA helps make a projection of the complete dataset to single principal 

component by ignoring smaller singular vectors, as shown in Figure 2.13. 

Similar to the example shown in Fig. 2.13, the PCA could be performed with a 

general image. For example, principal components can extract most significant 

characteristics of an image. This technique can serve as a basis for image detection and 

can help to create so called eigenfaces, e.g. visualization of the images associated with the 
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first several principal components [33]. The original image is shown in Fig. 2.14, while 

the eigenfaces created from these images are shown in Fig. 2.15. 

 

Figure 2.13. Projection of a dataset to single principal component. Reproduced 

using the code from [33], distributed under The MIT License. 

 

Figure 2.14. Original picture of various faces. The dataset is from [34] 

 

Figure 2.15. An example of eigenfaces. The dataset is from [34] 
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Principal Component Analysis has a connection to the SVD, described in 

subsection 2.3.2, since the diagonal matrix D consists of singular values examined with 

PCA, while two other matrices after decomposition represent a set of singular vectors. 

The Multiway Component Analysis is a natural extension of a general component 

analysis to high-dimensional structures. The application of MWCA assumes that 

dimensions of the high-dimensional data are naturally split into different modalities [21]. 

Therefore, by including additional modes, extra connections across the multi-block data 

structures can be obtained, which helps to determine even more hidden structures across 

the data, comparing to a standard two-way component analysis. This is the main idea of 

application of tensorization and MWCA to microseismic data, which will be explored 

further in Section 3. 

2.4. Hidden Structures 

The term hidden structures without additional clarification is unclear. A particular 

meaning behind the term in this work can be split into two main categories. 

The first category contains structures related to information about a source of a 

seismic wave. Tensor decompositions and constraints were used to get an idea about 

source location and source mechanism from the decomposed structure alone. The work is 

concentrated around the first category of hidden structures, and the methodology is 

discussed in details in Section 3. 

The second category contains structures related to variation of seismic parameters 

in time. Future research with four-dimensional tensors could give an idea about trends in 

source location which could imply information about trends of fracture propagation. 
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However, the goal of this work is only to introduce the need for research in the area of 

second category of hidden structures, and more research is needed to propose and 

generalize the methodology. To summarize, the second category of hidden structures are 

introduced in this work, however, they are out of the scope of this research. 
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3. PROPOSED METHODOLOGY AND NUMERICAL EXAMPLES 

 

This section contains the proposed workflow of application of MWCA and TD to 

microseismic data. Each subsection of Section 3 represents a different step of the 

methodology. The overview of the methodology is presented in subsection 3.4. Finally, 

the main findings of the research are discussed in subsection 3.5. 

3.1. Tensorization of Microseismic Data 

The microseismic data used in this work has a general structure depicted in Figure 

2.2 of Section 2. 

From Fig. 2.2, sample interval of the seismic data used in the research is one 

millisecond. However, in the case represented in Figure 2.2, there are only four receivers 

with three directional dependences (X, Y, and Z). In the actual data used in the research 

there were 12 receivers per location (with three directional dependences, which gives 36 

different wavelets per location). This data is stored in a computer as a set of float numbers 

in the form of a matrix. Therefore, it gives one matrix per location with size 2000x36. 

As it was mentioned in subsection 2.3.5, the reason behind working with tensors 

of a third- or fourth-order, rather than matrices, is that tensors will generally provide more 

information about the connection of various data structures between each other. Moreover, 

as it will be proved further in subsection 3.2, higher-order tensor structure will give more 

efficient model reduction. 

In this work 24 different locations of receiver strings have been used. Given that 

there is one matrix per location, all the matrices were combined together in a third-order 
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tensor form with size 2000x36x24. The general structure of a microseismic data tensor is 

presented in Figure 3.1 in a tensor notation form, where mode I1 is time in milliseconds, 

mode I2 represents variation of receivers (x-axis of Fig. 2.2), and mode I3 represents 

variation of locations. A three-dimensional visual representation of the tensor is also 

presented in Figure 3.2. 

 

Figure 3.1. Tensor representation of a three-dimensional microseismic data tensor 

 

 

Figure 3.2. Graphical visualization of a three-dimensional microseismic data tensor 
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In case a 4D seismic data set is available, it is possible to work with microseismic 

data in a fourth-order tensor form as an alternative. On the whole, 4D seismic research 

represents the data tensor presented in Fig 3.1 and Fig. 3.2 that is available at different 

times. Therefore, it is possible to represent all the data in the form of a vector consisted of 

third-order tensors, which by itself is a four-dimensional structure. The four-dimensional 

tensor is presented in Fig. 3.3, where the additional fourth mode I4 represents variation of 

seismic research in time. 

 

Figure 3.3. Tensor representation of a four-dimensional microseismic data tensor 

 

It is important to mention that some locations within the data tensor in Figure 3.2 

had very clear traces of signal, whilst others had no signal at all, or a mixture between 

signal and pure noise. This variety of data structures helped generalize the denoising and 

compression techniques and observe that they have vast applicability. 

3.2. Denoising and Data Compression 

3.2.1. The Importance of Model and Noise Reduction in Microseismic Data 

Generally, microseismic data can contain big data structures. In the case provided, 

there were 24 locations with 12 receivers, implying that only one second of research 
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contained approximately 1,000,000 data points. Assuming that each float number is stored 

with 7 decimal digits precision (32 bits per float), one hour of research will contain 14.4 

Gigabytes of data structures. This prevents usage of cloud platform solutions and real-

time operations, since, considering average uploading capacity of 5 mbps, 1 hour of 

microseismic research is equivalent to 6.4 hours of data transition. On top of that, the 

usage of promising recent DAS technology can even further increase the number of 

variables [7]. 

Moreover, the microseismic data can contain a significant amount of distortion. 

To account for that, it is important to either use sensors with a better precision, which 

could be expensive, or use a denoising technique. Therefore, it is important to analyze the 

possibility to use the proposed methodology as a noise reduction technique. 

3.2.2. Description of the Methodology 

The connection between Singular Value Decomposition and Principal Component 

Analysis was mentioned earlier in subsection 2.3.5. In essence, the matrices after Singular 

Value Decomposition represent a combination of principal components, or singular 

vectors, while the diagonal matrix D, as defined in subsection 2.3.2, is a combination of 

singular values. The singular values are structured in a decreasing order which draws a 

conclusion that some singular vectors play a bigger role in overall picture than the others. 

This idea can be traced back to the Fig. 2.12, where one of the principal axes has a much 

bigger influence than the other ones. 

The general structure of the SVD of any matrix A is shown in Fig. 3.4. 
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In Fig. 3.4, the columns of U and rows of VT represent singular vectors, or principal 

components. Their significance is represented by the diagonal matrix D containing 

singular values related to the singular vectors. It is useful to think of the singular values as 

of scale factors. 

 

Figure 3.4. Truncation of a Singular Value Decomposition 

 

The plot of singular values after the SVD of microseismic data, similar to the one 

shown in Fig. 2.2, is presented in Fig. 3.5. It can be seen that a lot of data points within 

the diagonal matrix D have values close to zero, therefore, the significance of a large 

quantity of singular vectors is small. The drop of significance could be spotted more easily 

whilst using a semi-log graph of normalized singular values, presented on the right side of 

the Figure 3.5. In Fig. 3.5, the significant drop could be seen at around the 55th singular 

value. 

The idea behind model reduction is to reduce insignificant singular values from 

the diagonal matrix D, simultaneously reducing the singular vectors corresponding to 

them. The fact that there is a big number of small singular values can be explained by the 

general repetitiveness of microseismic data structure. Since the influence of the small 

singular values to the complete picture is insignificant, the truncated version of singular 



 

31 

 

values decomposition will give a visually indistinguishable approximation of original 

microseismic data. The truncation process is described in Fig. 3.4. The threshold for 

truncation is recommended to be found using normalized semi-log plot of singular values, 

as shown in Fig. 3.5. 

 

Figure 3.5. The graph of singular values of a microseismic data matrix at location 

22 

 

It was found that small singular values represent smaller seismic wave amplitudes 

and, generally, they are related to noise in a dataset. This can be proved by an artificial 

addition of noise to the microseismic data. The singular values representation of a 

microseismic dataset before the experiment is presented in the top part of the Fig. 3.6, 

while the representation of singular values after addition of artificial noise is presented in 

the bottom part of the Fig. 3.6. It is clear that the addition of noise affects only the part 

with the smaller singular values. Therefore, the truncation of the decomposed 

microseismic data serves both as a model reduction technique and a noise reduction 

technique. 
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Figure 3.6. Effect of an artificial noise addition to the general singular values 

representation of a dataset 
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The number of singular values in the diagonal D, and as a consequence of singular 

vectors, is related to original size of the matrix A, as seen from the Figure 3.4. The number 

of singular values corresponds to the smallest number of variables within matrix 

dimensions. For example, in the case described in Fig. 3.4 and Fig. 3.5, the number of 

principal components is 96, its dimension with the smallest number of variables. 

The original microseismic data matrix, however, had dimensions 2000x36, which 

included X-, Y-, and Z-components of 12 different receivers. By selecting only X-

component of the dataset, the matrix is of the size 2000x12, meaning that the SVD of the 

matrix will give only 12 principal components. Fewer number of principal components 

reduce model reduction capabilities, as can be seen from Figure 3.8, where it is 

emphasized that 12 principal components are not enough to perform any model reduction 

and denoising of the dataset. To account for this issue, it is possible to synthetically 

increase the number of variables among the modes of the matrix by reshaping it from a 

2000x12 to a 250x96 matrix. 

 

Figure 3.7. Singular values of a decomposed three-dimensional microseismic tensor 
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Figure 3.8. The comparison of a 12-singular-values dataset (left) and a 96-singular-

values dataset (right) 
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It should be noted, that the reshaping of the original microseismic data matrix leads 

to a distorted picture of seismic signals that requires more singular vectors to represent it. 

However, there is an important tradeoff, since with the increased complexity and number 

of required singular vectors, there is also an increase of singular values available after 

decomposition to represent the original matrix. 

The idea to increase the number of variables described above can be further 

extended to the increase of dimensionality. It can be shown that the increase in 

dimensionality of the original data tensor helps reduce more variables and helps denoise 

the dataset more effectively. 

The HOSVD of the data tensor described in Fig. 3.1 and Fig. 3.2 will yield three 

factor matrices due to the three-dimensional nature of the original tensor (see more in 

subsections 2.3.3 and 2.3.4). Each of the matrices in the HOSVD, similarly to the SVD, 

represents a set of singular vectors, or principal components, or eigenvectors, while the 

core tensor 𝑆 represents a combination of singular values, or eigenvalues, similarly to the 

SVD. 

Additionally, the Frobenius norm of the core tensor is decreasing from slice to 

slice in a similar manner to decreased order of singular values in SVD, as mentioned 

previously in subsection 2.3.4. Therefore, it is possible to apply a similar technique to 

HOSVD. However, the benefit of the HOSVD is the three sets of singular values, since 

each factor matrix contains their own singular vectors related to a specific mode, as Figure 

3.7 shows. 
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3.2.3. Results and Possible Future Research 

The result of the model reduction can be shown using a comparison of number of 

variables needed to represent the original tensor of microseismic data. The number of 

variables is directly proportional to size of a disk storage required to store the data, hence, 

it is a good representation of model reduction. 

The original version of a third-order tensor presented in Figure 3.2 is of the size 

2000x36x24 and consists of 1,728,000 variables. In contrast, the decomposed HOSVD 

version of the tensor truncated at 179 at the first mode, 36 at the second mode, and 17 at 

the third mode, as given in Fig. 3.7, consists of only 469,252 variables. Figure 3.9 

summarizes this information. Overall, HOSVD technique helped to reduce 73% of 

original microseismic data. 

 

Figure 3.9. Microseismic data compression results 

 

Similarly to the synthetic increase of variables in each mode performed earlier for 

an SVD, the dimensionality of the original data tensor could be synthetically increased 

with Quantized Tensor Networks-HOSVD approach (QTN-HOSVD) [12].  
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The idea behind QTN is to divide the original tensor into as many modes as 

possible by creating artificial modes, which could potentially reduce the model to the point 

of supercompression [12, 35]. However, more research is needed to test the technology of 

tensor networks and its application to microseismic data. 

Moreover, instead of working with all tensor of microseismic data, it could be 

possible to pick certain valuable fibers from the very beginning. This technique is called 

CUR, or Skeleton Cross-Approximation [13]. However, it could be challenging to apply 

this technique to high dimensional microseismic tensors, since it is mostly applied to two-

dimensional tensors in literature. 

3.3. Hidden Structures 

The beauty of decompositions is in the possibility of imposing additional 

constraints, otherwise a group of matrices after a decomposition could have no physical 

meaning [12]. For this purpose, it is interesting to test MWCA and see if the technology 

can be applied to complex microseismic data structures. 

MWCA is a direct extension of two-way component analysis to higher-

dimensional tensors. The main idea is to apply constraints to HOSVD and get hidden 

information out of the structure of a core tensor and factor matrices. Since microseismic 

data is often used in connection to hydraulic fracturing, this work is concentrated on a 

source of seismic wave prediction during hydraulic fracturing operations. Moreover, an 

attempt was made to infer an idea about a source mechanism from a structure of the 

decomposed tensor alone. 
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It should be noted that the idea of artificial increase of dimensionality, used in 

subsection 3.2.3, and subsequent mixing different modalities within the same dimension 

should not be carried onto MWCA technique, since the distorted representation can 

misrepresent connections between different modalities. This could lead to a false idea 

about hidden structures. Therefore, dimensions should be split into different modalities 

while applying HOSVD for hidden structures extraction, and no artificial increase of 

dimensionality should be performed. 

3.3.1. Fractures Research 

MWCA can be used to draw a connection between the decomposed data and a 

source position, which could be tied to fracture analysis. 

A simple example of how an event position can affect the HOSVD results can be 

displayed by comparing two P-wave sources: near-case source that is close to receivers 

and far-case, as shown in Figure 3.10. 

 

Figure 3.10. Example of a far and near source position 
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Polarization specifies the geometrical orientation of the wave and in the case of 

primary wave it propagates parallel to the direction of polarization vector. The angular 

deviation of the P-wave polarization from horizontal plane is called azimuth. It is shown 

in Figure 3.11. 

 

Figure 3.11. Graphical definition of polarization 

 

For the far-case event, the azimuth of polarization of the P-wave does not vary 

significantly from receiver to receiver, in contrast to the near-case event. Therefore, most 

of the data can be described with only one vector component that is parallel to the 

horizontal plane. However, for the near event case, two vectors are needed to properly 

describe the data. As a result, a variation between the influences of singular vectors is 

expected while comparing far-case events and near-case events. 

To test the correlation between the recorded waveforms and the HOSVD structure, 

synthetic data has been created to simulate positions of sources at various x-, y-, and z-

coordinates. The origin is defined at the position of the lowest receiver. The height of the 

source is related to the z-coordinate, while the distance between the source and the receiver 

is related to the x-coordinate. The angle of the source relative to the receivers is mainly 

affected by the y-coordinate. As a consequence, the frequencies and amplitudes of the P-

waves and S-waves differ between events according to their specific location. 
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An example of the synthetic data tensor for one source position is shown in Figure 

3.12, where X, Y, and Z-components of each receiver were separated within the third 

mode. The tensor modes in Figure 3.12, hence, are time in milliseconds, receiver variation 

and X, Y, Z-component variation. 

For each data tensor three distinct functions have been created, corresponding to 

three factor matrices from the tensor decomposition, as it was previously shown in Figure 

2.11. The elements of the first function indicate the singular vectors, or columns, of the 

first factorization matrix. Each element of the function represents the "influence" of the 

corresponding singular vector. 

The influence is defined as Frobenius norm of the singular values taken from the 

core tensor and related to the specific column. An example of the element i of the first, 

second, and third functions are shown in Eq. 3.1 – 3.3, respectively, where x, y, and z are 

indices of singular values related to the column i.  

 

Figure 3.12. An example of synthetic data tensor 
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𝑓1(𝑖) = √∑ ∑ 𝜎𝑖𝑦𝑧
2

𝑧𝑦

 (3.1) 

𝑓2(𝑖) = √∑ ∑ 𝜎𝑥𝑖𝑧
2

𝑧𝑥

 (3.2) 

𝑓3(𝑖) = √∑ ∑ 𝜎𝑥𝑦𝑖
2

𝑦𝑥

 (3.3) 

Figure 3.13 shows how the natural logarithms of the functions vary for the far-case 

and near-case. It is easier to spot variation between "influences" of each element with the 

logarithms of the functions. 

 

Figure 3.13. Comparison between logarithms of first (left) and second (right) 

functions for near and far sources 

 

Each factor matrix, and consequently each function described by Eq. 3.1-3.3, is 

related to a dimension of original microseismic data tensor. Therefore, it might be 

expected that the first two functions are related to each other, since they represent the time 

variation mode and the receiver variation mode. The third function, however, has a 

different nature and it is worth concentrating on it first.  
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The behavior of the functions presented in Figure 3.13 can be described by one 

decay value. The decay of the function f (Eq. 3.1-3.3) is defined as in Eq. 3.4, where n is 

the last element of the function. To simplify, from Fig. 3.13, the decay is based on the 

three first elements and the three last elements of the function. 

𝐷𝑒𝑐𝑎𝑦(𝑓) = log (√[
𝑓(1) × 𝑓(2) × 𝑓(3)

𝑓(𝑛 − 2) × 𝑓(𝑛 − 1) × 𝑓(𝑛)
]

3

) (3.4) 

By varying y-coordinate and distance between the source and receivers, it is 

possible to create a map of decay as a function of both parameters. The results are 

presented in Figure 3.14, where the decay of the third function is presented as a function 

of x- and y-coordinates. 

 

Figure 3.14. Representation of Decay as a function of position in x-, and y- direction 

 

From Figure 3.14, it can be noted that there is a clear relationship between the 

decay function, as defined in Eq. 3.4, and the location of the source. Moreover, relative 

angle between the source orientation and receivers string, or the y-position of the source, 

seems to affect the value of the decay, which can be explained by a change in S-wave 
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polarization with a change in position of the source. The main idea is that the decay 

function, as defined in Eq. 3.4, can be used as a way to learn more about an S-wave and 

even determine its polarization from the structure of decomposition alone. The 

polarization of the S-wave, in turn, can provide information about the source mechanism, 

which can be tied to a fracture orientation and potentially help with their visualization. 

As mentioned before, the first and second functions, based on Eq. 3.1 and Eq. 3.2, 

are related to each other. This can additionally be proved by looking at the representation 

of their decay function while varying position of the source. The source position is varied 

along the z-direction, or vertical position in Fig. 3.15, and the x-direction, or distance from 

receivers in Fig 3.15. Since the origin of the coordinate system is at the position of the 

lowest receiver, the lowest receiver is at 0 meters of the vertical position and 0 meters of 

the distance from receivers according to the Fig. 3.15. While visualizing the decay of the 

functions separately, no distinct correlation can be found, however, the decay of the 

summation of the first two functions, as plotted on the right side of the Fig. 3.15, clearly 

shows the correlation between the significance of the first few singular vectors and the 

distance from the receivers and the source. 

 

Figure 3.15. Representation of Decay as a function of vertical position and distance 

between the source and receivers 
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The decay in Figure 3.15 is, in essence, a discrete function relative to sources, 

whose position is defined with x-, y-, and z-coordinates. A curve-fitting has been applied 

to express this discrete function as a continuous 5-term polynomial function of the 

structure shown in Eq. 3.5, where c0, c1, c2, c3, and c4 are coefficients of the continuous 

function D(x, y, z). 

𝐷(𝑥, 𝑦, 𝑧) = 𝑐0 + 𝑐1 × (𝑥2 + 𝑦2)0.15  + 𝑐2 × 𝑦2 × (𝑥2 + 𝑦2)0.15  +

+𝑐3 × 𝑦2 × 𝑧 + 𝑐4 × 𝑧 × (𝑥2 + 𝑦2)0.15
 (3.5) 

The polynomial fitting is implemented using Greedy algorithm based on the 

modified error function approach, where the influence of large error between calculated 

decay and actual value is reduced. Since it was developed in collaboration with Milan 

Brankovic, the information regarding the exact implementation of the error function can 

be found in SPE-195522-MS paper, "A Novel Approach to Discovery of Hidden 

Structures in Microseismic Data Using Machine Learning Techniques" (Control # 

19EURO-P-592-SPE), as mentioned in the Contributors and Funding Sources section. 

The polynomial fitting gives a somewhat convolutional neural networks approach, 

in the sense that it represents a function that maps the relation between the decomposed 

structure of the original tensor and the location of the seismic wave source. The approach 

has been tested on a large number of synthetic events with distances that ranged from 10 

meters to over 50 meters. As a result, for the majority of events, the location of the source 

has been determined with an average of 80% accuracy. Moreover, it is important to 

remember that the third function is found to be related to the S-wave polarization. Using 

this information, it could be possible to obtain a source mechanism and, hence, understand 
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the orientation of a fracture, however further research is needed to develop a generalized 

methodology. 

To summarize, only using the results of HOSVD, it was possible to approximately 

estimate the location of the source. Therefore, the application of HOSVD and MWCA 

techniques could potentially provide quick insights on fracture propagation as well as 

additional information during hydraulic fracturing operations, if the connection between 

the source location and fracture is established. 

3.3.2. Other Ideas in Fracture Research 

In addition to decay functions, it is interesting to analyze factorization matrices to 

extract the polarization of the P-wave from the receivers. The definition of polarization is 

shown in Figure 3.11 and it helps to determine the angle at which the source of the wave 

is expected. By using both the polarization and source location estimation based on the 

decay, more accurate results are expected. 

The methodology to determine the polarization from the decomposed structure of 

the data tensor alone is developed by Milan Brankovic and is described in SPE-195522-

MS paper, "A Novel Approach to Discovery of Hidden Structures in Microseismic Data 

Using Machine Learning Techniques" (Control # 19EURO-P-592-SPE), as mentioned in 

the Contributors and Funding Sources section. 

Additionally, it could be possible to implement a different approach to MWCA. 

For example, Canonical Polyadic Decomposition (CPD) could be performed instead of 

HOSVD. CPD has a diagonal structure of a core tensor [15], therefore it could be easier 
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to look at relationships between the core tensor and factor matrices. This, in turn, could 

reveal more insights to hidden structures of a microseismic data tensor. 

3.3.3. Research in Four Dimensions and Variation in Time 

The third order tensor, presented in Figure 3.1, Figure 3.2, or Figure 3.12, can be 

further extended to a fourth order tensor to account for variation in time, as described in 

subsection 3.1 and Figure 3.3. As a reminder, the microseismic research could be done at 

different times at the same locations, such as Time = 1 hour or Time = 2 hours. If this is 

the case, then there is a set of three-dimensional tensors available for research. It is 

possible to create a vector of the three-dimensional structures, which is a fourth-order 

tensor. 

 

Figure 3.16. Tensor representation of HOSVD performed on a four-dimensional 

microseismic data tensor 

 

The Higher-Order Singular Value decomposition of the four-dimensional data 

structure 𝑇 ∈ 𝑅𝐼1×𝐼2×𝐼3×𝐼4 will result in a fourth-order core tensor 𝑆 ∈ 𝑅𝑅1×𝑅2×𝑅3×𝑅4  and 
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four factor matrices related to it, as shown in Figure 3.16, Figure 3.17 and Eq. 3.6, where 

the additional fourth matrix is 𝐵(4) ∈ 𝑅𝐼4×𝑅4 . 

 

Figure 3.17. Fourth factor matrix and hidden structures related to time 

 

The matrix B(4) is, then, directly related to variation of data in time, the fourth 

dimension of the structure, and can give valuable insights on variation of seismic response.  

That can potentially serve as a basis for prediction of source location in time, which 

can be a valuable tool to infer data about fracture propagation during hydraulic fracturing, 

however this is not the scope of the paper and more research should be done in order to 

create a systematic methodology. 

3.4. Overview of the Proposed Methodology 

The proposed methodology concept map is presented in Figure 3.18. 

Starting at the top left corner of Figure 3.18, the tensorization of available 

microseismic data should be performed. With the high-dimensional microseismic data 

structure, it is possible to perform four-dimensional HOSVD and MWCA analysis. The 

analysis is related to the variation of seismic wave source in time and could potentially 

serve as a basis for prediction of fracture propagation trends. In case the variation in time 

is not available, HOSVD and MWCA could be performed with a three-dimensional data 

structure. The denoising and model reduction algorithm could be applied, and source 
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location and source mechanism analysis could be performed based on the structure of 

decomposition. 

 

Figure 3.18 Graphical description of the proposed methodology. 

 

3.5. Main Findings and Future Work 

Among the main findings are the following: 

• By implementation of a better data analysis approach to microseismic data, 

additional information, or hidden structures, could be revealed to give 

insights about variation of seismic parameters with time, which could 

potentially serve as a basis for fracture propagation prediction. 

• Quick seismic inversion was performed to get information about source 

location and source mechanism by using only the structure of a 

decomposed version of a microseismic data tensor. 
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• Tensor decompositions were used to significantly reduce the data in the 

70% range and further supercompression could be achieved by 

implementing a synthetic increase of dimensionality. 

• The denoising algorithm, based on singular values analysis, helped work 

with noisier data cases, which could save time and money for petroleum 

companies. 

• It was found that model reduction and denoising technique based on 

HOSVD works better with a cubic structure, since it gives more 

eigenvalues after decomposition. However, mixing different modalities 

within the same dimension could lead to a distorted idea about hidden 

structures. Therefore, dimensions should be split into different modalities 

while applying HOSVD for hidden structures extraction. 

The technologies of HOSVD and MWCA are recent and still emerging. Therefore, 

there are many challenging problems to be addressed in future research: 

• The possibility of implementation of Quantized Tensor Networks could be 

addressed to further compress high-dimensional microseismic data 

structures. Additionally, a combination between HOSVD and QTT could 

be developed, which is called QTT-HOSVD decomposition, or, more 

generally, QTT-Tucker decomposition. 

• In contrast to working with all tensor of microseismic data, it is interesting 

to look at picking on certain valuable fibers. The technique is called CUR, 

or Skeleton Cross-Approximation. However, not a lot of research has been 
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done to extend the technique from second-order tensors to higher 

dimensional tensors. 

• Finally, a different approach to MWCA could be implemented. In 

particular, Canonical Polyadic Decomposition could be used instead of 

HOSVD, which might provide even more hidden structures and insights 

from microseismic data. 
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4. CONCLUSIONS 

 

An alternative method for identifying structures by finding hidden information 

within microseismic data has been proposed. With machine learning techniques, precisely 

tensor decompositions and component analysis, quick seismic inversion has been 

performed to get information about source locations and source mechanisms by using only 

the structure of a decomposed version of a microseismic data tensor. Moreover, the 

extracted information could potentially give insights about fracture propagation. It is a 

cost-effective and fast technique, as opposed to conventional simulation methods. 

Furthermore, this methodology yielded 70% model reduction whilst using the 

special type of Tucker Decomposition, HOSVD, due to its specific orthogonal structure. 

The proposed workflow is general and highly applicable, given the variation of 

data used for the research. 

Finally, since tensor decompositions and multiway component analysis are still 

very young and emerging technologies, significant improvements to the technologies are 

expected. That implies even further benefits, making the application of the machine 

learning techniques to microseismic data a very promising field for future research. 
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