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TRANSLATIONAL GENOMICS FOR IMPROVING SOW FERTILITY 

Hiruni R. Wijesena, Ph.D. 

University of Nebraska, 2020 

Advisor: Daniel Ciobanu 

 Sow fertility traits, such as litter size and number of lifetime parities 

produced (reproductive longevity), are economically important. Selection for these traits 

is difficult because they are lowly heritable, polygenic, sex-limited, and express late in 

life. Age at puberty is an early indicator of reproductive longevity. Gilts that achieve 

puberty at an early age have a greater probability to produce more parities over their 

lifetime. However, measuring age at puberty is time consuming and tedious. Identifying 

pleiotropic polymorphisms that affect age at puberty and other fertility traits, including 

reproductive longevity, could help to improve the accuracy of genomic prediction for 

sow fertility traits. We developed a custom Affymetrix SNP array (SowPro90) including 

SNPs located in major QTL regions for age at puberty, other fertility and disease related 

traits, and potential loss of function SNPs. Genetic variants were identified using deep 

transcriptomic and genomic sequencing, gene network analysis, and genome-wide 

association (GWAS) carried out at University of Nebraska-Lincoln (UNL) and US Meat 

Animal Research Center (USMARC).  

This novel SNP array was used to fine map the genetic sources associated with 

fertility traits. Using a Bayesian haplotype approach (BayesIM), SowPro90 haplotypes 

were inferred and assigned to the entire UNL population and were used in an association 

analysis for age at puberty and other fertility traits. Five major QTL regions located on 

four chromosomes (SSC2, SSC7, SSC14, SSC18) were discovered for age at puberty. As 



	

	 	

	

expected, a negative correlation (r = −0.96 to −0.10; P<0.0001) was observed between 

genomic estimated breeding values for age at puberty and reproductive longevity at these 

QTL. Some of the SNPs discovered in the major QTL regions for age at puberty were 

located in candidate genes for fertility traits (e.g. P2RX3, OAS1, NR2F2, PTPN11). These 

SNPs showed significant or suggestive effects on age at puberty, reproductive longevity, 

and litter size traits in the UNL population and litter size traits in the commercial sows. It 

will be beneficial to further characterize these SNPs and candidate genes to understand 

their impact on protein sequence and function, gene expression, splicing process, and 

how these changes affect phenotypic variation of fertility traits.
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CHAPTER 1: LITERATURE REVIEW 

REPRODUCTIVE BIOLOGY IN FEMALE PIGS 

The female reproductive cycle is initiated with the induction and controlled 

interaction of hormones in the hypothalamus-pituitary axis and the ovaries (Soede et al., 

2011). Female reproduction events begin with the onset of puberty. Age at puberty in 

gilts is usually defined as the age at which a gilt first ovulates or express estrus (Bidanel, 

2011). At the time of puberty, pulsatile secretion of gonadotropin releasing hormone 

(GnRH) from the hypothalamus stimulates the secretion of gonadotropic hormones such 

as luteinizing hormone (LH) and follicle-stimulating hormone (FSH) from the anterior 

pituitary. The LH and FSH act on the ovaries to stimulate gamete formation and secretion 

of gonadal steroid hormones (e.g. estrogen). In addition, gonadal hormones form 

feedback loops to regulate GnRH, LH, and FSH release. Once the estrogen levels exceed 

a certain threshold, it stimulates kisspeptin neurons in the hypothalamus to induce a 

preovulatory GnRH/LH surge leading to ovulation (d'Anglemont de Tassigny and 

Colledge, 2010; Duittoz et al., 2016). It is not clearly understood how environmental and 

nutritional factors trigger these initial key events during puberty (Duittoz et al., 2016). 

The timing of puberty varies among pig breeds. Chinese breeds attain puberty around 

three to four months of age while Western breeds take up to six to seven months to reach 

puberty (Bidanel, 2011; Soede et al., 2011).  

Following the first ovulation, gilts start cycles of estrus until they get pregnant. 

Each estrus cycle spans approximately 18 to 24 days and consists of a follicular (5 to7 
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days) and a luteal phase (13 to 15 days). Gilts are usually bred on their second or third 

estrus. In the follicular phase, the number of small and medium follicles in the ovaries 

starts to decline leaving smaller number of follicles to be recruited for maturation (Knox, 

2005). Approximately 6 days prior to ovulation, GnRH from the hypothalamus induces 

the release of FSH and LH from the anterior pituitary. FSH plays a major role in 

increasing the number of medium and large follicles needed for recruitment while LH is 

important for the development and maturation of the recruited follicles for ovulation 

(Guthrie et al., 1990; Knox, 2005). The recruited follicles then start to produce inhibin 

and 17β estradiol (Noguchi et al., 2010). Inhibin inhibits FSH secretion, thereby 

facilitating atresia of smaller follicles. Increased levels of estradiol induce a pre-ovulatory 

LH surge to prepare mature follicles for ovulation. Following the peak LH surge, 

ovulation occurs around 30 hours in pigs (Soede et al., 2011). 

The period of ovulation is known as estrus and during this interval the females are 

receptive to males (i.e. standing response). Female receptivity to males can be observed 

by the immobile arched back and the cocked ears as well as redness and swelling of the 

vulva. In general, estrus last for 40 to 60 hours in the presence of a boar (Soede et al., 

2011). The ovulation occurs approximately two thirds of this period and lasts for one to 

three hours (Soede et al., 1994; Soede et al., 1998). In pigs, 15 to 30 oocytes are released 

in each estrus cycle (Knox, 2005) and the ovulation rate increases until fourth or fifth 

parity (Bidanel, 2011). The follicular recruitment, development, and the rate of ovulation 

are affected by extrinsic factors such as nutrition (e.g. negative energy balance during 

lactation) and stress (Hazeleger et al., 2005; Turner and Tilbrook, 2006). 
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After ovulation, the luteal phase begins. At the time of ovulation the inhibin is 

decreased, therefore, the negative feedback on FSH is removed. As a result, one to two 

days following ovulation, FSH facilitates the initiation of a new follicular wave. Once 

ovulated, the ruptured follicle is formed into a corpora lutea and starts producing 

progesterone (Noguchi et al., 2010). Progesterone inhibits the release of FSH and LH 

suppressing the follicular development. In the absence of pregnancy, prostaglandin F2-

alpha (PGF) is secreted from the uterus causing luteolysis around 15 days after ovulation 

(Soede et al., 2011). With the lysis of corpora lutea, the progesterone levels decrease and 

remove the negative feedback on gonadotropins to begin a new estrus cycle.  

If the fertilization is successful, the pig embryo moves from the oviduct to the 

uterus and implantation begins around day 16 where the conceptus attaches to the luminal 

uterine epithelium. This is a non-invasive central type implantation (Bazer and Johnson, 

2014). A proper implantation facilitates the establishment of a functional placenta for 

exchange of gasses, nutrients, and other molecules. Pigs have a fertilization rate close to 

100% (Bidanel, 2011), but failure to elongate and implant result in 30 to 40% of coceptus 

death (Bazer and Johnson, 2014). The maternal recognition of pregnancy in pigs is 

estrogen. It is secreted from the pig blastocyst around 10 to 13 days of pregnancy. 

Estrogen prevents the secretion of PGF from the uterine epithelium and prevents the 

regression of corpora lutea. Progesterone secreted from corpora lutea is necessary to 

maintain the pregnancy to term (Bazer and Johnson, 2014). 

Near to farrowing, the growing fetus starts secreting cortisol from the 

hypothalamic-pituitary-adrenal axis. Cortisol induces breakdown of progesterone and 

production of PGF. Oxytocin is produced from the maternal posterior pituitary during 
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uterine contractions. Oxytocin together with PGF regress the production of progesterone 

from the corpora lutea. During farrowing, PGF facilitates rupture of placental 

membranes, dilation of the cervix, contractions of the myometrium, placental expulsion, 

and uterine involution. Farrowing usually last for 3 to 5 hours (Bidanel, 2011). Hypoxia 

is a critical issue during parturition leading to approximately 10% of piglets being 

stillborn (Bidanel, 2011). A successful pregnancy lasts for around 114 to 116 days 

followed by 16 to 40 days of lactation (Soede et al., 2011). Prolactin secreted from the 

anterior pituitary is essential for lactation and maternal behavior (Bazer and Johnson, 

2014). Colostrum is produced during the first 24 hours after parturition, and the peak 

milk production is observed around 21 days of lactation. During lactation sows are 

anestrus where they do not exhibit estrus and do not ovulate. Following weaning 

follicular development is initiated and ovulation occurs within four to 10 days.  

ECONOMIC IMPORTANCE OF REPRODUCTIVE TRAITS 

The length of sow reproductive life plays a major role in the profitability of swine 

industry. Improved sow reproductive performance and reproductive longevity enables 

farmers to keep mature females in the herd while reducing culling rates and replacement 

costs. Using a net present value analysis, Stalder et al. (2003) showed that in a breed-to-

wean operation a gilt must remain in the breeding herd for at least three parities to reach a 

positive net present value covering all the replacement and maintenance costs. In most 

swine breeding herds, 40 to 50% of the sows are usually replaced by third or fourth parity 

when they have just begun to recover their replacement costs (D’Alleire et al., 1987). 
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Rodriguez-Zas et al. (2003) investigated sow reproductive longevity in 32 

commercial herds representing the best and worst genetic lines (n = 8 lines) developed for 

reproductive longevity over a period of seven years (1995 to 2001). Between the best and 

the worst lines there was approximately one parity difference in herd life, 0.64 in litter 

size at weaning, and $52.39 in net income per litter per sow. This emphasized that a 

greater economic advantage is achieved by selecting for sows with greater reproductive 

longevity. They also found that at a net income of $50 per litter, a sow should produce at 

least two parities to cover the initial replacement cost.  

Optimizing the herd artificial insemination program has a potential to maximize 

the farrowing rate and litter size while minimizing unnecessary semen and labor costs. 

Lamberson and Safranski (2000) developed a model to compare different artificial 

insemination schedules to identify the most profitable schedule with the highest 

conception rate. The schedule with four inseminations at 0, 12, 24, and 36 hours after 

estrus detection performed best in terms of farrowing rate and litter size. When the sows 

received three inseminations at 12, 24, and 36 hours combined with estrus detection twice 

per day yielded the highest economic return ($14.90) per bred sow. Four inseminations 

with estrus detection only once per day yielded second highest economic return ($13.75) 

per bred sow. Schedules with two inseminations had poorer farrowing rates and litter 

sizes, and very low positive/negative economic returns due to smaller number of piglets 

produced regardless of reduced cost of semen and labor.  

Faust et al. (1993) evaluated the impact of different gilt replacement rates and 

genetic change for reproductive traits on economic return in nucleus, multiplier, and 

commercial level sow production. A simulation was generated where culling was 
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practiced after a maximum of one, five and 10 parities in the multiplier and commercial 

levels and after one and five parities in the nucleus. In all three levels, the system that 

practiced culling after parity one had the largest total cost. However, the same system had 

the highest genetic change due to continuous introduction of new genetics. At different 

combinations of maximum parity for culling in the three tiers showed that the return per 

pig increased annually from $0.85 (culling after parity one in all three levels) to $1.01 

(culling after parity one in nucleus and multiplier, and after parity 10 in commercial 

level). Culling systems with lower replacement rates at commercial level had the lowest 

total costs, thus, were more profitable. The authors concluded that to maintain the balance 

between replacement rate and genetic superiority of the herd, a breeding system should 

always try to minimize the herd replacement rate and purchase genetically superior gilts 

when replenishing the breeding stock.  

INDICATORS OF SOW REPRODUCTIVE LONGEVITY 

Based on breeding goals and phenotypic information available, the definition for 

sow reproductive longevity varies among different studies. Some of these definitions 

include number of lifetime parities produced by a sow before culling (lifespan), 

probability of a sow reaching at least four parities (stayability), number of live piglets 

produced during the lifetime (lifetime prolificacy), duration from first farrowing to 

culling (herd life), and number of pigs produced per day of life (Hoge and Bates, 2011). 

Reproductive longevity depends on the ability of females to initiate and maintain ovarian 

cyclicity, rebreed, and farrow following successive parities. Therefore, it is a composite 
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trait influenced by many fertility traits such as age at puberty, ovulation rate, age at first 

service, conception rate, litter size traits, and wean to service interval (Tart et al., 2013).  

From a range of pre-breeding gilt phenotypes, age at puberty was found to be the 

earliest indicator of reproductive longevity regardless of definition (Tart et al., 2013). 

Gilts that achieved puberty at an early age had mated and farrowed early in life, produced 

more lifetime number of parities, and remained in the breeding herd longer (Serenius and 

Stalder, 2006; Engblom et al., 2008; Patterson et al., 2010; Knauer et al., 2010; Tart et al., 

2013). Tart et al. (2013) also observed a moderate negative relationship between the 

genomic estimated breeding values (GEBVs) for age at puberty and reproductive 

longevity (r = -0.45).  

Gilts that attain puberty late were bred and farrowed at a later age compared to 

early pubertal gilts. Sows with delayed age at first farrowing were at a greater risk of 

being culled due to low reproductive performance or longevity (Serenius et al., 2006; 

Hoge and Bates; 2011). Knauer et al. (2010a) found that across six genetic lines, age at 

first farrowing had the largest effect on the ability to be retained in the herd explaining 

6% of the phenotypic variation of reproductive longevity. Once age at first farrowing was 

removed from the model, age at puberty had the largest effect on reproductive longevity 

suggesting that age at puberty and age at first farrowing (in the absence of puberty data) 

are good early indicators of sow reproductive longevity.  

Litter size traits such as more piglets born alive, fewer stillborn fetuses, and larger 

adjusted 21-day litter weight at first farrowing were significantly associated with longer 

reproductive life in sows (Knauer et al., 2010a; Hoge and Bates, 2011). Serenius et al. 

(2006) reported that sows with intermediate litter sizes had the highest chance of 
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remaining in the herd whereas sows with extreme litter sizes (< 9 and > 13) were at a 

greater risk of being culled.  

Increased feed intake during lactation increased the probability of sows to 

produce up to four parities (Serenius et al., 2006; Knauer et al., 2010a). This effect was 

more profound in primiparous sows compared to multiparous sows. Sows with greater 

loss of back fat during lactation had a shorter reproductive lifespan indicating the 

importance of optimal back fat levels for rebreeding and maintenance of successive 

pregnancy to term (Serenius et al., 2006). Managing an optimum-feeding regime during 

lactation should be a main emphasis of swine producers to improve stayability of the 

breeding herd. Lactation length also had a significant association with stayability where 

sows with shorter lactation length (< 11 days) had a greater risk of being culled (Xue et 

al., 1997; Knauer et al., 2010a). Females that had > 30 days weaning to estrus interval 

after first parity were at 1.7 times greater risk of being culled compared to sows that 

returned to estrus less than four days (Tantasuparuk et al., 2001).  

GENETIC VARIATION IN SOW REPRODUCTIVE TRAITS 

Heritability of Reproductive Traits 

Sow reproductive traits are usually lowly heritable and considerably influenced by 

environmental variation (Bidanel, 2011). Few traits that largely depend on the genotype 

of the female, such as age at puberty, age at first farrowing, ovulation rate, weaning to 

estrus interval, and estrus symptoms have moderate heritability (Bidanel, 2011). On the 

other hand, fertility rate and prolificacy traits including conception and farrowing rate, 
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litter size, litter weight, and piglet survival rate are lowly heritable since they are highly 

influenced by environment, management, and also by sow, boar, and piglet genotypes 

(Bidanel, 2011).  

 A wide range of heritability estimates were reported for reproductive traits 

in different studies depending on different trait definitions and populations studied. 

Heritability of age at puberty was estimated at 0.29 (Bidanel et al., 1996; Knauer et al., 

2010b), 0.38 (Tart et al., 2013), 0.41 (Schneider et al., 2011), and 0.57 (Hsu, 2011). In a 

comprehensive review by Rothschild and Bidanel (1998), reported heritabilities for age at 

puberty ranging from 0 to 0.73 with a mean of 0.37. For other moderately heritable traits, 

the estimates varied from 0.1 to 0.59 for ovulation rate (Rothschild and Bidanel, 1998; 

Johnson et al., 1999; Hsu, 2011), 0.38 for age at first service (Holm et al., 2004), 0.16 to 

0.22 for age at first farrowing (Serenius et al., 2008; Knauer et al., 2011), and 0.07 to 

0.36 for weaning to estrus interval (Rothschild and Bidanel, 1998; Serenius and Stalder, 

2006). Heritability estimates reported by Knauer et al. (2010b) for estrus symptoms (e.g. 

length of estrus, strength of the standing reflex with or without a boar, and vulva redness, 

swelling, and width) ranged from 0.13 to 0.58. These estimates were higher than the 

range (0.09 to 0.29) reported in the Rothschild and Bidanel (1998) review. 

 The heritability estimates for litter size traits such as total number of 

piglets born (TNB), number of piglets born alive (NBA), and number of piglets weaned 

per litter were similar and ranged from 0.02 to 0.18 (Johnson et al., 1999; Chen et al., 

2003; Holm et al., 2004; Knauer et al., 2011; Tomiyama et al., 2011; Schneider et al., 

2012a; Abell et al., 2013; Tart et al., 2013). The heritability of farrowing rate and 

farrowing interval were estimated between 0.03 and 0.1 (Rothschild and Bidanel, 1998; 
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Serenius and Stalder, 2006; Tomiyama et al., 2011; Abell et al., 2013). Relatively low 

heritability estimates (0.02 to 0.25) were reported for reproductive longevity related traits 

(Serenius and Stalder, 2006; Serenius and Stalder, 2007; Serenius et al., 2008; Mészáros 

et al., 2010; Abell et al., 2013; Tart et al., 2013).  

Even though the heritability estimates for reproductive traits varied between 

studies due to different phenotypes targeted, size of the data sets, and statistical 

approaches, in most populations sufficient genetic variation exists for traits such as age at 

puberty, estrus symptoms, and litter size traits to be improved through selection (Serenius 

and Stalder, 2007; Serenius et al., 2006; Knauer et al., 2010b). 

Genetic Correlation Between Reproductive Traits 

Reproductive traits can be genetically correlated with one another if a single 

gene/allele are pleiotropic. In situations where the trait of interest is expressed late in life, 

difficult or expensive to measure, it is more feasible to select for an easily available and 

early expressed correlated trait.  

 Age at which gilts attain puberty is an important determinant of their 

future reproductive performance. A negative correlation (r = -0.27) was reported between 

age at puberty and ability of gilts to farrow their first litter (Knauer et al., 2011). There 

was a high positive genetic correlation (r = 0.76) between age at puberty and age at first 

farrowing suggesting gilts that attain puberty early can be bred early and will farrow at an 

earlier age (Knauer et al., 2011). Age at puberty onset was also positively correlated  

(r = 0.45) with weaning to estrus interval (Sterning et al., 1998). A moderate negative 

correlation (r = -0.45) was reported by Tart et al. (2013) between genomic estimated 
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breeding values (GEBVs) for age at puberty and reproductive longevity (measured as 

number of parities produced by a sow during lifetime). Negative correlations were also 

observed between GEBVs for age at puberty and TNB (r = -0.25) and NBA (r = -0.28). 

The earlier gilts attain puberty, the longer they stay in the herd and produce more litters 

and piglets during their lifetime suggesting that age at puberty is a good early indicator of 

sow reproductive longevity (Tart et al., 2013). 

Several studies analyzed the effect of ovulation rate as an indicator trait to select 

for litter size (Johnson et al., 1984; Ruiz-Flores and Johnson, 2001). Ovulation rate 

showed a moderate, negative correlation with prenatal survival (r = -0.36) probably due 

to limited uterine capacity, farrowing survival (r = -0.27), and birth to weaning survival 

(r = -0.38) (Bidanel, 2011). Therefore, selecting for higher ovulation rate would not 

necessarily be beneficial in terms of improving litter size at birth and weaning. There was 

a moderate positive genetic correlation (r = 0.63) between shorter farrowing interval 

(gestation + lactation + days to next breeding) and number of litters per sow per year 

(Abell et al., 2013). A higher genetic correlation was also observed between litter size at 

birth and at weaning (r ≥ 0.73) (Bidanel, 2011). 

Sow maternal behavior, especially during early piglet life is important for pre-

weaning piglet survival. A moderate, negative genetic correlation (r = -0.24) was 

observed between maternal behavior measured as response to piglet screaming and piglet 

mortality rate during the first days of lactation suggesting that selecting for sows with 

stronger maternal response could improve the survival rate of nursing piglets 

(Grandinson, 2005). 
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Between Breed Variation for Reproductive Traits 

In addition to within line selection, swine breeding industry relies on heterosis for 

improved productivity and revenue, a phenomenon where hybrids are superior to the 

average of the purebred parental lines. To capture the effect of hetorosis, Chinese and 

Western (local) breeds were widely used for crossbreeding, since large variation for 

maternal reproductive traits was observed between the breeds (Bidanel, 2011; Soede et 

al., 2011). Chinese Meishan is a well-known breed for their superiority for maternal 

reproductive traits (Bidanel, 2011). In the early 1990s Meishan sows produced three to 

five more piglets per litter compared to Large White (Bidanel, 2011). Following the 

emphasis on selection for litter size in Western maternal breeds (e.g. Large White and 

Landrace), in early 2000s this difference was reduced to 1.1 piglets per litter (Canario et 

al., 2006). Meishans express puberty earlier, have higher conception and prenatal survival 

rates, and shorter weaning to estrus interval compared to Western breeds (Canario et al., 

2006; Bidanel, 2011). 

Differences in fertility and prolificacy traits were also observed between many 

Western breeds. Bidanel et al. (1996) analyzed the genetic variation of reproductive traits 

between important maternal breeds (Large White, Landrace, and their crossbred gilts). 

Large White gilts reached puberty 17 days later, had a higher ovulation rate (+1.3), but a 

lower embryo survival rate (-7.1%) compared to Landrace. Crossbred gilts reached 

puberty earlier and had higher embryo survival rates than both purebreds. Mészáros et al. 

(2010) found that Landrace sows stayed in the herd longer (+92 days) and produced more 

parities (+0.56) compared to Large White sows. Large White sows had more live piglets 
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born (0.6) compared to Landrace. Both Large White and Landrace females had higher 

prolificacy, conception rate, and lower pre-weaning mortality compared to pig breeds that 

were primarily selected for growth and carcass characteristics such as Duroc and Pietrain 

(Mészáros et al., 2010). Differences in sow fertility traits were even larger when the 

maternal breeds were compared to paternal breeds. The TNB ranged from approximately 

10.0 piglets in paternal breeds (Duroc and Pietrain) to 14.5 piglets in maternal breeds 

(Large white and Landrace). The number of piglets weaned ranged from 7.8 (Pietrain) to 

approximately 11.0 (Large White and Landrace) (Bidanel, 2011).  

GENOMIC APPROACHES TO UNDERSTAND AND IMPROVE SOW 

REPRODUCTIVE TRAITS 

Genome-wide Association Studies 

 The direct use of DNA information in commercial pig breeding became 

popular in early 1990s with the discovery of a DNA polymorphism in RYR1 gene (Hal-

1843 marker) responsible for malignant hyperthermia syndrome (Fujii et al., 1991). A 

DNA test and marker-assisted-selection protocols were developed and used globally to 

control and reduce the rate of this syndrome. The test was very effective, since it was not 

labor intensive, did not involve progeny testing, and the syndrome was controlled by a 

single gene. However, most economically important livestock traits are quantitative in 

nature and controlled by many genes (quantitative trait loci or QTL) and genetic variants 

with smaller effects, therefore difficult to improve through just marker-assisted selection. 
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The first QTL associated with prolificacy traits in pigs was identified for litter size and 

mapped next to estrogen receptor (ESR1) gene (Rothschild et al., 1996).  

In the late 1990s, methods were developed to include marker genotypes in 

conventional best linear unbiased prediction (BLUP) analysis to generate marker 

enhanced estimated breeding values (Fernando and Grossman, 1989; Knol et al., 2016). 

At the time, genetic evaluation of production traits included about 30 markers, most of 

them identified using candidate gene approach (Knol et al., 2016). In early 2000s, 

genome-wide association studies (GWAS) became popular in pig research with the 

development of DNA marker panels including large number of SNPs located across the 

genome, high throughput genotyping and sequencing techniques, and Bayesian statistical 

approaches to estimate effects for large number of SNPs (Samorè and Fontanesi, 2016). 

The first commercially available high-density marker panel for pigs was Porcine SNP60 

BeadArray developed by Illumina (Illumina, San Diego, CA) with the input from swine 

genetic community. The majority of SNPs included in these panels were functionally 

neutral in nature, polymorphic across Western commercial breeds, and uniformly mapped 

across the genome. In GWAS, the genotypes of each SNP are tested for association with 

the targeted trait assuming that significant associations occur when the SNPs are in 

linkage disequilibrium (LD) with a causal mutation directly affecting the trait of interest 

(Hayes and Goddard, 2010).  

Several Bayesian statistical models (e.g. BayesA, BayesB, BayesC, and BayesCπ) 

were developed to simultaneously assess the effects of thousands of markers to the target 

trait (Meuwissen et al., 2001). BayesA assumes each marker has a unique variance and 

they all have an effect on the trait. Therefore, the π value (percentage of markers that do 
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not have an effect) is set to zero (Meuwissen et al., 2001). BayesB assumes that each 

SNP has its own variance and only a fewer number of loci have an effect on the trait, 

while many do not. Therefore, the π value could range from zero to one (Meuwissen et 

al., 2001). BayesA is a special case of BayesB when π = zero. BayesC differs from 

BayesB assuming that all the markers have a common variance. The shrinkage of SNP 

effects due to LD is affected by the π value, therefore, in BayesCπ it assumes that π is 

unknown and all the SNPs have the same genetic variance. In BayesCπ different π values 

are fitted until convergence (Habier et al., 2011). In addition to these models, Kachman 

(2015) introduced a new Bayesian model called Bayes interval mapping (BayesIM) that 

fits haplotypes rather than individual SNPs, as is the case of Bayesian methods discussed 

earlier. BayesIM uses a hidden Markov model to generate haplotype clusters. The 

haplotype clusters are formed across the chromosomes while their effects are tested by 

evenly spacing the putative QTL along the genome.  

Many GWAS have been carried out for sow reproductive traits, mainly for 

prolificacy traits, to map QTL and identify positional candidate genes. Several studies 

have reported QTL for different reproductive traits mapped to same chromosomal regions 

suggesting the pleiotropic effects of genes underlying these QTL. However, there is very 

limited progress in identification of functional variants/genes in these QTL. 

Teat Number 

Verardo et al. (2016) compared Poisson and Gaussian distributions for discrete 

reproductive traits and found that Gaussian models worked best for teat number. Sixty-

five significant SNPs overlapping 57 positional candidate genes (e.g. YLPM1, 
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SYNDIG1L, TGFB3, and VRTN) were identified. These genes were used to generate 

gene-transcription factor networks. The most significant transcription factors identified 

for teat number (SOX9 and ELF5) were involved in mammary gland development. In 

addition, TINAGL1 (SSC7, 30 Mb) and ICK (SSC7, 134 Mb) genes were identified as 

candidate genes for teat number involved in regulation of cell cycle and apoptosis during 

mammary development (Verardo et al., 2015). 

Ovulation Rate 

A GWAS for ovulation rate in a composite pig population including females that 

produced zero to two parities mapped 22 QTL (P ≤ 0.001) accounting for 71.10% of the 

total genetic variance (Schneider et al., 2014). A QTL on SSC1 (16 Mb) overlapping 

ESR1 gene explained 3.61% of the genetic variance for ovulation rate. Another QTL on 

SSC17 (64 Mb) explained 23.78% of the genetic variance. The most compelling 

candidate gene in the region was BMP7 involved in the regulation of ovarian functions. 

Two QTL on SSC2 (137.3 Mb and 139.9 Mb) explained 26.88% of the genetic variance 

(Schneider et al., 2014). ADAMTS19 gene located on 137 Mb region is involved in 

premature ovarian failure in humans (Knauff et al., 2009) and GDF9 gene located on 139 

Mb region is known to control ovulation rate (Crawford and McNatty, 2012).  

Litter Size Traits 

An early study found a variation in ESR1 (SSC1) being associated with litter size 

in Meishan synthetic lines (Rothschild et al., 1996) and Large White based commercial 

lines (Short et al., 1997). The additive effect estimates for favorable alleles varied from 
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0.42 (TNB) and 0.39 (NBA) pigs per litter in commercial Large White (Short et al., 

1997) to 1.2 (TNB and NBA) pigs per litter in Meishan crosses (Rothschild et al., 1996). 

The same SSC1 QTL was also reported for ovulation rate (Schneider et al., 2014).  

The proportion of phenotypic variance explained by Porcine SNP60 BeadArray 

SNPs for litter size traits was fairly low (0.001 to 0.4) (Onteru et al., 2012; Tart et al., 

2013). Schneider et al. (2012b) reported number of overlapping QTL and candidate genes 

for TNB and NBA in first parity sows (FEM1B [SSC1, 173.5 Mb], CRH [SSC4, 71 Mb], 

SNX7 [SSC4, 126 Mb], HFM1 [SSC4, 132 Mb], and ACSL3 [SSC15, 130 Mb]). A QTL 

identified by Schneider et al. (2012b) on SSC17 for NBA (64 to 65 Mb) also overlapped 

with a QTL for ovulation rate (Schneider et al., 2014).  

In a GWAS for litter size traits by Onteru et al. (2012), approximately 50% of the 

genes located in the QTL regions were predicted to be involved in placental functions. 

Among them, MEF2C (SSC2), PLSCR4 and PLSCR5 (SSC13) were identified as 

candidates for both TNB and NBA in the first and second parities. Onteru et al. (2012) 

and Schneider et al. (2012b) reported QTL located on the same regions of SSC17 (30 

Mb) and SSC1 (86 Mb) for TNB and NBA, respectively.  

Two statistical models, 1) linear mixed model with a single SNP regression, 2) 

Bayesian mixture model including effects of all SNPs simultaneously (assuming a 

portion of the markers had small effects and a portion of the markers had large effects) 

were tested for TNB, day five litter size, and mortality in a large Landrace and Yorkshire 

population (Guo et al., 2016). Both models resulted in quite similar associations; 

however, the association signals were more clear and distinct in the Bayesian model. In 

Landrace sows, 1-Mb QTL regions on SSC2 (139 Mb, 141 Mb) and SSC3 (6 Mb) 
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explained 0.75 to 1% of the additive genetic variance for TNB. The SSC3 region was 

also associated with TNB in Yorkshire sows explaining 0.46% of the variance. In other 

studies, the same SSC2 region was associated with TNB, number mummified (Onteru et 

al., 2012), and ovulation rate (Schneider et al., 2014). For both litter size and mortality at 

day five, a 1-Mb QTL on SSC7 (34 Mb) was identified in Landrace explaining 0.38% 

and 1.99% of the variance, respectively (Guo et al., 2016). The QTL had a positive effect 

on litter size and a negative effect on mortality (Guo et al., 2016).  

Bergfelder-Drüing et al. (2015) used Large White and Landrace pigs from 

different commercial breeding companies from Germany, Austria, and Switzerland for a 

GWAS for NBA. Distinct stratification was observed between and within breeds 

suggesting different breeding and selection strategies were used by different breeding 

companies. The study did not observe any overlapping QTL across breeds. In Large 

White, a QTL for NBA on SSC13 (27.9 Mb) overlapped with a QTL reported by Onteru 

et al. (2012). In Landrace, a QTL for NBA located on SSC9 (14.8 Mb) overlapped with a 

QTL for TNB by Onteru et al. (2012). Another QTL on SSC9 (139 Mb) was adjacent to 

PTGS2, a gene involved in placental attachment and embryo survival in pigs (Bergfelder-

Drüing et al., 2015). PTGS2 was one of the highly differentially expressed genes in the 

uterine endometrium between pigs with low and large litter sizes (Cordoba et al., (2015).  

Lifetime Productivity Traits 

Onteru et al. (2011) studied lifetime productivity data recorded in a commercial 

maternal pig line over a maximum of nine parities and identified overlapping candidate 

genes and QTL between lifetime total number born and lifetime number born alive 
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(FUT9 [SSC1], SLC22A18 [SSC2], and P2RY6 [SSC9]). The QTL on SSC2 also 

overlapped with the number of mummified pigs (Holl et al., 2004). The SLC22A18 gene 

in this region is known to be associated with reduced fetal intrauterine growth (Onteru et 

al., 2011).  

Transcriptome Sequencing and Expression Profiling 

The development of high throughput RNA sequencing techniques have enabled 

whole transcriptome analysis of specific tissues related to diseases, reproduction, and 

production traits in humans and farm animals. RNA sequencing is superior to Sanger 

sequencing and microarray-based expression profiling by providing greater coverage and 

higher resolution of the transcriptome (Kukurba and Montgomery, 2015). RNA 

sequencing enables identification of differentially expressed genes (DEGs), alternatively 

spliced genes, novel transcripts, complete gene structures, and gene coding 

polymorphisms. With many advances in sequencing technology, now it can be applied 

not only to mRNA, but also to different populations of RNA such as total RNA, pre-

mRNA, and noncoding RNA (e.g. micro RNA (miRNA) and long non-coding RNA) 

(Ozsolak and Milos, 2011; Kukurba and Montgomery, 2015).  

Among many reproductive traits, RNA sequencing was mainly applied for 

prolificacy traits in pigs. Kwon et al. (2016) analyzed the placenta transcriptome in 

Berkshire pigs that had larger (mean > 12) and smaller (mean < 6.5) litter sizes. 

Approximately 22% of the DEGs were associated with gene ontology terms related to 

reproduction (e.g. fecundity, prolificacy, and litter size). Two DEGs (WNT9B and IL-6) 

were highly expressed in the larger litter size group and were identified as upstream 
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regulators (i.e. transcription factors) of two other DEGs (EGR2 and LIPG). Authors 

suggested that upregulation of WNT9B and LIPG could facilitate increased nutrition 

supply to the growing fetuses via the placenta to maintain a larger litter. In humans, the 

LIPG expression was very low in placentas from intrauterine growth-restricted 

pregnancies compared to placentas from normal pregnancies (Gauster et al., 2007). 

In the same Berkshire population (Kwon et al., 2016), Hwang et al. (2017) studied 

genome-wide differences in DNA methylation using bisulfate sequencing and gene 

expression using RNA sequencing in the placental tissue in large and small litter size 

groups. DNA methylation is an important epigenetic modification that regulates gene 

expression. It involves addition of a methyl group to the fifth carbon of cytosine in CpG 

dinucleotides (Smith and Meissner, 2013). Genome-wide methylation profiling provided 

insights into the molecular processes involved in reproduction (Messerschmidt et al., 

2014). The rate of methylation was higher in coding sequences and introns, but lower in 

promoter regions. The rate of methylation of CpG dinucleotides, especially in introns 

were lower in larger litter size group. Nine DEGs overlapped with differentially 

methylated regions. A positive relationship was observed between the differential 

expression and methylation, except for one gene.  

Mammalian ovaries are important reproductive and endocrine organs where 

ovulation and secretion of many reproductive hormones take place (Soede et al., 2011). 

Integrating RNA sequencing, gene expression profiling, and gene pathway analysis of 

ovarian tissues in Yorkshire pigs with high and low litter sizes identified 21 DEGs that 

were involved in steroid biosynthesis and ovarian steroidogenesis pathways (Zhang et al., 

2015). Nineteen of these genes were upregulated in pigs with higher litter size, 
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suggesting their involvement in ovarian functions. Among them, HSD3B and STAR 

genes regulate pre-ovulatory follicular maturation in chicken (Sechman et al., 2014) and 

HSD17B2 and EGR4 are key regulators of steroid hormone metabolism (Zhang et al., 

2015). Several DEGs (CYP11A1, RBP4, SLC5A10, SLC7A11, and SLC6A20B) 

overlapped with previously identified QTL for litter size in pigs (Zhang et al., 2015).   

Micro RNAs are a class of small RNAs that play a major role in regulating gene 

expression. Huang et al. (2016) looked at the expression of miRNAs in ovarian tissues in 

the same Yorkshire pig population used by Zhang et al. (2015). There were 37 

differentially expressed miRNAs where, 21 were upregulated and 16 were downregulated 

in the high litter size sows. Among them, MiR-224 targets Ptx3 gene in mice affecting 

ovulation and embryo development (Yao et al., 2014), MiR-99a is involved in cattle 

oocyte maturation (Tesfaye et al., 2009), and Let-7c regulates FSH secretion from follicle 

cells in mice (Yao et al., 2009).  

Pigs usually have higher fertilization rates (Bidanel, 2011). However, large early 

embryonic loss (20 to 30%) at around 12 to 30 days of gestation, due to decreased 

placental efficiency and uterine capacity, affect the litter size (Lin et al., 2015). Changes 

in endometrial environment during early pregnancy play an important role in embryonic 

survival and successful pregnancy. Lin et al. (2015) evaluated gene expression profiles of 

the endometrium at the time of maternal recognition of pregnancy (day 12), conceptus 

attachment (day 18), and embryo implantation (day 25). Comparative gene expression 

was performed at day 12, 18, and 25 of pregnancy. The largest number of DEGs was 

observed between day 12 and 25 (n = 8,951). There were 188 common DEGs among the 

three stages of pregnancy. Several DEGs were associated with different aspects of early 
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pregnancy such as fibroblast growth (FGF9), immune response (IRF1, S100A9), 

adhesion (OSTN), prostaglandin synthesis (PTGES), and implantation marker (STC1). 

The immune system plays an active role during early pregnancy in mammals (Engelhardt 

et al., 1997). Lin et al. (2015) observed an over expression of immune response related 

genes (i.e. S100A9) during days 12 and 18 of pregnancy compared to day 25. One 

limitation of this study was the lack of expression comparison between non-pregnant and 

pregnant endometrium, which would have provided insight into DEGs between early 

pregnant and non-pregnant animals. 

Cordoba et al. (2015) also studied gene expression in uterine endometrium at day 

30 to 32 gestation in an Iberian × Meishan F2 population between sows with extreme 

EBVs for prolificacy. The tissues were collected at the fifth parity when the litter size has 

reached the maximum in this population. RNA sequencing identified 141 DEGs between 

the two groups. Gene ontology analysis proposed three main reproductive pathways 

(female pregnancy, maternal placenta development, and decidualization) to which DEGs 

belong. Twenty-five of the DEGs overlapped with QTL identified for litter size traits in 

the Pig QTL Database (Hu et al., 2013). Based on gene expression, localization with 

known QTL, and gene ontology analysis, five candidate genes (HPGD, MMP8, PTGS2, 

PTHLH, and SCNN1G) for litter size were identified. All the five genes were over 

expressed in high litter size group. The PTGS2 gene is involved in early events of 

implantation (Kennedy et al., 2007) and the gene expression is substantially increased 

during early pregnancy suggesting that lower expression of the gene in low litter size 

group could lead to failure in implantation (Cordoba et al., 2015).  
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Genomic Selection 

Traditionally genetic progress in the pig industry was mainly achieved through 

selection and crossbreeding strategies. In the late 1980s more progress was achieved with 

the introduction of BLUP animal models to evaluate males and females in the nucleus 

populations. In early 2000s, genomic selection was first introduced to predict the genetic 

merit of selection candidates early in life using their genomic information with limited 

need to phenotype (Meuwissen et al., 2001). A GEBV is calculated for each selection 

candidate by summing up allelic substitution effects for thousands of genetic markers 

(SNPs) across the pig genome (Samorè and Fontanesi, 2016). 

Genomic selection is performed first by estimating the SNP effects (as a 

regression of the phenotype on the genotype) in animals with both phenotypic and 

genotypic data available (training population). The estimated SNP effects are then used to 

predict the GEBVs for animals with only genomic data available (evaluation population). 

Application of genomics is more advantageous for traits that are difficult or expensive to 

measure, expressed late in life, sex-limited, or lowly heritable. Genomic selection has the 

ability to increase the genetic gain by improving the prediction accuracy and decreasing 

the generation interval in traditional breeders equation.  

In genomic selection, the prediction accuracy of GEBVs largely depends on the 

size and the breed composition of the training population, relatedness of the training and 

evaluation populations, marker density, heritability of the trait, and the statistical methods 

(Meuwissen, 2009; Cleveland et al., 2012). For example, Meuwissen (2009) reported that 

to obtain an accuracy of 0.3 for a lowly heritable trait, the training population should at 
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least contain 2,000 animals. The GEBV accuracy could also be improved by 

incorporating whole genome sequence data into evaluations since this information may 

capture causal variants and help the prediction equations to be more stable over time and 

across populations (Samorè and Fontanesi, 2016). One major limitation in application of 

genomic selection is the cost of genotyping. Cleveland and Hickey (2013) suggested 

strategies to implement cost effective low-density marker panels and evaluated the 

prediction accuracy with genotype imputation. 

Genomic selection is widely applied to maternal and performance traits in the 

swine industry. Knol et al. (2016) illustrated how application of genomic selection 

improved not only a moderately heritable maternal trait (teat number, h2 = 0.4), but also a 

binary, lowly heritable trait (post weaning piglet mortality, h2 = 0.05). For teat number, in 

a conventional pedigree-based relationship matrix, addition of the most significant SNP 

increased the EBV accuracy by 7% and addition of four most significant SNPs increased 

the accuracy by 27%. Using a genomic relationship matrix instead of pedigree-based 

matrix increased the EBV accuracy by 50% (Knol et al., 2016). In early 2000s genetic 

progress for post-weaning mortality was mainly achieved through marker-assisted 

selection using five to 20 markers. With the development of high-density marker panels 

and implementation of genomic selection in 2010, the accuracy of EBV for this trait 

increased by 50% (0.14 to 0.22).  

Lillehammer et al. (2011) evaluated the effect of genomic selection on maternal 

traits in a simulated Norwegian Landrace pig population. Genomic selection was applied 

to boars for a trait with heritability of 0.1 and measured (expressed) in females after the 

first parity. Different breeding schemes were simulated where one, two, and three males 
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from each litter and zero, 50%, and 100% females were genotyped. In a conventional 

breeding scheme, the boars are selected based on progeny testing. Information from older 

relatives leads to increased generation interval and lower accuracy resulting in a slower 

rate of genetic gain. Compared to conventional breeding scheme, genomic selection 

increased genetic gain from 23% (one male per litter and zero females genotyped) to 91% 

(three males per litter and 100% females genotyped). In all breeding schemes, the 

accuracy of selection was higher for females. In an additional simulation, Lillehammer et 

al. (2013) showed that genotyping 2,400 females each year doubled the maternal trait 

contribution to the total genetic gain in the herd, mainly via increasing the training 

population size. By comparing the genetic gain from different breeding schemes authors 

concluded that genotyping more females is important to reach a higher prediction 

accuracy and genetic gain, especially for maternal traits. 

Cleveland et al. (2012) utilized a data set generated by the Pig Improvement 

Company (PIC) to test and validate different genomic prediction methods. The data set 

included individuals from a single nucleus genetic line (n = 3,534) genotyped with high-

density genotypes (Porcine SNP60 BeadArray), phenotypes for five traits (h2 ranging 

from 0.07 to 0.62), polygenic EBVs (PEBV; no genomic information), and complete 

pedigrees. The GEBVs were estimated using a BayesB approach using both phenotypes 

and de-regressed EBVs (a higher accuracy phenotype calculated using progeny and 

multigenerational pedigree information) and a single-step genomic BLUP approach that 

combines information from genotyped and un-genotyped animals. Accuracies for all 

traits improved with BayesB de-regressed EBVs and single-step approaches compared to 

BayesB phenotype-based approach. The prediction accuracy generally increased as the 
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trait heritability and the relatedness between training and evaluation sets increased. 

Increasing the relatedness between populations did not change the ranking of the 

statistical methods suggesting that prediction accuracy primarily depends on the 

information content used in different methods. This emphasizes the importance of 

additional genotyping, especially to improve lowly heritable traits using genomics. 

The effectiveness of SNP panels used for genomic selection mainly depends on its 

ability to capture functional effects and predict cumulative additive genetic merit for 

animals in the evaluation population. This has been proven to work well within a 

population when the animals used in the training set are closely related to those used for 

evaluation. However, due to difficulty in measuring certain traits in commercial settings 

(e.g. age at puberty), it is necessary to transfer genomic information from experimental 

populations to potentially disjoint industry populations. Lucot et al. (2015) illustrated that 

for age at puberty, transferring SNP effects from training to evaluation populations 

resulted in low correlations between GEBVs and adjusted phenotypes. When all the 

SNPs from the top ranked 1, 5, 10, 20, and 50% 1-Mb windows identified in a training 

set (n = 820) were used in an evaluation set (n = 412) consisting of subsequent 

generations of similar genetics, the phenotypic variation that was explained ranged from 

12.3 (top 1% 1-Mb windows) to 36.8% (top 20%). When only the highest ranked SNP 

from these subsets of 1-Mb windows (e.g., 1 SNP per 1-Mb window) were evaluated, the 

phenotypic variation captured was less and varied from 6.5 (top 1%) to 23.7% (top 50%). 

This is probably due to the fact that SNPs identified as highest ranked in the training set 

are not functional variants, and the LD between these SNPs and the functional 

polymorphisms is redefined in the evaluation set. However, Lucot et al. (2015) 
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emphasized that the knowledge of important regions can be captured using all SNPs in 

the region identified in the training set and re-estimating their effects in the evaluation 

population. Specifically, the correlations between GEBVs based on SNP effects 

estimated in the training set and the phenotypes of evaluation set was marginal (r = -0.01 

to 0.17) compared with their effects retrained in the evaluation set for all (r = 0.46 to 

0.81) or most informative SNPs (r = 0.30 to 0.65) from the high-ranked 1-Mb windows.  

The swine breeding scheme follows a pyramidal structure with nucleus at the top, 

followed by multiplication, and commercial levels. The genomic evaluation and selection 

are largely performed within the purebreds at the nucleus level. The final product in 

swine industry is a crossbred animal and the goal is to improve crossbred performance in 

the commercial herd (Samorè and Fontanesi, 2016). It has been shown that genetic 

differences between purebred and crossbred animals as well as environmental differences 

between the two levels result in poor prediction of crossbred performance using purebred 

GEBVs (Dekkers, 2007). In addition, if breed specific effects of marker alleles exist, 

crossbred GEBVs calculated using only data from one purebred nucleus line might not be 

accurate. To investigate the breed specific effects on GEBV accuracy in crossbreds, 

Lopes et al. (2017) compared a traditional genomic selection model and a model that 

includes breed specific effects, trained on purebred (Large White and Landrace, n = 924 

for each breed) or crossbred data (n = 924) for litter size and gestation length in pigs. A 

higher genetic correlation (r > 0.88) was observed between purebred and crossbred 

performance for both traits. The GEBV prediction accuracies of crossbred sows were 

highest when the training was done on crossbred data. Both models resulted in similar 

prediction accuracies for litter size (~ 0.23) and gestation length (~ 0.52) suggesting that 
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accounting for breed specific effects did not necessarily impact the prediction accuracy 

in this study. Authors suggested that to assess the benefit of adding breed specific 

relationships in genomic prediction models, a larger crossbred population of more distant 

purebreds must be used with traits that have a lower genetic correlation between purebred 

and crossbred performance. 

Estimating marker effects on crossbred animals using commercial data to evaluate 

purebred nucleus animals was proposed as a method to incorporate commercial data into 

genomic evaluations (Dekkers, 2007). Toosi et al. (2010) reported that in a simulated data 

set when the training was performed in crossbreds using different marker densities to 

predict GEBVs in a purebred evaluation set, the prediction accuracy was slightly less 

(0.66 to 0.74) compared to when training was done in the same purebred population as 

the evaluation set (0.79 to 0.85). Ibánẽz-Escriche et al. (2009) also reported that 

accuracies based on crossbred data were slightly lower than the accuracies based on 

purebred data. But this difference was negligible when the parental breeds were closely 

related. 

GENETIC ANALYSIS OF AGE AT PUBERTY IN MAMMALS 

QTL and Candidate Genes for Age at Puberty in Pigs 

Reducing age at which gilts attain puberty and farrow is economically important 

for swine producers since it can reduce the time and money spent on the replacement gilts 

before they produce a litter. Early age at puberty is associated with more litters per sow 

during her lifetime (Tart et al., 2013). However, measuring age at puberty in a 
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commercial setting is difficult and labor intensive. Pleiotropic genetic markers that can 

predict the propensity of individuals to attain puberty early and produce more parities 

could be more effective in selecting for superior females to retain in the breeding herd. 

Quantitative trait loci mapping and GWAS are widely used to identify candidate genes 

and polymorphisms associated with age at puberty in gilts. Many QTL were reported by 

different studies in different populations suggesting that age at puberty in gilts is a 

classical quantitative trait affected by many genes with smaller effects.  

QTL Mapping in Western × Chinese F2 Populations 

Several QTL mapping studies reported a locus on SSC7 (54 to 58 cM) near the 

Swine Leucocyte Antigen Complex II (SLAII) region associated with age at puberty in 

F2 crossbred populations (Bidanel et al., 2008; Yang et al., 2008). In a Large White × 

Meishan population, the SSC7 QTL explained 2.9% of the phenotypic variance of age at 

puberty and negative effect of Large White alleles was observed (Bidanel et al., 2008). 

This was expected since many Western maternal breeds mature late compared to Chinese 

breeds (Bidanel, 2011). In a White Duroc × Erhualian population, the same QTL 

explained 8% of the phenotypic variance of age at puberty (Yang et al., 2008). The Duroc 

allele was associated with early age at puberty. Duroc is a late maturing breed compared 

to many Chinese breeds, thus, it was interesting to observe the favorable allele at this 

locus in Duroc. Several other QTL were reported for both reproductive and growth traits 

at the same SSC7 SLAII locus (Sanchez et al., 2006). The SLAII region is polygenic, 

very polymorphic, and characterized by high LD, therefore, whether this QTL identified 

for different traits is represented by a single gene due to pleiotropic effects or many 
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closely linked genes involved in the variation of different traits still needs to be 

determined. 

Rohrer et al. (1999) reported a QTL on SSC10 (125 cM) in a White composite × 

Meishan population with an additive effect of 27.6 days for age at puberty. The Meishan 

allele at this locus was favorable for earlier age at puberty. Another QTL on SSC1 (105 

cM) had an additive effect of 9.35 days (Rohrer et al., 1999). The same QTL was 

reported by Kuehn et al. (2009) with a relatively smaller additive effect (3.2 days) in a 

population of Yorkshire × Landrace dams mated with Duroc or Landrace boars. An 

intronic polymorphism in the PAX5 gene overlapping SSC1 QTL had the largest effect 

on age at puberty (P = 0.036). However, authors did not find a direct functional 

relationship of this gene with age at puberty or other reproductive traits.  

In a White Duroc × Erhualian crossbred population, Yang et al. (2008) reported a 

QTL on SSC1 (114 cM) explaining 3.9% of the phenotypic variance of age at puberty. 

Two more QTL on SSC8 (77 cM) and SSC17 (88 cM) explained 2% and 2.4% of the 

phenotypic variance for age at puberty, respectively (Yang et al., 2008). The Erhualian 

allele was associated with earlier age at puberty in all three QTL regions. 

Genome-wide Association Studies in Commercial Crossbred Populations 

Tart et al. (2013) conducted a GWAS for age at puberty in a population of Large 

White × Landrace crossbreds and Nebraska Index Line (NIL) dams mated with Landrace 

boars from two unrelated commercial lines. The NIL was originated by crossing a high 

indexing line selected for increased ovulation and embryonic survival for eight 

generations with a randomly selected control line (Ruız-Flores and Johnson, 2001). 
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Subsequently, the NIL was selected for increased litter size for 29 generations, while 

the last 12 generations also included within litter selection for increased growth and 

reduced backfat (Miller et al., 2011; Hsu and Johnson, 2014). In the GWAS by Tart et al. 

(2013), the top 1% of 1-Mb windows explained 11% of the genetic variation of age at 

puberty. Three SNPs located on SSC5 (27 to 28Mb), SSC8 (36 to 37 Mb), and SSC12 

(1.2 to 2 Mb) exhibited pleiotropic additive effects with age at puberty and the number of 

parities produced during lifetime. Individuals with five favorable alleles across the three 

loci reached puberty 7 days earlier and produced 1.36 more parities compared to 

individuals that did not carry any favorable alleles. AVPR1A was a candidate gene in the 

SSC5 pleiotropic QTL region. The gene encodes a G-protein-coupled receptor involved 

in social and reproductive behavior (Caldwell et al., 2008; Walum et al., 2008; Gobrogge 

et al., 2009). There were three non-synonymous SNPs identified in this gene (G31E, 

G256D, and K377Q). Homozygozity for the favorable 31G allele of AVPR1A G31E SNP 

(BGIS0007637) was associated with 5.8 days early expression of puberty and 0.53 more 

lifetime number of parities compared to homozygozity for the 31E allele (Tart et al., 

2013).  

In a composite gilt population developed using maternal and terminal Landrace, 

Duroc, and Yorkshire lines, Nonneman et al. (2016) reported two QTL on SSC12 (15 

Mb) and SSC7 (75 Mb) that explained 9.7% and 7.1% of the total genetic variance of age 

at puberty, respectively. The most interesting candidate gene on SSC12 was GH1. A 

reduction of serum growth hormone levels was observed towards puberty in gilts (Klindt 

and Stone, 1984). Insufficiency of growth hormone caused ovarian dysfunction leading to 

problems in sexual maturation and irregular menstrual cycle in women (Spiliotis et al., 
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2003). The candidate gene reported on the SSC7 QTL region was PRKD1. Although a 

direct relationship of this gene with fertility was not reported, it is involved in body mass 

index in humans. Wang et al. (2006) reported that as body mass index increased, the age 

at puberty decreased in humans.  

Six common QTL regions for age at puberty were reported by Tart et al. (2013) 

and Nonneman et al. (2016). Candidate genes in these regions (IQCHI and RORA, SSC1; 

CRTC1, SSC2; AQP8 and GPRC5B, SSC3; NEGR1, SSC6) were also identified as 

candidates for age at menarche in humans (Elk et al., 2010; Demerath et al., 2013). 

CRTC1 on SSC2 is involved in the Leptine-Kisspeptin-GnRH signalling pathway. Leptin 

increases the expression of CRTC1 in the hypothalamus and CRTC1 increases the 

expression of kisspeptin, which then activates GnRH to initiate puberty (Li et al., 2008). 

A deletion in the mouse RORA gene was associated with delayed puberty and lower 

number of mature oocytes compared to wild type mice (Guastavino et al., 1992).  

A potential QTL reported by Tart et al. (2013) on SSC10 (70 to 70.9 Mb) was 

also reported by Rohrer et al. (1999) and Nonneman et al. (2016). AKR1C2 is a candidate 

gene located in this region. AKR1C gene family members are involved in regulation of 

steroid hormones during puberty (Griffin and Mellon, 2001) and teat number (Hirooka et 

al., 2001). A non-synonymous SNP in AKR1C2 gene was associated with age at puberty 

in a Meishan, Landrace, and Large White composite population (Nonneman et al., 2006). 

Nonneman et al. (2014) reported another QTL on SSC14 (114.6 Mb) overlapping 

NHLH2 gene. Mice deficient in NHLH2 had decreased number of GnRH neurons in the 

hypothalamus. Targeted deletions in the NHLH2 gene were associated with increased age 

at puberty and shorter reproductive lifespan (Johnson et al., 2004; Cogliati et al., 2007).  
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QTL and Candidate Genes for Age at Puberty in Other Livestock Species 

Cattle 

Bos indicus (e.g. Brahman) and Tropical Composite breeds are typically older at 

puberty (22 to 40 months with an average of 25 months) (Nogueira, 2004; 

Abeygunawardena and Dematawewa, 2004; Fortes et al., 2012) compared to Bos taurus 

breeds (12 to 15 months) (Thallman et al., 1999; Day and Nogueira, 2013). Selecting for 

early pubertal females, especially in late maturing tropical breeds is important to improve 

their herd reproductive performance.   

A moderate heritability was reported for age at puberty in Australian Brahman  

(h2 = 0.56) and Tropical Composite (h2 = 0.52) heifers. Age at puberty was defined as the 

age at which the first corpus luteum was detected after frequent ovarian ultrasound scans 

(Fortes et al., 2012; Hawken et al., 2012). In a GWAS for age at puberty in Brahman, a 

major QTL was identified on BTA14 (22 to 28 Mb) (Fortes et al., 2012; Hawken et al., 

2012). The top marker (BTB-02056709) located at 25 Mb explained 5.1% of the genetic 

variation for age at puberty. Another marker (Hapmap46986-BTA-34282) in the same 

region explained 4.7% and 2.3% of genetic variance in both Brahman and Tropical 

Composites, respectively (Hawken et al., 2012). The top QTL in Tropical Composites 

was mapped on BTA5 (96 Mb) and the top marker explained 4% of the genetic variation 

for age at puberty (Hawken et al., 2012).  

The QTL on BTA14 was reported for various other bovine phenotypes (e.g. 

weight, stature, height, and prolificacy traits) suggesting pleiotropic effects associated 

with this region (Fortes et al., 2016). Two genes, PENK and PLAG1 were potential 
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candidates for age at puberty in this region. PENK regulates the secretion of GnRH in 

mammals (Taylor et al., 2007). In sheep peripubertal progesterone surges during puberty 

transition increased the expression of PENK (Taylor et al., 2007). Canovas et al. (2014) 

also observed increased expression of PENK in the hypothalamus of heifers reaching 

puberty, suggesting a role of PENK in puberty onset mainly via regulating GnRH 

expression in the hypothalamus.  

PLAG1 gene is associated with fertility, litter size, pre-and post-natal growth traits 

in mice (Hensen et al., 2004) and reduced average pause length in egg laying in chicken 

(Chen et al., 2007). Karim et al. (2011) identified a G to C nucleotide substitution 

(rs109231213) located in the 3’ UTR of PLAG1 gene associated with bovine stature. The 

SNP was also responsible for differential expression of PLAG1. Fortes et al. (2013a) 

evaluated the effect of this SNP on fertility, carcass, and feed efficiency traits in Bos 

taurus (no age at puberty data available), Bos indicus, and Tropical Composite cattle. The 

C allele was associated with late age at puberty in Bos indicus (+38 days) and Tropical 

composites (+25 days), but also with increased hip height, and weight. The C allele 

frequency was intermediate in Bos indicus (0.52) and Tropical Composites (0.68), but 

near fixation in Bos taurus (0.96). Less heterozygosity observed in this region especially 

in Bos indicus indicates a recent, strong selection for this mutation. Due to its favorable 

effects on growth traits, it can be speculated that heifers with a larger frame size were 

selected as replacements, thus, increased the frequency of the C allele, despite its 

unfavorable effects on age at puberty.  

Canovas et al. (2014) characterized the transcriptome of five bovine tissues 

related to reproduction (hypothalamus, pituitary gland, ovary, uterus, and endometrium) 
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in pre- (n = 4) and post- (n = 4) pubertal Brangus (5/8 Angus × 3/8 Brahman) heifers. 

The largest number of upregulated genes (204 out of 275 genes) was observed in the post 

puberty hypothalamus. The most significant DEGs in the hypothalamus were AVP and 

OXT, encoding hormones involved in complex sexual and maternal behavior. The most 

significant DEGs in uterus and endometrium were TDGF1 and PENK, both involved in 

GnRH regulation, estrus cycle, embryonic development, and early pregnancy. These 

genes were also upregulated in hypothalamus and pituitary of post pubertal heifers. SIX6 

and PROP1 were differentially expressed in the endometrium and hypothalamus and 

were involved in regulating GnRH secretion, pituitary development, and expression of 

reproductive hormones (LH, FSH, prolactin etc.) (Canovas et al., 2014). SIX6 is part of 

the SIX family, an important group of transcription factors involved in developmental 

processors and tissue differentiation. Differential expression was also observed for other 

SIX family members (e.g. SIX3 and SIX5) in Brahman, Brangus, or both breeds (Fortes et 

al., 2016). Integrating transcriptomic data with GWAS uncovered seven DEGs 

(MGC157266, C10H11ORF46, PENK, ELF5, FAM19A4, CPNE5, and MMD2) 

overlapping QTL for age at puberty (Canovas et al., 2014). Candidate polymorphisms 

potentially associated with the observed effects were identified within the majority of 

these genes.  

The IGF1 pathway plays a major role in initiating puberty onset and other 

reproductive functions, mainly through regulating GnRH neurons in the hypothalamus 

(Fortes et al., 2013b). In a candidate gene approach, SNPs were identified in IGF 

pathway genes associated with age at puberty in both Brahman and Tropical Composite 

breeds (Fortes et al., 2013b). A SNP in the IGF1R gene had the strongest effect (P < 
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0.00009) explaining 2% of the genetic variation of age at puberty with an estimated 

effect of 49 days in Brahmans. Two other SNPs in IGFIR were found in Brahmans and 

Tropical Composites associated with age at puberty.  

Sheep 

Haldar et al. (2013) used whole genome sequencing and candidate gene approach 

to identify genes and polymorphisms associated with age at puberty in New Zealand 

Davisdale sheep. Ewes usually reach puberty between five to 12 months depending on 

the breed and season of birth (Haldar et al., 2013). Four rams representing extremes for 

their daughter’s age at puberty were selected for whole genome sequencing. Two non-

conservative missense SNPs (R62C and P1019S) in LEPR gene were identified affecting 

age at puberty in ewes (P < 0.001). The R62C SNP was located near two cysteine 

residues that were highly conserved across species. The P1019S was also located at a 

relatively conserved region. Approximately 93% of the ewes homozygous for the wild 

type allele for both SNPs (R62 and P1019) attained puberty before 1 year of age where as 

only 70% of the ewes homozygous for the mutant alleles (C62 and S1019) attained 

puberty before 1 year of age. Ewes that were homozygous for the C62 and S1019 alleles, 

but attained puberty before 1 year of age were 17 days older at puberty compared to their 

wild type counterparts. Leptin is synthesized in the white adipocyte tissues (Garcia et al., 

2002). Once the females reach an optimum body fat mass threshold, leptin signals the 

hypothalamus to initiate puberty. As a result, increased level of leptin has been observed 

during puberty in livestock species (Garcia et al., 2002; Rosales Nieto et al., 2013). 
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QTL and Candidate Genes for Age at Menarche in Humans 

 Female reproductive cycle in humans starts with the first menstrual bleeding 

known as menarche. In a comprehensive study including data collected from 67 

countries, age at menarche ranged from 12 to 16.2 years with a mean of 13.5 years 

(Thomas et al., 2001). Over the decades, the mean age at menarche has shown a steady 

decline from 13.3 years in the early 1900s to 12.4 years in 1980s in different ethnic 

groups in the United States (McDowell et al., 2007). A similar pattern was reported from 

other parts of the word including the Netherlands (Fredriks et al., 2000), Spain (Cabanes 

et al., 2009), Korea (Ahn et al., 2013), and Thailand (Jaruratanasirikul et al., 2014).  

Age at menarche is an important indicator of subsequent reproductive events such 

as age at first conception (Sandler et al., 1984) and probability to become pregnant 

(Zhang et al., 2017). Women that reach menarche later than 14 years were less likely to 

become pregnant compared to women that reached menarche at 13 to 14 years (Zhang et 

al., 2017). Early age at menarche (< 12 years) is associated with several health risks 

including breast cancer (Peeters et al., 1995), high blood pressure and glucose intolerance 

(Remsberg et al., 2005), and cardiovascular diseases (Lakshman et al., 2009).  

Candidate Gene Approach 

Heritability estimates for age at menarche based on twin and familial studies were 

moderate to high (h2 = 0.44 to 0.95) (Kaprio et al., 1995; Towne et al., 2005; Anderson et 

al., 2007) suggesting that genetic factors play a major role in the variation of this trait. 

Before the era of high throughput genotyping and deep DNA and RNA sequencing, 
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candidate gene approach was utilized to identify genetic sources associated with 

variation in menarche onset. Since hormones involved in the hypothalamus-pituitary-

gonadal axis play a major role in the timing of menarche (Barbier, 2014), they were 

studied extensively to identify polymorphisms associated with menarche (Table 1.1).  

Onset of menarche is initiated with the increased exposure of reproductive tissues 

to estrogen. This exposure is facilitated via two main estrogen receptors (ER), ERα and 

ERβ. Several ER gene polymorphisms were associated with age at menarche and other 

reproductive disorders in humans (Table 1.1, Stavrou et al., 2002). CYP gene family 

members play a major role in biosynthesis and metabolism of ovarian hormones 

(Kadlubar et al., 2001). Polymorphisms in two key genes (CYP17 and CYP19) involved 

in biosynthesis of estrogen in the lipid precursor cells were associated with age at 

menarche (Table 1.1, Guo et al., 2006). IGF1 is considered an ideal candidate gene for 

onset of menarche since it is involved in metabolic processes in the hypothalamic-

pituitary-ovarian axis in mammals via regulation of reproductive hormones (Table 1.1). 

IGF1 is known to stimulate GnRH activity (Belgorosky and Rivarola, 1998), FSH-

mediated production of estradiol and progesterone (Zhao et al., 2007), and GnRH and LH 

release in rats (Hiney et al., 1991). Vitamin D receptor (VDR) also plays a role in 

reproductive organ development (Yoshizawa et al., 1997). In mice, a disrupted VDR gene 

failed to form fully functional ovaries. Polymorphisms in VDR gene were known to affect 

age at menarche (Table 1.1; Kitagawa et al., 1998). 

Genome-wide Association Studies 

Application of high throughput genotyping and GWAS for age at menarche began 
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with four large-scale (n = 15,000 to 18,000) studies carried out in women of European 

ancestry (He et al., 2009; Ong et al., 2009; Perry et al., 2009; Sulem et al., 2009). All 

studies reported genetic variants located on HSA 6q21, in or near LIN28B, a gene 

associated with age at menarche. The SNP rs314276 located within intron 2 of LIN28B 

explained 0.2% of the genetic variance and each C allele was associated with 0.12 years 

earlier expression of menarche (P =2.8 × 10-10; Ong et al., 2009). Two C/T nucleotide 

substitutions (rs314280 and rs7759938) located near LIN28B were also associated with 

age at menarche (P =1.8 × 10-14 and P =7.0 × 10-9, respectively) (Sulem et al., 2009; 

Perry et al., 2009). These variants were also associated with development of secondary 

sex characteristics (e.g. breast development and pubertal hair growth), height, and body 

mass index (Ong et al., 2009; Sulem et al., 2009).  

The LIN28B is a small (<30kDa) RNA binding protein mainly expressed in 

embryonic stem cells to maintain their pluripotent state (Thornton and Gregory, 2012). 

The LIN28 members bind to let-7 miRNA and regulate Let-7 expression during 

embryonic development and stem cell differentiation. A transgenic mouse model 

overexpressing LIN28A exhibited increased body size and delayed expression of puberty 

suggesting the involvement of the LIN28 family members on age at menarche.  

He et al. (2009) and Perry et al. (2009) reported another intergenic region with a 

major signal for age at menarche located near HSA 9q31.2. The largest effect in this 

region was observed for rs2090409, the A allele having associated with approximately 

0.1 years earlier onset of menarche. The closest gene to this SNP is TMEM38B. In mice 

this gene is highly expressed in brain and loss of function mutations have resulted in 

neonatal lethality (Perry et al., 2009). In humans, mutations in this gene cause bone 
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malfunctions such as osteogenesis imperfecta (Volodarsky et al., 2013; Rubinato et al., 

2014).  

Following the initial GWAS for age at menarche, Elk et al. (2010) carried out a 

meta-analysis of 32 association studies using women with European descent  

(n = 87,802). This study confirmed the previously reported two loci at HSA 6q21 and 

9q31.2. In addition, 30 novel loci were identified at genome-wise significance level. 

Among them, a SNP (rs1079866) located approximately 250 Kb downstream of INHBA 

explained the largest association with age at menarche. The protein coded by INHBA is 

involved in the biosynthesis of Inhibin A hormone. During expression of puberty, ovarian 

granulosa cells increase the production of inhibin A to act on anterior pituitary and 

hypothalamus to inhibit the secretion of FSH and GnRH, respectively (Burger, 1993). 

Four additional loci (in or near FTO, TRA2B, TMEM18, and SEC16B genes) overlapped 

with previously reported loci for body mass index. Wang et al. (2006) reported a strong 

negative genetic correlation between age at menarche and obesity related traits (e.g. fat 

mass, body mass index). Elk et al. (2010) observed that for all the four common loci, 

alleles that increase body mass index were associated with earlier age at menarche 

confirming the direction of the correlation observed by Wang et al. (2006). Pathway 

analyses identified coenzyme A and fatty acid biosynthesis as biological processes 

related to timing of menarche (Elk et al., 2010). 
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Table 1.1: Significant SNPs located in candidate genes for age at menarche in humans  

Gene SNP/restriction 
site 

Exon/intron Genotype 
method 

Effect on age at 
menarche 

P value  Population Sources 

ERα XbaI (X/x) 

 

Intron 1 PCR-RFLP XX genotype delayed 
menarche by 0.61 years 
compared to xx 
genotype 

0.017 North-Western 
Greece 

Stavrou et al., 
(2002) 

 PvuII (P/p) 

 

Intron 1  PP genotype delayed 
menarche by 0.24 years 
compared to pp 
genotype 

0.24 North-Western 
Greece 

Stavrou et al., 
(2002) 

ERβ AluI (A/G) 

 

3’ UTR 

 

PCR-RFLP AA genotype delayed 
menarche by 0.57 years 
compared to AG 
genotype 

0.005 North-Western 
Greece 

Stavrou et al., 
(2006) 

ERα 
and 
ERβ 

 

XbaI (X/x) 

PvuII (P/p) 

AluI (A/G) 

 

  XX/PP genotype at ERα 
and AA genotype at ERβ 
delayed menarche by 
0.89 years compared to 
alternate homozygotes 

0.042 North-Western 
Greece 

Stavrou et al., 
(2006) 
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Gene SNP/restriction 
site 

Exon/intron Genotype 
method 

Effect on age at 
menarche 

P value  Population Sources 

CYP17 MspAI 

(A1/A2) 

5’ UTR PCR-RFLP A1A1 genotype delayed 
menarche by 0.5 years 
compared to A1A2 
genotype 

0.027 Japanese Gorai et al., 
(2003) 

CYP19 rs2445761 
(A/G) 

  

 

Intron 1 Illumina 
BeadArray 
SNP 
genotyping  

GG genotype delayed 
menarche by 1 year 
compared to AA 
genotype 

1.2 × 10 -6 Caucasian Guo et al., (2006) 

IGF1 rs6214 

(A/G) 

GA haplotype 

Exon 4 Illumina 
BeadArray 
SNP 
genotyping 

GA haplotype carrying 
A allele at rs6214 
delayed menarche by 
0.3 years than non-
carriers 

0.024 Caucasian Zhao et al., 
(2007) 

VDR ApaI 

(A/a) 

 PCR-RFLP aa genotype delayed 
menarche by 0.4 years 
compared to Aa 
genotype 

< 0.05 Japanese Kitagawa et al., 
(1998) 

ERα 
and 
VDR 

XbaI 

PvuII 

ApaI 

  PX haplotype at ERα 
and aa genotype at VDR 
delayed menarche by 
0.5 years  

0.01 Chinese Xu et al., (2005) 
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CHAPTER 2: INTEGRATION OF GENOMIC APPROACHES TO 

IDENTIFY SOURCES OF VARIATION IN AGE AT PUBERTY AND 

REPRODUCTIVE LONGEVITY IN SOWS* 

* Parts of this chapter were published in Journal of Animal Science (2017) 

INTRODUCTION 

Sow reproductive longevity, or the number of litters produced by sows during 

their lifetime, plays an important economic role in the swine industry. Specifically, 

reproductive failure accounts for approximately 35% of culling rates in breeding females, 

causing economic and welfare barriers for swine producers (Mote, 2008). The sows that 

express puberty early in life, conceive, and farrow more than three litters during their 

lifetime are more likely to recover the development and maintenance costs (Stalder et al., 

2003; Tart et al., 2013). Currently, approximately 43% of females fail to meet this 

requirement and are removed from the breeding herd at a young age (Mote, 2008). Thus, 

identifying and selecting females with greater reproductive longevity prior to retaining 

them in the herd would increase the number of parities produced by a sow during 

lifetime, improving sustainability of the swine industry.  

Selection for reproductive longevity is challenging due to its complex nature, 

expression late in life, and low heritability (Tart et al., 2013). Reproductive longevity is a 

composite phenotype that includes multiple fertility traits. There is substantial interest in 

identifying early indicators of reproductive longevity. Age at puberty was shown to be an 
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early indicator of reproductive longevity. Specifically, early onset of puberty was 

associated with a greater probability of sows to produce multiple parities during lifetime 

(Serenius and Stalder, 2006; Tart et al., 2013). However, determining the age at which a 

gilt expresses first estrus in commercial settings is impractical, because it is tedious and 

time consuming, thus, not used as a selection criterion for breeding programs.  

Age at puberty is characterized by a moderate to high heritability (mean h2 = 0.37, 

16 studies, reviewed by Bidanel, 2011) compared to other reproductive traits such as 

litter size (mean h2 = 0.11, 118 studies, Bidanel, 2011) or reproductive longevity 

measured as lifetime number of parities produced (h2 = 0.04, Tart et al., 2013). We 

hypothesize that major genetic variants associated with differences in puberty onset will 

explain a portion of the variation in reproductive longevity. A possible solution for 

selecting superior breeding females would be to complement traditional fertility related 

phenotypes used currently in breeding programs with a panel of pleiotropic DNA markers 

associated with age at puberty and reproductive longevity. Such a panel could be used 

early in life and assist selection decision of females without having to record age at 

puberty.  

In the current study, various genomic approaches such as genome-wide 

association, RNA and whole genome sequencing, and gene networks and pathway 

analysis were used to determine candidate genes and pleiotropic sources of genetic 

variation associated with age at puberty and reproductive longevity in sows. These 

genetic variants will be integrated into a novel genotyping array to improve accuracy of 

genomic prediction of sow fertility while facilitating a reduction in sow replacement rates 

and addressing welfare concerns. 
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MATERIALS AND METHODS 

This study was approved by the University of Nebraska-Lincoln (UNL)  

Institutional Animal Care and Use Committee. 

The Resource Population 

The UNL swine resource population was developed to study the roles of genetics 

and nutrition on reproductive development and longevity of sows. A total of 1,644 

females produced in 14 batches (B) that have been extensively phenotyped and 

genotyped were used (Figure 2.1). Detailed description of the resource population was 

previously reported in Miller et al. (2011). Briefly, the dams of the experimental females 

were Large White (LW) × Landrace (LR) crossbreds (B1 to B4) and Nebraska Index Line 

(NIL) (B1 to B14). The NIL originated from commercial crossbreds (LW × LR) and was 

selected for increased litter size for 29 generations, while the last 12 generations also 

included within litter selection for increased lean growth (Hsu and Johnson, 2014). The 

dams were bred with Landrace (LR) boars from two unrelated commercial lines. The first 

batches (B1 to B4) were sired by boars from LR1 line and the remaining batches (B5 to 

B14) were sired by boars from LR2 line. Each batch is considered a separate generation 

of gilts produced by a distinct group of dams and sires. The number of sires per batch 

ranged from 5 (B13) to 12 (B3, B5, and B14). The number of dams in each batch varied 

from 21 (B8) to 65 (B2). The size of the batch varied from 91 to 153 gilts. Due to 

farrowing space limitations (96 pens), not more than 110 randomly selected gilts were 

bred per batch. 
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Figure 2.1: Schematic representation of the genomic approaches used in the study. 
The dams of the experimental gilts were Large White × Landrace (LW × LR) crossbreds 
and Nebraska Index Line (NIL) sows. The dams were bred with LR boars from 2 
unrelated commercial lines. The genetic approaches used included genome-wide 
association (GWAS) to identify quantitative trait loci (QTL) associated with age at 
puberty, and genome and RNA sequencing (RNAseq) to identify functional variants. The 
candidate SNPs will be incorporated into a custom SNP chip and validated in ~3,000 
commercial pigs. 

Experimental Diets  

All gilts were fed a common diet from birth to 123 days of age. During the 

development period (pre-breeding, 123 to 240 days), until they were moved to the 
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breeding barn, gilts were allocated either to an ad libitum standard corn-soybean based 

diet (diet A), an energy-restricted diet with approximately 20% less metabolizable energy 

(ME; diet B) or an energy and lysine restricted diet (diet C) as described in detail in 

Trenhaile (2015). In B14, diet C (previously used in B11 to B13) was replaced with a 

high-lysine diet containing the same ME as in the standard diet and ME:lysine ratio as in 

the energy restricted diet. After being moved to the breeding barn, all the animals were 

fed a common standard diet. All diets met or exceeded nutritional requirements (NRC, 

2012). 

Reproductive Phenotypes 

Detection of age at puberty in experimental gilts began at approximately 130 days 

of age and continued until all the gilts within a development pen expressed estrus at least 

twice or until they reached 240 days of age. Detection of estrus was achieved by moving 

all gilts from a pen once a day to an adjacent pen where they were exposed to a mature 

intact boar for 15 min. Age at puberty was defined as the age at which a gilt first 

expressed estrus. The experimental females were maintained through 4 parities unless 

they died or were culled. Culling occurred due to failure to express estrus before 240 days 

of age, failure to conceive or farrow, or for major feet and leg problems. Litter size traits, 

including total number of piglets born (TNB), number of piglets born alive (NBA), 

number of mummified and stillborn piglets, and reproductive longevity measured as 

lifetime number of parities produced (LTNP), were recorded for up to 4 parities. 

Reproductive longevity was also analyzed as the probability of the sows to produce 

successive parities. The effect of age at puberty (as a covariate) on these probabilities was 



	

	 	 	 	

64 

	

42 

tested using generalized linear mixed models as described in Tart et al. (2013). 

Genotyping 

Tail snips or ear notches were collected from gilts shortly after birth. DNA was 

isolated from these tissues (n = 1,644) using the DNeasy or Puregene tissue kits (Qiagen, 

Valencia, CA). The quality of DNA was assessed using a NanoDrop (Thermo Fisher 

Scientific Inc., Waltham, MA) or Epoch (BioTek Inc., Winooski, VT) 

spectrophotometers. All gilts used in the study were genotyped with the Porcine SNP60 

BeadArray (Illumina Inc., San Diego, CA). Genotypes with an Illumina quality score less 

than 0.4 and samples and SNPs with a call rate less than 80% were removed leaving 

53,529 SNPs for further analysis.  

Genome-wide Association Analyses 

The proportion of genetic variance for age at puberty and LTNP in experimental 

gilts explained by high-density SNP genotypes was estimated using a BayesB model 

implemented by GenSel software (Fernando and Garrick, 2008). Bayes Interval Mapping 

(BayesIM), a model recently introduced by Kachman (2015), was also used to estimate 

the proportion of genetic variance for age at puberty explained by high-density SNP 

genotypes. BayesIM fits haplotypes into association analysis rather than individual SNPs 

as is the case of BayesB. The SNPs were mapped to the Sscrofa10.2 reference genome 

assembly (http:// support.illumina.com/sequencing/sequencing_ software/ igenome.html 

– [accessed March 7, 2016]). The BayesB analysis was carried out by setting the π value 

to 0.99, assuming that 0.01 of the SNPs have a nonzero effect on the analyzed phenotype. 
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Contemporary group (batch and diet), genetic line, litter/dam, sire, and developmental 

pen were included as fixed effects. The Markov Chain Monte Carlo chain included 

41,000 samples with the first 1,000 being discarded as burn in. The posterior mean of the 

genetic and phenotypic variances explained by each 1-Mb window was calculated using 

effects generated from each 40th sample (Tart et al., 2013). Genomic estimated breeding 

value (GEBV) was calculated for all gilts using high-density genotypes and the mean 

posterior SNP effects. The BayesIM was performed setting the pi value to 0.96, 

quantitative trait loci (QTL) frequency to 200 Kb, number of haplotype states to 16, 

average haplotype length to 500 Kb, and number of iterations to estimate haplotype 

parameters to 25. There were 82,000 iterations included in the analysis with first 1,000 

iterations discarded as burn in. Fixed effects included contemporary group (batch and 

diet) and genetic line where as random effects included litter/dam and developmental 

pen. 

Gene Ontology Analysis 

 The non-overlapping 1-Mb windows across the genome were ranked 

based on the genetic variance explained for age at puberty and LTNP. The top 1% of 1-

Mb windows associated with largest proportion of genetic variance were extended by 0.5 

Mb in both directions. Gene annotation of positional candidate genes was obtained using 

the Sscrofa 10.2 genome build and gene ontology terms were obtained using BIOMART 

tool in the Ensembl database (version 86; 

https://may2017.archive.ensembl.org/biomart/martview/3107c5e5934984add6a0f70708e

e5537 [accessed 16 March 2016]). Human orthologs of swine positional candidate genes 
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were obtained from Ensembl Genes 86 Database for pathway and functional analysis 

for DAVID (https://david.ncifcrf.gov) and Ingenuity Pathway Analysis (IPA).  

Genome Sequencing 

A subset of 20 sires, representing both ends of the distribution for the average 

GEBV of daughters age at puberty, were selected for whole genome sequencing. Single-

end sequencing was carried out using Ion Proton sequencing as described in the 

manufacturer protocol (Thermo Fisher Scientific Inc., www.thermofisher.com). Sequence 

reads were filtered with the prinseq-lite software (Schmieder and Edwards, 2011) by, 1) 

trimming bases on both read ends when the mean quality in a sliding window of 2 bases 

dropped below 20, 2) removing duplicates if they occur more than 6 times, 3) removing 

any read with a non-called base, and 4) requiring all reads to be at least 30 nucleotides 

long. Filtered and trimmed sequence reads were aligned to the Sscrofa 10.2 genome 

assembly downloaded from Ensembl using the bowtie2 package. Only the high-quality 

alignments (Phred score ≥ 30) were retained for downstream analysis (Langmead et al., 

2009; Langmead and Salzberg, 2012). In order to improve SNP detection, realignment 

around indels was performed using GATK software tools, RealignerTargetCreator and 

IndelRealigner (DePristo et al., 2011) leveraging the data available in the dbSNP 

database (March 2012; ftp://ftp.ncbi.nih.gov/snp/organisms/pig_9823) followed by 

GATK’s BaseCalibrator to reduce the effects of sequence artifacts. Genetic variants were 

uncovered using the multiallelic and rare-variant options of BCFtools using default 

settings (Narasimhan et al., 2016). 
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RNA Sequencing 

Collection of the hypothalamus from pre-pubertal gilts was performed before boar 

exposure, approximately 2 weeks before the gilts were 140 days of age (n = 12 gilts from 

12 litters). The pubertal status was confirmed by examining the ovaries at slaughter. The 

post-pubertal group was composed of gilts fed the three experimental diets, A (n = 10), B 

(n = 8), and C (n = 7). Age at puberty in the UNL population ranged from 128 to 256 

days with an average at 166 days.  

The hypothalamus was dissected from the brain by making the following cuts: 

rostral to the optic chiasm, caudal to the mammillary body, lateral to the hypothalamic 

sulci, and dorsal to the anterior commissure. Hypothalami from pre-pubertal (n = 12) and 

post-pubertal gilts (n = 25) representing the same litters were collected and frozen in 

liquid nitrogen vapor before being placed on dry ice and stored at -80 oC until the 

isolation of arcuate nucleus (ARC) from the hypothalamus.  

The ARC was isolated using a micropunch procedure. Frozen coronal sections 

(250 µm) were cut using a CM1950 cryostat (Leica Biosystems, Inc., Buffalo Grove, IL) 

and mounted onto charged Premier microscope slides (Life Science Products Inc., 

Manassas, VA). Sections containing the ARC were identified based on anatomical 

references (Kineman et al., 1988; Kineman et al., 1989; Amstalden et al., 2010). A 2-mm 

biopsy punch (Miltex Inc., York, PA) was used to bilaterally microisolate the ARC from 

each section. Micropunches were immediately transferred to a frozen microtube and 

placed on dry ice and stored at -80 oC until isolation of RNA. Total RNA was isolated 

from micropunches by extraction with Trizol (Thermo Fisher Scientific Inc.) followed by 
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precipitation with isopropanol. The pellet was resuspended in RNAse-free water and 

RNA purified on RNEasy Mini Columns (Qiagen) according to the manufacturer’s 

protocol for on-column digestion with DNase. The quantity and quality of RNA were 

determined by NanoDrop 8000 spectrophotometer (Thermo Fisher Scientific Inc.) and 

microfluidic analysis with an automated electrophoresis system using Agilent 2100 

Bioanalyzer (Agilent Technologies, Foster City, CA). 

The RNA sequencing was performed using Ion Proton sequencing as described in 

the manufacturer protocol (Thermo Fisher Scientific Inc., www.thermofisher.com). The 

RNA sequencing reads were aligned to the Sscrofa10.2 reference genome as explained in 

the two-step alignment approach used for Ion Proton transcriptome data (Blair et al., 

2014). Briefly, the adaptors attached to the RNAseq reads were removed using Cutadapt  

(version 1.4; Martin, 2011). The quality of raw reads including basic statistics, sequence 

quality, and content were examined using FastQC (version 0.11; Andrews, 2010). The 

sequence reads were trimmed and filtered using Trim galore (version 0.4; Krueger, 

2015). Phred33 score was used for quality trimming. Low-quality bases in the 5’ end 

were removed and nucleotides with quality base calls less than 22 were trimmed off from 

the 3’ end. The filtered reads were first aligned to the build 10.2 Sscrofa reference 

genome using Tophat (version 2.1; Trapnell et al., 2012; Blair et al., 2014). The 

unmapped reads from Tophat were then realigned to the reference genome using the local 

option of the Bowtie package (version 2.2; Langmead and Salzberg, 2012; Blair et al., 

2014). This option aligns long reads to the genome by trimming the ends of reads to 

achieve the greatest possible alignment score. The alignment outputs from Tophat and 

local Bowtie were merged with Picard (version 2.1.1; Wysoker et al., 2013). The number 
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of reads mapped to each gene in the reference annotation was obtained using HTSeq 

(version 0.6.1p1; Anders, 2014).  

Gene Expression Profiling and Pathway Analysis 

Differentially expressed genes (DEGs) comparing pre and post pubertal gilts as 

well as gilts that exhibited puberty early (< 155 days of age) and late (> 180 days of age) 

were determined using DESeq2 package (Love et al., 2014). The DESeq2 uses a 

statistical approach based on a generalized linear model and a negative binomial 

distribution to obtain gene read counts and identify DEGs. The analysis was performed 

using the default parameters considering a gene being differentially expressed at adjusted 

P (Padj) < 0.1.  

Ingenuity Pathway Analysis used DEGs as input to identify specific pathways and 

regulatory networks. This software utilizes comprehensive record of literature available 

on Ingenuity Pathway Knowledge Base to transform a set of genes into number of 

relevant networks representing the relationship between genes, their upstream regulators, 

and downstream gene products. The Regulator Effects tool was used to identify the 

potential transcriptional regulators of DEGs and their predicted effect on gene expression. 

Currently, IPA does not support swine, therefore, human orthologs of swine DEGs were 

obtained from Ensembl Genes 86 Database. Fifty-eight swine DEGs with human 

orthologs were available for IPA.  
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RESULTS AND DISCUSSION 

Age at Puberty is an Indicator of Sow Reproductive Longevity 

Previously we reported that from a range of pre-breeding gilt phenotypes (birth 

weight, weaning weight, age at puberty, 230-day body weight, backfat thickness, and 

longissimus muscle area), age at puberty was the only phenotype that affected probability 

of a gilt to produce the first litter, regardless of their genetic line and development diet  

(n = 852; Tart et al., 2013). In an updated analysis including a larger data set (n = 1,428) 

we found that age at puberty affects the probability of the sows to produce up to three 

parities (P < 0.001). Consistent with our initial analysis (Tart et al., 2013), the likelihood 

of a female generating a parity increased as age at puberty decreased (Figure 2.2), 

confirming the observed effect of age at puberty on multiple parities. 

 

 

 

 

 

 

 

 

 

Figure 2.2. The effect of gilt age at puberty on the probability to produce up to 3 
parities. 	
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Age at puberty had the largest estimate of heritability from all the reproductive 

traits measured in our resource population (h2 = 0.42; Lucot et al., 2015). In comparison, 

the heritability of NBA and TNB for parity 1 was 0.16 and 0.12, respectively (Trenhaile 

et al., 2016). The contribution of combined SNP effects to the phenotypic variation was 

the largest for age at puberty (27.3%) and limited for litter size (< 10%; Table 2.1). The 

genetic variation of age at puberty is affected by many loci with relatively small effects 

and the probabilities of the major 1-Mb non-overlapping windows to have effects larger 

than the average windows are less than 0.30 (Figure 2.3). 

 

Table 2.1: Posterior means of variance components of age at puberty and litter size traits 
based on SNP effects estimated by BayesB model. 

Trait1 n Genetic 
variance 

Residual 
variance 

Total 
variance 

Genomic h2, % 

AP 1,644 93.09 195.31 268.50 27.2 

NBA-P1 903 1.04 12.63 13.67 7.6 

NBA-P2 903 0.30 11.60 11.90 2.5 

TNB-P1 903 0.36 9.29 9.65 3.7 

TNB-P2 903 0.38 12.04 12.42 3.1 

1AP = age at puberty (days); NBA-P1 = number born alive in parity 1 (piglets/litter); 
NBA-P2 = number born alive in parity 2 (piglets/litter); TNB-P1 = total number born in 
parity 1 (piglets/litter); TNB-P2 = total number born in parity 2 (piglets/litter). 
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Figure 2.3. Box plot of the probability of 1-Mb windows having effects greater than 
average (including quartiles and outliers) on fertility traits. Age at puberty (AP), 
number of piglets born alive at parity 1 (NBA-P1), and 2 (NBA-P2), total number of 
piglets born at parity 1 (TNB-P1), and 2 (TNB-P2). Age at puberty is a typical 
quantitative trait influenced by large number of genes with no evidence of major loci 
explaining substantial phenotypic variation. The probability of the major 1-Mb windows 
to have an effect greater than the average is less than 0.30. 

Identification of Genomic Regions and Candidate Genes Associated with Phenotypic 

Variation of the Targeted Traits 

Age at Puberty 

In order to uncover sources of variation that affect age at puberty, we employed 
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two Bayesian mixture models. Genome-wide association analysis carried out using a 

BayesB model uncovered major 1-Mb windows associated with age at puberty located on 

SSC2 (12 to 12.9 Mb), SSC9 (22 to 22.9, 82 to 82.9, and 106.2 to 106.9 Mb), and SSC13 

(211 to 211.9 Mb) that explained 0.32 to 0.61% of the genetic variation for age at puberty 

(Figure 2.4a). The top 1% of major 1-Mb windows (n = 26) explained 6.9% of the 

genetic variation of age at puberty. The top SNP located on SSC2 QTL (DIAS0004771, 

12.9 Mb) was shown to have significant additive effect on age at puberty (n = 1,614; P < 

0.01). As the number of favorable alleles increased age at puberty decreased by 2.4 days. 

The same top region on SSC2 (12.8 Mb) explained the largest fraction of the total genetic 

variance for age at puberty using BayesIM model (Figure 2.4b). A high pairwise 

correlation (r = 0.8) was observed between GEBVs obtained from SNP- (BayesB) and 

haplotype-based (BayesIM) models suggesting that both models captured common loci 

responsible for genetic variation (Figure 2.4c). Some of the major regions associated with 

age at puberty identified in the UNL population (top 1% 1-Mb windows) such as the 

regions on SSC5 (4 Mb) and SSC12 (57 Mb) were also reported from a different 

population of crossbred gilts (Nonneman et al., 2016). 

The top 1% of major 1-Mb windows mapped by both BayesB and BayesIM 

models uncovered positional candidate genes that have known post-pubertal reproductive 

functions such as fertilization (CLIC4, SSC6, 76 Mb; NR2F2, SSC7, 88.9 Mb), placental 

development (NR2F2, SSC7, 88.9 Mb), progesterone secretion and luteinisation (FZD4, 

SSC9, 22.9 Mb), and female pregnancy and embryo implantation (LIF, SSC14, 50.2 Mb).   
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Figure 2.4. Genome-wide association analysis for age at puberty. The autosomes from 
SSC1 to 18 and chromosome X are represented by different colors. A) BayesB model. 
Each dot represents a SNP. B) Bayes interval mapping (BayesIM) model. Each dot 
represents a 200 Kb haplotype. C) Correlation of the GEBV between BayesB and 
BayesIM models (r = 0.8). 
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Lifetime Number of Parities 

The combined Porcine SNP60 BeadArray SNP effects explained only a limited 

proportion (4%) of the phenotypic variation of LTNP. Genome-wide association using 

BayesB model identified top 1-Mb windows associated with LTNP on SSC1 (117 to 

117.9 Mb) and SSC13 (158.0 to 158.9 Mb) explaining 0.41% and 0.24% of the genetic 

variation, respectively (Figure 2.5).  

Figure 2.5. Genome-wide association analysis for lifetime number of parities 
(LTNP). The autosomes from SSC1 to 18 and chromosome X are represented by 
different colors. Each dot represents a SNP and there were 2 major 1-Mb windows 
located on SSC1 (117 to 117.9 Mb) and SSC13 (158.0 to 158.9 Mb) associated with 
LTNP.	
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The top 1% of the 1-Mb windows (n = 26) explained 3.6% of the genetic 

variation of LTNP. For the top SNP located on SSC1 QTL (ALGA0005365, 117 Mb), as 

the number of favorable alleles increased LTNP increased by 0.19 litters (n = 1,214; P < 

0.05). Positional candidate genes overlapping the top 1-Mb windows were identified 

implicated in reproductive functions such as estrogen receptor binding (TRIP4, SSC1, 

118.4 Mb), oocyte maturation and maintaining ovulation cycles (TYRO3, SSC1, 144.8 

Mb; WASH1, SSC5, 69.6 Mb), fertilization (NECTIN3, SSC13, 158.5 Mb), female 

pregnancy and embryo implantation (HSF1, SSC4, 0.6 Mb; FKBP4, SSC5, 69.5 Mb; 

LIF, SSC14, 50.2 Mb), fetal placenta generation (RSPO3, SSC1, 39.6 Mb; HEY2, SSC1, 

40.9 Mb), maternal placenta development (PRDX3, SSC14, 140.6 Mb), and in utero 

embryonic development (MAN2A1, SSC2, 119.1 Mb; HSF1, SSC4, 0.6 Mb; TEAD4, 

SSC5, 69.4 Mb; SRSF1, SSC12, 35.2 Mb). 

Pleiotropic Regions for Age at Puberty and Lifetime Number of Parities 

There was a weak negative correlation (r = -0.07, P = 0.006) between the GEBVs 

for age at puberty and LTNP based on SNP effects estimated by BayesB. Two common 

1-Mb regions (SSC2, 12 to 12. 9 Mb and SSC14, 50 to 50.9 Mb) were identified within 

the top 1% 1-Mb windows for both age at puberty and LTNP. The SSC2 QTL was 

located near a 1-Mb window identified in the same population as a potential selection 

sweep region for litter size traits (Trenhaile et al., 2016). Gene ontology analysis of 

P2RX3, a candidate gene in this area, indicated its involvement in embryo implantation 

and maintenance of pregnancy. Alleles fixed in NIL but polymorphic in lines not 

subjected to selection for sow fertility and litter size indicated P2RX3 as a potential 
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source of the large litter size in NIL (Trenhaile et al., 2016). The SSC2 QTL region 

also harbors many olfactory receptor genes (e.g. OR6Q1, OR9Q1, OR9Q2, OR10Q1, 

OR5B2, OR5B3, OR5B12, OR5B17, OR5B21) involved in detection of chemical stimulus 

and odorant binding. The olfactory cues from the boar are necessary to stimulate puberty 

in gilts (Pearce and Hughes, 1987). The olfactory receptor neurons provide sensory inputs 

to the olfactory bulb. Olfactory bulbectomy in gilts have delayed the puberty onset in the 

presence of a boar, compared to intact gilts, highlighting the importance of olfactory 

system in attaining puberty in gilts (Kirkwood et al., 1981). A positional candidate gene 

(LIF) located on SSC14 QTL region was associated with maternal processes involved in 

female pregnancy such as embryo implantation and decidualization (geneontology.org). 

The gene is highly expressed in the pig placenta (biogps.org). Point mutations in the 

coding region of LIF gene were associated with blastocyst implantation failure in humans 

(Stewart et al., 1992; Giess et al., 1999). 

Genome-wide association based on BayesB revealed that some of the SNPs 

without a physical location in the Sscrofa 10.2 genome build also represented an 

important group of the top 0.1% of SNPs associated with age at puberty (11 of the 53 top 

SNPs). Two of the unmapped SNPs, ASGA0092359 and ASGA0008471, are within the 

top three SNPs for their effect on age at puberty. The ASGA0008471 was shown to have 

additive pleiotropic effects (P < 0.05). The favorable homozygote genotype was 

associated with 4.3 days earlier expression of age at puberty (n = 1,614; P = 0.01) and 

0.29 more litters (n = 1,214; P < 0.10) compared to the alternate homozygote. Linkage 

disequilibrium (LD) estimates with multiple mapped SNPs from Porcine SNP60 

BeadArray revealed that ASGA0008471 is most likely located on SSC2 (2.5 to 2.9 Mb,  
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r2 > 0.25) and ASGA0092359 is located on SSC5 (65 to 68 Mb, r2 > 0.12). Once the 

updated genome build, Sscrofa 11.1 

(https://support.illumina.com/sequencing/sequencing_software/igenome.html [Accessed 

20 February 2018]) was released, the Porcine SNP60 BeadArray content including the 

unmapped SNPs (n = 5,121 SNPs) was mapped to the new reference genome using blat 

command line tool available from UCSC genome browser 

(http://hgdownload.soe.ucsc.edu/admin/ [Accessed 25 February 2018]). Ninety percent of 

the SNPs without a physical position in Sscrofa10.2 genome build were mapped to 

Sscrofa 11.1 reference genome confirming the chromosomal position of ASGA0008471 

(SSC2, 4.1 Mb) and ASGA0092359 (SSC5, 64.7 Mb) SNPs obtained from LD mapping.  

Whole Genome Sequencing Uncovered Potential Sources of Genetic Variation 

In order to identify genetic variants outside the limited capability of Porcine 

SNP60 BeadArray, we performed next generation genome sequencing on 20 sires that 

represents both ends of the distribution for average daughter’s GEBV for age at puberty. 

The average number of gilts with available GEBV per sequenced sire was 21.8. 

Individual genomic coverage varied from 16.2 to 26.7X with an average of 22.2X 

coverage per boar. The average length of the sequencing reads after filtering was 164.9 

bp. Following filtering with a Phred quality score (≥ 20) and pooled reads depth (≥ 20), 

11,896,069 SNPs and 1,074,512 indels were uncovered among the 20 samples. The 

majority of the discovered SNPs were intergenic (65.7%). Intronic SNPs were the most 

prevalent (96.3%) from all polymorphisms located in genes, followed by SNPs located in 

the 5’ and 3’ untranslated region (2.1%) and the coding region (1.6%). Some of these 
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polymorphisms, especially those located in the extended areas of the major 1-Mb 

windows associated with phenotypic differences for the targeted traits could be potential 

sources of genetic variation. 

RNA Sequencing of Arcuate Nucleus Provides Expression Profiling of Gilts with 

Different Puberty Status 

High throughput RNA sequencing reads were obtained from ARC from gilts 

representing pre- and post-pubertal time points, and early and late puberty gilts. On 

average, 55.3 million raw, single-end Ion Proton reads with an average length of 150 bp 

were obtained per gilt. After trimming the reads based on quality, 90% of the raw reads 

per gilt (~50 million) were available for transcriptome analysis. Using a 2-step alignment 

process (Blair et al., 2013) 94.4% of the trimmed reads were mapped to the genome and 

of those 45.1% of the reads were mapped to annotated genes. 

As expected, a large number of genes (n = 5.8K; Padj <0.1) were found 

differentially expressed between pre-pubertal and post-pubertal (early or late) gilts. 

Differential expression between early and late pubertal gilts was observed for 70 genes 

(Padj < 0.1), including genes involved in age at menarche in humans (LIN28B, SSC1, 

80.4 Mb) and energy homeostasis (FFAR2, SSC6, 40.2 Mb). The LIN28 proteins regulate 

micro RNAs involved in embryonic development and stem cell differentiation (Thornton 

and Gregory, 2012). A transgenic mouse model overexpressing LIN28A exhibited 

increased body size and delayed expression of puberty suggesting the involvement of 

LIN28 proteins in age at menarche (Thornton and Gregory, 2012). Arcuate nucleus is one 

of the major sites in the hypothalamus involved in integrating central and peripheral 
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signals that regulate energy homeostasis (Sahu, 2004; Hausman et al., 2012) and links 

nutrition with reproductive development in gilts (Barb et al., 2006), thus, we expected to 

see expression differences in genes involved in energy homeostasis between the two 

groups. However, FFAR2 and LIN28B were not located in the top 1% of QTL regions 

associated with age at puberty in our population.  

Fifty-five of the DEGs were up regulated in gilts exhibiting puberty at later ages 

compared to gilts with early age at puberty. Three of the DEGs (FAM111B; SSC2, 11.8 

Mb; CDADC1, SSC11, 18.8 Mb; and HERPUD2, SSC18, 42.1 Mb) overlapped with 

major (top 1%) QTL regions associated with age at puberty. FAM111B is associated with 

delayed puberty in humans (genecards.org). Genetic variants located upstream of the 

transcription start site (-1 to -500 bp) affecting potential cis-binding motifs were 

identified as possible sources of differential expression of these three genes and variation 

in onset of puberty. For example, SNP-affected motifs for two transcription factors (MAX 

and SP2) known to regulate the expression of both CDADC1 and FAM111B were 

identified in the proximal promoter of these genes. Using Ingenuity Pathway Analysis 

(IPA) Regulator Effects tool, 363 upstream regulators of the 70 DEGs were identified. 

Thirty-eight upstream regulators of six DEGs (CDKN1A, DPP4, FFAR2, LCN2, PGK1 

and SAMHD1) overlapped with major QTL regions for age at puberty identified in the 

UNL population. Missense SNPs were identified in four upstream regulators (RAD9A, 

SSC2, 3.8 Mb; APC SSC2, 121.5 Mb; IL17B, SSC2, 157.3 Mb; and CDCA2, SSC14, 

10.6 Mb), which could be potential trans-modulators and could influence variation in age 

at puberty via downstream differentially expressed genes.  

Ingenuity Pathway Analysis was also used to predict the downstream effects of 
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DEGs and to identify pathways and regulatory networks to which DEGs belong. There 

were five networks significantly enriched in the data set of 58 DEGs used in the analysis. 

One of the networks included candidate DEGs for age at puberty such as FAM111B and 

LIN28B as well as other genes and sex steroids (i.e. KISS1, KISS1R, ESR1, AR, and 

estradiol) involved in puberty onset (Figure 2.6). Estrogen receptor alpha activates 

release of kisspeptin from kisspeptin neurons in hypothalamic nuclei during puberty. 

KISS1 receptors are located on GnRH neurons and upon ligand binding stimulate 

pulsatile release of GnRH to initiate puberty (Mayer et al., 2010). In humans, loss of 

function mutations in KISS1 and their receptor (KISS1R) caused deficiency in GnRH 

secretion and delay in puberty emphasizing the importance of kisspeptin signaling in 

GnRH regulation and its involvement in puberty onset (Semple et al., 2005; Silveira et 

al., 2010). This specific network emphasizes the potential involvement of these DEGs in 

regulation of reproductive functions in mammals.  



	

	 	 	 	

82 

	

42 

 

Figure 2.6. The gene network identified using Ingenuity Pathway Analysis. This 
pathway included DEGs such as FAM111B and LIN28B and other genes and sex steroids 
involved in puberty onset such as KiSS1, KiSS1R, ESR1, AR, and βestradiol. 
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CONCLUSIONS 

The ultimate goal of this study was to identify genes and functional 

polymorphisms associated with early onset of puberty and reproductive longevity. To 

achieve this purpose, we combined the results obtained from genome-wide associations, 

genome and transcriptome sequencing, and gene expression profiling. A customized SNP 

array will be constructed incorporating the potential functional variants located in the 

regions with the largest effect on the targeted traits. The array will be applied in several 

commercial and research populations for evaluation. The SNP enriched regions with 

large effects on fertility traits will increase the ability of genomic information to be 

transferred between populations. Applying this approach when selecting replacement 

gilts will benefit the swine industry by lowering the production costs due to improved 

reproductive efficiency, reduction in sow culling and gilt replacement rates, and 

improving animal welfare.  
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CHAPTER 3: DEVELOPMENT AND GENOTYPE QUALITY 

EVALUATION OF “SOWPRO90”, A NEW GENOTYPING ARRAY 

FOR SWINE* 

* Parts of this chapter were published in Journal of Animal Science (2019) 

INTRODUCTION 

Sow fertility is one of the most important factors that impact productivity of 

swine operations (Serenius and Stalder, 2006). Sow reproductive traits are generally 

lowly heritable (Tart et al., 2013; Trenhaile et al., 2016) and expressed late in life making 

early selection for these traits difficult. Age at puberty is one of the earliest indicators of 

reproductive longevity (Tart et al., 2013). Late onset of puberty was associated with a 

reduction in service rate (Graves, 2015) and a decreased probability to generate multiple 

parities (Tart et al., 2013; Lucot et al., 2015). As a result, identification of pleiotropic 

sources that influence phenotypic variation of age at puberty and fertility traits expressed 

late in life such as sow reproductive longevity, would have an important impact on any 

modern genetic program.  

Disease susceptibility and exposure to other environmental stressors are critical 

factors that cause major economic losses for swine producers (Rowland et al., 2012; 

Engle et al., 2014). The innate and adaptive immunity play a major role in providing first 

and second line defense against pathogen entrance and clearance. Therefore, identifying 

genetic variants associated with higher disease resistance or genetic fitness are important 
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goals of swine industry. For example, recently, a group of North American swine 

genetic companies formed a consortium (PigGen Canada) to study the role of host 

genetics in susceptibility to important viral pathogens. 

Multiple genomic approaches carried out at University of Nebraska-Lincoln 

(UNL) and US Meat Animal Research Center (USMARC) including transcriptomic and 

genomic sequencing, genome-wide association (GWAS), and gene network and pathway 

analysis were integrated to identify candidate genes and potential genetic variants 

influencing fertility (Tart et al., 2013; Trenhaile et al., 2016; Nonneman et al., 2016b; 

Wijesena et al., 2017), innate and adaptive immune response (Engle et al., 2014; 

Kreikemeier et al., 2015; Walker et al., 2018), and SNPs with predicted loss of function 

(Keel et al., 2017). These variants were integrated into “SowPro90,” a custom Affymetrix 

Axiom myDesign SNP array. This application has the potential to improve genomic 

prediction for both fertility and disease related traits.  

Diverse genotyping platforms with varying SNP densities are used in genomic 

evaluation in different livestock species (Mullen et al., 2013; Berry et al., 2016; Biochard 

et al., 2018). Previous reports showed that quality metrics and distribution of quality data 

differ across genotyping platforms in human (Hong et al., 2012) and livestock (Berry et 

al., 2016). This study evaluated data obtained from two genotyping approaches, 

SowPro90 and Porcine SNP60 BeadArray, and established optimal quality control 

parameters across platforms. The findings and strategy for quality control used here could 

be helpful in identifying consistent, high quality genotypes for genomic evaluations, 

especially when integrating genotype data from different platforms. 
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MATERIALS AND METHODS 

This study was approved by the University of Nebraska-Lincoln Institutional 

Animal Care and Use Committee (Project ID: 1677). 

Animal Populations 

Tissue and DNA samples were available from 1,644 experimental sows from the 

UNL resource population. The sows were developed to investigate the effect of genetics 

and diet on their reproductive potential. The genetic makeup of dams of the experimental 

sows was comprised of Nebraska Index Line and commercial Landrace × Large White 

crossbred lines while the sires were from two unrelated commercial Landrace lines. 

During developmental (pre-breeding) period (123 to 240 days of age), gilts were 

subjected to different dietary treatments and starting at approximately 130 days of age 

they were subjected to daily estrus detection. The age at which a gilt expressed first estrus 

was defined as the age at puberty. In addition, litter size traits (i.e. total number of piglets 

born, number of piglets born alive, number of stillborn and mummified piglets, and life-

time number of parities produced) were also recorded for experimental animals up to four 

parities. A detailed description of the resource population and the phenotypic data 

collected was previously reported (Miller et al., 2011; Wijesena et al., 2017). In addition, 

tissue and DNA samples as well as fertility data were available from 2,309 animals from 

two commercial populations with different genetics including Landrace and Yorkshire 

pigs as well as maternal Landrace × Large White crossbred sows. 
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Genotypic Data Collection  

The DNA was isolated from tail tissue samples collected from the 1,664 sows in 

the UNL population generated in 14 batches as described in Wijesena et al. (2017). 

Genotyping was completed with Porcine SNP60 BeadArray versions 1 and 2 (Illumina 

Inc. San Diego, CA), and SNPs with a GenCall score ≥ 0.4 and SNPs and samples with a 

call rate ≥ 80% were retained for downstream analysis (n = 53,529; Wijesena et al., 

2017). In addition, 277 sows in the UNL population representing both extremes of the 

distribution for their genomic estimated breeding values (GEBVs) for age at puberty 

(approximately 10% of the gilts with GEBVs representing early age at puberty and 

approximately 8% of the gilts representing late age at puberty) were also genotyped with 

SowPro90 (Thermo Fisher Scientific Inc. Waltham, MA). Moreover, 2,309 animals from 

the two commercial populations including Landrace, Yorkshire, and crossbred animals 

were genotyped with SowPro90. 

Genomic Approaches for Novel Genetic Variants Identification 

RNA Sequencing 

The RNA sequencing data was obtained from multiple swine populations and 

tissues. These include the hypothalamic arcuate nucleus from pre pubertal (n = 12) and 

post pubertal gilts (n = 25) originating from the UNL population (Wijesena et al., 2017) 

and peripheral blood from commercial maternal crossbred (Large white × Landrace) pigs 

that expressed high and low levels of viremia following an experimental infection with 

Porcine circovirus 2b (PCV2b, n = 8, Walker et al., 2018). 
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The SNP detection was carried out using Genome Analysis Toolkit (GATK, 

version 3.1, DePristo et al., 2011) and Picard tools (version 2.1.1, Wysoker et al., 2013). 

Briefly, a sequence dictionary was created for the Sscrofa 10.2 reference genome 

(http://support.illumina.com/sequencing/sequencing_software/ igenome.html [accessed 7 

March 2016]) using CreateSequenceDictonary tool in Picard (version 2.1.1; Wysoker et 

al., 2013). Aligned RNA sequence BAM files were processed using Picard tools - 

AddOrReplaceReadGroups, MarkDuplicates, and ReorderSam. The sequence reads were 

split into exons and any leftover intronic regions were hard clipped using GATK 

SplitNCigarReads tool. The variants were called using the HaplotypeCaller tool and 

filtered using VariantFiltration tool in GATK (FisherStrand > 30.0 and QualitybyDepth < 

2.0; Van der Auwera et al., 2013). The individual VCF files generated for each sample 

containing high quality variant calls were then merged within each data set using GATK 

CombineVariant tool.  

Genome Sequencing 

Commercial Landrace sires (n = 20) representing both ends of the distribution for 

average genomic prediction values for their daughters’ age at puberty were selected for 

whole-genome sequencing (Wijesena et al., 2017). Eleven of the sequenced sires 

represented early age at puberty and nine sires represented late age at puberty. The 

sequence reads were mapped to Sscrofa 10.2 reference genome and DNA variants were 

detected using default settings in the multiallelic and rare-variant option of BCFtools 

(Wijesena et al., 2017). Seventy-two founders in a USMARC experimental swine herd 

(12 Duroc and 12 Landrace boars and 48 Yorkshire × Landrace composite sows) were 
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also sequenced to identify putative functional variants across the swine genome such as 

loss of function, non-synonymous, and regulatory SNPs (Keel et al., 2017). Variant 

calling and filtering were performed as described in Keel et al. (2017). 

Design of the SowPro90 SNP Array 

The SowPro90 SNP array was designed and manufactured based on Affymetrix 

Axiom myDesign technology (Thermo Fisher Scientific Inc. Waltham, MA) and included 

103,476 SNPs. The SNPs were obtained from sources mentioned above originated from 

transcriptomic and genome sequencing. In addition, SNPs from available commercial 

genotyping platforms, mainly Porcine SNP60 BeadArray were added to provide the 

necessary scaffold for imputation.  

Briefly, transcriptomic and genomic sequence data were used to identify SNPs 

located in genes and their proximal promoters (± 2 Kb region flanking the transcription 

start site [TSS]) that overlapped the top 1% of QTL for age at puberty discovered by 

GWAS in the UNL (Wijesena et al., 2017) and USMARC (Nonneman et al., 2016b) 

populations. In the UNL population the genes were identified in major 1-Mb windows 

extended by 500 Kb in both directions (n = 42 windows). These major windows 

explained the largest proportion of genetic variance for age at puberty (Wijesena et al., 

2017). Similarly, the genes overlapping major QTL for age at puberty in the USMARC 

population were identified in the 5-SNP QTL windows extended by 300 Kb in both 

directions (n = 222 windows) (Nonneman et al., 2016b). Another major portion of the 

array included SNPs located in genes with ontologies associated with innate and adaptive 

immunity, and also SNPs known to affect viral disease susceptibility (Walker et al., 2018; 
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Walker et al., 2019). The immunity related gene ontology terms were obtained from 

Ensembl BioMart (https://may2017.archive.ensembl.org/biomart/martview/[accessed 2 

May 2017]). Additionally, SNPs in the proximal promoter (-1 to -500 bp of TSS) of 

differentially expressed genes between gilts that expressed puberty at different ages, their 

upstream regulatory genes (e.g. transcription factors, Wijesena et al., 2017), genes 

overlapping selection sweep regions for litter size traits (Trenhaile et al., 2016), and 

genes associated with structural soundness (Trenhaile, personal communication) were 

included in SowPro90. A large majority of SNPs incorporated in the array were 

positional candidate gene-based, located in their coding (e.g. non-synonymous, 

synonymous, splice region, stop gained, and stop lost) and untranslated regions (5’ and 

3’). The position of the genes was identified based on Sscrofa 10.2 reference genome 

annotation. The potential functional SNP consequence was obtained using Ensembl 

Variant Effect Predictor 

(https://may2017.archive.ensembl.org/info/docs/tools/vep/index.html [accessed 25 May 

2017]). The SowPro90 array was also consisted of potential loss of function SNPs (Keel 

et al., 2017) as well as genetic markers for age at puberty identified in the USMARC 

studies (Nonneman et al., 2016a). 

The majority of the scaffold SNPs incorporated in the SNP array was obtained 

from the Porcine SNP60 BeadArray having a minor allele frequency > 0.05 in the UNL 

and commercial maternal crossbred data sets (Wijesena et al., 2017; Walker et al., 2018). 

The array was also supplemented with SNPs originated from the Neogen Porcine 

GGPHD Array (Neogen Genomics, Lincoln, NE) if they overlapped the top 1% of the 

QTL regions for age at puberty (Wijesena et al., 2017) and SNPs from the Affymetrix 
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Axiom Pig High Density (PigHD) Array (Groenen, 2015; Thermo Fisher Scientific Inc. 

Waltham, MA) located in the Swine Leukocyte Antigen complex I and II (Table 3.1). 

The SowPro90 array is commercially available and the array content can be found in 

Wijesena et al. (2019).  

The SowPro90 Genotype Quality Evaluation 

The genotype quality of SowPro90 was evaluated by assessing the genotype 

concordance defined as proportion of identical genotypes for common SNPs between 

SowPro90 and Porcine SNP60 BeadArray using 277 UNL animals genotyped with both 

platforms. There were 49,710 Porcine SNP60 BeadArray SNPs included in the 

SowPro90 design. 

For SowPro90, the CEL files from all genotyped samples (n = 2,586) were 

imported into SNPolisher tool in Axiom Analysis Suite (AxAS; Thermo Fisher Scientific 

Inc. Waltham, MA) together with library files and diploid threshold parameter settings 

while the rest of the parameters were set at default levels. The optimum threshold for 

SNP call rate was obtained by analyzing the distribution of the data quality and genotype 

concordance across platforms at 2% SNP call rate increments from 80% to 100%. The 

sample call rate threshold was obtained by analyzing the data quality and distribution at 

different sample call rates (80%, 90%, 93%, and 97%). Finally, the SowPro90 data (n 

=103,476) was re-analyzed using all genotyped animals (n = 2,586) and the newly 

established optimum SNP and sample call rates in order to generate the genotypes for 

future downstream analysis. To assess the genome-wide distribution of SNPs across 

platforms, the SowPro90 and Porcine SNP60 BeadArray SNPs were mapped to the 
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Sscrofa 11.1 reference genome assembly 

(https://support.illumina.com/sequencing/sequencing_software/igenome.html [Accessed 

10 August 2018]). 

RESULTS AND DISCUSSION 

Development of the SowPro90 SNP Array 

Reproductive longevity is a composite trait influenced by many fertility 

phenotypes, has a low heritability (h2 = 0.04), and expressed late in life (Tart et al. 2013). 

Previous research found that age at puberty, a trait with moderate heritability (h2 = 0.42), 

is one of the earliest indicators of reproductive longevity (Tart et al. 2013). 

Understanding the pleiotropic sources influencing phenotypic variation of age at puberty 

and other fertility traits could help in the development of a reliable approach to improve 

genomic prediction for sow reproductive longevity and other fertility traits. Genetic 

variants (SNPs) overlapping QTL for age at puberty and fertility traits as well as other 

economically important traits such as susceptibility to viral diseases were integrated into 

SowPro90, a custom Axiom myDesign SNP array (Thermo Fisher Scientific Inc. 

Waltham, MA.). The SowPro90 included 103,476 SNPs overlapping 4,171 transcribed 

genes (Table 3.1). Similar custom SNP panels targeting economically important traits 

have been developed in cattle industry to aid in genomic selection. For example, Mullen 

et al. (2013) and Boichard et al. (2018) developed custom SNP panels for dairy and beef 

cattle to uncover genes associated with quantitative traits, lethal recessive, and congenital 

disorders. These panels included SNPs from low density Illumina BovineLD BeadChip 



	

	 	 	 	

98 

	

42 

and causative variants such as loss of function and non-synonymous polymorphisms.  

Approximately 50% of the SowPro90 SNPs (n = 51,463) were identified using 

transcriptomic and genomic sequencing as described in Wijesena et al. (2017). Of these, 

32,964 SNPs were located in 2,288 genes overlapping major QTL regions for age at 

puberty discovered in prior studies (Nonneman et al., 2016b; Wijesena et al., 2017) 

(Table 3.1). The SNP array was also supplemented with 16,271 SNPs located in 1,015 

genes involved in innate and adaptive immunity including genes overlapping the Swine 

Leukocyte Antigen complex I and II and other genes influencing viral disease 

susceptibility (Kreikemeier et al., 2015; Walker et al. 2018) (Table 3.1). The rest of the 

SNPs identified were located in differentially expressed genes (including their proximal 

promoters) in the hypothalamic arcuate nucleus of gilts that expressed puberty early 

versus late as well as their upstream regulatory genes or trans modulators (Wijesena et 

al., 2017), SNPs in genes overlapping 11 selective sweep regions for litter size traits 

(Trenhaile et al., 2016), and SNPs in genes associated with structural soundness (Fan et 

al., 2009; Fan et al., 2011). Additionally, 565 SNPs located in 504 genes characterized by 

potential loss of function (Keel et al., 2017) as well as previously reported DNA markers 

for age at puberty (Nonneman et al., 2016a) were included. The remaining approximately 

50% of the array content (n = 51,316) was comprised of scaffold SNPs obtained from 

Porcine SNP60 BeadArray and SNPs originating from other commercially available 

platforms (e.g. Neogen Porcine GGPHD Array and Affymetrix PigHD array) 

overlapping the top 1% QTL for targeted traits (Table 3.1).  
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Table 3.1: Number of SNPs and overlapping genes included in SowPro90 	

SNP category Number of SNPs Number of genes 

SNPs in genes and regulatory regions 
(RNA and genome sequencing) 

  

    42 QTL for age at puberty (UNL) 11,474 788 

    222 QTL for age at puberty 
(USMARC) 

21,490 1,500 

    Adaptive and immunity genes 16,271 1,015 

    Differentially expressed genes in        
hypothalamic arcuate nucleus 

107 17 

    Upstream regulatory genes of 
differentially expressed genes 

308 31 

    11 selection sweep regions for litter 
size 

1,286 220 

    Structural soundness genes 607 224 

Predicted loss of function SNPs 617 376 

SNPs from commercial genotyping 
platforms  

  

    Illumina Porcine SNP60 BeadArray 49,710  

    Neogen Porcine GGPHD Array 1,012  

    Affymetrix Axiom PigHD Array 594  

Total 103,476 4,171 

Initial Quality Evaluation of the SowPro90 

The Affymetrix AxAS software classified SNPs into six quality classes, 

including, 1) polymorphic SNPs with three genotype clusters that passed all the quality 

control parameters (poly high resolution), 2) SNPs that were monomorphic (mono high 
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resolution), 3) SNPs with only one homozygote and heterozygote genotype clusters 

(no minor homozygotes), 4) SNPs with more than one heterozygote cluster or the average 

signal for heterozygote cluster much lower than for the homozygote clusters (off target 

SNPs), 5) SNPs with genotype call rate below the threshold (e.g. < 80%) and, 6) SNPs 

that failed one or more quality control parameters (other) (Figure 3.1). Polymorphic and 

monomorphic high-resolution SNPs and SNPs lacking minor homozygotes were 

recommended for downstream analysis.  

Figure 3.1: Example of SNP classification based on cluster properties by Axiom 
Analysis Suite. Red – AA genotype, Yellow – AB genotype, Blue – BB genotype, and 
Grey – No genotype call. SNPs with three genotype clusters (Poly high resolution), 
monomorphic SNPs (Mono high resolution), and SNPs lacking minor homozygotes (No 
minor homozygotes) were recommended for downstream analysis. 
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The genotype quality of SowPro90 was evaluated by merging genotype data 

from three populations (UNL and two commercial populations, n = 2,586), rather than 

evaluating each population or plate (96-well) separately in order to achieve an optimum 

genotype clustering and reliable genotype calls. For example, the number of 

recommended SNPs at default call rates (97% SNP and 94% sample call rates) ranged 

from 62,145 to 94,428 when genotype quality was evaluated in 16 separate plates and 

only 36,897 (36%) SNPs were consistently recommended across all plates. We 

hypothesize that the variation in data is a result of limited genetic diversity present in 

single plates. Plates usually do not include randomly assigned samples from different 

genetic backgrounds, but rather batches of samples of similar genetics. Some of the non-

recommended SNPs could therefore result from a lack of genetic diversity within a plate 

(or within a genetic line). For example, SNPs that appeared to lack heterozygote 

genotypes with both homozygote genotypes (AA and BB) present were not 

recommended. The proportion of this group of SNPs varied from 3 to 5% when samples 

from three genetic lines were allocated to three separate plates and analyzed individually. 

When the genotype data from the three populations were merged (n = 2,586), 20% to 

86% of these SNPs were recommended and “rescued” in each population since 

heterozygote calls were previously miscalled as one of the homozygote calls (AA or BB) 

(Figure 3.2). The absence or rarity of one of the homozygote genotype in samples from 

the same genetic line (or single plates) could limit the power to distinguish homozygote 

from heterozygote clusters. This problem does not exist when a large and diverse set of 

samples is analyzed together, and all three genotypes are expected to be present.  
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Figure 3.2: Example of genotype calling in three individual plates, each representing 
a genetic line. These plates (left) generated non-recommended SNPs that appeared to 
lack heterozygote genotypes but both homozygote genotypes being present (AA and BB). 
When the three populations were merged (right) these SNPs were recommended since 
one of the homozygote calls (AA or BB) were miscalled in individual plates when they 
were actually heterozygotes. Each data point represents the genotype of an animal. Red – 
AA genotype, Yellow – AB genotype, Blue – BB genotype, and Gray – No genotype 
call. The green dots represent the animals in each individual plate. 
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The Genotype Concordance Rate per SNP Between SowPro90 and Porcine 

SNP60 BeadArray  

The evaluation of the genotype concordance was performed using animals  

(n = 277) genotyped with both SowPro90 and Porcine SNP60 BeadArray. There were 

49,710 common SNPs in both platforms. Of those, 44,708 SNPs with ≥ 80% call rate in 

both platforms were selected for evaluation of the genotype concordance. This call rate is 

generally considered acceptable in high-density genotyping (Tart et al., 2013). 

The mean genotype concordance rate per SNP across the 44,708 SNPs was 

98.4%. A small proportion (0.65%) of the homozygote genotypes in one platform were 

called as alternate homozygote genotypes in the other platform (Table 3.2a). A subset of 

SNPs with < 90% genotype concordance rate (n = 2,418) exhibited higher incidences of 

calling heterozygote variants as homozygotes and calling homozygote genotypes in one 

platform as alternate homozygote genotypes in the other platform. Of those, 

approximately 13% of the heterozygous Porcine SNP60 BeadArray SNPs were called 

homozygotes in SowPro90 and approximately 11% of homozygote Porcine SNP60 

BeadArray SNPs were called alternate homozygotes in SowPro90 (Table 3.2b). Due to 

higher incidences of genotype discordance, only SNPs with genotype concordance ≥ 90% 

were recommended for downstream analysis. Selecting for SNPs with ≥ 90% genotype 

concordance rate (n = 42,290) increased the overall mean genotype concordance to 

99.5% (Table 3.2c).  
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Table 3.2: Genotype occurrence (%) in Porcine SNP60 BeadArray and SowPro90 
using common genotyped animals (n = 277).  

A) All SNPs (n = 44,708), B) SNPs with < 90% genotype concordance (n = 2,418), 
and C) SNPs with ≥ 90% genotype concordance (42,290)  

 

A. 

 

 

 

 

 

B. 
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Porcine SNP60 
BeadArray 

SowPro90 

 AA AB BB 

   

AA 98.39 0.96 0.66 

AB 0.90 98.22 0.88 

BB 0.64 0.70 98.66 

Porcine SNP60 
BeadArray 

SowPro90 

 AA AB BB 

   

AA 81.69 6.90 11.41 

AB 13.39 73.34 13.27 

BB 11.00 5.24 83.75 

Porcine SNP60 
BeadArray 

SowPro90 

 AA AB BB 

   

AA 99.32 0.65 0.03 

AB 0.20 99.61 0.19 

BB 0.03 0.46 99.51 
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Similar mean genotype concordance rates were reported by other studies in 

livestock and humans. An evaluation of 49,859 SNPs in sheep samples (n = 84) 

genotyped by Illumina and Affymetrix platforms reported a 98.1% mean genotype 

concordance rate per SNP (Berry et al., 2016). In this study a small proportion (0.3%) of 

homozygous genotypes in one platform were called as alternate homozygous in the other 

platform. In humans, a comparison between six technical replicates genotyped with both 

Illumina and Affymetrix platforms reported a mean genotype concordance of 98.8% 

(Hong et al., 2012). In a simulation study, Hong et al. (2012) reported that using 

genotypes with lower concordance in GWAS could lead to spurious odds ratios of 

genetic markers. Jiang et al., (2013) evaluated the within sample genotype concordance 

between Illumina and Affymetrix platforms in humans for 146,885 SNPs and reported a 

mean genotype concordance of 99.9%. 

A potential source of limited genotype concordance across SNPs could be 

represented by minor allele frequency (MAF). Across the 44,708 SNPs used for genotype 

concordance evaluation, the number of SNPs in different SowPro90 MAF categories 

ranged from 369 (0.83%) monomorphic SNPs to 5,608 (12.5%) having a MAF between 

0.45 and 0.50 (Table 3.3). The lowest mean genotype concordance (61.6%) was observed 

for monomorphic SNPs while the highest (98.89%) was observed for SNPs with MAF  

> 0.05 to ≤ 0.10 (Table 3.3). The study of Berry et al. (2016) observed similar results.  
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Table 3.3: Number and genotype concordance of SNPs in each minor allele 
frequency (MAF) category 

MAF 
category 

(SowPro90) 

Common SNPs used for 
genotype concordance 
evaluation  

(44,708 SNPs) 

Mean 
genotype 
concordance 

(44,708 SNPs) 

SowPro90 at ≥ 97% 
SNP and ≥ 93% 
sample call rate  

(89,040 SNPs) 

0 369 61.63 9,293 

> 0 to ≤ 0.05 2593 98.06 9,269 

> 0.05 to ≤ 0.1 3338 98.89 7,643 

> 0.1 to ≤ 0.15 3713 98.76 7,149 

> 0.15 to ≤ 0.2 4111 98.83 7,298 

> 0.2 to ≤ 0.25 4439 98.68 7,835 

> 0.25 to ≤ 0.3 4910 98.73 7,856 

> 0.3 to ≤ 0.35 5116 98.78 8,134 

> 0.35 to ≤ 0.4 5055 98.73 8,015 

> 0.4 to ≤ 0.45 5456 98.76 8,241 

> 0.45 to ≤ 0.5 5608 98.73 8,307 

Evaluation of Optimal SNP Call Rate  

Concordance between the genotypes across platforms was evaluated within 2% 

SNP call rate ranges starting from 80% up to 100% (Figure 3.3). For SowPro90, the SNP 

call rates of the majority of SNPs (n = 40,939, 91.6%,) were distributed between 98% to 

100% (Figure 3.3a). In this range, there were 40,155 SNPs (98.1%) with ≥ 90% genotype 

concordance between the platforms and 35,767 of these SNPs (89.1%) had ≥ 99% 

genotype concordance. Based on the distribution of SNP genotype call rates and the 
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number of SNPs with ≥ 90% genotype concordance, a SNP call rate of ≥ 97% was 

considered to be the optimal threshold for SowPro90 quality evaluation which allowed 

retention of a maximum number of SNPs (n = 42,151, 94.3%). The mean genotype 

concordance of the SNPs with ≥ 97% SNP call rate was 98.7%.  

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Distribution of SNP call rates at 80% SNP and 80% sample call rates. A) 
SowPro90 SNPs and B) Porcine SNP60 BeadArray SNPs. Black - Total number of SNPs 
and Gray – Number of SNPs with ≥ 90% concordance.  

The SNP call rates for most of the SNPs (n = 41,043, 91.8%) on the Porcine 

SNP60 BeadArray were distributed between 94% to 100% and in this range there were 
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40,085 SNPs (97.7%) with ≥ 90% genotype concordance between platforms (Figure 

3.3b). Based on call rate distribution and concordance data, a SNP call rate of ≥ 94% was 

considered to be the optimal threshold for Porcine SNP60 BeadArray (Figure 3.3b). The 

mean genotype concordance of the SNPs with ≥ 94% SNP call rate was 98.6%.  

Evaluation of Optimal Sample Call Rate  

To identify the optimal sample call rate for SowPro90, the SNP array  

(n = 103,476) was re-analyzed at a SNP call rate ≥ 97% and different sample call rates 

(e.g. 80%, 90%, 93%, and 97%) using all the genotyped animals (n = 2,586). The largest 

number of genotyped animals (n = 2,571) was retained at ≥ 80% sample call rate (Figure 

3.4a). An increase in sample call rate (and removing low quality samples) led to an 

improvement in genotype clustering and a larger number of SNPs that passed the filtering 

criteria (Figure 3.5). For example, at ≥ 97% sample call rate there were 932 additional 

SNPs (+1%) retained compared to ≥ 80% sample call rate (Figure 3.4b) while 72 animals  

(-2.9%) failed the threshold parameters (Figure 3.4a). Therefore, to retain the maximum 

number of animals with highest quality genotypes, a less stringent ≥ 93% sample call rate 

was considered to be the optimal threshold for SowPro90. In this case there were 308 

additional SNPs retained with only 11 animals failing this threshold parameter compared 

to ≥ 80% sample call rate. 
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Figure 3.4: A) Number of recommended samples and B) number of recommended 
SNPs at 97% SNP call rate and different sample call rates for SowPro90.  
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Figure 3.5: An increase in sample call rate improved the overall genotype clustering 
as illustrated by two examples. The genotype clustering was compared at 97% SNP and 
80% (left) and 97% (right) sample call rates. Each data point represents the genotype of 
an animal. Red – AA genotype, Yellow – AB genotype, Blue – BB genotype, and Gray – 
No genotype call. The green dots represent the 72 animals that were removed when the 
sample call rate increased from 80% to 97%.  
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Similar to above, the Porcine SNP60 BeadArray (n = 61,565) data was re-

analyzed at ≥ 94% SNP call rate and different sample call rates (e.g. 80%, 85%, 90%, and 

93%) using 1,836 genotyped animals. The largest number of SNPs was retained at 93% 

sample call rate with 57% of the animals failing this filtering criteria (Figure 3.6). In 

order to retain the maximum number of animals with highest quality genotypes, 85% was 

determined to be the optimal sample call rate for Porcine SNP60 BeadArray data, 

retaining 53,668 SNPs and 1,668 (91%) animals (Figure 3.6). This sample call rate was 

also suggested as the optimum by Purfield et al. (2016).  

 

 

 

 

 

 

 

 

Figure 3.6: A) Number of recommended samples and B) number of recommended 
SNPs at 94% SNP call rate and different sample call rates for Porcine SNP60 
BeadArray.  
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Final Genotype Evaluation of the SowPro90  

At ≥ 97% SNP and ≥ 93% sample call rates, there were 89,040 (86%) 

recommended SNPs and 2,560 (98.7%) samples that passed the quality thresholds for 

SowPro90. The recommended SNPs included 74,661 poly high-resolution, 9,293 mono 

high-resolution, and 5,086 SNPs without homozygotes for the minor allele. The 

monomorphic SNPs were presumably sequencing artifacts as the majority of these SNPs 

(94%) originated from transcriptome (73%) and genome (21%) sequencing. The average 

observed heterozygosity of polymorphic SNPs was 0.35 and the average MAF of the 

recommended array content was 0.25. The number of recommended SNPs in different 

MAF categories (excluding monomorphic SNPs) ranged from 7,149 (> 0.1 to 0.15) to 

9,269 (0 to 0.05) (Table 3.3).  

In the Porcine SNP60 BeadArray there were 1,812 SNPs overlapping 42 QTL 

windows for age at puberty identified in the UNL population. These regions were 

enriched with 13,511 SNPs in SowPro90. The average distance between SNPs in the 

enriched QTL regions was 5,150 bp for SowPro90 compared to 38,753 bp for Porcine 

SNP60 BeadArray. In the updated swine genome assembly (Sscrofa 11.1) the SNPs 

included in SowPro90 were distributed across the 18 autosomes and the X chromosome 

ranging from 1,669 (SSCX) to 8,413 SNP (SSC7) per chromosome. At the genome-wide 

level there were an average of 36 SNPs per 1-Mb window for SowPro90 compared to 21 

SNPs for the Porcine SNP60 BeadArray, an improvement of 71%.  
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CONCLUSIONS 

A custom Affymetrix Axiom myDesign SNP array (SowPro90) was developed 

including potential functional genetic variants associated with fertility and disease related 

traits. This SNP array can provide benefits to swine industry by improving the herd 

reproductive efficiency, disease resistance, and thereby decreasing production cost and 

improving animal welfare.  

Evaluating genotype quality and concordance across genotyping platforms, we 

observed that distribution of genotype quality across various platforms tends to differ, 

likely due to different chemistries and allelic detection approaches used for genotyping. 

For example, the majority of SowPro90 SNPs (91.6%) had a SNP call rate ≥ 98% while 

for Porcine SNP60 BeadArray the majority of SNPs (91.8%) had a SNP call rate ≥ 94% 

(Figure 3.3) suggesting that these platforms used different stringency levels when calling 

genotypes. For these specific ranges, a high genotype concordance rate (≥ 98.5%) 

between platforms was observed. Based on these observations it is not ideal to use the 

same threshold parameters for quality evaluations across different genotyping platforms. 

The approach used in this study, assessing genotype concordance between two 

genotyping platforms at different SNP and sample call rates, allowed identification of 

specific quality thresholds necessary to retain the maximum number of SNPs and samples 

with high quality. This strategy will be helpful when integrating data from various 

genotyping sources for different applications such as genomic evaluations and genome-

wide association.  
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CHAPTER 4: FINE MAPPING GENETIC VARIANTS 

ASSOCIATED WITH AGE AT PUBERTY AND SOW FERTILITY 

USING SOWPRO90 GENOTYPING ARRAY 

INTRODUCTION 

Improving reproductive traits (e.g. litter size, reproductive longevity) via 

traditional breeding and quantitative genetic approaches faces challenges given these 

traits are lowly heritable, sex-limited, express late in life, and are polygenic, with each 

gene variant having a relatively small effect. Age at puberty is an early and indirect 

indicator of sow fertility (Serenius and Stalder, 2006; Tart et al., 2013). Gilts that reach 

puberty earlier have a greater probability of producing more litters during their lifetime. 

Identification of common genetic sources that influence variation of age at puberty and 

fertility traits has the potential to facilitate genomic prediction for reproductive longevity. 

Age at puberty is a moderately heritable trait (mean h2 = 0.32, 16 studies reviewed 

by Bidanel, 2011), but traditional selection for this trait is not widely practiced in 

commercial settings due to extensive time and labor requirements for daily estrus 

detection via boar exposure. With the aim of improving accuracy of genomic prediction 

for sow fertility traits, we developed a custom SNP panel (SowPro90) including 

candidate genetic variants associated with age at puberty and fertility traits identified in 

resource populations developed at University of Nebraska-Lincoln (UNL) and US Meat 

Animal Research Center (USMARC) (Wijesena et al., 2019).  

A Bayesian mixture model that fits haplotypes into association analysis (Bayes 
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interval mapping, BayesIM) (Kachman, 2015) instead of individual SNPs (e.g. 

BayesB, BayesC) was used to infer SowPro90 haplotypes to the entire UNL population, 

previously genotyped with Porcine SNP60 BeadArray to fine map major genetic variants 

associated with age at puberty. This study was also intended to evaluate the effect of 

major QTL regions identified for age at puberty using SowPro90 on other fertility traits 

such as litter size and reproductive longevity in the UNL and commercial maternal 

crossbred populations. 

MATERIALS AND METHODS 

This study was approved by the University of Nebraska-Lincoln (UNL)  

Institutional Animal Care and Use Committee. 

The Resource Population 

The UNL swine resource population was extensively genotyped and phenotyped 

for several fertility and growth traits to study the role of genetics and nutrition on 

reproductive development and longevity of sows. The females used in this study were 

developed in 18 non-overlapping batches (B) (n = 2,054). The dams of the experimental 

gilts were either Large White × Landrace crossbreds or Nebraska Index Line (NIL) while 

the sires were from two unrelated commercial Landrace lines. During the 117 day 

development (pre-breeding) period (123 to 240 days of age), gilts were subjected to four 

main experimental diets (with or without phase feeding) over the 18 batches. The diets 

included, 1) ad libitum standard corn-soybean based diet, 2) energy-restricted diet with 
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approximately 20% less metabolizable energy (ME), 3) energy and lysine restricted 

diet, and 4) a diet containing high protein and lysine with same ME as in the standard diet 

and ME:lysine ratio as in the restricted diet. A detailed description of the resource 

population and dietary treatments can be found in Miller et al. (2011) and Trenhaile 

(2015). In addition, 2,309 animals from two maternal commercial populations were used 

representing 1) Landrace, Yorkshire (paternal genetic lines of UNL resource population), 

and 2) Landrace × Large White crossbred lines (Wijesena et al., 2019).  

Phenotypes 

Estrous detection in the UNL population began at approximately 130 days of age 

and the age at which gilts expressed first estrus was defined as the age at puberty. Estrus 

detection was carried out daily by exposing the gilts to a mature intact boar for 15 min in 

an adjacent pen until all the gilts expressed estrus twice within a development pen or until 

they reached 240 days of age. The females were maintained up to four parities and 

reproductive data were collected unless they died or culled for reproductive or structural 

failure.  

The commercial Landrace × Large White crossbred females entered five different 

farms as gilts during 2013. Reproductive data were available from up to eight parities 

unless the females were culled due to reproductive issues, old age or other structural and 

health reasons. It should also be noted that age at puberty data were not available for 

commercial females. 

The reproductive data available in both UNL and commercial data sets included 

litter size traits such as total number of piglets born in the first two parities (TNB-P1, 
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TNB-P2), number born alive (NBA-P1, NBA-P2), and reproductive longevity defined 

as lifetime number of parities (LTNP) produced (up to four parities in UNL and up to 

three or more parities in commercial sows). For LTNP, the number of parities produced 

was recorded up until reproductive failure and females that were culled due to non-

reproductive reasons were edited out of the data.  

Genotyping 

Tail snips or ear notches were collected from UNL gilts (n = 2,054) shortly after 

birth. DNA was isolated from these tissues using the DNeasy or Puregene tissue kits 

(Qiagen, Valencia, CA). The quality of DNA was assessed using a NanoDrop (Thermo 

Fisher Scientific Inc., Waltham, MA), Epoch (BioTek Inc., Winooski, VT) 

spectrophotometers or Qubit fluorometer (Thermo Fisher Scientific Inc., Waltham, MA). 

Gilts from B1 to B14 (n = 1,556) were genotyped with Porcine SNP60 BeadArray 

(Illumina Inc., San Diego, CA). Gilts from B15 to B17 (n = 375), commercial crossbred 

females (n = 1,972), and commercial maternal parental lines (n = 314) were genotyped 

with SowPro90 custom SNP array (Thermo Fisher Scientific Inc., Waltham, MA) 

(Wijesena et al., 2019). A subset of gilts from B1 to B14 (UNL extreme gilts; n = 270) 

representing the tails of the distribution for Porcine SNP60 BeadArray (53,529 SNPs) 

derived genomic estimated breeding values (GEBVs) for age at puberty (early, n=147; 

late, n=123) were also genotyped with SowPro90. After initial quality evaluation of 

SowPro90, the array content was updated (SowPro91) excluding monomorphic and non-

recommended SNPs (Wijesena et al., 2019) and including novel SNPs located in genes 

across the genome and Swine Leukocyte Antigen complex. The last two UNL batches 
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(B18 and B19, n = 256) were genotyped with SowPro91. Porcine SNP60 BeadArray 

genotypes were filtered at Illumina quality score ≥ 0.4 and sample and SNP call rate ≥ 

80% leaving 53,529 SNPs for further analysis. SowPro90 was filtered at ≥ 93% sample 

and ≥ 97% SNP call rate leaving 86,452 SNPs for downstream analysis. 

Infer SowPro90 Haplotypes and Genome-wide Association Analyses Using BayesIM 

A reference population including a subset of UNL sows (n = 768) and sows and 

boars from the parental genetic lines (n = 314) genotyped with SowPro90 and SowPro91 

were used to infer SowPro90 haplotypes to the entire UNL population previously 

genotyped with Porcine SNP60 BeadArray (n = 1,286) using BayesIM (Kachman, 2015). 

Only SNPs that were common between SowPro90 and SowPro91 (n = 77,695 SNPs) 

were used for B18 females genotyped with SowPro91 (n = 123). 

A haplotype-based genome-wide association (GWAS) using BayesIM was 

performed to estimate the proportion of genetic variance explained by high-density SNP 

genotypes for age at puberty (B1 to B18, n = 2,054) and LTNP (B1 to B17, n = 1,853) in 

the UNL population. The SNPs were mapped to Sscrofa11.1 reference genome assembly 

(http://igenomes.illumina.com.s3-website-us-east-

1.amazonaws.com/Sus_scrofa/Ensembl/Sscrofa11.1/Sus_scrofa_Ensembl_Sscrofa11.1.ta

r.gz – [accessed November 7, 2016]). The BayesIM was performed setting the π value to 

0.99, assuming that the probability of a nonzero haplotype effect at a given locus is 0.01 

(1– π), QTL frequency to 50 Kb (n = 47,756 haplotype windows), number of haplotype 

states to eight, average haplotype length to 250 Kb, and number of iterations to estimate 

haplotype parameters to 25. The Markov Chain Monte Carlo chain included 82,000 
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samples with the first 1,000 being discarded as burn in (Wilson-Wells and Kachman, 

2016; Schweer et al., 2018). The fixed effects included contemporary group (batch and 

diet) and genetic line. Random effects included litter/dam and developmental pen. 

Genetic variance and haplotype effects were estimated for each 50 Kb QTL region.  

Correlation Between Genomic Estimated Breeding Value for Age at Puberty and 

LTNP 

The haplotype windows (50 Kb) were ranked based on the genetic variance 

explained for age at puberty and the top five distinct QTL regions located on four 

chromosomes were identified. These regions were extended in both directions to obtain a 

1-Mb QTL interval. Genomic estimated breeding values for age at puberty were 

calculated for all the gilts (n = 2,054) for five major 1-Mb windows using PullRegions 

option in BayesIM. Similarly, GEBVs were calculated for LTNP (n = 1,853) for major  

1-Mb QTL regions for age at puberty and 16 1-Mb sliding windows by 250 Kb from the 

top window location in both directions. The pairwise correlation between GEBV for age 

at puberty and LTNP for major QTL regions and adjacent sliding windows was 

calculated using JMP (version Pro 14.1.0, SAS Institute Inc., Cary, NC). Haplotype 

effects were calculated for age at puberty and LTNP for the 5-Mb region (region between 

the 16 sliding 1-Mb windows) flanking the top QTL regions for age at puberty. 

Single Marker Association and Linkage Disequilibrium Analyses 

A general linear mixed model was used to test the additive effect of single SNPs 

located in the major 1-Mb windows (plus 0.2 Mb flanking region in both directions) on 
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age at puberty in a subset of gilts (B1 to B14, n = 270) genotyped with SowPro90. 

These gilts represented extremes of the distribution for Porcine SNP60 BeadArray 

derived GEBVs for age at puberty (UNL extreme gilts). Association of these SNPs with 

other targeted fertility traits (e.g. LTNP, TNB P1, P2, and NBA P1, P2) was also tested in 

the same subset of UNL sows. In addition, SNP effects were tested in the subsequent 

batches of UNL sows (B15 to B17, n = 375) and also in commercial Landrace × Large 

White crossbred sows (n = 1,972) genotyped with SowPro90 for age at puberty (only 

UNL data), LTNP, and litter size traits (UNL and commercial data). In the UNL 

population, the model included SNP genotype as a covariate, contemporary group (batch 

and diet) as a fixed effect and sire, litter/dam, and development pen as random effects. In 

the commercial crossbred population, SNP genotype was fitted as a covariate, 

contemporary group (farm and entry month), birth farm, and farm entry age were fitted as 

fixed effects and sire and dam/litter were fitted as random effects. In order to obtain least 

square means for each genotype the SNP was treated as a fixed effect. Pairwise 

comparison of least square means for each genotype was based on Tukey test. Linkage 

Disequilibrium (LD) was assessed in the top QTL regions (e.g. SSC7 and SSC14 region 

1) using SowPro90 genotypes and HAPLOVIEW (Barrett et al., 2005). 

Gene Ontology and Variant Effect Predictor Analyses  

The top QTL regions (plus 0.2 Mb flanking region on both directions) were 

characterized for positional candidate genes using the Sscrofa build 11.1. The candidate 

genes and their gene ontology terms were obtained using BIOMART tool in the Ensembl 

database (version 99; 
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http://uswest.ensembl.org/biomart/martview/e0267c5280d49b8815f710187ba39839 

[accessed 10 February 2020]). The SIFT scores and consequences of potential functional 

SNPs were obtained using Variant Effect Predictor (VEP) in the Ensembl database 

(https://uswest.ensembl.org/Tools/VEP [accessed 4 March 2020]).  

RESULTS AND DISCUSSION 

Development of SowPro90 

To improve genomic prediction accuracy for lowly heritable traits that express 

late in life such as reproductive longevity, this research was aimed to identify pleiotropic 

genetic variants associated with age at puberty and other fertility traits. A novel custom 

SNP panel, SowPro90 was developed by saturating with SNPs in genes located in the 

major QTL regions for age at puberty identified in UNL and USMARC populations 

(using Porcine SNP60 BeadArray) (Wijesena et al., 2019). SowPro90 included 7X more 

SNPs (n = 13,511 SNPs) overlapping QTL regions for age at puberty in the UNL data set 

compared to Porcine SNP60 BeadArray (n = 1,812 SNPs). 

Fine Mapping Genomic Regions Associated with Age at Puberty and Reproductive 

Longevity Using SowPro90 

The majority of the UNL population (B1 to B14) was genotyped with Porcine 

SNP60 BeadArray, while the last five batches were genotyped with SowPro90 (B15 to 

B17) and SowPro91 (B18 and B19). In order to fine map the genomic regions and genetic 

variants affecting age at puberty, a novel BayesIM approach was implemented to infer 
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SowPro90 haplotypes in all animals previously genotyped with Porcine SNP60 

BeadArray (Figure 4.1). As a reference data set to infer haplotypes, we used UNL 

samples genotyped with SowPro90 and SowPro91 and commercial parental lines 

genotyped with SowPro90. The sires of the UNL resource population originated from 

these commercial lines.  

 

Figure 4.1: Schematic representation of the approach used for haplotype-based 
association analysis using BayesIM. 

 

This approach allowed us to assign haplotypes to the entire UNL population and 

to utilize them in a haplotype-based association analysis (n = 47,756 haplotype windows) 

for age at puberty (n = 2,054) and LTNP (n = 1,853). For age at puberty, five major 1-Mb 
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QTL regions were identified on SSC2 (13.6 to 14.6 Mb), SSC7 (83.5 to 84.5 Mb), 

SSC14 (38.7 to 39.7 Mb, region 1; 45.05 to 46.05 Mb, region 2), and SSC18 (37.35 to 

38.35 Mb) (Figure 4.2). The QTL on SSC2, SSC7, and SSC14 also overlapped the top 

1% major 1-Mb windows for age at puberty identified in the previous GWAS in the UNL 

population (n = 1,644) using Porcine SNP60 BeadArray (Wijesena et al., 2017). Four of 

these top QTL regions were enriched with SNPs in SowPro90 and SowPro91 (Wijesena 

et al., 2019).  

 

 

 

 

 

 

 

 

 

Figure 4.2: Genome-wide association analysis for age at puberty using SowPro90. 
The autosomes, from SSC1 to SSC18, followed by chromosome X are represented by 
different colors. Each dot represents a 50 Kb haplotype window. The boxed labels 
indicate the top five QTL regions for age at puberty. 
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Haplotype Effects and Correlation Between Genomic Estimated Breeding 

Values for Age at Puberty and LTNP 

We expected that some of the top regions identified for age at puberty would have 

an effect on other fertility phenotypes including reproductive longevity. While the major 

QTL for age at puberty were distinct, due to nature of the phenotype, the QTL for LTNP 

were less defined. To evaluate the effect of these major age at puberty QTL on 

reproductive longevity, the correlation between GEBVs for age at puberty and LTNP  

(n = 1,845) was calculated for the top five regions. Additionally, the GEBVs were 

calculated for LTNP in 16 1-Mb sliding windows by 250 Kb from the top windows for 

age at puberty in both directions (2.5 Mb distant from the center of the top windows on 

each direction). We used this approach to observe the extent and the decay of the 

correlation between age at puberty and reproductive longevity (Figure 4.3). As expected, 

negative correlations between age at puberty and LTNP were observed across top age at 

puberty QTL regions (r = -0.96 to -0.10) (P < 0.0001). As the sliding windows for LTNP 

shifted away from the major QTL locations for age at puberty, the correlation diminished 

reaching zero (Figure 4.3).  

To further investigate the effect of these QTL regions on both traits, the haplotype 

effects (n = 8 haplotypes) were calculated for each region for age at puberty and LTNP. 

For all the QTL regions, the haplotypes with largest effects on age at puberty had an 

opposite effect on LTNP. As expected, the effects for LTNP were not as prominent as in 

age at puberty. For example, different directional effects for age at puberty and LTNP 

were observed for haplotype 3 located on SSC7 QTL region (Figure 4.4). None of these 
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top QTL regions associated with age at puberty were among the top QTL identified 

for LTNP. We consider LTNP is a complex, composite phenotype, largely affected by 

environment, making it difficult to fine map the underlying genetic sources driving the 

phenotypic variation.  

Figure 4.3: Correlation of genomic estimated breeding values for age at puberty 
(top windows) and LTNP (top windows for age at puberty and adjacent sliding 
windows). Adjacent windows for LTNP are sliding by 250 Kb. The distance between the 
center of the top QTL and the last sliding window is 2.5 Mb. All the regions show 
negative correlations at the top QTL window and the correlation reaches zero as moving 
away from the major QTL regions. 
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Figure 4.4: Haplotype effects for SSC7 QTL (5-Mb region including the sliding 
windows). Haplotypes with largest effect on age at puberty were shown in different 
colors while the haplotypes with smaller effects were shown in gray for both traits. An 
opposite direction of the haplotype effects was observed between age at puberty and 
LTNP. For example, Haplotype 3 (purple) was associated with increasing age at puberty 
and decreasing LTNP. 
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Single Marker Association and Linkage Disequilibrium Analyses 

In order to identify major SNPs associated with fertility traits in UNL and 

commercial populations, all SNPs (n = 510 SNPs) representing the five major QTL 

regions for age at puberty were used in a single marker association analysis. Initially, the 

SNP effects on age at puberty were estimated in UNL extreme gilts (B1 to B14) using 

SowPro90 genotypes. Of all the SNPs tested, 35.5% had significant (P < 0.05) additive 

effects for age at puberty. Of those significant SNPs, 71.3% were located in 29 genes. All 

the SNPs (n = 510 SNPs) were also evaluated in a data set consisting of gilts from 

subsequent UNL batches (B15 to B17). Nineteen percent of the SNPs showed significant 

additive effects on age at puberty, while 6.5% of the SNPs were significant in both UNL 

data sets. Age at puberty was not available in the commercial data set. Therefore, we 

were unable to validate these SNPs for age at puberty across populations. 

Ten SNPs with the largest additive effects (P < 0.05) on age at puberty (in the 

UNL extreme gilts) were selected for each QTL region (n = 50 SNPs) to evaluate their 

impact on other fertility traits (LTNP, TNB, and NBA) in the UNL extreme and 

commercial data sets. In the UNL extreme data set, a subset of SNPs had significant 

effects on LTNP (16%) and TNB-P1 (18%). In the commercial data set, 2% of the SNPs 

had a suggestive effect (P < 0.15) on LTNP, however, the expected opposite trend 

between age at puberty (decrease) and LTNP (increase) was not observed. In the same 

data set a subset of SNPs were identified with significant or suggestive effects for TNB-

P1 (14%), TNB-P2 (2%), NBA-P1 (26%), and NBA-P2 (6%).  
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SSC2 QTL Region (13.4 to 14.8 Mb) 

The QTL located on this SSC2 region showed evidence of pleiotropy for age at 

puberty and litter size traits in the UNL population. The SNP with the largest additive 

effect on age at puberty (AX-116162218, 14.7 Mb, P = 0.0001) explained 24 days 

difference in age at puberty between homozygote genotypes (P = 0.04) in the UNL 

extreme gilts. As the number of favorable alleles increased, age at puberty decreased by 

11.6 days (P = 0.0001) and both TNB-P1 and NBA-P1 increased by 0.54 (P = 0.21) and 

0.88 (P = 0.08) piglets per litter, respectively. For TNB, a numerical increase continued 

in P2 with a suggestive additive effect of 1.2 piglets per litter (P = 0.12) (Table 4.1). The 

expected impact of this top SNP on LTNP was not observed in any of the data sets (Table 

4.1). 

The top SNP (AX-116162218) in this region was located in an intergenic region. 

The closest gene to this SNP was a small nuclear RNA (U6, ~8 Kb downstream of the 

SNP). Seven of the other top SNPs with the largest effects on age at puberty were located 

in three genes (P2RX3, SSRP1, and PTPRJ). The SNPs were located in either coding 

(synonymous) or 3’ untranslated region (UTR). Three of these synonymous SNPs 

significantly associated with age at puberty were located in P2RX3, a gene involved in 

implantation and pregnancy (Slater et al., 2000). This QTL region was previously 

identified as a major QTL and a potential selection sweep for litter size traits in the UNL 

resource population (Trenhaile et al., 2016). Polymorphisms in the P2RX3 gene were 

fixed in Nebraska Index Line (NIL), a line extensively selected for litter size traits for 

over 29 generations (Trenhaile et al., 2016). The UNL experimental gilts were originated 
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from NIL dams and that could explain the observed effect of this region on litter size 

traits in our population.  

SSC7 QTL Region (83.3 to 84.7 Mb) 

The SNP associated with the largest effect on age at puberty (AX-116689678, 83.3 

Mb, P = 0.01) also explained some of the phenotypic variation in LTNP and NBA-P1. As 

the number of favorable alleles increased, age at puberty decreased by 6 days in UNL 

extreme gilts (P = 0.01) and by 4.1 days in subsequent UNL batches (P = 0.02), while 

LTNP and NBA-P1 increased by 0.37 litters (P = 0.03) and 0.53 (P = 0.24) piglets per 

litter, respectively in the UNL extreme sows (Table 4.1, Figure 4.5).  

Since this SNP was significantly associated with LTNP, we expected to see a 

change in allele frequency across parities in the UNL population. The frequency of the 

favorable allele increased from 0.41 in sows that were unable to generate a parity to 0.48 

in sows that produced four parities (Figure 4.6). Similarly, in the commercial data set  

(n = 904) the frequency of the same allele increased from 0.18 in sows unable to generate 

a parity to 0.19 in sows that produced three or more parities (Figure 4.6), even though the 

effect of this SNP on LTNP was not significant in this data set (P = 0.72). 

There were no known annotated genes identified in this QTL region in the current 

swine reference genome. Therefore, this region was extended by 0.5 Mb in both 

directions. NR2F2 (83.07 Mb), is a candidate gene located upstream (~280 Kb) of the top 

SNP, and is implicated in fertilization, progesterone receptor signaling during embryonic 

implantation, and litter size in pigs (Chen et al., 2016). Chen et al. (2016) reported a  

-204C>A SNP located in the promoter region of NR2F2 gene that disrupts the binding 
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site for CREP transcription factor. The CC genotype was associated with higher litter 

size in Large White sows.  

Four SNPs in NR2F2 gene were included in SowPro90. The SNPs were located in 

the proximal promoter (-1,044 bp; AX-134892687), 5’ UTR (AX-135052973), and intron 

1 (AX-123958897, AX-179489698). The LD (r2) between these SNPs with the top SNP in 

the SSC7 QTL ranged from 0.32 to 0.68. The effects of these SNPs on fertility traits were 

evaluated in a subsequent analysis (Table 4.1). These SNPs showed significant additive 

effects for age at puberty in the UNL B15 to B17 (P < 0.05) gilts but suggestive (P < 

0.15) or non-significant effects in the UNL extreme gilts (Table 4.1). Three of the NR2F2 

SNPs (AX-135052973, AX-123958897, AX-179489698) showed expected (opposite) 

direction of the association for age at puberty (P < 0.05) (UNL B15 to B17) and LTNP in 

the commercial data set (although the effects were not significant, P = 0.34 to 0.56) 

(Table 4.1). The lack of missense polymorphisms and differential expression for this gene 

(Wijesena et al., 2017; Chapter 2), lead us to explore isoform diversity as a genetic source 

of phenotypic variation. Two NR2F2 isoforms were identified in the UNL population 

using RNA sequencing data from the hypothalamic arcute nucleus (ARC) of gilts with 

different pubertal status. The same two transcripts were also predicted in public databases 

(e.g. ensembl.org). The isoforms were translated into two distinct proteins (281 and 414 

amino acids). Further characterization of this gene could provide insights into the role of 

these SNPs on differential splicing and function of the different isoforms on phenotypic 

variation in fertility traits. 
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Figure 4.5: Age at puberty (P = 0.01), LTNP (P = 0.03), and NBA-P1 (P = 0.24) least 
square means and standard errors for AX-116689678 SNP genotypes in the UNL 
extreme data set.  
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Figure 4.6: The frequency of favorable (G) AX-116689678 allele across parities in 
the UNL and commercial populations. The allele frequency increased from 0.41 in 
sows that were unable to generate a parity to 0.48 in sows that produced four parities in 
the UNL population (n = 645). Similarly, an increase in the allele frequency was 
observed from 0.18 in sows unable to generate a parity to 0.19 in sows that produced 
three or more parities in the commercial population (n = 904). 
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SSC14 QTL Region 1 (38.5 to 39.9 Mb) 

The QTL mapped on SSC14 (38.7 to 39.7 Mb) was characterized by high LD in 

both UNL and commercial populations. The SNP associated with the largest effect on age 

at puberty (AX-141921242, 39.2 Mb, P <0.0001) was in high LD (r2 > 0.95) with next 

nine SNPs with the largest effects for age at puberty in the UNL population. In UNL 

extreme gilts, as the number of favorable alleles for this SNP increased, age at puberty 

significantly decreased (13.1 days; P <0.0001), while there was a suggestive increase in 

LTNP (0.29 litters; P = 0.10) (Table 4.1; Figure 4.7). Due to high LD in the region, 

similar effects were observed for other top nine SNPs ranging from 11.9 to 13.1 days for 

age at puberty (P <0.0001) and 0.24 to 0.29 litters for LTNP (P = 0.16 to 0.19). The 

expected effect of these SNPs on age at puberty was not observed in the subsequent UNL 

batches (B15 to B17) as the frequency of favorable homozygous genotype was very low 

(0.53%) across these SNPs. Eight SNPs including the top SNP showed suggestive effects  

(P < 0.15) for NBA-P1 in the commercial data set (Table 4.1; Figure 4.7). The additive 

effects of these SNPs ranged from 0.16 to 0.23 piglets per litter.  

These 10 SNPs with the largest effects on age at puberty were located in intronic 

and untranslated regions of seven genes (OAS1, OAS2, RPH3A, PTPN11, HECTD4, 

TRAFD1, and NAA25). Since there were no obvious missense mutations among these top 

SNPs that could affect the protein sequence and function, we expect that some of these 

SNPs would affect gene expression, RNA stability or splicing events. However, none of 

these genes were differentially expressed in the hypothalamic ARC of UNL gilts.  
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Figure 4.7: Age at puberty (UNL; P < 0.0001), LTNP (UNL; P = 0.10), and NBA-P1 
(Commercial; P = 0.06) least square means and standard errors for AX-141921242 
SNP genotypes in the UNL extreme and commercial data sets.  
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The top SNP (AX-141921242) was located in the 3’ UTR of PTPN11 gene 

while two other SNPs (among the top 10 SNPs) were located in intron 1 of the same 

gene. Three alternatively spliced PTPN11 isoforms were identified in the UNL 

population using RNA sequence data of the hypothalamic ARC. There were five 

predicted PTPN11 isoforms and amino acid sequences available in the Ensembl database 

(ensembl.org). PTPN11 is widely involved in male fertility mainly via regulating 

proliferation and survival of spermatogonial stem cells, cellular adhesion in Sertoli cells 

to protect germ cells, and steroid (e.g. testosterone) production in Leydig cells (Puri and 

Walker, 2016).  

Outside the selected top 10 SNPs, there were two missense SNPs associated with 

age at puberty (AX-179504119 and AX-140952109; P <0.0001) and were located in OAS1 

and OAS2 genes, respectively. Both SNPs had significant (P < 0.05) additive effects on 

NBA-P1 in the commercial data set. Based on the SIFT score (> 0.05), these amino acid 

substitutions did not have deleterious effects on the protein function. OAS1 is a gene 

implicated in fertility traits in mammals. Promoter and exonic polymorphisms were 

associated with reproductive traits (e.g. age at first breeding and calving, pregnancy rate) 

in cattle of Indian origin (Alex et al., 2018a; Alex et al., 2018b). In mice, a novel 

transcript (OAS1D) was identified encoding an OAS1-like protein with 59% sequence 

identity with OAS1. It is exclusively expressed in growing oocytes and early embryos. 

Deficiency in OASD1 caused defects in ovarian follicular development and decreased 

efficiency in ovulation leading to reduced fertility (Yan et al., 2005).  
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Table 4.1: Single marker association results of the SNPs that represent top QTL regions for age at puberty on fertility traits  

SNP Chr Position 
(bp) 

Genotype Trait1 Data Set2 N P3 Least Square Means ± Standard Error4 
11 12 22 

AX-116162218 2 14770110 C/T AP UNL-Ex 270 0.0001 155.69 ± 13.50 168.19 ± 2.56 179.70 ± 2.82 
     UNL B15-17 375 0.7913 167.65 ± 4.79 162.54 ± 1.95 163.37 ± 2.20 
    LTNP UNL-Ex 259 0.6206 2.69 ± 0.98 2.94 ± 0.17 3.04 ± 0.19 
     Commercial 904 0.6493 2.70 ± 0.15 2.95 ± 0.07 2.90 ± 0.06 
    TNB-P1 UNL-Ex 189 0.2139 15.56 ± 2.02 14.64 ± 0.37 14.12 ± 0.42 
     Commercial 1,675 0.0872 12.73 ± 0.28 12.94 ± 0.13 12.87 ± 0.12 
    TNB-P2 UNL-Ex 119 0.1224 15.58 ± 4.30 13.80 ± 0.50 12.68 ± 0.59 
     Commercial 1,359 0.9746 13.96 0.36 13.39 0.17 13.61 0.15 
    NBA-P1 UNL-Ex 189 0.0843 14.85 ± 2.43 13.48 ± 0.41 12.63 ± 0.46 
     Commercial 1,675 0.4527 12.15 ± 0.28 12.25 ± 0.13 12.08 ± 0.12 
    NBA-P2 UNL-Ex 119 0.1255 12.54 ± 4.65 12.54 ± 0.51 11.28 ± 0.61 
     Commercial 1,359 0.9798 13.39 ± 0.35 12.79 ± 0.17 13.01 ± 0.16 
AX-116689678 7 83373091 A/G AP UNL-Ex 270 0.0105 179.06  ± 3.56 173.75  ± 2.87 166.52  ± 3.71 
     UNL B15-17 375 0.0166 167.83 ± 2.42 161.59 ± 1.94 160.18 ± 2.74 
    LTNP UNL-Ex 259 0.0278 2.68 ± 0.23 2.94 ± 0.17 3.43 ± 0.26 
     Commercial 904 0.7173 2.90 ± 0.06 2.90 ± 0.08 3.05 ± 0.23 
    TNB-P1 UNL-Ex 189 0.8738 14.46 ± 0.51 14.45 ± 0.42 14.33 ± 0.51 
     Commercial 1,675 0.1455 12.96 ± 0.11 12.73 ± 0.14 12.67 ± 0.38 
    TNB-P2 UNL-Ex 119 NA 13.73 ± 0.72 13.35 ± 0.52 12.90 ± 0.70 
     Commercial 1,359 0.8540 13.50 ± 0.14 13.68 ± 0.19 13.14 ± 0.48 
    NBA-P1 UNL-Ex 189 0.2377 12.51 ± 0.60 12.78 ± 0.47 13.62 ± 0.66 
     Commercial 1,675 0.8869 12.16 ± 0.11 12.13 ± 0.14 12.16 ± 0.39 
    NBA-P2 UNL-Ex 119 0.8244 11.81 ± 0.84 12.28 ± 0.62 11.63 ± 0.80 
     Commercial 1,359 0.4233 12.86 ± 0.15 13.11 ± 0.19 12.83 ± 0.47 
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SNP Chr Position 
(bp) 

Genotype Trait1 Data Set2 N P3 Least Square Means ± Standard Error4 
11 12 22 

AX-134892687 7 83091580 C/T AP UNL-Ex 270 0.1305 170.23 ± 2.90 175.50 ± 2.95 177.01 ± 5.00 
(NR2F2)     UNL B15-17 375 0.0065 155.98 ± 3.52 163.12 ± 1.90 167.53 ± 2.41 
Promoter    LTNP UNL-Ex 259 0.0594 3.26 ± 0.19 2.79 ± 0.18 2.69 ± 0.34 
     Commercial 904 0.4942 1.17 ± 0.84 2.98 ± 0.09 2.88 ± 0.06 
    TNB-P1 UNL-Ex 189 0.7901 14.39 ± 0.43 14.39 ± 0.42 14.68 ± 0.76 
     Commercial 1,675 0.6246 11.41 ± 2.09 12.96 ± 0.16 12.85 ± 0.10 
    TNB-P2 UNL-Ex 119 NA 12.51 ± 0.51 13.82 ± 0.50 15.58 ± 1.10 
     Commercial 1,359 0.1628 12.87 ± 3.39 13.78 ± 0.21 13.46 ± 0.14 
    NBA-P1 UNL-Ex 189 0.7719 12.81 ± 0.48 12.95 ± 0.48 13.06 ± 0.91 
     Commercial 1,675 0.2338 10.06 ± 2.10 12.33 ± 0.16 12.09 ± 0.11 
    NBA-P2 UNL-Ex 119 0.1762 11.37 ± 0.57 12.20 ± 0.6 13.84 ± 1.23 
     Commercial 1,359 0.1762 11.61 ± 3.37 13.18 ± 0.21 12.86 ± 0.14 
AX-135052973 7 83090047 C/T AP UNL-Ex 270 0.2192 171.32 ± 2.86 174.51 ± 2.98 177.69 ± 5.26 
(NR2F2)     UNL B15-17 375 0.0042 160.46 ± 2.12 163.22 ± 1.98 170.10 ± 2.83 
5’ UTR    LTNP UNL-Ex 259 0.1729 3.19 ± 0.19 2.81 ± 0.18 2.85 ± 0.36 
     Commercial 904 0.3378 2.95  ± 0.14 2.94  ± 0.07 2.86  ± 0.07 
    TNB-P1 UNL-Ex 189 0.8959 14.50 ± 0.42 14.25 ± 0.43 14.97 ± 0.82 
     Commercial 1,675 0.4241 12.83 ± 0.24 12.81 ± 0.12 12.96 ± 0.12 
    TNB-P2 UNL-Ex 119 NA 12.39 ± 0.50 14.02 ± 0.51 15.07 ± 1.14 
     Commercial 1,359 0.5872 13.58 ± 0.32 13.60 ± 0.16 13.47 ± 0.16 
    NBA-P1 UNL-Ex 189 0.6371 12.80 ± 0.47 12.94 ± 0.49 13.32 ± 0.97 
     Commercial 1,675 0.6064 12.21 ± 0.25 12.18 ± 0.12 12.11 ± 0.13 
    NBA-P2 UNL-Ex 119 0.0765 11.24 ± 0.56 12.49 ± 0.59 13.13 ± 1.28 
     Commercial 1,359 0.5150 12.95 ± 0.32 13.03 ± 0.16 12.85 ± 0.17 
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SNP Chr Position 
(bp) 

Genotype Trait1 Data Set2 n P3 Least Square Means ± Standard Error4 
11 12 22 

AX-179489698 7 83084320 C/T AP UNL-Ex 270 0.3096 171.47 ± 2.89 174.00 ± 2.96 177.07 ± 5.51 
(NR2F2)     UNL B15-17 375 0.0289 161.83 ± 2.11 162.04 ± 1.99 171.00 ± 3.09 
Intron 1    LTNP UNL-Ex 259 0.1158 3.21 ± 0.19  2.80 ± 0.18 2.78 ± 0.38 
     Commercial 904 0.4730 2.98 ± 0.17 2.92 ± 0.07 2.88 ± 0.07 
    TNB-P1 UNL-Ex 189 0.6476 14.37 ± 0.44 14.32 ± 0.43 15.05 ± 0.87 
     Commercial 1,675 0.3970 12.63 ± 0.29 12.86 ± 0.12 12.92 ± 0.12 
    TNB-P2 UNL-Ex 119 0.0377 12.47 ± 0.56 14.04 ± 0.58 14.98 ± 1.35 
     Commercial 1,359 0.3050 13.78 ± 0.37 13.61 ± 0.16 13.45 ± 0.16 
    NBA-P1 UNL-Ex 189 0.9842 13.01 ± 0.47 12.85 ± 0.47 13.17 ± 1.00 
     Commercial 1,675 0.5568 12.10 ± 0.29 12.22 ± 0.13 12.08 ± 0.12 
    NBA-P2 UNL-Ex 119 0.1358 11.36 ± 0.58 12.48 ± 0.59 13.03 ± 1.37 
     Commercial 1,359 0.2122 13.16 ± 0.37 13.04 ± 0.17 12.82 ± 0.16 
AX-123958897 7 83088085 A/G AP UNL-Ex 270 0.0885 175.47 ± 3.71 175.91 ± 2.82 166.89 ± 3.59 
(NR2F2)     UNL B15-17 375 0.0038 167.76 ± 2.38 162.17 ± 2.02 156.40 ± 3.71 
Intron 1    LTNP UNL-Ex 259 0.0146 2.57 ± 0.24 2.96 ± 0.17 3.40 ± 0.25 
     Commercial 904 0.5561 2.90 ± 0.05 2.97 ± 0.12 NA 
    TNB-P1 UNL-Ex 189 0.1907 14.87 ± 0.53 14.51 ± 0.40 13.89 ± 0.55 
     Commercial 1,675 0.9868 12.89 ± 0.09 12.91 ± 0.22 10.01 ± 2.97 
    TNB-P2 UNL-Ex 119 NA 14.67 ± 0.96 12.97 ± 0.50 13.00 ± 0.81 
     Commercial 1,359 0.2663 13.49 ± 0.13 13.83 ± 0.29 12.93 ± 3.39 
    NBA-P1 UNL-Ex 189 0.7808 13.16 ± 0.64 12.79 ± 0.46 12.95 ± 0.63 
     Commercial 1,675 0.6732 12.14  ± 0.10 12.27  ± 0.22 8.99  ± 2.97 
    NBA-P2 UNL-Ex 119 NA 13.24 ± 0.83 11.54 ± 0.49 11.80 ± 0.71 
     Commercial 1,359 0.0987 12.87 ± 0.13 13.38 ± 0.29 11.68 ± 3.36 
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SNP Chr Position 
(bp) 

Genotype Trait1 Data Set2 n P3 Least Square Means ± Standard Error4 
11 12 22 

AX-141921242 14 39203611 A/C AP UNL-Ex 270 <0.0001 181.24 ± 2.74 164.62 ± 3.02 159.83 ± 5.57 
     UNL B15-17 375 0.0577 164.46 ± 1.77 160.10 ± 2.12 165.29 ± 10.68 
    LTNP UNL-Ex 259 0.1046 2.83 ± 0.17 3.09 ± 0.20 3.46 ± 0.40 
     Commercial 904 0.4854 2.92 ± 0.11 2.93 ± 0.06 2.85 ± 0.08 
    TNB-P1 UNL-Ex 189 0.4084 14.18 ± 0.4 15.02 ± 0.44 14.20 ± 0.79 
     Commercial 1,675 0.1888 12.71 ± 0.19 12.87 ± 0.11  13.02 ± 0.15 
    TNB-P2 UNL-Ex 119 NA 12.83 ± 0.60 13.76 ± 0.64 13.50 ± 1.22 
     Commercial 1,359 0.7512 13.56 ± 0.25 13.50 ± 0.15 13.63 ± 0.20 
    NBA-P1 UNL-Ex 189 0.6806 12.80 ± 0.46 13.69 ± 0.50 12.28 ± 0.94 
     Commercial 1,675 0.0630 11.86 ± 0.19 12.15 ± 0.11 12.32 ± 0.16 
    NBA-P2 UNL-Ex 119 NA 11.94 ± 0.61 11.91 ± 0.68 12.62 ± 1.19 
     Commercial 1,359 0.2988 12.84 ± 0.25 12.89 ± 0.15 13.12 ± 0.20 
 
1AP: Age at puberty (days). LTNP: lifetime number of parities (litters). TNB: total number born (piglets/litter). NBA: number born alive (piglets/litter) 
2UNL-Ex: UNL extreme gilts (Batch 1-13). UNL B15-17: UNL gilts (Batch 15-17). Commercial: Large White × Landrace maternal crossbreds 
3P-value for overall test of the effect of genotypes 
4The alleles (1 and 2) are designated based on the alphabetical order of SNP variants (A, C, G and T) 
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CONCLUSIONS 

The goal of this study was to fine map the genetic sources that explain variation in 

age at puberty and other fertility traits to enable accurate prediction of traits with low 

heritability and expressed late in life such as reproductive longevity. For this purpose, a 

custom SNP array (SowPro90) enriched in SNPs located in genes overlapping QTL 

regions for age at puberty was developed. Since only a subset of UNL gilts were 

genotyped with SowPro90, a novel BayesIM approach was utilized to infer and assign 

SowPro90 haplotypes to the entire UNL population.  

Five QTL regions on four chromosomes (SSC2, SSC7, SSC14, and SSC8) with 

the largest effects on age at puberty were identified in the UNL swine resource 

population using a haplotype based GWAS. As expected, a negative correlation  

(r = -0.96 to -0.10; P < 0.0001) was observed between GEBVs for age at puberty and 

LTNP at the major QTL sites for age at puberty. The haplotypes with largest effects on 

age at puberty showed an opposite effect on LTNP at each QTL region.  

In this study we discovered QTL regions and genetic variants that explained 

variation in multiple fertility traits including age at puberty, LTNP, and litter size in the 

UNL population. Approximately 70% of the SNPs significantly associated with age at 

puberty were located in genes. Among them, P2RX3, NR2F2, PTPN11, and OAS1 were 

candidate genes for fertility traits. The SNPs were located in coding (missense, 

synonymous), intronic, and untranslated regions of these genes. Some of the SNPs 

identified in our experimental population associated with age at puberty were evaluated 
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for their effects on LTNP and litter size traits in a commercial data set. Suggestive 

associations were observed for some of these SNPs with litter size traits but not with 

LTNP. A reason for this could be that reproductive longevity is a composite phenotype 

largely affected by environment. These candidate polymorphisms can be further 

characterized to understand their role in gene expression, splicing process, protein 

sequence and function, and how these changes affect the fertility phenotypes. 
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