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Vibration serviceability of staircases has been a growing challenge for structural 

engineers due to changing materials and structural forms. In order to prevent or correct 

serviceability problems due to structural vibrations, structural engineers should be able to 

predict the dynamic performance of a staircase structure. However, there are few 

technical guides available for designing steel staircases, and the ones that do exist are 

often limited in their applications. Currently, there is a lack of research on staircases that 

are less prone to vibrations, such as staircases with concrete filled pans that are composed 

of face and wall stringers. Therefore, the goal of this thesis is to improve the 

understanding and accuracy of the overall vibration response (natural frequencies and 

mode shapes) predictions of concrete filled pan tread stairs. In order to determine the 

vibration response, experimental data was collected on two types of staircases and used to 

create and update finite element models. Using the experimentally updated finite element 

models, various parameters such as railing mass and boundary conditions were altered, 

demonstrating the staircases’ response to changes in these parameters. This study also 

demonstrated different methods for modeling the unknown boundary condition stiffness 

contributions in the staircase structure.  In addition, this thesis evaluated the potential 

limitations of the AISC design guide equation that quickly calculates a prediction of the 

first mode frequency of a staircase. This thesis also suggested an empirical factor to be 



applied to the AISC equation that would allow the equation to be used for staircases with 

a boundary condition created by a wall stringer. Finally, this thesis work has created 

suggestions for designers on how to model these types of staircases. 
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1. CHAPTER 1- INTRODUCTION 

The goal of this thesis is to improve the accuracy of the predicted vibration response 

of staircases, specifically steel staircases with concrete filled pan treads, and to provide a 

better understanding of the effect of the design parameters on the vibration response 

(natural frequency and mode shape). This thesis utilized two different studies to 

accomplish this goal. The first study was an experimental study of four different flights 

of stairs used to understand the dynamic response of a concrete pan filled staircase 

system. The second study utilized the experimental results from the first study to perform 

a numerical analysis using a finite element model in SAP2000, which represented the 

stair flight structure. A parametric study was conducted on the model by altering the 

railing mass and restraint stiffness, to better understand the vibration response that these 

parameters have on the stair flight. In addition, AISC recommended design computations 

were also utilized. 

1.1 Motivations of Research 

According to Santos et al. (2019), in the past, staircases were designed to be very 

robust, so their mass, stiffness, and strength were high enough to avoid poor structural 

behavior. However, as material strengths and durability increased, staircases are being 

designed lighter and more slender. This change in design has led to an increase in 

vibration serviceability issues in staircases. 

However, there is a lack of technical guides and research available that encompasses 

information about multiple different factors that influence a stair structure’s natural 
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frequency, such as the influence of railings and boundary conditions. According to Kim 

et al. (2016), the current design guides for staircases are not yet fully developed 

compared to building floor design guides due to the lack of sufficient and relevant 

research. Even though some investigations have been conducted in the past, the issue is 

that engineering assumptions about the dynamic behavior of staircases are often extended 

beyond the limitations of their initial research. Therefore, the procedures and parameters 

used for the numerical modeling of staircases must be validated through experimental 

analysis to ensure these assumptions are correct. 

Due to the lack of research and understanding of the vibration characteristics of 

staircases, engineers often have the problem of either being overly conservative in 

staircase design, resulting in increased weight and/or cost, or under designing slender 

staircases. Under designing staircases can then result in natural frequencies low enough 

to allow resonant responses, and therefore potential serviceability issues (Davis and Avci 

2015). 

Thus, the contribution of this study will be to provide suggestions for a more refined 

finite element modeling procedure, as well as to provide a better understanding of the 

effect of the various parameters on the staircase vibration response to aid designers. 

1.2 Goals and Objectives 

The goal of this thesis is to provide analytical/design, numerical, and 

experimental modal comparisons for a typical steel frame staircase. The effects of the 

boundary conditions are explored with four nearly identical flights with various 
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nonstructural components at the sides. The comparisons help to inform practical design 

methods. 

The following objectives will achieve this goal: 

1) To perform experimental investigations on the dynamic behavior of two types of 

staircases 

2) Develop experimentally validated SAP2000 models for both types of staircases 

tested 

3) To perform parametric studies on the experimentally validated SAP2000 models, 

to determine the influence of the following on the natural frequencies and mode 

shapes: 

a. Simulation of stringer end restraints with rotational springs 

b. The staircase flights’ railing stiffness and mass 

c. Boundary condition differences between wall and face stringers  

4) To determine the validity of using translational links as an alternative technique 

for modeling unknown boundary condition stiffness 

5) To conduct AISC recommended design computations 

1.3 Scope and Assumptions 

The scope of this research was limited to analyzing the effects of straight steel 

staircases with concrete filled tread pans. The scope was also limited to the experimental 

analysis of four different flights of stairs. These four flights were grouped into two 

categories. The first category is Type 1, and are composed of one wall stringer, one face 
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stringer, and one railing. Flights 1 and 3 tested in this research fall into this category. The 

second category is Type 2, composed of two face stringers and two railings. Flights 2 and 

4 tested in this research fall into this category. Where a wall stringer is defined as a 

stringer that sits flush against an adjacent wall on one side and is connected to the treads 

and risers on the other side, and a face stringer is a stringer exposed to the air on one side 

and attached to the risers and treads on the other. In addition, the scope was limited to 

analyzing vertical accelerations. This research considered only vertical accelerations 

because as occupants use staircases, typically, the foot strike impacts vertically onto the 

structure, creating the most excitation in this direction. Finally, the scope of the response 

data included natural frequency, damping, and mode shape.  

Some of the assumptions made are as follows: 

 During the experimental analysis, the weight of the equipment and persons 

testing the staircase was ignored 

 The FEM model was constructed using engineering judgment, as defined by 

Pavic et al. (2007), meaning that it will utilize only information that is 

typically available to engineers during design, such as construction and 

architectural drawings, as well as specifications.  
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2. CHAPTER 2- LITERATURE REVIEW 

This chapter discusses relevant literature on the following topics:  

1. Fundamental terminology for dynamic characteristics of structures 

2. Relevant research that conducted on staircases in the past  

3. Current methods used to determine the defined dynamic characteristics 

4. Modeling/analysis techniques for finite element modeling (FEM) 

The chapter concludes with an overview of the critical findings of past research and how 

they apply to the goals and methodology of this thesis.  

2.1 Fundamentals of Structural Vibration 

To fully discover the properties of interest for this study, it was critical to review 

the fundamentals of structural vibration characteristics. The properties of interest for this 

study included stiffness, natural frequency, fundamental mode shape, and damping.  

2.1.1 Stiffness 

 Stiffness refers to the extent to which a structural element can resist deformation 

under an applied force. Stiffness is represented by the resistance of a system against 

movement/deflection per unit force applied (i.e., Force/Displacement). For a staircase 

under impact loading, stiffness can refer to the resistance to vibration. Therefore the 

stiffer the structural element, the less vibration energy it is likely to transfer. 

  The stiffness of a member in bending is influenced by the elastic modulus, 

moment of inertia, and span length. Stiffness is proportional to the elastic modulus and 

moment of inertia but is inversely proportional to the length, which means that the larger 
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the moment of inertia, the higher the stiffness, which results in less bending. In addition, 

a shorter member length will bend less under the same applied load as a longer member. 

When stiffness is increased, the deflection that occurs under an applied load is reduced. 

The flexural stiffness relationship of a beam can be seen in Equation (2.1).  

 
k = 

𝐸𝐼

𝐿
 

(2.1) 

 
 

 

Where E (Pa) is the elastic modulus, I (𝑚4) is the moment of inertia, and L (m) is the 

length of the member. 

Stiffness is an important characteristic for the understanding of the dynamic response of 

staircases because the stiffer the staircase elements, the less likely they are to displace or 

transfer vibration, which raises the natural frequency. A stiffer structure, given that it has 

the same mass, will have a higher natural frequency and a shorter natural period.  

2.1.2 Natural Frequency 

Frequency is the number of waves that pass a fixed point in a unit of time and is 

measured in units of Hz (1/sec). In structures, the time required for an undamped system 

to complete one cycle of free vibration is the natural period of vibration, which is directly 

related to the natural circular frequency of vibration (Chopra 2012). The natural 

frequency is the frequency at which a system tends to oscillate without a driving force. If 

a force is applied at the dominant natural frequency, the displacement grows without 

bound, i.e. resonates. The natural frequency can be found by initiating a disturbance to 

the system and moving the system out of static equilibrium with a displacement and 
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velocity. Analyzing the response of the structure, after this change to the system is 

applied, allows for the natural frequency and damping in the system to be found.  

 The natural frequency of a structure is influenced by two different factors. The 

first factor is stiffness, denoted as “k”. The second factor is the mass, denoted as “m”. 

The relationship between the two is defined by the radial frequency (or circular 

frequency) equation in Equation (2.2), (Chopra 2012). 

 
ωn = √

k

m
 

 

(2.2) 

The relationship of the natural circular frequency (ωn) to the natural frequency is given 

in Equation (2.3), (Chopra 2012). 

 𝑓𝑛 =
𝜔𝑛

2𝜋
 (2.3) 

2.1.3 Fundamental Mode 

 A mode shape is the displaced form of a structure when a particular frequency of 

excitation is applied. The fundamental mode shape of a single-span structure, such as a 

beam, can be visualized as flexure where all the deflection has the same sign. However, 

the higher the mode, the more complex the deflection shape becomes, making it more 

difficult it becomes to visualize. The first three mode shapes of a simplified simply 

supported beam can be found in Figure 2.1. 
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Figure 2.1: Mode Shapes of a Simply Supported Beam 

In order to determine the mode shape associated with different frequencies, an 

experimental modal analysis process must be used.  

Another property associated with mode shapes is that they are orthogonal. The 

orthogonality of mode shapes means that the work done by the nth-mode inertia forces is 

going through the rth-mode displacements is zero (Chopra 2012). In addition, the modal 

orthogonality implies that the work done by equivalent static forces associated with 

displacements in the nth mode is going through the rth-mode displacements is zero 

(Chopra 2012). This means that the modular arrangements of the structure are 

autonomous with the normal mode shape. 

 Mode shapes are important characteristics when comparing a finite element model 

of a structure to the experimental response. The mode shape can be used as one of the 
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indicators that demonstrate the accuracy of the numerical model if the model’s mode 

shapes match the experimentally obtained mode shapes. 

2.1.4 Structural Damping   

Damping is “the process by which vibration steadily diminishes in amplitude” 

(Chopra 2012), and represents “the efficiency with which a structure dissipates the 

energy input” (Jeary 1997). In structures, damping is caused by a variety of different 

conditions, such as rubbing friction, usually at connections, material damping caused by 

the contact among different structural elements, and thermal effects. Damping is the loss 

of mechanical energy in a vibrating system, generally expressed as a percent of critical 

viscous damping. “Viscous” damping means that the reduction of energy is related to a 

retarding force that is proportional to velocity. Damping of a structure can be determined 

from an analysis of the decay of vibrations following an impact (Jeary 1997).  Percent of 

critical damping in steel stairs has typically been found to be between 1-7% by both 

Bishop et al. (1995) and Kim et al. (2008). 

Damping is only present under dynamic loading and has been shown that as 

amplitude increases damping does as well (Jeary 1997). Different types of damping 

include viscous damping, hysteretic damping (due to nonlinear/inelastic behavior), 

Rayleigh damping, and coulomb damping. This thesis considers only viscous damping. 

2.1.5 Degrees of Freedom of a System (DOF) 

A structure that has only one degree of freedom is known as a single-degree-of-

freedom system (SDOF) system (Chopra 2012). An SDOF consists of a single mass that 

is concentrated at one location on the system. SDOF systems are used as a simplification 
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of structural models to aid in the understanding of a structures’ dynamic behavior. An 

example of a simplified SDOF boxcar model is found in Figure 2.2. 

 

Figure 2.2: Boxcar SDOF  

 

The basic equation of motion for any SDOF system is provided by (Chopra 2012) 

in Equation (2.4). 

 mü −  c u̇ −  ku =  P(t) (2.4) 

Where, m=mass, c= damping, k=stiffness, ü= acceleration, u̇= velocity, and 

u=displacement. 

If more than one mass is used to represent the structure, it is a multi-degree-of-

freedom system (MDOF). An MDOF is a system that contains multiple degrees of 

freedom represented by multiple masses that are connected by frame elements (Chopra 

2012). However, for this research, the stair structure will be considered as an MDOF 

system and will be discussed further in Chapter 3. 
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2.2 Previous Research 

This section presents past research that has been conducted on staircases to better 

understand the currently available research involving staircase design and behavior. 

2.2.1 Effects of Human Loading on Staircases 

 Kerr and Bishop (2001) conducted research investigating the influence of human 

loads on staircases. Their research resulted in suggestions as to what conditions should 

warrant concern by staircase designers. Kerr and Bishop (2001) cited that the motivation 

for conducting their investigation was due to a lack of satisfactory guidance for staircase 

designers, who would often “rely on experience from footbridge and floor design” to 

design staircases (Kerr and Bishop 2001). However, they state that this should not be 

done because “footfall rates (walking paces) and harmonic amplitudes can be vastly 

different” for staircases compared to floor or bridge slabs (Kerr and Bishop 2001). In 

their work, Kerr and Bishop (2001) analyzed the differences between staircase and floor 

footfall forces. In addition, they collected data from staircase occupants to set a standard 

for appropriate occupant vibration tolerability levels, since none existed at the time. They 

utilized force plate testing to conduct and quantify the impact loading produced by 

subjects walking along a horizontal platform, as well as ascending and descending a 

staircase. Fourier analysis techniques were utilized to determine the harmonic amplitudes 

and frequencies in order to compare the two loading conditions. Kerr and Bishop 

determined that not predicting a staircase’s natural frequency accurately “could lead to 

serious vibration problems” (Kerr and Bishop 2001).  
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As a result of their work, Kerr and Bishop came up with a suggested minimum 

natural frequency tolerance level for staircases. They determined that if a staircase has a 

frequency of less than 10 Hz, it may lead to unacceptable levels of vibration for stair 

occupants. This research highlights the importance of understanding the natural 

frequency for the purpose of serviceability.  

2.2.2 Experimental Assessment of Vibration Serviceability of Stair Systems 

 Kim et al. (2008) performed research investigating the serviceability performance 

of both steel and reinforced concrete stairs. They were motivated by the importance of 

serviceability as a design consideration and the increasing industry trend toward building 

steel staircase systems, which are typically lighter than concrete staircases. In their study, 

they measured the dynamic properties of a variety of staircases and compared them to the 

serviceability criteria provided by AISC (1997) and Bishop et al. (1995). Their study 

included reinforced concrete stairs, steel stairs with laminated tread boards, and steel 

stairs with reinforced concrete stair treads. They considered stair flights individually, 

where each flight connected a floor to a landing at mid-story height. A heel-drop test and 

accelerometers were utilized to determine the natural frequency and damping of each 

staircase. They also utilized a human walker moving at various speeds up and down the 

stairs to discover the peak acceleration of the stair structures. They concluded that the 

dynamic response of a steel stair system is much higher than that of a reinforced concrete 

staircase. Meaning that reinforced concrete staircases are more prone to achieve 

serviceability standards than that of similar steel staircases.  
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2.2.3 Slender Steel Monumental Stair Vibration Serviceability 

In 2009, Davis and Murray conducted an experimental and analytical study of 

slender monumental staircases. The goal of their study was to further the understanding 

of stair vibration issues and to provide additional guidance to staircase designers. Their 

primary motivation resulted from the increase in the use of stairs that act as monumental 

architectural features. They stated that the architectural requirements of these types of 

staircases usually lead to structures that are slender and have long clear spans, which 

create potential serviceability issues (Davis and Murray 2009). The design standards for 

these stairs are more stringent because slender stairs often have heavier treads and 

guardrails, as well as slender stringers, which can result in low natural frequencies, 

making them more susceptible to vibration issues under walking excitation.  

 Davis and Murray (2009) also described the methodologies used to 

experimentally and analytically determine the vibration characteristics of a staircase. 

Their research observed both modal and walking tests to estimate the fundamental natural 

frequency and damping of the structure. In addition, finite element modeling was used to 

predict the data collected by the experiments. In their research, Davis and Murray (2009) 

considered lateral vibration as insignificant because they predicted the fundamental 

lateral vibration mode to be high enough not to cause serviceability issues, as is the case 

for many staircases. In order to predict the stair’s natural frequency and mode shapes, 

standard eigenvalue analyses were used.  

 After they conducted their research, they proposed a design footstep force 

evaluation procedure, predicting the harmonic that matches the fundamental frequency 
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and applying adjustment factors for the number of occupants. A summary of the 

procedure includes the following steps: 

1. Build an accurate finite-element model 

2. Use steady-state analysis to predict the acceleration response at the 

location of interest  

3. Determine which harmonic of the walking force matches the 

natural frequency 

4. Multiply the peak accelerance magnitude by the harmonic design 

force from the provided table to predict the steady-state 

acceleration due to a single walker. 

Understanding the natural frequency of the stairs is important in determining which 

harmonics created by walkers could potentially lead to serviceability issues in the 

staircase.  

 In order to avoid the creation of a finite element model, Davis and Avci (2015) 

conducted a study to identify a simplified vertical acceleration prediction method that 

could be done by hand for slender staircases. In their research, an experimental modal 

analysis was utilized to discover the damping, mode shape, and natural frequency of two 

slender monumental steel staircases. They also investigated the peak accelerations due to 

occupant walkers to find the peak acceleration at the 2nd, 3rd, and 4th harmonic. 
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Davis and Avci (2015) verified that linear stairs have natural vibration modes 

resembling those of parallel beams. As a result, the assumption was made that a linear 

staircase, with only end connections, can be treated as a simply supported beam. 

Therefore, the equation for the natural frequency of a simply supported beam can be used 

to estimate the first mode frequency of a steel staircase. An image of this idealized free 

body diagram can be found in Figure 2.3. 

 

Figure 2.3: Simply Supported Beam FBD 

The equation used to represent a simply supported beam with uniform mass is presented 

in Equation (2.5), and was also presented as a method by (Murray et al. 1997). 

 𝑓𝑛 =
𝜋

2
∗ [

𝑔 ∗ 𝐸𝑠 ∗ 𝐼𝑡

𝑊𝑠 ∗ 𝐿𝑠
3 ]

0.5

 (2.5) 

 

Where; 𝐸𝑠 ∗ 𝐼𝑡 (N-m) = stringer vertical flexural stiffness, 𝐿𝑠 (m) = stringer length 

between supports, 𝑊𝑠(N) = weight of the stair, 𝑓𝑛 (Hz) =fundamental natural frequency, 

g (m/s^2) =acceleration of gravity. 

 Davis and Avci (2015) used Equation (2.5) to predict the natural frequency of two 

staircases. For Stair 1, the equation predicted 5.1 Hz, but their measured natural 

frequency was 7.3Hz, meaning that it had a predicted-to-measured ratio of 0.70 or a 
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difference of 35.5%. For Stair 2, the equation predicted a natural frequency of 8.0 Hz, but 

the equation predicted 6.74 Hz, meaning that it had a predicted-to-measured ratio of 0.84 

or a difference of 17.1%. They determined that since the results were conservative and 

relatively close to the actual value that this method is accurate enough to use for design. 

It is important to note that the known uses for using Equation (2.5) are limited to slender 

stairs having frequencies below 10 Hz, as well as limited to linear stairs. 

 In 2016, Jurgensen investigated the vibration serviceability of monumental stairs. 

Her motivation was to address how to model monumental stairs in SAP2000 to reliably 

predict their natural frequencies.  In order to do this, the measured field data were 

compared to the results predicted using a computer model. Jurgensen (2016) conducted 

experimental modal testing using an electrodynamic shaker on two staircases. From this 

data, the mode shapes and natural frequency were determined. After the field data was 

acquired, a computer model was constructed using SAP2000. The stair model was 

created using a combination of frame and shell elements. One important thing to note was 

that the guardrail was modeled as a distributed load since it was not considered as part of 

the structural system. After the computer model was created, it was updated so that the 

first mode frequencies and mode shapes matched the experimentally determined mode 

shapes. Jurgensen (2016) concluded that that the frame connections and releases differed 

between the stair structures tested and that proper modeling is critical to achieving 

accurate predictions. 
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2.2.4 Prediction of the Vibration Response of High-Frequency Steel Staircases 

In 2016, Kim et al. researched how to better create an impulse model for the 

prediction of vibration responses in high-frequency steel staircases, staircases with 

frequencies larger than 10 Hz. Their research was driven by the lack of technical guides 

appropriate for designing high-frequency steel staircases with low damping. Kim et al. 

(2016) noted that compared to building floors, a basic framework for the design of 

staircases has not yet been fully developed, and few experimental studies have been 

carried out. In addition, in the past, reinforced concrete stairs have been widely used in 

multi-story residential and office buildings. However, there is an increasing amount of 

designers opting for steel staircases. Compared to reinforced concrete staircases, steel 

staircases are lighter in weight and often have lower damping, making them more 

sensitive to vibration responses (Kim et al. 2016). As a result, their goal was to propose a 

new effective footfall impulse formula to predict the vibrational response of high-

frequency steel staircases, due to the increase in their use and the lack of available design 

guidelines. 

Kim et al. (2016) utilized seven full-scale steel staircases that were fabricated for 

the test. The experimental models were constructed using steel stringers with the treads 

and risers attached to the top of stringers. 

While conducting their research, impact hammers were used to excite the 

structure, and accelerometers attached at the bottom mid-span along the length of the 

stringers were used to capture the vibration data. The center of the staircase, for both 

length and width, was used as the measurement location since it was determined to be 
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where the highest acceleration was likely to occur. Kim et al. (2016) were able to 

determine the natural frequency and damping ratios by evaluating the time and frequency 

domain data collected from the tapping on the staircase. The natural frequencies 

determined ranged between 16.0 and 32.0 Hz. The damping was determined to range 

between 2.1% and 4.6% of critical.  

The following are assumptions utilized and confirmed by Kim et al. (2016) during 

their study. The first assumption is that the fundamental mode is the only mode to 

consider when the fundamental frequency is relatively high. This is because the 

fundamental frequency of the steel staircase tested is several times higher than the pace of 

the walking excitation, so higher mode frequencies are of little concern for stair design. 

Kim et al. (2016) also verified experimentally that the effect of the concrete filling on 

damping ratios was minor, and could be excluded. They also determined that if the 

damping of the staircase is in the range of 2-4% of critical, it is justifiable to neglect the 

effect of damping. 

2.3 AISC Design Guides 

Two of the primary documents that engineers use in the design of staircases are 

AISC Design Guide 11, by Murray et al. (2016), and AISC Design Guide 34, by 

Friedman (2018). AISC Design Guide 11 primarily describes the procedure to design 

floors. However, in the most recent 2016 edition, there are a few sections involving 

slender steel staircases. AISC Design Guide 34 involves the design of staircase structures 

but refers to Design Guide 11 for vibration calculations.  
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2.3.1 AISC Design Guide 11 

AISC Design Guide 11 created by Murray et al. (2016) was developed to inform 

designers on how to design and predict the vibrations of steel-framed structural systems 

due to human activity. One of the topics AISC Design Guide 11 (Murray et al. 2016) 

covers is the vibration tolerance levels of staircases. AISC Design Guide 11 (Murray et 

al. 2016) states that when the natural frequency of stairs exceeds 9 to 10 Hz, the 

resonance becomes less important for human-induced vibration. In order to aid designers 

in predicting whether or not a staircase meets this serviceability condition, the first mode 

natural frequency of a linear staircase was determined to be predicted by equation (2.6).   

 𝑓𝑛 =
𝜋

2
∗ [

𝑔 ∗ 𝐸𝑠 ∗ 𝐼𝑡

𝑊𝑠 ∗ 𝐿𝑠
3 ]

0.5

  (2.6) 

Where; 𝐸𝑠 ∗ 𝐼𝑡 (N-m) = stringer vertical flexural stiffness, 𝐿𝑠 (m) = stringer length 

between supports, 𝑊𝑠(N) = weight of the stair, 𝑓𝑛 (Hz) =fundamental natural frequency, 

g (
𝑚

𝑠2) =acceleration of gravity. 

AISC Design Guide 11 (Murray et al. 2016) also includes Fourier series 

parameters that summarize several common dynamic loads applied by individual walkers 

and runners, which can be used to better understand which serviceability conditions are 

applicable to the stair structure being designed. AISC Design Guide 11 (Murray et al. 

2016) includes a table summarizing these parameters. This table was created using a 

combination of the works of Kerr and Bishop (2001), Davis and Murray (2009), and 

Davis and Avci (2015).   
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AISC Design Guide 11 (Murray et al. 2016) also outlines the evaluation criteria 

for human comfort levels and discusses some of the existing tolerance levels that have 

been established for persons occupying a structure. It was determined that as the 

frequency applied to the staircase changes, the peak acceleration serviceability amount 

also changes. It was determined that if the frequency falls outside the range of 4 to 8 Hz, 

people tend to accept higher accelerations.  

AISC Design Guide 11 (Murray et al. 2016) also discusses the importance of 

understanding the fundamental natural frequency. This is because if the fundamental 

frequency is low enough, the harmonic forces created by a walker could cause resonance 

in the structure. Therefore the rule of thumb threshold for a structure described as a low-

frequency system is 5 Hz, according to AISC Design Guide 11 (Murray et al. 2016). It 

also notes that high-frequency responses are almost always relatively small but can still 

cause problems when the tolerance limit is stringent. The threshold of 5 Hz differs from 

other literature, such as Kerr and Bishop (2001), which states, “any staircases having a 

natural frequency of less than 10 Hz may be dynamically responsive to the pedestrians 

using it and produce unacceptable levels of vibration”. The 10 Hz threshold is also 

utilized in other literature. Therefore, the research for this thesis will consider 10 Hz as 

the threshold frequency for occupant tolerability.   

2.3.2 AISC Design Guide 34 

AISC Design Guide 34 (Friedman 2018) provides engineers with terminology 

related to staircase design and construction, and it is broken into the following sections: 

General Staircase Information, Code Requirements, Stairway Design, Lateral Bracing, 
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Diaphragm Design, and Stairway Connections. This design guide defines terms that are 

important to this research, such as staircase classification. Using the design guide, the 

staircases used in this study are defined as straight concrete pan filled tread staircases, as 

seen in Figure 2.4. 

 

Figure 2.4: Stair Case Structure Used in Study 

 In addition, the design guide describes how staircases are composed of stringers, 

treads, and risers. The staircase utilized in this research have concrete filled pan treads 

that are constructed using light-gauge steel to form a pan that is filled with concrete. The 

tread is then supported by welded carrier angles that are welded to both the stringers and 

the pans.  

2.4 Finite Element Modeling Procedures 

In order to compare the experimentally obtained data to the numerical data, a 

Finite Element Model (FEM) needs to be created. Moragaspitiya (2012) states that the 
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main advantage of using FEM in structural analysis is the ability to generate numerical 

modes to simulate the action effects, stresses, and strains under variable conditions of 

stiffness and loads. 

 Since one of the purposes of this thesis is to investigate the modeling parameters 

needed to accurately depict the mode shape, damping, and natural frequency 

characteristics of a steel staircase with concrete treads, it is important to make sure that 

the model properly represents the structure. Comparing the FEM to collected 

experimental data is important because it can provide insight into the accuracy of a model 

developed using existing modeling techniques and practices. This comparison allows for 

a better understanding of how to update the model to improve its correlation with 

experimental data.  

 The latest version of AISC Design Guide 11 (Murray et al. 2016), provides 

designers with information regarding the use of a finite element analysis procedure, a 

section that did not exist in the previous version of the guideline. The design guide 

discusses how finite element analysis is often needed when the structural system or 

dynamic loads fall outside the limitations of manual calculation methods. 

 Chapter 7 of the AISC Design Guide 11 discusses some commonly used 

methodologies used to create finite element models. However, a limitation to this section 

is that the evaluation method, originally proposed by Davis and Murray (2009) and Davis 

and Avci (2015), was created for slender monumental stairs. This does not include pan-

type or short, stiff stairs, both of which characterize the structure being analyzed in this 

research.  
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One technique traditionally used to create a FEM is to model the entire stair as if 

it is a beam, by excluding the additional surrounding structures and representing them 

with appropriate boundary conditions. The supporting structure is typically excluded 

because if the supporting structure has a larger mass, it can lead to an amplification of 

minor errors in the modeling, which in turn results in increased errors in the results 

(Murray et al. 2016).    

One way in which a well-developed FEM model can be created, as suggested by 

Pavic et al. (2007), is first to create a model using “best engineering judgment”, i.e., only 

the information available from the design, which includes construction and architectural 

drawings and specifications.  

 However, finite element models can be limited in the accuracy they provide. 

Pavic et al. (2007) found that even a detailed FEM of a floor system, which was 

developed based on the authors' best engineering judgment, had an error predicting 

natural frequencies by 10-15% in some of the first four modes of vibration. Therefore, it 

can be assumed that there will also be a certain level of inaccuracy in the models’ 

predictions of the staircase natural frequencies created in this thesis as well.  

There are a variety of reasons why FEM results can vary from experimentally 

determined results. The primary reason is improperly identifying boundary conditions. 

The boundary condition that is a major unknown in staircases is the degree of rotational 

restraint of the stringer end connections (Davis and Salmon 2019).  It is difficult to 

predict the end restraint boundary conditions because there are numerous factors 
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affecting these restraints. Therefore, model updating is often applied in order to represent 

realistic boundary conditions. 

Another reason for variation in a FEM from experimental data includes over and 

underestimations of the stiffness of the main structural components. To accurately model 

a structure, it may be required to update a model by changing the model’s parameters to 

better match the experimentally determined properties. Such updating can help increase 

the shortcomings of a finite element model that is based on best engineering judgment 

(Pavic et al. 2007).  

 The goal of updating the model is to reduce the initial differences between the 

FEM and the experimental results. After tuning, the model should resemble the real 

structure relatively closely (Pavic et al. 2007). There are two stages to tuning a model. 

The first is model refinement. During this stage, the preliminary model created is 

adjusted by adding additional features such as elements and springs, to model the 

boundary conditions, as well as improving and detailing the geometry. The second stage 

is parameter adjustment. In this stage, uncertain modeling parameters in the already 

refined model are varied by trial and error within reasonable limits to improve how close 

the model matches the real structure (Pavic et al. 2007). The research in this thesis 

utilized both model refinement and parameter adjustment stages. 

2.5 Literature Review Summary 

The following is a summary of some of the major concepts that were taken from 

the following literature and how they will be applied to this research. 
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 Kim et al. (2016) presented a straightforward and effective procedure for testing 

the serviceability of staircases. This research is important because Kim et al.’s study 

analyzed staircases similar to the ones used in this thesis: staircases with shorter span 

stringers where one side has a wall stringer abutting a wall. This research differs from 

other research, which is focused on monumental staircases having two face stringers. 

Davis and Murray (2009) also had some key findings that were applicable to this 

thesis. The first is that when a staircase has a natural frequency of less than 10 Hz, it has 

a higher chance of being responsive to pedestrians, and may produce “unacceptable 

levels of vibration” (Davis and Murray, 2009), similar to the findings in other literature. 

Although this thesis is focused on understanding and predicting the natural frequency and 

mode shape of a stair structure, Davis and Murray’s research was important for the 

understanding of how to create an experimental program to be able to capture the natural 

frequency of a staircase.  

 In addition, the natural frequency for slender stairs can be estimated using 

Equation (2.6), which can be found in AISC Design Guide 11 (Murray et al. 2016) and 

Davis and Avci (2015). Although this equation had been applied previously to predict the 

natural frequency of slender staircases, those with less than 10 Hz, the extent to which 

this equation can be used has not fully been tested. 

 Finally, Pavic et al. (2007) and AISC Design Guide 34 (Friedman 2018) provided 

insight on how to update a FEM, so that the model more accurately depicts the boundary 

conditions of experimentally determined structures. It is suggested that this can be done 

by applying springs and links in the model.  
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3. CHAPTER 3- METHODOLOGY 

This chapter describes an overview of the structures analyzed, the data collection 

procedure, and the finite element modeling performed in this study. 

3.1 Description of Stair Systems Studied 

All of the staircase flights tested are located in the southwest corner stairwell of 

the Peter Kiewit Institute (PKI), located on the Scott Campus of the University of 

Nebraska-Lincoln, in Omaha. Four staircase flights were utilized in this study, and all of 

them are composed of 13 treads measuring 30.48 cm x 220.98 cm (12 in. x 87 in.) and 14 

risers with height 17.78 cm (7 in.) set at a 2.54 cm (1 in.) offset from the base to the top 

of the riser. The risers are constructed using 12 gauge steel, and the tread is constructed 

using a concrete filled 12 gauge steel pan. The staircase stringers are 4.3 m (14.1 ft.) long 

C12 x 20.7 channel shapes. The treads are connected to the stringers via welded steel 

angles. The treads are also covered with a thin rubber matting. Images of Flights 1-4 and 

schematic drawings of these staircases can be found in Figure 3.1-Figure 3.8. These stairs 

were chosen for this research because the geometries of all the stair flights are the same, 

but have varying boundary conditions. The use of these stairs allows for the differences 

in frequency and mode shape behavior to be attributed to the difference in boundary 

conditions, and not a difference in geometry. 
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Figure 3.1: Stair Flight 1 

 

Figure 3.2 : Schematic Drawing of Flight 1 
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Figure 3.3: Stair Flight 2 

 

Figure 3.4: Schematic Drawing of Flight 2 
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Figure 3.5: Stair Flight 3 

 

Figure 3.6: Schematic Drawing of Flight 3 
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Figure 3.7: Stair Flight 4 

 

Figure 3.8: Schematic Drawing of Flight 4 
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Flight 1 is composed of a wall stringer (i.e., a stringer flanking the wall), and a 

face stringer, (i.e., a stringer open to the air). This flight is considered to be Type 1, as 

described in Chapter 2. There is also a metal stud wall built underneath the face stringer. 

However, there is a small gap between this wall and the stringer, as seen in Figure 3.9.  

 

Figure 3.9: Flight 1 Under Wall Gap  

After the experimental tests were completed, it was determined that this wall had 

little to no effect on the natural frequency of the stair flight, as compared to the results of 

Flight 3, the other Type 1 stair. Therefore, it was determined that this wall has a 

negligible effect on the dynamic behavior of this stair flight. Flight 2 is characterized as 

having two face stringers and two railings. Flight 2 is a Type 2 stair, as described in 

Chapter 2. Flight 3, is characterized as having one face stringer, one wall stringer, and 

one railing, the same as Flight 1. However, Flight 3 does not have a stud wall below the 

face stringer. Flight 3 is a Type 1 staircase, as described in Chapter 2. Flight 4 is the same 

as Flight 2 and is considered to be a Type 2 stair. The stairwell where the flights are 
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located consists of CMU walls on the south-facing wall, and a glass façade curtain wall 

on the north and west facing wall, as seen in Figure 3.10. 

 

Figure 3.10: Glass Façade Curtain Wall 

3.2 Experimental Procedure 

The first set of experimental data was obtained using a methodology similar to 

that laid out by Kim et al. (2016). In their research, Kim et al. used heel-drops to excite 

vibrations in the stair systems and then determined the fundamental natural frequency and 

damping value from that data. This thesis uses a similar approach but uses a roving 

impulse test, where an accelerometer is fixed and the point of impact moves. After the 

impulse data was collected, it was possible to utilize post-processing techniques to find 

the natural frequency and damping of the staircase flights. The fundamental natural 

frequency was later used to compare the stair flights with one another and to compare the 

experimental data to analytical results. Two experimental tests will be used in order to 

validate the experimental data. 
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3.2.1   Weight Drop Test Procedure 

The first test procedure consisted of a weight drop to create a forced impulse to 

determine the natural frequency and damping of the different flights. In this impulse test, 

an accelerometer is fixed at a location, and the point of impact is varied. To execute the 

dynamic test, a 10-pound medicine ball was dropped from a height of 1 m (3.28 ft.) to 

create the impulse force. This procedure was used as a substitute for the heel-drop test 

because it created a stronger impact leading to a clear signal response. The medicine ball 

was deflated in order to eliminate any second impact that may occur due to bouncing. 

The striking point of the impulse was at the center of the tread board, a point that was 

identified in Kim et al. (2008) as a target location that would create a defined excitation 

response in the structure. Three strikes were applied vertically to the treads with enough 

time for the impulse to die out before the next strike began. The strikes were applied to 

the center of steps 2, 6, 8, and 12. After the data was processed for each strike location 

for each flight, the first mode frequency and the damping ratios found at each location 

were averaged to determine the global first mode frequency and damping ratio of each 

stair flight.  

The vertical accelerations were measured using BDI A1521 accelerometers 

connected to the structure at the midpoint of the tread on the seventh step, halfway up the 

run of the stairs. The location of the accelerometer and the impact points on the staircase 

can be seen in Figure 3.11 denoted by O and X, respectively. 
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Figure 3.11: Accelerometer Placement and Impact Points 

 

The accelerometer for each flight was placed at these locations because it is the 

location where the vibrations were expected to be the highest for the first mode. The 

accelerometers were installed using the BDI’s suggested tab and glue method, where the 

accelerometer tabs were glued to the structure to assure there is no slippage of the 

accelerometer during the test. The accelerometer input was recorded using the BDI STS 

LIVE software.  

 Figure 3.12 shows the installation of the accelerometer on Flight 2. This setup 

was consistent among all the stair flights. A zoomed-in picture of the accelerometer is 

found in Figure 3.13 and Figure 3.14.  
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Figure 3.12: BDI Experimental Setup 

 

Figure 3.13 : Zoomed in Accelerometer Installation 
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Figure 3.14: Zoomed in Accelerometer 

 The accelerometer data was collected at a rate of 200 samples per second. This 

collection frequency was chosen after conducting a preliminary test and finding out that 

the fundamental natural frequency for all the flights was around 20 Hz. According to 

Shannon’s sampling theorem, if the function x(t) contains no frequencies higher than B 

hertz, then a sufficient sample rate is anything larger than 2B samples per second. This is 

summarized in Equation (3.1). 

 B< 𝑓𝑠/2 (3.1) 

Where B is the maximum frequency of importance and 𝑓𝑠  is the sampling frequency.  

Since the preliminary testing showed that the first mode frequency for all the 

types of staircases would fall between 16 and 20 Hz, using a max capture frequency of 

100 Hz was more than enough to capture the first mode frequency for the structures 

tested. Therefore, a sampling rate of 200 samples per second provides more than enough 
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range for this data collection. The extra range for the data was captured just in case there 

was a point tested that was an anomaly with a much higher first mode frequency. If the 

sampling range was set too narrow, if there was outlier data, it would not have been 

captured. Shannon’s sampling theorem is also similar to the Nyquist frequency, which 

states that all meaningful frequency components exist below the Nyquist frequency, 

which is defined the same as the Shannon sampling theorem, the recorded frequency 

divided by two. 

 After the accelerometer data was collected, the data was converted from the time 

domain to the frequency domain. This conversion was done using the Fast Fourier 

Transform (FFT) process in MATLAB. The FFT procedure is a Discrete Fourier 

Transform (DFT) method. The FFT procedure was chosen because it is a computationally 

efficient algorithm that can represent an acceleration with varying frequencies and 

amplitudes by representing them as a sum of sine waves. The frequency-domain allows 

for a clearer interpretation of dominant frequencies, compared to analyzing a time-

domain graph on its own.  

 In addition, data filtering was used to eliminate the noise that was created when 

plotting the frequency graphs. Filtering was used to extract the most important 

information from the signal. For this data analysis, the Butterworth Filter was used to 

reduce the number of unwanted frequencies. The Butterworth filter is a low pass filter 

which only keeps frequencies lower than a set cutoff value and eliminates any 

frequencies higher than the set cutoff value. This filter is beneficial because it has 
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minimal effect on altering the desired target frequencies. The Butterworth filter is 

designed to have a frequency response from 0 Hz to the cut-off frequency.  

 The generalized equation representing the “nth” Order Butterworth filter is seen 

in Equation (3.2). 

 
𝐻(𝑗𝜔) =

1

√1 + 𝜀2(
𝜔

𝜔𝑝
)2𝑛

 
(3.2) 

Where n is the filter order, ω is equal to 2πf, and ε is the maximum passband gain. 

The Butterworth Filter was carried out using the MATLAB “butter(n, Wn)” 

function. The inputs are “n”, the nth-order of the filter, and Wn, the normalized cutoff 

frequency. The limitation of the nth-order is determined by the Nyquist criterion. Since 

the sample rate is 200 samples per second only signal frequencies under 100 Hz can be 

represented accurately. Therefore, if the cutoff frequency is to be set at 30 Hz, the largest 

harmonic that can be determined is the third harmonic (90 Hz). The fourth harmonic (120 

Hz) cannot be found because it is larger than 100 Hz. The cutoff frequency is normalized 

by the Nyquist criterion and is computed using Equation (3.3). 

 Wn=
𝑓𝑐
𝑓𝑠
2

 (3.3) 

In addition to being filtered, the acceleration input data was also de-trended using 

the “detrend” function in MATLAB. The detrend function was used to remove sensor 

drift by subtracting the mean of all the data from each data point. This function 

eliminated the slight drift that was occurring in the acceleration data, and also removed 

the DC-offset in the data. 
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The MATLAB code used to perform the FFT procedure can be found in the 

Appendix. An explanation of the code is as follows.  

1) The function clears all previous data.  

2) The code reads and imports the acceleration data into MATLAB. The acceleration 

data is brought in as a single array from a .txt file.  

3) The user defines the capture frequency, and then “dt” defines the time between 

each data point. Time is defined by creating an array the same length as the 

acceleration input. The time array starts at zero and is spaced as defined by the 

sampling rate, where each point is created at a time difference of “dt”.  

4) The code then plots the raw acceleration data as a figure. 

5) The function detrends the acceleration input, moving the average to zero. A time 

array is then defined for this function. 

6) Fc, the cutoff frequency, is defined by the user; for this analysis, the cutoff 

frequency considered is 30 Hz. Wn is defined as the normalized cutoff frequency. 

“n” is the order of the filter, and for the parameters used in this research is defined 

as 3. The second-order filter was also used in addition to the third-order filter. The 

difference between using the second-order versus third-order filter resulted in 

negligible differences in the average first mode frequencies. It was found that 

there was less than 1% difference in the determined first mode frequency for 

Flights 1 and 3, and no changes for Flight 2 and 4 between the second-order and 

third-order filter. The butter filter, low-frequency filter, is then applied to the 

input data, and the adjusted acceleration versus time graph is plotted.  
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7) A Fast Fourier Transform is used to convert the detrended acceleration data from 

the time domain to the frequency domain.  

8) The absolute value is taken for the array, in order to convert non-real values from 

the Fourier Transform into real values. The x-axis of the data is created by 

making an array the same length as the acceleration data, where each point is a 

sequential whole number.  

9) The x-axis array is then converted to the frequency domain by multiplying it by 

the sampling frequency divided by the length of the array.  

10) The amplitude versus frequency graph is then plotted in a figure. 

 An example of an Acceleration versus Time, Detrended Acceleration versus 

Time, and an Amplitude versus Frequency graph from one of the data points can be 

found below in Figure 3.15, Figure 3.16, and Figure 3.17.  Each location tested was 

designated a code number, the key for the code number is as follows. C1= Case1, R1= 

Flight 1, S2= Second Step, B= middle of step. The rest of the detrended acceleration 

versus time graphs can be found in the Appendix.  



 41 

 

 

Figure 3.15: Acceleration vs. Time 

 

Figure 3.16: Detrended Acceleration vs. Time 
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Figure 3.17: Frequency vs. Amplitude 

 

The damping of each stair flight was found using the same BDI acceleration data 

used to find the fundamental natural frequency. The critical damping ratio was found 

using the logarithmic decrement method. This method was utilized to estimate the 

damping ratio using successive peaks to determine the rate of energy dissipation in the 

system, i.e., the damping. In order to apply this method, the Displacement versus Time 

graph was plotted by integrating the Acceleration versus Time graph twice. The 

integration was performed in MATLAB using the cumtrapz function. In order to clean 

the data and remove the sensor drift, a moving average of the velocity and displacement 

was subtracted from the velocity and displacement graph data, respectively.  

An example of the Displacement versus Time graph from impact location 

C1R2S2B can be found in Figure 3.18. 
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Figure 3.18: Displacement vs. Time 

 After determining the Displacement versus Time graph, the successive peaks 

could be used to determine the damping ratio using logarithmic decrement. The first step 

of this method was to find the logarithmic decrement using Equation (3.4) 

 𝛿 =
1

𝑛
∗ 𝑙𝑛(

𝑋𝑖

𝑋𝑖+1
) (3.4) 

The next step was to find the damping ratio using Equation (3.5). 

 𝜁=
𝛿

√(2𝜋)2 + 𝛿2
 (3.5) 

The procedure was completed using four points for each flight, the same ones 

used for the natural frequency. The points tested were the midpoint of the second, sixth, 

eighth, and twelfth steps. The damping ratio was estimated for each of the three impulses 

taken at each testing location using the process above. An average was determined for 
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each test location, and these averages were averaged to find the global damping for each 

flight. The complete results of the procedure can be found in the Appendix and are 

summarized in the results section, Chapter 4.  

3.2.2 Experimental Modal Analysis 

A modal analysis was conducted in order to formulate a mathematical model that 

represents the mode shapes of the first two modes for each of the flights. The purpose of 

finding mode shapes is to be able to verify that the restraint conditions in the finite 

element model are representative of the actual structure. The mode shape is determined 

from the frequency response functions (FRF), found using an impact hammer test. The 

FRF function relates the input applied to a structural system to the output of the structure. 

The FRF is a transfer function, meaning that it is the ratio of the acceleration response to 

the force input.  

For this thesis, a PCB 086D20 Short-sledge Impulse Hammer was utilized, as 

pictured in Figure 3.19. 

 

Figure 3.19: Impulse Hammer 

 An impact hammer test requires both a known input and output. The input is 

created and measured using an instrumented hammer, and the output is measured using 
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an accelerometer to record the acceleration response of the structure. An impact from the 

hammer causes a single impulse that can excite a broad range of modes and frequencies. 

Similar to the previous test, the point of impact created by the hammer changed, while 

the accelerometer location remained fixed. 

In order to record the acceleration response for each point tested, a single 

direction PCB 393A03 Seismic ceramic shear ICP accelerometer was utilized, as pictured 

in Figure 3.20. In this case, the accelerometer captured the acceleration in the direction 

perpendicular to the tread surface.  

 

Figure 3.20: PCB 393A03 Accelerometer 

Both the acceleration and force input data were simultaneously captured using a 

Data Acquisition (DAQ) system. The DAQ system used for this research was an LDS 

DACTRON Photon II, as pictured in Figure 3.21. 
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Figure 3.21: LDS Dactron DAQ System  

The DAQ system works by taking the electrical inputs from the instrumented 

hammer and the accelerometer and converting them into acceleration and force values. 

The DAQ system connects to a computer and operates using an accompanying RT Pro 

Photon software. This software automatically captures both the input force and response; 

then outputs an FRF graph in a universal file format (UFF). These file types are then 

directly compatible with the CATSModal/STAR6 software, where the UFF file can be 

converted into a visualization of the mode shape of the structure being tested. 

 The DAQ system and software were used to conduct a roving hammer test in 

order to find the mode shape and frequencies of the first two modes for each flight of 

stairs. The points of impact for the hammer were located at the same location for each 

flight. The testing points for each step tested were located at the ends, quarter, half, and 

three-quarter points of the tread. The test locations were located roughly every 55.25cm 

(21.75in) along the length of the tread. In addition, only every other step was tested. 

Testing every other step allowed for the overall behavior of the mode shape to be 
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captured while saving time. The location of each test point was assigned a number, as 

denoted in Figure 3.22. 

 

Figure 3.22: Mode Shape Test Locations 

The accelerometer was placed at test point number 27 for every flight of stairs. 

The accelerometer was placed at that location in order to avoid placing it on a node of 

one of the higher mode shapes. The preliminary predicted mode shapes, based on past 

research, was a response similar to a simply supported structure, where the first mode 

shape is in flexure with no nodes, the second mode shape has a torsional effect, and the 

third mode exhibits having a single node in the center of the staircase.  

After the system was set up, three hammer strikes were applied to each of the 35 

designated points, with enough time for the impulse to die out between each strike. The 
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FRF data from the three strikes at each location was then averaged by the software. The 

hammer and accelerometer were connected to the LDS Dactron DAQ system. The DAQ 

used the RT Pro Photon software to create the FRF data associated with each point. The 

collection of the data began via a trigger mechanism in the software, which started the 

data collection when the input was created by the hammer. This procedure was repeated 

for each stair flight tested. 

 After the FRF data was collected, the next step was to identify the natural 

frequency for the first mode and create a visual representation of the mode shape using 

CATSModal/Star6 software. The mode shape modeling process began by creating a 

template based on the geometry of the staircase. The stair flights were represented as a 

sloped plane with horizontal lines representing the location of the steps. Although this 

model is a simplified version of the actual structure, it was appropriate to use because the 

model was able to demonstrate the vertical displacements and overall global behavior of 

the structure. The points of impact were identified as points on the modeled system. The 

point model can be found in Figure 3.23. 

 

Figure 3.23: CATSModal/Star6 Stair Model 
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During the modeling stage, the geometry points were aligned with the 

measurement points. This step associates the model points with the physical location 

defined during the data acquisition stage. The next step was to import the acquired data, 

captured at each location point with the Photon II equipment, into the model. As the data 

was imported, the y-axis was defined as being the direction perpendicular to the stair 

tread.  

After the data was imported, a curve fit was applied to the data in order to identify 

the modal peaks of the system. The next step of the process was to identify the frequency 

of the first four modes from the modal peaks graph. After this, mode shapes could then be 

viewed. The first four modes were identified to compare the initial FEM to the 

experimental data in order to validate the accuracy of the modal behavior. However, after 

the initial FEM comparison, only the first two modes were of interest to the rest of this 

study. This is because, according to Kim et al. (2016), when the first mode frequency is 

relatively high, the first mode will be the only one of interest. This is because only the 

first mode frequency has the possibility of being excited by human walking excitation. 

Although, according to Kim et al. (2016), the higher modes are considered to be 

insignificant, the second mode was utilized throughout the rest of this thesis as a check to 

make sure that the mode shape behavior was still being preserved during the modeling 

process. It was found consistently during the modeling process in this research if the 

second mode shape behavior was preserved, the higher mode shape behaviors were also 

preserved.  
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3.4 Finite Element Model 

This section outlines the procedure taken to set up the finite element model of the 

staircases. The finite element model was created in SAP2000. Note: The model created in 

this section does not include any model updating/tuning. These changes will be presented 

in Chapter 4: Results and Discussions. 

3.4.1 Model Geometries and Material Properties 

 

The model geometry was created using measurements of the stair flights, as well 

as the building’s architectural and structural drawings created by Dana Larson Roubal 

and Associates Architects and Engineers (DLR Group). A schematic of the stair flight 

based on the drawings can be seen Figure 3.24. 

 

Figure 3.24: Schematic of Stair Flight (Based on DLR Group PKI As-Built Drawings) 

The staircase is composed of two primary materials, steel and concrete. The 

stringers are A36 steel C12x20.7 channel shapes. The tread pans and risers are composed 

of bent A36, 12 gauge steel. The treads were filled with a 2 in. layer of unreinforced 

concrete. The concrete was assumed to be 27.57 MPa (4000 psi) strength, normal weight 

concrete, 7182 pa (150 psf). Since documentation could not be found as to what type of 
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concrete was used for the tread fill, assuming a normal weight concrete results in a more 

slightly more conservative estimate of the natural frequency because it has a higher mass 

than a lightweight concrete. The railing’s guard post and handrail were composed of 

3.18cm (1.25 in.) A53 Gd. B pipes. The rail guard infill was composed of spaced 1.91cm 

(¾ in.) A36 bars. In the model, the steel channel stringers were modeled as frame 

elements, and the pans and risers were modeled as thin shell elements. 

3.4.2 Model Restraints 

 Properly identifying boundary conditions is critical to modeling the structure 

accurately. According to Davis and Salmon (2019), one of the major unknown modeling 

factors in staircase design is the degree of rotational restraint at the stringer ends. This is 

because the end restraint of a stair can be assumed to behave somewhere between a fixed 

and a pinned connection. In this thesis, one of the major elements influencing the 

rotational restraint is the connection of the stair flights to the deck. For the flights tested, 

the stairs are integral to the landing deck, which is supported by an HSS tube near the 

stringer ends. Therefore the rotational stiffness at the end of the flights will most likely be 

influenced by the bending of the deck and the torsional stiffness of the HSS supports. The 

rotational stiffness due to these factors was modeled by applying pinned end restraints on 

the stringers and then adding rotational springs to these pinned restraints. Increasing 

spring stiffness makes the restraint behave more like a fixed connection. On the other 

hand, having a spring stiffness of zero results in no change to the pinned restraint. 

Therefore, rotational joint springs were applied to the ends of the stringers so that the 

restraint stiffness could be altered to match the natural frequency of the model to the 
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experimentally determined natural frequency. This procedure is discussed further in 

Chapter 4. 

3.4.3 SAP2000 Model  

 The first step to modeling the staircase in SAP2000 was to model the two 

C12x20.7 stringers, located on the edges of the stair flights, as beam elements. These 

stringers were modeled at an angle of approximately 30 degrees the same as the staircase, 

and spacing of 221cm (87in.) separating the two stringers. The treads were then added 

connecting the two stringers, which were modeled using composite thin shell areas. The 

shell was defined as having a base of 12 gauge A36 steel and a two-inch layer of 27.57 

MPa (4000 psi) concrete on top. The risers were modeled using thin shell areas, defined 

as 12 gauge steel. The thin shell areas were then meshed into areas no greater than 

10.16cm x 10.16cm (4in. x 4in.). Joints were added along the stringer so that the stringer 

was connected to the end midpoints for every tread and riser. This was to represent the 

connections between the stringer and risers, as seen in Figure 3.25. 

 

Figure 3.25 : Stringer Connections 
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 The next step was to add restraints to the system. As mentioned before, pinned 

restraints were used on the ends of both stringers. In addition, pin restraints were used 

along the edge of the terminal risers at both ends of the stair flights. A modal analysis 

was then run on the model to make sure that the first two mode shapes were 

representative of the experimentally determined mode shape. The model with restraints is 

pictured in Figure 3.26, and a zoomed-in image of the pinned restraints can be found in 

Figure 3.27. 

 

Figure 3.26: Pinned Base Model Structure 
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Figure 3.27: Zoom in of Pinned Restraints 

After the model geometry was setup, additional masses due to the rubber stair 

tread matting were calculated and added to the model. The mass per area of the rubber 

stair tread was assumed to be 1.5 
𝑙𝑏𝑠

𝑓𝑡2 (7.32 
𝑘𝑔

𝑚2), determined from materials specs of 

similar matting. The mass of the rubber matting was applied to both the treads and risers, 

where it is found on the actual staircase. In addition, the mass due to the railing was 

applied to the model. The total mass of the railing was calculated by taking the mass of 

each piece of the railing and summing them together. The mass was then distributed 

along the length of the stringer. The calculation for the mass of the railing can be found in 

the Appendix. The distributed mass was determined to be 27 
𝑘𝑔

𝑚
. The mass was then 

distributed along both stringers. The model created using the above assumptions 

exhibited a first mode natural frequency of 12.90 Hz.  

 Mode shape comparisons and additional modifications made to further understand 

the behavior of the stair flights are presented in the next section, Chapter 4. 
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4. CHAPTER 4- RESULTS AND DISCUSSIONS 

  The results section is broken into two parts. The first provides a summary and 

discussion of the experimentally determined first and second mode natural frequency. 

The second section utilizes the experimentally verified SAP2000 model to perform a 

parametric study to determine the influence of railing stiffness, mass, and boundary 

conditions on the natural frequency and mode shape of the structure.  

4.1 Experimental Modal Analysis Results 

The first step in making sure that the experimentally determined first mode 

frequency was identified correctly, was to compare the first mode frequencies found 

using the BDI equipment and MATLAB software with the frequencies found using the 

instrumented hammer system and CATSModal/Star6 software.  

A summary of the first mode natural frequencies found using the weight drop test 

for the four flights can be seen in Table 4.1-Table 4.4. Each location tested was 

designated a code number, the key for the code number is as follows: C1= Case1, R1= 

Flight 1, S2= Second Step, B= middle of the step. 

Table 4.1: Flight 1 Natural Frequency Using BDI 

ID Flight Step Number Dominant Natural Frequency (Hz) 

C1R1S2B 1 2 24.79 

C1R1S6B 1 6 19.92 

C1R1S8B 1 8 20.31 

C1R1S12B 1 12 20.52 

Average 1 N/A 21.39 
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Table 4.2: Flight 2 Natural Frequency Using BDI 

ID Flight Step Number Dominant Natural Frequency (Hz) 

C1R2S2B 2 2 16.57 

C1R2S6B 2 6 16.71 

C1R2S8B 2 8 16.10 

C1R2S12B 2 12 16.77 

Average 2 N/A 16.54 

 

Table 4.3: Flight 3 Natural Frequency Using BDI 

ID Flight Step Number Dominant Natural Frequency (Hz) 

C1R3S2B 3 2 21.82 

C1R3S6B 3 6 20.99 

C1R3S8B 3 8 21.85 

C1R3S12B 3 12 22.18 

Average 3 N/A 21.71 

 

Table 4.4: Flight 4 Natural Frequency Using BDI 

ID Flight Step Number Dominant Natural Frequency (Hz) 

C1R3S2B 4 2 16.35 

C1R3S6B 4 6 16.46 

C1R3S8B 4 8 16.29 

C1R3S12B 4 12 16.67 

Average 4 N/A 16.44 

 

A summary of averaged natural frequencies for each flight was determined and are 

summarized in Table 4.5. 
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Table 4.5: Summary of Natural Frequencies Using BDI 

Flight 
Dominant Natural 

Frequency (Hz) 

1 21.39 

2 16.54 

3 21.71 

4 16.44 

 

The first mode frequencies found in Table 4.5 verifies the assumption made at the 

beginning, that Flight 1 and Flight 3 can be classified as the same stair type, Type1. The 

assumption that the wall below Flight 1 will not have a significant effect on the frequency 

due to the gap between the wall and the stringer was verified since the difference between 

the Flight 1 and Flight 3 frequencies was only 1.5%. 

The averaged results of the calculated damping found using logarithmic 

decrement are summarized below in Table 4.6. The complete tables used to calculate the 

logarithmic decrement are found in the Appendix. 

Table 4.6: Damping Ratio 

Flight 
Damping Ratio 

(%) 

1 3.3% 

2 5.3% 

3 4.9% 

4 4.8% 
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The damping ratios determined in this thesis fall in the 1-7% range that was 

determined for steel staircases in the literature by Bishop et al. (1995) and Kim et al. 

(2008). However, the damping ratio results demonstrated that Flight 1 had a lower 

damping ratio at 3.3%, compared to the average damping ratio of the other three flights at 

around 5%. One possible explanation for why Flight 1 had a measured damping ratio that 

was less than the other flights, is because this flight is in contact with the floor on one end 

and is integral with the landing on the other end. The other flights have integral 

connections with the landings on both ends. Although it was observed that this difference 

has little effect on the natural frequency, the integral interface between the flight and the 

landing may be causing additional frictional energy dissipating effects that are not 

occurring at the interface between the flight and the floor. Another possible reason why 

the damping may be slightly different for Flight 1 is that although the wall underneath 

does not appear to have any significant influence on the frequency of the structure, it may 

be possible that there is a slight contact with the stair, out of sight from what can be 

visibly determined, that may be having an effect on the damping value. 

The last set of experimental data is summarized in Table 4.7 and is a summary of 

the first four mode frequencies for each flight identified with the hammer test, using the 

Photon DAQ system and the CATSModal/STAR6 software. The experimental data 

obtained demonstrated that all of the staircase flights tested in this research met the 

required frequency serviceability standards of being greater than 10 Hz. 
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Table 4.7: Stair Flight Mode Frequencies using Instrumented Hammer 

Stair Flight 
Mode 1 

Frequency (Hz) 

Mode 2 

Frequency (Hz) 

Mode 3 

Frequency (Hz) 

Mode 4 

Frequency (Hz) 

1 20.11 30.39 39.92 49.44 

2 16.48 31.86 39.87 55.66 

3 21.61 33.33 42.11 53.83 

4 16.11 30.40 42.11 59.69 

 

 From this table, it is evident that the higher the mode number, the larger the 

variation in modal frequency between the different flights. This increased variation could 

be due to the fact that the modal participation factor for the first mode is much higher 

than that of the other modes. Therefore, the higher the mode, the more difficult it 

becomes to determine the natural frequency of the modes. The modal participation factor 

in the direction perpendicular to the stair treads for the Type 2 staircase is found in Table 

4.8. 

Table 4.8: Modal Participation Factor of SAP2000 Base Model 

Mode Number Period (Sec) Sum UZ (Unitless) 

1 0.077504 0.5972 

2 0.040781 0.5972 

3 0.027162 0.5972 

4 0.01985 0.6465 

5 0.016842 0.6465 

6 0.014763 0.6583 

… … … 

38 0.005466 0.929 
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It was determined that even though the experimentally determined frequencies 

varied slightly amongst the flights, the experimentally determined mode shapes of each 

of the stair flights remained similar to each other. The first four mode shapes for every 

flight can be found in the Appendix. The first mode is characterized as having a flexure 

with no nodes. The second mode is characterized as having a torsional motion. The third 

mode is characterized as having one node located in the center of the stair flight. The 

fourth mode is characterized as having two nodes located at the third points. These mode 

shapes verified the predicted modal behavior of these stair structures.  

After the averages of the first mode frequencies were determined by the two 

experimental tests, a comparison between the results was made. The comparison of the 

first mode frequencies can be found in Table 4.9. 

Table 4.9: BDI to CATSModal/Star6 Frequency Comparison 

Stair Flight 
BDI Mode 1 

Frequency (Hz) 

CATSModal/Star6 

Mode 1 Frequency 

(Hz) 

Difference (%) 

1 21.39 20.11 6.17% 

2 16.54 16.48 0.36% 

3 21.71 21.61 0.46% 

4 16.44 16.11 2.03% 

 

Since the maximum observed difference between these two testing methods was 

only 1.28 Hz (6.17%), the CATSModal/STAR6 first mode frequency was determined to 

be correctly identified. Therefore moving forward in this thesis, the experimentally 

determined data will refer to the first and second mode natural frequencies found using 
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the CATSModal/STAR6 software since the mode shapes can also be visualized using that 

data. It is also important to note that since both sets of first mode frequencies for all of 

the flights tested are above 10 Hz, the frequency serviceability criteria are satisfied for 

these stair flights.  

 A summary of the first and second mode natural frequencies for each flight 

identified with the hammer test and using the Photon DAQ system and the 

CATSModal/STAR6 software is summarized below in Table 4.10. 

Table 4.10: Summary of Natural Frequencies 

Flight 
Mode 1 Natural 

Frequency (Hz) 

Mode 2 Natural 

Frequency (Hz) 

1 20.11 30.39 

2 16.48 31.86 

3 21.61 33.33 

4 16.11 30.40 

 

A few observations can be made from the frequency values presented in Table 

4.10. The first observation is that the first and second mode frequencies for the two types 

of staircases, Type 1 and Type 2, with similar construction and geometry, are fairly 

similar in first and second mode frequency values, within a 10% difference for the Type 1 

stairs and within a 5% difference for the Type 2 stairs, for both the first and second mode 

frequency. This validates that Flights 1 and 3 grouped together as Type 1 and Flights 2 

and 4 grouped together as Type 2 is a valid assumption. A summary of the differences in 

the first and second mode frequencies for the Type1 and Type 2 staircases are 

summarized in Table 4.11. 
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Table 4.11: Difference in First and Second Modes for Similar Flights 

Type Flights 
Mode1 

Frequency (Hz) 

Difference 

Between Type 

1 Flights and 

Type 2 Flights 

(%) 

Mode2  

Frequency (Hz) 

Difference 

Between Type 

1 Flights and 

Type 2 Flights 

(%) 

1 
1 20.11 

7.19% 
30.39 

9.23% 
3 21.61 33.33 

2 

2 16.48 

2.27% 

31.86 

4.69% 
4 16.11 30.40 

 

The first mode natural frequency for the Type 1 stairs differs by 1.50 Hz (7.19%). 

The first mode natural frequency for the Type2 stairs differs by 0.37 Hz (2.27%). The 

percent difference between the Type 1 flights’ first mode frequencies may seem large in 

comparison to the Type 2 flights’ first mode frequencies. However, the percent difference 

between the Type 1 flights’ first mode frequency, as determined in the first experimental 

test using the BDI equipment and the weight drop, was a difference between 21.39 Hz 

and 21.71 Hz, or a difference of 0.32 Hz (1.48%). Therefore, the first BDI experimental 

test added additional verification to the closeness of the behavior of the two Type 1 

flights.  

Another observation of importance was made from comparing the average first 

and second mode frequencies of the two types of stairs, as seen in Table 4.12. 
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Table 4.12: Type 1 and Type 2 Staircase Frequency Comparison 

 Type 1 Type 2 Difference (Hz) Difference (%) 

Avg. Mode 1 Frequency 

(Hz) 
20.86 Hz 16.30 Hz 4.56 Hz 24.25% 

Avg. Mode 2 Frequency 

(Hz) 
31.86 Hz 31.13 Hz 0.73 Hz 2.32% 

 

The experimental data demonstrated that there is a 24.25% difference in the 

average first mode frequency between the Type 1 and Type 2 staircases. The data also 

demonstrated that there is a much smaller difference, 2.32%, between the average second 

mode frequencies of the Type 1 and Type 2 staircases. The fairly large difference in the 

first mode frequency demonstrates that the wall stringer increases the overall stiffness of 

the system. This conclusion can be made because the only major difference between the 

two types of stairs, other than the influence of having one versus two railings, is the 

boundary condition change created by the wall stringer. Therefore it is recommended that 

future modeling should take into consideration the boundary condition effect of having a 

wall stringer during an analysis of an existing staircase. This will be further discussed 

later in this chapter. 

4.2 Finite Element Analysis Results 

 This section involves findings using a modification of the model developed and 

discussed in Chapter 3. 

4.2.1 Mode Shape Comparison 

In order to make sure that the model developed in Chapter 3 was created properly, 

it is important to compare the mode shapes found experimentally to those found in the 
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model. This step was completed using the base model created in Chapter 3 before the 

model was updated with springs and/or links. The model mode shapes were compared 

with the experimentally determined mode shapes found using the CATSModal/STAR6 

software. The SAP2000 model was compared to the Type 2 staircase because the base 

model considers two face stringer boundary conditions. The mode shapes from both 

experimental and analytical data can be found in Figure 4.1 through Figure 4.8. 

 

Figure 4.1: Type 2 Experimental Mode1 (Left) 

Figure 4.2: Type 2 SAP2000 Mode1 (Right) 
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Figure 4.3: Type 2 Experimental Mode2 (Left) 

Figure 4.4: Type 2 SAP2000 Mode2 (Right) 

 

 

Figure 4.5: Type 2 Experimental Mode 3 (Left) 

Figure 4.6: Type 2 SAP2000 Mode3 (Right) 
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Figure 4.7: Type 2 Experimental Mode 4 (Left) 

Figure 4.8: Type 2 SAP2000 Mode4 (Right) 

 

It is evident from the comparison of the mode shapes that the base model captured the 

same mode shapes as determined by the experimental analysis.  

The next step after the mode shape behavior was captured was to determine, 

before model tuning/adjustment, how close the base model’s first and second mode 

frequency were to the experimentally determined Type 2 staircase frequencies. The 

comparison of the first and second mode frequencies can be found in Table 4.13 and 

Table 4.14. 

Table 4.13: Mode 1 Comparison of Base Model to Experimental Results 

Stair Flight Type 2 

Experimentally 

Determined Mode 1 

Frequency (Hz) 

SAP2000 Base 

Model Mode 1 

Frequency (Hz) 

Difference in 

Frequency (%) 

Flight 2 16.48 12.90 24.37% 

Flight 4 16.11 12.90 22.13% 

Average 16.30 12.90 23.29% 
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Table 4.14: Mode 2 Comparison of Base Model to Experimental Results 

Stair Flight Type 2 

Experimentally 

Determined Mode 2 

Frequency (Hz) 

SAP2000 Base 

Model Mode 2 

Frequency (Hz) 

Difference in 

Frequency (%) 

Flight 2 31.86 24.52 26.04% 

Flight 4 30.40 24.52 21.41% 

Average 31.13 24.52 23.76% 

 

The comparison of the first and second mode frequency of both the model and 

experimentally determined frequency demonstrated, on average, that there is a greater 

than 22% difference between the respective mode frequency values. The acceptable level 

of accuracy for the differences between the modeled and experimental frequencies used 

in this thesis was defined by Davis and Avci (2015). In their research, utilizing first mode 

frequency predictive equations, the predicted first mode frequencies of the two staircases 

tested differed by 35.5% and 17.1%, respectively. Even though the variations between the 

predicted and measured first mode frequencies may seem high, Davis and Avci (2015) 

determined that the predictions were “accurate enough for design usage”. Therefore, 

although the difference between the base model and the experimental frequencies in this 

thesis was 23% for the first mode, the estimate is conservative and can still be useful for 

design. The variation between the experimental and predicted frequencies is due to a 

conservative assumption of the boundary conditions, which assumed pinned restraints. 

The base model was created using pinned restraints because past research has determined 

that the rotational end restraint actually behaves somewhere between a pin and fixed 
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connection (Davis and Salmon 2019). This means that the model needs to be adjusted in 

order to account for differences in rotational restraints and boundary conditions in order 

to more accurately determine the modal frequencies of the staircase. Therefore, assuming 

a pin-pin connection would provide for the conservative estimate of the stairs’ modal 

natural frequencies. However, this assumes that the mode shapes are unaffected by this 

assumption.  

If the conservative pinned restraint condition were used to predict the first mode 

frequency, and the predicted frequency was higher than 10 Hz, it can be assumed that 

further tuning of the model would only increase the first mode frequency. Therefore for 

this scenario, no additional iterations of the model would be necessary to make sure the 

stair is achieving serviceability standards. However, if designers were to assume this 

conservative boundary condition and the resulting frequency either falls below the 10 Hz 

or is close to it, a more refined model would be necessary to check if the stair would need 

to be redesigned to meet the serviceability conditions.  

4.2.2 Model Tuning 

The base model was tuned using experimental data so that the first mode 

frequency of the model better matches the experimentally determined first mode 

frequency. After the model was tuned, the goal was to compare the accuracy of the 

model’s second mode frequency to the experimentally determined second mode 

frequency.  

In order to tune the model’s first mode frequency, rotational springs were applied 

to the pin restraints at the ends of the stringers. It was anticipated that the restraint at the 
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end of the stair flight acts somewhere in-between a pin and a fixed restraint. Therefore, 

the ends of the stringers can be modeled as pins, and rotational springs can be applied to 

tune the stiffness of the restraint to fall in-between a pin and a fixed restraint. This 

method was utilized by Davis and Salmon (2019). The first mode frequency was tuned by 

varying the rotational stiffness applied to the stringer ends between 4000 kN-m/rad and 

5500 kN-m/rad. It was determined that applying a 5000 kN-m/rad rotational spring on the 

ends of both stringers allowed for the first and second mode frequencies to be the closest 

to their respective experimentally determined values while limiting the variance in the 

first mode frequency. Applying the rotational restraints to this model resulted in a first 

mode frequency that was closer to the experimental frequency compared to the second 

mode frequency. Therefore, the first mode frequency would have to be over predicted 

compared to the experimentally determined average frequency in order to get the second 

mode frequency to match the experimentally determined value. However, the 

overestimation of the model’s first mode frequency was limited to 1% greater than the 

largest experimentally determined value and within 5% of the average experimental 

frequency. Tuning the model’s first mode frequency to be slightly larger than the average 

allowed for the model’s second mode frequency to be driven closer to the experimentally 

determined value. The reason for trying the get the modeled first and second mode 

frequency values close to the average experimental frequencies was because it was later 

found that preserving the balance between the accuracy of the first and second mode 

frequency resulted in the best comparison between the modeled and experimentally 

determined mode shapes. Therefore, even though a lower value for the rotational spring 
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would allow for a closer match between the first mode frequency and experimentally 

determined average, a lower value for the rotational spring would push the second mode 

frequency farther away from the experimentally determined value. On the other hand, 

although a higher value for the rotational spring would allow for a better balance of the 

differences in the first and second mode frequency, it would non-conservatively push the 

first mode frequency farther away from the experimental average.   

After the springs were applied, the model’s mode shapes were once again checked 

with experimental mode shapes. From this comparison, it was determined that the 

application of the rotational springs resulted in mode shapes that matched those 

determined experimentally. After the pin restraint springs were adjusted, the new 

modeled first mode frequency differences ranged between 0.85-3.12%, and an average of 

1.94%, compared to the experimentally determined first mode frequencies of the Type 2 

stairs. Table 4.15 contains a comparison of the experimentally determined first mode 

frequency to the new adjusted SAP2000 model frequency.   

Table 4.15 Mode 1 Comparison of Tuned Model to Type 2 Experimental Results  

Stair Flight 

Experimentally 

Determined Mode 1 

Frequency (Hz) 

Adjusted SAP2000 

Model Mode 1 

Frequency (Hz) 

Difference in 

Frequency (%) 

Flight 2 16.48 16.62 0.85% 

Flight 4 16.11 16.62 3.12% 

Average 16.30 16.62 1.94% 

 

After the pin restraint springs were adjusted to match the fundamental frequency, 

the model’s second mode frequency was compared to the experimentally determined 
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second mode frequency. The average difference was 6.81% and was found using the 

average of the experimentally determined second mode frequencies, 31.13 Hz, compared 

to the model’s second mode frequency, which was 29.08 Hz. A summary of these Type 2 

stair comparisons can be found in Table 4.16. 

Table 4.16: Mode 2 Comparison of Tuned Model to Type 2 Experimental Results 

Stair Flight 

Experimentally 

Determined Mode 2 

Frequency (Hz) 

Adjusted SAP2000 

Model Mode 2 

Frequency (Hz) 

Difference in 

Frequency (%) 

Flight 2 31.86 29.08 9.12% 

Flight 4 30.40 29.08 4.44% 

Average 31.13 29.08 6.81% 

    

 In order to understand where the 5000 kN-m/rad spring stiffness falls on the 

spectrum between a pinned and fixed restraint, the rotational stiffness of the end restraints 

was increased starting at 0 kN-m/rad until an equivalent fixed restraint condition was 

reached. This procedure was done for two scenarios. The first scenario altered all four 

end rotational springs. Visualization of where the rotational springs were applied can be 

found in Figure 4.9, where the stars represent the location of the rotational springs. 
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Figure 4.9: Location of Rotational Springs 

The second scenario only changed two joint springs on one stringer, while 

keeping the other stringer’s end restraints pinned. Visualization of where the rotational 

springs were applied can be found in Figure 4.10, where the stars represent the location 

of the rotational springs. 
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Figure 4.10: Location of Rotational Springs 

The stringer rotational springs were applied at every 1 and 5 value on a 

logarithmic scale, meaning that the spring stiffness tested was 1, 5, 10, 50, etc. The 

stiffness was increased until the change in frequency slope on the graph flattened out, and 

an equivalent fixed restraint behavior was reached. A table summarizing the change in 

the first and second mode frequency due to the change in rotational spring restraints for 

the two scenarios can be found in Table 4.17 and Table 4.18, respectively. 
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Table 4.17: Change Frequency for Four Rotational Restraints 

Mode 

Pin- Pin 

Natural 

Frequency 

(Hz) 

Base Model- 

5000k-m/rad pins 

Mode1 Frequency 

(Hz) 

Experimental 

Frequency 

(Hz) 

Fix-Fix 

Natural 

Frequency 

(Hz) 

Percent 

Change (%) 

1 12.90 16.62 16.30 25.82 66.77% 

2 24.52 29.07 31.13 43.30 53.88% 

 

Table 4.18: Change in Frequency for Two Rotational Restraints 

Mode 

Pin- Pin 

Natural 

Frequency 

(Hz) 

Base Model- 

5000k-m/rad pins 

Mode1 Frequency 

(Hz) 

Experimental 

Frequency 

(Hz) 

Fix-Fix 

Natural 

Frequency 

(Hz) 

Percent 

Change 

(%) 

1 12.90 14.47 16.30 16.33 23.47% 

2 24.52 27.08 31.13 36.49 39.23% 

 

Plotted graphs of the frequency versus rotational restraint for the two scenarios can be 

found in Figure 4.11 and Figure 4.12. 
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Figure 4.11: Two Stringer Rotational Spring Restraints vs. Frequency 
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Figure 4.12: One Stringer Rotational Spring Restraint vs. Frequency 

 

Looking at the restraint stiffness versus frequency graphs for scenario 1, as the 

rotational spring stiffness is increased, the restraint started out as behaving as a pin-pin 

restraint and increased until it leveled off at an equivalent fix-fix behaving restraint. From 

this graph, it was noted that the magnitude of the first mode frequency was more affected 

than the second mode frequency when all stringer end restraints were changed. The 

change of the restraints from a pin-pin to a fix-fix connection for scenario one resulted in 

a 66.8% change in the first mode, while the second mode exhibited a 53.9% change. 

However, when the end springs were only changed at the ends of one stringer, scenario 2, 
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the first mode was more affected by the change in rotational stiffness than the second 

mode. The change from a pinned restraint to a fixed restraint, on one stringer, resulted in 

a 23.4% change in the first mode, but a 39.2% change in the second mode. From both 

scenarios, it was also observed that the 5000 kN-m/rad spring stiffness behaves more like 

a spring restraint than a fixed restraint based on where the stiffness falls on the graph. 

4.2.3 Influence of the Magnitude of Railing Mass on Modal Frequency 

The next step was to determine the effect of the railing mass on the first and 

second mode frequency of the structure. This section was completed by taking the Type 2 

stair model with the 5000 kN-m/rad adjusted pin restraint springs and eliminating the 

mass due to the railings. Once the railings were eliminated, it was possible to determine 

the effect that the railing mass has on the staircase’s natural frequency and mode shape. 

Eliminating the mass of the railing decreased the total system from 1951 kg to 1719 kg. 

The 232 kg reduction in mass resulted in a 1.38% increase in the first mode frequency, 

changing from 16.62 Hz to 16.85 Hz. The reduction in mass resulted in a 3.44% increase 

in the second mode, an increase from 29.07 Hz to 30.07 Hz. Although the frequency 

changed slightly more for the second mode frequency, the respective mode shapes 

remained unchanged.  

In order to more completely understand how the frequency is influenced by the 

magnitude of the mass of the railings, increasing masses were applied along both 

stringers, and the corresponding changes in frequencies were recorded. It is to be noted 

that the increase of the applied mass along the stringer did not account for any changes in 

the torsional mass contribution created by the railing height. This is acceptable because 
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the purpose of this test was to understand the influence of solely the effect of uneven 

mass distribution on the staircases’ frequencies.  

The mass applied to the two stringers started at 0% and increased in increments of 

5% of the total mass of the structure, which excluded the mass of the railings, until 100% 

was applied, doubling the mass of the structure. For example, the mass of the stair flight 

without railings was 1719kg, so an application of 10% of the total mass would add 171.9 

kg to the system, or 85.95kg to each stringer. The percent railing mass to frequency was 

then plotted for the first two modes to better understand the influence of mass on the 

behavior of the stair structure. In addition, the idealized curve derived from 𝜔𝑛 = √
𝑘

𝑚
 

was plotted to determine if the parametric curve departs from this behavior. The idealized 

curve was plotted using scalars applied to the initial frequency, which assumed a mass 

“m” of one. For example, when the applied mass was 100% that of the structure, the total 

mass was doubled, so a scalar of √
1

2
 was applied to the initial frequency. The idealized 

equation frequency values assumed that the mass was evenly distributed and were 

compared to the modeled behavior, where the mass was unevenly distributed. The results 

were plotted in Figure 4.13 and Figure 4.14. 
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Figure 4.13: First Mode Frequency vs. Additional Two Rail Mass 

 

Figure 4.14: Second Mode Frequency vs. Additional Two Rail Mass 
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 The first mode frequency graph in Figure 4.13, demonstrates that the frequency of 

the structure deviates from the equation for the circular frequency in Equation (2.2). The 

deviation of the two slopes in the graph is attributed to the effects of having large masses 

on the edge of the stair flight, creating an uneven mass distribution on the system. 

However, the graph of the second mode frequency versus % additional mass in Figure 

4.14, demonstrates that the second mode frequency closely follows the equation of 

circular frequency. Therefore, it was observed that the mass distribution does not have 

much effect on the torsional second mode, but has a noticeable effect on the first mode 

frequency.  

The next step was to repeat the same procedure, except this time, all the mass 

applied to the railing was distributed on one stringer instead of distributed on two. As 

before, measurements were taken for every 5% of the total mass applied. The percent 

mass to frequency was then plotted for the first and second mode, in Figure 4.15 and 

Figure 4.16, respectively. 
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Figure 4.15: First Mode Frequency vs. Additional One Rail Mass 

 

 

Figure 4.16: Second Mode Frequency vs. Additional Two Rail Mass 
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 The graph of the first mode, in Figure 4.15, demonstrates that the change in first 

mode frequency deviates from the equation of circular frequency in Equation (2.2). The 

deviation of the model’s frequency slope from the frequency slope found using the 

circular frequency equation, once again, is assumed to be attributed to the uneven mass 

distribution created by the large concentrated mass on the edge of the stair flight. Similar 

to when the mass is distributed on two railings, the second mode graph in Figure 4.16 

demonstrates a close following of the circular frequency equation for the first 20% 

additional mass applied. However, after more than 20% additional mass is applied, the 

second mode frequency begins to depart from this idealized natural frequency curve.  

In order to understand how the first mode frequency deviates from the idealized 

circular frequency curve, a line of best fit was applied to the modeled frequency slope for 

the two scenarios, as seen in Figure 4.17 and Figure 4.18 
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Figure 4.17: Two Stringer Mass Distribution Line of Best Fit 

 

Figure 4.18: One Stringer Mass Distribution Line of Best Fit 
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The line of best fit for the modeled frequency versus % additional mass applied to 

two stringers for the first mode can be described by Equation (4.1).  

 y = 17.016e-0.002x
 (4.1) 

The line of best fit for the modeled frequency versus % additional mass applied to one 

stringer for the first mode can be described by Equation (4.2). 

 y = 17.112e
-0.002x

 (4.2) 

Both of these equations followed the same exponential slope but have slightly 

different scalars close to the 17.09 Hz first mode frequency determined when there is no 

additional mass applied to the railings. Therefore, the equation proposed to represent the 

change in first mode frequency when additional railing mass is applied to the railings, is 

presented in Equation (4.3). 

 𝑓𝑛= Z*e-0.002x (4.3) 

Where 𝑓𝑛 (Hz) is the first mode natural frequency, Z (Hz) is the staircase frequency when 

no railing mass is applied, and x (%) is the percent of stair mass being applied along the 

stringers.  

4.2.4 Influence of Railing Stiffness on First Mode Frequency 

This section investigates whether the stiffness of the railing has a notable effect 

on the first mode natural frequency of the stair flights. The stair railing was composed of 

3.18 cm (1.25 in.) diameter pipes and 1.91cm (0.75 in.) diameter steel bars. The railing 

was modeled on both sides of the base stair model developed in Chapter 3. This model 
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did not include rotational springs applied to the ends of the stringers so that the railings’ 

influence on the frequency could be determined before the model was tuned. This model 

is representative of the Type 2 staircase. However, the mass due to the railing included in 

the base model was removed and replaced with a modeled railing. The SAP2000 model 

with the modeled railing is pictured in Figure 4.19. 

 

Figure 4.19: Stair Flight Modeled with Railings 

 

When the railing was modeled, it was determined that the relative stiffness 

difference between the rail and the stair flight was so great that the staircase’s global 

modal response was not captured for a majority of the modes. This meant that the modal 

response found was that of the railings and not of the entire stair structure. The change in 

response was noted by both a difference in the mode shape frequencies and a change in 

mode shape behavior. The mode shape when the railing was modeled was no longer 
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representative of the structure because the only elements of the structure affected by the 

modal analysis for the first two modes were the railings, and not the stringers, treads, or 

risers. This behavior was captured in the mode shape response of the first two modes, as 

seen in Figure 4.20 and Figure 4.21. 

 

Figure 4.20: Mode 1 of Model with Railings (14.04Hz) 

 

Figure 4.21: Mode 2 of Model with Railings (14.04Hz) 
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If the railing is physically modeled on the stair flight, it could give the illusion 

that the modal frequencies are much lower than they actually are. Although one could 

believe that this is acceptable because it is a more conservative design estimate since it 

estimates a lower frequency than actually exists, this conservative estimate is based on a 

miss-identification of the structure’s actual behavior. Therefore, it should be kept in mind 

that the relative stiffness added due to the railing was so much less than that of the 

combination of the stringers, treads, and risers, that the stiffness was considered to be 

insignificant to the modal response of the structure. Therefore, only the mass of the 

railing was included in the remaining models of the stair flights in the remaining sections.  

As a result, it is recommended that when developing models of staircases, close 

attention should be paid to whether or not the relative stiffness of the railing compared to 

the rest of the staircase is close enough to necessitate the modeling of the railing. If the 

difference is great, modeling the railing may lead to inaccurate results. Therefore, it is 

important for designers to check the modal behavior of stair models to make sure they are 

properly capturing the correct modal response behavior of the global structure, and not 

just the modal response of one of the elements of the structure. 

4.2.5 Wall Stringer Influence on Natural Frequency 

Recall the higher first mode frequency of the Type 1 staircase compared to the 

Type 2 staircase. This change was assumed to come from the change in boundary 

conditions created by the existence of a wall stringer since that was the only major 

boundary condition change between the two stair types. Therefore, the boundary 

conditions of wall stringers should be considered different than face stringers during 
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dynamic analysis and modeling. As a result, the next objective was to determine the 

influence that a wall stringer has on the first and second mode frequencies. 

In order to determine the change in dynamic behavior, the mass of one of the 

railings in the Type 2 staircase model, tuned with 5000kN-m/rad springs, was eliminated. 

The elimination of the mass of one of the railings in the Type 2 model was then 

representative of the Type 1 staircase since the Type 1 stair only had a railing on the face 

stringer. The remaining difference after the railing mass was modified could then be 

attributed to the difference in boundary conditions due to the wall stringer. 

The mass of the Type 1 staircase when only a single railing was applied was 

1835kg. This change in mass resulted in a 5.9% decrease in mass from the 1951 kg mass 

determined in the Type 2 staircase. The change in the mass resulted in a first mode 

frequency of 16.85 Hz and a second mode frequency of 30.07 Hz. A comparison of the 

experimental first mode frequency to the SAP2000 model’s first mode frequency can be 

found in Table 4.19. A comparison of the experimental second mode frequency to the 

SAP2000 model’s second mode frequency can be found in Table 4.20. 

Table 4.19: Type 1 Single Stringer Mass with 5000 kN-m/rad Springs First Mode 

Frequency Difference 

Stair Flight 

Experimentally 

Determined Mode1 

Frequency (Hz) 

SAP2000 Mode1 

Frequency (Hz) 

Difference in 

Frequency (%) 

Flight 1 20.11 16.85 17.64% 

Flight 3 21.61 16.85 24.75% 

Average 20.86 16.85 21.27% 
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Table 4.20: Type 1 Single Stringer Mass with 5000 kN-m/rad Springs Second Mode 

Frequency Difference 

Stair Flight Experimentally 

Determined Mode2 

Frequency (Hz) 

SAP2000  Mode 2 

Frequency (Hz) 

Difference in 

Frequency (%) 

Flight 1 30.39 30.07 1.06% 

Flight 3 33.33 30.07 10.28% 

Average 31.86 30.07 5.78% 

 

The average difference between the experimental and modeled first mode 

frequency differed by approximately 21% on average. This difference is attributed to a 

change in the boundary conditions created by the wall stringer. The wall stringer is 

considered to be adding the additional flexural stiffness to the stair structure, leading to 

an increase in the measured natural frequency. 

 In order to model this additional flexural stiffness, links were applied to all of the 

nodes on the wall edge of the model. This added resistance to the movement in the 

direction perpendicular to the plane of the wall. In the actual structure, this resistance to 

motion is created by the wall’s interface with the stringer. The links were utilized in 

addition to the 5000 kN-m/rad spring restraints found at the ends of both stringers to 

model the unknown stiffness of the structure. The links with translational stiffness 

allowed for the modeling of the out-of-plane direction perpendicular to the wall, 

translational stiffness created by the stringer's contact with the wall. A schematic 

denoting where the links were applied can be found in Figure 4.22. 
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 Figure 4.22: Modeled Type 1 Stair Schematic with Links and Springs 

The model with the links can be seen in Figure 4.23, and a close up of these links with 

directions can be found in Figure 4.24. Where the out-of-plane direction is the direction 

perpendicular to the plane of the wall, denoted as U2, and the in-plane direction is the 

direction parallel to the wall plane, denoted as U1 and U3. 
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Figure 4.23: Model with Edge Links 

 

 

Figure 4.24: Close up of Edge Links 
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It was determined that a stiffness of 438 kN/m (2.5 kips/in) applied to the model’s 

links in the out-of-plane direction was representative of the experimental behavior for the 

Type 1 staircase. The first mode frequencies of the Type 1 stairs, both without and with 

the link stiffness, are provided in Table 4.21 and Table 4.22, respectively. The second 

mode frequencies of the Type 1 stairs, both without and with link stiffness, are given in 

Table 4.23 and Table 4.24, respectively. 

Table 4.21: Type 1 No Translation Link Applied Mode 1 Frequency 

Stair Flight 

Experimentally 

Determined Mode 1 

Frequency (Hz) 

Adjusted SAP2000 

Model Mode 1 

Frequency (Hz) 

Difference in 

Frequency (%) 

Flight 1 20.11 16.85 17.64% 

Flight 3 21.61 16.85 24.75% 

Average 20.86 16.85 21.27% 

 

Table 4.22: Type 1 438 kN/m Translation Link Applied Mode 1 Frequency 

Stair Flight 

Experimentally 

Determined Mode 1 

Frequency (Hz) 

Adjusted SAP2000 

Model Mode 1 

Frequency (Hz) 

Difference in 

Frequency (%) 

Flight 1 20.11 18.97 5.83% 

Flight 3 21.61 18.97 13.01% 

Average 20.86 18.97 9.49% 
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Table 4.23: Type 1 No Translation Link Applied Mode 2 Frequency 

Stair Flight 

Experimentally 

Determined Mode 2 

Frequency (Hz) 

Adjusted SAP2000 

Model Mode 2 

Frequency (Hz) 

Difference in 

Frequency (%) 

Flight 1 30.39 30.07 1.06% 

Flight 3 33.33 30.07 10.28% 

Average 31.86 30.07 5.78% 

 

Table 4.24: Type 1 438 kN/m Translation Link Applied Mode 2 Frequency 

Stair Flight 

Experimentally 

Determined Mode 2 

Frequency (Hz) 

Adjusted SAP2000 

Model Mode 2 

Frequency (Hz) 

Difference in 

Frequency (%) 

Flight 1 30.39 34.95 13.96% 

Flight 3 33.33 34.95 4.75% 

Average 31.86 34.95 9.25% 

 

The application of translational links on the wall stringer side of the stair resulted 

in a first mode frequency that was within approximately 10% of the average 

experimentally determined frequency. This was a 56.6% decrease in the difference 

between the modeled and experimental frequencies when the links were added. The 

application of the translational links on the wall stringer edge nodes resulted in a second 

mode frequency within 10% of the average experimentally determined value. Therefore, 

it was observed that adding the out-of-plan translational stiffness brought the model’s 

first mode frequency closer to the experimentally determined first mode frequency while 

maintaining a second mode frequency that was relatively close to the experimentally 

determined second mode frequency. 
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 The next step was to compare the first two mode shapes of the model with the 

first two experimentally determined mode shapes. This step was important for making 

sure that the frequency determined by the model was representative of the experimentally 

determined mode shape behavior. The Type 1 stair model was compared to the mode 

shape of Flight 3. The experimentally determined first mode shape of Flight 3 is found in 

Figure 4.25. The Type 1 first mode shape determined using SAP2000 can be found in 

Figure 4.26. The experimentally determined second mode shape of Flight 3 is found in 

Figure 4.27. The Type 1 second mode shape determined using SAP2000 can be found in 

Figure 4.28.  

 

Figure 4.25: Type 1 Experimental Mode 1 (Left) 

Figure 4.26: Type 1 SAP2000 Mode 1 438 kN/m Links (Right) 
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Figure 4.27: Type 1 Experimental Mode 2 (Left) 

Figure 4.28: Type 1 SAP2000 Mode 2 438 kN/m Links (Right) 

From the comparison of mode shapes, it was evident that the SAP2000 model’s 

mode shape behavior was indicative of the experimentally determined behavior. Where 

the first mode is characterized as a flexure mode with no nodes, and the second mode is 

characterized as having a torsional behavior. Therefore, it was determined that the 

boundary condition change, created by a wall stringer’s resistance to out-of-plane motion, 

can be modeled with translational links by adding stiffness in the out-of-plane direction. 

 It was found that balancing the error between the first and second mode 

frequencies created the model that best represented the actual structure. Where the 

modeled first mode frequency was under predicted by approximately 10%, and the 

second mode was over predicted by approximately 10%. Although it was possible to get 

the first mode frequency to within 0.19% on average with the application of 10000 kN/m 

links, this drove the second mode frequency to a large over prediction on average by 

approximately 30%. The comparison of the first and second mode frequencies can be 

found in Table 4.25 and Table 4.26, respectively. 
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Table 4.25: 5000 kN-m/rad and 10000 kN/m Link Mode 1 Comparison 

Stair Flight 

Experimentally 

Determined Mode 1 

Frequency (Hz) 

Adjusted SAP2000 

Model Mode 1 

Frequency (Hz) 

Difference in 

Frequency (%) 

Flight 1 20.11 20.82 3.47% 

Flight 3 21.61 20.82 3.72% 

Average 20.86 20.82 0.19% 

 

 

Table 4.26: 5000 kN-m/rad and 10000 kN/m Link Mode 2 Comparison 

Stair Flight 

Experimentally 

Determined Mode 2 

Frequency (Hz) 

Adjusted SAP2000 

Model Mode 2 

Frequency (Hz) 

Difference in 

Frequency (%) 

Flight 1 30.39 42.89 34.12% 

Flight 3 33.33 42.89 25.09% 

Average 31.86 42.89 29.51% 

 

In addition to the large over prediction of the second mode frequency created by 

the 10000 kN/m links, the large increase in stiffness resulted in a change in mode shape, 

where the wall stringer acted almost as if it were fixed instead of having a flexural 

bending. The 10000 kN/m links also changed the second mode shape from being a 

torsional behavior to a flexure shape with a node located across the middle step of the 

stair. A visualization of these altered mode shape changes for the first and second mode 

can be found in Figure 4.29 and Figure 4.30. 
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Figure 4.29: Type 1 Mode 1 10000 kN/rad Links 

 

Figure 4.30: Type 1 Mode 2 10000 kN/rad Links 
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After observing the change in mode shape, it becomes evident that the mode 

shape of the model is no longer representative of the experimentally determined mode 

shape. Therefore it was determined that finding a balance in error between the first and 

second mode frequency provided for the best representation of the structure. Since the 

first mode frequency was an under prediction of the experimentally determined 

frequency, a balance was made so that the first and second mode frequencies differed by 

approximately the same amount. This resulted in a conservative estimate for the first 

mode frequency, being under predicted by 10%, and a less conservative second mode 

frequency, being over predicted by 10%. Since the first mode frequency is most likely to 

be excited by stair occupants, the second mode frequency being slightly over predicted is 

acceptable. 

4.2.6 Alternative Modeling Techniques 

The purpose of this section is to provide suggestions for alternative methods of 

modeling staircase boundary conditions. Determining alternative methods for modeling is 

increasingly important as stairs become more architecturally complex. This is because the 

more complex a staircase becomes, the higher the chance that an overly simplified 

modeling approach may not be appropriate to properly capture the structure’s dynamic 

behavior. Therefore, having more than one modeling technique available could aid 

designers in creating models that more appropriately represent the dynamic behavior of 

the stair structure being modeled. This section specifically looks at modeling unknown 

stiffness solely with link connections, without the use of rotational springs. 
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For this section, the in-plane translation is defined to be the plane of the wall, 

denoted as U1 and U3, as pictured in Figure 4.31. The out of plane direction is defined as 

the direction perpendicular to the plane of the wall, as denoted by U2 as pictured in 

Figure 4.31. 

 

Figure 4.31: Plane Directions 

A summary describing the procedure to determine the equivalent link stiffness as 

a substitute for rotational springs is as follows. The first step was to model the Type 1 

staircase with both in-plane and out-of-plane translational stiffness. The out-of-plane 

stiffness found in the previous section was applied in the U2 direction. The in-plane, U1 

and U3, translational stiffness was then used in substitution of the rotational spring 

restraints. This model’s first and second mode frequencies were then compared to the 

experimentally determined first and second mode frequencies.  

After the Type 1 staircase was modeled, the second step was to remove the out-

of-plane, U2 direction, stiffness to model the Type 2 staircase. If using links with in-

plane stiffness, in the U1 and U3 direction, was truly an alternative method for modeling 
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the unknown stair stiffness, the first and second mode frequency should then be similar to 

the Type 2 experimentally determined frequencies.  

Alternative Modeling for Type 1 Stairs 

The first step was that links were applied to the edges of the Type 1 model, and 

the rotational springs were removed from the model. A schematic drawing of this can be 

found in Figure 4.32. 

 

Figure 4.32: Type 1 Stair with Links Schematic 

 The same out-of-plane horizontal stiffness used to model the Type 1 staircase in 

the previous section, 438 kN/m (2.5 kips/in), was applied in the U2 direction, the 

direction perpendicular to the wall plane.  The out-of-plane stiffness was only applied to 

the links on the wall stringer, and not the face stringer. The second step was to then apply 

an in-plane translational stiffness in the U1 and U3 direction, the directions parallel to the 
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wall plane, so that the model was tuned to the experimentally determined first mode 

frequency of the Type 1 staircase. The translational stiffness in the U1 and U3 direction 

was applied to both sides of the staircase.  

After the out-of-plane, U2 direction, stiffness of 438 kN/m (2.5 kip/in) was 

applied, it was determined that an in-plane stiffness of 438 kN/m (2.5 kip/in) resulted in a 

first mode frequency similar to the model that used rotational restraints. The comparison 

of the first and second mode frequencies to the experimentally determined frequency 

value is shown in Table 4.27 and Table 4.28, respectively. 

Table 4.27: Type 1 Mode 1 Frequency with 438kN/m Links in U1, U2, and U3 Direction 

Stair Flight 

Experimentally 

determined Mode 1 

Frequency (Hz) 

SAP2000 Mode 1 

Frequency (Hz) 

Difference in 

Frequency (%) 

Flight 1 20.11 19.32 4.01% 

Flight 3 21.61 19.32 11.19% 

Average 20.86 19.32 7.67% 

 

Table 4.28: Type 1 Mode 2 Frequency with 438kN/m Links in U1, U2, and U3 Direction 

Stair Flight 

Experimentally 

determined Mode 2 

Frequency (Hz) 

SAP2000 Mode 2 

Frequency (Hz) 

Difference in 

Frequency (%) 

Flight 1 30.39 35.35 15.09% 

Flight 3 33.33 35.35 5.88% 

Average 31.86 35.35 10.39% 

 

The application of a 438 kN/m (2.5 kips/in) lead to a first and second mode 

frequency of +/- 10% on average compared to the experimentally determined Type 1 stair 
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frequency. Similar to before, a balance between the over and under prediction of the first 

and second mode frequencies was maintained to preserve the mode shape response of the 

model. Also as before, in addition to just attempting to match the first and second mode 

frequency, maintaining the same mode shape behavior was important in making sure that 

the model was still representing the correct modal behavior of the structure.  

For the mode shape comparison, as before, the mode shape of the Type 1 

SAP2000 model was compared to the experimentally determined Flight 3 mode shape. 

The experimental and modeled first mode shape can be found in Figure 4.33 and Figure 

4.34, respectively. The experimental and modeled second mode shape can be found in 

Figure 4.35 and Figure 4.36.  

 

Figure 4.33: Type 1 Experimental Mode 1 (Left) 

Figure 4.34: Type 1 SAP2000 Mode 1 Modeled only with Links (Right) 
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Figure 4.35: Type 1 Experimental Mode 2 (Left) 

Figure 4.36: Type 1 SAP2000 Mode 2 Modeled only with Links (Right) 

 

The first and second mode shape behavior between both the model and the 

experimentally determined mode shapes demonstrated the same respective behavior. In 

addition, the first and second mode frequencies were within approximately 10% of the 

experimentally determined frequencies on average. This difference was determined to be 

acceptable for design purposes, based on the discussions by Davis and Avci (2015). In 

their research, Davis and Avci (2015) utilized first mode frequency predictive equations 

to predict the first mode frequencies of two staircases. They determined that the predicted 

frequencies for the two staircases using these equations differed from the experimental 

results by 35.5% and 17.1%, respectively. Even though they found these types of 

variations between the predicted and measured first mode frequencies, Davis and Avci 

(2015) determined that the predictions were “accurate enough for design usage”.  Since 

the difference between the predicted and measured frequencies found in this thesis, using 
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the FEM technique, were closer in matching than the estimates by Davis and Avci 

(2015), the differences between the model and experimental results were determined to 

be small enough to be an acceptable procedure. As a result, it was determined that 

applying translational links with a 438 kN/m (2.5 kips/in) stiffness in all orthogonal 

directions provided accurate enough results to be useful to designers. It was then 

identified that the use of translational links could be used as an alternative technique to 

applying rotational restraints at the end of the stringers for the Type 1 staircase, and an 

alternative technique for modeling the unknown stiffness created by a variation in 

boundary conditions. 

Alternative Modeling for Type 2 Stairs 

The next step was to model the Type 2 staircase. The first step to alternatively 

modeling the Type 2 staircase with links was to remove the translational stiffness in the 

axis perpendicular to the wall, the U2 direction. In this model, the links still maintained 

their 438 kN/m (2.5 kips/in) in-plane translational stiffness parallel to the wall, the U1 

and U3 direction. If the stiffness applied in the direction parallel to the wall is truly an 

alternative for modeling the unknown stiffness, previously represented by rotational 

springs, then removing the out-of-plane, U2, direction stiffness would result in a model 

similar to the Type 2 staircase. Therefore, after removing the out-of-plane stiffness, a 

comparison of the first and second mode frequencies was made between the model and 

experimental results of the Type 2 stair, which is presented in Table 4.29 and Table 4.30. 
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Table 4.29: Type 2 Mode 1 Frequency with 438kN/m Links in In-Plane Direction 

Stair Flight 

Experimentally 

determined Mode1 

Frequency (Hz) 

SAP2000  Mode1 

Frequency (Hz) 

Difference in 

Frequency (%) 

Flight 2 16.48 16.92 2.63% 

Flight 4 16.11 16.92 4.90% 

Average 16.30 16.92 3.73% 

 

Table 4.30: Type 2 Mode 2 Frequency with 438kN/m Links in In-Plane Direction 

Stair Flight 

Experimentally 

determined Mode2 

Frequency (Hz) 

SAP2000  Mode2 

Frequency (Hz) 

Difference in 

Frequency (%) 

Flight 2 31.86 29.56 7.49% 

Flight 4 30.4 29.56 2.80% 

Average 31.13 29.56 5.17% 

 

The application of a 438 kN/m (2.5 kips/in) stiffness to edge links in the direction 

parallel to the plane of the wall lead to a first mode frequency that was within 

approximately 3.7% of the average experimentally determined first mode frequency. It 

also lead to a second mode frequency prediction that differed by approximately 5.2%, 

compared to the experimental frequency of the Type 2 staircase. Therefore, it was 

determined that using translational links to model the unknown stiffness, created by the 

boundary conditions, resulted in a model that was representative of the first and second 

mode frequency of the actual structure. 

However, as before, the mode shape behavior of the SAP2000 model and the 

experimentally determined mode shapes must be compared. Flight 2 was used to 
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represent the Type 2 experimental mode shape in the following figures.  The 

experimental and analytical mode shapes for the first mode can be viewed in Figure 4.37 

and Figure 4.38. The experimental and modeled mode shapes for the second mode can be 

viewed in Figure 4.39 and Figure 4.40. 

 

Figure 4.37: Type 2 Experimental Mode 1 (Left) 

Figure 4.38: Type 2 SAP2000 Mode 1 Modeled with only Links (Right) 

 

Figure 4.39: Type 2 Experimental Mode 2 (Left) 

Figure 4.40: Type 2 SAP2000 Mode 2 Modeled with only Links (Right) 
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The FEM and experimental first and second modes both had matching mode 

shapes and frequencies that were within 10% of each other, respectively. Therefore, 

applying the translational links with a 438 kN/m (2.5 kips/in) stiffness in the in-plane 

direction was verified to be an alternative technique to applying 5000kN-m/rad rotational 

spring restraints to the end of the stringers for the Type 2 staircase.  

4.2.7 Effect of Translational Stiffness on First and Second Mode Frequency 

 In order to understand the effect that in-plane and out-of-plane translational 

stiffness has on the first and second mode frequency, two scenarios were tested to 

understand this behavior. Both scenarios utilized the model with joint links on both sides 

of the stair model. The first scenario altered the in-plane translational stiffness in the U1 

and U3 direction on both sides of the stairs while leaving the out-of-plane, U2, direction 

stiffness to be zero. A visualization of the stiffness change in the corresponding 

orthogonal directions is depicted in Figure 4.41. 

 

Figure 4.41: Scenario 1 Stiffness Change 
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The second scenario alters the out-of-plane translational stiffness, U2, direction on one 

side of the staircase only, while leaving the in-plane stiffness, U1 and U3, to be zero. A 

visualization of which stiffness is changing in the corresponding orthogonal direction is 

depicted in Figure 4.42. 

 

Figure 4.42: Scenario 2 Stiffness Change 

The purpose of the two scenarios was to further the understanding of how a 

change in both the in and out-of-plane stiffness affects the dynamic behavior of the 

structure. The applied in-plane and out-of-plane stiffness used in the previous study, 

438kN/m (2.5kip/in), is denoted in both frequency versus stiffness graphs to reference 

where the stiffness applied to the model’s links falls in relation to the max allowed 

stiffness. The max allowed stiffness is the stiffness applied just before the mode shape 

behavior changes. 
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 The first scenario involved adjusting the in-plane stiffness while leaving the out-

of-plane stiffness, the plane perpendicular to the wall, to be zero. The in-plane stiffness 

adjustments were made to the links on both sides of the staircase. The influence of the 

change in stiffness to the first and second mode frequency was determined by altering the 

stiffness from 0 kN/m to 2000 kN/m. The stiffness was increased in increments of 100 

kN/m. The resulting response of the first and second mode frequency to the change in 

stiffness can be found in Figure 4.43 and Figure 4.44, respectively. 

 

Figure 4.43: Mode 1 Frequency vs. In-Plane Stiffness 
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Figure 4.44: Mode 2 Frequency vs. In-Plane Stiffness 

After adjusting the in-plane stiffness, it became evident that as the in-plane 

stiffness increased, the first mode shape remained fairly unchanged, as seen in the 

comparison of Figure 4.45 and Figure 4.46. 
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Figure 4.45: Mode 1 Shape, 0 kN/m In-plane Stiffness 

 

Figure 4.46: Mode 1 Shape, 1500 kN/m applied In-plane Stiffness 
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However, as the applied stiffness increased, the rate at which the frequency was 

changing began to reduce. Therefore, the larger the stiffness gets, the less of an impact 

the incremental change in stiffness has on the first mode frequency. On the other hand, 

the second mode frequency maintained a fairly consistent rate of change as the stiffness 

increased until a break in the slope occurred, flattening out the slope of the graph. This 

defined change in slope occurred once the stiffness became greater than 1500 kN/m.  

Once the stiffness was larger than the value where the change in slope occurred, the mode 

shape behavior changed as well. At 1500 kN/m, the second mode shape changed from a 

torsional response to a second mode response having a node in across the middle stair of 

the staircase. The difference in the second mode shape can be seen in the difference 

between Figure 4.47 and Figure 4.48. Therefore, after a 1500 kN/m stiffness was applied, 

the model was no longer representative of the actual structure. 

 

Figure 4.47: Mode 2 Shape, 0 kN/m applied In-Plane Stiffness 
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Figure 4.48: Mode 2 Shape, 1500kN/m applied In-Plane Stiffness 

 The second scenario for determining the influence of translational stiffness on the 

first and second mode frequencies involved adjusting the out-of-plane stiffness, the plane 

perpendicular to the wall, while leaving the in-plane stiffness, the plane parallel to the 

wall, to be zero. The out-of-plane stiffness was adjusted only to the links on one side of 

the staircase. The translational stiffness was adjusted from 0 kN/m to 2000 kN/m, in 

increments of 100 kN/m. The resulting graphs for the first and second mode frequency 

versus applied stiffness can be seen in Figure 4.49 and Figure 4.50, respectively.  
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Figure 4.49: Mode 1 Frequency vs. Out-of-Plane Stiffness 

 

Figure 4.50: Mode 2 Frequency vs. Out-of-Plane Stiffness 

0

2

4

6

8

10

12

14

16

18

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fr
eq

u
en

cy
 (

H
z)

Out-of-Plane Stiffness (kN/m)

Mode 1 Frequency vs Out-of- Plane Stiffness 

Mode 1 Model Stiffness

0

5

10

15

20

25

30

35

40

45

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fr
e

q
u

e
n

cy
 (

H
z)

Out-of-Plane Stiffness (kN/m)

Mode 2 Frequency vs Out-of-Plane Stiffness 

Mode 2 Model Stiffness



 115 

 

As the out-of-plane stiffness increased, the first mode shape flexure behavior 

remained unchanged. However, as the stiffness increased the stringer with the out of 

plane stiffness applied to the links had less deflection, as seen in Figure 4.51 and Figure 

4.52. In addition, the rate at which the frequency was changing in relation to the amount 

of stiffness being applied became much smaller as the stiffness increased, approaching a 

slope of 0.  

 

Figure 4.51: Mode 1 Shape, 0 kN/m applied Out-of-plane Stiffness 
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Figure 4.52: Mode 1 Shape, 1000kN/m applied Out-of-plane Stiffness 

The second mode frequency versus out-of-plane stiffness maintained a fairly 

consistent slope until the stiffness became greater than 1000 kN/m. Once the stiffness 

became greater than this amount, the mode shape behavior for the second mode changed 

from a torsional response, as seen in Figure 4.53, to a mode response with a node across 

the middle step of the staircase, as seen in Figure 4.54. This response change can be 

viewed in the second mode frequency graph in Figure 4.50 by the break in the slope at 

around 1000 kN/m in the second mode 
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Figure 4.53: Mode 2 Shape, 0 kN/m applied Out-of-Plane Stiffness 

 

Figure 4.54: Mode 2 Shape, 1000 kN/m applied Out-of-Plane Stiffness 
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A comparison of both sets of graphs identified how the in and out-of-plane 

stiffness differ in their influence on the first and second mode frequencies and shapes. 

When comparing both sets of graphs, it was observed that an increase in the in-plane-

stiffness created a much larger change in the first mode frequency than when increasing 

the out-of-plane stiffness. However, the change in the out-of-plane stiffness had a much 

larger effect than the in-plane stiffness on the second mode frequency, as denoted by the 

slopes of the graph. In addition, it took an in-plane stiffness of 1500 kN/m to create a 

change in the mode shape behavior, compared to the lower 1000 kN/m out-of-plane 

stiffness needed to change the mode shape behavior of the model.  

In summary, a change in the in-plane stiffness, the direction parallel to the wall, 

had a greater impact on the first mode frequency, but a change in the out-of-plane 

stiffness, the direction perpendicular to the wall, had a greater impact on the second mode 

frequency. 

4.2.8 AISC Design Guide 11 First Mode Frequency Equation Application 

 The final topic of interest in this research is the applicability of the AISC Design 

Guide 11 equation for predicting the fundamental frequency. The equation was adapted 

from the simply supported beam equation in Murray et al. (2016). The equation in the 

design guide was also utilized in Davis and Avci (2015). This equation has been 

validated for long slender staircases which typically have natural frequencies lower than 

10 Hz. However, to the knowledge of the author, this equation has not been validated for 

shorter span staircases with first mode frequencies larger than 10 Hz. Therefore the goal 

of this section is to assess the application of this equation to shorter span staircases with 
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first mode frequencies larger than 10 Hz. The equation to predict the fundamental 

frequency is noted in Equation (4.4).  

 fn =
π

2
√

gEI

WL3
 (4.4) 

Where g (
𝑚

𝑠2) is the acceleration due to gravity. E (GPA) is the elastic modulus of the 

stringer material. I (𝑚𝑚4) is the moment of inertia of the stringer. W (N) is the weight of 

the stair. L (m) is the diagonal length of the stringer. 

This equation is the natural frequency equation of a simply supported beam and 

assumes that a staircase acts as a simply supported beam with a uniform mass 

distribution. The equation also assumes that the stiffness provided in the structure is 

created by the stringers. The application of the equation to the Type 2 staircase is as 

follows. 

Where, g= 386 (
𝑖𝑛

𝑠2)= 9.81(
𝑚

𝑠2), E=29000 (ksi) 200 GPA, I=129 (𝑖𝑛4)* 2stringers= 111E6 

(𝑚𝑚4), W=4300 (lb)=19127 (N), and L= 169 (in.)= 4.29 (m). 

𝑓𝑛 =
𝜋

2
√

(386 
𝑖𝑛

𝑠2)*(29E6 psi) *(258 𝑖𝑛4) 

(4300lb) * (169 in.)
3 =18.53 Hz 

𝑓𝑛 =
𝜋

2
√

((9.81  
𝑚

𝑠2)*(200 GPA) *(111 E6𝑚𝑚4)*1E9 

(19127 N)* (4.29 m)
3

∗10004
=18.53 Hz 
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The Type 2 staircase was used to determine the use of this equation because this 

type of stair only has end restraint boundary conditions, which match the boundary 

condition assumptions of the equation. The comparison of the natural frequency predicted 

using this equation for the Type 2 staircase is found in Table 4.31.  

Table 4.31: Comparison of Experimentally Determined Natural Frequency to Predicted 

Natural Frequency for Type 2 Staircase 

Stair Case Flight 

Type 2 

Experimentally 

Determined Mode 1 

Frequency (Hz) 

Equation 4-7 

predicted Mode 1 

Frequency (Hz) 

Difference (%) 

Flight 2 16.48 18.53 11.71% 

Flight 4 16.11 18.53 13.97% 

Average 16.30 18.53 12.81% 

 

It can be observed from comparing the experimentally determined first mode 

frequency to the first mode frequency predicted by the AISC equation that on average the 

first mode frequency for the Type 2 staircase was over predicted by about 13%. A higher 

calculated frequency implies a higher stiffness, which leads to smaller deflections. Since 

the frequency predicted by Equation (4.4) is an overestimate of the real-life experimental 

frequency value, the design guide implies that the stairs are stiffer than suggested by the 

experimental data, which is not conservative. However, this may not be a concern for 

serviceability because both the predicted and experimental frequencies for the staircases 

in this study satisfy the 10 Hz serviceability criteria previously mentioned.  
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It is important to better understand why the equation over predicted the first mode 

frequency in order to better understand the equation’s applicability to short-span 

staircases. Therefore, one potential explanation for this over prediction could be due to 

the fact that the aspect, length-to-width, ratio of the staircases tested in this study were 

smaller than the aspect ratio of stairs in other literature, which underestimated the 

frequency using similar conservative stiffness estimates.  In this thesis, the flights tested 

had a length of 4.3 m (14.1 ft.) and a width of 2.2 m (7.25ft), for an aspect ratio of 1.9. 

However, the use of the equation in other literature such as Davis and Avci (2015) tested 

staircases with aspect ratios of greater than 4. 

In order to better understand how the aspect ratio influences the predicted first 

mode frequency of the stair structure using Equation (4.4), a parametric study was 

conducted using SAP2000. The tuned model using the 5000 kN-m/rad springs was used, 

and the aspect ratio was adjusted by increasing the length of the stringers and increasing 

the number of steps. The ratio was tested at roughly every whole number between 2 thru 

6. Images of the models with the length-to-width ratio of approximately three and four 

can be found in Figure 4.55 and Figure 4.56, respectively. 
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Figure 4.55: Model with Length-to-Width Ratio of Approximately Three 

 

Figure 4.56: Model with Length-to-Width Ratio of Approximately Four 
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A table summarizing the ratios and the corresponding modeled natural frequency 

compared to the AISC natural frequency prediction can be found in Table 4.32. Note: the 

mode 1 frequency used for the 1.94 ratio was experimentally determined, but the rest of 

the trial iterations used FEM to model the mode 1 frequencies. 

Table 4.32: Modeled Aspect Ratio vs. Equation Predicted Mode 1 Frequency 

Number 

of Steps 

Length 

of 

Stair 

(in) 

Width 

of 

Stair 

(in) 

Aspect 

Ratio 

Weight 

(lbs.) 

Modeled 

Mode 1 

Frequency 

(Hz) 

AISC 

DG11 

Prediction 

(Hz) 

Percent 

Difference 

(%) 

13 169 87 1.94 4300 16.30 18.53 12.80% 

20 259 87 2.98 6614 7.95 7.87 -1.05% 

26 337 87 3.87 8598 5.00 4.66 -7.14% 

33 429 87 4.92 10913 3.27 2.89 -12.35% 

39 505 87 5.81 12897 2.42 2.07 -15.64% 

 

The trial iterations presented in Table 4.32 demonstrated that if the staircase 

tested in this study was longer and constructed using the same boundary conditions, it 

would have a predicted fundamental frequency of less than 10 Hz. This finding was 

found using both Equation (4.4) and the FEM. A comparison demonstrating the over and 

under prediction of the frequency between the FEM and Equation (4.4) is also presented 

in Table 4.32. The trial iterations tested with aspect ratios greater than 1.9 would have to 

be redesigned to be stiffer in order to satisfy the previously mentioned serviceability. 

The next step was to examine a potential empirical factor to be able to predict a 

staircase with the Type 1 boundary condition. The Type 1 staircase cannot directly be 

compared using Equation (4.4) because it has boundary conditions, created by the wall 
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stringer, that fall outside the limitations of the equation. An empirical equation was 

proposed to predict the Type 1 staircase’s natural frequency and can be found in Equation 

(4.5). 

 
𝑓𝑛 = 1.12 ∗

𝜋

2
√

𝑔𝐸𝐼

𝑊𝐿3
 

 

(4.5) 

Where g (
𝑚

𝑠2) is the acceleration due to gravity. E (GPA) is the elastic modulus of the 

stringer material. I (𝑚𝑚4) is the moment of inertia of the stringer. W (N) is the weight of 

the stair. L (m) is the diagonal length of the stringer. 

The comparison of the equation to the experimentally determined first mode natural 

frequency for the Type 1 staircase can be found in Table 4.33. 

Table 4.33: Comparison of the Empirically Adjusted Fundamental Natural Frequency 

Prediction 

Stair Case Flight 

Experimentally 

Determined Mode 1 

Frequency (Hz) 

Equation (4.5) 

predicted Mode 1 

Frequency (Hz) 

Difference (%) 

Flight 1 20.11 20.75 3.13% 

Flight 3 21.61 20.75 4.06% 

Average 20.86 20.75 0.53% 

 

The application of the 1.12 factor resulted in a prediction of the first mode frequency that 

was within 4.1% of the experimentally determined first mode values, and 0.53% on 

average. More research on a larger data pool is needed to further validate the empirical 

factor.  
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4.3 Model Design Recommendations  

The following are recommendations for designers on how to model stairs based on this 

research: 

1) During the creation of a FEM, creating a model using only pin restraints will 

provide a conservative estimate for the first mode frequency, and is suggested for 

design 

2) Wall stringers should be modeled differently than face stringers during modeling 

for retrofitting a staircase in order to account for a difference in boundary 

conditions. If not modeled properly, the model may be underestimating the 

additional stiffness created by the difference in the boundary condition. 

3) Rotational spring restraints can be applied to the joints at the ends of the stringers 

to model the end restraints more accurately. The end restraints can then be 

adjusted with the appropriate stiffness, which is dependent on the staircase being 

modeled. However, the restraint is limited to behaving between a pin and a fixed 

connection. 

4)  A designer should take careful consideration when determining whether to model 

a stair railing. If the staircase has a relatively high natural frequency, greater than 

10 Hz, modeling the railing may have a negligible contribution to the stiffness of 

the stair and may lead to a misidentification of the mode shape and the first mode 

frequency. 
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5) The boundary condition of a wall stringer can be modeled by applying links that 

connect a fixed joint to the stair edge and apply a translational stiffness in the 

direction perpendicular to the wall.  

6) Links with translational stiffness can also be used to model unknown boundary 

conditions that exist in different orthogonal directions. However, caution should 

be taken to make sure that the applied stiffness does not affect the mode shape of 

the structural model. 

A summary of the recommended modeling procedures, including their pros and cons, 

are as follows. It is recommended that when creating a model during the design process, 

the end restraints should be modeled as pins. This model would provide a conservative 

estimate of the natural frequency of the stair structure because using a pinned restraint 

results in the lowest fundamental natural frequency estimate. Also, modeling the structure 

using pinned restraints is the fastest method for modeling the stair structure. If the 

intended reason for creating a model is to model potential retrofits for an existing stair 

system, it is recommended that a more detailed tuned model be created.  

A tuned model requires that the experimental frequency and mode shape data be 

collected and used to update the model. For linear staircases, it is recommended that end 

rotational springs be used to adjust the restraint boundary conditions. Rotational springs, 

for the study used in this thesis, allowed for a model to be created that predicted the 

frequency within a 10% error of the experimental data. This method is also less complex 

than modeling unknown stiffness using links.  
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Also, it is recommended that if the boundary conditions of the stair model are 

more complex than just a linear staircase attached to a landing on either end, then using 

links may be the best method for applying unknown stiffness. Applying links to either 

end could be the best method for applying unknown stiffness because this method allows 

for the most flexibility in being able to alter the applied boundary conditions. However, 

this method can also lead to more potential errors during the modeling process due to the 

number of variables that can change. Therefore, if this method is chosen, great care 

should be taken to make sure that both the frequencies and mode shapes match between 

the experimentally determined data and the model.  

Finally, it is recommended that during the design process the increased frequency 

due to the wall stringer should be ignored to produce a more conservative design. 

However, if a staircase is being modeled to design potential retrofits and the experimental 

frequency data is known, the wall stringer boundary conditions should be modeled to 

capture the increased frequency due to difference in the boundary conditions.   
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5. CHAPTER 5- CONCLUSIONS 

5.1 Conclusions 

As stated in Chapter 1, the overall goal of this thesis is to improve the accuracy of 

the predicted vibration response of staircases, specifically steel staircases with concrete 

filled pan treads, and to provide a better understanding of the effect of various design 

parameters on the vibration response. 

In order to accomplish this goal, this research was broken down into different studies. 

The first study was to understand the dynamic characteristics of the staircase. The second 

study was to create an experimentally validated SAP2000 model. The third study 

performed parametric studies that investigated the effect of stiffness, mass, and boundary 

conditions on the vibration response of the staircases. The fourth study looked into the 

limitations of the fundamental natural frequency prediction equation presented in AISC 

Design Guide 11 (Murray et al. 2016). The following conclusions are summarized for 

each of the objectives listed at the beginning of this thesis. 

Objective 1- The experimental data demonstrated that the change in boundary condition 

created by a wall stringer for the Type 1 stair caused a 24.54% increase in the first mode 

frequency and a 2.32% increase in the second mode frequency on average when 

compared to the Type 2 stair. Therefore the boundary condition of the wall stringer was 

determined to be different than that of the face stringer. As a result, the boundary 

conditions of a wall stringer should be considered different than a face stringer when 

modeling a staircase for retrofits. 
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 In addition, it was determined that the percent critical damping for Flight 1 was 

3.3%, while the other flights were around 5%. One possible explanation for the difference 

between the two damping ratios was that additional frictional energy dissipation might be 

occurring due to a slight difference in the interface between the flight and the floor, 

compared to the interface of the flight and the landings. 

Objective 2- Creating a FEM using pins as the restraint conditions for the stairs was 

determined to produce a conservative estimate for the natural frequency of the stairs. In 

this research the base model, without any model tuning, resulted in a conservative first 

mode natural frequency that differed from the experimental results by approximately 

23%. The difference in the results was due to the fact that the actual restraint conditions 

fall in between a pin and a fixed restraint, where a fixed restraint would have a higher 

natural frequency than the pinned restraint. 

Objective 3- a) The restraint conditions for the stairs were tuned using rotational springs. 

Applying rotational springs to the stringer ends allowed for the model to have a closer 

representation of the actual structure, and allowed for a modeled first mode frequency to 

be within 2%, and a second mode frequency to be within 7% of the experimentally 

determined data. 

b) Finite element analysis in SAP2000 demonstrated that, in this study, the railing 

stiffness had a negligible contribution to the overall stiffness of the staircase. Finite 

element analysis demonstrated that an uneven mass distribution, created by the 

application of the railing mass on the edge of the stairs, had an influence on the first 

mode frequency of the structure, but had little effect on the second mode frequency. It 
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was also determined that large railing masses create an uneven mass distribution that 

affects the natural frequency of a stair differently than if the mass were to be evenly 

distributed. 

c) Using a comparison between the FEM and experimental data, it was determined that 

the wall stringer boundary condition could be modeled using links with applied 

translational stiffness in the direction perpendicular to the wall plane. The application of 

the links improved the accuracy of the model by 56.6%, and resulted in a modeled first 

and second mode frequency to be within 10% of the experimentally determined 

frequencies. 

Objective 4- Using the FEM, it was determined that joint links could be used as an 

alternative solution for modeling unknown boundary condition stiffness to determine the 

first mode natural frequency. The application of the links in the FEM demonstrated that 

only using links with a translational stiffness to model unknown boundary conditions 

provided for a more accurate first mode natural frequency prediction in the Type 2 model 

compared to the Type 1 model.  

Objective 5- The use of the AISC Design Guide 11 (Murray et al. 2016) equation for 

predicting the fundamental natural frequency for a steel stair was determined to 

overestimate the first mode frequency of a shorter span staircase with a length-to-width 

ratio of 1.9 and a first mode frequency larger than 10 Hz. It was determined that the Type 

2 stair’s first mode frequency predicted using the equation was overestimated by 12.8% 

compared to the experimentally determined frequency. In addition, for the Type 1 stair in 



 131 

 

this study, it was empirically determined that the increased stiffness due to the presence 

of a wall stringer could be estimated by applying a factor of 1.12 to this equation.  

Summary- Finally, a summary of the results of the different SAP2000 models using 

different methods can be found in Table 5.1 and Table 5.2. Once again, it is important to 

note that since the first mode frequencies for all of the flights tested were above 10 Hz, 

the frequency serviceability criteria were satisfied for these stair flights. 

 

Table 5.1: Type 2 Stair Summary 

Type 2 Stair 

 Experimental 

Average (Hz) 

SAP2000 Base 

Model (Hz/% 

Difference) 

SAP 2000 

Model 

Rotational 

Springs (Hz/% 

Difference) 

SAP 2000 

Model Links 

(Hz/% 

Difference) 

Mode 

1 
16.30 12.90/ (23.29%) 16.62/ (1.94%) 16.92/ (3.73%) 

Mode 

2 
31.13 24.52/ (23.76%) 29.08/ (6.81%) 29.56/ (5.17%) 

 

Table 5.2: Type 1 Stair Summary 

Type 1 Stair 

 Experimental 

Average (Hz) 

SAP 2000 

Model 

Rotational 

Springs (Hz/% 

Difference) 

SAP2000 

Model 

Rotational 

Springs and 

Links (Hz/% 

Difference) 

SAP 2000 

Model Links 

(Hz/% 

Difference) 

Mode 

1 
20.86 16.85/ (21.27%) 18.97/ (9.49%) 19.32/ (7.67%) 

Mode 

2 
31.86 30.07/ (5.78%) 34.95/ (9.25%) 35.35/ (10.39%) 
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5.2 Recommendations for Future Work 

The results of this thesis prompts several further study ideas, which are discussed in this 

section. 

Effect of Two Wall Stringers on Concrete Filled Pan Tread Staircases 

The results of this thesis showed that wall stringers have the potential to create 

additional stiffness on a stair structure when there is one wall stringer and one face 

stringer. The next step would be to conduct a similar study on a staircase that is 

composed of two wall stringers to analyze if there are additional boundary condition 

changes created by the addition of another wall stringer.  

Evaluation of Dynamic Behavior of Steel Staircases with a Wall Stringer Bolted to 

an Adjacent Wall 

The purpose of this study would be to investigate if a staircase with a wall stringer 

behaved differently if the wall stringer had a bolted connection to a wall. This study 

would allow for the determination if bolting a stringer into the wall creates additional 

serviceability benefits for the staircase structure. 

Increased Data Pool for Short-Span, High Dominant Frequency Staircases 

 The purpose of this study would be to increase the data population of short-span 

high frequency staircases, those with length to width ratios of less than 2, to be able to re-

evaluate the limitations of the proposed AISC equation. This study would allow for more 

refined empirical factors to be applied to the AISC equation that would allow for more 

accurate predictions of the fundamental natural frequency, using these modified 

equations.    
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Effect of Stair Geometry on Behavior 

 The purpose of this study would be to alter different geometric properties of an 

experimentally verified staircase model to determine the effect of different geometric 

properties on the staircase’s vibration response. This study would improve the 

understanding of how staircases could be constructed differently to avoid serviceability 

issues. 
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Experimental and Analytical Analysis Code 

MATLAB Code for Fast Fourier Transform 

clear all; close all; clc 

inpu=dlmread('C1R4S8B.txt');  %reads the acceleration data, 

single array ThreeTest.txt 
  

fs=200;                         %user defined capture 

frequency 

dt=1/fs;                        %Time for each point 

captured 

Q=25; 
  
  
  

t = 0:dt:(length((inpu))-1)*dt; %defines time in an array  

time=t;                          

figure(1)                    

plot(time,inpu)                 %plots acceleration from 

input vs time 

xlabel( 'Time (s)') 

ylabel('Acceleration (g)') 

grid 

title( 'Acceleration vs Time (C1R2S2B)') 
  
  

B= detrend(inpu);                %detrends the acceleration 

vs time input                 

%t2= 0:dt:(length((B))-1)*dt;    %defines time in an array  
        
  

fc=30;                           %frequency (Hz) cutoff 

Wn=fc/(fs/2); 

n=3;                             %Order of the 

filter(integer scalar)- Typically used value 
  

[b, a]= butter (n,Wn ,'low');   %Butter filter, low 

frequency filter 
  

y=filtfilt(b,a,B);              %Filters the input data 
  

y=y*32.2; 
  

figure(2) 

plot(t,y)                      %plots acceleration from 

input vs time 

xlabel( 'Time (s)') 
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ylabel('Acceleration (ft/s^2)') 

grid 

title( 'Detrended Acceleration vs Time (C1R2S2B) ') 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%% 
  

Y= fft(y);                  %Fast Fourier Transform from 

time to frequency Domain 

P2= abs(Y);                     %Makes the transformed 

value from imaginary to real 
  

N= length(y) ;               %Defines the length of the 

array 
  

fax_bins = [0: N-1];            %Defines the array 
  

fax_Hz = fax_bins*fs/N;         %Converts the time array 

into frequency array 
  
  

figure(3)                       %Defines second frequency 

plot  

plot(fax_Hz, P2) 

%plot (fax_Hz, P2) 

xlim([0 100])                   %Limits plot to the first 

half of mirrored frequency graph  

xlabel( 'Frequency (Hz)') 

ylabel('Amplitude') 

grid 

title( 'Amplitude vs Frequency (C1R2S2B)') 
  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
  
  

Velocity = cumtrapz(t,y); 
  

C=[]; 

for i=0:Q:(length(inpu)-Q);%(length(Velocity)) 

X=Q+i; 

Y=1+i; 

input2= (Velocity([Y:X])-mean(Velocity([Y:X]))); 

C=[C;input2]; 
  

end 
  

t3= 0:dt:(length((C))-1)*dt; %defines time in an array  
  
  

figure (4)                    
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plot(t3,C)                %plots acceleration from input vs 

time 

xlabel( 'Time (s)') 

ylabel('Velocity (ft/s)') 

grid 

title( 'Velocity vs Time ') 
  
  
  
  

U = cumtrapz (t3,C); 
  
  

D=[]; 

for i=0:Q:(length(C)-Q);%(length(Velocity)) 

X=Q+i; 

Y=1+i; 

input2= (U([Y:X])-mean(U([Y:X]))); 

D=[D;input2]; 
  

end 
  
  

t4= 0:dt:(length((D))-1)*dt; %defines time in an array  
  

figure (5)                    

plot(t4,D)                %plots acceleration from input vs 

time 

xlabel( 'Time (s)') 

ylabel('Displacement (ft)') 

grid 

title( 'Displacement vs Time ') 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% 

B=P2; 

fax_Hz=fax_Hz.'; 

matrix=[fax_Hz,P2]; 
  

[row,column]= findpeaks(P2); 
  

tValues= fax_Hz(column); 
  
  

Max=max(row) 

Halfpower=Max/sqrt(2) 
  
  
  

figure(7)                       %Defines second frequency 

plot  

plot(tValues, row) 
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hold on 

plot(tValues,Halfpower*ones(size(tValues))) 
  
  
  

xlim([0 100])                   %Limits plot to the first 

half of mirrored frequency graph  

xlabel( 'Frequency (Hz)') 

ylabel('Amplitude') 

grid 

title( 'Amplitude vs Frequency (C1R4S8B)') 
  
  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%% 
  
  

%Nkeep=1+1000; 

%D=D(1:Nkeep); 
  
  

%[M,I]=max(D); 
  

%Nkeep=I+300; 

%D=D(I:Nkeep); 

%F=length(D); 

%t4= 0:dt:(length((D))-1)*dt; 
  

%figure (6)                    

%plot(t4,D)                %plots acceleration from input 

vs time 

%xlabel( 'Time (s)') 

%ylabel('Displacement (ft)') 

%grid 

%title( 'Displacement vs Time ') 
  
  

%pks= findpeaks(D) 
  

%i=1 
  

%u1=pks(i) 

%u2=pks(i+1) 
  

%Delta=ln(u1/u2) 
  

%Zeta=(Delta/(sqrt((4*pi()^2)-Delta^2))) 
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Experimental Accelerometer Data 

 

Figure A 1: C1R1S2B Acceleration vs. Time Graph 
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Figure A 2: C1R1S2B Amplitude vs. Frequency 
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Figure A 3: C1R1S6B Acceleration vs. Time Graph 

 

Figure A 4: C1R1S6B Amplitude vs. Frequency 
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Figure A 5: C1R1S8B Acceleration vs. Time Graph 

 

Figure A 6: C1R1S8B Amplitude vs. Frequency 
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Figure A 7: C1R1S12B Acceleration vs. Time Graph 

 

Figure A 8: C1R1S12B Amplitude vs. Frequency 
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Figure A 9: C1R2S2B Acceleration vs. Time Graph 

 

Figure A 10: C1R2S2B Amplitude vs. Frequency 
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Figure A 11: C1R2S6B Acceleration vs. Time Graph 

 

Figure A 12: C1R2S6B Amplitude vs. Frequency 
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Figure A 13: C1R2S6B Acceleration vs. Time Graph 

 

Figure A 14: C1R2S6B Amplitude vs. Frequency 
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Figure A 15: C1R2S8B Acceleration vs. Time Graph 

 

Figure A 16: C1R2S8B Amplitude vs. Frequency 
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Figure A 17: C1R2S12B Acceleration vs. Time Graph 

 

Figure A 18: C1R2S12B Amplitude vs. Frequency 
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Figure A 19: C1R3S2B Acceleration vs. Time Graph 

 

Figure A 20: C1R3S2B Amplitude vs. Frequency 
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Figure A 21: C1R3S6B Acceleration vs. Time Graph 

 

Figure A 22: C1R3S6B Amplitude vs. Frequency 
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Figure A 23: C1R3S8B Acceleration vs. Time Graph 

 

Figure A 24: C1R3S8B Amplitude vs. Frequency 
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Figure A 25: C1R3S12B Acceleration vs. Time Graph 

 

Figure A 26: C1R3S12B Amplitude vs. Frequency 
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Figure A 27: C1R4S2B Acceleration vs. Time Graph 

 

Figure A 28: C1R4S2B Amplitude vs. Frequency 



 158 

 

 

Figure A 29: C1R4S6B Acceleration vs. Time Graph 

 

Figure A 30: C1R4S6B Amplitude vs. Frequency 
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Figure A 31: C1R4S8B Acceleration vs. Time Graph 

 

Figure A 32: C1R4S8B Amplitude vs. Frequency 
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Figure A 33: C1R4S12B Acceleration vs. Time Graph 

 

Figure A 34: C1R4S12B Amplitude vs. Frequency
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Table A 1: Rail Mass Calculation 

  

Mass of Each 
Pipe/length 

  lb/ft lb/in 

Pipe1 Diameter 1.25in 2.27 0.189 

Rod1 Diameter .75in 1.5 0.125 

    

 

member 
lengths   

Supporting Post 
Length 38 inches  

Inner Post Length 35 inches  
Rail Length 36 inches  

    
Weight Per Post    
Supporting Posts 7.19 lbs  

Inner Posts 4.38 lbs  
Rail Length 6.81 lbs  

    
Weight    

Inner Weight 53.87 lbs  
Outer Weight 30.53 lbs  

    
Inner Masses 24.43 kg  
Outer Masses 13.85 kg  

    
Total weight 276.53 lb  
Total Mass 125.43 kg  

Mass per length 26.98 kg/m  
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Figure A 35: Flight 1 Mode 1 Shape 
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Figure A 36: Flight 1 Mode 2 Shape 
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Figure A 37: Flight 1 Mode 3 Shape 
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Figure A 38: Flight 1 Mode 4 Shape 
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Figure A 39: Flight 2 Mode1 Shape 
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Figure A 40: Flight 2 Mode 2 Shape 
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Figure A 41: Flight 2 Mode 3 Shape 
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Figure A 42: Flight 2 Mode 4 Shape 
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Figure A 43: Flight 3 Mode1 Shapes 
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Figure A 44: Flight 3 Mode 2 Shape 
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Figure A 45: Flight 3 Mode 3 Shape 
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Figure A 46: Flight 3 Mode 4 Shape 
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Figure A 47: Flight 4 Mode1 Shape 
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Figure A 48: Flight 4 Mode 2 Shape 

 

 



 172 

 

 

 

 

Figure A 49: Flight 4 Mode 3 Shape 
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Figure A 50: Flight 4 Mode 4 Shape 
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