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Abstract 

The ability to effectively model and simulate military missions holds the potential to save lives, 

money, and resources for the United States. The Advanced Framework for Simulation, 

Integration, and Modeling (AFSIM) software is a tool used to rapidly simulate and model new 

technologies and mission level scenarios. In this thesis, our objective is to integrate a closed loop 

optimization routine with AFSIM to identify an effective objective function to assess optimal 

inputs for engagement scenarios. Given the many factors which impact a mission level 

engagement, we developed a tool which interfaces with AFSIM to observe the effects from 

multiple inputs in an engagement scenario. Our tool operates under the assumption that 

simulation results have met an acceptable convergence threshold. The objective function 

evaluates the effectiveness and associated cost with a scenario using a genetic algorithm and a 

particle swarm optimization algorithm. From this, a statistical analysis was performed to assess 

risk from the distribution of effectiveness and cost at each point. The method allows an optimal 

set of inputs to be selected for a desired result from the selected engagement scenario. 
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Chapter 1: Introduction 

1.1 National Defense Strategy 

 The Department of Defense (DoD) creates a new National Defense Strategy (NDS) every 

four years, which describes the primary defense objectives to ensure the safety of the American 

people. In the most recent edition of the NDS from 2018, the demand for “… rapid technological 

advancements…” is specified to guarantee success in future fights and wars [1]. New 

technologies such as “big data” analytics, autonomy, and artificial intelligence are described as 

continued development methods to the means of the NDS objectives [1].  Innovations in these 

specific areas of engineering will allow the U.S. military to adapt to the character changes of 

war, and serve the DoD and nation in its enduring mission to protect the American people [1]. 

1.2 Brief History of DoD Modeling 

 As an addressed need of the NDS, modeling within the U.S. military is a necessary 

component that augments the traditional reliance of human decision making for complex and 

high stakes situations that occur in military settings [2]. In the DoD, modeling and simulation 

technologies set in the wartime environment are classified into a tiered model which can be seen 

in Figure 1.1 below. At the lowest levels lies engineering and engagement models to encapsulate 

the lowest needs of any military engagements such as physics-based models for projectiles to 

radar signatures of vehicles. These models serve as the fundamental components that build into 

every tier and allow military leaders to model scenarios at the mission and campaign levels [2]. 

When creating interactions between multiple systems, such as the interactions in any battle, 

mission level models will balance the needs of accurate system models with the overall scope of 

the battle [2]. As the battle grows and involves more diverse and complex systems and system 

behaviors, the fidelity of the model may decrease [2]. In mission and campaign levels, this 
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decreasing fidelity is a result of the limitations in accurate modeling techniques at large levels as 

well as computational abilities [2]. 

 

Figure 1.1: DoD Model Hierarchy (Adapted from Hill, Miller) [2] 

 

1.3 AFSIM Introduction 

AFSIM is a Department of Defense, government approved software used to conduct 

mission-level engagement simulations on current and future technologies and strategies [3]. 

Typical uses of AFSIM utilize a wide variety of engineering and engagement models such as 

“Movement models, Sensor systems, Weapon systems and weapon effects, communication 

systems…” and many more to provide the developer the flexibility to design to any specification 

of mission as needed [3]. AFSIM acts as a library of tools that model physics, equipment, and 

other processes and can be visually represented to aid in the analysis of missions, as seen in 

Figure 1.2 below [2]. 
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Figure 1.2: AFSIM Simulation Example [4] 

 AFSIM uses object-oriented programming to define platforms and how they interact in an 

environment. As seen in Figure 1.2 above, the plane WOLF-1 is an object which is given simple 

and advanced characteristics ranging from weight and kinematics to thrust control variables and 

weapon payload. Behavioral models are then incorporated to describe how the red and blue 

forces will interact with each other throughout different phases of the mission. Overall, the 

mission scenario combines a series of different objects ranging from sensors, radars, and missiles 

to conduct research [4].   

 

Chapter 2: Literature Study 

 This chapter first introduces the fundamental principle for an optimization routine, 

determining an objective function. From there, the two optimization routines explored in this 

study are introduced and defined. Current research using AFSIM is summarized and the 
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importance of optimization within the software is introduced. Lastly, the objectives of this thesis 

are stated and their potential impact on mission level scenarios.  

2.1 Optimization Techniques 

To train and develop an optimization routine, basic knowledge of a scenario or problem 

must be known in order to achieve optimization of a problem. The actors involved, operational 

standards or limitations, or the resources used in a process are all useful information for 

developing an optimization routine. In order to compile this information, a commonly practiced 

method involves the use of an objective function. An objective function can be defined as “… 

the numerical measure of how ‘good’ the chosen decisions are” [5]. Decisions by this definition 

include the initial information to establish an optimization routine, but are now represented 

quantitatively. By defining decisions numerically, this value can then be minimized or 

maximized depending on the demands of the experiment [5]. The points of local or absolute 

minima provide the optimal solutions to the problem. To demonstrate, consider a scenario where 

a store wants to minimize unnecessary expenses and considers several factors including rent, 

salaries, and inventory.  This scenario could then be described by a polynomial function which is 

the objective function for this problem, as seen below. 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒  𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑍 =  𝑐4𝑥4 + 𝑐3𝑥3 + 𝑐2𝑥2 + 𝑐1𝑥 + 𝑐0   (2.1) 

The constants in this objective function serve as weighting criteria for each of the terms, 

as determined by the needs of the problem. The variable 𝑥 is one input which is to be optimized 

and, in this example, it could be the store’s expenses with a monetary unit of dollars or 

operational time within the store. The score at some set of the input is calculated as 𝑍 and this 

value is optimized autonomously using an optimization algorithm. In Figure 1.1 below, the 
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objective function is plotted and the global minimum, or optimal solution, is identified to show 

the best scenario which minimizes the store’s expenses. 

 

Figure 2.1: Optimization of an Objective Function 

 

The genetic algorithm is an optimization technique best used for non-standard problems 

and environments. The genetic algorithm is inspired by the concept of evolution in biology [6]. 

Similar to how DNA changes in animals during natural selection to increase survivability, the 

generations in a genetic algorithm go through a process of initializing and mutating to meet its 

ultimate optimization goals [6]. Specifically, the genetic algorithm creates new generations, or 

DNA, which mutate and replicate each new generation [7]. Between these stages a generation 

will mutate and crossover it’s base genes before deciding if the parent genes or the children will 

survive and create the next generation [6]. The selection process for the generations in the 

genetic algorithm is based on the objective function, or fitness function, guiding the 
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optimization. If the child in the generation satisfies the conditions set by the objective function, 

then it will survive and be used to create the next generation. The iterative cycle of the genetic 

algorithm process can be seen in Figure 1.2 below. 

 

Figure 2.2: Genetic Algorithm Cycle [6] 

 

 As seen in Figure 2.2, the genetic algorithm starts by initializing a generation in the 

working environment, which can be referred to as parent genes [6]. The genes of each generation 

then crossover and mutate to create new unique children genes which will then be evaluated 

against the fitness function. The fitness function simulates natural selection that is seen in 

evolutionary cycles and will decide which genes will be selected to generate the next generation. 

At this point the cycle terminates and initializes the next generation based on the previous 

generation. In Figure 2.3 and Figure 2.4 below, the same curve used in the store example from 

before is explored, but optimized using MATLAB’s genetic algorithm routine to find the 
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absolute minimum. In these figures, the initial generation is shown as well as the final generation 

on the optimal solution. 

 

 

Figure 2.3: Initial Generation of the Genetic Algorithm 
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Figure 2.4: Final Generation of the Genetic Algorithm 

 

In application, the offspring may represent variables that are being optimized in the 

workspace. Boundaries are set for the generations to populate and will attempt to converge on 

either a global maximum or a global minimum, as the population evolves. For example, if a 

variable represents weight and the boundaries are [0,100] pounds, then a single offspring in the 

population may be randomly initialized as 30 pounds before following the steps to termination. 

Alternatively, another popular optimization technique is the particle swarm optimization 

routine. Different from the evolution based genetic algorithm, the particle swarm optimization 

algorithm is derived from the concept of social behaviors observed in animals [8]. When 

observing birds in nature, it can be seen how a flock of birds will follow a lead bird who 

seemingly is following the optimal path [8]. In particle swarm methodologies, particles are 

created into the environment and swarm towards the objective set by the objective function [9]. 

The movement of the particles is stochastic, and a particle is drawn towards the best position or 
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global minimum or maximum that is currently known while also having the ability to move 

randomly in the environment [9].  

 

Figure 2.5: Particle Swarm Movement [10] 

 

In Figure 2.5, the movement of a particle is shown and describes how local and global 

positions affect the path of each particle. With each iteration, the particle’s search will be 

influenced by it’s past as well as the information being shared by other particles in the 

environment. This compilation of shared information between particles is known as the “social” 

factor of the algorithm [10]. Overall, particle swarm algorithms work well with more 

complicated objective functions and tend to have faster convergence rates [10]. On the other 

hand, particle swarm algorithms can slow down and fail when the particles fall into local 

extrema, which can cause premature convergence [10]. 

2.2 Current Research 

 Currently AFSIM is used to rapidly implement new technologies into different 

environments to test operational capabilities and effectiveness. In the optimization field, there is 

research being conducted to enhance the operational capabilities of Unmanned Combat Aerial 
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Vehicles (UCAV) and the effects of their inputs in air-to-air combat [4]. In their work, 

researchers developed a genetic based algorithm with AFSIM to enhance performance and 

computational efficiency of over 150 operator inputs in a two attacker – four defender 

engagement scenario [4]. They conclude that genetic algorithms in their application would be 

computationally infeasible to find optimal design solutions. [4]. Given the amount of inputs used 

in their experiment, a high-fidelity solution to each input would require a great amount of time 

and computational considerations [4]. Additionally, the optimization routine they created uses an 

enhanced fitness function which expands the simple principles of punishing misses and 

rewarding hits and instead accounts for complex considerations of “good behavior” and 

performance [4]. In conclusion, their research tested and validated their methods by facing their 

optimized UCAV against a retired Air Force fighter pilot flying a simulated defending aircraft in 

the same environment [4]. This provided valuable behavioral data from the pilot’s decision 

making and included their feedback into the design of their algorithm [4]. 

2.3 Thesis Objectives 

 The development of an autonomous methodology which models and optimizes a mission 

level scenario will allow the natural costs of war environments to be minimized and the overall 

success of the mission maximized. By dynamically evaluating and changing the inputs into a 

mission level scenario, unanticipated outcomes can be identified and addressed for future 

missions to take place. Additionally, irrelevant inputs can be removed in large trade studies to 

reduce experiment complexity. Lastly, the ability to form strong but flexible evaluation criterion 

to grade the outcomes and impacts of inputs into a mission is critically important to providing a 

valuable tool to an analyst evaluating a specific mission. 
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 This can be accomplished by incorporating a post-processing routine with AFSIM to 

evaluate the inputs into a mission scenario using an objective function to grade the outcomes of 

the scenario. Ultimately, an optimization routine is integrated to find a specific set of inputs 

which garners the best design that satisfies the objective function. This process is shown below 

in Figure 2.6.  

 

Figure 2.6: AFSIM Optimization Loop 
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Chapter 3: Testing Procedures 

 This chapter establishes a theoretical AFSIM scenario which can be simulated to collect 

data. In each scenario, multiple inputs or factors are considered when optimizing to an optimal 

solution. This sets the foundation for optimization with AFSIM and post processing data analysis 

for research.  

3.1 Theoretical AFSIM Scenario 

 Because AFSIM is an approved DoD simulation software, it falls under International 

Trade and Arms Regulations. Therefore, descriptive results and scenarios cannot be directly 

shared publicly. Additionally, all values presented in this thesis will be normalized to maintain 

the security of the software and its information. Instead, a theoretical mission level scenario will 

be introduced and used as the basis for the rest of this thesis. In this theoretical scenario, consider 

a battle between four red attackers and four blue defenders, as seen below in Figure 3.1. 

In the scenario depicted in Figure 3.1, the attacking and defending sides will naturally 

consider hundreds of inputs and factors in a real-life battle. For example, a red attacker may 

consider how many missiles it has, its approach angle, or the time of day to give the best odds of 

winning the scenario. Similarly, for the blue defenders, they may consider a different set of 

D
ef

en
d

er
s 

A
ttack

ers 

Figure 3.1: Theoretical AFSIM Scenario 
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inputs such as radar signatures or their communication network to give them the best odds for 

survivability. For either side, their main goal is to increase their own personal survivability 

within the scenario and remain alive by the end of the engagement. When the attack takes place, 

only one attack from each of the eight actors in the scenario is considered over the entire span of 

time in the scenario. It is also assumed that they only attack each other once and do not attempt 

to return to the battle and attack again.  

3.2 Generating AFSIM Simulation Results 

First, inputs will be described in this study as partitions of the random variable 𝑋, where 

𝑋𝑖 for 𝑖 = 1, 2, 3, … , ∞ correspond to Input 1, Input 2, and so on. Each input will have its own 

unique range corresponding to its physical representation in the AFSIM environment. For 

example, say some 𝑋𝑖 corresponds to weight of an object, then the bounds may be chosen to be 

100 pounds to 500 pounds, assuming these are reasonable lower and upper bounds for the 

scenario. This is done for all inputs of interests for that scenario. Each 𝑋𝑖 is a unique input that is 

of interest to the designer of the scenario. 

  In order to generate AFSIM simulation results, the scenario of interest was first 

established within AFSIM to run and output results in a readable form. Each simulation run in 

AFSIM at one set of inputs has a stochastic nature resulting in variability of results for each run. 

In earlier studies done through the SIMCenter at The Ohio State University, which has not been 

made available for public release, it was found that AFSIM results need a considerable amount 

of simulation runs in order to see a confident conclusion of results. In a study performed by 

Ernest, et.al, they summarized the extreme computational efficiencies of increasing the number 

of inputs observed in a simulation and the complications it posed for meeting convergence 

criterion in an acceptable time frame [4]. Taking those results into mind, the total number of 
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simulations at each set of inputs was chosen to provide an acceptable convergence criterion, 

while also maintaining computational efficiency. This assumption of converged results is a key 

assumption for later sections on the data spread and risk involved in the results. 

 To calculate the performance of the simulation at each set of inputs, over the span of all 

the inputs, two key definitions must be defined; effectiveness and cost. Specifically, in this study, 

the perspective of the red attackers was taken. Effectiveness, 𝐸, can be described as the number 

of blue defenders that were destroyed in the scenario by the red attackers. While cost, 𝐶, can be 

described as the number of red attackers that were destroyed in the scenario by blue defenders. 

These definitions established a simplistic objective function, 𝑍, for future optimization shown 

below: 

𝑍 = 𝐶 − 𝐸       (3.1) 

 This objective function describes a new parameter that maximizes red effectiveness and 

minimizes red cost while minimizing the overall optimization parameter, 𝑍. To calculate 𝑍 for 

every set of possible inputs in the simulation environment would be computationally impossible. 

Instead, by calculating 𝑍 at a finite set of input values, a continuous mesh can be created which 

assumes the intermediate points on the grid. For this study, only two inputs were used to create a 

10𝑥10 matrix of potential scenario modifications for the theoretical AFSIM scenario introduced 

before.  

[

(𝑋1,1, 𝑋2,1) ⋯ (𝑋1,1, 𝑋2,10)

⋮ ⋱ ⋮
(𝑋1,10, 𝑋2,1) ⋯ (𝑋1,10, 𝑋2,10)

] 
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To explain this in more detail, the first set of inputs (𝑋1,1, 𝑋2,1) correspond to inputs 1 

and 2 at their specified lower boundary condition. This set was then imported into AFSIM using 

MATLAB and run in AFSIM enough times to meet the acceptable convergence criterion for 

results. Then the results from AFSIM were transferred back to MATLAB and the average Z 

score over all the runs at that first set of inputs was computed and plotted in Figure 3.2.  

 

Figure 3.2: Finite Objective Function Z Scores 
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Figure 3.3: Continuously Fitted Objective Function Surface 

The genetic algorithm and particle swarm optimization algorithm require a continuous 

model to perform their optimization routines. Therefore, a Loess Fit was used to create the 

continuous grid seen in Figure 3.3 as it best evaluates the trend of the objective function scores 

without unusual spikes or deviations.  
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Chapter 4: Results and Discussion 

 This chapter presents the validation for the methodology and optimization point of the 

design. Results from the genetic algorithm optimization test as well as the particle swarm 

optimization test will be shown and compared to the expected optimization point. Lastly, the 

spread of data for each point and its potential impact are discussed.  

4.1 Genetic Algorithm Optimization Results 

 The objective function describes the optimal design point as the global minimum of the 

fitted objective function surface. In this study, in reference to Figure 3.4 above, the global 

minimum, or optimal design solution, is found to be (𝑥, 𝑦, 𝑧) = (0.377, 0.6628, −0.6095). 

Using MATLAB’s genetic algorithm (GA) tool from MATLAB’s optimization toolbox, the GA 

tool was able to correctly find the optimal solution autonomously. The GA was set up using a 

population size of 100 children each generation and took an average of 45 generations each test 

to find the optimal solution correctly. Additionally, the GA optimization tool took an average of 

388 seconds to meet the acceptable convergence criteria and end the routine.  
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Figure 4.1: GA Iterations 1 and 5 

 

 

Figure 4.2: GA Iterations 15 and 20 

 

 In Figure 4.1, each red dot represents one child during one generation in the GA and 

continues to mutate and crossover to get closer to the optimal point in each generation. Between 

generations 1 and 5, it is observed that children move towards the global minimum of the design 

space. Figure 4.2 demonstrates that the optimal value was found confidently by the 15th iteration 
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with no significant changes afterwards, as seen at the 20th iteration as well. The significantly 

small changes between these two iterations is due to a tight criterion of convergence and waits 

for each point to be within 0.01% of the exact value. For design purposes, the convergence 

criteria can be made less strict to allow faster convergence of results and less computational time 

needed to find the point of optimality. By loosening the convergence criteria, the optimization 

will terminate on the correct solution in less generations. 

4.2 Particle Swarm Optimization Results 

Using MATLAB’s particle swarm optimization (PSO) from MATLAB’s optimization 

toolbox, the tool was able to correctly identify the optimal design solution located at the global 

minimum of the surface. As stated in section 4.1, the optimal design point can be found at 

(𝑥, 𝑦, 𝑧) = (0.377, 0.6628, −0.6095) and is demonstrated in Figures 4.3 and 4.4 below. The 

PSO was set up to use a population size of 100 particles which took an average of 58 iterations to 

identify the optimal solution correctly. Additionally, the PSO took on average a time of 189 

seconds to meet the acceptable convergence criteria and end the routine. 
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Figure 4.3: PSO Iterations 1 and 10 

 

 

Figure 4.4: PSO Iterations 40 and 50 

 

 In Figure 4.3, each red dot represents one particle in the environment that searches for the 

optimal design point. As the PSO algorithm iterates, each particle works together to find the 

optimal design point, or global minimum for this surface, and moves in that direction together, as 
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seen in Figure 4.3 between iterations 1 and 10. By the 40th iteration, the PSO was able to find 

the optimal solution and continued to iterate until the convergence criteria was met. Additionally, 

the 50th iteration in Figure 4.4 shows an important characteristic of the PSO, as the particle starts 

to move away from the optimal design point. By design, the PSO particles will continue to move 

in different directions to check for better design points, before being drawn back towards the best 

point known by the swarm, which is seen in the 50th iteration. By limiting the maximum number 

of stall iterations, the particles meet a final convergence when the final point identified is within 

0.01% of the exact value.  

4.3 Simulation Data Spread 

 Since AFSIM simulations are designed to be stochastic in nature, there is inherently a 

high spread of potential outcomes which must be considered when optimizing a scenario. This is 

demonstrated in Figure 4.5 below for the average cost and effectiveness criterion. Each point in 

Figure 4.5 represents the average value over 𝑁 number of simulations run at a set of inputs, 

where the error bars represent the entire scope of outcomes that occurred for that set of inputs. 

This observation provides important cost and effectiveness information when valuing riskier and 

more conservative scenario requirements. To explore this further, one point was selected to 

analyze the effects of changing the confidence interval of the data spread, which is seen in Figure 

4.6. 
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Figure 4.5: Average Cost vs. Effectiveness Data Spread 
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Figure 4.6: Isolated Average Cost vs. Effectiveness Data Point 

 The confidence interval measures how many standard deviations a data point is away 

from the mean of the sample [11]. Applying a confidence interval to the number of simulations 

run can be a powerful tool for determining convergence criteria. For assessing the spread of the 

data, a more complex understanding was achieved by fitting the data spread to a cumulative 

distribution function (CDF). A CDF describes characteristics of the probability of some event 

happening, as seen in the equation below: 

𝐹𝑋(𝑥) = ℙ(𝑋 ≤ 𝑥) 

 This defines a new relationship of percentiles for this scenario based off the spread of data 

cumulated from the overall simulations at a set of inputs. By defining a percentile by the variable 
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α, the probability of an event occurring can be concluded. Applying this to the scenario results, 

α = 0.1 corresponds to the 10th percentile and similarly α = 0.9 corresponds to the 90th 

percentile. The percentile trends seen below in Figures 4.7 and 4.8 for the isolated data point 

with cost and effectiveness spread, show the riskiness of evaluating data at each percentile. In 

these figures, if the designer values effectiveness at the 10th percentile, then the conclusion can 

be made that the all values of effectiveness remain plausible for that scenario, as the error bars 

represent the range of effectiveness at that percentile. This provides a safer assessment as the 

remaining 90% of results remaining have the opportunity for improvement. Alternatively, if the 

designer chooses the 90th percentile, then this is can be a riskier assessment of the data where the 

scenario can only be 10% better than the spread seen in the horizontal error bar. Specifically, at 

the 90th percentile, the scenario at this set of inputs is considered riskier because 90% of the time 

the scenario has the potential to perform worse. 
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Figure 4.7: Cost vs. Effectiveness at 10% Confidence Interval 

 

 

Figure 4.8: Cost vs. Effectiveness at 90% Confidence Interval 
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This observation regarding data spread can have a great effect on the optimization 

routines when finding the point of optimality. This can be seen below in Figures 4.9 and 4.10. 

 

Figure 4.9: Cost and Effectiveness Surface Plots at 10% Confidence Interval 

 

 

Figure 4.10: Surface Plots at 90% Confidence Interval  
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The plots in Figures 4.9 and 4.10 show the risks of evaluating the data from the scenario 

at different percentiles. For example, the effectiveness surface plot includes an additional spike 

at lower percentiles when compared to higher confidence intervals. If the goal was to maximize 

effectiveness, then the lower percentiles which include the additional spike, could report two 

acceptable design regions only found when evaluated at the lower percentile. Evaluating the cost 

surface plots at the two different percentiles shows that at the lower percentile, the risk of losing 

attackers is low but at the higher percentile the risk is much higher. The higher percentile also 

shows that many design solutions for the inputs into the scenario result in a high loss of attackers 

and provide a low effectiveness in the scenario. Relating these figures back to the definition of 

the CDF, the 90th percentile is riskier as it shows that the distribution as having strict design 

solutions in one area of the surface while there is still the opportunity to design in other distinct 

areas of the surface, as seen in the spikes in Figure 4.9. If the 90th percentile was chosen as the 

standard for analysis, then a critical design point would have been overlooked as it would not 

have shown up at the higher percentile. This could cause unanticipated results to occur in the 

design space of the scenario. Overall, the cost and effectiveness surface plots provide valuable 

characteristics of the scenario which can help design a scenario to meet specific requirements for 

mission success and failures. 
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Chapter 5: Conclusion and Future Work 

 Based on this work, the genetic algorithm provided the quickest determination of the 

optimal solution for this proposed mission level scenario, although the particle swarm 

optimization routine also found the design point. Future work should focus on assessing the 

performance of each optimization routine for a more complicated mission scenario. To achieve 

this, more research into the objective function would be required when more inputs and 

dimensions are added into the scenario. This would expand the optimization routines and require 

a greater emphasis and need for a computationally efficient optimization routine.  

 Although the method of evaluating whether components survived or were destroyed can 

create an acceptable objective function, as discussed by Psibernetix, diversifying the objective 

function is required for larger trade studies [4]. Specifically, developing abilities to assess and 

optimize multiple parameters can provide a more realistic and beneficial system for the DoD. 

Expanding the current methodology in this study to weapon performance, navigational 

technologies, or fuel efficiencies can provide more realistic parameters for a larger trade study. It 

is recommended that for future design work, development into simulating AFSIM scenarios at 

different input values be done so in parallel to generate the outcome space efficiently. Generating 

the outcome space in this study was effective for two inputs but would be an unrealistic system 

for more than two inputs at higher fidelities. Overall, this thesis serves as a good introduction for 

designing larger trade studies in AFSIM which optimizes the design space efficiently. 
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