
This is a repository copy of Exploiting non‐systematic covariate monitoring to broaden the 
scope of evidence about the causal effects of adaptive treatment strategies.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/159869/

Version: Accepted Version

Article:

Kreif, Noemi, Sofrygin, Oleg, Schmittdiel, Julie A et al. (5 more authors) (2020) Exploiting 
non‐systematic covariate monitoring to broaden the scope of evidence about the causal 
effects of adaptive treatment strategies. Biometrics (Journal of the International Biometric 
Society). ISSN 1541-0420 

https://doi.org/10.1111/biom.13271

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



A
cc
ep
te
d
A
rt
ic
le

This article is protected by copyright. All rights reserved.

Biometrics xx, 1–23 DOI: xx

xx 2018

Exploiting non-systematic covariate monitoring to broaden the scope of

evidence about the causal effects of adaptive treatment strategies
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Summary: In studies based on electronic health records (EHR), the frequency of covariate monitoring can vary

by covariate type, across patients, and over time, which can limit the generalizability of inferences about the effects

of adaptive treatment strategies. In addition, monitoring is a health intervention in itself with costs and benefits,

and stakeholders may be interested in the effect of monitoring when adopting adaptive treatment strategies. This

paper demonstrates how to exploit non-systematic covariate monitoring in EHR-based studies to both improve the

generalizability of causal inferences and to evaluate the health impact of monitoring when evaluating adaptive

treatment strategies. Using a real world, EHR-based, comparative effectiveness research (CER) study of patients

with type II diabetes mellitus, we illustrate how the evaluation of joint dynamic treatment and static monitoring

interventions can improve CER evidence and describe two alternate estimation approaches based on inverse probability

weighting (IPW). First, we demonstrate the poor performance of the standard estimator of the effects of joint

treatment-monitoring interventions, due to a large decrease in data support and concerns over finite-sample bias from

near-violations of the positivity assumption (PA) for the monitoring process. Second, we detail an alternate IPW

estimator using a no direct effect (NDE) assumption. We demonstrate that this estimator can improve efficiency but

at the potential cost of increase in bias from violations of the PA for the treatment process.
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1. Dynamic treatment regimes and non-systematic covariate monitoring

In the management of chronic conditions such as diabetes, adaptive treatment strategies

might lead to better outcomes than static treatment regimes. A static treatment regime

is a sequence of treatment decisions that are predetermined and the same for all patients

that experience it. An adaptive treatment strategy (a.k.a. dynamic treatment regime) is

a sequence of treatment decisions that are each updated as a function of the changing

circumstances of the patient. The function used to update each treatment decision is re-

ferred to as a decision rule. Because dynamic regimes allow for personalization of treatment

decisions over time, they better reflect real-world decision making that follows the chronic

care model (Bodenheimer et al., 2002). Dynamic treatment regimes can be evaluated using

randomized experiments (SMART trials, see e.g. Murphy et al. (2007)) and increasingly in

comparative effectiveness research, using observational studies (Cain et al., 2010). Regardless

of the study design, evaluating adaptive treatment strategies requires data collection on

covariates that enter the decision rules of interest. The pattern and frequency of covariate

measurements vary across study designs. Even in randomized trials, the lengths of intervals

between monitoring events can vary (Ford et al., 2015). Observational studies make increasing

use of routinely collected data sources which were not originally intended for research

purposes. In retrospective cohort studies based on electronic health records (EHR) for

example, investigators have no control over the data collection process and monitoring is

instead a joint decision of the patient and the health care providers, and is not expected

to be synchronized between patients. This monitoring variability can lead to the following

challenge and opportunity for research.

First, when aiming to establish the optimal dynamic treatment regime, optimality will

depend on the frequency of monitoring (Robins et al., 2008). Hence, the difference in moni-

toring protocols between two populations may invalidate the extrapolation of study results
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obtained in one population to the other. Second, monitoring in itself is a health intervention

with non-negligible costs to healthcare systems that can also burden patients financially or

otherwise. Hence establishing the optimal monitoring regime may be of interest in its own

right, and the monitoring variability in retrospective observational studies based on EHR

data provides an opportunity to evaluate the health impact of monitoring decisions.

While statistical methods for estimating the causal effects of time-varying interventions

(either static or dynamic) are well developed (Robins et al., 2000, 2008; van der Laan

and Petersen, 2007) - and we assume basic familiarity with their underlying concepts and

application - there is little practical guidance on how to handle the challenge and opportunity

just described. A notable exception is Robins et al. (2008) who theoretically developed

estimators for the effects of joint dynamic treatment and monitoring strategies which can

be used to both improve the generalizability of inferences (see Section 6.2.1 of their work)

and evaluate the health impact of monitoring decisions. The standard inverse probability

weighting (IPW) estimator for these effects relies on a positivity assumption (PA) about the

monitoring process that may be theoretically or practically violated. Robins et al. (2008)

propose a new IPW estimator that weakens this PA by introducing a “no direct effect”

(NDE) assumption. Neugebauer et al. (2017) build on these results within the nonparametric

structural equation modeling framework by deriving new identifiability results, proving the

equality of counterfactual outcomes of an original and a modified joint regime using the NDE

assumption. This facilitates the derivation of an estimator for the effect of the original joint

regime by developing an estimator for the effect of the modified joint regime.

There are few studies that consider the causal effects of monitoring interventions in real-

world evaluations. Hernán et al. (2009) considers the effects of joint static treatment and

static monitoring interventions where it is assumed that treatment can only change when

covariates are monitored. Caniglia et al. (2016) compare dynamic monitoring strategies
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(without a joint treatment intervention) where the decision rule for the frequency of mon-

itoring depends on the CD4 cell count. Ford et al. (2015) apply the methods proposed by

Robins et al. (2008) to estimate the effect of monitoring with dynamic treatment regimes.

These studies focus on applications in HIV research using cohort studies with some level

of investigator-control of the data collection process. Additional references are included in

the Supporting Information and include reports of statistical methods that are not explicitly

linked to a formal causal model but that aim to address related problems with an informative

observation process. Here, we apply methods developed in previous theoretical work (Neuge-

bauer et al., 2017) to compare the assumptions and practical performance of standard versus

NDE-based IPW estimation of the effects of joint dynamic treatment and static monitoring

interventions in a diabetes study based on large EHR data. All analyses were implemented

using the stremr R package (Sofrygin et al., 2019).

2. Study design

We build on a retrospective cohort study - referred to as the “TI study” - designed to evaluate

the effect of various glucose-lowering strategies on clinical outcomes of type II diabetes adults.

The available data set includes longitudinal measurements on 51,179 patients from 7 US

regions followed for a median time of about 3 years. To be included in the cohort, a patient

had to have one or more A1c test < 7% followed by an A1c test between 7% and 8.5% while

taking two or more antidiabetic oral agents or basal insulin. Follow-up started on the date

of the A1c ≥7% and ended at the earliest of the time to the failure event (i.e., albuminaria

development or progression), or the time to a censoring event (i.e., death, disenrollment

from the health plan, or administrative end of study). For details on the study context

and data, we refer the reader to Neugebauer et al. (2012) (e.g., Appendix E), Neugebauer

et al. (2013) (e.g., Table I) and Neugebauer et al. (2015) (e.g., Table I). We extend previous

analyses in these articles by evaluating the per-protocol effects of 6 a priori specified joint
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dynamic treatment and static monitoring interventions (see Supporting Information for the

rationale that led to their selection). The three dynamic treatment interventions considered

require that patients initiate treatment intensification (TI) the first time a newly measured

A1c reaches a given threshold and that they remain on the intensified therapy thereafter.

We consider two monitoring interventions that require periodic A1c monitoring. In the

Supporting Information, we consider 10 additional joint interventions.

3. Observed data notation and causal model

For each patient in the cohort, measurements on treatment, monitoring, covariate, censoring

and outcome information are updated every 90 days starting at study entry and until the

end of follow-up. This analytic unit of time was used in the original analyses of the study

data because A1c monitoring was not expected to occur more than once every 90 days. We

recently presented sensitivity analyses based on finer units of time (Sofrygin et al., 2019).

Follow-up time (denoted by t) is thus expressed in 90-day units, and the first 90 days of

follow-up is denoted by t = 0. The latest possible follow-up time is denoted by K + 1 = 36,

corresponding to about 9 years. The binary outcome variable Y (t) represents whether the

failure event occurred at the previous time point t − 1, and Y (0) = 0 by convention. The

vector A(t) = {A1(t), A2(t)} denotes the exposure status at time t and is composed of two

binary variables that indicate whether the patient experienced an intensified therapy and

a censoring event at time t, respectively. The vector of covariates Z(t) represents patient

attributes measured before A(t) (e.g., comorbidity, diagnoses, or vital signs). The covariate

I(t) represents the A1c level measured before A(t). I(t) is not monitored at every t > 0 for all

patients in this study. The binary variable N(t) represents the monitoring decision at time t

and indicates whether a measurement for I(t+1) will be taken. By convention, when A1c is

not monitored at time t, I(t) is defined as I(j) where j < t is the latest time point when A1c

was monitored. By study design, A1c is always monitored in the first period. We note that,
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unlike prior related work (Hernán et al., 2009), treatment A1(t) can change at any time and

not necessarily only when the covariate I(t) is monitored (i.e., not only at t when N(t−1) =

1). We jointly denote the outcome and covariates at time t by L(t) ≡ {Y (t), Z(t), I(t)}

which consists of measurements obtained before A(t). Similar to I(t), each covariate in Z(t)

that was not monitored at time t (e.g., blood pressure) is defined using last observed value

carried forward (LOVCF) and an indicator of LOVCF is included in the vector of covariates

Z(t). Support for this approach to handle partially observed covariates is detailed in Section

2.2 of Kreif et al. (2018) and uses a framework and rationale related to that described in

Hernán et al. (2009). To simplify notation, all variables become degenerate after a failure or

censoring event occurs. The observed data are realizations of n independent and identically

distributed copies Oi of O = {L(0), A(0), N(0), ...., L(K), A(K), N(K), L(K + 1)}. We use

the overbar to denote the history of a variable, e.g. Z̄(t) = {Z(0), . . . , Z(t)}.

We assume a nonparametric structural equation model (NPSEM) detailed in Neugebauer

et al. (2017) that links the observed data distribution to a vector of random disturbances

and a fixed vector of functions. We note that the random disturbances of this causal model

are not assumed to be mutually independent. In this NPSEM, the observed level of A1c,

I(t), is linked to a latent variable I0(t) that represents the patient’s underlying A1c level

at time t. More specifically, if a decision to measure I0(t) was made during follow-up, we

observe I(t) to be I0(t), and otherwise the value of I0(t) is missing from the observed data

O. Because A1c is always monitored in the first period, we have I(0) = I0(0) for all patients.

This NPSEM also defines all counterfactual outcomes referenced in this report (Pearl, 2010).

4. Evaluation of joint dynamic treatment and static monitoring interventions

4.1 Causal estimands

We consider three exposure interventions which each sets the random variable A(t) =

{A1(t), A2(t)} to a realization a(t) = {a1(t), a2(t)} for each time period, t = 0, ..., t0 where
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t0 < K is the time point chosen by the analyst when outcomes are compared between

intervention groups. Specifically, each intervention is the combination of a dynamic treatment

regime and a static right-censoring regime that ensures outcome collection at time t0 (i.e.,

ā2(t0) = 0 - see Appendix F in the Supporting Information for our selected approach to the

competing risk of death). The treatment decisions a1(t) are adapted to time-varying real-

izations of patient characteristics based on the following decision rules: “initiate TI the first

time a newly measured A1c reaches x%, and remain on intensified therapy thereafter” with

x=7.5;8;8.5. Each intervention requires setting the treatment to a1(t) = 1 for a patient who

has not failed yet (Y (t) = 0) and who has not yet initiated TI (A(t−1) = 0), but for whom a

new A1c measurement (N(t−1) = 1) has been taken and its level (I(t)) has reached threshold

x, otherwise, the intervention requires that treatment be not changed (i.e., a1(t) = a1(t−1)).

We formalize the decision rules that define these interventions with vectors of mappings

dx = (dx(0), . . . , dx(K)) where dx(t) : {A(t − 1), N(t − 1), Y (t), I(t)} 7→ {a1(t), a2(t)} for

t = 0, ..., K and x ∈ X = {7.5, 8, 8.5}. The exposure regime through time t defined by

applying the sequence of decision rules dx with a patient’s observed data O is denoted

by dx{V̄ (t)} = [dx(0){V (0)}, . . . , dx(t){V (t)}], where V (t) = {A(t− 1), N(t− 1), Y (t), I(t)}.

Figure 6 (top panel) illustrates the dynamic treatment regimes resulting from the application

of such decision rules dx using fake data from two patients (see ’Step 3A’). We consider two

static monitoring regimes defined by regular A1c testing schedules: skip one quarter between

A1c tests (i.e., n̄1 = (0, 1, 0, 1, . . .)) and skip 3 quarters between A1c tests (i.e., n̄3 = (0, 0, 0-

, 1, 0, 0, 0, 1, . . .)). We aim to estimate the causal effects of the six joint interventions (dx, n̄y)

defined by the three dynamic treatment-censoring regimes dx with x ∈ X and the two static

monitoring regimes n̄y, with y ∈ Y = {1, 3}. The counterfactual outcomes under these joint

interventions are denoted by Ydx,n̄y
(t+ 1). Their distributions define the causal estimands:

ψ(dx1 ,n̄y1
),(dx2 ,n̄y2

)(t0 + 1) = P{Ydx1 ,n̄y1
(t0 + 1) = 1} − P{Ydx2 ,n̄y2

(t0 + 1) = 1}, (1)
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with (x1, x2) ∈ X 2 and (y1, y2) ∈ Y2. Nine such risk differences were estimated for t0 =

0, . . . , 7 to 1) improve the generalizability of evidence about the comparative effectiveness of

the three dynamic treatment regimes by fixing monitoring (i.e., y1 = y2) and 2) to evaluate

the impact of monitoring on the effectiveness of a fixed dynamic treatment regime (i.e.,

x1 = x2).

4.2 Identifying assumptions

Identifiability of the above parameters with the observed data O relies on a sequential

randomization assumption (SRA) and a PA. Identifiability directly follows from application

of the g-formula (Robins, 1986) when the time-varying intervention is expanded to include

monitoring. We note that consistency, i.e., the fact that the counterfactual outcomes under

the observed treatment-monitoring regime correspond to the observed outcomes follows from

the assumed NPSEM (Pearl, 2010). For the time-varying joint interventions that define each

of the counterfactual risks in (1), the SRA can be expressed as:

Ydx,n̄y
(t0 + 1) ⊥ {A(t), N(t)}|L̄(t), Ā(t− 1), N̄(t− 1), (2)

for t = 0, . . . , t0, x ∈ X and y ∈ Y . It states that, for all time points through t0, each

potential outcome of interest is independent of the current exposure and monitoring decisions

conditional on past exposures, monitoring decisions, and confounders.

In EHR-based studies, it is expected that treatment decisions, right-censoring events, or

monitoring decisions are affected by factors that also impact the outcome. The SRA holds if

all these factors are observed (i.e., included in L̄(t0)). As illustrated below, the SRA can also

hold even when some of these factors are unobserved as long as they only affect the exposure

or monitoring through observed covariates. Because we defined the exposure as the vector of

treatment and censoring status, we note that (2) includes the assumption of no unmeasured

sources of selection bias (due to right-censoring).

The causal directed acyclic graph (DAG) depicted by Figure 1 represents commonly
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assumed causal relationships between observed treatment, covariates, and outcomes (Robins

et al., 2000, fig. 1b), adapted to cohort studies with a time-to-event outcome, and extended

to also represent non-systematic monitoring. For simplicity, it is assumed that no covariate

other than the A1c measurements and outcomes are collected, follow-up spans only two

time points, and right-censoring does not occur. In addition to the observed variables and

the latent variable I0(t), the DAG also includes two potentially unobserved time-varying

covariates U1 and U2 (e.g., health-seeking behavior such as diet and physical activity) that

are risk factors for the outcomes Y (t) and that only impact treatments through observed

covariates but that can directly influence the monitoring indicator N(0). The upholding of

the SRA (2) can be motivated by ensuring that all backdoor paths from A1(t), A2(t), and

N(t) to Y (t0 + 1) are blocked by prior measured variables included in the observed data

O. For instance, the SRA will hold if the two gray dashed arrows from U1 and U2 to N(0)

are deleted and in the absence of an arrow from I0(1) to A1(1) which encodes a commonly

made assumption that unobserved risk factors for the outcomes can only impact treatment

decisions through observed covariates. For instance, a clinician’s decision to prescribe a new

treatment cannot be influenced by the patient’s A1c level if this level was not known to the

clinician except through other mediators reported to the clinicians (e.g., symptoms shared

by the patient). Such reported information must then be included in the vector of covariate

Z(t) for the SRA to hold.

The identifiability of the causal estimand (1) also hinges on a PA:














P
[

A(t) = dx(t){V (t)}
∣

∣

∣
L̄(t), Ȳ (t) = 0, Ā(t− 1) = dx{V̄ (t− 1)}, N̄(t− 1) = n̄y(t− 1)

]

> 0,

P
[

N(t) = ny(t)
∣

∣

∣
L̄(t), Ȳ (t) = 0, N̄(t− 1) = n̄y(t− 1), Ā(t) = dx{V̄ (t)}

]

> 0,

(3)

for t = 0, . . . , t0, x ∈ X and y ∈ Y . In particular, this PA requires that for all time

periods and any combination of past covariates, there is a positive probability for each

patient who previously followed the joint intervention to continue to follow the monitoring

intervention of interest. Near-violations of this assumption can occur if certain covariates
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(e.g., change in A1c control) are strong determinants of monitoring decisions (e.g., the

American Diabetes Association recommends that patients who recently changed treatments

or whose A1c recently became out of control be monitored more frequently (p. S57 American

Diabetes Association (2018)). Near-violations of this assumption due to chance may also be

expected if only a small number of patients follow the intervention under evaluation and, in

particular, with a large covariate adjustment set (Petersen et al., 2012), and these concerns

increase over time as more patients experience a failure or censoring event.

5. Evaluation of the joint interventions under the no direct effect assumption

5.1 Causal estimands

Under an NDE assumption detailed below, the risk differences (1) were shown (Neugebauer

et al., 2017) to equal the following causal estimands which are the focus of this Section:

ψ(d∗x1 ,g
∗

y1
),(d∗x2 ,g

∗

y2
)(t0 + 1) = P{Yd∗x1 ,g

∗

y1
(t0 + 1) = 1} − P{Yd∗x2 ,g

∗

y2
(t0 + 1) = 1}, (4)

where each d∗xj
with xj ∈ X is a modified version of the dynamic treatment-censoring

intervention dxj
and where each g∗yj with yj ∈ Y is a static monitoring intervention on a subset

of the monitoring process. Both interventions d∗xj
and g∗yj are defined as follows based on the

same static monitoring intervention n̄yj . Instead of requiring a patient to follow the pre-

specified monitoring intervention n̄yj at every time point, the static monitoring intervention

g∗yj requires patients to be monitored at least at the pre-specified set of time points t when

nyj(t) = 1, but does not constrain monitoring decisions at other time points, i.e., it allows for

the monitoring process to take its natural course for t when nyj(t) = 0. The modified dynamic

treatment-censoring intervention d∗xj
differs from the previously defined decision rule dxj

in

that it only uses the past A1c measurements which are observed both under the monitor-

ing regime n̄yj , and under the actual observed monitoring process N̄ , i.e., d∗xj
(t){V (t)} =

dxj
(t){V ∗(t)} where we define V ∗(t) = {A(t−1), nyj(t−1)N(t−1), Y (t), nyj(t−1)I(t)}. Thus,

d∗xj
corresponds to the original dynamic treatment-censoring intervention dxj

except that it
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requires that any additional A1c measurements collected beyond the A1c measurements

required under intervention n̄yj be ignored when applying the decision rule dxj
. Figure 6

(top panel) illustrates the dynamic treatment regimes resulting from the application of such

decision rules d∗xj
using fake data from two patients (see ’Step 3B’).

While causal estimands (4) can be of interest in their own rights, we focus on their

estimation as an indirect approach to the evaluation of causal estimands (1). Because the

monitoring regime g∗yj involves interventions on fewer variables than n̄yj , it is generally

expected that more patients will have an observed monitoring history consistent with the

intervention g∗yj . We demonstrate in the Results Section how this potential increase in data

support can be exploited to improve inferences in studies with random monitoring to evaluate

some monitoring regimes n̄yj and, in particular, those less frequent in the observed data.

5.2 Identifying assumptions

An SRA and PA are sufficient for identifying causal estimands (4). If causal estimands

(1) are indirectly evaluated through causal estimands (4), then an additional identifiability

assumption referred to as the NDE assumption is required. It is formalized by the equality

of counterfactual covariates under two sets of static interventions (Robins et al., 2008):

L0
ā,n̄(t) = L0

ā(t) where L
0(t) = {Y (t), Z(t), I0(t)}. Using an NPSEM framework, Neugebauer

et al. (2017) showed that this assumption is implied by an exclusion restriction assumption

that requires that all directed paths from nodes N(t) to subsequent covariates Y (j), Z(j),

and I0(j) be intercepted by treatment or censoring nodes A(t) for j > t. With the DAG in

Figure 1, this assumption is encoded by the exclusion of the three solid gray arrows from

N(0) to Y (1), I0(1), and Y (2).

The SRA for identification of the causal estimand (4) can be expressed as:














Yd∗

xj
,g∗

yj
(t0 + 1) ⊥ {A(t), N(t)}|L̄(t), Ā(t− 1), N̄(t− 1) for all t s.t. nyj

(t) = 1 (under g∗yj
),

Yd∗

xj
,g∗

yj
(t0 + 1) ⊥ A(t)|L̄(t), Ā(t− 1), N̄(t− 1) for all t s.t. nyj

(t) = 0 (under g∗yj
),

(5)
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with t = 0, . . . , t0. This assumption is weaker than the SRA (2) as it holds even when some

backdoor paths from N(t) to Y (t0 +1) are not blocked as long as such open backdoor paths

only occur at t when nyj(t) = 0, i.e., for monitoring nodes N(t) that are not intervened

upon under intervention g∗yj . This difference between the SRA formulations (2) and (5) is

unlikely to result in the selection of different covariates for bias adjustment in practice, as

most arguments in favor of or against the upholding of the SRA (2) will typically also apply

to the upholding of the SRA (5) and vice versa.

The PA for identification of the causal estimand (4) can be stated as:














































P
[

A(t) = d∗xj
(t){V (t)}

∣

∣

∣
L̄(t), Ȳ (t) = 0, Ā(t− 1) = d∗xj

{V̄ (t− 1)}, N̄(t− 1) = g∗yj
{N̄(t− 1)}

]

> 0

for t = 0, . . . , t0 and,

P
[

N(t) = 1
∣

∣

∣
L̄(t), Ȳ (t) = 0, N̄(t− 1) = g∗yj

{N̄(t− 1)}, Ā(t) = d∗xj
{V̄ (t)}

]

> 0,

for t = 0, . . . , t0 such that nyj
(t) = 1 (under g∗yj

),

(6)

where g∗yj{N̄(t)} = [g∗yj(0){N(0)}, . . . , g∗yj(t){N(t)}] is defined by the mappings g∗yj(k) :

N(k) 7→ N(k)1−nyj
(k) as the sequence of monitoring decisions through time t that is consistent

with following intervention g∗yj and compatible with the subset of observed monitoring

decisions that are not constrained by intervention g∗yj . We note that the PA (6) requires

that the A1c of a patient who previously followed the intervention (d∗xj
, g∗yj) be possibly

monitored at only the time points t ≤ t0 when nyj(t) = 1, whichever the patient’s covariate

and monitoring history. This is in contrast to the PA (3) that requires that a patient who

previously followed the intervention (dxj
, n̄yj) have its A1c monitored at all time points

t ≤ t0 according to the static intervention nyj(t), whichever the patient’s covariate history.

It can thus be expected that the PA (6) will often be more likely to hold in practice than its

analog (3). For example for yj = 1, the PA (6) only requires that each patient can possibly be

monitored every other quarter and does not place any constraint on the monitoring decisions

between these monitoring events, while the PA (3) requires that each patient can possibly

experience the exact sequence of monitoring decisions n̄1 throughout follow-up.
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The practical consequences of this weakening of the PA are expected improvements in

IPW estimation performance, both in terms of finite sample bias and precision because of

the likely more stable IP weights (e.g., fewer extreme values or more compact distribution).

However, this potential for improved performance in the estimation of the causal estimand

(4) over that of (1) might be offset by an increased risk of practical violation of the PA for the

exposure process in (6) compared to that in (3). For example in the TI study, Neugebauer

et al. (2012) expected that most patients would not remain unexposed to an intensified

therapy if their A1c reached very high levels. Violation of the PA for the exposure process

in (6) is then a reasonable concern because the treatment decision at time t according to

rule d∗xj
would require that a patient remain unexposed to an intensified therapy - even if a

newly measured A1c reached a very high level - if such an A1c was collected at a time when

the static monitoring regime n̄yj(t) would not result in A1c testing (i.e., nyj(t − 1) = 0).

Because positivity violations when evaluating static treatment regimes often motivates the

evaluation of dynamic interventions instead, we expect concerns over violations of the PA for

the exposure process in (6) - such as the one just described for the TI study - to apply broadly

to other studies. In the Results and Discussion Sections, we examine the trade-off between

improved IP weight stability resulting from interventions on fewer monitoring nodes and

worsened IP weight stability resulting from poorer adherence to decision rules by comparing

the practical performance of the following two IPW estimators for the causal estimand (1)

under the NDE assumption.

6. Standard and NDE-based IPW estimators

Both IPW estimators considered for evaluating the risk difference (1) were constructed and

implemented using the same general principles summarized below. Details are provided in

Sections 1 and 2 of the Supporting Information. Both estimators only differ in the joint

interventions that they each evaluate. Whereas the standard IPW estimator directly targets
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the interventions of interest (dxj
, n̄yj), the NDE-based IPW estimator targets the modified

interventions (d∗xj
, ḡ∗yj). In both cases, we first implement an IPW estimator of the discrete-

time counterfactual hazards of failure at each time t + 1 for t = 0, . . . , t0 for one of the

two joint interventions that define the targeted risk difference. Each hazard estimate α(t)

is defined by a convex, linear combination of the outcomes at time t + 1 from all patients

who did not experience the event before or at time t, and who followed the intervention of

interest through time t:

α(t) =
n

∑

i=1

hi(t)
∑n

i=1 hi(t)
Yi(t+ 1), (7)

where hi(t) is a stabilized inverse probability weight based on the joint conditional probability

that patient i experiences both the exposure and monitoring interventions through time t. To

construct the IPW weights hi(t), we first estimate separate propensity scores for treatment,

censoring and monitoring using distinct logistic models. These steps are then replicated for

the second joint intervention that defines the targeted risk difference. As detailed elsewhere

(Neugebauer et al., 2016), instead of deriving each hazard estimates arithmetically using

formula (7), they can all be derived simultaneously by fitting a single saturated logistic

dynamic marginal structural model (MSM) for the counterfactual hazards (van der Laan

and Petersen, 2007; Robins et al., 2008) using a standard weighted logistic regression using

an expanded data set (Cain et al., 2010) of person-time observations, replicated for each

regime a person follows at each time point, with IP weights hi(t). IP weights were truncated

at 40. The resulting t0+1 hazard estimates under each of the targeted interventions are then

mapped into estimates of the counterfactual cumulative risk using
∏t0

t=0(1 − α(t)). Finally,

the difference between any two of these cumulative risk estimates is computed and inference

for this risk difference estimate is derived based on the delta method.

We emphasize two major differences in the implementation of the standard versus NDE-

based IPW estimators. Whereas only outcomes from patients that have a history of exposure

and monitoring concordant with the joint intervention (dxj
, n̄yj) contribute to the standard
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IPW estimator of the hazard P{Ydxj ,n̄yj
(t+1) = 1 | Ydxj ,n̄yj

(t) = 0}, the NDE-based estimator

also uses data from patients monitored at least as often as what is required under the static

monitoring intervention n̄y. We note that this potential gain in data support to fit the

dynamic MSM in the NDE-based analysis can however be offset by the decrease in the number

of patients following rule d∗xj
compared to dxj

. This trade-off is illustrated in Figure 6 (top

panel). The stylized patient with id=1 shows a situation where person-time observations can

be gained with the NDE assumption (by following g∗yj when n̄yj is not followed). In contrast,

the patient with id=2 displays a scenario where a person-time observation gained with g∗yj (at

time 2) is lost by not following the modified dynamic treatment intervention d∗xj
(at time 3)

because treatment was initiated too early. In addition and as illustrated in the same Figure,

the denominator of the IP weights for the NDE-based estimator only includes conditional

probabilities of monitoring for time points when monitoring is required under n̄y whereas

the standard estimator includes conditional probabilities of monitoring for all time points.

7. Results

7.1 Data support to evaluate each joint intervention

The two histograms at the bottom of Figure 1 contrast the counts of patients following the

two types of static monitoring interventions n̄y versus g∗y over the first 8 quarters of follow-

up for both y = 1, 3. These plots clearly indicate that data support for each intervention g∗y

is significantly larger that for the corresponding n̄y intervention. This is expected because

the intervention g∗y only requires A1c testing when the static monitoring intervention n̄y

requires it and does not constrain the monitoring process otherwise. As expected, we also

find that data support for the joint interventions (dx, n̄y) (Figure 2, top) are lower than their

intervention analogs without monitoring interventions dx (Figure 5, top left).

The counts of patients following any of the modified joint interventions (d∗x, g
∗

y) (Figure

3, top) is larger than their analogs (dx, n̄y) (Figure 2, top). The discrepancy is particularly
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striking with y = 3. The histograms in Figure 3 also show that, starting at time 2 and for each

x ∈ X , the number of patients following the joint intervention (d∗x, g
∗

y) defined by n̄y increases

with the decrease in the minimum required frequency of A1c monitoring (i.e., from n̄1 to

n̄3). The opposite trend is seen for interventions (dx, n̄y) in Figure 2. These results address

the concern discussed in the prior Section by demonstrating that the expected increase in

data support for the joint intervention (d∗x, g
∗

y) compared to (dx, n̄y) due to intervening on

fewer monitoring variables with g∗y is not offset - in this study at least - by a decrease in the

number of patients who follow the intervention d∗x instead of dx.

7.2 Estimates of the causal risk differences

We now contrast the standard and NDE-based estimates of the effects of the 6 joint inter-

ventions (dx, n̄y) by, first, comparing the three dynamic treatment-censoring interventions

when they are all combined with the same monitoring intervention (Figures 2 and 3), and,

second, by comparing the two monitoring interventions when they are combined with the

same dynamic treatment-censoring intervention (Figure 4). For comparison, we also present

the crude and IPW estimates of the same dynamic regimes without monitoring interventions

(Figure 5). We note that unadjusted estimates of the cumulative risks provide no evidence

of a protective effect of increasingly more aggressive TI strategies while adjusted estimates

provide strong evidence that the risk of albuminuria development or progression almost

always decrease significantly with the decrease of the A1c threshold at which TI is initiated.

This finding is consistent with results from two clinical trials referenced in the Supporting

Information.

With the standard analysis (Figure 2), the estimated counterfactual survival curves provide

weaker (when y = 1) or no evidence (when y = 3) of a protective effect of TI initiation at

lower A1c thresholds. The standard errors of the IPW risk difference estimates are much

larger than those reported in Figure 5 due to reduced data support for joint interventions
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compared to their analogs without monitoring interventions. With the NDE analysis (Figure

3), we note the drastic change in the estimated counterfactual survival curves with y = 3:

the protective effect of TI initiation at lower A1c thresholds which was lost in the standard

analysis is recovered. The bottom panels on the same Figure also indicate a large decrease

in the standard errors for the risk differences compared to those showed at the bottom

of Figure 2. This is explained by the increase in data support for the joint interventions

(d∗x, g
∗

y) compared to (dx, n̄y). Overall, the NDE-based estimator provides stronger and more

consistent evidence of a protective effect of TI initiation at lower A1c levels.

When contrasting joint interventions defined by different monitoring interventions but the

same dynamic treatment-censoring intervention (Figure 4), results from the standard analysis

suggest a beneficial effect of more frequent monitoring on the risk of onset or progression

of albuminuria. However, the wide confidence intervals for the risk difference fail to provide

strong statistical evidence for this effect. Despite the tighter confidence intervals for the

risk difference in the NDE-based analysis (bottom right panels) compared to those in the

standard analysis (bottom left panels), the general decrease in the point estimates leads to

similarly weak statistical evidence of a protective effect of more frequent A1c monitoring.

7.3 Distribution of estimated stabilized IP weights

Figure 6 (bottom panel) summarizes the distribution of the weights hi(t) in (7) for intervention-

person-time observations with non-zero weight values, corresponding with the two sets of

joint interventions discussed above (dx, n̄y) and (d∗x, g
∗

y). When comparing these distributions

to their analog without monitoring interventions (Figure 5 top right panel), we note that both

distributions have slightly shifted right which is expected due to the additional interventions

on monitoring. We note a relatively large increase in the proportions of large weights greater

than 40 with regimes (dx, n̄y) which provides evidence for the theoretical concerns over

increased near-violations of the PA (3) discussed in Section 4.2. We conjecture that the
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observed near-violations are likely resulting from the large reduction in the number of patients

following each joint intervention (i.e., it could be avoided with increased sample sizes) but

it may also be indicative of covariates that are strong determinants of monitoring decisions

(i.e., structural violations that would persist with increased sample sizes). When comparing

the distributions of the IPW weights in Figure 6 between joint interventions types (dx, n̄y)

and (d∗x, g
∗

y), we note a relatively large increase in the proportions of large and very large

weights greater than 30 with interventions (d∗x, g
∗

y). This increase in the number of large

weights provides evidence of the theoretical concern discussed in Section 5.2 over increased

near-violations of the PA requirements for the exposure process in (6) compared to (3).

8. Discussion

With this case study, we aimed to provide detailed practical guidance on how to exploit

monitoring variability to evaluate its health impact or to improve the generalizability of CER

findings when evaluating dynamic treatment regimes. Although the approaches developed

were illustrated with EHR data, they are applicable to any observational study with non-

systematic covariate monitoring. We described and compared the implementation of two

IPW estimators for evaluating the joint effects of dynamic treatment-censoring and static

monitoring interventions. To our knowledge, this report provides the first detailed account of

the practical trade-offs between these two IPW estimation approaches. Motivations for their

applications also include the joint optimization of treatment and monitoring decisions. With

our example, we illustrated the expected poor performance of a standard IPW estimator due

to a large decrease in data support to evaluate a given static monitoring regimen which, in

turn, can also increase concerns over finite-sample bias from near-violations of the PA for

the monitoring process. To alleviate the expected practical limitation of the standard IPW

estimator, we demonstrated how an alternative approach that hinges on an NDE assumption

can result in much improved estimation efficiency due to increased data support but at the
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cost of a potential increase in finite-sample bias due to structural near-violations of the PA

for the treatment process.

Compared to an estimator that evaluates the effect of a dynamic treatment without a joint

monitoring intervention, the performances of both the standard and NDE-based estimators

discussed here hinge on a stronger SRA whose upholding has been questioned in EHR-based

studies because “data on the reason for a given visit are often not recorded for data analysis”

(Robins et al., 2008). Because we use observational data assembled originally to evaluate

dynamic treatment interventions without joint monitoring interventions, it is reasonable to

expect residual bias from unmeasured confounding of the effect of A1c monitoring on the

outcome. Had the original study aims included the evaluation of the effects of monitoring

regimes, additional covariates would have likely been extracted from the EHR to adjust for

clinical determinants of A1c lab orders and measures of patients’ prior compliance with such

orders. In Web Appendix C of the Supporting Information, we present potential evidence

of the violation of the NDE assumption in the TI study. Even if the NDE assumption were

violated, we note that inferences from the alternate NDE-based IPW analyses in this paper

can remain causally interpretable (using (4) instead of (1)) although results become more

difficult to convey and use to inform care. As noted in Robins et al. (2008, p. 4703), we

might expect a violation of the NDE assumption in intention-to-treat (ITT) analyses where

the dynamic treatment interventions stop but the monitoring interventions continue past

TI initiation. Although we implemented a per-protocol analysis, a similar concern arises

due to our definition of TI as exposure to any antidiabetic drug not used at study entry.

Indeed, monitoring after TI initiation could result in patient switching types of intensified

therapy, and if the type of therapy affects patient outcomes, the NDE assumption can be

violated. To alleviate this concern, the intervention protocol after TI initiation could be

redefined to require continuous exposure to the same drug combination as the one used by
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the patient at TI initiation. Such an analysis was not feasible due to the lack of information

on drug used after TI initiation in the available data set. In future work, we will describe

alternate approaches to mitigate concerns over NDE violations by implementing a locally

efficient double robust estimator (TMLE, Neugebauer et al. (2014)) and evaluating stochastic

monitoring interventions instead of static ones. Stochastic interventions can define effects

that are particularly relevant for patient-centered outcomes research because they can better

represent real-world adherence to rigid monitoring schedules such as the ones studied in this

report. The weakening of the PA required to identify these effects is expected (Munoz and

van der Laan, 2012) to improve estimation performance with both IPW and TMLE.

The nonparametric estimation approach for the discrete-time counterfactual hazards adopted

here may not always be practical in many applications if too few subjects follow each of

the joint interventions of interest at each time point (curse of dimensionality). Instead, a

nonparameteric MSM approach based on a working, non-saturated model (Neugebauer and

van der Laan, 2007) can be adopted to explicitly recognize the limitation of an arbitrarily

specified non-saturated MSM in capturing the true counterfactual hazard functions while

also addressing concerns over poor estimation precision with the nonparametric approach

described in this report. Finally, whereas the missing indicator and LOVCF approach we

adopted to handle partially observed covariates is warranted for biomarkers whose impact on

treatment decisions can be assumed to be entirely mediated by observed covariates, alternate

approaches such as multiple imputation might be better suited to handle other sources of

missing data such as information known to clinicians but poorly captured by EHR.
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Figure 1. The top diagram is a directed acyclic graph inspired by fig 1b in Robins et
al. (2000) and adapted to cohort studies with a time-to-event outcome and non-systematic
covariate monitoring. The histogram in the middle panel summarizes the distribution of the
length of time between A1c measurements for all patients in the cohort. The histogram in the
bottom left panel represents the counts of patients following, over time, one of the two static
monitoring interventions n̄1 and n̄3. Each static intervention n̄y requires that consecutive A1c
tests always be separated by y quarter(s). The histogram in the bottom right represents the
counts of patients following, over time, one of the two static monitoring interventions g∗1 and
g∗3. Each intervention g∗y only requires A1c testing when the static monitoring intervention
n̄y requires it (there is no A1c testing restrictions otherwise).
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Figure 2. Contrast of treatment regimes under a fixed monitoring regime (with-
out NDE). Each histogram in the top panel represents the counts of patients following, over
time, one of the three dynamic treatment-censoring interventions d7.5, d8.0, or d8.5 and each
of two static monitoring interventions n̄1 and n̄3. Each static intervention n̄y requires that
consecutive A1c tests always be separated by y quarter(s). Each dynamic interventions dx
requires that therapy be intensified at the first time a new A1c is observed ≥ x%. Each
plot in the middle panel represents the IPW estimates of the counterfactual survival curves
under three joint interventions corresponding with the three dynamic censoring-treatment
interventions and one of the two static monitoring interventions. Each plot in the bottom
panel represents the IPW estimates of the counterfactual cumulative risk differences over
time between two joint interventions that share the same monitoring intervention.
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Figure 3. Contrast of treatment regimes under a fixed monitoring regime (with
NDE). Each histogram in the top panel represents the counts of patients following, over
time, one of the three dynamic treatment-censoring interventions d∗7.5, d

∗

8.0, or d
∗

8.5 and each
of two static monitoring interventions g∗1 and g∗3. Each intervention g∗y only requires A1c
testing when the static monitoring intervention n̄y requires it. The intervention n̄y requires
that consecutive A1c tests always be separated by y quarter(s). The dynamic interventions
d∗x requires that therapy be intensified at the first time a new A1c collected when required
by n̄y is observed ≥ x%. Each plot in the middle panel represents the IPW estimates of the
counterfactual survival curves under three joint interventions corresponding with the three
dynamic censoring-treatment interventions and one of the two static monitoring interven-
tions. Each plot in the bottom panel represents the IPW estimates of the counterfactual
cumulative risk differences over time between two joint interventions that share the same
monitoring intervention.
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Figure 4. Contrast of monitoring regimes under a fixed treatment regime (with
and without NDE). Each plot in the top panel represents the IPW estimates of the
counterfactual survival curves under two joint interventions corresponding with one of
the dynamic censoring-treatment interventions d7.5, d8.0, or d8.5 and two static monitoring
interventions n̄1 and n̄3. Each plot in the middle panel represents the IPW estimates of
the counterfactual survival curves under two joint interventions corresponding with one of
the dynamic censoring-treatment interventions d∗7.5, d

∗

8.0, or d
∗

8.5 and two static monitoring
interventions g∗1 and g∗3. Each plot in the bottom panel represents the IPW estimates of
the counterfactual cumulative risk differences over time between two joint interventions that
share the same treatment-censoring interventions.
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Figure 5. Contrast of treatment regimes without monitoring interventions
(original analyses). The histogram in the top panel represents the counts of patients
following, over time, one of the three dynamic treatment-censoring interventions d7.5, d8.0,
or d8.5. The dynamic interventions dx requires that therapy be intensified at the first time
a new A1c is observed ≥ x%. Each plot in the middle panel represents the crude and IPW
estimates of the counterfactual survival curves under the three interventions. Each plot in the
bottom panel represents the IPW estimates of the corresponding counterfactual cumulative
risk differences over time. The table in the top panel summarizes the distribution of stabilized
inverse probability weights for intervention-person-time observations with a weight value 6=0.
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Step 1a. Formulate joint treatment-censoring-monitoring intervention of interest, e.g. (𝑑8, ത𝑛1): "initiate treatment the first
time A1c (I(𝒕)) drifts above 8% and monitor A1c (𝑵(𝒕)) every other follow−up period”

Step 1b. Define causal estimand, e.g., the counterfactual cumulative risk: 𝑃(𝑌𝑑8, ത𝑛1 𝑡0 + 1 = 1)
Step 2. Structure data 

into long format 

respecting temporal 

ordering and using 

LVCF to define time-

varying covariates

A: Non-NDE Analysis B: NDE analysis

Modified joint treatment-censoring-monitoring 

intervention, e.g., (𝑑8∗ , 𝑔1∗)
Step 3A. Compare observed 

data to joint intervention

Step 4A. 

Calculate 𝒉 𝒕
with PS

Step 3B. Compare observed data to joint 

intervention

Step 4B. 

Calculate𝒉 𝒕
with PS𝒊𝒅 𝒕 𝑵(𝒕) I(𝒕) 𝑨𝟏(𝒕) 𝒏𝟏(𝒕) 𝒅𝟖(𝐭) 𝒉 𝒕 PS 𝒈𝟏∗ (𝒕) 𝒅𝟖∗ (𝐭) 𝒉 𝒕 PS

1 0 0 7.9 0 0 𝐼 0 < 8 → 𝑎1 0 = 0 ≠ 0 𝐴,𝑁 No 

intervention
𝐼 0 < 8 → 𝑎1 0 = 0 ≠ 0 𝐴

1 1 1 7.9 0 1 𝑁 0 = 0 → 𝑎1 1 = 𝐴1 0 = 0 ≠ 0 𝐴,𝑁 1 𝑛1 0 ∗ 𝑁(0) = 0 → 𝑎1 1 = 𝐴1 0 = 0 ≠ 0 𝐴, 𝑁
1 2 1 8.1 1 0 𝐼 2 > 8 → 𝑎1 2 = 1 0

No 

intervention
𝑛1 1 ∗ 𝐼 2 > 8 → 𝑎1 2 = 1 ≠ 0 𝐴

1 3 1 8.2 1 1 𝐴1 2 = 1 → 𝑎1 3 = 1 0 1 𝐴1 2 = 1 → 𝑎1 3 = 1 ≠ 0 𝐴, 𝑁
2 0 0 7.5 0 0 𝐼 0 < 8 → 𝑎1 0 = 0 ≠ 0 𝐴,𝑁 No 

intervention
𝐼 0 < 8 → 𝑎1 0 = 0 ≠ 0 𝐴

2 1 1 7.5 0 1 𝑁 0 = 0 → 𝑎1 1 = 𝐴1 0 = 0 ≠ 0 𝐴,𝑁 1 𝑛1 0 ∗ 𝑁(0) = 0 → 𝑎1 1 = 𝐴1 0 = 0 ≠ 0 𝐴, 𝑁
2 2 1 7.9 0 0

𝐼 2 < 8 → 𝑎1 2 = 𝐴1 1 = 0
0

No 

intervention
𝑛1 1 ∗ 𝐼 2 < 8 → 𝑎1 2 = 𝐴1 1 = 0 ≠ 0 𝐴

2 3 1 8.1 1 1 𝐼 3 > 8 → 𝑎1 3 = 1 0 1 𝑛1 2 ∗ 𝑁 2 = 0 → 𝑎1 3 = 𝐴1 2 = 0 0

Step 5. Logistic regression on person-time observations, replicated for each joint intervention a patient follows, with ℎ(𝑡)
weights

Step 6. Estimate hazards from the coefficients, transform into estimated counterfactual risks

IPW

<0
[0, 0.5[
[0.5, 1[
[1, 10[
[10, 20[
[20, 30[
[30, 40[
[40, 50[
[50, 100[
[100, 150[
≥ 150

Frequency % Cumulative Cumulative
dx, n̄y Frequency %

0 0.00 0 0.00
11832 3.25 11832 3.25
224913 61.81 236745 65.06
125177 34.40 361922 99.47
1714 0.47 363636 99.94
187 0.05 363823 99.99
34 0.01 363857 100.00
6 0.00 363863 100.00
3 0.00 363866 100.00
0 0.00 363866 100.00
0 0.00 363866 100.00

Frequency % Cumulative Cumulative
d∗x, g

∗

y Frequency %

0 0.00 0 0.00
65094 8.44 65094 8.44
601839 78.02 666933 86.46
100577 13.04 767510 99.50
3282 0.43 770792 99.93
407 0.05 771199 99.98
97 0.01 771296 99.99
28 0.00 771324 99.99
30 0.00 771354 100.00
5 0.00 771359 100.00
7 0.00 771366 100.00

Figure 6. The figure in the top panel demonstrates the practical steps of the non-
NDE and NDE analyses, using illustrative patient data. The table in the bottom panel
summarizes the distribution of stabilized inverse probability weights for intervention-person-
time observations with a weight value 6=0 corresponding with two sets of joint interventions:
1) the 6 joint interventions corresponding with the three dynamic censoring-treatment
interventions d7.5, d8.0, and d8.5, and the two static monitoring interventions n̄1 and n̄3; 2) the
6 joint interventions corresponding with the three dynamic censoring-treatment interventions
d∗7.5, d

∗

8.0, and d
∗

8.5, and the two static monitoring interventions g∗1 and g∗3.


