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ADIPOSE TISSUE LIPID DROPLETS: IMPLICATIONS IN 
ALCOHOLIC LIVER DISEASE

Sathish Kumar Natarajan1,2,†, Karuna Rasineni1,†, Murali Ganesan1, Dan Feng1, Benita L. 
McVicker1, Mark A. McNiven3, Natalia A. Osna1, Justin L. Mott2, Carol A. Casey1,2, and 
Kusum K. Kharbanda1,2,*

1Research Service, VA Nebraska-Western Iowa Health Care System (VA NWIHCS), and 
Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska

2Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center

3Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, 
Minnesota

Abstract

For more than 30 years, lipid droplets (LDs) were considered as an inert bag of lipid for storage of 

energy-rich fat molecules. Following a paradigm shift almost a decade ago, LDs are presently 

considered an active subcellular organelle especially designed for assembling, storing and 

subsequently supplying lipids for generating energy and membrane synthesis (and in the case of 

hepatocytes for VLDL secretion). LDs also play a central role in many other cellular functions 

such as viral assembly and protein degradation. Here, we have explored the structural and 

functional changes that occur in hepatic and adipose tissue LDs following chronic ethanol 

consumption in relation to their role in the pathogenesis of alcoholic liver injury.

INTRODUCTION

Alcohol abuse causes more than 60% of all chronic liver diseases and accounts for 2.5 

million deaths globally each year [1]. Approximately 51.5% of US citizens use alcohol 

regularly; nearly 18% of these individuals meet the criteria for alcohol abuse [2]. The 

earliest manifestation of chronic alcohol consumption is the development of alcoholic fatty 

liver disease (AFLD). This is characterized by the intracellular accumulation of lipids that 

are stored in a specialized organelle called lipid droplets (LDs). The development of hepatic 

steatosis (fatty liver) is considered an initial critical event that predisposes the liver to 

progressive inflammation, fibrosis and cirrhosis [3, 4]. Thus, the understanding of the 

intracellular lipid stores and LD metabolism has emerged as a cornerstone for developing 

therapy against hepatic steatosis.
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In this review, we will first present an overview of LD structure and function. This will be 

followed by examining the effects of alcohol administration on various pathways/

mechanisms that are responsible for the loss of adipose tissue LDs and the concomitant 

increase in the accumulation of hepatic LDs. The role of these alterations in the progression 

of liver injury will also be discussed. We will finally present therapeutic intervention 

strategies that prevent changes in adipose tissue and hepatic LDs to ultimately protect 

against the development of AFLD.

GENERAL STRUCTURE, FUNCTION AND METABOLISM OF LDs

LDs are also referred to as adiposomes, lipid bodies, fat bodies, eicosasomes, liposomes or 

even great balls of fat, and in the past decade the field has settled on the preferred name, LDs 

[5, 6]. LDs are highly conserved organelle present from bacteria to mammals [6, 7].

In eukaryotes, LDs may arise primarily from the endoplasmic reticulum (ER) and continue 

to maintain tight association with the parent organelle [6, 8, 9]. Although several models for 

LD formation have been proposed and discussed in details [6, 8, 10–12], none have been 

sufficiently proven. LDs have also been shown to interact with other cell organelles 

including mitochondria, peroxisomes and endosomes [13–18]. Structurally, LDs are 

composed of a homogenous lipid core covered by a phospholipid monolayer studded with 

proteins as discussed below and depicted in Fig. 1.

LD STRUCTURE

LD Core

The hydrophobic core of LDs is made of neutral lipids with tri- and diacylglycerols, 

esterified cholesterol and retinyl esters. These core lipids are present in hepatocyte LDs 

whereas LD cores in adipocytes are mainly triacylglycerol (TAG) [5, 6]. LDs number and 

size varies significantly between different cell types [6]. White adipocytes mainly form one 

giant unilocular LD as large as 100 μm, while most other cell types, including hepatocytes, 

have multiple small LDs with diameters of 100–200 nm [19, 20]. However, the size and 

number of LDs can increase under pathological conditions such as in hepatocytes following 

ethanol administration [21, 22].

LD Surface

LDs are coated by a monolayer of phospholipids, free cholesterol and lysophospholipids. 

LDs have been shown to have a unique phospholipid profile in their monolayer and 

phosphatidylcholine (PC) is the major phospholipid (50–60%) followed by 

phosphatidylethanolamine (PE) and phosphatidylinositol [23]. LDs are shown to have >50 

different types of PC and 45 types of PE, and 9 species of phoshatidylinositol [23]. The 

phospholipids in the coating have been reported to stabilize the droplets and facilitate 

interactions with other cellular compartments and in maintaining LD morphology [24, 25]. 

There are also specific proteins that localize to the surface of LDs. In 1991, Greenberg et al 
identified a novel LD bound phosphoprotein, perilipin, in adipocytes [26]. Soon after, two 

other structurally related LD-binding proteins (ADRP and TIP47) were also identified [5]. 

These three LD-binding proteins became the founding members of the PAT (perilipin, 
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ADRP and TIP47) family of proteins [5]. These proteins have since been renamed 

Perilipin1, 2 and 3 (Plin1-3) respectively. In addition, perilipin4 and perilipin5 (older name 

S3-1 and OXPAT respectively), CG-158, lipases, protein kinases, phosphatases and lipid 

transport proteins associate with LDs and play important roles in regulating LD structure 

and function (reviewed in [9]).

Additional Proteins Associated with LDs

Only a dozen LD-associated proteins had been identified until 2006 when a mass 

spectrometry approach provided an array of proteins that were associated with LDs [5]. 

Subsequent proteomic approaches have revealed a surprising number of proteins, many 

unique, to be present in LDs isolated from different cell types [27–30]. The LD proteome 

was shown to have histone proteins like H2A, H2Av, H2B and vesicular trafficking proteins 

like Rab8 and Rab11 [31]. Further studies identified a repertoire of many other Rab-family 

members like, Rab1, 2, 5, 10, 14, 18,19b, 21, 24, 33b, 34, 35, 39, and 41 in LDs of Chinese 

hamster ovary cells [32].

LDs have been documented to contain enzymes for each step of de novo TAG synthesis [9, 

33] and reportedly have the ability to locally synthesize PC. Lysophosphatidylcholine 

acyltransferase-1 and -2 [34] as well as enzymes that catalyze the rate-limiting step of de 
novo PC synthesis such as CTP:phosphocholine cytidyltransferase-1 and -2 [25, 35] have all 

been localized to LDs.

Earlier LD proteomes were also shown to have cytoskeletal, ER, lysosomal, mitochondrial, 

golgi, and chaperone proteins [32] which suggested that LDs could act as a carrier of 

proteins [31]. However, whether these other organelle proteins in the LD proteome represent 

co-purified contaminating or authentic LD proteins is currently being sorted out by utilizing 

protein correlation profile studies [35]. The various proteins present or associated with the 

LDs regulate key LD functions and are linked to many physiological processes as recently 

reviewed [6, 9, 14, 36–41].

LD FUNCTION AND METABOLISM

LDs have been shown to perform many cellular functions (Fig. 2), including storage, 

transport, and metabolism of lipids, viral assembly, protein sequestration, membrane 

trafficking and signaling [6, 8, 10, 11, 18, 33, 35, 42, 43].

In the healthy liver, the number and size of LDs are tightly regulated and there is an 

orchestrated re-distribution of stored TAG following lipolysis. FAs liberated from TAGs in 

liver LDs have one of several fates. They can be used as building blocks for membrane lipid 

synthesis, used for β-oxidation to generate energy or exported to the ER for re-esterification 

and packaging into VLDL for secretion [44]. These latter two mechanisms are used by the 

liver to get rid of the fat and prevent generation of steatosis.

LD Lipolysis and Associated Lipases

LDs were initially thought to be degraded extensively by hormone sensitive lipase (HSL) in 

adipocytes and in the liver. However, the failure of HSL knockout mice to become obese 
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indicated that other lipase(s) are present that can compensate for HSL deficiency [45, 46]. 

Later, two independent groups identified adipose triglyceride lipase (ATGL) on LDs [47, 48] 

that co-localized with Plin2 and Plin3 [49]. It has been documented that ATGL and Plin2 are 

both delivered to LDs from ER via COPI and COPII coatomer protein-mediated pathways 

[50]. ATGL-deficient mice exhibit LD accumulation in many tissues examined [48, 51, 52]. 

Despite low ATGL expression in the liver [53], (liver-specific) deficiency of this lipase 

caused increased LD accumulation in hepatocytes and cholangiocytes [54, 55]. Conversely, 

overexpression of ATGL enhanced LD lipolysis causing a marked decrease in LD size and 

this appeared to occur through displacement of Plin3 from LDs [49]. HSL overexpression 

also resulted in the loss of LDs [56]. However, ATGL or HSL overexpression did not 

promote VLDL assembly; instead it improved mitochondrial fatty acid β-oxidation [56]. 

These results are consistent with ATGL and HSL playing a role in lipid catabolism rather 

than VLDL export. A lipase that functions in mobilizing liver lipids for VLDL secretion is 

triacylglycerol hydrolase (TGH), which primarily resides in the ER [53] and also associates 

with LDs [57].

Patatin-like phospholipid domain containing protein 3 (PNPLA3), a multifunctional enzyme 

encoded by the PNPLA3 gene, has been shown to accumulate on LDs under pathological 

conditions [58]. PNPLA3 and their family members have patatin-like domain at the N-

terminus for the lipase activity [59] and a conserved brummer box domain that helps 

targeting to LDs [59]. PNPLA3 also reportedly possesses acylglycerol O-acyltransferase 

activity that mediates the conversion of lysophosphatidic acid into phosphatidic acid [60].

In addition to its lipase activity, PNPLA3 was also shown to interact with another family 

member of patatin-like domain containing lipase, PNPLA2, and functions as a co-activator 

for enhancing PNPLA2 lipase enzyme activity [59].

LDs and VLDL Assembly

The assembly of VLDL is regulated by the availability of TAGs stored in cytoplasmic LDs 

[61]. Up to 70% of TAGs in VLDLs are derived via lipolysis and re-esterification of 

preformed TAG stores in LDs [62–64]. While the exact mechanism that links the 

composition of a VLDL core to LD lipolysis is not yet known, the formation of LDs in the 

secretory pathway clearly plays a central role in VLDL assembly and secretion. The protein 

and lipid factors within LDs must be maintained in a delicate balance for effective lipolysis. 

Any change in the structure or interactions of these components can alter the strong 

relationship between the accumulation of LDs and the rate of formation of VLDL. A 

potentially important observation is that the relative distribution of PC or PE modifies the 

LD size [23]. It has been documented that changes in the phospholipid composition can 

promote LDs to fuse into supersized structures that appear to be resistant to normal lipolysis 

[65, 66]. PE is a conical lipid that can increase membrane curvature, thereby promoting 

membrane fusion [24, 67]. Interestingly, an increase in the LD content of PE in absolute and 

relative terms at the expense of PC coincides with the accumulation of LDs [67].

Phosphatidylethanolamine methyltransferase (PEMT) is an enzyme that is required for 

normal secretion of VLDL as it is involved in synthesis of PC moieties that are preferentially 

used for the VLDL synthesis [68]. We contend that this enzyme is also important for 
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maintaining PC on hepatic LDs, thereby, preventing the development of supersized LDs that 

are resistant to lipolysis. Conversely, PEMT in adipocytes has been postulated to stabilize 

LD structures and promote fat deposition [67, 68].

LDs and Autophagy

Autophagy is mostly a cell survival mechanism providing a source of energy during nutrient 

starvation by catabolizing cellular proteins. Recent studies have revealed the role of 

autophagy in preventing LD accumulation [69]. Autophagy occurs by forming double-

membrane autophagosomes which fuses to lysosomes resulting in degradation by lysosomal 

proteases and lipases [70]. Inhibition of autophagy, either by using 3-methyl adenine or by 

knocking down Atg2, Atg6, Atg7, & Atg8 genes, resulted in an increased accumulation of 

LDs in hepatocytes as well as decreased VLDL secretion [69, 71]. Further, co-localization of 

the autophagic marker protein, LC3, with LDs suggested that these two are physiological 

interacting partners [69]. A recent study identified that the LD-associated proteins, Plin2 and 

Plin3, are degraded by chaperone-mediated autophagy [72]. Further, these Plins possess a 

putative pentapeptide motif that is recognized by heat shock cognate protein of 70kDa 

(hsc70) for their delivery to the lysosomal-associated membrane protein 2A (LAMP-2A), a 

lysosomal surface protein [72]. Plin2 mutants that cannot bind to hsc70 were shown to be 

enriched in larger sized LDs [72]. Moreover, hepatocytes and fibroblast isolated from 

LAMP-2A deficient mouse exhibit increases in LDs and TAG levels [72]. Taken together, 

accumulating evidence indicates that lipophagy (a term for autophagy related to controlling 

lipid levels) and chaperone-mediated autophagy of Plin2 and Plin3 may play an important 

role in preventing LD accumulation in the liver by promoting lipolysis and VLDL secretion 

[73–76].

Vesicular trafficking of LDs in Hepatocytes

Our laboratories have made valuable contributions toward understanding the trafficking 

network in hepatocytes [77–79]. Current work in our laboratories is examining roles of 

several proteins involved in vesiculation (Dynamin-2; Caveolin-1 and Src) and transport 

(Rab18 and Rab7) relevant to LD trafficking.

Dynamin-2 (Dyn-2), Caveolin-1 (Cav-1) and Src kinase (Src)—Dyn-2 is a large 

GTPase that is known to polymerize around the neck of membrane invaginations for 

constricting, severing (“pinch”) and releasing a newly formed, small vesicle [78]. Our recent 

observations implicate Dyn-2 in LD vesiculation and metabolism [80]. Specifically, we have 

shown that knockdown or inhibition of Dyn-2 results in increased LD accumulation in liver 

cells [80]. We also demonstrated that Dyn-2 plays an important role in lipophagic 

breakdown [80]. Dyn-2 works in concert with two other proteins, Cav-1, a coat protein, and 

Src, a tyrosine kinase. Cav-1 is known to bind cholesterol, is targeted to LDs by exogenous 

cholesterol and associates with LDs [81–83]. Importantly, Cav-1 and Dyn-2 are regulated by 

Src [84, 85]. However, the participation of these three proteins in LD dynamics and 

metabolism is currently not known.

Rab proteins—An extensive family of small GTPases named Rab proteins act as 

molecular switches to support the targeted transport, docking, and fusion of a donor vesicle 
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to a receptor compartment. Several Rab proteins have been identified on LDs [22, 31, 32], 

and two of these are particularly important in LD metabolism. Rab18 is a common mediator 

in both lipogenesis and lipolysis [86] and co-localizes with Plin1 and Plin2 in the LDs 

isolated from hepatic cells [87]. Rab7 is known to play an important role in lipophagy [88]. 

We have recently observed that starvation enhances the level of active Rab7 in the LD 

fraction and suggested that this increase of active Rab7 in LD favors lipolysis [89]. 

Additionally, activated Rab7 in LDs is critical for LD interaction with multivesicular bodies 

and lysosomes and in the formation of autophagolysosomes [89]. LDs associated Rab7 was 

also found to be decreased in LAMP-2A deficient cells suggesting the important role of 

Rabs and chaperone-mediated autophagy in LD metabolism [72].

LD and Hepatitis C Virus Assembly

Many viruses, such as hepatitis C virus (HCV), use host cell LDs for replication [90]. 

Indeed, LDs are directly involved in assembling the infectious HCV particles. It has been 

shown that the maturation of the core protein promotes the transport of this structural HCV 

protein from the ER to the surface of LDs, where the full infectious particle is assembled 

[91]. While the exact mechanism of recruitment of core protein to LDs is not clear, it has 

been shown that trafficking of core to LD involves Rab18 [92]. The localization of HCV 

core protein to LD depends on the host diacylglycerol acyltransferase-1, which plays a 

pivotal role in translocation and attachment of core protein to LD [93]. Recently, it has been 

reported that the presence of core at the surface of LDs also interferes with the activity of 

ATGL, thereby blocking lipolysis [94].

Following core protein attachment to LDs, non-structural proteins and replication complex 

are recruited to these LDs [95] which through multiple protein-protein interactions [96] 

coordinate viral assembly [97]. In addition to providing a surface for viral assembly, LD also 

provides a vesicular transport system for virus to be exported out of the infected cells [98].

MicroRNAs in LD Metabolism

MicroRNAs (miRs) act to fine-tune the expression of a large number of genes and can 

regulate cell physiology and pathology. Emerging evidence implicates miRs in LD 

formation, lipid catabolism and vesicular trafficking. Functionally, miRs have been shown to 

alter LD formation in a “spontaneous steatosis” cell model. Specifically, a panel of 327 miRs 

was transfected into Huh7 cells followed by automated imaging (high-content analysis) to 

measure LD content. Six miRs (miR-34c, miR-509, miR-29a, miR-515-5p, miR-378, 

miR-1) were shown to increase LD accumulation while five miRs (miR-181d, miR324, 

miR-451, miR-493-5p, miR-135a) decreased lipid accumulation [99]. The specific 

functional importance of these results remains to be defined.

CHANGES IN HEPATIC LD STRUCTURE, FUNCTION AND METABOLISM 

FOLLOWING ETHANOL ADMINISTRATION

The first pathological change that occurs during the early stages of AFLD is increased 

accumulation of LDs within hepatocytes [100, 101]. Many of the detrimental effects of 

alcohol on the liver, including LD accumulation, are dependent on alcohol metabolism [102–
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104]. Alcohol oxidation primarily occurs via two enzymes, alcohol dehydrogenase and 

microsomal cytochrome p450-2E1 that generate acetaldehyde [102, 103]. This toxic 

metabolite is a key player in the pathogenesis of AFLD since preventing its generation 

significantly attenuates LD accumulation in alcohol-metabolizing hepatic cells [104] and the 

development of many features of alcoholic liver injury.

There are characteristic compositional changes in hepatic LDs following ethanol 

administration, as reviewed below, that collectively play a role in altering LD metabolism 

and promoting the pathogenesis of alcoholic liver injury.

Role of Plin2

An increase in Plin2 has been suggested to be a reliable diagnostic marker for excessive 

alcohol consumption [21, 105]. There is a direct correlation between hepatic LDs and Plin2 

levels and LDs number and size increase in parallel with the induction of Plin2 expression 

[21, 104–106].

Increasing Plin2 expression significantly blocked TAG hydrolysis and increased the fraction 

of cellular TAG that was stored in LDs [21, 107]. This anti-lipolytic effect of Plin2 to slow 

TAG turnover is mediated via its role in impairing ATGL association with LDs [107]. 

Conversely, Plin2 depletion prevented the alcohol-induced LD accumulation [108] 

indicating an important role of Plin2 in the pathogenesis of alcoholic steatosis.

Role of PNPLA3

Genome-wide association studies have identified variants of PNPLA3 in AFLD [109–112]. 

A common PNPLA3 I148M variant impaired hepatic secretion of VLDL and caused 

accumulation of TAG and cholesterol esters in large LDs of hepatocytes [113]. This 

observed effect could be explained by a recent report that, unlike recombinant enzyme, 

mutant PNPLA3 form does not display any TAG hydrolase activity [114]. However, 

PNPLA3 I148M variant showed 2.1 fold higher acylglycerol O-acyltransferase activity and 

this biochemical gain function were suggested to promote liver steatosis in the carriers of 

this variant [60]. Interestingly, a search in yeast mutants which produced supersized LDs 

were all shown to have dysregulated phospholipid metabolism and more commonly 

exhibited increased phosphatidic acid levels [115].

A recent study demonstrated that PNPLA3 is highly expressed in hepatic stellate cells 

(HSC) and further revealed that its lipase activity was responsible for degrading the stored 

retinoids in LDs of these cells [116]. Activation of HSC and the loss of stored retinoids is an 

initial event in the fibrotic process [117, 118] and alcohol administration impaired the 

activities of several retinoid metabolic enzymes [119]. However, further lipidomics analyses 

of retinoic esters in the hepatocyte and HSC LDs are needed to understand the metabolism 

of retinoid and their role in the pathogenesis of alcoholic liver injury.

Role of Altered Rab Protein Content and Impaired Vesicular Trafficking

Recent studies from our laboratories have shown alterations in several small GTPases 

involved in both vesicle and LD trafficking after ethanol administration [22]. Isolated LDs 
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from ethanol-fed rat livers identified significantly decreased protein content of Rab2, 5, 7, 

and 18 compared to controls [22]. Of particular interest was the observed decrease in Rab7 

and Rab18 GTPases as both these proteins significantly affect LD metabolism as discussed 

below.

Rab18—Rab18 is a well characterized trafficking protein believed to be functionally 

important in LD biology, especially as it relates to lipolysis and LD accumulation. After 

identifying the decrease in Rab18 content on LDs from ethanol-fed rats, we evaluated its 

precise localization and interaction(s) with other LD proteins [22]. We observed that Rab18 

was present on all LDs and it co-localized with Plin2 in the livers from control-fed animals 

[22]. In contrast, not all the LDs were found to be coated with Rab18 in the livers from 

ethanol-fed animals [22]. This was especially apparent in the large LDs, where the co-

localization between Rab18 and Plin2 was significantly decreased. These data are 

particularly intriguing since previous research showed that Rab18 was recruited to LDs upon 

lipolytic stimulation [87]. We believe that the impaired recruitment of Rab18 to LDs and the 

decreased association of Rab18 with the anti-lipolytic Plin2, [107] following ethanol 

administration may be directly responsible for the reduced lipolysis and consequent LD 

accumulation.

Rab7—We have identified decreased Rab7 on LDs isolated from ethanol-fed rats [22], and 

data shows that Rab7 plays an important role in lipophagy [88]. Specifically, it has been 

observed that starvation enhances the level of active Rab7 in the LD fraction suggesting that 

increased active Rab7 in LD favors lipolysis [89]. Since activated Rab7 in LDs is critical for 

LD interaction with multivesicular bodies and lysosomes for the formation of 

autophagolysosomes, it is tempting to speculate that ethanol-induced LD accumulation in 

the liver might be a consequence of decreased lipophagy due to the impaired association of 

active Rab7 with LDs.

Role of Alterations in Liver Lipids and Phospholipids

Lipid analysis with alcohol consumption reported an elevation of 22:6, 18:0 and 18:0 to 18:3 

FA containing lipids in serum and liver of alcohol-fed mice [120, 121]. Lipidomic studies 

using pattern recognition analysis of nuclear magnetic resonance spectroscopic data revealed 

that PC and total fatty acyl chains were decreased in the alcohol-fed liver [122]. Recent 

studies employing LD lipidomics revealed increases in TAGs, cholesterol, monounsaturation 

of fatty acyl chains, free FAs and significant decreases in PC levels in isolated LDs from the 

ethanol-fed rats compared with controls [123–125]. It is yet to be demonstrated whether 

such decrease in PC on LD surface could potentially causes impaired lipolysis, reduced TAG 

turnover and impaired VLDL secretion.

Ethanol administration has been shown to decrease the activity of microsomal long chain FA 

elongase 5 (Elovl5) [126]. Interestingly, adenoviral induction of hepatic Elovl5 was shown 

to promote lipolysis by increasing ATGL mRNA and protein expression [127]. Whether 

such ethanol-induced decrease in Elovl5 also is affecting ATGL expression and hepatic TAG 

turnover is another area of research that warrants further investigation.
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Role of Lipophagy

Recent studies have shown that ethanol administration in addition to causing lipid 

accumulation in the liver also upregulates autophagic clearance of LDs as a protective 

measure [17, 71, 128, 129]. Acute ethanol-induced autophagy was also shown to enhance 

the clearance of damaged or fragmented mitochondria, a process termed as mitophagy [71]. 

Mitophagy can decrease the generation of reactive oxygen species and thereby functions as a 

protective mechanism to reduce ethanol-induced hepatotoxicity [71]. Signaling mechanism 

of ethanol-induced autophagy is via the inhibition of Akt and mammalian target of 

Rapamycin [71, 128].

Autophagy was also shown to be directly dependent on ethanol metabolism and reactive 

oxygen species generation [71]. Supplementation with antioxidants decreases ethanol-

induced autophagy [71]. While ethanol-induced hepatocyte apoptosis has been shown to be 

very minimal [130], inhibition of autophagy resulted in increased hepatocyte apoptosis. 

These results suggest that the ethanol-mediated induction of the autophagic process is a 

protective, cell survival mechanism [131]. In support of this protective role of autophagy, 

liver specific autophagy-related protein 7 (Atg7) knockdown mice exposed to binge alcohol 

exhibit more severe liver damage [132]. Similarly, silencing Atg5 resulted in an increase in 

hepatocyte apoptosis [131, 132]. Conversely, treatment with rapamycin, an autophagy 

inducer, lowers LDs accumulation and triglyceride levels [133, 134]. Further investigations 

are required to examine whether an autophaghic inducer can promote LD catabolism and be 

used for reversing alcohol-induced hepatic steatosis.

Role in HCV Assembly

While there are no published studies on the role of ethanol on LD-associated HCV assembly, 

we believe that ethanol-induced increased LD accumulation could be responsible for the 

faster progression of the infection and in the exacerbation of liver injury in HCV-infected 

alcoholic patients. Indeed, we have observed an increased accumulation of LDs in livers of 

HCV ethanol-fed core-transgenic mice (unpublished observations) and in the livers of 

ethanol-fed NS5A+ mice [135]. Ongoing investigations are in progress to understand the 

persistence of HCV infection in alcoholic patients and their poor response to anti-viral 

therapy.

MiRs in LD metabolism

Excellent review articles discussing ethanol-induced alterations in miRs and their role in 

pathogenesis of liver injury have been published recently [136, 137]. However, the mode of 

ethanol delivery by oral feeding or gavage appears to modulate miRs differently [138, 139]. 

More work is needed to dissect and understand the relevance of these observations in disease 

progression. Nevertheless, especially relevant to alcoholic steatosis is the observation that 

ethanol administration increased hepatic miR-33 expression and decreased VLDL secretion 

[140]. Whether therapeutic approaches to alter miRs could limit LD formation and liver 

injury remains to be seen.
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THERAPEUTIC ROLE OF BETAINE

A variety of animal model studies [141, 142] and in vitro studies [143–145] by many 

investigators have shown that treatment with betaine can mitigate many hallmark features of 

alcoholic liver injury [146, 147] including alcoholic steatosis [142]. More importantly, 

betaine protection against the development of ALFD is mediated via its effect on LDs. 

Particularly, the ethanol-induced increases in the size and numbers of LDs in the 

centrilobular and mid zonal regions of the liver lobules are prevented by betaine 

administration [148].

Mechanistic studies conducted in our laboratories have implicated the alcohol-induced 

reduction in the hepatocellular S-adenosylmethionine (SAM) to S-adenosylhomocysteine 

(SAH) ratio [142, 144] impairs PEMT-catalyzed PC generation [142, 144]. This in turn, 

causes decreased VLDL secretion [149], contributing to increased fat accumulation in the 

liver [142]. We have further shown that betaine treatment normalizes PEMT-catalyzed-PC 

generation [142] that restores VLDL secretion rate [149] and prevent alcohol-induced LD 

accumulation and steatosis [142, 148]. Whether PEMT-mediated catalysis is also responsible 

for maintaining LD surface PC moieties and in promoting lipolysis and TAG turnover for 

VLDL production and secretion is currently being examined.

CHANGES IN ADIPOCYTE LDs AFTER ETHANOL ADMINISTRATION

Emerging evidence suggests that an impaired adipose-liver tissue axis can be a potential 

factor that affects hepatic fat overload observed in alcoholics [150–153]. White adipose 

tissue (WAT) is the main site to store excess nutrients in the form of LDs and recent 

metabolic tracing experiments have shown that ethanol enhances adipocyte lipolysis, thereby 

shifting the metabolic task of storing excess lipids in the liver [150, 152]. Indeed, ethanol-

induced WAT loss in the three main abdominal (epididymal, perirenal and mesenteric) fat 

storing sites [150] occurs through activation of lipases, HSL and ATGL [150, 152]. ATGL 

activity is normally inhibited by insulin [154] and it has been suggested that insulin 

resistance that develops with chronic ethanol abuse could mechanistically be related to 

increased WAT lipolysis [152]. Further ethanol-induced oxidative stress [155, 156] can also 

induce ATGL expression in a FoxO1-dependent manner [157].

Further studies have reported that alcohol-induced decreases in the adipose SAM:SAH ratio 

and elevations in homocysteine levels [155, 156, 158, 159] enhances HSL activation to 

promote LD lipolysis [158–160]. More importantly, betaine exerts it therapeutic effect to 

facilitate TAG storage in adipocytes by preventing these ethanol-induced changes in adipose 

tissue [158, 159].

CONCLUSIONS

Here we have presented details on the general structure of LDs and the associated proteins 

that control many cellular functions of LDs (Fig. 3), including storage, transport, and 

metabolism of lipids and HCV assembly. We discussed the structural and functional 

alterations that occur in adipocytes and hepatocytes LDs following ethanol administration. 

We further presented some insights into how these compositional changes promote lipolysis 
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and LD loss in adipocytes (Fig. 4) and at the same time inhibit lipolysis and TAG turnover in 

hepatocyte LDs to impair VLDL production and secretion (Fig. 5), ultimately leading to the 

development of AFLD. Finally, we presented a therapeutic option of using betaine that 

ameliorates both ethanol-induced increases in adipose tissue lipolysis and hepatic LD 

accumulation and thereby prevents the development of ALFD [148, 158, 159].
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Figure 1. Diagrammatic Structure of Lipid Droplets
Lipid droplets (LDs) are composed of a homogenous lipid core covered by a monolayer 

coating of phospholipids, free cholesterol and lysophospholipids. The hydrophobic core of 

LDs is made of neutral lipids with tri- and diacylglycerols, esterified cholesterol and retinyl 

esters. The surface of LDs is also studded with several different proteins including perilipins 

and RabGTPase’s.
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Figure 2. Diverse functions of Liver Lipid droplets
Lipid droplet (LD) is an active subcellular organelle that performs many cellular functions in 

the liver as shown.
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Figure 3. Schematic representation of many players that regulate lipid droplet formation and 
degradation
The protein and lipid factors within lipid droplets (LDs) must be maintained in a delicate 

balance for effective lipolysis. Any change in the structure or interactions of these 

components can alter lipid droplet formation and their degradation. Hepatic 

phosphatidylethanolamine methyltransferase (PEMT) maintains phospholipids composition 

of the LD for normal lipolysis to facilitate VLDL production and secretion to ultimately 

prevent LD accumulation. In addition, lipases, active RabGTPases such as Rab7 and 

dynamin 2 activate lipolysis/vesiculation and prevent LD accumulation. LD also recruits 

core autophagic machinery and LAMP-2A dependent chaperone-mediated autophagy of 

Perilipin2 (Plin2) thereby favoring lipolysis. Several microRNAs (miRs) listed reportedly 

prevent LD accumulation. Alternatively, several other miRs, Plin2 and HCV proteins all 

promote LD accumulation in the liver.
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Figure 4. Major mechanisms by which ethanol promotes adipocyte LD lipolysis
Ethanol induces LD lipolysis in white adipose tissue (WAT) loss through activation of the 

lipases (HSL and ATGL). Insulin resistance that develops with chronic ethanol abuse 

promotes WAT LD lipolysis via ATGL activation. Further ethanol-induced oxidative stress 

also induces ATGL expression in a FoxO1-dependent manner. Ethanol-induced changes in 

adipose S-adenosylmethionine:S-adenosylhomocysteine (SAM:SAH) ratio enhance HSL 

activation to promote LD lipolysis. Betaine can prevent activation of the lipases via 

normalizing adipose SAM:SAH ratios and preventing homocystenemia.
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Figure 5. Multiple mechanisms by which ethanol facilitates lipid droplet accumulation in the 
liver
In the healthy liver, the number and size of lipid droplets (LDs) are tightly regulated and 

there is an orchestrated re-distribution of stored triglycerides (TAG) following lipolysis. 

Ethanol-induced changes in LD phospholipid and protein composition inhibits LD lipolysis, 

TAG turnover and VLDL secretion causing LD accumulation in the liver. Betaine via its 

ability to normalize hepatocellular methylation potential (S-adenosylmethionine:S-

adenosylhomocysteine [SAM:SAH] ratio) could normalize LD phospholipid composition to 

promote lipolysis and VLDL secretion, thereby preventing LD accumulation.
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