
Department of Electrical and Computer Engineering

Subsampled Blind Deconvolution via Nuclear

Norm Minimization

Alexander Thieken

supervised by

Dr. Kiryung Lee

April 24, 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KnowledgeBank at OSU

https://core.ac.uk/display/305123633?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction and Background 2

2 Problem Formulation 3

2.1 Mathematical Background . 3

2.1.1 Linear Vector Spaces . 3

2.1.2 Singular Value Decomposition . 4

2.1.3 Nuclear Norm . 4

2.1.4 Sampling Operator . 5

2.2 1-D Case . 5

2.2.1 Solution . 7

2.3 2-D Case . 7

3 Numerical Results 9

3.1 Introduction to TFOCS in MATLAB . 9

3.2 MATLAB Algorithm Design . 10

3.3 Simulation Results . 11

4 2D Demonstration 13

5 Future Work 15

6 Conclusion 16

7 Acknowledgements 17

Appendices 19

A MATLAB Code 19

1

1 Introduction and Background

Many phenomena can be modeled as systems that preform convolution, including negative effects on data

like translation/motion blurs. Blind Deconvolution (BD) is a process used to reverse the negative effects

of a system by effectively undoing the convolution. Not only can the signal be recovered, but the impulse

response can as well. ”Blind” signifies that there is incomplete knowledge of the impulse responses of an

LTI system. Solutions exist for preforming BD but they assume data is fully sampled. In this project we

start from an existing method [1] for BD then extend to the subsampled case. We show that this new

formulation works under similar assumptions. Current results are empirical, but current and future work

focuses providing theoretical guarantees for this algorithm.

y = x ~ w

- w[n] -
x[n] y[n]

Figure 1: Basic Model LTI System

BD applies to a wide variety of settings that can be modeled with LTI systems. Since both the input

signal and the impulse response can be recovered, Blind Deconvolution can be used for simultaneously

recover a channels impulse response and the message sent. In addition, we will discuss this method for the 2

dimensional and higher dimensional cases. This allows us to consider several applications in image processing

such as image deblurring. Another multidimensional application of interest is Magnetic Resonance Imaging

(MRI). In this modality several coils of a an MRI scanner are used to collect samples. Each coil collects

the Fourier transform of an image, but a “coil sensitivity” is applied to this image through convolution.

Typically these coil sensitivities have to be calibrated before the image acquisition, but with BD the coil

sensitivities and the original image can be recovered simultaneously. Without the need to pre-calibrate coil

sensitivities and with subsampling, scan times can be reduced.

2

2 Problem Formulation

This section will provide the mathematical details of the BD problem. We first introduce the mathematical

background needed, then jump into the problem formulation for the 1D case. Finally we show how nuclear

norm minimization can be used to solve this problem and discuss how look at the problem when using 2

dimensional signals.

2.1 Mathematical Background

2.1.1 Linear Vector Spaces

A Linear Vector Space (LVS) is a generalization of the typically used vector space (Rn or Cn). Let V be a

set and K be a scalar field (e.g., R or C). Let + : V × V → V and · : K × V → V denote the elementwise

addition and scalar multiplication, respectively. Then V is an LVS if it satisfies the following properties:

1. a + b ∈ V for all a,b ∈ V .

2. ca ∈ V for all c ∈ K and a ∈ V .

More complete lists of properties can be found in many linear algebra textbooks. As we can see, the

vector spaces Rn or Cn are valid LVS, but now we can describe more general spaces such as the space of

matrices

V = {A ∈ Cm×n}

and the space of polynomials of a fixed order

V = {α0 + α1t+ α2t
t · · ·+ αN t

N : αi ∈ C,∀i = 0, . . . , N}.

Note that matrices, A ∈ Cm×n, can be thought of as vectors in a LVS and as linear maps from Cn to

Cm. This brings up the the idea of linear maps. In the vectors spaces that many are accustom to (Cn),

matrices are the linear maps between vector spaces. But in general LVS’s linear maps are called ”Linear

Operators” which are to LVS’s what matrices are to Cn. Similarly, the ideas of norm and inner product can

be extended. In the table below, we show each notion in the general LVS V and when V = Cn.

3

Name General V V = Cn

”Norm” ‖ · ‖ : V 7→ R ‖ · ‖p = (
∑n

i=1 (xi)
p
)
1/p

”Inner Product” 〈x, y〉 〈x, y〉 = x∗y

”Linear Operator” A : V1 7→ V2 A = A ∈ Cm×n

The idea of a linear operator will be used extensively in the problem formulation and is key to the analysis

in the original [1] paper. The other two concepts that are needed to properly describe the problem are that

of the Singular Value Decomposition (SVD) and the nuclear norm.

2.1.2 Singular Value Decomposition

The SVD can be thought of as an extension of the eigenvalue decomposition to non-square matrices. It is

defined as follows: For each matrix X ∈ Cm×n, there exist unitary matrices U ∈ Cm×m,V ∈ Cn×n and a

nonnegative diagonal matrix Σ ∈ Rm×n such that

X = UΣV∗.

Here ∗ denotes the conjugate transpose. The diagonal entries of Σ, denoted by σi for i = 1, . . . ,min{m,n},

are known as the “singular values” of the matrix X, while U and V represent two rotations. Together they

describe how X acts on some input vector by rotating, scaling, then rotating. This is similar how a square

matrix’s eigen decomposition describes how it rotates, scales, then rotates back. Note that the singular

values are ordered as σ1 ≥ · · · ≥ σd ≥ 0 by convention. We define d = min{m,n} here. The singular values

are also connected to the rank of the matrix X. For example, if X ∈ Cm×n, m > n has rank r < m then

only the first r singular values will be non-zero.

2.1.3 Nuclear Norm

Now we define the nuclear norm on the LVS of m× n matrices (i.e. V = {X ∈ Cm×n}) as follows:

‖X‖∗ =

d∑
i=1

|σi|,

where σi denotes the ith singular value of X.

Minimizing this norm is thought of as the convex relaxation of minimizing the rank of a matrix X. This

will be key to describing the problem formulation.

4

2.1.4 Sampling Operator

The sampling operator, SΩ is important for mathematically describing the BD problem with subsampling.

SΩ(x) takes random samples of the input x with the indices of the samples described by the set Ω. It is

important for later analysis that the set of indices, Ω, be uniformly random over all of the indices of the input

signal. Mathematically, we treat it as a linear operator, with it’s adjoint being zero-padding, i.e. placing all

of the samples back in their proper indices and leaving zeros everywhere else. It is very simple to implement

in a language like MATLAB because Ω is a set of indices of an array and we simply access those values in

the array, and store them in a new array.

2.2 1-D Case

Our goal is to separate two signals w,x ∈ RL from their convolution y = x ~ w, y ∈ RL with only M

measurements z ∈ RM . To be exact, we assume the convolution is circular, but it can be extended to linear

convolution. First, we assume that we are fully sampling the convolution in the domain of its FT as in [1].

For the unique identification of x and w up to the scaling ambiguity, it is necessary to introduce further

structural constraints. We assume that x and w belong to their corresponding low-dimensional subspaces.

This is equivalent to having some prior information about x and w before blind decovolution. For example,

we may assume that w corresponds to an FIR filter of a fixed order and x belongs to a data-adaptive

subspace obtained by principal component analysis of known class of signals.

First, we formally describe the subspace models for x and w. Assume that x belongs to the columnspace

of C ∈ RL×N . Likewise, assume w is in the columnspaces of B ∈ RL×K . Then there exist m ∈ RN and

h ∈ RK such that

x = Cm and w = Bh. (1)

So, if we find m and h, then we also find x and w by (1).

Let F : CL → CL denote the Fourier Transform operator. For the brevity, we let ŷ denote F(y).

Likewise, B̂ will denote the matrix obtained by concatenating the FT of columns of B. Throughout this

thesis, we will use this shorthand notation for the Fourier transform for vectors and matrices. Then by the

convolution theorem for the Fourier Transform (FT), which changes the convolution in the time domain to

5

point-wise multiplication in the frequency domain, we obtain

ŷ = F(x ~ w) = F (Bh ~ Cm) =
√
L
(
B̂h� Ĉm

)
, (2)

where � denotes the point-wise multiplication operator.

Let b̂l and ĉl denote the lth column of B̂∗ and the lth column of
√
LĈT respectively. Then the lth entry

of ŷ denoted by ŷ[l], is written as

ŷ[l] = eT
l B̂h eT

l Ĉm = b̂∗
l h ĉTl m = b̂∗

l h mTĉl

for l = 1, . . . , L, where el denotes the lth column of the identity matrix of size L. Then ŷ is compactly

rewritten as

ŷ =
√
L diag

(
B̂hmTĈ

T
)
. (3)

Here diag : CL×L → CL constructs a column vector from the diagonal entries of its matrix-valued argument.

Since each entry of ŷ is a linear function of hmT, we can construct a linear operator A : CK×N → CL

that satisfies ŷ = A(hmT) as follows: Let

Φl = b̂lĉ
∗
l , ∀ l = 1, . . . , L.

Then A is defined by

A(X) =

〈Φ1,X〉

...

〈ΦL,X〉

 =

trace (Φ∗

1X)

...

trace (Φ∗
LX)

 , ∀ X ∈ CK×N . (4)

So far, this is mostly unchanged from [1]. Our modification assumes we take samples in the domain of

the convolution. The change of domain of the convolution is in the interest of MRI, where samples are taken

in the same domain as the convolution. This defines a new linear operator Q : CL → CM as

Q :=

√
L

M
SΩF∗.

Note that the observations are normalized by the number of samples M , and M < L for subsampling. If

we let X = hmT, our new vector of observations z ∈ RM becomes:

6

z = Q(A(X))

These two operators can be grouped into a single linear operator, but it does not change the overall action

on the input. Now we have a rigorous way to describe the how to go from the sub-sampled observations to

x and w. Finding X is analogous to finding x and w up to a scaling factor.

2.2.1 Solution

If we can recover X then we can separate it into h and m using the SVD and use the known subspaces C

and B to get x and w. Since the matrix X is rank-1, only one singular value will be nonzero, thus there will

only be one left singular vector, which is h and one right singular vector, which is m. Since we cannot easily

minimize rank, we can solve the following minimization problem.

minimize
X

‖X‖∗

subject to z = Q(A(X)) (5)

We know from its definition that X is rank-1 so we can use the a minimization of the nuclear norm to

solve for X. Minimizing ‖X‖∗ =
∑r

i=1 |σr| will give us a solution that have few non-zero singular values

and therefore low rank. This is similar to how minimizing ‖x‖1 =
∑n

i=1 |xi| encourages sparse solutions

for a vector. The other advantage of the nuclear norm is that it is convex, so a local minimizer is a global

minimizer. We expect that X = hmT is the minimizer to this optimization problem because we can only

move on the set where the constraint is true.

2.3 2-D Case

For the 2D case we think of the subspaces, B and C as general linear operators instead of just matrices. As

before, the Fourier transform of their components, b̂l and ĉl, are what act on hmT . We can use many of

the same simplifications as the 1-D case if we just think of the vectorization of each element. The subspace

7

model becomes:

x = C(m) and w = B(h).

Here, y,x and w are all L1 × L2 rather than just L × 1. Next we explicitly define the linear operators,

C : RN 7→ CL1×L2 and B : RK 7→ CL1×L2 . These linear operators tell us how to go from each subspace to

the signals x and w. Before, the subspaces were spanned by the columns of a matrix, but now the subspaces

are spanned by matrices, which are “generalized” vectors in a LVS. The basis vectors for x’s subspaces

are, Ψi ∈ CL1×L2 with i = 1, ..., N . Likewise, for w’s subspace, the basis vectors are Φi ∈ CL1×L2 with

i = 1, ...,K. So we can see that with the vectors h and m we can construct

x = C(m) =

N∑
i=1

Ψim(i) and w = B(h) =
K∑
i=1

Φih(i).

We can write the same equations as the 1D case with linear operators instead of matrices. After we

vectorize we use the same exact equations as the 1D case, with different definitions of B̂ and Ĉ. The

vectorization of ŷ, written as vec(ŷ), simply stacks all of its columns into one long L1 · L2 × 1 vector.

Additionally, the Fourier Transform is now the (normalized) 2D Fourier Transform, F : CL1×L2 → CL1×L2 .

First we use convolution theorem of the FT as in (2),

ŷ = F(B(h) ~ C(m)) =
√
L1L2 (F(B(h))�F(C(m))).

Next, we use the vectorization of ŷ then write the linear operators F(B(·)) as B̂ and F(C(·)) as Ĉ. This

puts the output in terms of matrix-vector multiplications:

vec(ŷ) =
√
L1L2 (B̂h� Ĉm)

Using the same argument as (3) and (4), we see that we take the diagonal entries of the matrix product

B̂hmTĈT and that it is a linear operator:

vec(ŷ) =
√
L1L2 diag

(
B̂hmTĈT

)
= A

(
hmT

)
B̂ and Ĉ are now defined using the vectorization of their components’ Fourier Transforms:

Ĉ =
[
vec(Ψ̂1) . . . vec(Ψ̂K)

]
∈ CL1L2×K

B̂ =
[
vec(Φ̂1) . . . vec(Φ̂N)

]
∈ CL1L2×N

8

Now everything can be simplified to the 1D case with the same linear operators and subsampling. Here

sample in the domain of the convolutions as in MRI.

Q =

√
L

M
SΩF∗

Again, we define X = hmT and the equation for our samples z:

z = Q(A(X))

So we see the same nuclear norm minimization will work for the 2D case. If we recover X then we can

extract h and m, then return to x and w.

minimize
X

‖X‖∗

subject to z = Q(A(X))

Everything relies on the vectorization operation. While it may be surprising that everything returns to 2D

images after removing the vectorization, it is just a matter of using the same convention when transforming

to a vector and back. So in the 2D case, one would stack each column of a L1 × L2 matrix into one long

column vector and rearrange when transforming back to a matrix. This will work with higher dimensions

too. However, only 2D cases are discussed in this paper.

3 Numerical Results

In this section we go over how this nuclear norm minimization was implemented in MATLAB. Then we discuss

the simulations which show the conditions for which this solution works. Finally, we show an example for

the 2D case where we wish to reconstruct images that have been convolved with an FIR filter.

3.1 Introduction to TFOCS in MATLAB

TFOCS is library for MATLAB that has solvers built for minimization problems using a standard form. It

includes MATLAB functions that can minimize both smooth and non-smooth functions. Since the nuclear

9

norm is a non-smooth function, the TFOCS function tfocs SCD.m was used. This function is based on a

model called smoothed conic dual (SCD) and is described further in [3]. The standard form is as follows:

minimize
x

f(x) +
1

2
µ‖x− x0‖+ h (A(x) + b)

The first term, f is ‖X‖∗ in our case. The second term is used to ”smooth” the whole objective so we

can use gradient descent based methods. The final term, h is an indicator function, which allows us to move

the constraint A(x)+b = 0 into the objective. In our case this is the constraint is Q(A(X))+z = 0. TFOCS

allows the definition of custom linear operators and the chaining of several linear operators together. Below

are a few lines of code to show how we use TFOCS to solve our minimization problem, (5):

sampOp = linop compose(linop subsample({[L,1],[M,1]},Omega), ifftOp) ;

z = sampOp(y hat,1) ;

lin op = linop compose(sampOp, @(x,mode)A op(B,C,L,K,N,x,mode));

X1 = tfocs SCD(prox nuclear,{lin op, -z},prox l2(1e-3),0.01);

Note that we define ”A op.m” ourselves using the equations from the problem formulation and Q is what

we call ”sampOp”. The detailed code is attached in Appendix A.

3.2 MATLAB Algorithm Design

The algorithm was written in MATLAB using the TFOCS optimization package. First after the initial

equations from the problem formulation were derived, the 1D case was implemented. Each linear operator

was written as a function and tested individually with known inputs to ensure that they worked properly.

Then, all of the linear operators were chained together using the linop compose() function, which allowed

the use of tfocs SCD.m to solve the minimization problem.

Once the 1D case was working, the equations used were further refined to increase the speed of the

MATLAB script. This focused on removing loops from the script since MATLAB is line-interpreted. Many

10

of the equations were rewritten to remove the diag() operation because if that operation was used then

all of the calculations for the off-diagonal entries were not utilized. Phase maps were generated to analyze

performance with different parameters. Finally, the linear operators were rewritten to extend to the 2D case.

3.3 Simulation Results

The results are best summarized by a phase map. These vary over several different values for L,N,K,M to

show the probability of success for the nuclear norm minimization in each scenario. In [1] they show that

their phase maps are consistent with theory that they derive. Since we have not yet developed the same

theory, we show that when using fully sampled data, we reproduce the results from [1] and as we decrease

the number of samples, set of parameters over which we are successful decreases by a log factor.

For each simulation we make the same assumptions for the two signals being convolved. We assume

that x is a random vector from subspace C that is a Gaussian matrix. That is to say, C has iid Gaussian

entries. w is also randomly generated, but is from subspace B that contains FIR filters of fixed length K.

Each trial was stopped when the step size reached 1× 10−7, since the program is convex, this will be close

to the absolute minimum. A trial was counted as a success when ‖Xtrue −Xnew‖ ≤ 1× 10−3.

Figure 2: Phase map with L = 100, M = 100. Varying over dimensions N and K

11

(a)

(b)

Figure 3: Phase transition maps with M=50,25. Varying over dimensions N and K

From fig 2 it can be seen that we produce results similar to [1] with fully sampled data (M=100). We

see the algorithm works with high probability for N + K . L. If one were to fix the size of the known

subspaces, C and B, then it would be advantageous to increase the total length of the signals x and w.

With our addition of subsampling we observe that the area for which the algorithm works decreases as we

take fewer samples. Again, the algorithm works with high probability for N +K .M ≤ L. This is expected

because we are collecting less information by subsampling, but is important for applications that make use

of subsampling. If the dimensions of the known subspace are small enough, we can significantly undersample

and still recover x and w. It is also important to note that the subsampling is random. If one were to use a

fixed sampling pattern, the same performance would not be expected.

The distinction between the two subspaces B and C is not very important because we can exchange which

of the signals is the impulse response and which is the input. This is because convolution is commutative.

Showing that this method works with high probability for Gaussian C, implies that it will work for many

different choices of C. In a specific application, it is assumed that C is known, not random. Using B as an

FIR subspace, covers many common cases such channel estimation and multi-coil MRI where the channel

and coil-sensitivities are often modeled as FIR.

12

4 2D Demonstration

A demonstration was created to show a possible application of this algorithm. In this case a set of 1000

Shepp-Logan phantoms were generated with slightly varied parameters. The image sizes were kept to 50 ×

50 pixels in order to keep the processing times low. Principal Component Analysis (PCA) was performed

on this set of images and the first 10 Principal Components served as the Ψi’s of the ”known subspace” C.

The other subspace, B was chosen to be that of 3 × 3 FIR filters. The weights for one of the images in

the set were used along with random FIR filter coefficients as the ground truth m and h respectively. In

this scenario, we collected subsampled data (M = 3
4L) from the convolution of an unknown image and an

unknown filter. Using nuclear norm minimization, the following results were achieved.

Figure 4: Comparing ground truth and reconstruction of Shepp-Logan phantom

As can be seen the image is reconstructed accurately. The weights, m, where used with PCA components

to create this reconstructed image. The filter coefficients, h, were also accurately recovered. Since the solution

from the minimization, X, is a low rank matrix, SVD was used to separate the component vectors. The left

and right singular vectors were h and m. They are off by a scaling factor, so the following figures 5 and 6

show the normalized versions of these vectors.

For both h and m, the scaling factor was negative, so the correlation coefficients between the recovered

and ground truth vectors were ≈ −1. This means the vector were along the same direction.

13

Figure 5: Weights for principal components, m

Figure 6: Coefficients for random filter, h

14

5 Future Work

There are many directions for this project to move forward. The first is to extend the existing theory from

[1] to provide similar theoretical guarantees for the subsampled case. It is expected that a similar proof

technique can be used. This proof technique has two components, finding the conditions for the “inexact

dual certificate”, and showing it exists via “golfing scheme”. The inexact dual certificate is a sufficient

condition that shows that X0 = hmT is the unique minimizer of (5). Golfing scheme is an iterative method

that proves that an inexact dual certificate exists. Assumptions that will be key are randomized subsampling

and the subspace C being Gaussian. This theory work will fit in with the work by Prof Kiryung Lee’s other

student, Farhad Mirkazemi, who is working on a review of theory for several Blind Deconvolution methods.

Weekly meeting have been held where Prof. Lee’s group discuss theoretical background of BD and related

topics, these will be continued with this work as part of the discussion.

The second direction for this work will be applying it in an multi-coil MRI setting. The algorithm must

work for 2D case and for the multi-coil case. The extension to the multi-coil case has already been completed

and implemented in the 1D case. As of the date of this thesis, the multi-coil 2D case is still in the initial stages

of development. This will fit in with a model proposed by Dr. Rizwan Ahmad for multi-coil MRI, known

as Parallel MRI (pMRI). This model takes advantage of multiple coils collecting data simultaneously as well

as expected temporal sparsity from rapidly imaging the same cross section several times. Regular meetings

will continue to be held where Prof. Ahmad and Prof. Lee’s groups discuss several methods (including this

one) for the aforementioned model. Additionally, this will require further coordination with Dr. Ahmad’s

student, Aaron Pruitt, who manages the computing resources. Many of the simulation results above were

done on these computing resources.

Furthermore, if this algorithm were to be tested using MRI data from human subjects, IRB Human Sub-

ject Protocol must be followed to collect that data. Additionally, image data generated would have to follow

standard formats for medical images such as those outlined by the Digital Imaging and Communications in

Medicine (DICOM) standard. For more information on these formats, see [2].

15

6 Conclusion

In this project, we have shown that we can successfully recover two signals from their convolution with

certain assumptions. Previous work focuses mostly on the fully sampled case. Motivated by applications

such as MRI where subsampling is important, we extend a known solution for BD to the subsampled case.

If we have two known subspaces, rewrite our problem so that we are taking linear measurements of a rank-1

matrix, X = hmT . Next, we can use nuclear norm minimization with our observations as a linear constraint

to find that matrix X (as in (5)). For this solution, we have shown the sizes of the two subspaces for which

this works through phase maps. In addtion, a example application for a 2D signal was demonstrated. Our

main contribution is showing the the extension of BD to the subsampled case is successful numerically and

future work will focus on applying this to pMRI and providing theoretical guarantees similar to [1].

16

7 Acknowledgements

Firstly, I would like to thank my advisor, Dr. Kiryung Lee, who made himself available every time that I

needed help on our project, in classes, and dealing with the stress of school. He consistently guided me in the

right direction while allowing me to understand and complete this work. Additionally, I would like to thank

Dr. Rizwan Ahmad and the other students in Prof. Lee’s group, Seonho Kim and Seyedfarhad Mirkazemi.

Much of my understanding of this material was the result of group meetings and discussions with them.

17

References

[1] Ali Ahmed, Benjamin Recht, and Justin Romberg. Blind deconvolution using convex programming.

IEEE Transactions on Information Theory, 60(3), 2014.

[2] M. Larobina and L. Murino. Medical image file formats. Springer US, 27:200–6.

[3] E. J. Candés S. Becker and M. Grant. Templates for convex cone problems with applications to sparse

signal recovery. Math. Prog. Comp., (3):165–218, 2011.

18

Appendices

A MATLAB Code

Function to implement A(in) and it’s adjoint A∗(in) for 1D case

function [out] = A_op(B,C,L,K,N,in,mode)

switch mode

case 0

%return the input size and output size for forward operation

out = {[K,N], [L,1]};

case 1

%forward operation - need B and C which are the subspaces that

%the convolved vectors come from.

%This generates the observations from the outer product that we

%are trying to find

out = zeros(L,1);

B_hat = (1/sqrt(L))*fft(B);

C_hat = (1/sqrt(L))*fft(C);

out = sum((sqrt(L)*B_hat*in).*C_hat,2);

case 2

% adjoint operator

out = zeros(K,N);

B_hat = (1/sqrt(L))*fft(B);

C_hat = (1/sqrt(L))*fft(C);

19

out = B_hat'*diag(in)*conj(C_hat)*sqrt(L);

end

end

20

Function to test implimentation for given set of parameters:

function [success] = BlindDeconv(L,K,N,M)

% L is length of of the signals w and x

% K is the lenght of h

% N is the length of m

% M is the number of samples to take in the time domain

%generate a the signals w=Bh and x=Cm

B = eye(L,K);

C = randn(L,N);

m = randn(N,1);

h = randn(K,1);

w = B*h;

x = C*m;

X0 = h*m';

%fully sampled in fourier domain

y_hat = (1/sqrt(L))*(fft(w).*fft(x));

y = sqrt(L)*ifft(y_hat);

%parameters for subsampling

21

Omega = randperm(L,M)';

%operators for subsampling

ifftOp = linop_handles([L,L], @(x)ifft(x)*sqrt(L), @(x)fft(x)/sqrt(L) ,'C2C');

sampOp = linop_compose(linop_subsample({[L,1],[M,1]},Omega), ifftOp);

%subsampled data

z = sampOp(y_hat,1);

%use nuclear norm minimization to find an approximation of X0

%use TFOCS for this

lin_op = linop_compose(sampOp, @(x,mode)A_op(B,C,L,K,N,x,mode));

opts = tfocs_SCD; opts.printEvery = 0; %suppress the TFOCS outputs for the MonteCarlo

Simulation↪→

opts.tol = 1e-8; %lower step-size tolerance to speed up (default is 1e-8)

X1 = tfocs_SCD(prox_nuclear,{lin_op, -z},prox_l2(1e-3),0.01,[],[],opts);

success = norm(X1-X0) < 1e-3;

end

22

Code to run Monte-Carlo Simulation to generate phase maps:

clc;

L = 100;

% K = 10;

% N = 10;

N_vals = 2:2:50;

K_vals = 2:2:50;

num_reps = 10;

success = zeros(length(N_vals),length(K_vals));

M = 25; %fix the M value to get a cross-section

for N = N_vals

for K = K_vals

tic;

for i = 1:num_reps

success(N/2,K/2) = success(N/2,K/2) + BlindDeconv(L,K,N,M);

end

time = toc;

disp(['N = ' num2str(N) ' K = ' num2str(K) ' Time for ' num2str(num_reps) ' reps

= ' num2str(time/60) 'min']); %display iteration info↪→

end

end

23

imshow(kron(flip(success,1),ones(10,10)),[])

set(gca, 'visible','on')

yticks(1:50:501)

yticklabels(50:-10:10)

xticks(100:100:600)

xticklabels(10:10:50)

xlabel('K=N')

ylabel('M')

title('Phase map, L=100, 10 trials')

24

Code to generate subspace based on shepp-logan phantoms

rng(12345)

clear,clc;

% goal is to generate several different roations, translations, etc of a

% phantom image, then use PCA to reduce to a known subspace that we call C

%size parameters

L1 = 50;

L2 = 50;

n_samp = 1000;

%get parameters for generic shepp-logan then we can alter them slightly

[a_,E_shepp] = phantom('Modified Shepp-Logan',L1);

%generate set of phantoms

data = zeros(L1,L2,n_samp);

for i = 1:n_samp

%parameters for phantom

E = E_shepp;

E(3:end,4:5) = E(3:end,4:5)+(0.01)*randn(8,2); %shift some of the elipses around

randomly↪→

data(:,:,i) = phantom(E,L1); %+(0.01)*randn(L1,L1); %noise is 1% relative to total

intensity↪→

end

figure(1)

25

for i = 1:10

imshow(kron(data(:,:,i),ones(10,10)),[])

title(num2str(i))

pause(0.5)

end

%% PCA - principal component analysis

data_vec = reshape(data,L1*L2,n_samp);

data_vec = data_vec.';

data_vec_mean = mean(data_vec);

data_vec_centered = data_vec - 0*data_vec_mean;

data_centered = reshape(data_vec_centered.',L1,L2,n_samp);

[coeffs,scores,latent] = pca(data_vec_centered,'Centered',false);

%data_vec_recon = scores*coeffs';

n_comps = 10;

data_vec_recon = scores(:,1:n_comps+1)*coeffs(:,1:n_comps+1).'; %only use n_comps # of

components to reconstruct↪→

data_recon = reshape((data_vec_recon + 0*data_vec_mean).',L1,L2,n_samp);

figure(2)

for i = 1:10%num_samps-1

imshow(kron(data_recon(:,:,i),ones(10)),[]);

title(num2str(i))

pause(0.5)

26

end

%% test reconstruction

figure(3)

first_pic_recon = reshape(coeffs(:,1:n_comps)*scores(1,1:n_comps).',L1,L2);

imshow(kron(first_pic_recon,ones(10)),[])

%% save

%save only one known sample

save('subspace2_4_16_20.mat', 'L1','L2','n_comps','scores','coeffs','n_samp')

27

2D operator mathcalA

function [out] = A_op_2D(L1,L2,K,N,B_hat,C_hat,in,mode)

%A_OP Summary of this function goes here

% Detailed explanation goes here

switch mode

case 0

%return the input size and output size for forward operation

out = {[K,N], [L1,L2]};

case 1

%forward operation - need B and C which are the subspaces that

%the convolved vectors come from.

%This generates the observations from the outer product that we

%are trying to find

out = zeros(L1*L2,1);

out = sum((sqrt(L1*L2)*B_hat*in).*C_hat,2);

out = reshape(out,L1,L2);

case 2

% adjoint operator

out = zeros(K,N);

out = B_hat'*diag(reshape(in,L1*L2,1))*conj(C_hat)*sqrt(L1*L2);

end

end

28

Subspaces B and C as linear Operators

function out = C_op(L1,L2,N,Phis,in,mode)

%C_OP Summary of this function goes here

% Detailed explanation goes here

%subspace has guassian matricies as its basis vectors

% C_is = randn(L1,L2,N);

% Phis = Phis;

%will be used to multiply along third direction of basis vectors

mtx_vec_multplr = dsp.ArrayVectorMultiplier('Dimension',3);

switch mode

case 0

%input and output size for forward operation

out = {[N,1],[L1,L2]};

case 1

%case for forward operation

%scale each basis vector by input then sum

out = sum(mtx_vec_multplr(Phis,in),3);

% out = zeros(L1,L2);

% for i = 1:N

% out = out + C_is(:,:,i).*in(i);

% end

29

case 2

%adjoint operation

out = zeros(N,1);

for i = 1:N

out(i) = trace(Phis(:,:,i)'*in);

end

end

end

function out = B_op(L1,L2,K,in,mode)

%B_OP Summary of this function goes here

% Detailed explanation goes here

if(floor(sqrt(K))~=sqrt(K))

disp('K does not correspond to square filter');

out = [];

return

end

%assume the 2D filter is square and causal

%i.e. only the top left corner is filled

%square filter is sqrt(K) by sqrt(K)

filter_size = sqrt(K);

30

switch mode

case 0

%input and output size for forward operation

out = {[K,1],[L1,L2]};

case 1

%case for forward operation (synthesis)

out = zeros(L1,L2);

out(1:filter_size,1:filter_size) = reshape(in,filter_size,filter_size);

case 2

%adjoint operation (analysis)

out = zeros(K,1);

out = reshape(in(1:filter_size,1:filter_size),K,1);

end

31

functions to calculate Ĉ and B̂

function B_hat = compute_B_hat(L1,L2,K)

%COMPUTE_B_HAT Summary of this function goes here

% Detailed explanation goes here

%assume the 2D filter is square and causal

%i.e. only the top left corner is filled

if(floor(sqrt(K))~=sqrt(K))

disp('K does not correspond to square filter');

B_hat = [];

return

end

%square filter is sqrt(K) by sqrt(K)

filter_size = sqrt(K);

B_hat = zeros(L1*L2,K);

for i = 1:K

%single point in FIR filter

temp = zeros(L1,L2);

temp2 = zeros(K,1);

temp2(i) = 1;

temp(1:filter_size,1:filter_size) = reshape(temp2,filter_size,filter_size);

% if(i>filter_size)

% temp(mod(filter_size,i),mod(i,filter_size)) = 1;

32

% elseif(i<filter_size)

% temp(1,mod(i,filter_size)) = 1;

% elseif(mod(i,filter_size) == 0)

% temp(i/filter_size,(i/filter_size)*3) = 1;

% end

B_hat(:,i) = reshape((1/sqrt(L1*L2))*fft2(temp), L1*L2, 1);

end

end

function C_hat = compute_C_hat(L1,L2,N,Phis)

%COMPUTE_C_HAT Summary of this function goes here

% Detailed explanation goes here

C_hat = zeros(L1*L2,N);

for i = 1:N

C_hat(:,i) = reshape((1/sqrt(L1*L2))*fft2(Phis(:,:,i)),L1*L2,1);

end

end

33

Main implementation for 2D demo

rng(12345)

clear,clc;

%generate a the signals w=Bh and x=Cm

L1 = 50;

L2 = 50;

K = 9;

N = 10;

%% testing different linear operators

%test B_op operator

h = 1:K;

synth_B = B_op(L1,L2,K,h,1);

analy_B = B_op(L1,L2,K,synth_B,2); %should be same as h b/c orthogonal basis

%import basis for linear operator C, this was generated in other script

load('subspace2_4_16_20.mat','scores','coeffs')

Phis = reshape(coeffs(:,1:N),L1,L2,N); %use principle components as subspace

%test C_op operator

m = 1:N;

synth_C = C_op(L1,L2,N,Phis,m,1);

analy_C = C_op(L1,L2,N,Phis,synth_C,2); %not an orthogonal basis, so not same as m

trace(synth_C'*synth_C) == m*analy_C

34

%precomupte the bases for subspaces B and C

B_hat = compute_B_hat(L1,L2,K);

C_hat = compute_C_hat(L1,L2,N,Phis);

%test

h = randn(K,1);

m = randn(N,1);

w = B_op(L1,L2,K,h,1);

x = C_op(L1,L2,N,Phis,m,1);

X0 = h*m';

%fully sampled in fourier domain

y_hat = (1/sqrt(L1*L2))*(fft2(w).*fft2(x));

y = sqrt(L1*L2)*ifft2(y_hat);

%test A_op

y_hat_test = A_op_2D(L1,L2,K,N,B_hat,C_hat,X0,1);

norm(y_hat-y_hat_test)

(reshape(y_hat,L1*L2,1)'*reshape(y_hat_test,L1*L2,1))/(norm(reshape(y_hat_test,L1*L2,1))*norm(reshape(y_hat,L1*L2,1)))

out1 = trace(y_hat'*(A_op_2D(L1,L2,K,N,B_hat,C_hat,X0,1)));

out2 = trace(A_op_2D(L1,L2,K,N,B_hat,C_hat,y_hat,2)'*X0);

35

norm(out1-out2).^2/numel(out1) %MSE pixel by pixel

%% do minimization

% create ground truth

h = randn(K,1); %random FIR filter coefficients

m = scores(1,1:N).'; %use first sample from generated data and first N principal

components↪→

X0 = h*m';

w = B_op(L1,L2,K,h,1);

x = C_op(L1,L2,N,Phis,m,1);

%fully sampled in fourier domain

y_hat = (1/sqrt(L1*L2))*(fft2(w).*fft2(x));

y = sqrt(L1*L2)*ifft2(y_hat);

figure(1);

imshow(kron(y,ones(10)),[]);

pause(1);

%parameters for subsampling

M = round(0.75*L1*L2);

Omega = randperm(L1*L2,M)';

36

%operators for subsampling

ifftOp = linop_handles({[L1,L2],[L1,L2]}, @(x)ifft2(x)*sqrt(L1*L2),

@(x)fft2(x)/sqrt(L1*L2) ,'C2C');↪→

sampOp = linop_compose(linop_subsample({[L1*L2,1],[M,1]},Omega),

linop_reshape([L1,L2],[L1*L2,1]), ifftOp);↪→

%inal lin_op

lin_op = linop_compose(sampOp, @(x,mode)A_op_2D(L1,L2,K,N,B_hat,C_hat,x,mode));

%subsampled data

z = sampOp(y_hat,1);

opts = tfocs_SCD;

opts.maxIts = 10000;

opts.tol = 1e-9;

opts.errFcn = @(f,z,x)error_measure(X0,f,z,x); % measure error between interations

X1 = tfocs_SCD(prox_nuclear,{lin_op, -z},prox_l2(1e-3),0.01,[],[],opts);

norm(X1-X0).^2 /numel(X0)

trace(X1'*X0)/(norm(X0)*norm(X1))

immse(X0,X1)

37

%% visualize our solution for h and m

% note that we will always be off by some unknown scaling factor

%svd to separate (almost) rank-1 matrix, remember X0 = h*m.'

[U, S, V] = svd(X1);

hnew = U(:,1); %left singular vector with largest singular value is h

mnew = V(:,1); %right singular vector with largest singular value is m

xnew = C_op(L1,L2,N,Phis,real(mnew),1); %reconstruct image with our solution

figure(2);

subplot(1,2,2)

imshow(kron(-1*xnew,ones(10)),[]);

title('Reconstruction')

subplot(1,2,1)

imshow(kron(x,ones(10)),[]);

title('Orignial')

pause(1);

38

