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Research article

Postharvest heat treatments to inhibit Penicillium digitatum growth and
maintain quality of Mandarin (Citrus reticulata blanco)
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A B S T R A C T

Use of fungicides is a common practice as a postharvest treatment to control fruit decay. Nowadays, environment
friendly technologies, such as heat treatments, are viable replacements. This study evaluated the effects of post-
harvest heat treatments (traditional and microwave-assisted) on mandarins intentionally inoculated with Peni-
cillium digitatum. For the studied heat treatments, the target temperature was 50 �C, which was held for 2.5 min.
After heating, mandarins were cooled and stored at 25 �C for 13 days. MW treatments effectively prevented mold
growth during storage, while HW only delayed it. Control mandarins (without treatment) showed the highest
significant weight loss. Neither thermal treatment nor storage affected fruit juice pH (p > 0.05). Treated man-
darins had a significantly lower vitamin C content than control fruits throughout storage, and all mandarins lost
firmness by the 13th day (p < 0.05). Control and MW-treated mandarins had lower citric acid content; however,
they retained color, total soluble solids (TSS) and had a higher maturity index. While HW mandarins did not have
changes in citric acid content, they had higher TSS, and lower maturity index. MW-assisted treatments were
effective at inactivating molds and helped retain some nutritional and physical-chemical characteristics of
mandarins. However, juice of MW-treated mandarins was not preferred by judges in the sensory tests, the juice
was rated lower than that obtained from the other treatment. Postharvest heat treatments may constitute a helpful
application to control mandarin’ fungal decay.

1. Introduction

Mandarins are one of the most important citric crops in Mexico
(SAGARPA, 2011), the national production places the country as one of
the top ten producers worldwide (FAO, 2016). However, pests and dis-
eases are an important problem for producers. Penicillium digitatum and
P. italicum are two molds that contribute to the decay and loss of citrus
fruits during handling and transportation; and due to the airborne nature
of their spores, molds can be easily spread among fruits during storage
(Ladanyia, 2010). P. digitatum and P. italicum are the most economically
important postharvest pathogens of citrus fruit in all production areas.
Both molds are strict wound pathogens that affect all citrus species and
cultivars and can infect the fruit in the field, the packinghouse, and
during distribution and marketing (Palou, 2014).

The use of postharvest thermal treatments to avoid use of restricted
fungicides has proven to be efficient at inactivating pathogen develop-
ment and can successfully retain quality of citrus fruits. Hot water

immersion and hot air treatments at temperatures above 40 �C and below
60 �C from a few seconds to several hours have shown promising results
to control pathogens in diverse fruits, such as apples, pears, citrus,
melons, bananas and berries (Sui et al., 2016). Heat treatments have been
recently studied in citrus fruits. Gao, Kan, Wan, Chen, Chen & Chen
(2018) applied hot air treatments (40 �C, 48 h) and 1% chitosan coating
in mandarin fruits, with different effects on citric acid degradation.
Soto-Reyes, L�opez-Malo, Rojas-Laguna, G�omez-Salazar & Sosa-Morales,
2018 proposed microwave-assisted hot water treatments (48 �C, 6 min)
on grapefruits to control Mexican fruit fly, which preserved the overall
quality of the fruits. Microwave heating has also been explored as a
successful option for post-harvest treatments of heat sensitive fruits,
because its volumetric heating mechanism reduces the time necessary to
reach the target temperature, reducing the loss of fruit quality (Villa-R-
ojas et al., 2011).

Fungal genes related to reactive oxygen species (ROS) are activated
when exposed to heat stress over time due to an inadequate system for
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detoxification; these end up accumulating in the organism. The accu-
mulation of ROS leads to an impairment of cellular functions and a loss of
viability (Sui et al., 2016). Heat can also induce other alterations that
inactivate cellular functionality, such as changes in the cell wall, protein
denaturation and destruction of mitochondria and/or outer membranes
(Palou & M�endez-Vilas, 2013). However, depending on the temperature
and exposure time of the treatment, quality parameters of fruits may be
compromised by accelerating ripening and senescence and increasing
phytotoxicity (Sui et al., 2016).

The aims of this study were to evaluate a) the effectiveness of thermal
treatments to inactivate Penicillium digitatum intentionally inoculated in
mandarins, and b) the influence of thermal treatment on some quality
and sensory attributes in mandarins.

2. Materials and methods

2.1. Materials

Fully matured, and well-developed Murcott Mandarins (Citrus retic-
ulata Blanco) were purchased at a farmer's market in Puebla, Mexico; and
brought to the laboratory on the same day. Mandarins pre-selected for
this study were damage free and had similar external color, size and
weight. The target microorganism for this study was Penicillium digitatum
(MPD-1) obtained from the Food Microbiology Laboratory Culture
Collection at Universidad de las Americas Puebla, Mexico. Potato
dextrose agar (PDA) was purchased from Becton Dickinson (Mexico).

2.2. Inoculum preparation

P. digitatum inoculumwas obtained using a modifiedmethod (Gündüz
and Pazir, 2013); briefly, the mold was streaked onto a PDA slants and
incubated for 7 days at 25 �C. After incubation, conidia were harvested
with 5 mL of distilled water and vortexed for 30 s to disperse any con-
glomerates. Conidia were counted using a Neubauer chamber (Brand,
Germany) and an optical microscope (American Optical Co., USA); the
suspension was adjusted to a concentration of 106 conidia/mL.

2.3. Inoculation of mandarins

Pre-selected mandarins were washed and sanitized in a 200 ppm
chlorine solution for 2 min (Food and Drug Administration, 1998) and
dried at room temperature in a biosafety cabinet for 2 h before treatment.
The exocarp of the fruit was incised four times along the stem area
(Figure 1) with a sterile needle. The incisions were 5 mm long and 1 mm
deep and served as inoculation spots using 10 μL of conidia suspension
(Gündüz and Pazir, 2013).

2.4. Heat treatments

For traditional (HW) and MW-assisted hydrothermal treatments,
mandarins were immersed in tap water using a 1:5 fruit-to-water weight
ratio. The objective of all treatments was to maintain the surface tem-
perature of the mandarins at 50 �C for 2.5 min to effectively reduce
P. digitatum as reported by Palou & M�endez-Vilas (2013).

To determine temperature profiles for the traditional hydrothermal
treatment, a separate batch of four washed and sanitized mandarins
were immersed in a water bath (Daihan LabTech Co., New Delhi,
India), and their temperature was monitored with a type-T thermo-
couple and data logger (Cole-Parmer, Illinois, USA). For MW-assisted
hydrothermal treatment, a separate batch of four washed and sani-
tized mandarins were immersed in a water-filled container and placed
in a microwave oven of 2450 MHz and 1200 W (Panasonic, Guang-
dong, China), and fiber optic sensors (FISO Technologies, Quebec,
Canada) were employed to monitor temperature. Mandarins were
heated using either 100% (MW100) or 80% (MW80) of the nominal
microwave power. Each temperature profile measurements were done
by duplicate.

Three sensors (thermocouples or optical fibers, depending on the
treatment) were used for monitoring temperature in the system; below
mesocarp, in the center of the fruit and in the surrounding water. The
perforation sites for thermocouples or fiber optics were covered with
electrical tape to avoid misreading due to water entry. The fruits used to
monitor temperature were discarded.

For each of the two treatments, batches of four non-inoculated
mandarins were subjected to the process until at least 30 fruits
had been treated. The same was repeated with batches of four
inoculated mandarins for the sensory analysis. Three types of con-
trols (12 mandarins each) were used for comparison. Mandarins in
the first control group (C1) were washed, sanitized, and immersed in
water at room temperature for 20 min; those in control group 2 (C2)
were washed and sanitized, then wounded and inoculated; those in
control group 3 (C3) were washed and sanitized, then wounded and
inoculated, followed by an immersion in water at room temperature
for 20 min.

After the hydrothermal treatments, the mandarins were cooled down
to avoid damage in quality. The cooling was done by immersion in water
at 9 �C for 30 min and allowed to dry at room temperature. Dry man-
darins were stored in plastic boxes and kept at room temperature (25 �C)
for 13 days. Mandarins were stored at 25 �C in order to simulate the
conditions of storage in Mexico for this fruit.

2.5. Mold response

Treatment effectiveness was evaluated as the number of wounds with
mold growth over the overall number of inoculated wounds (Gündüz and
Pazir, 2013); wounds and mold growth were periodically observed
during storage.

2.6. Physical, chemical and sensory characteristics

Different characteristics were measured in triplicates for treated and
C1 samples. Weight loss of mandarins was determined using an analytical
balance (Explorer E12140, Ohaus, USA), the initial weight was compared
with the value obtained 24 h after treatment (Sangwanich et al., 2013):

Weight loss ð%Þ¼
�
A� B
A

�
*100

where A and B are the weight (g) of the mandarins before and after
treatment, respectively.

To measure other physical-chemical characteristics in accordance
with official standards, Mexican (NMX or NOM) or international, juice
was extracted from control and treated mandarins. Total soluble solidsFigure 1. Spot of the incision in mandarins.
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(TSS) were measured with a manual refractometer (Atago, Japan), ac-
cording to NMX-F-103-1982. pH was measured with a pH meter (Con-
ductronic, Hanna, USA), following the standard NMX-F-317-S-1978
(SSA, 1978a). Titratable acidity (TA) of 10 mL of juice diluted in 50mL of
distilled water was determined in accordance with NOM–FF–11-1982
(SSA, 1978b) by titration with sodium hydroxide (0.1 N) and phenol-
phthalein as an indicator. The maturity index was expressed as the ratio
of total soluble solids and acidity (Holland, la, Menezes, & Lafuente,
1999).

Firmness was expressed as the maximum force (N) required to
compress the equatorial plane of a whole mandarin by 1 cm. Compres-
sions were achieved with a cylindrical probe of 4 cm in diameter attached
to a texture meter (Texture Technologist Co., Nueva York, USA) and
descending at 0.5 mm/s (Bourne, 1982).

Color of the exocarp or peel was evaluated as coordinates L* (light-
ness), a* (green-red) and b* (blue-yellow) of the CIELAB system using a
portable colorimeter (CR400, Minolta Corp. Tokyo, Japan) (Schirra &
D'hallewin, 1997). Net color differences (ΔE) between treated and con-
trol samples were calculated with the following equation (Gullett et al.,
1972):

ΔE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔL2 þ Δa2 þ Δb2

p

where ΔL, Δa, and Δb are the differences between the measurement of the
sample after treatment and the control samples (C1).

Ascorbic acid (vitamin C) content was determined as explained in the
AOAC method 967.21 by titrating with 2–6 dichlorophenolindophenol
(Masamba and Nguyen, 2008).

The overall acceptability of mandarin juice was evaluated with a
structured hedonic scale test (1–9 points), while the color and firmness of
the mandarins was sensory-assessed using a ranking test (Poste et al.,
2011). Rankings were converted to scores as explained by Boggs and
Hanson (1949) using the table “Score for ordinal (or ranked) data” from
Fisher and Yates (1963) to then perform an analysis of variance
(ANOVA). All evaluations were done by 20 untrained judges for man-
darins stored for 2 and 8 days.

2.7. Data analysis

The study used a randomized block experimental design, with 6 fruits
in each of the control groups and at least 30 inoculated and at least 30
non-inoculated fruits for each of the two treatments. Significant differ-
ences (α¼ 0.05) of physical-chemical and sensory characteristics, as well
as mold inactivation among different treatments and controls were
established with ANOVA and Tukey tests, and were calculated with the
software Minitab 17 (Minitab Inc., USA).

3. Results and discussion

Fresh mandarins weighed between 145 and 185 g, 42.3 � 0.6% of
that weight was juice, the exo-mesocarp thickness was 2–3 mm and they
had approximately 12–14 seeds. Their firmness was 1101.6 � 111.8 N,
and color parameters of exocarp 61.83� 5.02, 21.08� 2.69 and 56.04�
4.36, for L*, a* and b*, respectively. Their juice had 52.2 � 0.9 mg of
ascorbic acid/100 mL of juice, pH 3.8 � 0.1, 0.62 � 0.1% of citric acid,
and 12.8 � 0.3 �Brix of total soluble solids; corresponding to a maturity
index of 20.8 � 0.5. Castro et al. (2013) reported similar results for the
same mandarin variety, a weight of 136.4–223.9 g, with 36.0–52.2 % of
that weight corresponding to juice, 0.73–1.01 % of citric acid and
7.4–12.1 �Brix, corresponding to maturity indexes between 4.4 and 12.0.
de Borges and Pio (2003) also found comparable characteristics, with
weight between 149.5 and 179.0 g with 50.4–53.5 % of it as juice,
0.9–1.4 % of citric acid and 10.3 to 13.2 �Brix, corresponding to 6.9 to
16.7 of maturity index. Variations in properties are attributed to the fruits
being grown in diverse locations under different climates and soil com-
positions (Kader, 2008).

3.1. Heat penetration curve during thermal treatments

Since different methodologies were applied to heat the fruits, it is
important to know the heat distribution and the temperature profiles in
each case. Heat penetration curves varied among thermal treatments and
the measurement location. Temperature of the mesocarp during HW
heating (Figure 2C) showed a rapid increased rate of 0.12 � 0.005 �C/s
(Figure 2C). However, the rate was abruptly reduced by one order of
magnitude (0.012� 0.005 �C/s) when the mesocarp achieved 41.0� 1.0
�C after 150 s of treatment becoming almost asymptotic. The time
necessary to reach the target temperature for HW (come up time, CUT)
was 997s, the longest among treatments. In contrast, temperature at the
mandarin center remained almost constant for approximately 390 s
(Figure 2C), afterwards it slowly increased at 0.017 � 0.005 �C/s. In
contrast, both MW treatments (MW100 and MW80) had a linear tem-
perature increase for both mesocarp and center (Figure 2 A and B). As
expected, the peel of MW100 treated mandarins heated faster, 0.06 �
0.009 �C/s and had the shortest CUT 448 s (Figure 2A). While heating
rate mandarin peels during MW80 treatments was slower at 0.04� 0.012
�C/s and CUT was longer, 660s (Figure 2B).

HW treatments showed an average ΔT of 18.8 � 1.8 �C, which was
relatively constant throughout the process (Figure 2C). The temperature
at the center remained below the temperature of the peel and water bath
throughout the treatment. On the other hand, for MW treated mandarins,
the temperature at the center was quite close to that of the mesocarp
throughout the treatment (Figure 2A and B) and their ΔT were relatively
small at 2.0 � 0.9 and 1.0 � 0.9 �C for MW100 and MW80, respectively.

The variation in heating rates or temperatures at different locations
are a result of different heating mechanisms and for MW treatments,
power output as well. Conventional heating methods use convection to
transfer the thermal energy of the heating medium to the surface of the
mandarin peel. Heat transfer by convection (q) in these experiments was
a function of the temperature difference between the surface (Ts) of the
mandarin mesocarp and heating medium (T∞), hot water, the contact
area (A) between them and convective coefficient (h) of the heat me-
dium: q ¼ Ah (Ts- T∞) (Singh and Heldman, 2009). Consequently, the
heating rate decreased as the difference in temperatures was reduced
with the increase of Ts. On the other hand, MW heating is a consequence
of molecular friction caused by a polarization of dipole molecules (e.g.
water). This mechanism is volumetric, meaning that, wherever the waves
can penetrate, if there are dipoles, heating will occur (Feng et al., 2012).
As a result, heating mandarins took a shorter time for MW heating than
HW. However, using 80% of power slowed down the heating rate,
increasing CUT.

Difference in temperature due to location is also a result of heating
mechanisms, once the peel starts heating up, thermal energy transfers
through conduction to consecutive layers radially towards center. Heat
transfer stops once an equilibrium condition is reached and the fruit has
the same temperature as the medium (Ibarz and Barbosa-C�anovas, 2002).
As a result, the temperature of the peel is higher than the center as shown
in Figure 2 C. In comparison, the volumetric heating of MW reduces the
temperature difference between peel and center.

3.2. Mold inactivation

No molds grew on the first three days of storage. However, washing
and chlorine sanitizing of mandarins (C1) did not prevent their natural
microbiota from growing after 7 days of storage affecting 43.8 � 8.8% of
the wounds. There was no significant increase in wound colonization
during the reminder of the storage time (Figure 3), until reaching 13
days. Inoculated mandarins (C2 and C3) not subjected to heat treatment,
almost doubled the percentage of wounds affected by day 7 and
increased until all wounds were colonized by day 13 (Figure 3). Water
immersion after inoculation (C3) had no significant effect in mold
response.
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Heat treatments were more efficient to prevent mold growth than
chlorine sanitizing (mandarins from controls C1 C2 and C3). Thermal
treatments presented colonization of the wounds at a later storage time
than all controls (Figure 3). HW-treated mandarins showed mold growth
after 10 days of storage with 25 % of the wounds colonized, less than the
amount affected in non-inoculated mandarins (C1). As storage time
advanced, mold colonization increased as it did for the controls. After 13
days of storage mold growth on HW-treated mandarins was not signifi-
cantly different from C1, but showed significant differences from C2 and
C3 (Figure 3). Interestingly, MW-treated mandarins did not show mold
growth after 13 days of storage.

Other studies have reported similar or greater inactivation of molds
with thermal treatments. Hong et al. (2014) inoculated with P. digitatum,

P. italicum and Geotrichum citri-aurantii in wounds inflicted on mandarins,
treated with hot water at 40 �C for 2 min and stored them for 4 weeks at
25 �C. Infection of the wounds of heat treated mandarins only reached
20%, while 90% of wounds in control mandarins were infected.

As reported by this study, MW power influenced mold inactivation
treatments and has also been reported. Sisquella, Vi~nas, Teixid�o, Picouet
and Usall (2013) reported brown rot of MW-treated nectarines for 50 s at
10, 15, 17.5 and 20 kW was reduced by 0, 1, 91 and 91%, respectively.
The increase in power allowed the nectarine surface to reach higher
temperature, 34, 39, 44 and 46 �C, respectively, leading to greater brown
rot inactivation.

Inactivation of molds by conventional treatments was not signifi-
cantly different at any storage day (Figure 3). However, MW-treated
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Figure 2. Heat penetration curves at the mesocarp (◆▴●) and center (◊Δ ○) of Murcott mandarins, during different thermal treatments: Microwave assisted at 100
(A◆◊) and 80 (B▴ Δ) % of nominal power and hot water bath (C●○). Target temperature at the mesocarp was 50 �C.
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mandarins show nomold growth. MW inactivation mechanisms of spores
are not completely understood and remain controversial; some authors
have either not found non-thermal effects or have found them negligible
(Jeng et al., 1987; Welt et al., 1994) while others suggest there is evi-
dence of electric field effects (Celandroni et al., 2004). Regardless, what
has been clear is the inactivation mechanism of MW is different from that
of conventional methods, causing more cellular disruption and loss of
genetic material than other heating methods making it more efficient for
spore inactivation (Kim et al., 2009).3.5 Effect of treatments on physical,
chemical and sensory characteristics.

3.3. Weight loss

Control and treated mandarins significantly loss weight during stor-
age at room temperature (p < 0.05). Weight loss of treated (0.9–1.8%)
and control (2.3 � 0.1%) mandarins after the first day of storage was not
significantly different (p � 0.05). At day 8, the weight loss of MW100
mandarins (7.1 � 0.6%) was significantly (p < 0.05) lower compared to
other heat-treated and control mandarins (12.3–15.8%). By the end of
storage. Control mandarins showed a significantly (p < 0.05) higher
weight loss (34.6 � 2.3%) than all other mandarins (18.3–22.5%).

The results obtained in this study present an advantage when using
MW and HW compared to untreated mandarins, and agree with reports
by Shen et al. (2013), showing control and hot water (50, 52 and 54 �C
for 3 min) mandarins lost weight during storage at 10 �C for 15–60 days.
Only mandarins treated at 50 �C lost significantly less weight than un-
treated fruit. In contrast, MW treatment results reported by Zhang et al.
(2004) and Karabulut and Baykal (2002) had no significant differences
compared to untreated peaches after 30 and 40 days in cold storage (0–2
�C). A reduction in water loss due to thermal treatment may be linked to a
change in the distribution and topology of the natural wax coat of fruits.
Heat treated fruits present a smoother coating that covers the pores of the
peel, while the cracked and roughed natural distribution of the coating in
non-treated fruits allows the exposure of the pores to the environment.
However, severe treatments can damage or even remove this natural
coating (Schirra & D'hallewin, 1997).

3.4. pH, acidity, soluble solids and maturity index

pH of control and treated mandarin juices varied between 3.81 – 4.56
without significant difference among treatments at the same storage days
(1, 8, 13) or among storage time for the same treatment (p > 0.05). Shen
et al. (2013) also reported pH of heat-treated mandarin juices did not
vary significantly with that of controls after 30 days of storage.

Citric acid content did not change significantly after HW treatment
compared to C3 (Figure 4) or after 8 days of storage compared to their
initial value and C3. In contrast, for C3 and MW-treated mandarins, the
concentration of citric acid was significantly reduced by the 13th storage

day (Figure 4). Other studies have reported little or insignificant differ-
ences in citric acid content during storage of citrus fruits (Hong et al.,
2014). TA of citrus fruits has been shown to fluctuate during storage (Sun
et al., 2013); therefore, it is not possible to say with certainty if the dif-
ferences between treatments are due to the natural metabolic cycle or a
disruption in the acid-metabolism of the fruit.

TSS did not vary significantly among treatments after being stored for
1 and 8 days (p > 0.05), with values between 12.0 – 15.0 �Brix. TSS of
HW-treated mandarins significantly increased after 13 days of storage
from 12.3 � 0.4 to 15.3 � 0.4 �Brix and from 13.8 � 1.1 to 17.3 � 0.4
�Brix, in MW-treated fruits. TSS content is an important factor in fruit
quality and it's related with juice yield. During the ripening period TSS
values increase in a fluctuating sigmoidal trend (Berk, 2016). Other au-
thors reported no significant changes in TSS after storage of citrus fruits
(Hong et al., 2014; Karabulut and Baykal, 2002; Zhang et al., 2004).
However, an increase in TSS content has also been reported and would be
expected (Mbogo et al., 2010; Sun et al., 2013).

The sugar-to-acid ratio in citrus fruits may be used a maturity index
which can be related to changes during storage and define acceptable
maturity to compare, as in this case, the effect of applied treatments. This
index (19.3–22.1) was not significantly different among control and
treated mandarins after a day of storage (Figure 5). Only MW80 treated
mandarins had a significantly higher index (Figure 5) at day 8 (25.4 �
1.9) compared to day one (20.1� 0.5); however, there was no difference
among treatedmandarins (22.5–25.4) and control on that storage day. By
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significant difference (p < 0.05) during storage time for the same treatment.
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the 13th storage day, control, MW-treated mandarins had reached a
significantly higher maturity index compared to the beginning of the
storage period (Figure 5). Only HW-treated mandarins had a significantly
lower index than control and MW-treated mandarins by the end of
storage (Figure 5). Maturity index is a great indicator of sensory quality
and consumer acceptability of citric juices. As the fruits mature and the
acidity tends to increase while the sugars decrease, the index would
generally increase (Berk, 2016) as illustrated by the results shown in
Figure 5. The results agree with previous reports by Hong et al. (2007) on
the increase of maturity index of heat-treated mandarins during storage.

3.5. Vitamin C

Ascorbic acid content of mandarins was significantly reduced by half
or less of its original concentration after all heat treatments as shown in
Figure 6. On subsequent storage days controls and MW100 had a sig-
nificant reduction in vitamin C concentration (Figure 6) in comparison
with the first storage day. Even with the reduction in concentration,
control mandarins had a significantly higher concentration of vitamin C
than treated mandarins throughout the storage period (Figure 5). By the
end of the storage, MW80 and HW-treated mandarins had significantly

higher concentrations of ascorbic acid than MW100 mandarins (p <

0.05), as it is shown in Figure 6.
The results are in contrast with some studies were no changes in

ascorbic acid were reported during storage or between control and heat-
treated fruits (Hong et al., 2014; Shen et al., 2013; Zhang et al., 2004).
However, the studies by Hong et al. (2014) and Zhang et al. (2004) do not
state whether they observed significant differences immediately after
treatment, but rather report values after prolonged storage times (15–60
days) at cold temperatures (2–10 �C). Hence, it is not possible to say if
vitamin C concentration differed at the beginning and became similar
after sufficient storage time had elapsed. Shen et al. (2013) on the other
hand, did not find any significant difference in vitamin C after treatment
or during storage of mandarins. Loss of ascorbic acid is expected during
storage due to its sensitivity to oxygen, heat and enzyme degradation,
especially at storage temperatures of 25 �C and above (Berk, 2016). This
study showed heat treatments and storage negatively affect the vitamin C
content of mandarins.

3.6. Firmness

Heat-treated mandarins were significantly softer than controls, except
for MW100, after a day of storage (Figure 7). By the 8th day of storage,
firmness of MW80 treated mandarins were significantly lower than
controls, and no significant difference in firmness was registered
compared to day one (Figure 7). At the end of storage, control and treated
mandarins, except MW80, were significantly softer compared to day 1
(Figure 7). Degradation of protopectins into their soluble versions, pectin
and pectic acid, softens fruits; this process is slower for citrus compared
to climacteric fruits (Ladanyia, 2010). In contrast to other studies (Hong
et al., 2014; Karabulut and Baykal, 2002), heating did not prevent loss of
firmness. However, other authors (Hong et al., 2007) have also recorded
softening of fruits during storage, which can be attributed to degradation
of protopectins, coupled with the loss of water suggesting there was a loss
of turgor and a consequent loss of firmness.

3.7. Color

There was no significant change in ΔE among control and treated
mandarins at the first (4.76–6.21) and eight (4.39–8.30) day of storage.
By the end of storage, ΔE of control and MW-treated mandarins
(5.54–8.98) was not significantly different among them or compared to
day 1. However, ΔE of HW (15.7 � 8.8) mandarins was higher compared
to day one and other treatments on day 13.
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Lightness (L*) did not change significantly among treated and control
mandarins (61.8–68.0) during storage (Table 1). By the end of storage
(day 13) HW mandarins (56.2 � 9.2) were darker compared to day one
and other treatments (61.6–64.7) (Table 1). a* and b* presented positive
values for all mandarins throughout storage, placed them in the yellow-
red zone of the CIELab color space. No significant differences for a*
parameter were registered for control or treated mandarins (18.8–25.6)
among treatments throughout storage or among different storage days
for the same treatments (Table 1). b* color parameter showed a similar
trend to L*, with no significant difference among control and treated
mandarins (56.0–64.6) during storage (Table 1). However, HW (49.6 �
9.7) mandarins had a lower b* at the end of storage compared to the first
day (Table 1).

The color of mandarins, as for many fruits, is intrinsically associated
with its level of maturity and therefore acceptability in the market. Green
fruits (derived from chlorophyll) are perceived as immature while
mature fruits are the ones with yellow, orange or reddish tones (given by
carotenoids) (Ladanyia, 2010). Color of control and MW-treated man-
darins remained constant throughout storage as reported by Sisquella
et al. (2013) for MW-treated peaches. In contrast with reports by Hong
et al. (2007), HW-treated mandarins lost lightness and yellowness (b*) by
the end of storage.

3.8. Sensory evaluation

Texture of MW80 and HW-treated mandarins ranked top among
judges while control and MW100 were at the bottom of the rank without
significant difference among them after 2 days of storage (Table 2). By
the 8th day, texture of control mandarins was the lowest ranked, while no
difference among treated mandarins was detected (Table 2).

Color of HW mandarins was the highest ranked after two days of
storage, while all other treated mandarins were second best without
significant difference among them, and controls were the lowest ranked
(Table 2). After being stored for 8 days, color of treated mandarins was
ranked higher than color of controls (Table 2).

Neither subjective parameter, color nor texture, had a significant (p�
0.05) linear correlation (Pearson coefficients not shown) with their
objective counterpart, ΔE and firmness, at either storage day. Therefore,

in this study the perceived rank of the color and texture of mandarins
cannot be explained or related with any measurable physical changes.
Nonetheless, there was a consistent low ranking for control mandarins,
while MW and HW-treated fruits were given a higher preference and
therefore considered more acceptable to the public.

Color of mandarin juice was acceptable for all mandarins during
either storage day (Table 3); most were “Liked moderately” (score of 7)
while MW100 held the lowest average score of 6.4 that corresponds to
“Like slightly”.

Juice taste was acceptable for all mandarins except MW100, which
was “Slightly disliked” after two storage days (Table 3). And juice of MW
mandarins was “Slightly” to “Moderately” disliked by day 8 of storage.
Following a similar trend, general acceptance of mandarin juice of MW-
treated mandarins was bellow acceptance levels (Table 3).

Neither juice taste nor general acceptability had a significant linear
correlation (Pearson coefficient not shown) with either TSS, citric acid
content or maturity index. However, even though juice color was
acceptable for all mandarins, juice from MW-treated mandarins was
disliked in general due to its taste. Judges referred to MW-treated man-
darin juice as “bitter”, “cooked” or “overripe”. And even though smell
was not evaluated, comments of a “fermented” smell for MW-treated
mandarins were commonly mentioned by judges.

4. Conclusion

MW-treated mandarins effectively prevented mold growth on stored
mandarins, and also retained some quality attributes like pH, color and
TSS; while others were not favorably affected, such as citric acid content,
higher maturity and unacceptable juice taste and overall acidity. On the
other hand, HW-treated mandarins had a delay of mold growth while
retaining qualities such as citric acid content, pH and acceptable juice
taste and overall acceptability. But, they lost some important attributes
such as color and showed lower maturity index. All treated mandarins
lost almost half their vitamin C, an important nutritional attribute for
citrus fruits.

Table 1. Changes in color parameters L*, a*, b*, and net color difference (ΔE)
during storage at 25 �C of mandarins washed, sanitized, and immersed in water
for 20 min (C1), treated with hot water (HW) or microwaved at 100 and 80% of
nominal power (MW100 and MW80).

Storage time
(day)

Control MW100 MW80 HW

Net Color difference (ΔE)

1 6.21 � 2.25A,a 5.11 � 3.1A,a 5.50 � 1.86A,a 4.76 � 3.09A,a

8 4.39 � 1.58A,a 8.30 � 2.29A,a 5.94 � 4.17A,a 7.26 � 3.73A,a

13 6.10 � 1.59A,a 5.54 � 3.36A,a 8.98 � 1.68A,a 15.66 � 8.84A,a

L*

1 61.83 � 5.02A,a 64.37 � 1.52A,a 65.18 � 1.23A,a 63.59 � 1.64A,a

8 63.22 � 2.20A,a 68.03 � 1.35A,a 64.19 � 2.71A,a 64.30 � 2.15A,a

13 61.56 � 1.92A,a 63.53 � 3.95A,a 64.74 � 0.92A,a 56.16 � 9.15A,a

a*

1 21.08 � 2.69A,a 21.34 � 2.24A,a 20.59 � 1.55A,a 23.39 � 2.63A,a

8 22.60 � 1.02A,a 18.80 � 2.73A,a 23.69 � 3.25A,a 23.45 � 5.44A,a

13 23.31 � 2.76A,a 21.75 � 1.28A,a 25.64 � 0.96A,a 24.00 � 1.09A,a

b*

1 56.04 � 4.36A,a 59.77 � 3.06A,a 59.86 � 2.15A,a 58.43 � 3.18A,a

8 56.07 � 3.83A,a 64.61 � 2.96A,a 58.69 v4.31A,a 57.85 � 5.00A,a

13 58.24 � 2.91A,a 58.34 � 4.54A,a 63.10 � 1.74A,a 49.60 � 9.75A,a

For each parameter, different small cap letters indicate significant difference (p<

0.05) among treatments on the same storage day, different capital letters indicate
significant difference (p < 0.05) during storage time for the same treatment.

Table 2. Ranking score of mandarins washed, sanitized, and immersed in water
for 20 min (C1), treated with hot water (HW) or microwaved at 100 and 80% of
nominal power (MW100 and MW80) and stored for 2 and 8 days at 25 �C.
Different letters indicate significant difference (p < 0.05) among treatments on
the same storage day.

Storage (Day) Sample Texture Color

2 Control 0.9 � 0.3a 0.9 � 0.2a

MW100 1.2 � 0.3ac 1.2 � 0.3b

MW80 1.5 � 0.4bc 1.3 � 0.3b

HW 1.5 � 0.4b 1.6 � 0.3c

8 Control 1.0 � 0.1a 0.9 � 0.1a

MW100 1.4 � 0.4b 1.4 � 0.3b

MW80 1.6 � 0.3b 1.5 � 0.3b

HW 1.4 � 0.4b 1.5 � 0.3b

Table 3. Acceptability score of mandarin juice washed, sanitized, and immersed
in water for 20 min (C1), treated with hot water (HW) or microwaved at 100 and
80% of nominal power (MW100 andMW80) and stored for 2 and 8 days at 25 �C.

Storage (Day) Sample Color Taste General acceptance

2 Control 7.8 � 1.5 7.9 � 1.5 7.9 � 1.3

MW100 6.4 � 2.1 4.1 � 1.9 4.3 � 1.9

MW80 7.7 � 0.9 6.9 � 1.9 7.0 � 1.6

HW 7.7 � 1.7 7.2 � 1.9 7.2 � 1.9

8 Control 7.5 � 1.4 7.5 � 1.3 7.6 � 1.4

MW100 7.3 � 1.3 3.0 � 1.6 3.6 � 1.8

MW80 7.6 � 1.1 4.1 � 1.8 4.7 � 1.8

HW 7.2 � 1.7 6.0 � 1.7 6.0 � 1.7

D.B. Queb-Gonz�alez et al. Heliyon 6 (2020) e03166

7



In general, the applied heat treatments (HD or assisted with MW)
retarded or inactivated mold growth; however, depending on the treat-
ment, they also negatively affected some quality attributes such as
vitamin C content, and had an effect on the flavor of the juice. Derived
from these findings, more studies are needed to determine the correct
combination of time and temperature of treatment to achieve mold
inactivation without detrimental the quality of the fruit.
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