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Introduction
• Biomineralization provides, through the precise 

growth of inorganic materials, functional capabilities 
(e.g., structural rigidity or orientation sensing) vital 
to the host organisms.1

• Mimicking the complex products observed in 
biomineralization, including the magnetosomes of 
magnetotactic bacteria, is challenging using 
synthetic systems, but such mimicry would provide 
routes toward useful materials with applications in 
areas such as drug delivery and microfluidics.

• A variety of inorganic materials were able to be 
formed on the boundary between aqueous droplets, 
including Synthetic Magnetosomes (SMs).

Approach
• Hexadecane oil was mixed with asolectin, a lipid 

found in soybeans, to form the continuous phase
• Two aqueous phases were prepared, one containing 

NH4OH, and the other containing FeCl3 and FeCl2.
• Droplets of both aqueous phases were placed in the 

continuous phase, where a lipid monolayer would 
form surrounding the droplets.

• When placed in contact, a droplet interface lipid 
bilayer (DIB) formed at the contact site, allowing 
small, uncharged particles such as ammonia and 
water to pass through to the other droplet.2

Conclusions/Future 
Directions

• We were able to produce programmable magnetite 
in aqueous droplets.3

• The synthetic magnetosomes are naturally 
polarized in a direction perpendicular to the point of 
growth.

• Due to the magnetic properties, a variety of 
applications exist.

• We will continue investigating mineral systems with 
similar properties, such as magnesium salts

Formation of Synthetic 
Magnetosomes

• Ammonia selectively diffuses across the DIB.
• As Fe2+/3+ concentration varies, different growth 

behaviors are observed with boundary-confined 
growth occurring at a 75 mMol concentration.

• Electron diffraction ring pattern indicates magnetite 
was formed.

• Magnetite growth on droplets could be patterned,
selectively, with different contact sites.
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Magnet

Figure 1. This represents the environment found when an iron (II,III) 

chloride droplet comes into contact with an ammonium hydroxide 

droplet. It also shows the chemistry needed for the production of 

magnetite.

Figure 2. A cobalt control was used 

to ensure that ammonia was crossing 

from one droplet to the other. The 

green color seen in A indicates 

ammonia transport occurred in the 

trial shown in C. 

Figure 6. A SM being 

rotated on a stir plate.

Figure 5. 75 mMolar iron droplets 

are able to be patterned in contact 

with 50/200 NH4OH 

Figure 4. The left image is the electron 

diffraction ring pattern of magnetite 

particles collected from one of the 

droplet experiments. The right is the 

simulated electron ring of magnetite. 

Figure 7. SM growth manipulated 

by a magnetic field.
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Magnetic Properties
• SMs can be manipulated by a magnetic field.
• SM polarization and growth patterns can be 

programmed using external magnetic fields.
• SMs synthesized outside of a magnetic field aligned

at a rate indicating magnetic polarization.

Figure 8. A-E show the orientation 

of rotating SMs synthesized without 

magnetic field. E-H show the 

orientation of rotating programmed 

SMs grown in magnetic field.

Figure 9. A shows a method of 

mass producing SMs. B, C, D show 

random dispersal of droplets. E 

indicates the orientation is non-

random and indicate magnetic 

polarization.

Figure 3. A matrix showing the 

effect of different concentrations of 

Fe2+/3+ in contact with NH4OH. A                         E

B                          F

C                         G

D                        H
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