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INTRODUCTION 
Poor consolidation in concrete pavement can be costly for highway operation and maintenance. 
Improper consolidation may cause entrapped air voids beneath the surface of pavement, which 
after cycles of freeze-thaw, can develop into potholes or spalling. Patching these defects is a costly 
and time-consuming process, in addition to being inconvenient and dangerous for commuters. 
Therefore, the early detection of these voids can allow DOTs to identify the problem and fix it 
before putting the defective sections into service.  
 
Sub-surface (i.e., less than 4 in deep) voids (Figure 1) that are 1/2” or larger in diameter (in both 
horizontal and vertical directions) is a common symptom of consolidation issues during the 
construction of concrete pavements. This issue was observed by NDOT in concrete pavements 
constructed by different contractors, on different roads (highways and local roads), and with 
different thicknesses (9-14 in). 
 

 

Figure  1 Air void in a cored concrete pavement sample 

Although the purpose of consolidation is to reduce the entrapped air from freshly poured concrete, 
these voids can be caused by improper vibration, overly dry mix, and/or long wait time between 
concrete batches (Legg 1974). These large voids or concentrations of smaller voids can be 
detrimental to the durability and/or strength of the pavements (su Jung et al. 2008). The capability 
of early detection of these voids during the hydration time will allow NDOT field personnel to 
issue timely correction orders or rework orders to avoid costly repair work after the problematic 
road section goes in service. The enhanced quality of the concrete pavement will also help to 
reduce the maintenance cost. 
 
Given the importance of the issue, in this project the investigators experimented two non-
destructive evaluation (NDE) methods to detect the subsurface voids during concrete early curing 
process: the first method is to use infrared thermography (IRT), which utilized the hydration heat 
generated from the curing process as a background to detect the voids; the second method is to use 
GPR signals to detect the voids during the curing process. The project outcomes suggested that 
both methods can successfully detect the defective voids during the early curing time.  
  
In the following sections, experimental methods and outcomes of both investigations using IRT 
and GPR are reported in detail with limitations noted.  
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PART 1 : INFRARED THERMOGRAPHIC (IRT) APPROACH 
 

1  BACKGROUND 
 
1.1   Literature Review of Quality Control for Consolidation of Fresh Concrete  
 
Current studies on quality control for fresh concrete consolidation were limited and most of them 
focused on monitoring the vibration procedure. Although the general practice of consolidation for 
pavement was recommended by the standard (ACI 309R), the quality control was often relied on 
the on-site inspectors (Tattersall 2014). The problem with identifying the large voids during the 
paving is that they were hidden from visual inspection of the finishing surface. Minnich, Mawhorr, 
& Schipper (1999) developed an accelerometer-based the system to monitor the concrete 
consolidation based on the vibration rate of the vibrators array. This system provided a real-time 
display of each vibrator’s vibration rate and alarmed the operator when the vibration signal below 
or above threshold limits. Cable, McDaniel, & Steffes (1999) also reported that through monitoring 
and controlling the vibration rate, the consistency and the quality of concrete pavement could be 
improved. A visual monitoring system was developed (Tian et al. 2019; Tian and Bian 2014) to 
record the position, depth, and duration of vibrator in real-time. This system could assess the 
vibration effect and visualize the vibration defects to achieve the improvement of quality control 
during construction. Beside monitoring the status of vibrator, the direct assessment on the fresh 
concrete was also studied. Alexander & Haskins (1997) developed a device to measure the degree 
of consolidation through evaluating the change of electrical impedance value during the vibration. 
It found the curve of AC-resistance against time of vibration was distinguishable for the entrapped 
air compared to the entrained air and argued the intersection of the two curves to be the indicator 
of consolidation completion. Although the issue has been well-known among practitioners little 
effective and practical methods were developed to address it.  
 

1.2 Objective and Scope 
   
The primary goal of this IRT investigation is to develop a reliable and efficient early detection tool 
for near-surface voids and to enhance NDOT’s capacity of quality control during concrete 
pavement construction. More specifically, the tool is for early detection during the early curing 
stage, up to 48 hours after the concrete pavement is casted in place. The specific objectives are:  
1. To identify the detectability of voids of different sizes and buried depths using temperature 

contrast 
2. To identify best time windows in the first 24 hours after pouring 
3. To investigate influences of external factors: curing compound, environmental conditions 
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2  RESEARCH APPROACHE 
 

2.1 Detection of Near-Surface Voids by Thermography During Hydration 
 
Using thermography to detect sub-face defects in concrete structure has been developed several 
decades. The typical usage on field is shallow delaminating detection for bridge deck (Abu Dabous 
et al. 2017; Cheng et al. 2019). It treated the delamination (a horizon crack underneath the deck 
surface) as an insulator, which blocks the heat flow from the top surface of the deck to the bottom 
when the sun was heating the deck during the daytime. Thus, the temperature contrast was 
developed at the deck surface between the delaminated and sound areas.    
 

 

Figure 1.2 Conceptual illustration of detecting mechanism in a section view 

 
This research proposed to detect near-surface void during the pavement construction based on the 
similar mechanism. The principle for detection is based on the developed temperature contrast of 
the surface area where the voids are entrapped underneath during the concrete hydration. Figure 
1.2 shows the conceptual illustration of the detection mechanism. It shows the ideal temperature 
distribution and heat flow for a semi-infinite slab where assumes certain length in depth and 
infinite length for width. When the poured concrete was setting, the process of hydration 
continuously generates heat for a certain amount of time (typically tens of hours). When the 
temperature of concrete is rising quickly and higher than the environment, the temperature inside 
the slab will be higher in the core location than that closes to surfaces (Jeong and Zollinger 2006; 
Wang and Dilger 1994).  As a result, the heat constantly flows outward from the core of the slab 
and rapid temperature gradient would occur close to the slab surface (shown as red arrows in 
Figure 1.2). When a larger void or group of small voids occur at the near surface (shown as black 
box in Figure 1.2), they could block the heat flow or/and change the thermal conductivity of the 
region so that potentially reduce the heat accumulation at the surface of the slab. Thus, presented 
as the surface temperature, the region having voids underneath could be colder than its 
surroundings.  
 

 

 

  



4 
 

3 EXPERIMENTAL DESIGN AND DATA COLLECTION 
 
3.1 Experimental Design for Thermographic Detection  
Based on the investigation of thermographic technology and discussions in the technical advisory 
committee (TAC) meetings, four experiments were designed and conducted. These experiments 
aim to investigate the applicability of the proposed technology under in-situ conditions for 
pavement construction. Primarily, the research focus on the detectability of voids in difference 
sizes and buried depth as well as the best time window during the concrete hydration. In practice, 
the curing compound will be sprayed (within 10 minutes) after the fresh pavement is consolidated 
and the surface is finished. Also, the environmental conditions such as ambient temperature and 
solar heating vary across the day. Thus, this research designed two time-windows for concrete 
casting (Morning and evening) to investigate the environmental effects.  
 

3.1.1 Apparatus for data collection  
This research configured two experimental setups for indoor and outdoor data collections. In the 
indoor experiments (Figure 1.3), the thermal camera was placed on the top of sample slab with 
downward camera view and record the data continuously. The thermal camera shown in Figure 
1.3c (FLIR A8300) could provide a 1280x720 spatial resolution with 20 mK sensitivity at 25 ℃. 
For outdoor experiment, a drone (DJI MATRICE 600) integrated with a thermal camera (FLIR 
A8300) and on-board camera was hovered over the sample slab for data recording at different time. 
For both indoor and outdoor experiments, a weather station were used to record the ambient 
temperature. Also, the thermal coupler (SmartRock) was used to record the concrete internal 
temperature.  
 

 

Figure 1.3. Experimental equipment and setups: (a) indoor setup; (b) thermal camera; (c) outdoor setup 

 
 



5 
 

Table 1.1 Concretes lab design 

Experiment 
Dimension 

 (L x W x D) 
Mix design Slump design Slump tested 

EX1(09/28/2018) 32.5"x23"x12" Quickrete  2.5 in.  N/A 
EX2(03/28/2019) 6'x6'x9" 47B 1 in. 0.5 in. 
EX3(05/10/2019) 6'x6'x9" 47B 1 in. 2.5 in. 
EX4(08/28/2019) 6'x6'x9" 47B 1 in. 1 in. 

 
3.1.2 Evaluation of Effect of Curing Compound (EX1) 
The experiment (EX1) was conducted on September 28th, 2018 at the civil structural lab of 
University of Nebraska-Lincoln. The concrete slab has a dimension of 32.5"x23"x12" in length, 
width and depth. The concrete mix used was QUIKRETE, a pre-blended mixture, which met the 
requirements of ASTM C387. The slump test was not conducted at the time of experiment.  The 
artificial voids made with plastic wrapped foam spacing 5 inches were imbedded in 1”, 2” and 3” 
in depth pair-to-pair on the both side of the tape measure shown in Figure 1.4a. The curing 
compound (white pigment cure provided by NDOT) was sprayed on the left half surface of the 
slab only so that the side-by-side comparison could be observed during the hydration (Figure 1.4b). 
The data was collected up to 72 hours and first 48 hours’ data was used for the later analysis.  
 

 

Figure 1.4 Experimental setup for evaluation of effect of curing compound 

 
3.1.3 Evaluation of Detectability and Optimal Time Windows (EX2) 
This experiment (EX2) was carried out on March 28th, 2019 at the civil structural lab of University 
of Nebraska-Lincoln. The concrete slab has the dimension of 72"x72"x9" (length by width by 
depth). The concrete mix followed 47B mix design with 1 PF cement and 1” slump. The slump of 
the concrete tested was about 0.5” at the time of experiment. There were four groups of simulated 
voids imbedded in the slab (Table 1.1) to represent small, large, long and air-filled voids in 1”, 
2”,3” and 4” deep. After the concrete was poured, consolidated and surface finished, the artificial 
voids were deployed followed the layout in Figure 1.5a and the thermal coupler was buried in the 
center location of the slab at depth about 1.5" from surface. Table 1.2 shows each void's dimension. 
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Then the surface was re-finished as shown in Figure 1.5b. Same white pigment cure (in Section 
3.1.2) was sprayed by NDOT professionals after 24 minutes of pour and the surface was shown in 
Figure 1.5c. During time from 3rd hour to 5th hour after pour, the west half part of the concrete 
slab was covered by a plastic sheet for GPR scanning. The total data for thermal imaging was 
recorded continuously up to 28 hours.  
 

 

Figure 1.5 Experimental setup for evaluation of detectability and optimal time window 

 
3.1.4 Evaluation of Effect of Outdoor Condition (EX3 & EX4) 
There were two experiments conducted at the field closed to the Whitter Research Center of 
University of Nebraska-Lincoln. Both experiments followed the same form design and same type 
of artificial voids in Section 3.1.3. The first experiment (EX3) was carried out at 9:10 a.m. on May 
10th, 2019 to simulate a morning construction. 16 artificial voids with different sizes were 
imbedded in the slab after the concrete was consolidated. Figure 1.6a shows the location of each 
void where the distance of void-to-edge and void-to-void was spaced in 12". Table 1.2 shows the 
dimension of each void and its corresponding depth. Figure 1.6b shows the regular image of the 
re-finished surface after voids were imbedded before the cure was sprayed. Figure 1.6b shows the 
slab surface after the cure was sprayed. A thermal coupler was placed at the center of the slab 
(sensor in Figure.6a) with depth around 2". The weather station and thermal sensor were 
continuously collecting the data up to 14 hours. The UAV carried thermal camera collected the 
data at 9:34 a.m., 9:45 a.m., 10:05 a.m., 11:19 a.m., 12:56 a.m., 2:25 p.m., 3:44 p.m. and 6:25 p.m. 
The second experiment (EX4) was conducted at 5:30 p.m. on August 28th, 2019 to simulate the 
evening construction. The form and mix design were shown in Table 1.1 and the layout, regular 
image of surface before and after applying curing compound were shown in Figure 1.6a, b and c 
accordingly. The weather station recorded the data for 6 hours. The thermal coupler was placed 2" 
deep. The thermal image was collected at 6:25 p.m., 7:12 p.m., 9:49 p.m. and 11:30 p.m. by the 
drone.  
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Figure 1.6 Experimental setup for outdoor evaluation of simulated morning construction 

 

 

Figure 1.7 Experimental setup for outdoor evaluation of simulated evening construction 

 
Table 1.2 Artificial voids demension and buried depth 

 EX2 EX3 EX4 
Void No. Dimension Depth Dimension Depth Dimension Depth 

1 2" x 1.5" - 2" x 0.5"  1" 2" x 1"  1" 
2 2" x 1.75" - 2" x 1"  2" 2" x 1"  2" 
3 1.5" x 1.5" - 2" x 1.5"  3" 2.5" x 1"  3" 
4 2" x 1.5" - 2" x 1"  4" 2" x 1.5"  4" 
5 2" x 2" - 3" x 1.5"  2" 3" x 1"  1" 
6 2.5" x 2" - 3" x 1"  1" 3.5" x 1.5"  2" 
7 2.5" x 1.75" - 3" x 2"  4" 3.5" x 1"  3" 
8 4" x 1.5" - 4" x 1"  3" 3.5" x 1.5"  4" 
9 3.75" x 1" - 5.5" x 2"  1" 2.5" x 2"  1" 

10 5" x 1" - 7" x 2"  2" 3" x 2.5"  2" 
11 5.75" x 1" - 6.5" x 2"  3" 3" x 2.5"  3" 
12 6.6" x 1" - 6" x 2"  4" 3" x 2.5"  4" 
13 - - 2" x 2"  1" 7.5" x 1.5"  1" 
14 - - 2" x 2"  3" 7.5" x 1.5"  2" 
15 - - 3" x 2.5"  2" 7.5" x 1"  3" 
16 - - 2" x 2"  4" 7" x 2"  4" 
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4 RESULTS 
 

4.1 Results of The Thermographic Analysis 
 
4.1.1 The Effect of Curing Compound 
Applying the curing compound has been found two-step influence on the temperature contrast of 
void defect. First, when the surface was wet (from time window I to II), the temperature contrast 
(Figure 1.9 I and II shows the contrast from -0.04 to -0.08℃) was low for both bare surface and 
surface with sprayed cure. It was found that applying the cure would decrease the temperature at 
the beginning where in Figure 1.8 from I to II, the contrast was decreased. This observation was 
also supported in EX2 (Figure 1.11) from I to II that a decrease of temperature contrast was found 
after applying the cure. Second, when the surface started to dry out, the surface temperature 
developed quickly. It was shown in Figure 1.8b that the surface with sprayed cure increased faster 
than the bare surface. It could be explained by the function of the curing compound that was 
designed for water retention. Water evaporation would remove heat from the concrete surface and 
thus the temperature would be lower at the bare surface than the surface with sprayed cure. As a 
result, the faster temperature raising at the cure surface developed higher temperature contrast of 
the void. In Figure 1.8a III and Figure 1.9 III, the temperature contrast of 1" deep void was 
around -0.28℃ compared to -0.18℃ of the void at the same depth on the bare surface. At this time 
stamp, the maximum temperature contrast was reached and started to decrease (Figure 1.8a IV 
and Figure 1.9 IV). In summary, applying the cure would decrease the temperature contrast of the 
void at the beginning while help to develop the contrast later. 
 

 

Figure  1.8 temperature evolution after pouring for EX1: (a) temperature contrast for void with 1" depth; (b) temperature for 
cure sprayed surface, bare surface and ambient temperature  
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Figure 1.9 Thermal images at different time windows (EX1): left side of each image shows the surface with cure and the right 
side shows the bare surface 

 
4.1.2 Detectability and Optimal Observation Time Window 
The second experiment (EX1) conducted indoor revealed two optimal time windows for potential 
detection of voids in different sizes and buried depths. The first time-window was observed at the 
time before cure spray when artificial voids were placed, and the surface was re-finished (Figure 
1.10 I and Figure 1.11 I). At this time window, the voids with small to large shape in depth from 
1" to 4" were visible with mean temperature contrast of -0.37℃. This observation was also found 
in outdoor experiment (EX3) at time I in Figure 1.12 and Figure 1.13 which a mean temperature 
contrast of -0.25℃ was developed. At time II, the curing compound was sprayed, the thermal 
image in Figure.11II shows the decreased visibility of the voids after cure spray. It also clearly 
shows the sprayed pattern of curing compound. The visibility was further reduced at time III where 
the room temperature (yellow) was higher than the concrete (blue and red in Figure 1.10). During 
time of 3rd hour to 5th hour, the plastic sheet was covered on the top of the slab where the transient 
thermal behavior for detection was interrupted and interpretation of data was not feasible. Later, 
at time IV and V in Figure 1.10, the continued temperature raising re-developed the temperature 
contrast. In Figure 1.11 IV and V, part of the voids became visible with the temperature contrast 
of -0.08 (IV) and -0.17 (V). At time (Figure 1.10VI to VIII), the temperature raised to the 
maximum and then started to decrease. In summary, the first time-window could be within the first 
20 to 30 minutes before applying the curing compound. The second time-window could be the 
period of temperature raising after cure spray. However, the factors such as ambient temperature 
could obstruct the development of temperature contrast which reduce the feasibility of detection.   
 

 

Figure 1.10 Temperature evolution of indoor experiment (EX2) 
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Figure 1.11 Thermal images for indoor experiment (EX2): mean temperature contrast of voids on top; time window on bottom 

 
4.1.3 The Effect of Environmental Condition  
Two outdoor experiments (EX3 and EX4) simulating the morning construction and evening 
construction revealed that the ambient temperature and solar heating were the two major influential 
factors. Solar heating presented a negative effect on the detectability in Figure 1.12a. At the time 
I in Figure 1.12a, the voids were visible with the mean contrast of -0.25℃. After 10 minutes, the 
contrast was decreased to -0.12℃ and the visibility was low. Later, the voids were no longer 
observable, and contrast of void even became positive (Figure 1.13 III and IV) which means the 
surface temperature above the void was slightly higher than the surrounds. This observation 
violated the principle of detection and the judgement became confusion. During this period 
(Figure 1.12a), it is found that the mean surface temperature of the slab was close to the 
thermocouple's reading which was imbedded about 1.5" deep in the slab. According to this period 
(10 a.m. to 4 p.m. in Figure 1.12a), the sun was continuously heating the slab from the top after 
pouring so that the effect of solar heating could neutralize the heat flow caused by the hydration. 
At a result, the detectability at this period was low.  
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Figure 1.12 Temperature evolution of outdoor experiments: (a) morning construction (EX3); (b) evening construction (EX4) 

 
The ambient temperature is the second factor that affect the detectability through changing the 
slab's boundary condition for the transient thermal dynamics. It was observed that in the indoor 
experiment (EX2), when the ambient temperature was higher than the slab's surface temperature, 
the shallow concrete layer was acutely heated by the ambient through convection. This process 
was similar to solar heating which would reduce or even inverse the heat flow generated by the 
hydration. As a result, the temperature contrast developed at the beginning could be reduced to a 
degree of nontrivial (Figure 1.10 III and Figure 1.11 III). This effect was also found in the 
experiment of evening construction (EX4) where in Figure 1.13 V and VI, the voids having 
contrast of -0.12 and -0.11℃ and not visual feasible to observe. However, with the development 
of temperature raising and no solar effect in the nighttime, the temperature contrast of voids 
increased dramatically (Figure 1.12) at time VII and VIII reaching -0.51 and -0.49℃ (Figure 
1.13). This observation agreed with two indoor experiments (EX1 and EX2) that during the 
temperature raising, the contrasts of voids would also increase. This observation could be held true 
when the ambient temperature was lower than the surface temperature of the concrete slab. In 
summary, the feasible detection of voids requires the ambient temperature to be lower than the 
mean temperature of concrete surface.      
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Figure 1.13 Thermal images for different time windows of outdoor experiments 
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5 CONCLUSION AND RECOMMENDATION 
 

5.1 Conclusions  
Based on the four experimental studies (two indoor and two outdoor), applying UAV-based IRT 
for near-surface voids detection is feasible with favorable environmental conditions. This 
detectability could be used to qualitatively identify the locations of the concerned voids up to 4" 
deep. The results of indoor experimentations show that when a temperature contrast is greater than 
0.1°C the voids were visually distinguishable given evenly finished concrete surface and uniformly 
sprayed curing compound. When taking   the imperfections of surface finishing and non-
uniformity of cure spray into consideration, the voids are visually distinguishable when the 
temperature contrast was greater than 0.2 ℃ based on the outdoor experiments. Based on the data 
from the 47B mix design specimen, it took up to 5 minutes for the specimen hydration process to 
develop the required temperature contrasts.   
 

The curing compound effects on detectability differs depending on the timing of hydration process. 
At the initial stage of spay, it would decrease the detectability while it is wet. After the compound 
become a dry film it helps maintaining the temperature contrast for longer time (up to 8 hours 
given favorable environmental conditions) compared to cases without using curing compound. 
 

The best time window to use the UAV-based IRT for near-surface voids detection without 
considering the environmental constraints to detect the voids would be within the first 30 
minutes after concrete casting and prior to the curing compound application. Furthermore, it was 
found in this study, after the curing compound application and the heat of hydration heat starts, 
these two steps will delay voids observation for up to (6-8 hours). The current DOT specification 
is to start the curing compounds immediately after paving operation but no later than 30 minutes. 
for paving operations, the UAV-based IRT for near-surface voids detection may not be possible, 
when the ambient conditions are not favorable.  

  

The favorable environmental conditions required for the UAV-based IRT for near-surface voids 
detection are the ambient temperature lower than the concrete surface temperature, and no direct 
solar radiation on the concrete surfaces. Cloudy day, non-rainy and nighttime generally are 
favorable conditions for near-surface voids detection observation window.  Although all 
experimental setups were quantitatively designed in different sizes and imbed depth, the 
interpretation of voids’ sizes was affected by the external factors including complicated 
environmental conditions.   
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5.2 Constrains for Field UAV-IRT surface voids detection   

 

The combination of high-resolution IRT and UAV proved to be a very efficient way to monitor 
the concrete consolidation quality during pavement time and to detect the subsurface voids in 
very large concrete pavement areas. However, there are some worth noted UAV constraints in 
field implementations:  
 
(1) current consumer-grade UAVs’ flight control systems can be interrupted or destabilized by 
strong radio signals presented in the close range. The source of the strong radio signals may come 
from the communication systems of the construction equipment, concrete delivery trucks, or high-
voltage power lines. So, field operators of UAV need to pay close attention and take precaution to 
identify those potential risks.  

(2). If missed the first half-hour observation window, the filed operator will likely have to operate 
the UAVs after sunset. Currently, FAA requires special permit to fly a UAV in the nighttime, 
which creates inconvenience for field operations.  

(3) In any cases, remote pilot certificate is required to operate in a construction field. It will be the 
operators’ responsibility to make sure the SUVs and the IRT equipment to be insured to avoid 
liability and property damage issues. 

 

Due to logistical and safety concerns the planned field tests in actual highway project were 
canceled.  Nevertheless, contractors intended to do field implementations need to closely follow 
the FAA rules of Part 107 Waivers, in addition to the aforementioned constraints.  
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PART 2: GROUND PENETRATION RADAR (GPR) APPROACH 

1 OBJECTIVES 
 
It is proposed here that early detection is possible through the use of GPR, which has been a tool 
used for roadway quality control since the 1980s (Fernandes and Pais, 2017). The early detection 
of air voids, however, has been thought to be impossible due to the scattering effects the curing 
concrete’s moisture has on GPR’s electromagnetic waves. Thus, this report aims to push the thus-
far assumed boundaries of GPR use on concrete structures.  
 
To test the hypothesis of this study, several artificial voids were created using spray insulation 
foam, a material that has a similar density to naturally occurring air voids, in laboratory slabs. 
These slabs were then scanned with GPR. Three different slabs of varying sizes and reinforcement 
were tested with varying void depths and configurations, in order to test the sensitivity of the 
measurements to void size and depth over time. A typical pavement mix used by Nebraska 
Department of Transportation (NDOT) was used, namely, 47B Concrete Pavement Mix with 2” 
(5 cm) slump. Testing was conducted both with and without NDOT’s typical curing compound 
sprayed on top of the slab. GPR scanning began on a 4” x 4” (10 cm x 10 cm) grid, and later 
transitioned to a 2” x 2” (5 cm x 5 cm) grid for improved accuracy. Scan gridlines were initially 
stenciled directly onto the top of the slab with chalk.  In later stages, a plastic sheet with gridlines 
was used for ease and repeatability of scanning. Finally, to avoid stripping of the curing compound 
during early scans, a 4” x 4” (10 cm x 10 cm) plywood sheet was laid out with scan gridlines traced 
on the top face. Four 1.25” long (3.18 cm) screws were screwed into each corner; this created a 
stencil with the bottom elevated ½” (1.25 cm) above the surface of the concrete, rather than lying 
directly on top of it.  
  



16 
 

2 BRIEF REVIEW OF RELEVANT LITERATURE 
 
Causes of poor consolidation can include insufficient or improper vibration, overly dry mixes, and 
long wait times between concrete batches. Proper consolidation, therefore, plays a strong role in 
the hydration of concrete, and its subsequent durability and strength. Therefore, utmost care should 
be given to proper consolidation during casting. According to Eghtesadi and Nokken (2017), 
construction defects (such as improper consolidation) are responsible for premature concrete 
deterioration. They concluded that the effect of insufficient consolidation on concrete durability is 
more harmful than damage caused by load and thermal effects. However, it should be noted that 
the level of poor consolidation studied by Eghtesadi and Nokken would rarely be seen in the field.  
According to Benedetto et. al (2017), one of the areas of main interest for Ground Penetrating 
Radar (GPR) is its capability to perform accurate, continuous profiles of pavement layers and to 
detect major causes of structural failure at traffic speed. They state that GPR is one of the most 
effective and reliable Nondestructive Testing Techniques (NDTs) employed in road surveys due 
to its high useage flexibility and result reliability. The application of GPR in road engineering 
relies primarily on impulse radar systems rather than stepped-frequency continuous-wave, due to 
the relative ease of usage and data interpretation. GPR waves suffer high scattering phenomena 
due to complex reflection coefficients, similarities between wavelength, and differences between 
dielectric constants. Clipping of the initial ground wave signal is more common in the case of 
ground-coupled antennas and causes a particular error in GPR data acquisition.  
 
GPR has been used for roadway evaluation in void detection and rebar cover depth estimation (Al-
Qadi, 2003) since the 1980s (Fernandes and Pais, 2017), due to the mobile nature of the process 
and relative ease of use. Morcous and Erdogmus (2010) also found that metal objects implemented 
underneath concrete layers improve bottom surface reflectivity and are necessary for a reliable 
measurement of pavement thickness. They also determined that calibration cores determining the 
physical dielectric properties of the concrete were essential for accurate calculations of thickness.  
Liu et al. (2008) compared traditional highway pavement condition detection methods and GPR 
and found that GPR can provide continuous and nondestructive measurements without disturbing 
the pavement structure. GPR also has the unique ability to evaluate substructure conditions rapidly, 
which allows it to be used for the detection of shallow delaminations in continuously reinforced 
concrete (CRC). High-frequency ground-coupled GPR has been found to work well with concrete 
pavements for detecting mid-slab-depth delamination and locating steel, or in the identification of 
possible sub-slab defects such as voids at the interface with the base material. Liu et al. evaluated 
the capability and effectiveness of the protocol for the detection of early-age delamination in CRC 
pavements in the field, but unfortunately, they did not quantify “early-age”. Their methods 
included field tests and coring, numerical analysis, and the collection of other field measurements. 
Their approach provided improvements in the interpretation of the ground-coupled GPR data and 
expands the applications of the GPR use. 
 
Another paper that supports the use of GPR for void location was Maierhofer (2003), who 
explained that GPR is well suited for locating tendon ducts to depths of 50 cm, detecting voids and 
detachments, locating delamination, and measuring thickness of structures that are only accessible 
from one side. The limiting condition for concrete thickness determination of elements accessible 
from only one side is that the maximum thickness that can be measured is 0.5 m using a 500 MHz 
antenna. The limiting conditions for locating voids and compaction faults in concrete are the size 
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and depths that can be located with each type of antenna. For instance, voids should be larger than 
50 mm and their depth should be less than 0.5 m, with a 500 MHz antenna. Suitable measuring 
parameters must be defined to guarantee the best resolution and information content of the readings. 
Maierhofer suggested that another disadvantage to using GPR is when the moisture content is too 
high, the absorption of the electromagnetic waves increases and there are significant scattering 
effects. As a result, according to Maierhofer (2003), it is “almost impossible” to investigate fresh 
and setting concrete with GPR. 
 
Cassidy et al. (2011) compared the performance of both ultrasonic pulse echo and GPR for the 
detection and location of open voids and steel reinforced concrete sections. GPR is more widely 
used than ultrasonic pulse echo techniques as it is suitable for a greater range of scenarios. There 
is limited published research on the practical use of ultrasonic echo-based techniques, particularly 
when compared to GPR’s popularity. GPR has an excellent reputation for being able to detect 
voids, tendon ducts, and voids beneath concrete sections, but is less successful than ultrasonic 
methods for the detection of fine voids/fractures within concrete and often requires careful antenna 
frequency selection and planning. It also requires a skilled operator and expert post-processing.  
Shen and Liu (2018) tracked and correlated the relative dielectric constant and hydration process 
of three concrete specimens: one without admixtures, one with citric acid, and one with 
triethanolamine. Water plays a strong role in influencing the dielectric properties of concrete, as 
the dielectric properties depend on the amount and state of the water present. The dielectric 
properties are comprised of the real dielectric constant, which is represented by the relative 
dielectric constant (RDC) and an imaginary part related to dielectric losses. The variations of 
concrete phases during curing lead to shifts in RDC. Because the dielectric loss depends on 
conductivity loss and the dielectric polarization loss, it is determined, for the most part, by the 
concrete’s electrical conductivity and RDC. The early hydration process of concrete can be also 
divided into four stages: the dissolution period (0-60 minutes), the setting period (60-340 minutes), 
initial hardening (340-450 minutes), and the hardening period (after 450 minutes). Shen and Liu 
found that GPR amplitude and RDC are the most reliable ways to understand how the concrete’s 
microstructure and hydration will develop within the first 72 hours. They also found that the 
dielectric properties can accurately determine the hydration process and final setting of concrete 
in the first 72 hours.  
 
In another case study, Li et al. (2016) compared GPR and stress-wave techniques to assess the 
condition of concrete pavements. A jointed concrete pavement segment with potential air voids 
between the concrete and granular layers was monitored to understand the differences between the 
NDE methods that have been used successfully by different researchers and transportation 
agencies to detect large voids under rigid pavement. The authors noted that moisture content, 
concrete consolidation, presence of highly conductive material, and size of the defect could affect 
the reliability of GPR results. The moisture content of the material can significantly affect its 
dielectric constant value, as the dielectric constant value of a high moisture content material is 
significantly higher than that of the same material in dry conditions. The GPR data on the 
experimental segment was acquired by a single cart-mounted high frequency (1.5GHz) ground 
coupled antenna. The raw GPR data was processed with an assumed dielectric constant for dry 
concrete to convert reflection times to depths. The obtained average dynamic modulus of concrete 
was more consistent and reliable than the average dynamic modulus calculated based on the full 
wavelength range, as the influence of the under-layer material and air voids identified between 
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their interface were excluded. Relatively low dynamic modulus values were identified at the base 
of the concrete layer, which was an indication of potential air voids between the concrete and 
granular base layers. Reversed polarity of GPR signals at the interface between the concrete and 
granular base layers indicated air voids, because the velocity of the electromagnetic waves 
increases when they propagate into an air void. Air voids were identified and measured 0.5” (1.27 
cm) from the bottom of core locations, which supported the data taken by GPR. As a result, Li et 
al. concluded that GPR proved to be an accurate method to estimate the thickness of concrete 
pavement in this study. Air voids at the concrete-granular base interface were characterized by the 
reversed polarity of GPR signals and confirmed by core samples in nearby locations. This 
information is especially relevant because voids are highly likely during poor consolidation both 
in concrete and between the concrete and granular layers. GPR being validated as an accurate 
method to estimate the thickness of pavement by Li et al. provides support for the aims of the 
current study with respect to detecting of air voids.  
 

3 LAB EXPERIMENTS  
 
Three slabs were tested in the structures laboratories of University of Nebraska-Lincoln (UNL). 
The first slab tested was a 48” x 48” x 7.5” (1.22m x 1.22m x 19 cm) and reinforced with four #4 
bars spaced at 12” as shown in Figure 2.1. The bars in the x-direction had a depth of 5.5” (13.9 
cm), and the bars in the y-direction were at a depth of 6” (15.2 cm). It included small artificial air 
voids varying in dimensions from 0.5” – 1.5” (1.27cm – 3.81cm) and they were embedded at 
depths of 0.5", 1", 1.25", 2", and 3" (1.27 cm, 2.54 cm, 3.16 cm, 5.08 cm, 7.62 cm) as shown in 
Figure 2.2. GPR detection tests were conducted one week after the specimen was poured in this 
first trial, and line scans were done at 4” (10 cm) spacing.  

 
Figure 2.1 Slab 1- Specimen Photo and Scanning Axes 
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Figure 2.2 Slab 1 - Void Plan View 

GPR was able to detect the reinforcement and two unidentified anomalies at a depth of 5”, 
assuming  a dielectric constant of 6.25. It was not possible to detect the smaller voids (Figure 2.3 
and Figure 2.4).  
 

 
Figure 2.3 Slab 1 - Continuous Scans in the X-Direction 

 
Figure 2.4 Slab 1 - Continuous Scans in the Y-Direction 

 
After this experiement, it was decided to use air voids with dimensions larger than 1.25" (3.16 cm).  
Based on the experience of NDOT pavement engineers, voids of this size and larger can have 
detrimental effects on the pavement durability, while those smaller can be neglected.  
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A second slab measuring 44” x 40” x 8” (1.12m x 1.02m x 0.20m) was cast. This specimen was 
reinforced with two #4 bars placed 1.5” (0.04m) from the slab end in both directions at an average 
depth of 6.25” (0.16m) in order to give the slab enough strength to move it around in the lab if 
needed, without major damage. This slab used two cubic yards (1.53 m3) of NDOT 47B Concrete 
Pavement Mix with 2” (0.05m) slump. Insulation spray foam was used to create the voids (Figure 
2.5), which were implanted after the slab was divided into four quadrants in order to group the 
different void sizes and depths (Table 2.3) in each quadrant (Figure 2.5, Figure 2.6).  
 

 
Figure 2.5 Slab 2 – Small Artificial Air Void 

 

Table 2.3: Slab 2 - Void Dimensions 

Void Size 
Category 

Large Voids Small Voids 

Void 
Number 

4 5 6 7 8 9 

Dimensions 2” x 1.75” 
(5.08cm x 
4.45cm) 

2” x 1.5” 
(5.08cm 

x 
3.81cm) 

1.5” x 
1.5” 

(3.81cm x 
3.81cm) 

1.75” x 
0.75” 

(4.45cm x 
0.91cm) 

1.25” x 
1.25” 

(3.18cm x 
3.18cm) 

0.75” x 1.5” 
(0.91cm x 
3.81cm) 

Depth 2” 
(5.08cm) 

2” 
(5.08cm) 

2” 
(5.08cm) 

1” 
(2.54cm) 

1” 
(2.54cm) 

1” 
(2.54cm) 
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Figure 2.6 Slab 2 - Void Types and Depths with Rebar Locations 

 
Random voids shown in the bottom-right corner of Figure 2.6 were created by directly injecting 
the insulation spray foam into the concrete, so that the artificial voids’ sizes and shapes were 
unknown. One quadrant (top right in Figure 2.6) was left without any voids to function as the 
control quadrant. The concrete was consolidated using internal vibration, and then the surface was 
finished and covered with a plastic sheet for curing. No curing compound was used on this 
specimen.  
 

 
Figure 2.7 Slab 2 – Core Numbers and GPR grid lines 

  
The slab was scanned with GPR at 5 hours and 24 hours, as well as 2, 4, and 9 days after pouring. 
GPR line scans were initially done at 4” (0.10m) o.c., and later the slab was scanned at 2” (0.05m) 
o.c. in both directions (Figures 2.7, 2.8, and 2.9).  
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Figure 2.8 Slab 2 –Illustration of the Five Hour Scan of Southeast Corner with Void Locations and Scan Direction 

 
Figure 2.9 Slab 2 - Five Hour Scan of Southeast Corner 

After all scanning is completed, core samples were taken at locations where strong signals for 
anomalies were detected. Figure 2.10 shows examples of signals with different strengths.  
 

 

Figure 2.10 From Left to Right: Clear, Mid, and Vague Signal Examples Using Default Setting and Post Processing 

After nine days, the slab was cored in 10 places based on the void locations detected by GPR. The 
results of the GPR scans as validated by the inspections of the cores are shown in Table 2.4. At 
least one of each type of void was successfully located in the cores. In addition to the nine cores 
taken in each of the three quadrants with artificial voids, Core 10 was taken from the control 
quadrant. GPR signals picked up very fine air signals throughout this cross section, even though 
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there were no artificial voids located there. As expected, these were fine air bubbles of negligible 
size that formed naturally during consolidation. This laboratory experiment helped to determine 
the lower size limit – 1.5 inches – of air voids that could be detected in the top four inches of 
pavement.  

Table 2.4: Slab 2 - Void Coring Results 

Core 
Number 

Embedded 
Voids 

GPR Signal 
clarity 

Coring 
Results 

Notes 

1 

Large Free Spray  

Clear 
Visible 

artificial void 
 

2 
Clear and 

Vague 
No artificial 

void at center 

Void located half a core diameter off  
Other, smaller voids present at location of 
vague signal 

3 Clear 
Visible 

artificial void  
 

4 
Large Pre-

Sprayed and 
Hardened Foams  

Vague 
No artificial 

void  
Void located half a core diameter off  
Other, smaller voids also present  

5 Clear 
Visible 

artificial void  
Fine voids also present 

6 Clear 
No artificial 

void  
No void present when coring 

7 
Small Pre-
Sprayed 

and Hardened 
Foam 

Vague 
No artificial 

void  
No void present when coring 
Fine voids present 

8 Clear 
No artificial 

void  
No void present when coring 
Questionable location 

9 Clear 
Visible 

artificial void  
 

10 No Voids Moderate 
No artificial 

void  
Fine voids present 

 
A third slab measuring 72”' x 72” x 9" (1.83m x 1.83m x 0.23m) was cast in UNL’s structural lab 
using NDOT 47B concrete. Two types of artificial voids were created in the slab at depths of 1" - 
4” (0.025m – 0.10m). Type One voids were created by using insulation spray foam – the same 
foam successfully used in Slab 2. Type Two voids were created by injecting compressed air 
directly into the concrete slab to form the random voids. The voids’ locations were measured from 
the southwest corner of the slab (the “origin”) and are recorded as shown in Table 2.3.  
 

Table 2.5: Slab 3 - Void Dimensions and Locations 

Core 
No. 

Void Size 
(Quadrant) 

Void Dimension 
Location from 
origin (Inches), 
(Meters) 

1 Type One: 
Small 

(NW Corner) 

2" x 1.5" (0.05m x 0.038m) (12, 59), (0.3, 1.5) 
2 2" x 1.75" (0.05m x 0.04m) (14, 50), (0.4, 1.3) 
3 1.5" x 1.5" (0.038m x 0.038m) (23, 60), (0.6, 1.5) 
4 2" x 1.5" (0.05m x 0.038m) (23, 48), (0.6, 1.2) 
5 Type One: 

Large 
(SW Corner) 

2" x 2" (0.05 x 0.05m) (11, 9), (0.3, 0.2) 
6 2.5" x 2" (0.06m x 0.05m) (26, 10), (0.7, 0.3) 
7 2.5" x 1.75" (0.06m x 0.04m) (13, 24), (0.3, 0.6) 
8 4" x 1.5" (0.10m x 0.038m) (26, 26), (0.7, 0.7) 
9 Type One: 

Long 
3.75" x 1" (0.095m x 0.03m) (64, 12), (1.6, 0.3) 

10 5" x 1" (0.13m x 0.03m) (51, 13), (1.3, 0.4) 
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11 (SE Corner) 5.75" x 1" (0.15m x 0.03m) (60, 23), (1.5, 0.6) 
12 6.5" x 1" (0.17m x 0.03m) (46, 26), (1.2, 0.7) 

13-16 
Type Two: Compressed 

Air 
(NE Corner) 

Random Unknown 

 
NDOT’s Right Pointe White Water Wax concrete curing compound was sprayed on the top surface 
to follow typical field processes. NDOT routinely sprays this particular curing compound right 
after concrete placement. When GPR is used on wet curing compound, the wheels of the handheld 
GPR removes lines of compound, likely reducing its effectiveness (Figure 2.11). GPR scanning 
was conducted on a 2” x 2” o.c. grid (0.05m x 0.05m) on the western half of the slab, 3 hours and 
4 hours after pouring, and on the entire slab 24 hours after pouring. Figure 2.12 illustrates the slab 
with cardinal directions and void locations, as well as the location of the linear scan, results of 
which are presented in Figure 2.13-15.    
 

 
Figure 2.11 Slab 3 – Image after Scanning the Slab with GPR at 3 and 4 Hours on Curing Compound 

 

 
Figure 2.12 Slab 3 – North-South Linear Scan Location (denoted by rectangle) at 3, 4, and 24 Hours. Corresponding scans 
are presented in Figures 2.13, 2.14, and 2.15, respectively. 
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Figure 2.13 Slab 3 - North-South Scan at 3 Hours 

 
Figure 2.14 Slab 3 – North-South Scan at 4 Hours 

 
Figure 2.15 Slab 3 - North-South Scan at 24 Hours 

 
Due to lab space restrictions, the slab was moved outside after the GPR testing, and coring was 
completed while it was outdoors. Only three verification cores were taken out of the 16 void 
locations, due to a combination of time constraints and inclement weather during coring (Figures 
2.17-2.19). Cores were taken at void locations 8, 12, and 13; to test for the detection of large voids, 
oblong voids, and compressed air, respectively. No cores were taken for small voids (1-4), since 
these smaller size voids (around 1” x 1”) had been successfully detected and cored in previous 

Void 5, 7  
Void 5 

Void 2, 1 Void 5 
Void 5 

Void 7 Void 1 
Void 5, Unknown 

Void 7 

Void 5, 7, 2, 1 Void 1 
Void 2, 1 

Void 5 
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testing. Core 8’s GPR scans showed one of the weaker signals, whereas Core 12’s GPR scan was 
one of the strongest signals.  This can be explained by the surface area perpendicular to the 
direction of the magnetic waves. It is naturally easier to detect the oblong void parallel to the 
surface (Figure 2.18) compared to detecting a smaller are (Figure 2.17). The signals for the 
compressed air area were vague but a core was taken anyway to see the effects of the inserted 
compressed air. It appeared that the compressed air was dispersed into fine bubbles as the concrete 
consolidated, which explains the vague signals (Figure 2.19).  
 
 

 

Figure 2.16 Slab 3 - Void Location and Scanning Coordinate System 

  

  
Figure 2.17 Slab 3 - Core 8 (Large Void) 
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Figure 2.18 Slab 3 - Core 12 (Oblong Void) 

 

 
Figure 2.19 Slab 3 - Core 13 (Compressed Air) 

 
Table 2.4 shows the average percent error and average inches off between the assumed physical 
locations (measured as the anomalies are inserted into wet concrete) and the GPR detected 
locations for Slab 3. It is important to note that the 3 and 4 hour scans’ average percent error and 
average inches off did not take into account voids 9 – 12, as only the western half of the slab was 
scanned at 3 and 4 hours. The 24 hour scan results shown in Table 2.4 include voids 9 – 12. 
 
As is evident from Table 2.6, the percent error is less than 3% for the x and y-directions on the 
coordinate system, with the exception of the four hour-scan in the y-direction. The larger error 
(10.8%) can be explained by the slight shift in the starting point of the scan each time, since a 
removable stencil was used. This minor variation is also evident in the scans shown in Figures 
2.13-15. Therefore, if several readings are to be taken for repeatability and the validaton of data, 
care must be taken to ensure the start of the scan line is kept consistent. This presents an advantage 
of marking the gridlines directly on the surface instead of using a stencil, even though it would 
add significant time to the process if several measurements are to be taken over a long pavement 
section. The compromise is to place physical marks on the surface for the starting lines in each 
direction and align the stencil over these lines at each reading, but this would only be possible after 
the curing compound is dry. Despite these errors, the average number of “inches off” between the 
GPR-based location and the assumed location is only 1.5” or less (excluding the reading at four 



28 
 

hours in the y-direction), which is less than half of a coring cylinder’s diameter (4”). Meanwhile, 
for the outlier reading of four hours in the y-direction, the average number of “inches off” is only 
0.5” outside of the coring diameter. The z-direction (depth) scans seems to give the largest error 
in percentage, however, in dimensions, the error is not as high. The additional error in the 
measurement of depth also relates to the fact that depth readings will be most affected from the 
changing dielectric constant as concrete cures and a concrete test slab sitting on concrete lab floor 
makes it difficult to adequately determine the base of the test slab for dielectric constant calibration. 
However, the researchers or NDOT engineers were not concerned with the z-direction errors, since 
it is more crucial to locate these voids horizontally than vertically.  
 

Table 2.6: Slab 3 - Average Percent Error Hourly Comparison 

Coordinate 
Direction 

X Y Z 

Time Scanned 
3 

Hours 
4 

Hours 
24 

Hours 
3 

Hours 
4 

Hours 
24 

Hours 
3 

Hours 
4 

Hours 
24 

Hours 
Avg Percent 
Error (%) 

-2.9% -0.7% -2.4% -1.6% -10.8% 1.6% 44.8% 35.4% 26.4% 

Avg Inches off 1.5” 0.75” 1.25” 1.25 2.5” 0.75” 1” 0.5” 0.7” 

 
Table 2.7 compares the assumed location of the artificial void to its GPR based location for Cores 
8 and 12 (Figure 2.17 and Figure 2.18). Since the cores were taken centering the GPR detected 
locations, the center of each core corresponds to the GPR detected location. As can be seen the 
error is between 0.5” and 1” for these cores.  
 

Table 2.7: Slab 3 – Cores 8 and 12 Assumed vs. GPR Detected Location 

Core Identifier Core 8 Core 12 

Assumed Location 4” 4” 

GPR Detected Location 3.5” 3” 

Inches off  0.5” 1” 

Signal Strength Weak Strong 

 

4 FIELD EXPERIMENTS  
The initial field experiment (Field Experiment 1) was conducted in late September, 2017. A 4’ x 
4’ (1.22m x 1.22m) section of pavement on I-80 Eastbound between milepost 430.6 and 438.8 was 
scanned at 4” (0.10m) o.c. for void detection. NDOT pavement engineers have previously 
determined that yellow staining on the surface of aged concrete pavements were indicators of 
consolidation voids. Therefore the scanning grid was set up based on these stains on this stretch of 
highway.  
Figure 2.20 and Figure 2.21 show an illustration and a photo of the scanning grid, respectively. 
Figure 2.22 shows the resulting scans and detected voids, with the circles corresponding by color 
to those on 21. 
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Figure 2.20 Field Experiment 1 - Scanning Grid 

 

 

Figure 2.21 Field Experiment 1 - Scanning Grid with Suspected/Detected Voids 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.22 From Left to Right: 1st and 10th Scan Lines in the W-E Direction, 6th Line in the S-N Direction 
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In conclusion, the void locations were correlated to the yellow spots on the pavement surface, and 
this could be verified with GPR. In this case, the concrete tested was not fresh.  
 
The second field experiment was conducted in late October 2019 where the high temperature was 
57°F on a section of pavement on Highway 30, west of North Bend, NE. This pavement was cast 
6 weeks prior to scanning. A 4’ x 4’ x ¾” (1.22m x 1.22m x 1.9 cm) sheet of plywood with screws 
on the four corners (to elevate it ½” above the concrete) was laid on the pavement, and the GPR 
scans were conducted on a 4” x 4” (0.10m x 0.10m) o.c. grid (Figure 2.23). The 4” x 4” (0.10m x 
0.10m) grid was marked on the plywood sheet for ease of use. Scans were not done on a 2” x 2” 
grid, as the team wanted to scan as many different spots as possible and it was faster to scan at 4” 
x 4” o.c. GPR scans did not pick up any voids in the top four inches of the pavement , which is the 
depth NDOT was most interested in; and coring at each scanning location yielded no voids (of a 
size of concern) in that region as well (Figures 2.24-2.26). The researchers concluded that there 
was proper consolidation at this location and the experiment was successful.  
 

 
Figure 2.23 Field Experiment 2 - GPR Scanning 

 

 

Figure 2.24 Field Experiment 2 - Core 1 
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Figure 2.25 Field Experiment 2 - Core 2 

 

Figure 2.26 Field Experiment 2 - Core 3 

 

5 CONCLUSIONS 
Based on the experimental investigations, it was concluded that GPR can detect air voids 
(honeycombing) ranging in size from 1.5” (3.8 cm) to 4” (10 cm) in concrete pavement as early as 
three hours after concrete placement. Scanning at 2” ( 5 cm) spacing is recommended for the better 
detection accuracy. However, scanning at 4” (10 cm) spacing still provide acceptable detection 
accuracy and saves scanning time. Voids as small as 1.5” (3.81 cm) in diameter are detectable with 
GPR if located in the top 4” (10 cm) of concrete pavement, which is more critical to pavement 
durability than deeper voids. To avoid damaging the curing compound sprayed on the top of 
concrete pavement, a stencil made of plywood can be used elevated above the concrete with no 
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contact to the pavement surface. With such a solution, GPR scanning and detection of air voids as 
early as three hours is possible with an error margin of less than 3% or 1.5 inches at most, as 
verified by concrete cores. Larger errors are possible, if a stencil is used for gridlines and the start 
line of scans shift slightly from the intended origin at a particular reading, as was the case for the 
4 hour scan in the y-direction for Slab 3. Overall, it is concluded that with carefully laid scan grids 
and post-processing, GPR can be a powerful NDT method for the early detection (as early as 3 
hours from casting) of honeycombing in concrete pavements.  
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7 APPENDICES  
Attached appendices (65 pages) include the GPR scans and related photos from this project.  
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