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Abstract - Echolocation is a natural phenomenon observed in bats that allows them to navigate 

complex, dim environments with enough precision to capture insects in midair. Echolocation is 

driven by the underlying process of echoic flow, which can be broken down into a ratio of the 

distance from a target to the velocity towards it. This ratio produces a parameter τ representing 

the time to collision, and controlling it allows for highly efficient and consistent movement. 

When a quadcopter uses echoic flow to descend to a target, measurements from the ultrasonic 

range sensor exhibit noise. Furthermore, the use of first order derivatives to calculate the echoic 

flow parameters results in an even greater magnitude of noise. The implementation of an optimal 

Kalman filter to smooth measurements allows for more accurate and precise tracking, ultimately 

recreating the high efficiency and consistency of echolocation tracking techniques found in 

nature. Kalman filter parameters were tested in realistic simulations of the quadcopter’s descent. 

These tests determined an optimal Kalman filter for the system. The Kalman filter’s effect on an 

accurate echoic flow descent was then tested against that of other filtering methods. Of the 

filtering methods tested, Kalman filtering best allowed the quadcopter to control its echoic flow 

descent in a precise and consistent manner. In this presentation, the test methodology and results 

of the various tests are presented. 
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I. Introduction 

Quadcopters and other unmanned aerial systems are used in various applications all 

around the world. The complexity of the tasks required from these quadcopters is only increasing 

with time. Examples of these complex tasks include navigating around obstacles such as power 

lines or trees, as well as autonomously docking at charging stations. These tasks prove to be a 

large challenge, but luckily a solution to this problem already exists in nature. In this research, 

the biological concept of echoic flow is used to control a quadcopter’s descent. This research 

plans to accomplish the task of accurately smoothing measurement noise, allowing for echoic 

flow to precisely control the quadcopter’s landing. A more accurate noise filter would also help 

by decreasing the spread of landing paths taken by the quadcopter, making landings more 

consistent. 

Echoic flow is a biological concept that is used by bats to control their rate of approach 

and can be characterized as a specialization of General Tau Theory as described by the 

researchers in [1]. Bats use acoustic flow fields to internally calculate a “time to collision” 

parameter, τ, which allows them to compute complicated flight paths towards targets or even 

around obstacles. By keeping the rate of change of τ at a constant value, echoic flow can be used 

to control an object’s motion. This is because an object exhibiting echoic flow follows a curve 

with an order of the inverse of the rate of change of τ. 

With the existing approach, when a quadcopter replicates echoic flow, there are serious 

shortcomings. First, ultrasonic range sensor measurements exhibit noise. This noise, while not 

significant, still negatively impacts the precise requirements of the echoic flow algorithm. 

Furthermore, the use of first order derivatives to calculate echoic flow parameters exacerbates 
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the noise related error in echoic flow-based control methods. For example, the actual average 

velocity of the system may be a very small negative value, but noisy measurements could find 

the average velocity to be a very large positive value. This keeps the quadcopter from performing 

a precise echoic flow descent. The problem of mitigating measurement noise in echoic flow is 

extremely significant and important to solve, as quadcopters and drones will continue to play a 

large role in future technological advancements, and their movement accuracy is paramount in 

improving them. 

A significant amount of research has already been done in the area. Echoic flow was 

found to demonstrate vast potential for advancing the capability of man-made systems, as seen in 

[2]. In [3], however, the effect of range and range rate measurement accuracy on echoic flow is 

discussed. The writers suggest that a filtering algorithm be used to make the measurements more 

accurate, therefore making the echoic flow itself more accurate. [4] explores a potential filtering 

algorithm for use in an echoic flow approach. In this application of echoic flow, a quadcopter 

uses echoic flow to smoothly descend and land. This was accomplished by performing a least 

squares regression in order to smooth measurement noise. This solution has drawbacks, however. 

Ideally, the quadcopter would follow the same path for every landing if the rate of change of τ 

was the same. However, the least squares regression filter assumed that the quadcopter’s motion 

could always be described as a polynomial. This is not always an accurate assumption, and as a 

result, this filtering technique had an increased spread of landing paths taken by the quadcopter. 

One specific key fact about the measurement accuracy problem is that using a least 

squares regression for the estimation of ranges is not optimal. Another important fact about the 

problem at-hand is that Kalman Filters significantly reduce noise by estimating a joint 

probability distribution over many variables and is considered the optimal solution for mitigating 
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measurement noise by [3]. This research proposes to implement an optimal Kalman filter as a 

measurement smoother for the echoic flow algorithm discussed in [4].  

In order to implement an optimal Kalman filter, the existing system created in [4] had to 

be refactored. This system was written in JavaScript, a programming language with little to no 

matrix calculation support, which is required for the implementation of a Kalman filter. The 

existing codebase was refactored to Python, as the matrix calculation support in Python is far 

more extensive. Since the system ran on a new codebase, new calibrations had to be made. This 

includes acoustic range sensor calibrations as well as velocity command calibrations. Once 

calibrations were complete, experimental trials began. The Kalman filter was tested against a 

quadratic regression filter at a τ̇ value of 0.5, as [4] found that this was most effective in 

producing an ideal echoic flow curve. A control of no filter was also tested. Lastly, these same 

factors were tested in a realistic simulated environment in order to increase sample size.  

The major obstacle encountered in this research was accounting for the quadcopter’s 

outdated systems. This includes long charging time and the presence of bugs causing its internal 

program to crash. These problems made it difficult to achieve a large sample size based on 

quadcopter trials alone, so most of this research was spent creating and performing an accurate 

Python simulation of the quadcopter’s echoic flow descent. The type of quadcopter used in this 

research is outdated and therefore accurate simulations of the quadcopter’s motion are more 

indicative of engineering this method for use in real-life situations. 

By the time this research had concluded, many things had been learned. One important 

note is that the measurement noise exhibited by the quadcopter’s acoustic range sensor was 

Gaussian, and because of this, the Kalman filter would be the optimal algorithm for estimating 

the track of the object. This was experimentally proven to be the case, as the Kalman filter 
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outperformed the control unfiltered descents as well as the quadratic regression filtered descents. 

Not only did the median root mean squared error drop significantly, but the spread of the root 

mean squared error values also significantly dropped. The main lesson from this research was 

derived from this evidence: the Kalman filter decreased the error and error spread of landing 

paths taken by the quadcopter when compared to the quadratic regression filter. This means that 

an echoic flow approach coupled with a Kalman filtering algorithm could be extremely useful for 

accurately avoiding obstacles and following targets. 

In section two of this paper, an overview of echoic flow is given. This includes a detailed 

description of equations and how the selection of parameters affects the movement of an object. 

Section two also details how a quadcopter would be controlled with echoic flow. In section three 

of this paper, the basics of a Kalman filter are described, including specific equations and 

flowcharts explaining how Kalman filters iteratively use a series of measurements and quantified 

uncertainty to produce a best estimate for the track of an object. Section three also gives a basic 

Kalman filter simulation to show its basic effectiveness over other types of filters. In section four 

of this paper, the experimental methodology is explained. Additionally, the acoustic range sensor 

calibrations and velocity command calibrations are explained in depth. This section also covers 

the selection of Kalman filter parameters. Section five of this paper details the results of the 

experimental trials and discusses why there is a need for simulation trials. In section six, the 

process for achieving accurate quadcopter error for the simulation is explained, as well as the 

results of the simulations. Lastly, section seven concludes the paper by providing a summary of 

the paper’s findings, describing further applications of Kalman filtered echoic flow, and 

discussing potential future work in this area. 
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II. Echoic Flow 

2.1 – Echoic Flow Overview 

Echoic flow can be characterized as a specialization of General Tau Theory as described 

in [1].  In echoic flow, the flow field parameter is the ratio of the range measured by a sensor to 

the rate of change of that range. This can be expressed as τ, the time to collision, as seen in 

equation 1. 

τ = 
r

ṙ
 (1) 

  

In this equation, r represents the range to the target and ṙ represents the change in r over 

time, or in other words, the relative velocity of the object to the target. The derivative of τ can be 

described as seen in equation 2.  

τ̇ = 1 - τ ∗
r̈

ṙ
 

(2) 

  

In this equation, r̈ describes the object’s relative acceleration to the target. By selecting a 

constant value of τ̇ between zero and one, the object will slow down as it approaches the target, 

allowing motion to be controlled. The application of echoic flow described in [4] found that a τ̇ 

value of 0.50 was most effective in reproducing an ideal echoic flow motion in experimental 

trials of a quadcopter’s descent.  

When an object uses echoic flow, its position can be described as a function of time. This 

is seen in equation 3 and is given in [2].  
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r = 𝑟0 ∗ (1 + τ̇ ∗
𝑟0

ṙ0
∗ 𝑡)

1
τ̇⁄

 
(3) 

  

 In this equation, r0 describes the starting position and ṙ0 describes the starting velocity. 

Additionally, the equation is raised to the 
1

τ̇
 power. Since the object’s approach to the target is 

inversely proportional to τ̇, the choice of τ̇ directly determines the order of the object’s range 

versus time curve. Figure 1 shows the ideal resulting motion for an object’s approach at various 

constant values of τ̇. 

 

Figure 1: Ideal echoic flow motion for various τ̇ values [4] 

 

2.2 –Echoic Flow Control of a Quadcopter 

To control a quadcopter’s descent with echoic flow, τ̇ needs to be kept constant 

throughout its landing. This allows the quadcopter to follow the ideal motion described in Figure 
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1. To keep τ̇ constant throughout the quadcopter’s descent, several steps were taken. First, a 

measurement was taken from the sensor. After passing this measurement through a smoothing 

filter, the average velocity was calculated since the last measurement. The filtered measurement 

and the calculated velocity were then used to calculate τ. The calculated velocity and τ were then 

used to find the required acceleration of the object. This was accomplished by rearranging 

equation 2 to solve for r̈. This desired acceleration was required in order to keep τ̇ constant. 

Equation 4 describes the kinematic motion of an object.  

 

𝑣𝑛+1 = 𝑣𝑛 +  𝑎𝑛+1 ∗  Δ𝑡 (4) 

  

  

This equation was used to find the velocity needed to achieve the desired acceleration. 

Finally, the quadcopter would set its velocity to this desired value, and the process would repeat 

after making a new measurement. This echoic flow control process can be seen outlined in 

Figure 2. 
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Figure 2: Echoic flow control process of quadcopter [4] 

 

When the natural phenomenon of echoic flow is replicated by a quadcopter, sensor 

measurements are noisy, as can be seen in Figure 3. This error is only exacerbated when the 

velocity is calculated in the third step of Figure 2. This causes echoic flow calculations to be 

erroneous and limits their utility in guidance and control activities. This measurement and 

calculated error would be best mitigated by a Kalman filter, as this would provide a true estimate 

of the quadcopter’s range. 
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Figure 3: Noisy range measurements at a fixed height [4] 

 

III. Kalman Filtering 

3.1 – Kalman Filter Overview 

When there is uncertain information about a dynamic system, a Kalman filter can be used 

to make an educated guess about the system’s next state. In this case, the system is a quadcopter 

descending to the ground with a state xk, which is just a position 𝛼 and a velocity 𝑣. This will be 

represented as the matrix in equation 5. 

 

x = [ 
𝛼
𝑣

 ] 
(5) 

  

When a measurement is taken and velocity is calculated, there is no way to know that 

these are the accurate and precise values. Therefore, every state has uncertainty associated with 
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it. This uncertainty is described by a covariance matrix, Pk, which can be seen in equation 6. The 

larger the initial value for P, the more the Kalman filter ignores measurement updates. The 

smaller the initial value for P, the more the Kalman filter trusts measurement updates. According 

to [8], the effect of P0’s selection is typically not significant, and it is often initialized to the 

identity matrix for simplicity. 

P = [ 
𝛴𝛼𝛼

𝛴𝑣𝛼

 𝛴𝛼𝑣

𝛴𝑣𝑣
 ] 

(6) 

  

The first step of the Kalman filter is to predict the actual state and the actual uncertainty 

based on the previous data. Since there are no known external influences, the new state can be 

described as xk = F * xk-1 where F is described in equation 7. 

 

F = [  
1
0

 Δt
 1

 ] 
(7) 

  

F is a matrix of kinematic coefficients describing the movement of the quadcopter. While 

there are no known external influences, there are new unknown influences. This is modeled as 

process noise covariance Q. In order to specify Q, the quadcopter’s motor model and potential 

physical disturbances must be known. When these models are unknown, Q can be described as 

white noise with an intuitively determined variance. A larger variance equates to less trust in the 

state equations, giving more weight to the measurement. The new uncertainty can be described 

as seen in equation 8.  
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Pk = F∗Pk-1∗transpose(F) + Q (8) 

Once the predicted state and uncertainty are found, they must be updated according to a 

new measurement. This is achieved by combining the two Gaussians of the predicted state and 

the measurement. This means that for a Kalman filter to be an optimal filter, the measurement 

noise must have a Gaussian distribution. The updated state has an equation described in equation 

9, where K is the Kalman gain, z is the new sensor measurement for the current timestep, and H 

is the measurement matrix. H = [1 0] because only range is being measured. The updated 

uncertainty can then be modeled as equation 10. 

 

xk+1 = xk +  K ∗ (z –  H ∗ xk) (9) 

 

 
Pk+1 = Pk −  K ∗ H ∗ Pk (10) 

 
  

 When the two Gaussians of the current predicted state and the measurement are 

combined to get the updated state, a weight is given to the measurement based on uncertainty 

and measurement noise. This weight is called the Kalman gain and is given by equation 8. R is 

the measurement noise variance, which describes the spread of the measurement noise of the 

sensors. If R is large, then the updated state is adjusted primarily based on the predicted state. If 

R is small, then the updated state is adjusted primarily based on the measurement state. 

 

K =
[ 

𝛴𝛼𝛼

𝛴𝑣𝛼
 ]

𝛴𝛼𝛼 + 𝑅
 

(8) 
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 Once the state and uncertainty are updated, these output values can be used to continue 

with echoic flow, and the entire process loops back on itself, as seen in the flowchart of the 

Kalman filtering process in Figure 4. 

 

 

Figure 4: Kalman Filter flowchart [7] 

 

3.2 – Basic Kalman Filter Simulation 

To describe the effectiveness of a Kalman filter, a Python simulation of a quadcopter’s 

descent was developed. This basic simulation had the quadcopter starting at a height of 2.0m and 

descending at a constant rate of 0.3m/s to a height of 0.4m. The quadcopter was given a 

measurement error normally distributed around 0m with a standard deviation of 0.05m, and the 

quadcopter’s range error and velocity error were plotted over time. Kalman filter parameters 
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were selected intuitively, as the error is entirely random. P0 was arbitrarily selected to be the 

identity matrix for simplicity’s sake. R was selected to be 0.0025, as this is the true variance of 

the measurement noise, and therefore, “would expect the best performance in terms of balancing 

responsiveness and estimate variance” [6], which is the exact goal of this research. Lastly, Q was 

described as discrete white noise, as the process noise is completely unknown in this system. In 

order to visualize the effectiveness of the Kalman filter, it was compared against a quadratic least 

squares regression filter as well as a control of unfiltered motion. Table 1 describes the range 

bias and standard deviation of each filtering method for a typical trial, and Figure 5 shows the 

range error. 

 

 Bias (m) Standard Deviation (m) 

Measured Range 0.0009 0.069 

Kalman Filtered Range -0.0030 0.020 

Quadratic Regression Filtered 

Range 

0.0013 0.049 

Table 1: Bias and standard deviation of a quadcopter’s range error over time for measured range, 

Kalman filtered range, and quadratic least squares regression filtered range 
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Figure 5: Simulation of a quadcopter’s range error over time for measured range, Kalman 

filtered range, and quadratic least squares regression filtered range 

 

 The low bias values indicate that this process is unbiased, as all filtering methods center 

around a mean error of approximately 0m. The standard deviation values show that the Kalman 

filter outperforms the least squares regression filter significantly and that having no filter at all 

yields the most inaccurate range estimates.  

The effect of the Kalman filter can be especially noticeable when first order derivatives 

are calculated. This is because slight errors in range measurement can lead to extreme 

differences in first order derivative calculations. Table 2 describes the velocity standard 

deviation of each filtering method for a typical trial, and Figure 6 shows the velocity error. 
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Standard Deviation 

(m/s) 

Measured Velocity 1.001 

Kalman Filtered Velocity 0.092 

Quadratic Regression Filtered 

Velocity 

0.593 

Table 2: Standard deviation of a quadcopter’s velocity error over time for measured velocity, 

Kalman filtered velocity, and quadratic least squares regression filtered velocity 

 

 

Figure 6: Simulation of a quadcopter’s velocity error over time for measured velocity, Kalman 

filtered velocity, and quadratic least squares regression filtered velocity 
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 Since velocity is calculated rather than measured, bias does not matter. However, the 

standard deviation values once again show that the Kalman filter outperforms the least squares 

regression filter significantly and having no filter at all yields the most inaccurate velocity 

estimates. The velocity error for the Kalman filtered simulation is decreased by more than 85% 

when compared to the quadratic least squares regression filtered simulation, and by over 90% 

when compared to the unfiltered simulation. This shows how useful the Kalman filter can be in 

mitigating measurement noise for both range error and velocity error. 

 

IV. Experimental Methodology, Equipment, and Calibration 

4.1 –Experimental Methodology and Equipment 

Figure 7 shows the experimental setup as described in [4]. The quadcopter would begin 

by ascending to a height of 2.0m and then it would approach the ground with an initial velocity 

of 0.4m/s. After reaching this initial velocity, the quadcopter would use echoic flow to control its 

descent by iterating through the control process as described in Figure 2. In order to control the 

landing, τ̇ was kept constant after being selected to be 0.50 at the beginning. This value was used 

for τ̇ because [4] found it to be the most effective value for a quadratic regression filter, and a 

Kalman filter’s effectiveness is not reliant on the order of an object’s motion.  τ̇, r0, and v0 are 

the factors that determined the quadcopter’s descent, as seen in equation 3. This experiment 

would be repeated many times with a Kalman filter, a quadratic regression filter, and no filter. 

The results would then be compared. 
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Figure 7: Experimental setup [4] 

 

4.2 – Quadcopter and Sensor 

 The quadcopter used was a Parrot AR Drone 2.0. The Parrot AR Drone 2.0 

communicates with a host computer over a Wi-Fi network, and a Python library called PS Drone 

[5] was used to send movement commands over the network to the quadcopter. In addition, the 

quadcopter sends information in real time about its height and orientation over the network to the 

host computer. This quadcopter is equipped with an ultrasonic acoustic range sensor with an 

operating frequency of 15Hz. The sensor faces downwards and measures the quadcopter’s height 

to three decimal places.  

4.3 – Range Sensor Calibration 

The acoustic range sensor on the quadcopter is not perfectly accurate. As a result, it 

needed to be calibrated using a similar process to that described in [4]. The sensor’s 

measurements could be converted into meters by holding the quadcopter above a surface that 



18 
  

was a fixed, known distance away. The measurements were then sent to the computer and saved. 

This was done for values of exactly 0.500m, 0.600m, 0.700m, 0.800m, and 0.900m. The range 

sensor’s measurements could be converted into true meters by fitting a linear curve to the 

average measurement value at each known distance. Figure 8 shows a plot of actual distance 

versus average sensor measurement as well as a corresponding linear conversion equation. The 

error bars present represent the standard deviation at each data point. 

 

 

Figure 8: Quadcopter acoustic range sensor calibration 
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4.4 - Velocity Control Calibration 

The PS Drone Python library allows for downwards movement of the quadcopter. In 

order to initiate this movement from the host computer, a command between 0 and 1 is sent to 

the quadcopter. This command represents a percentage of the maximum drone speed. Therefore, 

a command of 0.5 does not necessarily correspond to a downwards velocity of 0.5m/s. Because 

of this, the command value needed to be converted into actual meters per second in order to 

control the drone’s velocity accurately. In order to do this, the drone flew to a starting height of 

2m. From here, a command was given from the host computer instructing the drone to move 

downwards at a certain percentage of its maximum speed. 

A range versus time plot was created from these measurements and the slope of this 

constant downwards movement was found in m/s. This process was repeated for commands of 

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8. Commands of 0.9 and 1.0 were omitted because these 

commands are never sent to the quadcopter throughout the duration of the echoic flow descent. 

Five trials were done for each of the eight commands, and the average true velocity was found 

for each. The average true velocities were then plotted against the command values, and a 

resulting quadratic curve was fit. This plot can be seen in Figure 9, where the error bars represent 

the standard deviation of the velocity. The inverse of this quadratic equation gives the host 

computer a methodology for converting the desired velocity to a command. 
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Figure 9: Plot of true velocity vs. quadcopter movement command 

 

4.5 –  Kalman Filter Parameter Tuning 

Kalman filter parameters were selected using various methods. P0 was selected to be the 

identity matrix for simplicity. R, on the other hand, was found experimentally. In order to 

accurately determine R, accurate measurement noise needed to be determined.  It was known that 

measurement error was dependent on altitude, as the quadcopter produces upward wind drafts 

when closer to the ground, which affects the range sensor’s accuracy [4]. Since the measurement 

noise was dynamic, R was also dynamic. To experimentally find measurement noise at various 

heights, the quadcopter was held at a fixed height for 1000 measurements, and the standard 

deviation of the measurement error was found. An example of one of these runs can be seen for a 

height of 0.75m in Figure 10. The standard deviation of these measurements was found to be 

0.0184m. Therefore, at a height of 75cm, R would equal 0.01842, or 0.000339. This was repeated 
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ten times for each of various altitudes ranging from 0.5m to 2.0m, and a resulting quadratic fit 

curve was found, as seen in Figure 11.  

 

Figure 10: Frequency plot of measured ranges at a fixed height of 0.75m 

 

Figure 11: Plot of range sensor distance vs. measurement standard deviation 
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It is important to note that Figure 10 shows that the measurement noise is Gaussian. This 

means that the Kalman filter is the optimal filtering algorithm for the system. Lastly, Q was 

described as discrete white noise, as the quadcopter’s motor models are completely unknown in 

this system. The variance of this white noise was selected experimentally. Initial tests found that 

white noise variance values between 0 and 0.01 were best for minimizing root mean squared 

error (RMSE) when compared to an ideal descent. Three Kalman filtered echoic flow descents 

were done for each of the variance values seen in Table 3. The median of the three runs was then 

recorded. As can be seen in the shaded portion of Table 3, a white noise variance of 0.005 was 

the best at minimizing error. 

 

 

Q White 

Noise 

Variance 

 

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 

Median 

RMSE 

(cm) 

29.01 34.11 23.73 20.97 18.85 21.38 24.65 30.98 27.12 29.74 

Table 3: Median RMSE for different values of Q’s white noise variance (N = 3) 

 

V. Echoic Flow Experimental Results 

Echoic flow descent trials were then done with the quadcopter. Ten trials were done with 

a Kalman filter, ten trials were done with a quadratic least squares regression filter, and ten trials 

were done without a smoothing filter at all. The quadratic least squares regression filter was 

tuned according to [4], which found a buffer size of 19 to be most effective at minimizing 

RMSE. Table 4 shows the results of these experimental trials. The median was calculated instead 

of the mean, as large RMSE values greatly skewed the mean. The standard deviation was also 
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found in order to see each filter’s effect on the consistency of low-RMSE simulations. 

Additionally, the percentage of simulations with a notably low RMSE (< 10 cm) was found. 

 

Median RMSE 

(cm) 

RMSE 

Standard 

Deviation 

(cm) 

Percentage of Simulations 

with RMSE < 10 cm 

No Filter 67.92 53.08 0% 

Quadratic Filter 37.18 46.77 10% 

Kalman Filter 23.13 20.21 40% 

Table 4: RMSE statistics for experimental echoic flow descent with different filtering algorithms 

(N = 10) 

 

Table 4 shows that the Kalman filter was the best and most consistent at mitigating noise 

and allowing the quadcopter to perform an accurate echoic flow descent. Figure 10 shows the 

best Kalman filtered descent compared against an ideal echoic flow curve. 

 

Figure 12: Quadcopter’s best actual echoic flow descent with Kalman filter 
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The actual quadcopter trials required a full battery charge to be most accurate, and the 

quadcopter’s outdated system crashed the program on the host computer often and unpredictably. 

These factors led to a low sample size for experimental trials. This low sample size coupled with 

a high error spread meant that a much higher sample size was required. Therefore, accurate 

simulations were the only way to get a true idea of which filter worked best at mitigating 

measurement noise.  

 

VI. Echoic Flow Simulation 

6.1 – Error Calibration for Simulation 

For an accurate echoic flow simulation, accurate measurement error needed to be 

determined. Accurate measurement error was previously found in section 4.5, when calculating 

the Kalman filter parameter R. Therefore, when building the simulation, it was known that 

measurement error was based on the quadcopter’s height according to the equation in Figure 11. 

This equation could be used in the echoic flow simulation to accurately depict measurement 

noise based on the current altitude. This was done by introducing a random error normally 

distributed around zero with a standard deviation of based on the equation in Figure 11. 

Velocity also had an error associated with it, as the input command would not always 

correspond perfectly with the desired velocity. This was determined experimentally based on the 

velocity calibration standard deviation values calculated in Figure 9. These standard deviation 

values were plotted against their corresponding requested velocity. The error was found to be 

independent of desired velocity, as any best fit curve had a low correlation (R2 < 0.5). However, 

the velocity error was still normally distributed around a mean of zero. An example of this can be 
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seen in Figure 13 at a requested velocity of 0.5m/s. Fifteen trials were done in order to get a 

better visual of the normal distribution.  Therefore, a simple average of velocity error standard 

deviation was taken across various input commands of 0.1 to 0.8. This average was found to be 

0.031m/s. This value was used in the echoic flow simulation to accurately depict velocity error 

when giving the simulation a velocity command. This was done by introducing a random error 

normally distributed around zero with a standard deviation of 0.031. 

 

Figure 13: Frequency plot of velocity error at a requested velocity of 0.5m/s 

 

6.2 – Echoic Flow Simulation Methodology 

The simulation was created in Python and was based directly off the echoic flow 

quadcopter descent code. While it did not make use of the PS Drone library, it used simulated 
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velocity ‘commands’ and 15Hz time delays in order to accurately simulate the quadcopter’s 

behavior. Figure 14 shows an echoic flow simulation with no error introduced. The RMSE of 0 

indicates that without error, the echoic flow descent works ideally. After the simulation error 

found in section 6.1was introduced, individual simulations were done of each of the three 

filtering methods. This gives a visualization of how accurate the filters are at maintaining an 

ideal echoic flow descent. An example of a Kalman filtered simulation can be seen in Figure 15, 

where the RMSE is very low at only 1.351cm.  

 

Figure 14: Simulation of echoic flow with no introduced error 
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Figure 15: Kalman filtered echoic flow descent simulation with realistic quadcopter error 

 

 

6.3 – Echoic Flow Simulation Results 

After setting up the simulation and testing to ensure that it worked accurately, 1000 

descent simulations were done for each filtering method. This large sample size helps to get a 

better idea of which filter is best for mitigating echoic flow descent error. The results of these 

simulations can be found in Table 5. The median was calculated instead of the mean, as bad runs 

with large RMSE values greatly skewed the mean. Additionally, the standard deviation was 

found in order to see each filter’s effect on the consistency of low-RMSE simulations. Lastly, 

since bad runs are inevitable with so much error being introduced, the percentage of simulations 

with a notably low RMSE (< 10 cm) was also found. 

RMSE = 0.01351 m 
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Median 

RMSE 

 (cm) 

RMSE 

Standard 

Deviation 

(cm) 

Percentage of 

Simulations with 

RMSE < 10 cm 

No Filter 49.04 75.45 0.4% 

Quadratic 

Regression 

Filter 

22.05 48.14 18.2% 

Kalman Filter 14.11 11.97 32.6% 

Table 5: RMSE statistics for echoic flow descent simulations with different filtering algorithms 

(N = 1000) 

 

Table 5 shows how the Kalman filtering algorithm is optimal in mitigating measurement 

noise and allowing the simulated quadcopter to descend according to the ideal echoic flow curve. 

Additionally, the Kalman filter increases the consistency of low-RMSE simulations, greatly 

outperforming the quadratic least squares regression filter and especially outperforming the 

absence of a filter.  

 

VII. Conclusion 

The landing of a quadcopter was controlled using a natural phenomenon called echoic 

flow. When performing an echoic flow descent with a quadcopter, the measurement noise of the 

acoustic range sensor causes the descent to differ from the ideal echoic flow curve. The 

implementation of a Kalman filter to smooth measurements allows for more accurate and precise 

tracking, ultimately recreating the high efficiency and consistency of echolocation tracking 

techniques found in nature. The main conclusion of this research is that a Kalman filter works 
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better to minimize measurement noise and echoic flow error spread when compared to other 

filtering methods, allowing for an efficient and consistent tracking. Some real-life applications of 

this method include landing drones in a specific location extremely precisely.  

The type of quadcopter used in this research is outdated. The battery life and presence of 

various fatal bugs caused the sample size of echoic flow trials to be low. The echoic flow 

descents are not always near ideal, causing the need for a very large sample size. Therefore, 

accurate simulations of the quadcopter’s echoic flow descent are more indicative of engineering 

this method for use in real-life situations.  

In the future, using a different type of battery with a longer life could allow for more 

trials to be done, and for a better indication of how each filter worked at mitigating measurement 

noise. Additionally, future work could investigate the effectiveness of τ̇ values other than 0.50 

when measurements are Kalman filtered. For this research, 0.50 was used as a basis of 

comparison, as it was previously found to be the most effective τ̇ value for a quadratic filter. 

Lastly, future research could look at implementing a Kalman filter on an echoic flow approach 

algorithm towards a moving object, which more accurately depicts what is seen in nature. It 

would also have more real-life implications than a simple landing.  
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