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ABSTRACT

Data limitation is one of the most common issues in training machine

learning classifiers for medical application. Due to ethical concerns

and data privacy, the number of people that can be recruited to such

experiments is generally smaller than the number of participants

contributing to non-healthcare datasets. Recent research showed that

generative models can be used as an effective approach for data aug-

mentation, which can ultimately help to train more robust classifiers

in sparse data domains. A number of studies proved that this data

augmentation technique works for image and audio data sets. In this

paper, we investigate the application of a similar approach to differ-

ent types of speech and audio-based features extracted from interac-

tions recorded with our automatic dementia detection system. Using

two generative models we show how the generated synthesized sam-

ples can improve the performance of a DNN based classifier. The

variational autoencoder increased the F-score of a four-way classi-

fier distinguishing the typical patient groups seen in memory clinics

from 58% to around 74%, a 16% improvement.

Index Terms— clinical applications of speech technology,

sparse data, automatic speech recognition, data augmentation

1. INTRODUCTION

Dementia is a disorder of cognitive skills affecting memory, every-

day functionalities, speech, language and communication abilities.

The number of people developing dementia is increasing drastically.

It is estimated that there are around 850 thousand people living with

dementia in the UK. Dementia is the leading cause of death in the

country accounting for over 12 percent of total deaths. The figure

has grown by threefold from 2017 to 2005 [1]. The early diagnosis

of dementia is of great clinical importance, and there is a need for an

automatic, easy-to-use, low-cost and accurate stratification tool.

Recent studies using the qualitative methodology of conversa-

tion analysis (CA) demonstrated that communication problems may

be picked up during conversations between patients and neurolo-

gists and that this can be used to differentiate between patients with

neurodegenerative disorder (ND) and functional memory disorder

(FMD; exhibiting problems with memory not caused by demen-

tia) [2, 3]. However, conducting manual CA is expensive and

difficult to scale up for routine clinical use. We have therefore devel-

oped a fully automatic system based on analysing a person’s speech

and language as they speak to an Intelligent Virtual Agent (IVA).

The IVA asks a series of memory-probing questions that have been

found to be cognitively demanding to answers. These questions are

mimicking the style of questions often using during the history tak-

ing part of a normal face-to-face consultation. A number of features

routed in conversation analysis were extracted and high accuracy

levels were achieved when evaluating the system in a real memory

clinic on patients with ND and FMD [4, 5, 6, 7]. We have recently

expanded our data collection to include two more diagnostic classes:

healthy controls (HC), and patients with mild cognitive impairment

(MCI; a promodal condition to Alzheimer’s disease (AD) indicating

cognitive decline worse than normal aging but not consistent with an

AD diagnosis.) [6]. This changed the task of binary decision for the

classifier to a four-way classification, which naturally increased the

difficulty due to the large overlap between symptoms (and extracted

features) from the HC, FMD and MCI participants. In addition, the

amount of data is still limited (in total 60 samples altogether, around

11 hours speech, 3.5 K utterances), which makes it challenging

to train a very robust classifier and to apply state-of-the-art deep

learning based machine learning techniques successfully.

It is very well-known that to train robust machine learning mod-

els, there should be a large number of samples for each class in the

training data set; large enough to generalise the model, i.e. predict

the classes of unseen samples correctly. However, in the medical do-

main, the number of people recruited to studies is often limited and

the collected datasets are relatively small. Training classifiers with

sparse data is therefore a major issue when applying state-of-the-art

machine learning in medical applications. Therefore, most research

in this field resort to using conventional classifiers rather than the

recently introduced deep neural network (DNN) based models.

One of the common approaches to increase the number of sam-

ples is data augmentation. Data augmentation is widely used in im-

age ([8]), speech ([9]), and text ([10]) processing to alleviate prob-

lems with limited data. The standard augmentation techniques, for

instance in image processing, includes rotation, cropping, scaling

and transformation of images [11]. There are increasing number of

studies applying generative models such as generative adversarial

networks (GANs) for data augmentation. For instance in the speech

area, GANs used for different tasks such as speech synthesis [12],

speech recognition [13, 14], speech emotion recognition [15], speech

enhancement [16], and speaker verification [17].

In this paper we investigate using three recent generative mod-

els to produce synthesized samples of the features extracted from

the conversation participants Adding the generated features to the

original features, we train a new DNN-based classifier to distinguish

between the four classes (FMD, ND, MCI and HC). To the best of

our knowledge, this is the fist study on direct augmentation of variant

statistical features extracted from speech for dementia detection.

The majority of generative models introduced for speech, image
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and text applications are based on CNN or long short-term memory

(LSTM), where the order or position of features in each sample is

important, and the network learns the context. However, in this paper

we aim to use the generative models as an augmentation technique

to produce more samples of the features. These features are inher-

ently different in nature to image pixels, speech waveforms or word

sequences. Therefore, standard dense layers of neural networks will

be used instead of CNNs and LSTMs in the generative models.

2. GENERATIVE MODELS FOR DATA AUGMENTATION

Machine learning models generally fall into two major approaches:

discriminative verses generative models. For the input features, x

and the corresponding labels y, the discriminative models try to di-

rectly make decision boundaries from the features to determine the

labels (i.e., directly predict the probability of y given x: P (y|x)),
while the generative models focus on feature distribution and gen-

eration of features (probability of x: P (x)). In addition to the naive

Bayes generative models which have been known for a long time in

the machine learning community, there are two recently introduced

techniques: GANs and variational autoencoders (VAEs).

The GAN model, originally introduced by ([18]), consists of two

main components: the generator and the discriminator. The gener-

ator generates samples (e.g., new images in the case of the MNIST

data set1), while the discriminator authenticates samples, i.e., de-

cides that a sample either comes from the real data set or not. So the

task of the discriminator is simply a binary classification. The gen-

erator, on the other hand, attempts to deceive the discriminator by

creating better samples, as realistic as possible, in order to pass the

evaluation of the discriminator (the discriminator gets confused and

treats them as the authentic samples). Normally in training GANs,

the generator maps randomly made numbers (noise, hidden/latent

code) into samples. The synthesised and real samples are both fed to

the discriminator, and the discriminator returns a probability indicat-

ing authenticity (1:real, 0:fake). The generator model, technically, is

built in a reverse network as the discriminator with the opposition

loss function. For instance, if the discriminator model is a convolu-

tional network, the generator is the inverse convolutional network.

The low resolution of the synthesized sample and the difficulties

in stabilising the model are the two main issues of GANs. There

have been different improvements to address these issues, including

using the Wasserstein distance for the function loss (WGAN [20]),

conditional GAN (CGAN [21]) and semi-supervised GANs (SGAN)

(forcing the discriminator to produce the labels [22]).

Autoencoder (AE), another generative model, consists of two

components: the encoder and the decoder. The encoder encodes the

input samples into a compressed representation (latent vectors which

are dimensionally reduced version of samples), while the decoder

reconstruct the samples from the compressed representations. The

aim of AE is to reconstruct the input samples as similar as possible

to the real samples. Basically, AE uses an unsupervised training

regime to reconstruct the original data. VAEs are the extension to

AEs, which normalise the latent vectors. Unlike the conventional

AE, VAEs assume Gaussian distribution for the input samples and

tries to capture the distribution of the original samples and they are

much more similar to GANs than the normal AEs [23].

Generative models for data augmentation have been used for

medical applications, where the data limitation issue is of particu-

lar concern. Synthesised samples can help in training more robust

1Large dataset of handwritten digits widely used in the machine learning
community [19]

classifiers improving the generalisation and reducing the overfitting

problem. For instance, GANs have been shown to improve perfor-

mance in image segmentation tasks such as the computed tomog-

raphy (CT) cerebrospinal fluid (CSF) and the fluid-attenuated inver-

sion recovery (FLAIR) magnetic resonance (MR) [11]. [24] reported

significant improvement in classification of CT images of liver le-

sions, when data augmentation was carried out after applying the

standard augmentation techniques on the images. Although, these

studies were in the medical domain, the data they worked with was

very different to our speech data, such as brain and liver images.

3. EXPERIMENTAL SETUP

The data was collected using the IVA during summers of 2016,

2017, 2018 and 2019 at the Department of Neurology, University of

Sheffield, UK based at the Royal Hallamshire Hospital. Of the total

number of 93 participants, 60 were chosen for the study (the rest

were found to not have memory problems, however we made use

of that data for training the speaker diarisation and the ASR). Ta-

ble 1 shows the demographic information of the participants in the

study. Comparing to the previous experiment ([6]), in this study we

use a balanced number of conversations for each class of our four

groups (i.e. 15 FMD, 15 ND, 15 MCI and 15 ND).

Table 1. Demographic information of the participants (15 in

each group). FMD: Functional Memory Disorder, ND: Neuro-

degenerative Disorder, MCI: Mild Cognitive Impairment,

HC: Healthy Control.

Class Age Education (Years) Male

FMD 54.9 (+/- 4.1) 16.4 (+/- 0.6) 40.0%

ND 67.8 (+/- 4.2) 18.0 (+/- 1.6) 66.7%

MCI 63.0 (+/- 4.3) 17.3 (+/- 1.1) 66.7%

HC 69.5 (+/- 4.0) 18.1 (+/- 1.0) 40.0%

Table 2 shows the information of the two datasets used: DR

INTVWS (295 doctor-patient interviews) and IVA (93 IVA-patient

recordings). The DR INTVWS data set was only used for training the

i-vector based diarisation module (the CALL HOME recipe [25])

and the Bidirectional Long Short Term Memory/Time-Delay Neural

Network (BLSTM)-TDNN based ASR using the Kaldi toolkit [26].

The 10 fold cross validation approach was used for training the diari-

sation and the ASRs. The diarisation error rate (DER) was 26.2%,

and the word error rate (WER) was 38.2%.

3.1. Extended features

In addition to the initial features (78 including CA-inspired, only-

acoustic, only-lexical, word vector and verbal fluency) introduced

in [6]), 104 MFCC acoustic features were extracted. Then the

min, max, average and standard deviation were applied (4(func.) ×
13(MFCC) × 2(speakers) = 104). The initial acoustic-only and

lexical-only features included the average as the only statistic func-

tion, therefore the other remaining three statistic features were also

applied on the features, resulting in additional 72 acoustic-only

(3(func.) × 24(acoustic-only) = 72) and 72 lexical-only features

(3(func.)× 24(lexical-only) = 72). This resulted in a total number

of 324 features.



Table 2. Datasets used for training the ASRs, including Len.:the

total length in hours/mins, Utts.:number of utterances, Spks.:number

of speakers, and Avg. Utts.:Average utterance length in seconds.

Dataset(No) Len. Utts. Spks. Avg Utts.

Dr intvws (295) 64h 21m 39184 736 5.9s

IVA (93) 17h 18m 5637 103 11.05s

3.2. Details of the generative models

For training the generative models we used the Keras python library

([27]) back-ended by Tensorflow([28]). Three candidate genera-

tive models were selected: CGAN, VAE and VAE combined with

SGAN. This is similar to the AE-GAN introduced by [29], but the

CNN layers were replaced with dense layers, and the AE with VAE;

we refer to this model as VAE-SGAN. The encoder and decoder

parts of the VAE-SGAN were similar to the encoder and decoder

of the VAE. In addition to the normal dense layers, and to reduce

overfitting, layers of BatchNormalization, LeakyReLU, and Dropout

were used in between the layers. The Adam optimizer was used for

training, as well as a two layer standard DNN classifier which is used

separately to evaluate the synthesized samples.

Algorithm 1 shows how we use the generative models to make

synthesized samples and add them to the training set. We can repeat

this N times and keep the results for both the test and evaluation

(eval) sets separately. In order to see how well the reconstructed

samples do, a DNN based classifier is used and the F-score is calcu-

lated based on its performance on both the test and eval sets.

Algorithm 1: Reconstructed samples from a generative

model.

Result: Best scores and reconstruction numbers for the eval

and test data: Scoreeval, Scoretest
1 Input: train, eval and test

data: Xtrain, Ytrain, Xeval, Yeval, Xtest, Ytest;

2 reconX = Xtrain;reconY = Ytrain;

3 Scoreeval = (0, 0); Scoretest = (0, 0);
4 for recon = 1, 2, ..., N do

5 Train a generative model, M(Enc,Dec,Dis) with

Xtrain, Ytrain;

6 lat = Enc(Xtrain);
7 X ′ = Dec(lat);
8 reconX, reconY = reconX +X ′, reconY + Ytrain;

9 lat2 = Enc(Xeval);
10 X2′ = Dec(lat2);
11 reconX2, reconY 2 =

reconX +X2′, reconY 2 + Yeval;

12 Train a DNN-based model, DM with reconX, reconY

tuned by reconX2, reconY 2;

13 Seval = DM.score(Xeval, Yeval);
14 Stest = DM.score(Xtest, Ytest);
15 if Seval ≥ Scoreeval[0] then

16 Scoreeval = (Seval, rec);
17 end

18 if Stest ≥ Scoretest[0] then

19 Scoretest = (Stest, rec);
20 end

21 end

22 return Scoretest, Scoretest;

4. RESULTS

This section compares the performance on a normal classifier base-

line (logistic regression - LR) and a DNN-based trained using the

adding the synthesized samples.

4.1. Normal classifier

Using the LR classifier and the five fold cross validation approach

the precision, recall and F-score of the classifier were calculated

first on the original 78 features and then on the 324 features (orig-

inal+extended features). The columns with majority of zero values

were omitted from the feature sets (we call them non-zeros (NZ)).

We observed that using the NZ can result in a better performance

for the recursive feature elimination (RFE, a standard approach for

feature selection) ([30]). Based on the five fold cross-validation, in

each fold out of the total 60 samples, 40 were used in train set, 8 for

evaluation and 12 for test. Table 3 shows the details of the perfor-

mance of the classifier in terms of precision, recall and F-score for

the original 78 features, the NZ original features, the top 13 original

features selected by RFE, all features (original+extended), the NZ

for all features, and the top 68 all features selected by RFE. It can be

seen, that the NZ features from the original set can achieve around

40% F-score (3.5% increase), which then can be improved further

by RFE up to 59%. However, using all features together resulted

in a better performance than the original features (F-score of 45.6%

compared to the 36.6% F-score). Applying RFE (68 top features)

this was further improved to an F-score of 64% (F-score of fold 5

was 58.3%, the closest F-scores to the average). On the last row of

the table, the results for the average fold (number 5) is shown. We

will refer to this fold as (HALLAM (F5)). This fold will be used in

the following experiments as a fixed train/test partition.

Table 3. Precision (Pr), recall (Rc) and F-scores (Fs) of the Logistic

Regression classifier trained using different sets of features extracted

from the 60 conversations with 5-fold cross validation. NZ: Non-

zero features. F5: Fold 5, the fold close to the average.)

Feature set Feat. No. Pr % Rc % Fs %

Original 78 36.7 40.0 36.6

Original (NZ) 64 41.5 43.3 40.1

Original (RFE) 13 60.5 60.0 59.1

ALL 324 45.9 46.6 45.6

ALL (NZ) 261 45.1 45.0 44.4

ALL (RFE) 68 64.5 65.0 64.0

ALL (F5) (RFE) 68 68.3 58.3 58.3

4.2. Generative models on MNIST

Before we start using the augmentation techniques on our dataset, we

demonstrate the approach on a widely used dataset, MNIST. This ex-

periment will show how the technique generally works on a standard

data set. MNIST contains 60000 train and 10000 test hand written

digit images (in 10 classes, each 28 by 28 pixels). Generative models

have been shown to work well for tasks involving images, speech and

text where there are sequences of features in which the neighbouring

features may be co-related to each other. As mentioned before, we

removed all CNN or LSTM layers (which capture context informa-

tion very well). So as expected, this reduces the performance of the

generative model significantly. From the train set of MNIST, 1500



samples (150 for each digit) were selected. 10 percent was chosen as

the eval set (150 samples) and 90 percent (1350 samples) as the train

set (we refer to this as MNIST-1500). The standard 10K samples of

MNIST was used as the test in our experiments.

The F-score, when training the normal LR classifier (baseline)

on the MNIST-1500 subset, was around 90%. The algorithm for

augmentation was applied on the dataset using the three generative

models. Figure 1 shows the F-scores gained using the algorithm over

20 times reconstructions (up to 27000 additional samples). As can

be seen, all three generative models (CGAN, VAE and VAE-SGAN)

improved the F-score up to around 93%. The improvement seen

is not steady though, and the results fluctuate, however on average,

VAE-SGAN performed slightly better than CGAN, while VAE was

not as good as the other two and had the highest fluctuation.

Fig. 1. F-scores (%) of the DNN classifier for the MNIST-1500 data

for different numbers of reconstructed samples tested on the standard

10K samples of the test set (number of reconstructions: 20).

4.3. Generative models on HALLAM (F5)

The algorithm was repeated for the HALLAM (F5) data set. The

baseline classifier F-score was around 58%. Figure 2 shows the F-

scores when applying the three generative models. As the number

of reconstructed features increased (up to 2000), the F-scores of the

VAE-SGAN varies between 60% to around 75%, VAE fluctuated

between 40% to 74%, and CGAN between 40% to 70%. Compared

to MNIST-1500, these fluctuations were much higher. VAE-SGAN,

however, performed better.

4.4. Optimum number of reconstructions

Based on the previous two figures, finding the optimum number of

reconstructions is challenging. One approach is to use the eval set to

find the best F-score, although naturally, this might not be the best for

the test set. The high fluctuation, especially in HALLAM (F5) might

indicate that not all of the reconstructed samples are useful for the

classification. Therefore, we modified the Algorithm 1, to first check

the quality of the reconstructed features, and only if they are good

enough, are they then added to the train set. We used a similarity

measure (normalised pair-wise distance) between the two individ-

ual features in the feature set (similar to the pixel-based similarity

in image processing). We observed, that we can get better results if

in each iteration of the algorithm, we check whether the similarity

improves or not between the reconstructed features and the origi-

nal features in the train set. Table 4 shows the best F-scores gained

Fig. 2. F-scores (%) of the DNN classifier for the HALLAM (F5) data

for different numbers of reconstructed samples tested on 12 samples

of the test set (number of reconstructions: 25).

Table 4. F-scores (Fs) and the number of reconstructed samples

after modifying the algorithm (see text for details).

Data set Model Train no. Fs

MNIST-1500 VAE 20250 90.3%

MNIST-1500 CGAN 2700 92.3%

MNIST-1500 VAE-SGAN 4050 92.3%

HALLAM (F5) VAE 160 75.4%

HALLAM (F5) CGAN 200 74.8%

HALLAM (F5) VAE-SGAN 120 67.6%

for MNIST and HALLAM (F5) after modifying the algorithm. Using

VAE, MNIST achieved a 90.3% F-score, while the VAE-SGAN and

CGAN achieved 92.3%. For HALLAM (F5), VAE performed the best

with a 75.4% F-score. CGAN gained 74.8%. Comparing to the base-

line of 58.3%, all three generative models saw improvements with

VAE performing the best at 17.1%, and CGAN and VAE-SGAN fol-

lowing with 16.5% 9.3%, respectively.

5. CONCLUSIONS

We introduced the concept of using data augmentation on features

extracted from a person’s speech and language using the recent gen-

erative models CGAN, VAE and VAE-SGAN. Finding the optimum

number of reconstructed samples is the challenging part of this tech-

nique, although the evaluation set can help us to find a local optimum

number. For the two tasks using Algorithm 1 and the modification,

each generative model performed well, if slightly differently. How-

ever more work is needed to investigate the use of generative models.

Reported experiments were carried out on a representative fold; fu-

ture work will expand this to all fold as well as exploring the effect

of different generative models with more reconstructions.
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