Fault Insertions into Hardware-in-the-Loop Simulation

Undergraduate Thesis

Presented in Partial Fulfillment of the Requirements for Graduating with Honors

Research Distinction at The Ohio State University

By
Martin, Tyler R.

Undergraduate Program in Mechanical Engineering

The Ohio State University

2020

Thesis Committee
Dr. Shawn Midlam-Mohler, Advisor

Qadeer Ahmed, Committee Member

Copyrighted by
Martin, Tyler R.

2020

Abstract

The Ohio State ECOCAR Mobility challenge is an intercollegiate team that
designs, builds, and tests a hybrid electric vehicle. One of the main goals of this team is
to build a hybrid supervisory controls strategy that tests the potential failure mechanisms
derived from fault analysis. Currently, Automotive companies are focused on integrating
model-based designs enabling simulations for low-cost, rapid experimentation that assess
a vehicle’s performance. Model-based designs allow engineers to simulate specific tests
within controlled environmental conditions. Through the use of model-based design,
engineers can test vehicle and component faults inside a simulation model to assess how
the vehicle behaves during various failures without incurring the cost of destructive
testing.

This thesis, in partner with the ECOCAR Mobility Challenge, aims to incorporate
modern industrial fault diagnostics into a hardware-in-the-loop (HIL) simulation and
analyze the performance of the model-based design. Fault Tree Analysis (FTA) and
Failure Mode and Effect Analysis (FMEA) were used to develop the necessary
requirements for the vehicle system. Different faults were intended to be tested for each
major component, including, but not limited to, the energy storage system (ESS), rear
electric motor, belted alternator starter, DC-DC converter, and the multiplexed vehicle
electrical center. The ESS was the only component demonstrated as an example for
integrating the fault insertion method. The research details how a standard method was
constructed for developing and inserting faults in the HIL test environment. The process

is used for testing and designing the control algorithm for a hybrid supervisor controller.
i

Dedication

| dedicate this research to the automotive industry and to the Ohio State
University for all the practical information | have obtained from them. | took on the task
of doing research to grasp a better knowledge of useful simulation practices that can be
used to further improve vehicles people drive day-to-day. | hope to make vehicles safer
and cheaper; allowing people to continue having a fast and enjoyable transportation

method.

Acknowledgments

| want to give a sincere thanks for all the people that have help me along this
difficult learning process. To Dr. Shawn Midlam-Mohler for his excellent advising and
support for the ECOCAR mobility challenge team. To Kristina for the terrific support as
my manager and for the incredible guidance during the research experience. And finally,
to both Mahaveer and Hari for working beside me and learning the different software
while supporting one another. It is a true honor to say that the ECOCAR team has become
a second family for me and the team will always have a special place in my heart — keep

doing amazing things!

Vita

March 25, 1996ccoiiiiiiiiesieseee e Born — Columbus, OH
Summer 2016, 2017, 2018cceevveieeeceee e Internship, Sutphen

Towers — Hilliard, OH
Spring, Autumn 2018ccooeiiiiiiiee e Co-op, Robert Bosch

— SC, Charleston
SUMMET 2019 ..o Honda R&D — Raymond,

OH

Fields of Study

Major Field: Mechanical Engineering

Table of Contents

N 11 - Tod SRR URI I
=T [Tox L1 o] o ISR PRRN ii
ACKNOWIBAGMENTS. ... bbb \Y;
RV SRS %
=T [0 0] (1| SRS v
Table OF CONTENLSoviiiiieiee bbbttt reas Vi
LSt OF TADIES ...ttt viii
LIST OF FIQUIES ..ottt e b e e e be e s s e e sbe e s b e e reeannaens iX
Chapter 1. INtrOGUCTIONo..iviiiiieee bbbt 1
I Y (o] £V Z LX) o SRS 1
1.2. ECOCAR Mobility Challenge.........cccoiiiiiiiiiieie s 2
1.3, TRESIS STTUCTUIE ...ttt ettt 2
Chapter 2. BaCKGIOUNGccviiiiieiie ettt ste e e sre e aneenre s 4
2.1. Requirements Development/Fault DiagnoStiCS.ccooveiiriieieniiniieiesee e 5
2.1.1. Fault Tree ANalYSIS (FTA) ..ottt 6
2.1.2. Failure Mode and Effects Analysis (FMEA)ccccoiiiiiiiieeeee, 8

2.2. MOUEl BaSEA DESIGNeovviniiiiiisiesie sttt 11
2.2.1. Model-in-the-Loop (MIL)......cccuoiiieiice st 12
2.2.2. Software-in-the-Loop (SIL) ...cccveviiieiiee e 12
2.2.3. Hardware-in-the-Loop (HIL)c.ccoovoiiiiee e 13
Chapter 3. MethodOIOgYc.cciiiiiieiie et 14
3.1. VEhiCle AIrCRITECTUIE ..ot 15
3.2. Requirement DeVEIOPMENTcoi i 17
3.2.1. Fault Tree ANalYSIS (FTA) ..uciieie e et ste e ne e 18
3.2.2. Failure Mode and Effects ANalYSIS.......ccccoiveieiiiiieiccic e 21

3.3, IN-the-LOOP SYSIEM ...eiiiieiiie ettt 23

3.3.1. Model-in-the-Loop (MIL)......ccciiiiieiiie e 24

3.3.2. Hardware-in-the-Loop (HIL)ccooiiiiiiieieeeeeee s 25
3.3.3. Component-in-the-Loop (CIL) and Vehicle-in-the-Loop (VIL)c.cccoveneee. 26
Chapter 4. IMpIemMeNntatioNSccoiveieiieiieie e sre e 28
A1 SIMUIINK .ot bbb 29
4.2, CONTOIDESK ...ttt bbb 31
4.2.1. The Dashboard LayOUL.........ccccueiiieiieiiic st 32
4.2.2. Calibration LAYOULcceiiiiiiiiiiiiiiee et 33
4.2.3. DIagNOSTIC LAYOUL......ecueiieiieiieiiesiesiesieee et 34

4.3, AULOMALION DESK ..ot 35
Chapter 5. RESUILSovieiiciie ettt enteene e e sraene e 40
Chapter 6. CONCIUSION...........ciieie ettt sae e re e sreene e 47
6.1, FULUIE WOTK ...ttt 48
BIDHOGIaPNY ..o et 50
Appendix A. List of ADDIeVIAtIONS.cccooiiiiiiiii e 51
Appendix B. FTA: Key BIOCK DIagramS.........c.coeieiirenenienisesieieiese e 52
Appendix C. FMEA RANKINGS ..c.vviieiieiecie ettt snaenne s 53

vii

List of Tables

Table 1: FMEA FOIM STIUCLUIEo.veviiieiti et 10
Table 2 Automotive Industrial Severity Rankings..........cccooevieiiniininiiie e 53
Table 3 Automotive Industrial Occurrence Rankingsc.ccoovvvieiiiinnneiceeeen, 54
Table 4 Automotive Industrial Detection RankKingscccovveveiieiievn i 55
Table 5 EMC Severity RANKINGSccovviiiiiiieiiese ettt 56
Table 6 EMC Occurrence RANKINGSccoiiiiiiiieieiesie et 57
Table 7 EMC Detection RaNKINGSccviieiieiicesie e 58

viii

List of Figures

Figure 1 Industry Fault Diagnostic V-Diagramcccccceeieiieieiie i 5
Figure 2 Fault Tree Analysis BIOCK DIagramccccoveeiieiieiieieiie e 7
Figure 3 Requirement Development FIOW Chart...........cocooiiiiiiiiiiceee, 9
Figure 4 Research Specific V-Diagramcccccevieieiieie e 14
Figure 5 OSU ECOCAR Vehicle ArchiteCtureccocvviieiiiecie s 16
Figure 6 Vehicle Component Interaction Diagram..........ccocooevireriiienenenencseseeeeeens 16
Figure 7: Fault Tree Analysis (FTA) for a Deceleration Failurecccccooevevveincnene. 20
Figure 8 FMEA from FTA Deceleration Failure.............cccocoveviiiiiiiicic e 22
Figure 9: EcoCAR’s Model-in-the-Loop Simulink Model..............cccoeiiiiiiiiiicn, 24
Figure 10: OSU EcoCAR Engine Component in the Loop Testingcccccvevvvvverivenenne. 27
Figure 11 Controller Layout from HIL Simulink Model..........c..cccoiviviiiiiiiiccccce e, 29
Figure 12 Simulink Plant Output CAN signals — ESS Fault Enabling..........cc.ccoovvvennee. 30
Figure 13 Dashboard Layout Running Drive CycCleccccoeiivivivicieieecece e 32
Figure 14 Calibration Layout for MABX Controller............ccccoveiviiiiiceece e 33
Figure 15 Generic Diagnostic Layout with CAN Communication Channels................... 34
Figure 16 EMC Drive Trace w/ Highlighted ESS Fault POrtions...........c.ccocooevvevinnnnnn. 36
Figure 17 AutomationDesk Layout w/ ESS Fault SCENArios...........ccccoevvevecvieieevieenene 37
Figure 18 If-Else Block for Pass/Failure Criteriacocovveerieiieieiie e 38
Figure 19 DataAcquisition Block — Set Error Time SeCtioncccccevvverencneiienennenn 39
Figure 20 RTIM EXCEl SNEELocvveiiii et e 41
Figure 21 Drive Trace: ESS Fault Insertion During Acceleration.............cccocvevveeinennne. 42
Figure 22 Current Trace: ESS Fault Insertion During Acceleration............c.ccoceevevennne. 42
Figure 23 Drive Trace: ESS Fault Insertion During Brakingccccccvvveveiieiievnecnene. 43
Figure 24 Current Trace: ESS Fault Insertion During Brakingc.cccoeeveiieniennenenes 43
Figure 25 Drive Trace: ESS Fault Insertion During Coastingcccceeererenereseeieenenn 44
Figure 26 Current Trace: ESS Fault Insertion During Coasting..........ccccevevvevieivennenenne 44
Figure 27 Report TESt RESUITS........coviiiiiiiie et 45
Figure 28 MIL vs HIL Simulation Comparison w/ an ESS Fault...............cccceovniinnnn, 46
Figure 29 FTA: BIOCK KEY ..ottt 52

Chapter 1. Introduction

The design of a vehicle’s hybrid supervisory controller is a difficult task that must be
separated into multiple subsections. This thesis is developed to go into detail about
testing the fault insertion subsections for designing the controller. Testing faults with the
vehicle’s controller is an essential way to ensure that the controller is designed to be
robust and handle different fault scenarios. In order to not damage the controller and
safely run the execution of inserting multiple different fault scenarios the testing was
conducted inside Hardware-in-the-Loop (HIL) simulation. HIL simulation allows for the
controller to act as if installed on the vehicle and transmit different electrical signals via
CAN communication. The usage of different HIL software allows the user to track the
communication and check that the controller is designed to pass each developed
requirement. The user can then send a faulty signal through the software and track that
the controller behaves according to design.

1.1. Motivation

The automotive industry is spending large sums of money on testing and
destroying multiple prototype vehicles. Companies are currently looking towards
simulation techniques that can reduce the number of prototypes that are being destroyed

or damaged from testing different fault cases. This research aims to provide a method for

conducting fault insertion with a simulation technique that both aids in the development
and design of a controller in a safe and non-damaging way.

1.2. EcCoCAR Mobility Challenge

The research is conducted in partnership with the Ohio State ECOCAR Mobility
Challenge Team. The team constructs a four-year build cycle of taking apart a stock
General Motors vehicle — this time it’s a 2019 Chevy Blazer — and modifying the vehicle
to become a hybrid electric automobile. The research is specifically working with the
propulsion controls and modeling sub team that is conducted at the Center for
Automotive Research. During this thesis the team will be finishing year two and it is
important to demonstrated proper testing with designing the team’s controller, the
MicroAutoBox (MABX).

1.3. Thesis Structure

The thesis is broken up into six chapters and a short description of each chapter is as

follows:

e Chapter 1: Introduction, briefly discusses what the research is about, the
motivation behind conducting the research, and the partnership support for
guiding the research

e Chapter 2: Background, goes over literature on different research that has been
conducted on the similar matters regarding fault diagnostics, HIL simulation, and

model-based design.

Chapter 3: Methodology, takes what was learned from Chapter 2 and transitions
to how that information was used within the thesis.

Chapter 4: Implementations, covers the different software used for testing and
inserting a fault into the team’s controller

Chapter 5: Results, provides evidence that the research was a success and that the
fault was adequately inserted into the controller and verified with the comparison
of another simulation technique

Chapter 6: Conclusion, reiterates on what was covered in the course of the thesis

and provides additional future work to be continued on the topic.

Chapter 2. Background

For every professional automotive company, process is important to follow; this
ensures that the development of a system is fully defined and working as intended. The
industry follows a standard V-diagram, shown in Figure 1, as a guide stone for
developing a sequence of events to take place for the entire design of a product [1].
Everything starts from the top left of the diagram, the high-level product requirement,
and is designed downwards into more component specific. High-level requirements are
intended for brainstorming and building a functional base to guide the project along.
Requirements will be continually updated as the design process continues, and the
development of requirements will be highlighted in the following section. Each block is
separated by having a deliverable/task to complete before moving on to the next block.
The V-diagram is split into two section: the left side for system/model design and the
right side for verification and validation [2]. The diagram is structured to become more
component specific (low level) when working downwards from top to bottom while the
top of the diagram is for the high-level systems.

Since this thesis is primarily about integrating a hybrid supervisor microcontroller
into a vehicle we will only focus on a few necessary aspects of the V-diagram shown.
Requirements will be analyzed by two different fault analyses methods,

Development/Prototyping will be touch on with the integration of software-in-the-loop,
4

Testing & Tuning block will be addressed thoroughly with the integration of fault within
hardware-in-the-loop simulation, and the additional system and field testing blocks will

be cover briefly by component-in-the-loop and vehicle-in-the-loop simulations.

Requirements . .
- reliability & safety analysis degree of maturity Production
- functions: fault to be detected - technologies
- replaceable units > - quality control
- Cosls
Specifications Field testing
- partitioning - verification
- available sensors & actuators alidati
- computing power - validation
- knowledge base, milestones - certification
Modeling & Simulation System testing
- signal models - stresses
- process models -EMC
- fault models - reliability
% Desi \? thod:
i sign of me s .
% - fault detection ?ﬁi‘;‘;}ﬂ&i;ﬂ;“on
- faull diagnosis - diagnosis module
- fault tolerance

%,. - ~
v
“% Development/Prototyping Testing & tuning

- software-in-the-loop simulation (SiL - real process
| real process and prototype computer

Implementation

Testing & tuning
- final software for series product

- hardware-in-the-loop sim. (HiL)

Computer with
fault diagnosis software
(series product)

Figure 1 Industry Fault Diagnostic V-Diagram

2.1. Requirements Development/Fault Diagnostics

The immediate process for any good design is the development of proper
requirements: “In industry, 40% of budget is spent on rework; of that 70-85% of the
rework is due to errors in requirements” [3]. The high expense and risk with making
improper requirements makes this section a vital portion of including proper

requirements into the research project for fault insertion and fault diagnostics.
5

Fault Diagnostics are used worldwide for research and design. The goal for fault
diagnostics is to understand faults, defined as “unpermitted deviations of a feature in a
system from the acceptable, usual, or standard conditions”, in order to prevent or
minimize failures from occurring. The classification for a failure is a “permanent
interruptions of a system’s ability to perform a required function under specified
operating conditions” [1]. Developing proper requirements aids in the analysis of a
system’s failure and to create those requirement, two common industrial methods were

used: Fault Tree Analysis (FTA) and Failure Mode and Effects Analysis (FMEA).

2.1.1. Fault Tree Analysis (FTA)

Fault Tree Analysis is an approach to understanding the causes of already known
failures by breaking up the failure into smaller component specific faults. Fault Tree
Analysis (FTA) is a top down approach that begins with the failure of a system and
determines the possible causes for the components basic failures which include logic
operations, Figure 2 [1]. FTA is a useful tool for decision making and has multiple
purposes including: understanding the logic leading to the top event, prioritizing
contributors to the top event, preventing the top event from occurring, monitoring the
performance of the system, minimizing and optimizing resources, assisting in the design
of a system, and diagnosing causes of the top event. [4] Only three of those conditions
were utilized in the Fault Tree Analysis for this paper; understanding the logic leading to

the top event, assisting in the design of a system, and diagnosing causes of the top event.

system

sub-
systems

basic

compon.

T T

failure of
a system

AND
| |

comp. 1
fail

comp. 2

fail

comp. 3
fail

comp. 4

fail

comp. 5

comp. 6
fail

Figure 2 Fault Tree Analysis Block Diagram

effect on
systems

function

basic
failures

(causes) in

components,

In order to conduct an FTA the following list must be followed in order [4]:

1. ldentify the objective for the FTA.

2. Define the top event of the FTA.

3. Define the scope of the FTA.

4. Define the resolution of the FTA.

5. Define ground rules for the FTA.

6. Construct the FTA.

7. Evaluate the FTA.

8. Interpret and present the results.

Each step is essential for properly guiding the construction of a fault tree, and its main
function is to have the analysis remain useful for the intended purpose. Steps 1-5 are prior
to the construction of the actual fault tree (see Figure 2 for an example) and are important
for setting up the guidelines in order to efficiently produce an analysis that is both helpful
and logical for constructing requirements in the future. The scope defines which failures
and contributions will be involve with the analysis, and the resolution is the planned
amount of detail for breaking up the fault tree [4] hence these two steps can be thought of
as going together. The ground rules provide the symbolic meaning of each gate/block.
Figure 29, in Appendix B, shows the rules in which these blocks were constructed for this
thesis. Step 6 and 7 are the visuals and construction of the analysis itself that breakup the
common whole level failure into smaller component level faults. Step 8 takes the
information from conducting the analysis and uses it to produce, the next sequential

method, Failure Mode and Effects Analysis.

2.1.2. Failure Mode and Effects Analysis (FMEA)

After completing the FTA, a failure mode and effects analysis (FMEA) is
performed to further understand the faults derived from the previous analysis. From
Fords FMEA handbook, a FMEA is intended to “recognize and evaluate potential failures
and its effects, and identify actions that could eliminate/reduce the failure from occurring
while documenting the process” [5]. FMEA can be typically combined with FTA because
the derived failure results from the FMEA can be incorporated into the FTA and vice
versa. [1]. A constant loop can occur from these two methods by taking the faults from

the FTA, using them in a FMEA to further understanding the faults, and use the in-depth
8

FMEA results as inputs for a new FTA. Continuing the loop until satisfied with the

results/or have enough knowledge to complete the objective of the analysis, Figure 3.

> FTA
N

4
Component / Requirement
Faults from d]
: Develo pement
Analysis

A 4

FMEA

y

In-depth Fault / o/ Requirement
Understanding/ "\ Development

Do the Results Satisfy
the Objective?

Requirement

Yes Verification

0l

Figure 3 Requirement Development Flow chart

The FMEA involves filling out a form that gives specific details regarding the
components of interest. Table 1 shows the structure of the form, where the bold words are

from the form and the rest of the box is an example for the structure. There can be

9

multiple functions for a specific item and each function can break down further with
multiple potential failure modes and multiple potential effects. The first column instructs
listing a function which must be measurable, similarly to a requirement [5]. The second
column consists of failure modes which can fall into four categories: No function, partial
function (degradation over time), intermittent function (“loses functionality due to
external factors™), and unintended function. Columns 3 and 5 specifically draw out
different effects and causes related with the failure. Columns 6, 8, and 11 relate with
ways to avoid/reduce the failure from occurring and a “recommended action” of

improving the design with the results to “reduce risk and increase customer satisfaction”

[5].

Table 1: FMEA Form Structure

Pot. S O Dl R
Item/ | Failure | Pot. e | Pot. Prevention | ¢ | Detection | e | P | Rec.
Func | Mode Effects | v | Causes | Controls c|Controls | t| N [Action
Iteml1/ | Faill # | Cause # #| #
Fncl Fail2 # | Cause # #| #
| Cause #
Iteml/ | Faill # | Cause # #| #
Fnc2 # # #
Fail2 ... # | Cause # # ...
1 2 3 4 5 6 7 8 91 10 11

Every failure mode has an associated Risk Priority Number (RPN) to quickly
show which item needs to be prioritize during the design and validation phase. The RPN
is a number from 0 to 1000 that showcases the importance of the potential effects by

multiplying the severity rank, occurrence rank, and detection rank together. Each effect
10

has a specific severity rank and occurrence rank and each detection control has a specific
detection rank (all ranks are from zero to ten). There are common industry rankings for
each section that can be found in Appendix C: Table 2, Table 3, and Table 4, but it is
recommended to develop and produce a separate internal ranking system to clearly
prioritize the failures associated with the system.

2.2. Model Based Design

Model based design is commonly used amongst automotive industries and automotive
related design projects. Past research articles have involved integrating and testing faults
within components from cyber-physical systems such as electronic control units (ECUs)
to investigating faults within a component specific system such as a hybrid electric
vehicle inverter [6] [7] [8]. All model-based designs have the process of using X-in-the-
Loop, where ‘X’ refers to any testing environment which can be model, software, or
hardware [9]. X-in-the-Loop (XIL) systems are useful for developing the testing
environment for a system in initial/early design phases, represented as high-fidelity
models, to inserting electrical faults within the specific physical hardware. The three
primary systems are Model-in-the-Loop (MIL), Software-in-the-Loop (SIL), and
Hardware-in-the-Loop (HIL). XIL allows for the slow and easy transition of testing a
component to be incorporated into the entire system. Each XIL has different benefits and
shortcoming that are addressed in the following sections. Chapter 3, Section 3.3 will
showcase an example for using the different XIL systems in order to slowly incorporate

the design of the vehicle’s controller.

11

2.2.1. Model-in-the-Loop (MIL)

Model-in-the-Loop (MIL) is a simulation environment, solely on a computer’s
software, that represents the component and/or system behavior. These models consist of
no wires or physical connection, but are all internal to the software on the computer,
which can be MATLAB/Simulink, ASCET [9], or ASM [6]. A MIL environment is
decided with a use case in mind. A use case could be to quickly design the internal ECU
of the physical component and test its interaction with a modeled plant environment, all
without physically hooking up any hardware. Another use case example would be to
represent high fidelity dynamics of an engine. The plant is typically developed separately
from the controller and validated from previous physical testing. The shortcomings of a
MIL environment are that it’s not a perfect representation of the real-world environment.
Often, as there is an increased model fidelity, simulation time of the model must be taken
into consideration. Simulation time can be a benefit if it’s faster than real time or a
hinderance if the simulation requires heavy computation. For model-based design, MIL is
often used as a baseline for calibrating parameters and quickly testing conceptional

algorithms in appropriate fidelity environment.

2.2.2. Software-in-the-Loop (SIL)

SIL is the next logical step in the XIL process. SIL is the in-between stage from
MIL and HIL simulation and is used to simulate the combination of internal software
tools (such as Simulink [9]) and the ¢ code (compiled code) for the designed hardware. C

code is the modeled data of the component, written in the coding language C, that is used

12

to be flashed into the physical hardware being designed and developed. The primary
purpose of SIL is to verify that the ¢ code is constructed correctly and that the model runs
properly before flashing the code into the hardware. If the ¢ code is not being personally
written and is instead compiled from built in software, like Simulink, then SIL can be
skipped [8, 10].

2.2.3. Hardware-in-the-Loop (HIL)

HIL is the final step of the XIL process. HIL is running the physical hardware, hence
the name, in conjunction with a HIL simulator, such as dSPACE [10] or TTEthernet [8].
A HIL simulator acts as the plant and communicates with the component’s ECU via
electrical communications. The simulator can be thought as tricking the ECU to believe it
is in an actual vehicle. The user is allowed to adjust what messages and signals are being
communicated from the simulator and test whether the ECU is properly responding to
those signals. HIL allows for design engineers to test and send faults within the designed
hardware without having to produce the fault case in the actual system. This produces a
safe and efficient testing method, that could otherwise be harmful to the component

and/or operator.

13

Chapter 3. Methodology

Before beginning to insert a fault into the model, it is important to first build a strong
foundation and understand what faults are to be delivered and tested. For guidance on
how the work was conducted for this thesis, Figure 4 shows a V-diagram specifically for
the fault diagnostic development. The V-diagram is conducted identically to a standard
V-diagram, starting at the top left (high level) and working to the right and downwards
(more component specific, low level) and back up again. Following the current industry
test procedure, it is important to first start with the development of requirements, as
highlighted in Chapter 2. Requirements are developed from the first three blocks using
FTA and FMEA, and then work up the V-diagram by verifying each level of

requirements.

Degree of Maturity

Fault Tree Analysis » Vehicle-in-the-

Loop (VIL)

Failure Mode and Compo nent-in-
Effects Analysis the-Loop (CL)

A

Requirement Hardware-in-the-
Varification Loop (HL)

4

Model-in-the-
Loop (MIL)

Figure 4 Research Specific V-Diagram
14

Going back up the V-diagram are four specific In-the-loop systems; Model-in-the-
Loop (MIL), Hardware-in-the-Loop (HIL), Component-in-the-Loop (CIL), and Vehicle-
in-the-Loop (VIL). The development and design of the MIL environment is done in
parallel with the development and incorporation of requirements. The MIL model is
structured to incorporate components and their interaction with the hybrid supervisor
controller inside a simulation. HIL will be the primary focus of this thesis and takes the
developed faults and physically tests those faults with the controller via electrical
connections. CIL and VIL are an additional check for validating the design of the
controller by testing the controller’s interaction with other physical components in a safe
environment. All In-the-Loop systems will be discussed in more detail further in this
Chapter, Section 3.3.

3.1. Vehicle Architecture

Before building requirements for the design of the vehicle’s main controller,
dSPACE MicroAutoBox (MABX), it is important to lay out the components the controller
will be interacting with in the vehicle. Laying out and understanding the structure of the
system, and its associated components, allows visualization of the system to help with the
development of potential failures or faults that could occur. Figure 5 shows OSU
EcoCAR vehicle architecture, while Figure 6 highlights the controller/component

interaction within the vehicle.

15

1 dSpace MABx
z 2 Intel TANK
3 NVIDIA PX2 A
A Mobileye Camera 8 ¢
H Hybrid Design Services
5 ° RevESE 3.5 kWh ESS
c Aotiv MRR General Motors
— 2.0L Turbocharged LTG
I 9T50 Transmission
BorgWarner Parker Hannifin Denso
eGearDrive 112 kW REM 32 kW BAS
Figure 5 OSU EcoCAR Vehicle Architecture
! w
Driver ..., | .'_+
Input @ : .
GMLAN Hybrid Supervisory Controller
Pedal Assembly - dSPACE
S

)

\ | —
.=— G —Cp—gm—e— > L

BAS Engine Controller Transmission EM Inverter ~ Battery Controller DC/DC)
Inverter General Motors Controller Cascadia Hybrid Design General Motors Pog:;tmﬁglrng
Cascadia 1 General Motors I Systems (HDS) J G ki
‘ R —" —_— Power
Moding
BAS Engine Transmission Electric Machine Energy Storage System

Denso General Motors General Motors Parker Hannifin Hybrid Design Systems (HDS)

H
T ; Torque To Driveline i |

Figure 6 Vehicle Component Interaction Diagram

It is not only important to understand issues with communication from the
controller to the vehicle’s subcomponent ECUs, but to also address issues with how the

ECUs interact with their physical component. This may seem as an obvious statement to

16

make but it is still addressed in this thesis because it can be a simple concept to overlook.
Understanding the interaction with the subcomponent ECUs and their physical
subsystem, ensures that during the requirement development phase that physical
implementations of the controller are not overlooked.

Take for example the requirement developed from the interface between the
MABXx and the Electric Machine Inverter, Figure 6. If the physical Electrical Machine,
the motor, was not considered while developing the requirements then this would leave
for a flawed design and potentially cause the motor to do harm to the vehicle, the person
driving, or damage the component. The process can continually break down further,
going as far as to incorporate the bolts inside the motor, but clearly this would be outside
the scope of the development for the MABX controller, hence it is ignored.

3.2. Requirement Development

The next step after developing the vehicle’s architecture and subsystem
interaction is to use this information to develop requirements. Requirements are an
ongoing process that are continually being updated and modified as engineers learn more
about their system. There are multiple tools to aid in the process of developing
requirements but for this thesis two primarily tools were used: Fault Tree Analysis (FTA)
and Failure Mode and Effect Analysis (FMEA). Additionally, requirements were
produced and stored inside a requirements trackability matrix (RTM), which is
continuously updated from the entire ECOCAR team. This central location allows all team

engineers to know the software, hardware, and system requirements.

17

3.2.1. Fault Tree Analysis (FTA)

Fault Tree Analysis is an industry wide method for constructing a visual
representation that aids in the development of requirements. FTA can be thought of going
one step further from the vehicle architecture, since an FTA shows what component are
the cause of a higher-level system failure. As described in Chapter 2, the FTA starts from
the top level and works downward into more specific circumstances or lower level
subsystems/components. Before constructing an FTA analysis, it is important to first
identify the objective for the analysis. The objective helps keep the analysis on track and
prevents unnecessary bombardment of unrelated information, allowing the FTA to be an
efficient use of time. The objective for every FTA conducted for this thesis was to gain a
more general understanding of components and their interactions with the vehicle
controllers, component controllers, and hybrid supervisory controller.

The second step, defining the top event/failure, typically comes from experience.
Fortunately, since ECOCAR has a partnership with General Motors (GM), GM provided a
list of common top-level automotive industry faults. The list was the following:

e Inadequate/delayed loss of vehicle deceleration including malfunction within the

regen braking system.

e Unintended acceleration

¢ Unintended longitudinal motion; unintended vehicle motion (rollaway)

e Unintended travel in the wrong direction, unintended propulsion flow

e Unintended or loss of lateral motion (includes locked steering)

e Unintended deceleration
18

e Loss or degradation of acceleration; loss or degradation of propulsion (e.g., stall)

e Unintended release of thermal energy causing burns or fire

e Unintended exposure to high voltage energy system (shock)

e Unintended exposure to toxic / flammable chemicals (gas/liquid)

e Unintended access to rotating or moving components (e.g., engine start)

The final steps to be conducted before actually constructing the fault tree include
defining the scope, resolution, and ground rules. The scope and resolution limited the
fault tree to the components shown in Figure 6. The ground rules included using only the
standard block schematics found in Appendix B: Figure 29.

The next step in the process is to physically construct the fault tree diagram. The
diagram in constructed by taking a common fault and using that as the starting point for
the fault tree. Figure 7 shows an example of an FTA for a vehicle deceleration failure.
This is a high level “common” fault from the GM provided categorized failure list.

The common fault, in red, is always addressed first and broken down to more
specific components, in orange. The FTA has three color coding: red, orange, and blue.
Red represents the highest-level event, orange indicates additional lower lever events will
follow, and blue represents the lowest level event for that analysis. Each block can
typically be considered as either an AND gate or an OR gate. An AND gate means that
all the following events must occur for the higher event to take place, and an OR gate
means that if any of the following events occur then the higher event will take place. The
event is shown to be a OR gate by a circular arc underneath the event block; an AND gate

would have a straight line. Since, the blue events are the lowest level, they do not

19

associate with being an AND or OR gate. For a better understanding of the block and

color identification see Appendix B.

Vehicle NOT
decelerating
properly

EM Inverter Brake Pedal

Faults EM Faults ESS Fauit Malfunction

_ ., T, N T,

EM Inverter Electric Motor Electronic Brake Pedal
H Storage System

I |

Delayed
Temperature vg?;?ﬂ:ﬁ;q;e Temperature Loss of HV Electric Failure response of
Failure Failure Power BPP into the
EM controller

LV/HV Power CAN failure - At full SOC limits
Failure during during regen er;pllerature and cannot store
Regen event ailure additional energy

Power Supply CAN Bus Battery Storage

Figure 7: Fault Tree Analysis (FTA) for a Deceleration Failure

The FTA shows the different component level issues that are associated with the
full vehicle system failure. The FTA example showed that when designing the controller

and considering faults with improper vehicle deceleration, it is important to test electrical

20

faults from the 12V battery supply, motor, inverter, CAN bus, LV Harness, and Energy
Storage System (ESS). Hence the FTA provided a list of components for developing the

fault requirements associated with a full-level vehicle braking failure.

3.2.2. Failure Mode and Effects Analysis

The Failure Mode and Effects Analysis (FMEA) takes what was learned from the
FTA and breaks it down further. Continuing with the deceleration failure example, an
FMEA guides the user to incorporate these specific component failures from the FTA
into the FMEA document for further, more detailed, review. Figure 8 shows the filled out
FMEA document from the conducted FTA. The first column is filled out with each
component, derived from the FTA, and the function for that component is broken up as a
high-level function since the analysis was conducted for a high-level system. Since the
functions are high-level, the standard for making measurable functions had to be
overlook for this analysis. Each column was filled out according to the potential failure
(typically shown from FTA), potential causes of failure, and prevention and detection
controls. Each situation was raked accordingly from the EMC rankings, found in

Appendix C: Table 5-Table 7, that were specifically created for this FMEA.

21

¢c

Ite inction Failure Mode |Potential Effect(s) of Failure ls-v Potential Cause/ Mechanism of Failure |Prevention Controls (Oc c |Detection Controls
CAN Bus: Transmits No Communication Controller checks
Communication from BCM to Occurs - Vehicle does Roatel =t 10 |LargeElectrical Noise in CAN bus 3 |G from
y Death or Injury
Controller NOT deaccelerate BCM
CAN Bus: Transmits CANGallstot it Controller checks if
Communication from o :tl ransm Motor remains in Neutral 3 |LargeElectrical Noisein CAN bus TerminatingResistors| 1 |CANDbusisactive;
Controllerto Inverter |/ ormation validate Motor Speed
with signal requet
Rear Wheels Do NOT Provide 3 Design Harness to Controller checks
Stop! lying Power |Forward Motion Di ion or shortage of the remove pinch points ol S
ESS owess the EN vt to the EM Inverter Electrical Harness 2|2 G
Rear Wheels Do NOT Regen 3 Harness built to be EM Invertes
or Help Slow the Vehicle robust
Disconection of ESS BMS tracks ESS
Te ature rises above battery rati 3
HV Power becomes Potential Death and e i SAALAL from system Temperature
ESS: Provide HV Power supply | i o P of 20 TR
for Vehicle = > Current Continues to be drawn durring | Disconection of ESS Contiolerchecistha
runaway occurs Vehicle 3
an ESS fault from system currentisremoved
from ESS
Motor Accelerates instead of 9
Inverter: Commandsthe [Wrongetorque |slowing down ; Physical Interaction
Motor Torque command sentto EM | pMotor Deaccelerates instead 7 Jeting Rroperlylest 1 with Vehicle
of speed up
LV Harness: Provides No Communication
Potential Servere Crash and Disconection or shortage of the Harness built to be
= Ph 1
Communication from BPP to |Occurs - Vehicle does Iy 10 Hactrical Harness o 1 ysical Inspection
BCM NOT d i
Motor Stops Providing Rear Read Motor
3 Controller checks
Excessi t of C t bei Te d
Motor: Drives the rear wheels | Motor Over Heats Wheel EonkardMotiar suc ":; mh:::gro Hoen o= h::;:::ué::r; t 3 |TemperatureRating
Rear Wheels Do NOT Regen 3 PP o EM [nverter
or Help Slow the Vehicle Supply

Figure 8 FMEA from FTA Deceleration Failure

The RPN provides which component and failure needs to be prioritize during
testing. The ESS came on top with an RPN of 210 and was further looking into detail for
deriving a test case. The recommendation for preventing the main ESS failure was for the
controller to remove any current being sent to the ESS when receiving an ESS fault. The

recommendation guided the team for developing the following requirement:

“The absolute value of the ESS current shall not be less than 5 Amps within 5 seconds of

an ESS fault detection”.

The requirement will be used to create a test case for when the controller is tested inside
the HIL simulation rack, the full example of this test case will cover in Chapter 4. The
additional recommendations from the FMEA allowed for the development of additional

requirements to be stored inside the RTM.

3.3. In-the-Loop System

In-the-Loop systems are commonly used when conducting a model-based design.
As discussed in Chapter 2, these In-the-Loop systems are known as Model-in-the-Loop
(MIL), Software-in-the-Loop (SIL), and Hardware-in-the-Loop (HIL). ECOCAR
additionally adds two In-the-Loop systems; Component-in-the-Loop (CIL) and Vehicle-
in-the-Loop (VIL). Though, all these In-the-Loop systems will be touched on in this
section, it is important to point out that HIL will be highly covered since HIL is the

primary method incorporated with this research.

23

3.3.1. Model-in-the-Loop (MIL)

Model-in-the-Loop is a way to model the entire vehicle via a simulation. The
model is developed from MathWorks’s software, Simulink, to incorporates the full
vehicle model. This full vehicle model simulates all major powertrain components for
various drive cycles. MIL is used to develop the logic for tested failures by sending
error/warning signals to the controller model and verifying its controller response. The
MIL model is shown in Figure 9 where it clearly shows the Plant (the simulated vehicle),
the driver model, and the vehicle’s controller. SIL is overlooked for the transition from
MIL to HIL because Simulink provides a built-in c-code compiler, which makes SIL

unnecessary.

-0

{00 Ropeati |
| Constant_Spged- ol
[e—{coastdoun |

0-60 mph lest (units in mVs) st sim time 1o B0

[+ + EocaRAS >

O &
Controller

Copyrignt 2018 The MathWorks, Inc

cAv

Genral Motors Confidential Information - For Use by EcoCAR Mobility Challenge Teams Onl

Figure 9: EcoCAR’s Model-in-the-Loop Simulink Model

24

3.3.2. Hardware-in-the-Loop (HIL)

Unlike MIL, HIL goes one step further by physically testing and checking the
communication from the plant to the controller. The design of the hybrid supervisory
controller known as the dSSPACE MABX can then be tested to ensure in real time that the
signals being transmitted are as expected. The MABX is connected to a dSPACE mid-size
HIL simulator by physical connections. The dSPACE mid-size HIL simulator
incorporates a licensed program, ControlDesk, which enables tracking serial
communication in real time. An example and more information about ControlDesk will
be covered in Chapter 4.

The Simulink model, Figure 9, allows for a quick transition from MIL to HIL by
double clicking and changing the testing environment mask. The transition keeps the
MIL based model algorithm for both the plant and the controller, and only changes the
input and output layers. Quick validation for MIL and HIL is able to be conducted since
both the MIL and HIL models have the same base algorithm. The input and output layers
change the communication from virtual to electrical, when transitioning over to HIL. The
HIL input and output layers incorporate CAN communication, enabling multiple signals
and messages to be sent through the bus.

The HIL structure allows for sending a failure/error message to the controller
from the modelled plant and checks that during a simulated drive cycle the controller acts
as expected. The developed requirements, stored in the RTM, are used to check and
validate that the controller passed the requirement from receiving the fault message. The

process is continued to check the controller satisfies each requirement.

25

3.3.3. Component-in-the-Loop (CIL) and Vehicle-in-the-Loop (VIL)

CIL and VIL are additional X-in-the-Loop systems that are essential to conduct
prior to the release of the designed vehicle. Both systems ensure that all components
interact with one another as intended by integrating the physical components together.
The components are typically integrated into the vehicle and tested for functionality and
the vehicle’s performance. Since both of these systems consist of physical interaction and
not solely electrical, like HIL, a replication of testing component failure would cause
hardware damage, hence fault insertion would not be wise for these methods. These
systems are addressed in this thesis for completion and to provide further information
regarding additional X-in-the-Loop systems that are to be conducted before the release of
the designed controller.

CIL takes either a specific component or a portion of the entire full-vehicle
system and tests for functionality as well as how the subsystem components interact with
one another. The subsystem can be tested on a dynamometer by disconnecting part of the
full-vehicle system and only using the installed section. Figure 10 showed testing the
engine/ transmission subsystem in the vehicle without having the rear electric motor

incorporated.

26

Figure 10: OSU EcoCAR Engine Component in the Loop Testing

VIL, one step further than CIL, consists of testing the entire vehicle with all the
physical components installed on the vehicle. The vehicle can be tested either at a testing
facility like TRC or on an AWD dynamometer. This is the final step of ensuring the

components function safely and properly before releasing to the public.

27

Chapter 4. Implementations

In order to test that a fault is being transmitted, it is necessary to ensure that the
controller both reads either a warning/error or fault message and responds with an
appropriate control action. This process needs to be adequately documented and done in
real time to track that the response rate set from requirements are satisfied. There are
primarily three software interfaces that are used for this research, MATLAB/Simulink,
dSPACE ControlDesk and dSPACE AutomationDesk. dSPACE Synect, a test
management software, was originally planned to be added to these software toolboxes,
but due to unexpected circumstances this software wasn’t able to be incorporated.

This Chapter’s main focus will be on the different software that were incorporated
into this thesis. To aid in the understanding of the different software, a fault pertaining to
the ESS will be inserted and tested. The ESS was chosen first because it is rated as a
high-risk component that additionally lacks proper testing and was rated high from the
FMEA conducted in Chapter 3. The requirement to be tested for the ESS was framed as

follows:

“The absolute value of the ESS current shall not be less than 5 Amps within 5 seconds of

an ESS fault detection”.

All other requirements are stored inside the requirement traceability matrix (RTM) and
the RTM is used to check that all requirements related with controller communication are

satisfied.

28

4.1. Simulink

Simulink, developed and produced by MathWorks, is a simulation software
toolbox that allows for the construction of a model that can be ran and tested. Simulink is
used for the construction of the full vehicle model MIL and HIL model. Chapter 3 goes
into greater detail about MIL and HIL and how MIL is used specifically with Simulink.
The HIL model, as described in Chapter 3, takes the base algorithms from the MIL plant
and controller and only changes the input and output (communication) algorithms. Figure
11 helps to demonstrate this concept by highlighting and showing the HIL model layout
from a portion of the Simulink Model. Boxed in red are the communication
layers/algorithms that are internally changed when transitioning between the MIL & HIL

environment, while the main internal controller, boxed in black, remains constant.

Varies Based on xIL Environment

— Remain Constant from MIL to HIL

Propulsion Controller

Intamal_Controler

Controller Algorithm

Input Layer Output Layer
P Y | (Reference Subsystem) P Y

Figure 11 Controller Layout from HIL Simulink Model

29

Simulink is then used to prepare the HIL model for testing and inserting faults.
The HIL model signals are prepped by enabling global data export for the signals
associated with either the plant’s warning or error CAN signals. Exporting data globally
on these signals allows for ControlDesk to manipulate these signals, hence test that the
controller both receives and responds according to the modified fault message.

Continuing with the ESS fault case, the ESS error and warning Boolean messages
are exported to enable modification in ControlDesk. This gives the user the ability to
track in ControlDesk whether the ESS requirement is satisfied. Figure 12 shows the
physical layout of various plant CAN signals that are being exported for ControlDesk
manipulation. The signals that are enabled are indicated by being underlined in red and
from the blue wireless output icon shown above the V_ESS_Warning_Bool_NA and
V_ESS Error_Bool NA signals. The signals will additionally need to be exported

globally for ControlDesk to manipulate and read these signals.

\"a| Plant_HIL » [Pa|Output » P& CAN Signals » [Pz Subsystem1

<V_Batt_BattSOC_SOC_Pct>

<V_Veh_CelV_V_V>

<V_Veh_BattV_V_V>

B_ESS_ESSCANBus_NA_NA

<V_Batt_BattPwr_P_W:

5
—
<V_ESS_Waming_Boo NA> © ——=vet | v ESS_Warning_Bool_NA

N e
<V_ESS_Error_Bool_NA> »|__convert | V_ESS_Error_Bool_NA

» corvert |
<V_ESS_TMaxCel_Temp_C> © —orvet |~ V_ESS_TMaxCell_Temp_C

N ppeea—
<V_ESS_TMInCell_Temp_C> ~ ——mvet |~ V_ESS_TMinCell_Temp_C

Figure 12 Simulink Plant Output CAN signals — ESS Fault Enabling

30

The final step for Simulink is to compile the full vehicle model into compiled
code (c-code). The plant and controller being two different reference models are
compiled separately. The compiled controller model and the plant model c-codes are
flashed into the controller and the HIL Simulator respectively. The HIL simulator acts as
the plant for the controller and both systems are connected by electrical signals that
communicate via CAN. CAN communication is created in the Simulink input and output
algorithm blocks using the RTI CAN Multimessage block sets. The blocks sets are
specifically developed to enable interface of dASPACE hardware products such as the
MABXx & HIL Simulator using MATLAB/Simulink. The RTI block set allows for quick
CAN modifications and works in conjunction with the Simulink code compiler.

4.2. ControlDesk

ControlDesk is a software, made by dSPACE, that contains a user-friendly
interface for tracking communication and signal values in real time. ControlDesk takes
the compiled code generated by Simulink and flashes the C-codes for the controller and
the plant onto their respective hardware. All specified signals can be tracked and
modified during a run cycle, enabling ControlDesk to be a vital tool for checking
communication, inserting a fault and diagnosing the system response. The triggered error
or warning signal is sent from the HIL plant to the MABXx and checks if the controller
receives the signal and correctly responds, passing the requirement criteria. For
organizing and simplifying the test procedure, three layouts were created: the dashboard,

calibration window, and diagnostic layout.

31

4.2.1. The Dashboard Layout

The dashboard layout is exactly what it sounds like: a representation of a
vehicle’s dashboard during simulation. Figure 13 shows the active dashboard layout
running a drive cycle. It was initially created to test a failure with the electric storage
system (ESS). The far-left side, the SimState block, gives the tester the ability to stop,
pause, and start the simulated drive cycle. The middle section shows signals, represented
as a dashboard, being transmitted during the cycle and is used for a visual check that the
signal values are updating correctly. The right side provides a user interface with
togglable switches, for triggering different vehicles functions while additionally giving
the user the ability to insert and test an ESS fault. Underneath the ESS fault block is a

display showing the drive trace that visibly updates in real time.

¢ N

N \ '

ECOCARM2 v 4 ' ; l Fault

3 5 ICE Temp *C W ®
2 6 ~ 4 2 I

. 2 ,\ f 17

0 Engine RPM 8 Speed (mph)
—
\

’ |

’
L3 40 60

J e
\ / \
0 60

Figure 13 Dashboard Layout Running Drive Cycle

The ESS fault is togglable in this layout and gives the user the ability to see how

the vehicle response when the fault is active. Here the user can validate that the vehicle
32

performs as expected for as quick visual check. ControlDesk additionally records the

different ESS current value and time stamp so the user can ensure that the requirement is

being passed.

4.2.2. Calibration Layout

The calibration layout allows for physical alterations and calibrations to be made

to the controller in real time. All calibration changes will not be permanently stored

inside the controller but still aids in the design and development process. Figure 14 shows

the calibration layout that was constructed for the MABX controller. The Calibration

layout is not intended for physically testing faults, but still remains a useful tab for

designing the controller and setting/changing different controller attributes.

Input Fault > Torque Saturation:
300 1E+300 Converted

E+300 1E+3

Vanable
[l K_OverndeState_MaxCETrq_Bool_NA

B K _Override_MadCETrq_Booi_NA

Mode Algorithm:
1E+300 1E+300 Converted

] Tunable Parameters/K_OverrideState_VenicieMode_Bool_NA
[Tunable Parameters/K_Override_VehicleMode_Bool_NA

Competition Switc

h Indicator Lights:
E+300 1E+300 Converted

a

Variable
_OverndeState_PropSysEnabieLight

L]

I~

Bes

gSysEnabieLight

SysEnableLight

/LatSysEnableLight

K_OvemdeState.

K_Overmde_CAVLatSysEnableLight

Mode Selection:
1E+300 1E+300 Conveed

K_BadStartTeneOWt ~ |=oo000
K_MinFaultTime

K_MininactiveF autTime

K_SOCSetpont

K_SwitchDelay

K_TimeAllowediniCELImp

K_UpperOftsetSetpoint

K_Over VehicieReady_Bool_NA

FEEEEEREBES

K_Overmide_VehicieReady_Bool_NA

LED Properties:
1E+300 1E+300 Converted

nable
[K_Drv_LEDSwitchingTime_t_s
(B K_Drv_TimeRequiredLEDTrans_t_s
Faults:
1E+300 1E+300 Cor

nable

[K_CAViateraiFault
B K_CAViongtudinalFault

[K_GroundFault

Figure 14 Calibration Layout for MABx Controller

33

4.2.3. Diagnostic Layout

The diagnostic layout is used for troubleshooting issues and changing
signal/variable values. The CAN bus is verified to communicating properly from this
layout and additionally shows important specified messages according to their
corresponding CAN bus. CAN communication is verified by visually checking that the
RX/TX time is updating. The CAN communication fault can also be triggered by
unchecking the Global Enable checkbox. Additional messages and signals can be added
to this layout for troubleshooting. Figure 15 shows a general diagnostic layout with every

CAN bus being updated and validated for that window.

CAN1: HSGMLAN - PPE|_Engine_ General_Status 1 (0xC9) CANZ: CE - PPEI_Trans_General_Status_4_HS (0x3F5) CAN3: CAN3 - B_BAS_BASCANBus_NA_NA (0x10F)
O GotetrabeTx (0] toutrabe (2] D tcutave [En) tcutbe [trave 3 Cycke
TX Timing TX Timing
TX Timing CrcieTme(s) | Oy Time Croe Time(s) | Ouiay Time
l "‘ - j 0.28 3 0.000 s Keclost 3 2] 0.000 o Kctou
S U = R RX Times RX Times
RX Times
s | ,
Signals
Signal Sowte | Commd | Sgeavews et Ve
So eatant Constant lw vlo 3 0
ot o
T] Vet 7 == 0
- L o m v
S T - BRIETTR croo - s s schmoms i oror)

CAN4 CANS

CAN4: CAN4 - B_ESS_ESSCANBus_NA_NA (0x11F) CANS: CANS - B_LVS_LVSBus_NA_NA (0xD2)

ste (7] GobatnsteTx |[) ECUtnatle [] Enabe] O o) GebsEnabeTX () ECUEnatie (7] Enable] Cycke

TX Timing

TX Timing =
I Detay Time } o000 s [1o '
0.1 2 0.000 « Ketou
RX Times
RX Times R T Time
| : |
2 Signals
Identification/Length } Sgral Vaue
sanm
Source Sgoulvane
z =
rout
e DO PRGN Cans - 5 Lvs. L vsous WA WA (0x02) TS

Figure 15 Generic Diagnostic Layout with CAN Communication Channels

34

The diagnostic tab can additionally be used for testing the ESS fault, similarly to
the dashboard layout. The set up for the diagnostic tab is typically simpler than the
dashboard layout hence making the diagnostic tab preferred when conducting quick
requirement tests.

4.3. Automation Desk

AutomationDesk takes a list of conducted tests from ControlDesk and both
collects and stores the results into a report format. The AutomationDesk code is designed
and built to automate execution of test cases. These test cases are arranged in a hierarchy,
with each test case being run through a sequence of blocks from top to bottom . The
process is simply conducted by the click of a button and removes the need to manually
initiate the execution of every test case. Since multiple components will have multiple
requirements to be tested, AutomationDesk is essential for testing that all previous
requirements are not affected while the controller is being designed to meet additional
requirements. The automated test process can then be used to ensure that all past test
cases remain valid during the development of the controller algorithm.

The ESS fault example is continued to be used here to walkthrough the benefits of
using AutomationDesk. The ESS fault was tested for three different cases to ensure that
the requirement continued to be satisfied during all three cases. The three cases involved
inserting the ESS fault during a braking, accelerating, and coasting scenarios. The
EcoCAR mobility challenge (EMC) drive trace was used for the diagnosis of a fault in
the three scenarios considered. Figure 16 highlights the different portions of the drive

trace where the faults were inserted. After the faults were inserted, AutomationDesk

35

checked that the current value was below 5 Amps after 5 seconds and reported whether
the requirement was a pass or failure. The current and time values were set by the

requirement stated in the beginning of the Chapter.

EMC City Cycle

30 i Fault Inserted during
COASTING
Fault Inserted TIME: 245s
05 L during |
BRAKING/REGEN
TIME: 116s
20 .
7
£
215+ Fault Inserted during i
‘© ACCELERATION
2 TIME: 1655
>
10 7
5r 1
¢
O 1 1 b 1 1 1 1
0 50 100 150 200 250 300 350 400

Figure 16 EMC Drive Trace w/ Highlighted ESS Fault Portions

AutomationDesk uses a block format for developing the sequential code that is
ran for the process. The higher-level blocks consisted of starting and opening
ControlDesk, running the Data Acquisition, and performing the Data Analysis to be
stored inside the report. Figure 17 provides the AutomationDesk interface that has the
ESS fault cases as described earlier. The left side shows a list of variables and folders that

are stored inside AutomationDesk for organization and for reporting and checking the

36

different variable values. The right side is the programable interface that is organized by

three compressed blocks for running the code.

Project Manager

=23 Vehicle

EI_I ESS_Error

-5 PlatformHIL1006

..... File

..... s| Platferm_Mame

..... ol List

----- s| SimulationState

..... 5| HiLSimulator

..... vl CurrQFF_brake

..... vl CurrQFF_coast

..... vl CurrOFF_accel

----- vl Trigger_Time_brake
----- vl Trigger_Time_accel
..... vl Trigger_Time_coast
- =] ESS_Error_Accel

..... vl Error

..... vl Engine_Torgue_Cmd
..... vl REM_Torque_Cmd
----- ¢l Condition

----- v] Current
----- sl Run_Accel

----- vl Ref_mph
(-2 ESS_Error_Brake
[~ = ESS_Error_Coast
[#-_] Hardware Limnits
=-2 Vehicle_MIL

-1 ES5_Error_MIL
-1 Hardware Limits_MIL
w-f 4 Result

= 4 %] = 1P VehicleESS_Error.ESS_Erro.. X

v Error.Extended Value is hidden.

v Engine_Torgue_Cmd:Extended Value is hidden.
v REM_Torgue_Cmd:Extended Value is hidden.
¢| Condition:Extended Value is hidden.

) Time:Extended Value is hidden.

v| Current.Extended Value is hidden.

sl Run_Accel-cd{'C-linstall_files\User profile

wj Drv_mph:Extended Value is hidden.

vl Ref_mph: Extended Value is hidden.

ContorlDesk Start |_J[#]

K| Sarial

Data Acquisition

K

Data Analysis

K

Figure 17 AutomationDesk Layout w/ ESS Fault Scenarios

Each block from the constructed code is separated primarily by its main task. The

ControlDesk Start block simply opens and runs the ControlDesk model. The

DataAcquisition block obtains the requested ControlDesk values and stores them in the

variables. The DataAnalysis block checks that the requirement is satisfied with an if-else

block for demonstrating if the criteria was a pass or fail, Figure 18.

37

The three test cases (fault during acceleration, braking, and coasting) are all
identical except for the fault insertion time, which is modified inside the Data Acquisition
Block, shown in Figure 19. Boxed in red is the error time variable for the when the fault
test should start. The figure shows the value of 165 seconds which matches the
acceleration time period from the EMC City Cycle, from Figure 16. Since all three test
cases are primarily the same with slight modifications, this makes AutomationDesk a

quick and easy tool for testing the different faults with the need to only make slight

modifications.

(Check Current State after 5 seconds __JE]\
IF ESS Current < Allowable
Yes Current Threshold No
f J@E Else e
q\ddText __]L."ij @ddText __]m\
s/ Text:PASS s Text:FAIL
1A TextColor:DarkGreen L TextColor:DarkRed
) TextLevel:5 7 TextLevel:5
kEI AddText \D AddText |
*
631 [ThenElse |

Figure 18 If-Else Block for Pass/Failure Criteria

38

@J Serial)

Figure 19 DataAcquisition Block — Set Error Time Section

39

Chapter 5. Results

The success for this research involved properly using the given software to construct
a method for inserting a fault into HIL simulation. All previous Chapters went through
the process of understanding and setting up of the software for the test cases, but the
focus for this Chapter will be on the actual results obtained by the software. As discussed
earlier the requirements set whether the test case passes or fails, which is internally stored
inside the RTM. The RTM is an excel sheet of every requirement and test that has been
conducted and verified, Figure 20.

The documented report from the AutomationDesk script - for the ESS fault
scenario - successfully presented the results of the test. The following figures, Figure 21-
Figure 26, show the reported graphs from the ESS fault scenarios; recall that these cases
included inserting an ESS fault during an acceleration, braking, and coasting portion of
the drive cycle. The current profile on each scenario was less than 5 Amperes within 5
seconds, meeting the requirement. AutomationDesk additionally tested cases for the
different component limits and the entire results of the test are stored at the end of the
report, Figure 27. A failure in any of the test will require the user to reevaluate the design

of the hybrid supervisory controller and ensure that all requirements are satisfied.

40

14%

Source Traceability (Origin of

g e 10 the BAS toraum demard by 1w HEC
WA

o 8¢ [E Component
v

| The masimum engre 1oraue demanded by the HSC.
e e comgonert Decumerttion ver S.cenvacry cortrs Ousnt Fakt Dutacton
e e g sgms resting am 0 1 IGE

2 torgue durmand by the HEC shall be less than 6000 | Comgonent Documentation: [Hytrd Suservecry Contrst [Oupnt Fankt Detection | Scftware T2 ML, O Pass Has Rangs V.04 visaen
=N
The s sctrc et ey crsarcms oy |

3 e MGG st tm b tho 200 N | Comgponert Documentaton. [Hyere Scoervmory Cortrs [Ount Fast Dutocten | Scftware T2 wiL, e el Hat Ranga V.04 i
T s e ecirc e soeme) remcdrg oo

4 10 e REM toroue demand by the SC shel te less | Component Documentation. [Myord_Sugperveory_Cortrs [Ounnt Fautt Detection | Software T2 ML Pass Mot Rangs V.o ienn
v 12000 588
The mamimum tempersture of the reer sectrc moter

v Supervecry.

5 nsrgn shat b hena tha 190 g F | Component Documentation: Cortrsd |t Fatt Detecten | Scftware 7208 JwiL, e |Pass Had Ranga V.04 VIS
T cpmritng gk vt of the Energy Siorign

Ot e e 310 e s . [t Oamartation [yerc_Sierveary_Cortrs Ount it Dt scttuare raon . v o Mot Ranga Vo4 rsaas
[T comratns tergaratirs o 1 Erwry S

7 Documentation | Hytrd_Superveory_Cortrst Oupt Fautt Detection’ | Scfteare. 7302 wiL, ML |Pass Hat Ranga V04 VIS0
g F

. e e o e o™ ™™ ™™ | compons Documertation yera S.ervery_Cotra Ouent Fat Dutacton scttuare ran . 1ae = Mt Ranga V.04 visaz
T st o chure o e Erery Sicrin systarn

B |t e movetran 30 s o e 7% Fom b Hred Spuroy, ket (Ot Pt Dutncton Settere T . e [P Yo R V.ok1 i
The atackse vike of the ESS cument shal te less.

0 (s 5 Amis withn 4.5 seconds of an ESS fmt | Companant Documentation Hyer Supervieory_Cortrat [Ouent Fat Dutactien Schimere 305, T308, T307 L, e Pasa ot Ranga V.04 7 Uis 202
omacton.
 The mamirese ek atimascr stanu(BAS) tore

et Supmrvmary

" | Gomarcind by 1he HC shal te ks than 200 Nem | Comporent Dooumentaton: Cortrd | Ouent F ot Dtacton Software. T ML, e |Pams M Ranga V.04 Visen
The mamae tetec stomatr starer(BAS) som

2 resutng due 10 the BAS torgue demand by the HSC | Component Documentation [Hytrid_Superveory_Contral Ouput Fautt Datection il Ta2 ML [Pass Hart Ranga V.04 ViSO
st b s than 29000 RPM.
[The manimum tetes stemator staner(BAS) cument

" | Comgorent Dooumentaton [Hybret Supervaary_ Cortra [Ouent Fat Owtacton | Software. Bl M, e [Pana Has Ranga V.04 visaeR

Figure 20 RTM Excel Sheet

Velocity Profile (Accel Scenario)

35 Reference Velocity
Driver Velocity

30 Error Trigger i
Contactors Open

25t 1

Velocity (mph)
o

10+ 1
5 - -
0 _‘ l—_} -
5 ; i :
0 50 100 150 200
Time (s)

Figure 21 Drive Trace: ESS Fault Insertion During Acceleration

Current Profile (Accel Scenario)

20 T
10 1
° [
< .
5 -10f
5
o
-20
301 ESS Current 1
Error Trigger
Contactors Open
40 : : : . .
155 160 165 170 175 180 185 190 195

Time (s)

Figure 22 Current Trace: ESS Fault Insertion During Acceleration

42

Velocity Profile (Brake Scenario)

35 Reference Velocity
Driver Velocity

30 + Error Trigger |
Contactors Open

25

20

15

Velocity (mph)

_5 1 1 1 1
0 20 40 60 80 100 120 140

Time (s)

Figure 23 Drive Trace: ESS Fault Insertion During Braking

Current Profile (Brake Scenario)

40

ESS Current
Error Trigger
Contactors Open | |

Current (A)

ol W <

_80 1 1 1
110 115 120 125 130

Time (s)

Figure 24 Current Trace: ESS Fault Insertion During Braking

43

Current (A)

Velocity Profile (Coast Scenario)

60 Reference Velocity I
Driver Velocity
50 | Error Trigger]
Contactors Open
40 1
E ~
g 30t .
2
8 sl
- 20
>
10 1
: - I U ||
-10 1 1 1 1
0 100 200 300 400 500

Time (s)

Figure 25 Drive Trace: ESS Fault Insertion During Coasting

- Current Profile (Coast Scenario)

T

ESS Current
Error Trigger R
Contactors Open

30

20

10

_50 1 1 1 1 1 1 1
460 465 470 475 480 485 490 495 500

Time (s)

Figure 26 Current Trace: ESS Fault Insertion During Coasting
44

Summary of Test Case Results

Test Case No. Test Case Name Result
T101 Engine Torque Limit PASS
T102 Engine Speed Limit PASS
T201 REM Torque Limit PASS
T202 REM Speed Limit PASS
T203 REM Temp Limit PASS
T301 ESS Voltage Limit PASS
T302 ESS Temp Limit PASS
T303 ESS Current Limit PASS
T304 ESS SOC Limit PASS
T305 ESS Error Accel PASS
T306 ESS Errror Brake PASS
T307 ESS Error Coast PASS
T401 BAS Torque Limit PASS
T402 BAS Speed Limit PASS
T403 BAS Current Limit PASS

Figure 27 Report Test Results

Finally, the same test cases were implemented in the MIL environment and results
were compared with the HIL results. This comparison helps to verify that the control
logic is maintained across both the environments. Figure 28 shows the comparison of the
MIL and HIL results. The similarities of each method following the same profile is a

clear indication that that the HIL fault implementation was a success.

45

ESS Current
120 1 . :

100

ESS Error
Triggered

Contactor
Open

200 210 220

230 240

Time (seconds)

250

Figure 28 MIL vs HIL Simulation Comparison w/ an ESS Fault

46

Chapter 6. Conclusion

The focus of this thesis was to develop a systematic procedure for using fault
diagnostic tools to be incorporated in HIL. Standard industry fault diagnostic tools were
used to help construct the requirements that set the foundation for creating multiple test
cases for fault insertion. The faults were used to develop and design a robust and safe
controller and HIL simulation was the prime environment in which the faults was
inserted. HIL simulation allowed for the physical controller to act as if in a vehicle while
additionally removing the unsafe aspect of physically testing faults with component
integration. An ESS fault was successfully inserted into the HIL simulation and proper
documentation of the process was covered.

The main focus of this thesis was to demonstrate a professional way for using fault
diagnostic tools to be incorporated into HIL software in order to design a vehicle
controller. Standard industry fault diagnostic tools were used to help construct the
requirements that set the foundation for creating multiple test cases for fault insertion.
The faults were used to develop and design a robust and safe controller and HIL
simulation was the prime In-the-Loop system to insert the fault. HIL simulation allowed
for the physical controller to act as if inside a vehicle while additionally removing the
unsafe aspect of physically testing faults with component integration. An ESS fault was
successfully inserted into the HIL simulation and proper documentation of the process
was covered.

The fault diagnostic procedure covered in this thesis was developed by working

towards the 2019 Winter Workshop Deliverable for the Ohio State ECOCAR Team. This
47

procedure was presented as a technical video and report which were reviewed by industry
experts from GM, MathWorks and dSPACE and other competition sponsors. OSU
received an outstanding near perfect score in this deliverable. OSU plans to expand this
tool to encompass other propulsion components and perform fault diagnostics to ensure
operation safety and controller robustness. The HIL procedure is developed to further
improve upon automotive industries across the globe and familiarize both student and
engineers on how X-in-the-Loop systems, specifically HIL, can support the work for
designing and testing the development of a controller. The HIL environment additionally
supports any component with electrical communications and can additionally be used for
hardware integration and for lifecycle/endurance testing.

6.1. Future Work

The research will continue to integrate additional test cases while designing the
controller. The requirements will be continually updated across the design phase, and
more requirements will be added potentially all components that will need to be tested.
With the increasing number of test cases, keeping track of impact of controller algorithm
updates on meeting test requirements will become cumbersome. Therefore, the use of
dSPACE Synect to manage test cases is recommended in future.

Synect allows for multiple AutomationDesk tests to be compiled together.
Automation Desk lacks the capability of tracking changes and different versions of the
controller algorithm along with test case results. Fixing the AutomationDesk limitations,
Synect can maintain an overall database to simultaneously track controller algorithm

updates along with test case results. This will finally aid the fault diagnostics by

48

providing a better understanding of the effect of updated control strategy on controller

robustness to faults.

49

[1]
[2]

[3]
[4]

[5]
[6]

[7]
[8]

[9]

Bibliography

R. Isermann, Fault-Diagnostics Systems, Darmstadt, Germany: Verlag Berlin
Heidelberg, 2006.

K. R. Butts and A. Ohata, "Improving Model-based Design for Automotive Control
Systems Development,” Seoul, Korea, 2008.

S. S. E. Jim Hays, Writing Effective Requirements, IBM Corporation, 2007.

D. M. Stamatelatos, Fault Tree Handbook with Aerospace Applications,
Washington, DC, 2002.

Ford Motor Company, Failure Mode and Effects Analysis, Dearborn, MI: Ford
Motor Company, 2011.

C.-Y. Lin, P.-L. Li, C.-H. Li and W.-S. Chiang, "Investigation on IGBT Failure
Effects of EV/HEV Inverter Using Fault Insertion HiL Testing," KINTEX, Korea,
2015.

J. Luo, K. R. Pattipati, L. Qiao and S. Chigusa, "An Integrated Diagnostic
Development Process for Automotive Engine Control Systems,™ 2007.

D. Shang, E. Eyisi, Z. Zhang, X. Koutsoukos, J. Porter, G. Karsai and J.
Sztipanovits, "A Case Study on the Model-Based Design and Integration of
Automotive Cyber-Physical Systems,” 21st Mediterranean Conference on Control
& Automation, Platanias-Chania, Crete, Greece, 2013.

G. Tibba, C. Malz, C. Stoermer, N. Nagarajan, L. Zhang and S. Chakraborty,
"Testing Automotive Embedded Systems under X-in-the-Loop Setups,” Austin,
2016.

[10] A. Mouzakitis, D. Copp, R. Parker and K. Burnham, "Hardware-in-the-loop system

for testing automotive ECU diagnostic software," Coventry, UK, 2009.

50

Appendix A. List of Abbreviations

CAN Computer Area Network
CIL Component-in-the-Loop
ECU Electronic Control Unit
EMC EcoCAR Mobility Challenge
ESS Electronic Storage System
FMEA Failure Mode and Effect Analysis
FTA Fault Tree Analysis
HIL Hardware-in-the-Loop
MABXx MicroAutoBox
MIL Model-in-the-Loop
RPN Risk Priority Number
RTM Requirement Traceability Matrix
SIL Software-in-the-Loop
VIL Vehicle-in-the-Loop
XIL X-in-the-Loop

51

Block Hierarchy Template

The Specific
Failure

)

Component

The Specific
Failure

Component

1

The Specific
Failure

P

Component

¢

Red: Top Level
Block

Orange: Breaks
Down Further

Blue: Lowest
Level Block

Appendix B. FTA: Key Block Diagrams

Gate Diagram Template

The Specific
Failure

Component

The Specific
Failure

Component

K out of N

—

K/N

Figure 29 FTA: Block KEY

52

OR gate: Upper
level event occurs
if any one of
lower level events
occur

AND gate: Upper
level event occurs
if all of lower level
events occur

K/N gate: Upper
level event occurs
if K or more of N
lower level events
occur

Appendix C. FMEA Rankings

Note: All Industrial rankings charts (Table 2-Table 4) were grabbed from Ford’s FMEA
2011 Handbook [5]. Table 5-Table 7 were used for the rankings in FMEA example in

Chapter 3, Section 3.2.2.

Table 2 Automotive Industrial Severity Rankings

Effect Criteria: Severity of Effect Ranking
Failure to Potential failure mode affects safe vehicle 10
Meet Safety operation and/or involves noncompliance with
’ overnment regulation without warning.
and/or g - : & .g
Regulatory Potential failure mode affects safe vehicle 9
. - operation and/or involves noncompliance with
Requirements | o,y ornment regulation with warning.
Loss or Loss of primary function (vehicle inoperable, does 8
Degration of | not affect safe vehicle operation).
Primary Degradation of primary function (vehicle operable, 7
Function but at reduced level of performance).
Lo Loss of secondary function (vehicle operable, but 6
il comfort /convenience functions inoperable).
Degration of - - -
Secondary Degradation of secondary function (vehicle 5
Function operable, but comfort /convenience functions at
reduced level of performance).
Appearance or Audible Noise, vehicle operable, 4
item does not conform and noticed by most
customers (> 75%).
Appearance or Audible Noise, vehicle operable, 3
nnoyance item does not conform and noticed by many
Anno; tem d t d noticed by)
customers (50%).
Appearance or Audible Noise, vehicle operable, 2
item does not conform and noticed by
discriminating customers (< 25%).
No Effect No discernible effect. 1

53

Table 3 Automotive Industrial Occurrence Rankings

Criteria: Occurrence

Probability | Criteria: Occurrence of Cause - DFMEA of Cause - DFMEA Ranki
. ankin
of Failure (Design life/reliability of item/vehicle) (Incidents per g
items/vehicles)
Very High | New technology/new design with no history. | = 100 per thousand 10
>1inl0
High Failure is inevitable with new design, new 50 per thousand
application, or change in duty) 9
cycle/operating conditions. 1'in20
Failure is likely with new design, new 20 per thousand
application, or change in duty 1 in 50) 8
cycle/operating conditions. mn
Fai!zfre i.s uncertain wit.h new design, new 10 per thousand
application, or change in duty 1 in 100 7
cycle/operating conditions. m
Moderate Frequent failures associated with similar 2 per thousand 5
designs or in design simulation and testing. | | in 500
Occasional failures associated with similar | .5 per thousand 5
designs or in design simulation and testing. | | in 2,000
Isolated failures associated with similar .1 per thousand 4
design or in design simulation and testing. 1 in 10,000
Low Only isolated failures associated with 01 per thousand
almost identical design or in design 1 in 100.000 3
simulation and testing. n L%
No observed failures associated with almost <001 per thousand
iden.n'cal design or in design simulation and ;in 1,000,000 2
testing.
Very Low Failure is eliminated through preventive Failure is eliminated
control. through preventive 1

control.

o4

Table 4 Automotive Industrial Detection Rankings

Opportunity for Criteria: Rankin Likelihood of
Detection Likelihood of Detection by Design Control & | Detection
No detection | No current design control; Cannot detect or is not 10 Almost
opportunity | analyzed Impossible
Not likely to | Design analysis/detection controls have a weak detection
detect at any | capability; Virtual Analysis (e.g., CAE, FEA) is not 9 Very Remote
stage correlated to expected actual operating conditions.
Product verification/validation after design freeze and
prior to launch with pass/fail testing (Subsystem or system
. . A N : 8 Remote
testing with acceptance criteria, such as ride and
handling, shipping evaluation).
Post Design | Product verification/validation after design freeze and
Freeze and | prior to launch with test to failure testing (Subsystem or 7 Very Low
prior to launch | system testing until failure occurs, testing of system -
interactions, elc.).
Product verification/validation after design freeze and
prior to launch with degradation testing (Subsystem or 6 Low
system testing after durability test, e.g., function check).
Product validation (reliability testing, development or
validation tests) prior to design freeze using pass/fail
.)P Sign freez g passif 5 Moderate
testing (e.g., acceptance criteria for performance,
function checks).
Prior to Design | Product validation (reliability testing, development or Moderately
Freeze validation tests) prior to design freeze using test to failure 4 Hieh
(e.g., until leaks, vields, cracks). 8
Product validation (reliability testing, development or
validation tests) prior to design freeze using degradation 3 High
testing (e.g., data trends, before/after values).
Virtual Design analysis/detection controls have a strong
. detection capability. Virtual analysis (e.g., CAE, FEA) is .
Analysis - . P - ysis (€. .) 2 Very High
- highly correlated with actual or expected operating -
Correlated conditions prior to design freeze.
Detection not | Failure cause or failure mode can not occur because it is
applicable; fully prevented through design solutions (e.g., proven Almost
Failure design standard, best practice or common material). 1 Certain
Prevention

55

The Following Rankings were used to construct the FMEA used for this Thesis in

Chapter 3, Section 3.2.2.

Table 5 EMC Severity Rankings

Severity Rating Scale
Rating Description Definition (Severity of Effect)
Failure would result in total vehicle loss, and or
10 Dangerously High [severeinjury/death to driver or spectator
Failure resultsin complete loss of vehicle
9 Extremely High [functionality
8 Very High Failure ofthe vehicle's subsystem
. Failureis apparent to driver and would affect
7 High vehicle's performance
Failureis apparent to driver and would minorly
6 Moderate effect the vehicle's performance
Failureis enough to constitude perfomanceissue,
5 Low butis ableto be overcome with slight
modification
Failure would be annoyingto the operation of the
vehicle, but would not be sufficent enough to
4 Very Low cause major performacne issues.
Failureis not apparent to driver, but would
3 Minor minorly affect vehicle's performance
. Failureis not apparent to driver, but would
2 Very Minor : . .
minorly affect evironment or fuel consumption
Failuredoesn't not consititute issue with driver or
1 None theteam's goals

56

Table 6 EMC Occurrence Rankings

Occurence Rating Scale

Rating Description Definition (Severity of Effect)
Very High: Failureis expected to occur everytimethevehicleisriden
10 Failurealmost
inevitable
High: Failures [Failureisexpectedto occur duringlight or medium
9 occur almost |testing
as often as not
Failureis expected to occur during competition and/or
8 High: Repeated high intensity testing
Failures
High: Failures |Failurecould occur whileridingthe vehicleduringlight or
/ occur often |medium testing
Moderately |Failurecould occur during competition and/or high
6 High: Frequent | intensity testing
failures
Moderate: Failure could rarely occur during high intesnsity test or a
5 Occasional |competition, but should never occur duringlight or
failures medium testing
Moderately |Failurecould occur onceto threetimesthroughout the
Low: life of the vehicle
4 Infrequent
failures
Failurecould occur duringinitial testing and potentially
3 Low: Relatively once, but highly unlikely, during thelife cycle ofthe
few failures vehicle.
Low: Failures |Failurecould only occur duringinitial testingand
2 areunlikely [shouldn't occuragain duringthelifeofthevehicle
Very Low: |Failureisexpected to never occur duringthelife of the
1 Failurerarely [vehicle.

occursifever

57

Table 7 EMC Detection Rankings

Detection Rating Scale

Rating Description Definition (Severity of Effect)
10 Absolu‘te The defect from the system is undetectable
Uncertainty

Effect of failure may benoticed but thedefect is
S Very Remote difficult to locate

Effect of failureis noticeable but defect is difficult
8 Remote to locate

Thedefect is not obvious and may be caught by
7 Very Low electrical testing

Thedefect is not obvious but will bedetected by
6 Low physical observations

The defect might be obvious but electrical testing
3 Moderate is necessary

The defect might be obvious and could be found
4 Moderately High from physical observations

The defect is obvious and will be detected by
3 High physical observations or electrical tests

The defect is obvious and will be found quickly
2 Very High from physical observations

The defect is obvious and will be
1 Certain detected immediately without any need for

observations

58

	Abstract
	Dedication
	Acknowledgments
	Vita
	Fields of Study
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1. Introduction
	1.1. Motivation
	1.2. EcoCAR Mobility Challenge
	1.3. Thesis Structure

	Chapter 2. Background
	2.1. Requirements Development/Fault Diagnostics
	2.1.1. Fault Tree Analysis (FTA)
	2.1.2. Failure Mode and Effects Analysis (FMEA)

	2.2. Model Based Design
	2.2.1. Model-in-the-Loop (MIL)
	2.2.2. Software-in-the-Loop (SIL)
	2.2.3. Hardware-in-the-Loop (HIL)

	Chapter 3. Methodology
	3.1. Vehicle Architecture
	3.2. Requirement Development
	3.2.1. Fault Tree Analysis (FTA)
	3.2.2. Failure Mode and Effects Analysis

	3.3. In-the-Loop System
	3.3.1. Model-in-the-Loop (MIL)
	3.3.2. Hardware-in-the-Loop (HIL)
	3.3.3. Component-in-the-Loop (CIL) and Vehicle-in-the-Loop (VIL)

	Chapter 4. Implementations
	4.1. Simulink
	4.2. ControlDesk
	4.2.1. The Dashboard Layout
	4.2.2. Calibration Layout
	4.2.3. Diagnostic Layout

	4.3. Automation Desk

	Chapter 5. Results
	Chapter 6. Conclusion
	6.1. Future Work

	Bibliography
	Appendix A. List of Abbreviations
	Appendix B. FTA: Key Block Diagrams
	Appendix C. FMEA Rankings

