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Abstract 

Chromosomal deletions are one of the most dangerous types of DNA damage and often arise as a result 
of inappropriately repaired DNA double strand breaks (DSB).  These breaks are usually formed either in 
an induced manner from exogenous damage such as radiation, or more commonly caused from 
spontaneous replication errors. If there is a single strand break during replication and it is not repaired 
properly, as the replication fork progresses it can lead to the formation of a DSB. When there is a DSB 
present, there is the opportunity for a chromosomal deletion to occur. If the break is in between non-
tandem direct repeats, the DNA repair machinery will degrade what is between the direct repeats through 
a process called Single Strand Annealing (SSA). This massive loss of DNA is what is known as a 
chromosomal deletion. Using an assay that in Schizosaccharomyces pombe, we can detect DSBs and 
determine DNA repair pathways through a selection screen of yeast cells with inactivated DNA repair 
genes. We generated an in vivo assay that reports exclusively SSA. We validated the assay by showing its 
dependence on rad52+ and independence rad51+. However, we show that earlier events epistatic to 
rad52+ and rad51+ have differential requirements for deletions vs. other forms of repair. Here, we 
delineate a more detailed epistatic pathway for intrachromosomal deletions.  

  



ii 
 

ACKNOWLEDGEMENTS   
I would like to thank Dr. Ruben Petreaca for allowing me to perform undergraduate research in his lab, 

as well as being my project advisor. Without his support, I would not have been able to make it this far. 

Since I started working for him, he has always pushed me to do more than I ever thought that I could.  

Performing research with Dr. Petreaca has been the most beneficial experience of my undergraduate 

career.  

Thank you to Dr. Renee Bouley for agreeing to be on my thesis committee, I appreciate your willingness 

to help on short notice. 

A special thank you to all of my friends and family who have supported me over the years. There have 

been ups and downs, but I made it through them with your help. I look forward to what the future holds 

for all of us. 

 

 

  



iii 
 

LIST OF FIGURES   

Figure 1. Major types of DNA damage  

Figure 2. Pathways of repair of DNA double strand breaks 

Figure 3. Spontaneous and induced DNA double strand breaks 

Figure 4. An assay to study spontaneous and induced double strand breaks at regions of non-tandem 

repeats 

Figure 5. Frequencies of chromosomal deletions from spontaneous break repair in various 

recombination mutants 

  



iv 
 

TABLE OF CONTENTS  

ABSTRACT……………………………………………………………………………………………………………………………………………i 

ACKNOWLEDGEMENTS ...................................................................................................................... ii 

LIST OF FIGURES ............................................................................................................................... iii 

TABLE OF CONTENTS ......................................................................................................................... iv 

INTRODUCTION…………………………………………………………………………………………………………………………………..v 

MATERIALS AND METHODS…………………………………………………………………………………………………………………5 

RESULTS AND DISCUSSION………………………………………………………………………………………………………………….7 

CONCLUDING REMARKS…………………………………………………………………………………………………………………….10 

 

 

 

 

 

 

 

 

 

 

  



 

1 
 

INTRODUCTION 

DNA is required for expressing genes that are necessary for life, it is comprised of three parts: A Pentose 

Sugar, a Nitrogenous Base and a Phosphate Group. This along with lipids, carbohydrates, and proteins 

form the building blocks of life. DNA is a polymer built from nucleotide monomers which have a secondary 

structure with the specific bonding pattern two hydrogen bonds between Adenine and Thymine, and 

three hydrogen bonds between Guanine and Cytosine. This gives DNA its double helix structure of 34 

angstroms per turn [1]. Due to this structure, DNA can be replicated semi-conservatively by becoming 

single stranded and using one copy as a template to create a second strand. This helps protect DNA from 

being damaged as it must go through two rounds of replication for the damage to be permanent [2].  

All transmissible damage that occurs in DNA is in its primary structure from environmental factors and 

natural processes. This can either be damage to the sugar-phosphate backbone or the nitrogenous bases 

[3]. DNA damage can be from exogenous factors, such as: chemicals, radiation, or other external factors. 

However, a majority of the damage comes from endogenous errors, such as stalled replication forks [4-

6]. These can be dangerous due to the fact that they can convert a single strand break (SSB) into a double 

strand break (DSB). If not repaired properly, DSBs can lead to genetic instability and frequently 

chromosomal deletions [7-9]. This can often result in a loss of heterozygosity, which may cause an 

inactivation of tumor suppressors. Without at least one functioning copy of a tumor suppressor, the cell 

cycle will not be properly regulated. If the cell cycle is not maintained, it will lead to uncontrolled cell 

growth, which causes the formation of cancer cells [10, 11]. 

Damage to the DNA bases can take many forms (Figure 1), 

and often affects translated proteins. If this damage is not 

properly fixed, it will lead to a mutation, which is a change in 

the genetic code [12]. This code consists of 64 codons which 

code for amino acids to build proteins, or stop codons to 

signal the end of a protein. If there is a missense mutation, 

one base is substituted for another and results in a different 

amino acid, which may affect the function of a protein. A 

silent mutation also consists of the substitution of a base, but 

since the genetic code is degenerate, the substitution codes 

for the same amino acid. While missense may have negative 

consequences, they are not the most dangerous type of 

mutation. A nonsense mutation codes for a premature stop 

codon that terminates protein synthesis before completion 

of it.  

Not all mutations are caused by a base pair substitution, 

some are a result of an insertion or deletion of a base [13]. 

This is extremely problematic due to a shift of the three base 

pair reading frame. This change often leads to the improper coding of multiple amino acids and can 

potentially create a non-sense mutation. Interestingly, if there are three inserted or deleted bases, the 

consequences are less severe as the reading frame will not be affected. Another type of damage involving 

base pairs is thymidine dimers [14]. When UV light shines on the cell, the energy causes two thymine 

bases to form covalent bonds. This forces a kink in the DNA affecting the three-dimensional structure. In 

 

Figure 1. Major types of DNA damage. 

Three major types of DNA damage can be 

encountered in a double stranded 

chromosome. In point mutation the base on 

one strand has changed such that it violates 

the rules of base pairing A-T and G-C. In 

this case C has changed to T. In a single 

strand break, one of the two strands breaks. 

This can be easily repaired because the 

information is preserved on the other strand. 

In this case a T would be inserted opposite 

A. A double strand break constitutes 

severing of both strands. In this diagram the 

right part of the chromosome could be lost 

because it completely dissociates from the 

left part. 
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humans, it is repaired 

by nucleotide excision 

repair[15]. This is done 

by completely 

removing the 

damaged section of 

DNA and synthesizing 

bases. 

Despite the dangers of 

mutations to DNA 

bases, breaks between 

the phosphodiester 

bonds can be more 

problematic. 

Mutations often only 

affect one gene, but 

both SSBs and DSBs 

can affect the entire 

chromosome. SSBs 

are less dangerous 

though as the intact 

strand can be used 

as a template to 

repair the broken 

strand [3]. However, 

if not repaired 

properly, these 

breaks can become 

DSBs. This often 

happens as a result 

of a replication fork 

stalling at the break 

and collapsing [16, 

17]. Thankfully, 

there are several pathways that a cell can utilize to repair this damage (Figure 2)[4, 18-22]. No matter 

which pathway will be utilized, the first step for repair is to degrade a small amount of DNA on both 

chromosomes. This is called resection and leads to the creation of “sticky ends,” which can be used to 

reconnect the DNA [23-25]. If the is damage is too significant to repair, the entire chromosome can be 

lost. Due to this large loss of information, it may be more beneficial for the cell to commit apoptosis, which 

is programmed cell death. The cell has two known methods of “error prone” break repair. One of them is 

Non-Homologous End Joining (NHEJ) [26]. This is done by simply connecting the resected chromosomes 

back together. However, nucleases may degrade a few base pairs, which may result in a frameshift 

mutation. If there are direct repeats near the DSB, the cell will utilize single strand annealing (SSA) [26, 

27]. One unfortunate side effect is that if there is some distance between the repeats, the cell will degrade 

Figure 2. Pathways of repair of DNA double strand breaks.  A diploid cell with 
two homologous chromosomes, black and red, sustains a double strand break 
(DSB) in the black chromosome (1). The DSB is first resected to expose ssDNA 
required for invasion of donor regions (2). If direct repeats (shaded areas) exist 
on the same chromosome, the break may be repaired by single strand annealing 
(SSA) (3). If repair fails, the chromosome may be lost (4). When homology is 
found elsewhere or on the other homologue (red), the broken ends may invade 
this region (the donor sequence) (5). In synthesis-dependent strand annealing 
(SDSA) (6) the invading strand may copy a small region then release and re-
anneal. In break-induced replication (BIR) (7) the invading strand may copy to 
the end of the red chromosome. In this case the right portion of the broken 
black chromosome is lost.  Occasionally a more complex double Holiday 
Junction (dJH) may be established (8), the resolution of which can result in 
crossovers (CO) or non-crossovers (NCO). Note that some of these repair 
outcomes may lead to loss of heterozygosity meaning that the black sequence 
has been converted to red. If the red sequence contains a recessive non-
functional allele, some of these outcomes will convert the functional black allele 
to the non-functional red allele resulting in complete inactivation of the gene. 
Some of the genetic requirements for each pathway are indicated. 
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the chromosome until they overlap resulting in a deletion. Luckily, there are other pathways that are 

considered, “error proof” that utilize the homologous chromosome to make repairs [3]. Before any 

copying of the homologous chromosome takes place, the broken chromosome must first invade it. There 

are a few different ways that the chromosome can copy from its homologous chromosome. Break induced 

replication (BIR) starts at the break and copies until the end of the chromosome [28]. While this does 

prevent chromosome loss, any information after the break will be lost. The closer the break is to the end 

of the chromosome, the more beneficial this method will be. Perhaps the most accurate form of DSB 

repair is through Synthesis Dependent Strand Anneal (SDSA). This is accomplished by invading the 

homologous chromosome and only copying a small portion of the chromosome. This will reduce the 

chance of having a loss of heterozygosity event as there is less original DNA being replaced. The final 

pathway is a Double Holiday Junction (DHJ), which can have two results. One can be in the form of a cross 

over, similar to those found in meiosis. The other is a non-cross over, which has a similar phenotype to 

SDSA. 

Necessary genetic elements for DNA repair. 

Resection. Once a DSB has occurred, the cell signals for the MRN complex that consists of Mre11, Rad50, 

and Nbs1 [29]. The function of this complex is to hold the two halves of the chromosome together, as well 

as aid in resection [30-32]. After the initial reaction of MRN, Mre11 acts as an endonuclease and 

exonuclease to create ssDNA on both strands of the broken chromosome. If the resection distance is long, 

Exo1 and Sae1, which work as more proficient exonucleases [33-36].  

Non-Homologous end (NHEJ) joining requires Ku70. For NHEJ to occur, Ku70 must interact with the 

chromosome to prevent it from excessive degrading [37, 38]. Interestingly, it appears that the MRN 

complex competes with Ku70 at the break site [30]. MRN favors error proof repair through homologous 

recombination, while Ku70 favors error prone repair through NHEJ. There is a high probability of NHEJ 

ending with error as there is no template or proof reading, unlike homologous recombination that is able 

to utilize the homologous chromosome to prevent errors. Ku70 binds to the broken ends of the 

chromosome with high affinity. This may be because it is important that the chromosomes are not heavily 

degraded. Once it has successfully bound to the broken ends of the chromosomes, Ku70 recruits other 

repair machinery, such as Lig4. This protein is an enzyme that works as a ligase to anneal the two ends 

back together. Finally, Ku appears to also work in restart or replication forks [39].  

Single Strand Annealing (SSA) requires Rad52 and Rad59. Once resection has occurred, the chromosome 

can be further degraded instead of invading the homologous chromosome. When this happens, the 

homology is found on the broken chromosome in the form of non-tandem direct repeats, which are 

interspersed throughout the genome [27]. While the chromosome is being degraded, there are flaps that 

are formed. Once the direct repeats are overlapping the flaps are degraded, and the chromosome is 

annealed back together. This results in the DNA between the direct repeats being deleted, which could 

result in the loss of function if the direct repeats are not located in an intron. This process is mediated by 

Rad52 and is assisted by Rad59 [40, 41]. 

Homologous Recombination (HR) is dependent on Rad51 and Rad54. To prevent chromosomal 

rearrangements, HR allows the broken chromosome to invade the homologous chromosome [42]. 

However, invasion is only possible in the presence of Rad54 and Rad51 [43, 44]. Rad54 is a chromatin 

remodeler that removes histones, this loosens the DNA and allows for invasion which is mediated by 

Rad51 [45]. It is important to note that Rad52 loads Rad51 onto the broken chromosome [46-49]. Once 
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the DNA invades the homologous chromosome; the broken chromosome can copy the missing segments. 

This process also inhibits DNA repair through crossovers further preventing translocations [50-53]. It is 

important to note that once the missing segments have been repaired, the chromosome must be released 

from the homologous chromosome and the histones must also be replaced in the proper order. 

DNA double strand break formation. A 

common model for DNA DSBs shows the 

chromosomes as a two-ended break from 

exogenous damage. However, large amounts 

of chromosome breaks are also one-ended. 

These are a result of DNA replication forks 

stalling at the nick and collapsing leaving one 

of the daughter strands incomplete (Figure 3) 

[54-57]. This type of break is often repaired by 

Break Induced Replication (BIR) [58]. This is 

because there is no second half to be annealed 

back together, and it must completely rely on 

the homologous chromosome to make repairs.  

Growth of Cancer Cells.  

Cancer is defined as the uncontrolled growth 

of cells, and are frequently a result of 

chromosomal rearrangements, especially 

deletions [59-61]. Even though 90% of all 

mutations occur by the age of 20, it is typically 

the last 10% of mutations that lead to cancer 

[62]. The majority of these are a result of 

endogenous factors such as replication errors. However, exogenous sources of damage, such as radiation 

will also contribute to these mutations. Thankfully, there are natural processes that help prevent the 

formation of cancer cells. 

Cell cycle checkpoints. To prevent damaged DNA from continuing in the cell cycle, cells have developed 

checkpoints [63, 64]. At these points in the cell cycle, the cell checks for errors, if there are none, the cycle 

will continue normally [65-68]. However, if the cell detects problems it must decide whether to make 

repairs or commit apoptosis, which is programmed cell death. Even though large amounts of apoptosis 

may be detrimental, it is hypothesized that it is more beneficial than to allow mutated cells to continue 

to replicate and divide. These checkpoints are regulated by two types of genes, and if problems arise in 

them, they can lead to the development of cancer cells [69]. 

Tumor Suppressors slow the cell cycle. These genes work by stopping the cell cycle at the checkpoints and 

make the decision whether to continue through the cell cycle, repair any damage, or commit apoptosis 

[9]. Typically, people have two copies of these genes, one from each parent. However, these genes can 

get mutations that deactivate them, or they can be deleted through repair pathways such as SSA [70]. As 

long as one copy is functional, the cell cycle will function normally. If someone only inherits one copy they 

are at a higher risk of cancer, this is because a single mutation can deactivate their tumor suppressor 

function. People who develop cancer at a young age often only have one copy of a tumor suppressor. 

Figure 3. Spontaneous and induced DNA double 

strand breaks. A. The chromosome receives a nick. 

B A replication fork approaches the nick. Once the 

replication machinery reaches the nick, it can no 

longer proceed and causes the fork to stall and 

collapse. This leaves one of the daughter strains 

unfinished, since there is only one end for the break, 

it can be repaired through BIR. C. DNA is damaged 

through an exogenous source such as radiation. The 

chromosome is cleaved in two similar to Fig. 2 

where it can go through the different mechanisms 

shown.  
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Oncogenes stimulate the cell cycle. When cells are free of errors or damage, oncogenes will signal for the 

cell to continue through the cell cycle. One problem with these genes is that if they receive a mutation, 

they can be permanently activated [71]. Unlike tumor suppressors that can be safe with only one wild 

type gene, if an oncogene is continually expressed it will supersede the normal copy. This will cause the 

cell cycle to continue, even if there is damage, and will prevent tumor suppressors from stopping the cell 

cycle. The uncontrolled growth will ultimately lead to cancer. 

Chromosomal deletions can lead to cancer cells. When comparing the chromosome sequences of regular 

cells to cancer cells, there can be many different types of abnormalities including translocations, 

inversions, duplications, and deletions [72]. Translocations are a result of two non-homologous 

chromosomes swapping portions of DNA. Inversions involve the change of direction of a piece of the 

chromosome. Duplications cause part of the chromosome to be repeated. While these abnormalities can 

be detrimental to the cell, there is little to no loss of DNA. However, chromosomal deletions may remove 

large segments of DNA that may encode for essential proteins, such as cell cycle regulators [73]. These 

deletions may cause Loss of Heterozygosity (LOH), which results in a complete inactivation of one copy of 

a gene. However, as long as one gene is functional, proper cell cycle regulation will occur. If someone 

inherits only one copy of these cell cycle regulators from their parents, then a chromosome deletion could 

remove their only function gene. Without proper regulation of cell growth, it becomes more likely that 

cancer cells will develop. These deletions can occur through DNA repair pathways such as SSA and other 

related pathway s[26] This is a result of utilizing direct repeats within the broken chromosome as a way 

to search for homology. Once homology has been found, the segments of DNA in between the direct 

repeats will be degraded leading to a chromosomal deletion. 

Testable hypothesis. To analyze DNA pathways that lead to deletion, we have been using S. pombe to 

create mutations in genes that have been shown to be responsible for resection, homology search, the 

SSA pathway, the BIR pathway, and NHEJ. These genes have been crossed with an assay to test for rates 

of deletion that arise from spontaneous chromosomal DSBs. The Petreaca lab has shown that this assay 

will only report deletion outcomes from repair. Our goal was to delineate the recombination pathways 

that lead to deletions. Based on our preliminary data, I hypothesize that the deletions caused from the 

DNA repair is a result of SSA.   

MATERIALS AND METHODS 

Strains. The strains used in this study are listed in Table 1. To study chromosomal deletions, we used S. 

pombe as our model organism that contained the ura4-his3-ura4 cassette, as well as a HO endonuclease 

to simulate exogenous damage [74]. This assay that utilizes powerful yeast genetics has been published 

and has been proven to report only deletions for both spontaneous and induced DSBs. However, this 

project focuses mainly on spontaneous breaks. 

Procedure for ura-his-ura assay.  

1. First, we streak out colonies frozen in glycerol from a -70oC freezer on an EMM -His plate, to 

ensure that the cells have not been converted into -his +ura. Colonies should appear after 4-5 

days. 

2. Once there are single colonies, suspend 10 colonies into 10 Eppendorf tubes, each with 100µL of 

water. 

3. Next, vortex the tubes and count using a hemocytometer. Calculate cells per µL and place 100 

cells/µL into test tubes containing 4mL of EMM+ HisUraLeuLysAdeArg.  
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4. Place in a 32oC incubator for approximately 48 hours, ensuring that the tubes are rotating.  

5. After the incubation time, vortex the tubes and count under a hemocytometer.  

6. Plate 10^3 cells on YES plates as a control. 7.Plate 10^5-10^7 on EMM -Ura plates with Phloxin B. 

This is to prevent false positive as -Ura yeast that cannibalize to survive will turn bright red in the 

presence of Phloxin B. We used the 150x50mm plates when plating high frequencies on -Ura 

plates.  

7. After plating, place the plates in a 32oC incubator until colonies appear. Then, count the numbers 

of colonies on each plate and record them. 

 

Data analysis. To calculate the rate of deletions, the number of colonies on the EMM -Ura plates were 

devided by the number of colonies on the YES plates devided by 1000. This is to ensure that plating error 

is accounted for when examining the rate of chromosomal deletions. All calculations were normalized at 

a frequencey of 10^5. 

 

CRISPR Cas9 make mutations.  

1. Streak out a wild type strain from the -70oC freezer, and incubate at 32oC until single colonies 

appear. Then, take a single colony and place it in a test tube with 4mL of YES liquid solution, and 

incubator for approximately 24 hours.  

2. Then vortex the tube, and transfer 50µL into a 250mL flask containg 50mL of YES liquid solution. 

Place in a shaker at 250RPM at 32oC for approximately 16 hours.  

3. To ensure that the cells are in the log phase of growth, place the flask in ice once it is removed. 

Pour the liquid into a sterile 50mL centrifuge tube, and centrifuge at 1600RPM at 4oC and discard 

the supernant. Wash the cells with cold, sterile water, centrifuge again, and discard the supernant. 

Wash the cells again with a total of 250mL of cold, sterile 1.2M sorbitol, this will take 5 separate 

washes.  

4. Add 500µL of cold, sterile sorbitol to the centrifuge tube and vortex. Add 200µL of cells to an 

epindorf tube on ice with 2µL of each of the disired primers, 1µL of guide RNA, and 8µL of the 

CRISPR Cas9 protein.  

Table 1. Strains used in this study 

Identifier Genotype Source 

RCP 270 h- rad32::KanR ura4::ura4-his3-HO-ura4 his3-D1 ura4-D18 leu1-32 ade6-M210 
 

 

RCP 271 h+ rad32::KanR ura4::ura4-his3-HO-ura4 his3-D1 ura4-D18 leu1-32 ade6-M210 
 

 

RCP 300 h- nbs1::kanMX ura4::ura4-his3-HO-ura4 his3-D1 leu1-32  

RCP 301 h- nbs1::kanMX ura4::ura4-his3-HO-ura4 his3-D1 leu1-32  
RCP 389 cdc27-D1  ura4::ura4-his3-HO-ura4 ura4-D18 his3-D1 ade6-M210  
RCP 390 cdc27-D1  ura4::ura4-his3-HO-ura4 leu1-32 ura4-D18 his3-D1 ade6-M210  

RCP 436 mus81::kanMX ura4::ura4-his3-HO-ura4  leu1-32  his3-D1 ade6-M210  

RCP 471 slx4::kanMX4 ura4::ura4-his3-HO-ura4 his3-D1 leu1-32 his3-D1 ade6-M216  

RCP 474 rad50::KanMX6 ura4::ura4-his3-HO-ura4 his3-D1 leu1-32 ade6-M216  
RCP 475 rad50::KanMX6 ura4::ura4-his3-HO-ura4 his3-D1 leu1-32 ade6-M216  
RCP 478-480 ctp1::kanMX6-Bioneer ura4::ura4-his3-HO-ura4 leu1-32  ade6-M216 his3-D1  
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5. Pipette all 213µL of solution from the epindorf tube into a cold, sterile cuvette, and place it into 

the electrophorator set to Fungi, SHS. Pulse the cells and immediately add 200µL of cold, sterile 

sorbitol, and plate onto an EMM -ura plate.  

6. Allow it to incubate at 32oC until colonies appear. 

7. To verify the mutations, take colonies that have appeared and place them into test tubes 

containing 4mL of YES liquid solution and incubate at 32oC for approximately 24 with rotation. 

8. After this period, perfom DNA extraction and purify them for PCR. Run a DNA gel electrophoresis 

to ensure that the genes are the proper length.  

9. Then, perform a Restriction Length Fragment Polymorphism (RLFP) by treating the potential 

mutants and wild type with a restriction enzyme. If the bands of DNA differ in length from the 

wild type, then send the PCR of the gene to sanger sequencing for official results. 

 

RESULTS AND DISCUSSION 

Generation and validation of the ura-his-ura cassette to study single strand annealing. To study 

chromosomal deletions, the Petreaca lab has designed an in vivo assay. This consists of two non-functional 

ura4 genes that share direct repeats with 200 base pairs of overlap. In between these two, there is a 

functional his3 gene (Figure 4A) [54]. A deletion can be detected through loss of function of the his3 gene 

and gain of function from the ura4 gene. The deletion may occur spontaneously, or a break can be induced 

using the S. cerevisiae HO endonuclease, a restriction endonuclease with a 50bp restriction site [73, 76, 

77]. The long restriction site ensures that this enzyme cuts only once in the yeast genome.  

As expected, induced recombinants arise at a much higher rate than spontaneous recombinants (Figure 

4B). Spontaneous recombinants are presumed to arise due to random breaks that occur during DNA 

replication.  

To ensure that our assay reports SSA, we used primers that amplify the entire ura-his-ura cassette (Figure 

4A half arrows). We find that pre-recombinants PCR amplicons are longer than post-recombinants (Figure 

4C). The sizes of the PCR products correspond to the size of the ura-his-ura cassette or the reconstituted 

ura4+ gene. We also showed that no other recombination outcome is possible (e.g. SDSA, BIR, etc) in this 

system [74] as it is possible in other similar systems [78]. Thus, our system reports exclusively deletions.  



 

8 
 

SSA is dependent on Rad52 but not Rad51 or Ku [27]. To understand whether the deletions reported by 

our assay occur by SSA, we monitored recombination in strains lacking Rad52, Rad51 and Ku. We 

conclusively showed that deletions are dependent on Rad52 but not Ku or Rad51 (Figure 5).  In fact, Rad51 

and Ku inhibit deletions consistent with the fact that SSA is a backup pathway and repair is initially biased 

through other more efficient pathways (Figure 2). Further, BIR which is known to rescue replication forks 

is not required for generating deletions in our assay. Cdc27 is a gene central to BIR and a mutation in this 

gene does not affect recombination outcomes (Table 3).  Taken together these data show that our assay 

reports SSA. 

Genetic requirements for SSA. 

We next wanted to understand a genetic pathway for SSA besides the role of Rad52. The goal was to 

understand how the cell makes the choice between SSA and other pathways. We tested several 

recombination genes for their role in SSA. 

Genes used in this study to understand their role in SSA. To determine what the genetic requirements are 

for deletions arising from spontaneous breaks, we specifically chose genes that have been shown to be 

required for DNA repair (Table 2). One set of genes has been proven to be required for resection, as this 

is the first step of homologous recombination, we should expect that the rate of deletion will decrease. 

Another set of genes is required for homology search, invasion of the homologous chromosome, and 

 

Figure 4. An assay to study spontaneous and 
induced double-strand breaks at regions of 
non-tandem repeats. (A). The ura-his-
ura assay. In this assay, two non-
functional ura4 alleles flank a 
functional his3+ allele. The ura4 alleles have 
200 bps of identical overlapping sequences, 
creating two non-tandem repeats (gray areas). 
The S. cerevisiae homothallic endonuclease 
(HO) is cloned just upstream of the his3+ gene. 
Spontaneous ura4+his3− recombinants are 
assayed by growing cells in 
EMM+UraHisAdeLeu media for 48 h then 
plating on selective EMM-Uracil. Induced 
break recombinants are assayed by growing 
cells for 48 h in media without thiamine to de-
repress the HO endonuclease, while 
maintaining selection for the plasmid (EMM-
Leucine). Cells are then plated on EMM-Uracil. 
All experiments were performed at 32 °C. (B). 
Box plot showing the frequency of 
recombinants for both induced and 
spontaneous breaks. (C). PCR across the ura-
his-ura cassette in both pre- and post-
recombination strains. Half arrowheads in (A) 
show approximate positions of primers. 
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copying of the sequence. We also selected genes involved the specific pathways: single strand annealing, 

break induced replication, and non-homologous end Joining. It is important to note that some of these 

genes are used in more than one process. 

 

Analyzing resection genes. As resection is the first step that needs to be completed, we should expect that 

they inactivation of these genes should reduce the number of deletions, if SSA is the pathway that is 

leading to the deletions. One of the main factors for resections is the MRN complex, which consists of, 

Mre11, Rad50, and Nbs1. When these genes are not functional, we saw a statistically significant increase 

in deletions compared to wild type. This is the opposite of what we would expect to observe. Perhaps 

even more interesting, Mre11 led to a larger increase in deletions than Rad50 or Nbs1 (Table 3). Further, 

Ctp1 which has been proposed to function in the same pathway with MRN shows yet another phenotype. 

These data resection genes may play a role in biasing repair towards the various repair pathways. 

Single strand annealing (SSA) genes. Our preliminary data using the assay showed that deletions that arise 

from spontaneous breaks are dependent on rad52, but independent of rad51 (Figure 5). This led us to 

believe that our assay was following the SSA pathway. However, slx4 and mus81 have also been proposed 

to be required for SSA but the assay used for these studies could not differentiate between deletion 

through SSA or deletion through other pathways [45]. Surprisingly, the slx4 mutant led to a high frequency 

of recombination. This evidence shows that spontaneous deletions do not rely on the function of slx4. On 

the other hand, the function of mus81 is separable from that of slx4 because the effect on recombination 

is smaller.  

 

Figure 5. Frequencies of chromosomal deletions from spontaneous break repair in various 
recombination mutants. All counts are normalized to a rate of 105. 
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CONCLUDING REMARKS 

Here, we investigated the role of various 

DNA damage genes in SSA. We found 

primarily that resection genes may be 

responsible for biasing repair towards SSA. 

Resection is required for exposing single 

stranded DNA which is used for homology 

search. It is possible that resection has to be 

more extensive for SDSA and BIR than for 

SSA. This is because in SSA the repeat is 

nearby whereas in the other repair models 

homology has to be found elsewhere. We 

propose that for SDSA and BIR, a small 

region is initially resected and homology 

search ensues. However, if no homology is 

found, a longer region is resected and so 

forth. Thus, resection factors may be 

essential for error-proof repair.  

Remarkably, the function of the resection factors is separable meaning that not all resection factors 

function the same. A statistical comparison between the various resection factors shows that their role in 

SSA is statistically significant (Table 4). Remarkably, analysis of cancer genomes also shows that various 

mutations in resection factors cause different forms of chromosomal instability (data not shown).  

To fully 

understand 

the genetic 

requirements for our assay, further research will need to be conducted. So far, the only gene we have 

determined to be required for deletions that arise from spontaneous DNA DSBs is rad52. However, the 

data from slx4 and mus81 has given us insight that it may not be SSA as we previously hypothesized. To 

determine the differences between mre11, nbs1, and rad50, double mutants will be able to determine 

their epistatic interactions. Continuing the deletion screen using chromatin remodelers such as Hip1, 

may help us determine what genes are contributing to these deletions. Since all of the genes selected 

for this study increased the rate of deletions, it appears that the cell favors error proof repair for 

spontaneous breaks. 

 

Table 2. Genes that are required for various 
homologous recombination pathways and processes. 

rad50 These genes have been shown to be required for 
resection Fig. 1(2). When a double strand break 
occurs, the ends are blunt. In order for 
recombination to occur the DNA must be made 
single stranded by resecting one of the strands.  

mre11 

nbs1 

srs2 

rqh1 

rad50 These genes have been shown to be required for 
homologous homology search, invasion of the 
homologous region, copying of the sequence 
and resolution Fig. 1(6,8)  

rad51 

rad54 

rad55 

rad57 

sgs1 

rad50 These genes have been shown to be required for 
single strand annealing rad52 

pol32 These genes have been shown to be required for 
break induced replication polδ 

ku These genes have been shown to be required for 
nonhomologous end joining lig4 

Table 3. Statistics for chromosomal deletions in spontaneous breaks, ura-his-ura assay 

 N Mean Std. Deviation 

Gene Statistic Statistic Std. Error Statistic 

WT 36 30.70 4.20 25.20 

ctp1 30 61.81 17.9 107.94 

rad32 34 614.5 153.6 896 

nbs1 30 31.9 6.34 34.7 

rad50 39 68.3 16.48 102.9 

mus81 49 165.97 40.46 283.2 

slx4 33 1873.2 566.7 3255.7 

cdc27-D1 38 437.4 162.3 1000.4 
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