

Fault Insertions into Hardware-in-the-Loop Simulation

Undergraduate Thesis

Presented in Partial Fulfillment of the Requirements for Graduating with Honors

Research Distinction at The Ohio State University

By

Martin, Tyler R.

Undergraduate Program in Mechanical Engineering

The Ohio State University

2020

Thesis Committee

Dr. Shawn Midlam-Mohler, Advisor

Qadeer Ahmed, Committee Member

Copyrighted by

Martin, Tyler R.

2020

ii

Abstract

The Ohio State EcoCAR Mobility challenge is an intercollegiate team that

designs, builds, and tests a hybrid electric vehicle. One of the main goals of this team is

to build a hybrid supervisory controls strategy that tests the potential failure mechanisms

derived from fault analysis. Currently, Automotive companies are focused on integrating

model-based designs enabling simulations for low-cost, rapid experimentation that assess

a vehicle’s performance. Model-based designs allow engineers to simulate specific tests

within controlled environmental conditions. Through the use of model-based design,

engineers can test vehicle and component faults inside a simulation model to assess how

the vehicle behaves during various failures without incurring the cost of destructive

testing.

This thesis, in partner with the EcoCAR Mobility Challenge, aims to incorporate

modern industrial fault diagnostics into a hardware-in-the-loop (HIL) simulation and

analyze the performance of the model-based design. Fault Tree Analysis (FTA) and

Failure Mode and Effect Analysis (FMEA) were used to develop the necessary

requirements for the vehicle system. Different faults were intended to be tested for each

major component, including, but not limited to, the energy storage system (ESS), rear

electric motor, belted alternator starter, DC-DC converter, and the multiplexed vehicle

electrical center. The ESS was the only component demonstrated as an example for

integrating the fault insertion method. The research details how a standard method was

constructed for developing and inserting faults in the HIL test environment. The process

is used for testing and designing the control algorithm for a hybrid supervisor controller.

iii

Dedication

I dedicate this research to the automotive industry and to the Ohio State

University for all the practical information I have obtained from them. I took on the task

of doing research to grasp a better knowledge of useful simulation practices that can be

used to further improve vehicles people drive day-to-day. I hope to make vehicles safer

and cheaper; allowing people to continue having a fast and enjoyable transportation

method.

iv

Acknowledgments

I want to give a sincere thanks for all the people that have help me along this

difficult learning process. To Dr. Shawn Midlam-Mohler for his excellent advising and

support for the EcoCAR mobility challenge team. To Kristina for the terrific support as

my manager and for the incredible guidance during the research experience. And finally,

to both Mahaveer and Hari for working beside me and learning the different software

while supporting one another. It is a true honor to say that the EcoCAR team has become

a second family for me and the team will always have a special place in my heart – keep

doing amazing things!

v

Vita

March 25, 1996 ... Born – Columbus, OH

Summer 2016, 2017, 2018 .. Internship, Sutphen

 Towers – Hilliard, OH

Spring, Autumn 2018 .. Co-op, Robert Bosch

 – SC, Charleston

Summer 2019 .. Honda R&D – Raymond,

 OH

Fields of Study

Major Field: Mechanical Engineering

vi

Table of Contents

Abstract ... ii

Dedication .. iii

Acknowledgments.. iv

Vita .. v

Fields of Study .. v

Table of Contents ... vi

List of Tables ... viii

List of Figures .. ix

Chapter 1. Introduction ... 1

1.1. Motivation .. 1

1.2. EcoCAR Mobility Challenge ... 2

1.3. Thesis Structure ... 2

Chapter 2. Background ... 4

2.1. Requirements Development/Fault Diagnostics.. 5

2.1.1. Fault Tree Analysis (FTA) .. 6

2.1.2. Failure Mode and Effects Analysis (FMEA) .. 8

2.2. Model Based Design .. 11

2.2.1. Model-in-the-Loop (MIL) ... 12

2.2.2. Software-in-the-Loop (SIL) .. 12

2.2.3. Hardware-in-the-Loop (HIL) .. 13

Chapter 3. Methodology ... 14

3.1. Vehicle Architecture .. 15

3.2. Requirement Development .. 17

3.2.1. Fault Tree Analysis (FTA) .. 18

3.2.2. Failure Mode and Effects Analysis ... 21

3.3. In-the-Loop System ... 23

vii

3.3.1. Model-in-the-Loop (MIL) ... 24

3.3.2. Hardware-in-the-Loop (HIL) .. 25

3.3.3. Component-in-the-Loop (CIL) and Vehicle-in-the-Loop (VIL) 26

Chapter 4. Implementations .. 28

4.1. Simulink ... 29

4.2. ControlDesk ... 31

4.2.1. The Dashboard Layout .. 32

4.2.2. Calibration Layout .. 33

4.2.3. Diagnostic Layout ... 34

4.3. Automation Desk ... 35

Chapter 5. Results ... 40

Chapter 6. Conclusion ... 47

6.1. Future Work ... 48

Bibliography ... 50

 List of Abbreviations ... 51

 FTA: Key Block Diagrams .. 52

 FMEA Rankings .. 53

viii

List of Tables

Table 1: FMEA Form Structure .. 10
Table 2 Automotive Industrial Severity Rankings.. 53
Table 3 Automotive Industrial Occurrence Rankings .. 54
Table 4 Automotive Industrial Detection Rankings ... 55
Table 5 EMC Severity Rankings .. 56
Table 6 EMC Occurrence Rankings ... 57
Table 7 EMC Detection Rankings .. 58

ix

List of Figures

Figure 1 Industry Fault Diagnostic V-Diagram .. 5
Figure 2 Fault Tree Analysis Block Diagram ... 7
Figure 3 Requirement Development Flow chart ... 9
Figure 4 Research Specific V-Diagram .. 14
Figure 5 OSU EcoCAR Vehicle Architecture .. 16
Figure 6 Vehicle Component Interaction Diagram ... 16
Figure 7: Fault Tree Analysis (FTA) for a Deceleration Failure 20
Figure 8 FMEA from FTA Deceleration Failure .. 22
Figure 9: EcoCAR’s Model-in-the-Loop Simulink Model ... 24
Figure 10: OSU EcoCAR Engine Component in the Loop Testing 27
Figure 11 Controller Layout from HIL Simulink Model .. 29
Figure 12 Simulink Plant Output CAN signals – ESS Fault Enabling 30
Figure 13 Dashboard Layout Running Drive Cycle ... 32
Figure 14 Calibration Layout for MABx Controller... 33
Figure 15 Generic Diagnostic Layout with CAN Communication Channels................... 34
Figure 16 EMC Drive Trace w/ Highlighted ESS Fault Portions 36
Figure 17 AutomationDesk Layout w/ ESS Fault Scenarios .. 37
Figure 18 If-Else Block for Pass/Failure Criteria ... 38
Figure 19 DataAcquisition Block – Set Error Time Section .. 39
Figure 20 RTM Excel Sheet ... 41
Figure 21 Drive Trace: ESS Fault Insertion During Acceleration 42
Figure 22 Current Trace: ESS Fault Insertion During Acceleration 42
Figure 23 Drive Trace: ESS Fault Insertion During Braking ... 43
Figure 24 Current Trace: ESS Fault Insertion During Braking .. 43
Figure 25 Drive Trace: ESS Fault Insertion During Coasting .. 44
Figure 26 Current Trace: ESS Fault Insertion During Coasting 44
Figure 27 Report Test Results... 45
Figure 28 MIL vs HIL Simulation Comparison w/ an ESS Fault..................................... 46
Figure 29 FTA: Block KEY .. 52

1

Chapter 1. Introduction

The design of a vehicle’s hybrid supervisory controller is a difficult task that must be

separated into multiple subsections. This thesis is developed to go into detail about

testing the fault insertion subsections for designing the controller. Testing faults with the

vehicle’s controller is an essential way to ensure that the controller is designed to be

robust and handle different fault scenarios. In order to not damage the controller and

safely run the execution of inserting multiple different fault scenarios the testing was

conducted inside Hardware-in-the-Loop (HIL) simulation. HIL simulation allows for the

controller to act as if installed on the vehicle and transmit different electrical signals via

CAN communication. The usage of different HIL software allows the user to track the

communication and check that the controller is designed to pass each developed

requirement. The user can then send a faulty signal through the software and track that

the controller behaves according to design.

1.1. Motivation

The automotive industry is spending large sums of money on testing and

destroying multiple prototype vehicles. Companies are currently looking towards

simulation techniques that can reduce the number of prototypes that are being destroyed

or damaged from testing different fault cases. This research aims to provide a method for

2

conducting fault insertion with a simulation technique that both aids in the development

and design of a controller in a safe and non-damaging way.

1.2. EcoCAR Mobility Challenge

The research is conducted in partnership with the Ohio State EcoCAR Mobility

Challenge Team. The team constructs a four-year build cycle of taking apart a stock

General Motors vehicle – this time it’s a 2019 Chevy Blazer – and modifying the vehicle

to become a hybrid electric automobile. The research is specifically working with the

propulsion controls and modeling sub team that is conducted at the Center for

Automotive Research. During this thesis the team will be finishing year two and it is

important to demonstrated proper testing with designing the team’s controller, the

MicroAutoBox (MABx).

1.3. Thesis Structure

The thesis is broken up into six chapters and a short description of each chapter is as

follows:

• Chapter 1: Introduction, briefly discusses what the research is about, the

motivation behind conducting the research, and the partnership support for

guiding the research

• Chapter 2: Background, goes over literature on different research that has been

conducted on the similar matters regarding fault diagnostics, HIL simulation, and

model-based design.

3

• Chapter 3: Methodology, takes what was learned from Chapter 2 and transitions

to how that information was used within the thesis.

• Chapter 4: Implementations, covers the different software used for testing and

inserting a fault into the team’s controller

• Chapter 5: Results, provides evidence that the research was a success and that the

fault was adequately inserted into the controller and verified with the comparison

of another simulation technique

• Chapter 6: Conclusion, reiterates on what was covered in the course of the thesis

and provides additional future work to be continued on the topic.

4

Chapter 2. Background

For every professional automotive company, process is important to follow; this

ensures that the development of a system is fully defined and working as intended. The

industry follows a standard V-diagram, shown in Figure 1, as a guide stone for

developing a sequence of events to take place for the entire design of a product [1].

Everything starts from the top left of the diagram, the high-level product requirement,

and is designed downwards into more component specific. High-level requirements are

intended for brainstorming and building a functional base to guide the project along.

Requirements will be continually updated as the design process continues, and the

development of requirements will be highlighted in the following section. Each block is

separated by having a deliverable/task to complete before moving on to the next block.

The V-diagram is split into two section: the left side for system/model design and the

right side for verification and validation [2]. The diagram is structured to become more

component specific (low level) when working downwards from top to bottom while the

top of the diagram is for the high-level systems.

Since this thesis is primarily about integrating a hybrid supervisor microcontroller

into a vehicle we will only focus on a few necessary aspects of the V-diagram shown.

Requirements will be analyzed by two different fault analyses methods,

Development/Prototyping will be touch on with the integration of software-in-the-loop,

5

Testing & Tuning block will be addressed thoroughly with the integration of fault within

hardware-in-the-loop simulation, and the additional system and field testing blocks will

be cover briefly by component-in-the-loop and vehicle-in-the-loop simulations.

Figure 1 Industry Fault Diagnostic V-Diagram

2.1. Requirements Development/Fault Diagnostics

The immediate process for any good design is the development of proper

requirements: “In industry, 40% of budget is spent on rework; of that 70-85% of the

rework is due to errors in requirements” [3]. The high expense and risk with making

improper requirements makes this section a vital portion of including proper

requirements into the research project for fault insertion and fault diagnostics.

6

Fault Diagnostics are used worldwide for research and design. The goal for fault

diagnostics is to understand faults, defined as “unpermitted deviations of a feature in a

system from the acceptable, usual, or standard conditions”, in order to prevent or

minimize failures from occurring. The classification for a failure is a “permanent

interruptions of a system’s ability to perform a required function under specified

operating conditions” [1]. Developing proper requirements aids in the analysis of a

system’s failure and to create those requirement, two common industrial methods were

used: Fault Tree Analysis (FTA) and Failure Mode and Effects Analysis (FMEA).

2.1.1. Fault Tree Analysis (FTA)

Fault Tree Analysis is an approach to understanding the causes of already known

failures by breaking up the failure into smaller component specific faults. Fault Tree

Analysis (FTA) is a top down approach that begins with the failure of a system and

determines the possible causes for the components basic failures which include logic

operations, Figure 2 [1]. FTA is a useful tool for decision making and has multiple

purposes including: understanding the logic leading to the top event, prioritizing

contributors to the top event, preventing the top event from occurring, monitoring the

performance of the system, minimizing and optimizing resources, assisting in the design

of a system, and diagnosing causes of the top event. [4] Only three of those conditions

were utilized in the Fault Tree Analysis for this paper; understanding the logic leading to

the top event, assisting in the design of a system, and diagnosing causes of the top event.

7

Figure 2 Fault Tree Analysis Block Diagram

In order to conduct an FTA the following list must be followed in order [4]:

1. Identify the objective for the FTA.

2. Define the top event of the FTA.

3. Define the scope of the FTA.

4. Define the resolution of the FTA.

5. Define ground rules for the FTA.

6. Construct the FTA.

7. Evaluate the FTA.

8. Interpret and present the results.

8

Each step is essential for properly guiding the construction of a fault tree, and its main

function is to have the analysis remain useful for the intended purpose. Steps 1-5 are prior

to the construction of the actual fault tree (see Figure 2 for an example) and are important

for setting up the guidelines in order to efficiently produce an analysis that is both helpful

and logical for constructing requirements in the future. The scope defines which failures

and contributions will be involve with the analysis, and the resolution is the planned

amount of detail for breaking up the fault tree [4] hence these two steps can be thought of

as going together. The ground rules provide the symbolic meaning of each gate/block.

Figure 29, in Appendix B, shows the rules in which these blocks were constructed for this

thesis. Step 6 and 7 are the visuals and construction of the analysis itself that breakup the

common whole level failure into smaller component level faults. Step 8 takes the

information from conducting the analysis and uses it to produce, the next sequential

method, Failure Mode and Effects Analysis.

2.1.2. Failure Mode and Effects Analysis (FMEA)

After completing the FTA, a failure mode and effects analysis (FMEA) is

performed to further understand the faults derived from the previous analysis. From

Fords FMEA handbook, a FMEA is intended to “recognize and evaluate potential failures

and its effects, and identify actions that could eliminate/reduce the failure from occurring

while documenting the process” [5]. FMEA can be typically combined with FTA because

the derived failure results from the FMEA can be incorporated into the FTA and vice

versa. [1]. A constant loop can occur from these two methods by taking the faults from

the FTA, using them in a FMEA to further understanding the faults, and use the in-depth

9

FMEA results as inputs for a new FTA. Continuing the loop until satisfied with the

results/or have enough knowledge to complete the objective of the analysis, Figure 3.

Figure 3 Requirement Development Flow chart

The FMEA involves filling out a form that gives specific details regarding the

components of interest. Table 1 shows the structure of the form, where the bold words are

from the form and the rest of the box is an example for the structure. There can be

10

multiple functions for a specific item and each function can break down further with

multiple potential failure modes and multiple potential effects. The first column instructs

listing a function which must be measurable, similarly to a requirement [5]. The second

column consists of failure modes which can fall into four categories: No function, partial

function (degradation over time), intermittent function (“loses functionality due to

external factors”), and unintended function. Columns 3 and 5 specifically draw out

different effects and causes related with the failure. Columns 6, 8, and 11 relate with

ways to avoid/reduce the failure from occurring and a “recommended action” of

improving the design with the results to “reduce risk and increase customer satisfaction”

[5].

Table 1: FMEA Form Structure

Item /

Func

Pot.

Failure

Mode

Pot.

Effects

S

e

v

Pot.

Causes

Prevention

Controls

O

c

c

Detection

Controls

D

e

t

R

P

N

Rec.

Action

Item1/

Fnc1

Fail1 … # Cause … # … # # …

Fail2 … # Cause … # … # # …

Item1/

Fnc2

Fail1

… # Cause … #

…

… … # Cause … # #

Fail2

… #

Cause

… #

…

…

… # … # # …

1 2 3 4 5 6 7 8 9 10 11

Every failure mode has an associated Risk Priority Number (RPN) to quickly

show which item needs to be prioritize during the design and validation phase. The RPN

is a number from 0 to 1000 that showcases the importance of the potential effects by

multiplying the severity rank, occurrence rank, and detection rank together. Each effect

11

has a specific severity rank and occurrence rank and each detection control has a specific

detection rank (all ranks are from zero to ten). There are common industry rankings for

each section that can be found in Appendix C: Table 2, Table 3, and Table 4, but it is

recommended to develop and produce a separate internal ranking system to clearly

prioritize the failures associated with the system.

2.2. Model Based Design

Model based design is commonly used amongst automotive industries and automotive

related design projects. Past research articles have involved integrating and testing faults

within components from cyber-physical systems such as electronic control units (ECUs)

to investigating faults within a component specific system such as a hybrid electric

vehicle inverter [6] [7] [8]. All model-based designs have the process of using X-in-the-

Loop, where ‘X’ refers to any testing environment which can be model, software, or

hardware [9]. X-in-the-Loop (XIL) systems are useful for developing the testing

environment for a system in initial/early design phases, represented as high-fidelity

models, to inserting electrical faults within the specific physical hardware. The three

primary systems are Model-in-the-Loop (MIL), Software-in-the-Loop (SIL), and

Hardware-in-the-Loop (HIL). XIL allows for the slow and easy transition of testing a

component to be incorporated into the entire system. Each XIL has different benefits and

shortcoming that are addressed in the following sections. Chapter 3, Section 3.3 will

showcase an example for using the different XIL systems in order to slowly incorporate

the design of the vehicle’s controller.

12

2.2.1. Model-in-the-Loop (MIL)

Model-in-the-Loop (MIL) is a simulation environment, solely on a computer’s

software, that represents the component and/or system behavior. These models consist of

no wires or physical connection, but are all internal to the software on the computer,

which can be MATLAB/Simulink, ASCET [9], or ASM [6]. A MIL environment is

decided with a use case in mind. A use case could be to quickly design the internal ECU

of the physical component and test its interaction with a modeled plant environment, all

without physically hooking up any hardware. Another use case example would be to

represent high fidelity dynamics of an engine. The plant is typically developed separately

from the controller and validated from previous physical testing. The shortcomings of a

MIL environment are that it’s not a perfect representation of the real-world environment.

Often, as there is an increased model fidelity, simulation time of the model must be taken

into consideration. Simulation time can be a benefit if it’s faster than real time or a

hinderance if the simulation requires heavy computation. For model-based design, MIL is

often used as a baseline for calibrating parameters and quickly testing conceptional

algorithms in appropriate fidelity environment.

2.2.2. Software-in-the-Loop (SIL)

SIL is the next logical step in the XIL process. SIL is the in-between stage from

MIL and HIL simulation and is used to simulate the combination of internal software

tools (such as Simulink [9]) and the c code (compiled code) for the designed hardware. C

code is the modeled data of the component, written in the coding language C, that is used

13

to be flashed into the physical hardware being designed and developed. The primary

purpose of SIL is to verify that the c code is constructed correctly and that the model runs

properly before flashing the code into the hardware. If the c code is not being personally

written and is instead compiled from built in software, like Simulink, then SIL can be

skipped [8, 10].

2.2.3. Hardware-in-the-Loop (HIL)

HIL is the final step of the XIL process. HIL is running the physical hardware, hence

the name, in conjunction with a HIL simulator, such as dSPACE [10] or TTEthernet [8].

A HIL simulator acts as the plant and communicates with the component’s ECU via

electrical communications. The simulator can be thought as tricking the ECU to believe it

is in an actual vehicle. The user is allowed to adjust what messages and signals are being

communicated from the simulator and test whether the ECU is properly responding to

those signals. HIL allows for design engineers to test and send faults within the designed

hardware without having to produce the fault case in the actual system. This produces a

safe and efficient testing method, that could otherwise be harmful to the component

and/or operator.

14

Chapter 3. Methodology

Before beginning to insert a fault into the model, it is important to first build a strong

foundation and understand what faults are to be delivered and tested. For guidance on

how the work was conducted for this thesis, Figure 4 shows a V-diagram specifically for

the fault diagnostic development. The V-diagram is conducted identically to a standard

V-diagram, starting at the top left (high level) and working to the right and downwards

(more component specific, low level) and back up again. Following the current industry

test procedure, it is important to first start with the development of requirements, as

highlighted in Chapter 2. Requirements are developed from the first three blocks using

FTA and FMEA, and then work up the V-diagram by verifying each level of

requirements.

Figure 4 Research Specific V-Diagram

15

Going back up the V-diagram are four specific In-the-loop systems; Model-in-the-

Loop (MIL), Hardware-in-the-Loop (HIL), Component-in-the-Loop (CIL), and Vehicle-

in-the-Loop (VIL). The development and design of the MIL environment is done in

parallel with the development and incorporation of requirements. The MIL model is

structured to incorporate components and their interaction with the hybrid supervisor

controller inside a simulation. HIL will be the primary focus of this thesis and takes the

developed faults and physically tests those faults with the controller via electrical

connections. CIL and VIL are an additional check for validating the design of the

controller by testing the controller’s interaction with other physical components in a safe

environment. All In-the-Loop systems will be discussed in more detail further in this

Chapter, Section 3.3.

3.1. Vehicle Architecture

Before building requirements for the design of the vehicle’s main controller,

dSPACE MicroAutoBox (MABx), it is important to lay out the components the controller

will be interacting with in the vehicle. Laying out and understanding the structure of the

system, and its associated components, allows visualization of the system to help with the

development of potential failures or faults that could occur. Figure 5 shows OSU

EcoCAR vehicle architecture, while Figure 6 highlights the controller/component

interaction within the vehicle.

16

Figure 5 OSU EcoCAR Vehicle Architecture

Figure 6 Vehicle Component Interaction Diagram

It is not only important to understand issues with communication from the

controller to the vehicle’s subcomponent ECUs, but to also address issues with how the

ECUs interact with their physical component. This may seem as an obvious statement to

17

make but it is still addressed in this thesis because it can be a simple concept to overlook.

Understanding the interaction with the subcomponent ECUs and their physical

subsystem, ensures that during the requirement development phase that physical

implementations of the controller are not overlooked.

Take for example the requirement developed from the interface between the

MABx and the Electric Machine Inverter, Figure 6. If the physical Electrical Machine,

the motor, was not considered while developing the requirements then this would leave

for a flawed design and potentially cause the motor to do harm to the vehicle, the person

driving, or damage the component. The process can continually break down further,

going as far as to incorporate the bolts inside the motor, but clearly this would be outside

the scope of the development for the MABx controller, hence it is ignored.

3.2. Requirement Development

The next step after developing the vehicle’s architecture and subsystem

interaction is to use this information to develop requirements. Requirements are an

ongoing process that are continually being updated and modified as engineers learn more

about their system. There are multiple tools to aid in the process of developing

requirements but for this thesis two primarily tools were used: Fault Tree Analysis (FTA)

and Failure Mode and Effect Analysis (FMEA). Additionally, requirements were

produced and stored inside a requirements trackability matrix (RTM), which is

continuously updated from the entire EcoCAR team. This central location allows all team

engineers to know the software, hardware, and system requirements.

18

3.2.1. Fault Tree Analysis (FTA)

Fault Tree Analysis is an industry wide method for constructing a visual

representation that aids in the development of requirements. FTA can be thought of going

one step further from the vehicle architecture, since an FTA shows what component are

the cause of a higher-level system failure. As described in Chapter 2, the FTA starts from

the top level and works downward into more specific circumstances or lower level

subsystems/components. Before constructing an FTA analysis, it is important to first

identify the objective for the analysis. The objective helps keep the analysis on track and

prevents unnecessary bombardment of unrelated information, allowing the FTA to be an

efficient use of time. The objective for every FTA conducted for this thesis was to gain a

more general understanding of components and their interactions with the vehicle

controllers, component controllers, and hybrid supervisory controller.

The second step, defining the top event/failure, typically comes from experience.

Fortunately, since EcoCAR has a partnership with General Motors (GM), GM provided a

list of common top-level automotive industry faults. The list was the following:

• Inadequate/delayed loss of vehicle deceleration including malfunction within the

regen braking system.

• Unintended acceleration

• Unintended longitudinal motion; unintended vehicle motion (rollaway)

• Unintended travel in the wrong direction, unintended propulsion flow

• Unintended or loss of lateral motion (includes locked steering)

• Unintended deceleration

19

• Loss or degradation of acceleration; loss or degradation of propulsion (e.g., stall)

• Unintended release of thermal energy causing burns or fire

• Unintended exposure to high voltage energy system (shock)

• Unintended exposure to toxic / flammable chemicals (gas/liquid)

• Unintended access to rotating or moving components (e.g., engine start)

The final steps to be conducted before actually constructing the fault tree include

defining the scope, resolution, and ground rules. The scope and resolution limited the

fault tree to the components shown in Figure 6. The ground rules included using only the

standard block schematics found in Appendix B: Figure 29.

The next step in the process is to physically construct the fault tree diagram. The

diagram in constructed by taking a common fault and using that as the starting point for

the fault tree. Figure 7 shows an example of an FTA for a vehicle deceleration failure.

This is a high level “common” fault from the GM provided categorized failure list.

 The common fault, in red, is always addressed first and broken down to more

specific components, in orange. The FTA has three color coding: red, orange, and blue.

Red represents the highest-level event, orange indicates additional lower lever events will

follow, and blue represents the lowest level event for that analysis. Each block can

typically be considered as either an AND gate or an OR gate. An AND gate means that

all the following events must occur for the higher event to take place, and an OR gate

means that if any of the following events occur then the higher event will take place. The

event is shown to be a OR gate by a circular arc underneath the event block; an AND gate

would have a straight line. Since, the blue events are the lowest level, they do not

20

associate with being an AND or OR gate. For a better understanding of the block and

color identification see Appendix B.

Figure 7: Fault Tree Analysis (FTA) for a Deceleration Failure

The FTA shows the different component level issues that are associated with the

full vehicle system failure. The FTA example showed that when designing the controller

and considering faults with improper vehicle deceleration, it is important to test electrical

21

faults from the 12V battery supply, motor, inverter, CAN bus, LV Harness, and Energy

Storage System (ESS). Hence the FTA provided a list of components for developing the

fault requirements associated with a full-level vehicle braking failure.

3.2.2. Failure Mode and Effects Analysis

The Failure Mode and Effects Analysis (FMEA) takes what was learned from the

FTA and breaks it down further. Continuing with the deceleration failure example, an

FMEA guides the user to incorporate these specific component failures from the FTA

into the FMEA document for further, more detailed, review. Figure 8 shows the filled out

FMEA document from the conducted FTA. The first column is filled out with each

component, derived from the FTA, and the function for that component is broken up as a

high-level function since the analysis was conducted for a high-level system. Since the

functions are high-level, the standard for making measurable functions had to be

overlook for this analysis. Each column was filled out according to the potential failure

(typically shown from FTA), potential causes of failure, and prevention and detection

controls. Each situation was raked accordingly from the EMC rankings, found in

Appendix C: Table 5-Table 7, that were specifically created for this FMEA.

Figure 8 FMEA from FTA Deceleration Failure

2
2

23

The RPN provides which component and failure needs to be prioritize during

testing. The ESS came on top with an RPN of 210 and was further looking into detail for

deriving a test case. The recommendation for preventing the main ESS failure was for the

controller to remove any current being sent to the ESS when receiving an ESS fault. The

recommendation guided the team for developing the following requirement:

“The absolute value of the ESS current shall not be less than 5 Amps within 5 seconds of

an ESS fault detection”.

The requirement will be used to create a test case for when the controller is tested inside

the HIL simulation rack, the full example of this test case will cover in Chapter 4. The

additional recommendations from the FMEA allowed for the development of additional

requirements to be stored inside the RTM.

3.3. In-the-Loop System

In-the-Loop systems are commonly used when conducting a model-based design.

As discussed in Chapter 2, these In-the-Loop systems are known as Model-in-the-Loop

(MIL), Software-in-the-Loop (SIL), and Hardware-in-the-Loop (HIL). EcoCAR

additionally adds two In-the-Loop systems; Component-in-the-Loop (CIL) and Vehicle-

in-the-Loop (VIL). Though, all these In-the-Loop systems will be touched on in this

section, it is important to point out that HIL will be highly covered since HIL is the

primary method incorporated with this research.

24

3.3.1. Model-in-the-Loop (MIL)

Model-in-the-Loop is a way to model the entire vehicle via a simulation. The

model is developed from MathWorks’s software, Simulink, to incorporates the full

vehicle model. This full vehicle model simulates all major powertrain components for

various drive cycles. MIL is used to develop the logic for tested failures by sending

error/warning signals to the controller model and verifying its controller response. The

MIL model is shown in Figure 9 where it clearly shows the Plant (the simulated vehicle),

the driver model, and the vehicle’s controller. SIL is overlooked for the transition from

MIL to HIL because Simulink provides a built-in c-code compiler, which makes SIL

unnecessary.

Figure 9: EcoCAR’s Model-in-the-Loop Simulink Model

25

3.3.2. Hardware-in-the-Loop (HIL)

Unlike MIL, HIL goes one step further by physically testing and checking the

communication from the plant to the controller. The design of the hybrid supervisory

controller known as the dSPACE MABx can then be tested to ensure in real time that the

signals being transmitted are as expected. The MABx is connected to a dSPACE mid-size

HIL simulator by physical connections. The dSPACE mid-size HIL simulator

incorporates a licensed program, ControlDesk, which enables tracking serial

communication in real time. An example and more information about ControlDesk will

be covered in Chapter 4.

The Simulink model, Figure 9, allows for a quick transition from MIL to HIL by

double clicking and changing the testing environment mask. The transition keeps the

MIL based model algorithm for both the plant and the controller, and only changes the

input and output layers. Quick validation for MIL and HIL is able to be conducted since

both the MIL and HIL models have the same base algorithm. The input and output layers

change the communication from virtual to electrical, when transitioning over to HIL. The

HIL input and output layers incorporate CAN communication, enabling multiple signals

and messages to be sent through the bus.

The HIL structure allows for sending a failure/error message to the controller

from the modelled plant and checks that during a simulated drive cycle the controller acts

as expected. The developed requirements, stored in the RTM, are used to check and

validate that the controller passed the requirement from receiving the fault message. The

process is continued to check the controller satisfies each requirement.

26

3.3.3. Component-in-the-Loop (CIL) and Vehicle-in-the-Loop (VIL)

CIL and VIL are additional X-in-the-Loop systems that are essential to conduct

prior to the release of the designed vehicle. Both systems ensure that all components

interact with one another as intended by integrating the physical components together.

The components are typically integrated into the vehicle and tested for functionality and

the vehicle’s performance. Since both of these systems consist of physical interaction and

not solely electrical, like HIL, a replication of testing component failure would cause

hardware damage, hence fault insertion would not be wise for these methods. These

systems are addressed in this thesis for completion and to provide further information

regarding additional X-in-the-Loop systems that are to be conducted before the release of

the designed controller.

CIL takes either a specific component or a portion of the entire full-vehicle

system and tests for functionality as well as how the subsystem components interact with

one another. The subsystem can be tested on a dynamometer by disconnecting part of the

full-vehicle system and only using the installed section. Figure 10 showed testing the

engine/ transmission subsystem in the vehicle without having the rear electric motor

incorporated.

27

Figure 10: OSU EcoCAR Engine Component in the Loop Testing

VIL, one step further than CIL, consists of testing the entire vehicle with all the

physical components installed on the vehicle. The vehicle can be tested either at a testing

facility like TRC or on an AWD dynamometer. This is the final step of ensuring the

components function safely and properly before releasing to the public.

28

Chapter 4. Implementations

In order to test that a fault is being transmitted, it is necessary to ensure that the

controller both reads either a warning/error or fault message and responds with an

appropriate control action. This process needs to be adequately documented and done in

real time to track that the response rate set from requirements are satisfied. There are

primarily three software interfaces that are used for this research, MATLAB/Simulink,

dSPACE ControlDesk and dSPACE AutomationDesk. dSPACE Synect, a test

management software, was originally planned to be added to these software toolboxes,

but due to unexpected circumstances this software wasn’t able to be incorporated.

This Chapter’s main focus will be on the different software that were incorporated

into this thesis. To aid in the understanding of the different software, a fault pertaining to

the ESS will be inserted and tested. The ESS was chosen first because it is rated as a

high-risk component that additionally lacks proper testing and was rated high from the

FMEA conducted in Chapter 3. The requirement to be tested for the ESS was framed as

follows:

“The absolute value of the ESS current shall not be less than 5 Amps within 5 seconds of

an ESS fault detection”.

All other requirements are stored inside the requirement traceability matrix (RTM) and

the RTM is used to check that all requirements related with controller communication are

satisfied.

29

4.1. Simulink

Simulink, developed and produced by MathWorks, is a simulation software

toolbox that allows for the construction of a model that can be ran and tested. Simulink is

used for the construction of the full vehicle model MIL and HIL model. Chapter 3 goes

into greater detail about MIL and HIL and how MIL is used specifically with Simulink.

The HIL model, as described in Chapter 3, takes the base algorithms from the MIL plant

and controller and only changes the input and output (communication) algorithms. Figure

11 helps to demonstrate this concept by highlighting and showing the HIL model layout

from a portion of the Simulink Model. Boxed in red are the communication

layers/algorithms that are internally changed when transitioning between the MIL & HIL

environment, while the main internal controller, boxed in black, remains constant.

Figure 11 Controller Layout from HIL Simulink Model

30

Simulink is then used to prepare the HIL model for testing and inserting faults.

The HIL model signals are prepped by enabling global data export for the signals

associated with either the plant’s warning or error CAN signals. Exporting data globally

on these signals allows for ControlDesk to manipulate these signals, hence test that the

controller both receives and responds according to the modified fault message.

Continuing with the ESS fault case, the ESS error and warning Boolean messages

are exported to enable modification in ControlDesk. This gives the user the ability to

track in ControlDesk whether the ESS requirement is satisfied. Figure 12 shows the

physical layout of various plant CAN signals that are being exported for ControlDesk

manipulation. The signals that are enabled are indicated by being underlined in red and

from the blue wireless output icon shown above the V_ESS_Warning_Bool_NA and

V_ESS_Error_Bool_NA signals. The signals will additionally need to be exported

globally for ControlDesk to manipulate and read these signals.

Figure 12 Simulink Plant Output CAN signals – ESS Fault Enabling

31

The final step for Simulink is to compile the full vehicle model into compiled

code (c-code). The plant and controller being two different reference models are

compiled separately. The compiled controller model and the plant model c-codes are

flashed into the controller and the HIL Simulator respectively. The HIL simulator acts as

the plant for the controller and both systems are connected by electrical signals that

communicate via CAN. CAN communication is created in the Simulink input and output

algorithm blocks using the RTI CAN Multimessage block sets. The blocks sets are

specifically developed to enable interface of dSPACE hardware products such as the

MABx & HIL Simulator using MATLAB/Simulink. The RTI block set allows for quick

CAN modifications and works in conjunction with the Simulink code compiler.

4.2. ControlDesk

ControlDesk is a software, made by dSPACE, that contains a user-friendly

interface for tracking communication and signal values in real time. ControlDesk takes

the compiled code generated by Simulink and flashes the C-codes for the controller and

the plant onto their respective hardware. All specified signals can be tracked and

modified during a run cycle, enabling ControlDesk to be a vital tool for checking

communication, inserting a fault and diagnosing the system response. The triggered error

or warning signal is sent from the HIL plant to the MABx and checks if the controller

receives the signal and correctly responds, passing the requirement criteria. For

organizing and simplifying the test procedure, three layouts were created: the dashboard,

calibration window, and diagnostic layout.

32

4.2.1. The Dashboard Layout

The dashboard layout is exactly what it sounds like: a representation of a

vehicle’s dashboard during simulation. Figure 13 shows the active dashboard layout

running a drive cycle. It was initially created to test a failure with the electric storage

system (ESS). The far-left side, the SimState block, gives the tester the ability to stop,

pause, and start the simulated drive cycle. The middle section shows signals, represented

as a dashboard, being transmitted during the cycle and is used for a visual check that the

signal values are updating correctly. The right side provides a user interface with

togglable switches, for triggering different vehicles functions while additionally giving

the user the ability to insert and test an ESS fault. Underneath the ESS fault block is a

display showing the drive trace that visibly updates in real time.

Figure 13 Dashboard Layout Running Drive Cycle

The ESS fault is togglable in this layout and gives the user the ability to see how

the vehicle response when the fault is active. Here the user can validate that the vehicle

33

performs as expected for as quick visual check. ControlDesk additionally records the

different ESS current value and time stamp so the user can ensure that the requirement is

being passed.

4.2.2. Calibration Layout

The calibration layout allows for physical alterations and calibrations to be made

to the controller in real time. All calibration changes will not be permanently stored

inside the controller but still aids in the design and development process. Figure 14 shows

the calibration layout that was constructed for the MABx controller. The Calibration

layout is not intended for physically testing faults, but still remains a useful tab for

designing the controller and setting/changing different controller attributes.

Figure 14 Calibration Layout for MABx Controller

34

4.2.3. Diagnostic Layout

The diagnostic layout is used for troubleshooting issues and changing

signal/variable values. The CAN bus is verified to communicating properly from this

layout and additionally shows important specified messages according to their

corresponding CAN bus. CAN communication is verified by visually checking that the

RX/TX time is updating. The CAN communication fault can also be triggered by

unchecking the Global Enable checkbox. Additional messages and signals can be added

to this layout for troubleshooting. Figure 15 shows a general diagnostic layout with every

CAN bus being updated and validated for that window.

Figure 15 Generic Diagnostic Layout with CAN Communication Channels

35

The diagnostic tab can additionally be used for testing the ESS fault, similarly to

the dashboard layout. The set up for the diagnostic tab is typically simpler than the

dashboard layout hence making the diagnostic tab preferred when conducting quick

requirement tests.

4.3. Automation Desk

AutomationDesk takes a list of conducted tests from ControlDesk and both

collects and stores the results into a report format. The AutomationDesk code is designed

and built to automate execution of test cases. These test cases are arranged in a hierarchy,

with each test case being run through a sequence of blocks from top to bottom . The

process is simply conducted by the click of a button and removes the need to manually

initiate the execution of every test case. Since multiple components will have multiple

requirements to be tested, AutomationDesk is essential for testing that all previous

requirements are not affected while the controller is being designed to meet additional

requirements. The automated test process can then be used to ensure that all past test

cases remain valid during the development of the controller algorithm.

The ESS fault example is continued to be used here to walkthrough the benefits of

using AutomationDesk. The ESS fault was tested for three different cases to ensure that

the requirement continued to be satisfied during all three cases. The three cases involved

inserting the ESS fault during a braking, accelerating, and coasting scenarios. The

EcoCAR mobility challenge (EMC) drive trace was used for the diagnosis of a fault in

the three scenarios considered. Figure 16 highlights the different portions of the drive

trace where the faults were inserted. After the faults were inserted, AutomationDesk

36

checked that the current value was below 5 Amps after 5 seconds and reported whether

the requirement was a pass or failure. The current and time values were set by the

requirement stated in the beginning of the Chapter.

Figure 16 EMC Drive Trace w/ Highlighted ESS Fault Portions

AutomationDesk uses a block format for developing the sequential code that is

ran for the process. The higher-level blocks consisted of starting and opening

ControlDesk, running the Data Acquisition, and performing the Data Analysis to be

stored inside the report. Figure 17 provides the AutomationDesk interface that has the

ESS fault cases as described earlier. The left side shows a list of variables and folders that

are stored inside AutomationDesk for organization and for reporting and checking the

37

different variable values. The right side is the programable interface that is organized by

three compressed blocks for running the code.

Figure 17 AutomationDesk Layout w/ ESS Fault Scenarios

Each block from the constructed code is separated primarily by its main task. The

ControlDesk Start block simply opens and runs the ControlDesk model. The

DataAcquisition block obtains the requested ControlDesk values and stores them in the

variables. The DataAnalysis block checks that the requirement is satisfied with an if-else

block for demonstrating if the criteria was a pass or fail, Figure 18.

38

The three test cases (fault during acceleration, braking, and coasting) are all

identical except for the fault insertion time, which is modified inside the Data Acquisition

Block, shown in Figure 19. Boxed in red is the error time variable for the when the fault

test should start. The figure shows the value of 165 seconds which matches the

acceleration time period from the EMC City Cycle, from Figure 16. Since all three test

cases are primarily the same with slight modifications, this makes AutomationDesk a

quick and easy tool for testing the different faults with the need to only make slight

modifications.

Figure 18 If-Else Block for Pass/Failure Criteria

39

Figure 19 DataAcquisition Block – Set Error Time Section

40

Chapter 5. Results

The success for this research involved properly using the given software to construct

a method for inserting a fault into HIL simulation. All previous Chapters went through

the process of understanding and setting up of the software for the test cases, but the

focus for this Chapter will be on the actual results obtained by the software. As discussed

earlier the requirements set whether the test case passes or fails, which is internally stored

inside the RTM. The RTM is an excel sheet of every requirement and test that has been

conducted and verified, Figure 20.

The documented report from the AutomationDesk script - for the ESS fault

scenario - successfully presented the results of the test. The following figures, Figure 21-

Figure 26, show the reported graphs from the ESS fault scenarios; recall that these cases

included inserting an ESS fault during an acceleration, braking, and coasting portion of

the drive cycle. The current profile on each scenario was less than 5 Amperes within 5

seconds, meeting the requirement. AutomationDesk additionally tested cases for the

different component limits and the entire results of the test are stored at the end of the

report, Figure 27. A failure in any of the test will require the user to reevaluate the design

of the hybrid supervisory controller and ensure that all requirements are satisfied.

Figure 20 RTM Excel Sheet

4
1

42

Figure 21 Drive Trace: ESS Fault Insertion During Acceleration

Figure 22 Current Trace: ESS Fault Insertion During Acceleration

43

Figure 23 Drive Trace: ESS Fault Insertion During Braking

Figure 24 Current Trace: ESS Fault Insertion During Braking

44

Figure 25 Drive Trace: ESS Fault Insertion During Coasting

Figure 26 Current Trace: ESS Fault Insertion During Coasting

45

Figure 27 Report Test Results

Finally, the same test cases were implemented in the MIL environment and results

were compared with the HIL results. This comparison helps to verify that the control

logic is maintained across both the environments. Figure 28 shows the comparison of the

MIL and HIL results. The similarities of each method following the same profile is a

clear indication that that the HIL fault implementation was a success.

46

Figure 28 MIL vs HIL Simulation Comparison w/ an ESS Fault

47

Chapter 6. Conclusion

The focus of this thesis was to develop a systematic procedure for using fault

diagnostic tools to be incorporated in HIL. Standard industry fault diagnostic tools were

used to help construct the requirements that set the foundation for creating multiple test

cases for fault insertion. The faults were used to develop and design a robust and safe

controller and HIL simulation was the prime environment in which the faults was

inserted. HIL simulation allowed for the physical controller to act as if in a vehicle while

additionally removing the unsafe aspect of physically testing faults with component

integration. An ESS fault was successfully inserted into the HIL simulation and proper

documentation of the process was covered.

The main focus of this thesis was to demonstrate a professional way for using fault

diagnostic tools to be incorporated into HIL software in order to design a vehicle

controller. Standard industry fault diagnostic tools were used to help construct the

requirements that set the foundation for creating multiple test cases for fault insertion.

The faults were used to develop and design a robust and safe controller and HIL

simulation was the prime In-the-Loop system to insert the fault. HIL simulation allowed

for the physical controller to act as if inside a vehicle while additionally removing the

unsafe aspect of physically testing faults with component integration. An ESS fault was

successfully inserted into the HIL simulation and proper documentation of the process

was covered.

The fault diagnostic procedure covered in this thesis was developed by working

towards the 2019 Winter Workshop Deliverable for the Ohio State EcoCAR Team. This

48

procedure was presented as a technical video and report which were reviewed by industry

experts from GM, MathWorks and dSPACE and other competition sponsors. OSU

received an outstanding near perfect score in this deliverable. OSU plans to expand this

tool to encompass other propulsion components and perform fault diagnostics to ensure

operation safety and controller robustness. The HIL procedure is developed to further

improve upon automotive industries across the globe and familiarize both student and

engineers on how X-in-the-Loop systems, specifically HIL, can support the work for

designing and testing the development of a controller. The HIL environment additionally

supports any component with electrical communications and can additionally be used for

hardware integration and for lifecycle/endurance testing.

6.1. Future Work

The research will continue to integrate additional test cases while designing the

controller. The requirements will be continually updated across the design phase, and

more requirements will be added potentially all components that will need to be tested.

With the increasing number of test cases, keeping track of impact of controller algorithm

updates on meeting test requirements will become cumbersome. Therefore, the use of

dSPACE Synect to manage test cases is recommended in future.

Synect allows for multiple AutomationDesk tests to be compiled together.

Automation Desk lacks the capability of tracking changes and different versions of the

controller algorithm along with test case results. Fixing the AutomationDesk limitations,

Synect can maintain an overall database to simultaneously track controller algorithm

updates along with test case results. This will finally aid the fault diagnostics by

49

providing a better understanding of the effect of updated control strategy on controller

robustness to faults.

50

Bibliography

[1] R. Isermann, Fault-Diagnostics Systems, Darmstadt, Germany: Verlag Berlin

Heidelberg, 2006.

[2] K. R. Butts and A. Ohata, "Improving Model-based Design for Automotive Control

Systems Development," Seoul, Korea, 2008.

[3] S. S. E. Jim Hays, Writing Effective Requirements, IBM Corporation, 2007.

[4] D. M. Stamatelatos, Fault Tree Handbook with Aerospace Applications,

Washington, DC, 2002.

[5] Ford Motor Company, Failure Mode and Effects Analysis, Dearborn, MI: Ford

Motor Company, 2011.

[6] C.-Y. Lin, P.-L. Li, C.-H. Li and W.-S. Chiang, "Investigation on IGBT Failure

Effects of EV/HEV Inverter Using Fault Insertion HiL Testing," KINTEX, Korea,

2015.

[7] J. Luo, K. R. Pattipati, L. Qiao and S. Chigusa, "An Integrated Diagnostic

Development Process for Automotive Engine Control Systems," 2007.

[8] D. Shang, E. Eyisi, Z. Zhang, X. Koutsoukos, J. Porter, G. Karsai and J.

Sztipanovits, "A Case Study on the Model-Based Design and Integration of

Automotive Cyber-Physical Systems," 21st Mediterranean Conference on Control

& Automation, Platanias-Chania, Crete, Greece, 2013.

[9] G. Tibba, C. Malz, C. Stoermer, N. Nagarajan, L. Zhang and S. Chakraborty,

"Testing Automotive Embedded Systems under X-in-the-Loop Setups," Austin,

2016.

[10] A. Mouzakitis, D. Copp, R. Parker and K. Burnham, "Hardware-in-the-loop system

for testing automotive ECU diagnostic software," Coventry, UK, 2009.

51

 List of Abbreviations

CAN Computer Area Network

CIL Component-in-the-Loop

ECU Electronic Control Unit

EMC EcoCAR Mobility Challenge

ESS Electronic Storage System

FMEA Failure Mode and Effect Analysis

FTA Fault Tree Analysis

HIL Hardware-in-the-Loop

MABx MicroAutoBox

MIL Model-in-the-Loop

RPN Risk Priority Number

RTM Requirement Traceability Matrix

SIL Software-in-the-Loop

VIL Vehicle-in-the-Loop

XIL X-in-the-Loop

52

 FTA: Key Block Diagrams

Figure 29 FTA: Block KEY

53

 FMEA Rankings

Note: All Industrial rankings charts (Table 2-Table 4) were grabbed from Ford’s FMEA

2011 Handbook [5]. Table 5-Table 7 were used for the rankings in FMEA example in

Chapter 3, Section 3.2.2.

Table 2 Automotive Industrial Severity Rankings

54

Table 3 Automotive Industrial Occurrence Rankings

55

Table 4 Automotive Industrial Detection Rankings

56

The Following Rankings were used to construct the FMEA used for this Thesis in

Chapter 3, Section 3.2.2.

Table 5 EMC Severity Rankings

57

Table 6 EMC Occurrence Rankings

58

Table 7 EMC Detection Rankings

	Abstract
	Dedication
	Acknowledgments
	Vita
	Fields of Study
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1. Introduction
	1.1. Motivation
	1.2. EcoCAR Mobility Challenge
	1.3. Thesis Structure

	Chapter 2. Background
	2.1. Requirements Development/Fault Diagnostics
	2.1.1. Fault Tree Analysis (FTA)
	2.1.2. Failure Mode and Effects Analysis (FMEA)

	2.2. Model Based Design
	2.2.1. Model-in-the-Loop (MIL)
	2.2.2. Software-in-the-Loop (SIL)
	2.2.3. Hardware-in-the-Loop (HIL)

	Chapter 3. Methodology
	3.1. Vehicle Architecture
	3.2. Requirement Development
	3.2.1. Fault Tree Analysis (FTA)
	3.2.2. Failure Mode and Effects Analysis

	3.3. In-the-Loop System
	3.3.1. Model-in-the-Loop (MIL)
	3.3.2. Hardware-in-the-Loop (HIL)
	3.3.3. Component-in-the-Loop (CIL) and Vehicle-in-the-Loop (VIL)

	Chapter 4. Implementations
	4.1. Simulink
	4.2. ControlDesk
	4.2.1. The Dashboard Layout
	4.2.2. Calibration Layout
	4.2.3. Diagnostic Layout

	4.3. Automation Desk

	Chapter 5. Results
	Chapter 6. Conclusion
	6.1. Future Work

	Bibliography
	Appendix A. List of Abbreviations
	Appendix B. FTA: Key Block Diagrams
	Appendix C. FMEA Rankings

