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Abstract

This paper presents the methodology for a new spatial decomposition of total
factor productivity (TFP) growth. We also provide an empirical application to
demonstrate the steps involved in the practical implementation of our new decom-
position. As a result our paper makes a substantial contribution to the literature
on the spatial decomposition of TFP growth which is a vastly underdeveloped liter-
ature as there is presently just one short study in the area. In particular, our paper
develops this sparse literature in four respects which are varied in nature. Firstly,
we introduce a cost efficiency spillover growth component. Secondly, we include
own and spillover allocative efficiency growth components. Thirdly, we provide a
much more detailed coverage of the spatial decomposition of TFP growth than the
short communication in the extant literature. Fourthly, in contrast to the only
other study in this area where the empirical application is very traditional as it
uses data for geographical areas (cities, regions, etc.), we apply our spatial TFP
growth decomposition using firm level data, which suggests that there can be an
important future role for spatial efficiency and productivity analysis in OR. Our
empirical application focuses on U.S. banks over the period 1992 — 2015, which is an
interesting study period as it includes the period pertaining to the financial crisis.
Among other things, we find that, on average, a large U.S. bank’s TFP since the
financial crisis has become much more dependent on the bank itself and less so on
spatial spillovers.
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1 Introduction

Although there is a well-established non-spatial methodological literature on the de-
composition of total factor productivity (TFP) growth (e.g., Diewert and Fox, 2017;
O’Donnell, 2016; Sun et al., 2015; Oude Lansink et al., 2015; and Mukherjee et al., 2001)
and a burgeoning literature on spatial stochastic frontier modeling (Druska and Horrace,
2004; Glass et al., 2013; 2014; 2016a; 2016b; Orea et al., 2016; Tsionas and Michaelides,
2016), there is only one short paper by Glass et al. (2013) (GKPF from hereon) on
spatial TFP growth decomposition in the presence of spillovers. Our paper therefore
makes a substantive contribution to the sparse literature on the spatial decomposition
of TFP growth as we extend the GKPF analysis in four respects. Using the non-spatial
case as a starting point, from a fitted primal stochastic frontier model (i.e., one where
input prices do not feature in the technology such as production and input and output
distance frontiers), the non-spatial generalized Malmquist decomposition of TFP growth
(Orea, 2002) consists of a technical change component, returns to scale change and the
change in technical efficiency. There is not, however, a direct correspondence between this
non-spatial decomposition and the spatial generalized Malmquist TFP growth decompo-
sition in GKPF, which comprises own and spillover technical change components, own
and spillover returns to scale changes and the change in own technical efficiency. This is
because the TFP growth decomposition in GKPF does not include the change in tech-
nical efficiency spillovers so strictly speaking they propose a partial spatial TFP growth
decomposition. Our first extension of GKPF therefore is a methodological one as we
augment their TFP growth decomposition with an efficiency spillover change component,
which in our empirical application is the cost efficiency spillover change. We introduce
the cost efficiency spillover change by computing efficiency spillovers using the method set
out in Glass et al. (2016b). As we estimate a spatial stochastic cost frontier, in the spirit
of the non-spatial TFP growth decomposition in Bauer (1990), our second extension of
GKPF is also methodological as we further augment their TFP growth decomposition
with own and spillover allocative efficiency changes.

Our third extension of the short communication in GKPF is our detailed coverage of
the spatial decomposition of TFP growth and our fourth extension relates to our empirical
application. Whereas the empirical application in GKPF is traditional as it applies
spatial methods using data for geographical areas (cities, regions, etc.), we, on the other
hand, apply our spatial TFP growth decomposition using firm level data, which serves to
highlight the future relevance of spatial efficiency and productivity analysis in OR.! In

particular, our empirical application analyzes U.S. banks over the period 1992 — 2015.2

1Specifically, GKPF apply their spatial TFP growth decomposition to a spatial aggregate production
frontier for European countries.

2Qutside the OR literature there are a small number of applications of spatial stochastic frontier
modeling (but not a spatial TFP growth decomposition) using firm level data. These applications are



This is a very interesting application as our sample includes the period pertaining to the
financial crisis. Our empirical application can therefore shed light on the implications
of the tighter post-crisis regulatory regime for changes in the own and spillover cost and
allocative efficiencies of U.S. banks.?

Since to apply the spatial TFP growth decomposition that we develop we must first
estimate, for reasons that we will explain in due course, a spatial stochastic frontier
model which contains at least the SAR variable (i.e., the spatial lag of the dependent
variable), a discussion of the evolution of the expanding methodological literature on
spatial stochastic frontier modeling is of order. Interestingly, the methodological litera-
ture on spatial stochastic frontier modeling is beginning to mirror that for non-spatial
stochastic frontier models. This is because spatial stochastic frontier studies can be split
into two groups. The first group of studies contain the initial contributions on spatial sto-
chastic frontier modeling and use a different approach to the one we utilize in this paper.
This group of studies estimate one-way spatial panel models and compute efficiency from
the cross-sectional specific effects. The first such study is Druska and Horrace (2004).
By extending the cross-sectional spatial error model in Kelejian and Prucha (1999) they
develop a GMM stochastic frontier model with fixed effects. Using the fixed effects they
calculate time-invariant efficiency by applying the Schmidt and Sickles (1984) efficiency
estimator, which assumes a composed error structure with idiosyncratic error and time-
invariant inefficiency components. GKPF is the same type of study as they use the fixed
effects from a one-way SAR model to calculate time-variant efficiency using the method
in Cornwell et al. (1990).1

The second group of spatial stochastic frontier studies, which is the group this paper
belongs to, follows the vast majority of the non-spatial stochastic frontier literature by
computing efficiency via distributional assumptions to distinguish between the idiosyn-
cratic error and inefficiency components of the composed disturbance. One such study is
Tsionas and Michaelides (2016) who develop a Bayesian estimator of what we refer to as
a spatial inefficiency model, which is a form of spatial error stochastic frontier model as it
contains a spatial lag of the vector of inefficiencies. Two other studies that belong to this
second group are both by Glass et al. (2016a; 2016b). Both these studies propose a panel
data spatial Durbin stochastic frontier model which is a SAR stochastic frontier model

augmented with exogenous spatial lags of the independent variables.” To minimize issues

exclusively in the economics literature and include Druska and Horrace (2004) who focus on Indonesian
rice farms and Orea et al. (2016) who use data on Norwegian electricity distribution utilities. The
empirical application part of our paper, however, represents the first application of spatial stochastic
frontier modeling to banks.

3The post-crisis tightening of the regulation of U.S. banks is the result of the Dodd-Frank regulatory
reforms which came into being in 2010.

“In spatial stochastic frontier modeling the spatial autocorrelated error (see Druska and Horrace,
2004) and the SAR variable (see GKPF) are endogenous which is accounted for in the estimation.

5Orea et al. (2016) also estimate a spatial Durbin stochastic frontier specification by making dis-
tributional assumptions to distinguish between the idiosyncratic error and inefficiency. As they note,



relating to convergence both these studies adopt a pseudo maximum likelihood (PML)
estimator. In contrast to one-step full information ML (FML) estimation of the models
PML involves estimating the models in steps. In Glass et al. (2016a) a two-step PML
procedure is used which involves estimating a non-frontier spatial Durbin model in the
first step and in the second step splitting the composed disturbance into the idiosyncratic
error and time-variant inefficiency. This model has been extended by Glass et al. (2016Db)
to simultaneously include time-invariant and time-variant inefficiency components and
via random effects is to the best of our knowledge the first spatial stochastic frontier
model to account for unobserved heterogeneity. We therefore use this set-up as the basis
for the development of our spatial TFP growth decomposition.

More specifically, we estimate a spatial Durbin stochastic frontier specification for
four reasons. Firstly, it is well-established that the spatial Durbin specification nests the
SAR and spatial error/inefficiency specifications so a spatial Durbin model is robust to
misspecification of the global spatial dependence (i.e., modeling spatial error autorcorre-
lation instead of the true SAR dependence and vice-versa). Secondly, although a spatial
error/inefficiency specification and SAR and spatial Durbin specifications all account for
global spatial dependence (1st order through to (/N — 1)th order spatial interaction), with
the spatial error/inefficiency specification the spillover elasticity relates to the distur-
bance/inefficiency, whereas as we require for our spatial TFP growth decomposition, the
spillover elasticities from the SAR and spatial Durbin specifications can be related to the
exogenous regressors. As a result of this property from SAR and spatial Durbin specifi-
cations we obtain the spillover technical change and change in spillover returns of scale
components of our spatial TFP growth decomposition. Thirdly, we favor a spatial Durbin
specification over a SAR model because with the latter the ratio of the own and spillover
elasticities (referred to in the spatial econometrics literature as direct and indirect elas-
ticities, respectively) is the same for all the exogenous regressors which is implausible.
This is not the case with the spatial Durbin specification because of the presence of the
spatial lags of the exogenous regressors in the model. Fourthly, first impressions may
suggest that we can only compute the change in spillover cost efficiency component of
our spatial TFP growth decomposition from a spatial inefficiency model but this is not
the case because, as we show in this paper, spillover cost efficiency can be obtained from
the reduced form of the spatial Durbin specification.

By way of an insight into our empirical findings, among other things, we find that in
terms of allocative efficiency large U.S. banks responded appropriately to the financial
crisis. This is because the crisis, which large U.S. banks played a key role in, marked the

beginning of a period of annual increases in the change in the average allocative efficiency

however, the spatial variables in their model do not have an economic interpretation as they are used as
predictors of omitted non-spatial variables, whereas in Glass et al. (2016a) this is not the case so the
spatial variables are causal.

SPML is sometimes referred to as quasi ML.



of large banks. Turning now to the structure of the remainder of this paper. In section 2
we set out the modeling framework which has four parts. In the first part we present the
structural form of our random effects spatial Durbin stochastic cost frontier (SDCF) and
in the second part we set out our PML procedure to estimate this model. The third part
shows how we transform the structure form of our model into its reduced form which we
then use to compute asymmetric flows of cost efficiency spillovers. These cost efficiency
spillovers feature in our spatial TFP growth decomposition which we present in the fourth
part of section 2. Moving on to section 3 which applies our modeling framework to U.S.
banks over the period 1992 — 2015. We then conclude in section 4.

2 Modeling Framework

2.1 Spatial Durbin Stochastic Cost Frontier (SDCF) Model with
Random Effects

The structural form of the SDCF model with random effects that we estimate, where

lower case letters denote logged variables, is as follows:

N N N
Cit = o+ TL (yit, pits t) + ' zie + STL (Z%j%‘u sz‘jﬁjt> + VQZwijzjtJf
j =1 =1

7=1
N
0D wijCt + Fog A Vg 4 1+ Wi (1)
j=1
Ki~ N (0,02) c i~ NT (0,0727) s v~ N (0,03) c oy~ NT (0,05) .

In each cross-section there are N units indexed ¢ = 1, ..., N that operate over T' periods
indexed t = 1,...,T. Following the spatial econometrics literature and also the typical
case that is encountered when using firm level data we focus on large N and small T'.
TL (Yir, Dits t) = pt + 55t* + C'Die + ©'Yir + 504ODir + 595 Lyir + 03 Pyir + 0Dt +0'yist
represents the variable returns to scale translog approximation of the log of the cost func-
tion technology. For the ¢th unit in period t p;; is the vector of observations for the input
prices, which are indexed k = 1,..., K., and p; = py — pri denotes the (1 x (K — 1))
vector of observations for the normalized input prices. y;; is the (1 x M) vector of obser-
vations for the outputs, which are indexed m =1, ..., M, ¢;; = ¢;; — pxi: 18 an observation
for normalized total cost and « is the intercept.

W is the (N x N) exogenous spatial weights matrix of non-negative constants w;.
As Wy represents the spatial arrangement of the cross-sectional units and also the
strength of the interaction among the units all the elements on the main diagonal of

W are set to zero as a unit cannot be in its own neighborhood set. Wy is often popu-



lated using some measure of geographical proximity and must be specified a prior: before
estimation. Having specified Wy we can construct Z;VZI w;jcj which is the spatial lag
of the dependent variable. This SAR variable is endogenous which we account for in the
estimation and the associated SAR parameter 6 € (1/ryin, 1/Tmax), Where rpi and rpax
are the most negative and most positive real characteristic roots of Wy, respectively. In
our application 7., = 1 as we use a row-normalized specification of W.

In our model specification z; is a vector of observations for the non-spatial regressors,
Z;.Vzl w25 1s its spatial lag and STL (Z;VZI Wi Yit, Zle wijﬁjt> is the spatial lag of
TL (yjt, pji, t). We account for technical change through T'L (y;i, pji,t) via a non-linear
time trend by including ¢ and #? and by including the interactions ty;; and tp;; technical
change is non-neutral. Wyt and Wt? are omitted from ST L as they are collinear
with ¢ and t* in TL (yji, Dji, t) (i.e., t = Wyt and t* = Wt?) but the interactions
with Wyt are retained. zy, Zjvzl w;;zjt, STL and Zjvzl w;;¢;y all shift the cost frontier
technology in Eq. 1 but whereas the SAR variable accounts for endogenous global spatial
dependence (1st order through to (N — 1)th order neighbor effects), Z;VZI w;;2j and ST'L
are exogenous and account for only local spatial dependence (1st order neighbor effects).

In Eq. 1: p and %g are regression parameters; (', ', o/, @', 7' and . are vectors
of regression parameters, where a subscript s denotes local spatial parameters; and %@,
%I‘ and W are matrices of the regression parameters %9, %7‘ and 1, respectively. We
also estimate the corresponding local spatial parameters for ST'L with the exception of
p and ¢. From the properties of the translog functional form (Christensen et al., 1973)
Eq. 1 is twice differentiable with respect to an output, a normalized input price and
the spatial lags of an output and normalized input price, where the associated Hessians
are symmetric because of the symmetry restrictions that are placed on the associated
matrices of parameters (e.g., %7'1 M= %TMI in %I‘)

Our model specification is characterized by a four component error structure, €}, =
€ + € = Ki + vy + 1 + uy, where ¢; = Kk;+ 1; is the time-invariant component and
€it = Uir + u; is the time-variant component. Since the estimator of our model rests on
Kiy, Vit, 1; and ug being i.i.d. across ¢ and ¢ or just ¢ as is appropriate, where distributional
assumptions distinguish between each error component, we account for unobserved het-
erogeneity using random effects. In Eq. 1 v; is the idiosyncratic error and as is standard
when modeling unobserved heterogeneity using random effects, the unit specific effect,
Ki, is a time-invariant random error. 7; is net time-invariant inefficiency (N1I;) and u;
is net time-variant inefficiency (NVI;;), both of which are bounded in the interval [0, 1].
Since Eq. 1 is in log form, using NV I;; and NII; yields the combined measure of gross
inefficiency, GV I;; = n; +uyy = NI1I;+ NV 1;;. GV I; is also bounded in the interval [0, 1]

and is time-variant which emanates from NV I;." Both 7; and u; are assumed to have

"In the literature on the corresponding non-spatial specification of our model GV I is referred to as
overall time-variant inefficiency (Kumbhakar et al., 2014). We, however, refer to it as gross inefficiency



a half-normal distribution which is a common distributional assumption for inefficiency
in the stochastic frontier literature (e.g., Bos et al., 2009; Greene, 2004). Our estima-
tion procedure, however, is sufficiently general to accommodate alternative distributional
assumptions for u;; and 7n;. In the next subsection we provide an overview of technical
issues relating to estimation where we cover how we obtain the estimates of u;; and ;.

Testing the appropriateness of the error structure in our model specification for an
empirical application involves applying the one-sided hypothesis test in Gouriéroux et
al. (1982) to test for the presence of each of the four error components (x, v, n and
u). The test statistic has an asymptotic distribution that is a mixture of chi-squared
distributions, 1x? (0) + 1x? (1). For G € {k,v,n, u} rejection of the null, 5% = 0, in favor
of the alternative hypothesis, 52 > 0, constitutes evidence of the presence of the error
component.® In an empirical setting the nulls for the inefficiency components may not
both be rejected so the model specification in Eq. 1 has the appealing feature that it
nests other models. For example, failure to reject the absence of  would lead to Eq. 1
collapsing to the SDCF extension of the non-spatial true random effects frontier model
(Greene, 2005).

2.2 Overview of the Pseudo Maximum Likelihood (PML) Esti-

mator and Estimation of the Own Cost Efficiencies

As this paper focuses on the development and application of the methodology for a spatial
TFP growth decomposition in the presence of allocative inefficiency we only provide an
overview of the procedure we use to estimate Eq. 1. See Glass et al. (2016b) for a detailed
presentation of this estimation procedure. For simplicity we collect the observations for
unit ¢ in period ¢ for all the exogenous regressors in a single vector z;; and we also collect
the associated regression parameters in the vector 3, where everything else is as previously
defined for Eq. 1.

N
Gt =+ B'wy + 0> wiiCi + Ky + Vi + 1 + wis (2)
j=1

because based on the terminology used in the spatial econometrics literature having computed GV I we
proceed to compute, among other things, direct, indirect and total GVI (see Glass et al., 2016b). This
avoids referring to the total GVI as the total overall time-variant inefficiency which is very confusing.
Consequently, we refer to the n; and u;; components of GV I as net inefficiencies as the former is net of
time-variant inefficiency and the latter is net of time-invariant inefficiency. NII, NVI and GV I should
also not be confused with the net and gross inefficiencies in Coelli et al. (1999) as the interpretations of
net and gross in their set-up are entirely different.

8 Andrews (2001) derives another relevant approach to test for the presence of each component of our
error structure. The test statistic he derives allows for, firstly, the possibility that the parameter value
lies on the boundary of the parameter space under the null and, secondly, the possible presence of a
nuisance parameter under the alternative hypothesis. The asymptotic distribution of this test statistic
is not a chi-squared distribution and involves semi-parametric simulation.



The general form of our model in Eq. 2 is the spatial Durbin counterpart of the non-
spatial stochastic frontier model in Badunenko and Kumbhakar (2016; 2017), Colombi
et al. (2014), Kumbhakar et al. (2014), Tsionas and Kumbhakar (2014) and Filippini
and Greene (2016). Alternatively, if the local spatial regressors are omitted from Eq. 1
and thus x;; in Eq. 2 this general form becomes the SAR counterpart of the non-spatial
specification.

Tsionas and Kumbhakar (2014) develop a one-step Bayesian estimator of the non-
spatial counterpart of Eq. 2 and Colombi et al. (2014) estimate this non-spatial model
using FML. Due to the sensitivity of the Bayesian approach to the choice of informative
priors for the main objects of the estimation and concerns about the empirical tractability
of the FML procedure, Filippini and Greene (2016) and Badunenko and Kumbhakar
(20165 2017) estimate this non-spatial model using one-step simulated ML. Eq. 2 is
of course even more complex than its non-spatial counterpart because of the presence
of the additional SAR parameter. For this reason we employ a PML estimator that
involves estimating our model in steps using ML. See Kumbhakar et al. (2014) for the
corresponding non-spatial estimator. In particular, we estimate Eq. 1 by maximizing
three log-likelihood functions, one for each step. Step 1 estimates the non-frontier random
effects spatial Durbin model which distinguishes between the time-invariant and time-
variant components of the composed error. Step 2 splits the time-variant error into its
constituent parts, v; and wu;, and step 3 splits the time-invariant error into x; and 7;.

We begin our overview of the estimator we employ by applying a standard repara-
meterization in the stochastic frontier literature to the case in hand in Eq. 2 by using

2 2 2

_ 2 2 _ 2 _ 2 _ _
04 = 0, + o0, and A, = 0,/0,, and oy, = 0, + 0, and \,, = 0,/0,. Therefore, o, =

orel (L+N), o8 = ap N/ (L4 A2,), o = o5,/ (L+X3,) and of = o3, A5,/ (1+A2,).
We then transform in Eq. 2 the positively skewed time-invariant error, ¢;, the positively

skewed time-variant error, £;;, and the intercept as follows.

N
Cit =+ B'ry + 0 wiiCj + €5 + €5, (3)
=1

where a° = atple, + ey, €7 = Kit0i— e,y €5 = Vit Uit — Heyy s Hey, =E(ui) and pie, =E(n;).
Eq. 3 therefore has the form of the non-frontier random effects spatial Durbin model with
time-invariant and time-variant error components, €7 and €;,, which satisfy the zero mean
condition by construction.

The log-likelihood function to estimate Eq. 3 in step 1 is:

. 2
NT 2 1 NE ~e N ~ )
LL=——1log (27m )—I—Tlog]IN—(SWN|——2ZE =0 dwici | — By
2 20% 53 j=1
(4)



where T log [In — 0Wy| is the contribution to the log-likelihood from the scaled logged
determinant of the Jacobian of the transformation from &}, to ¢},. It is now standard
in the spatial literature to use Eq. 4 for ML estimation of non-frontier random effects
SAR and spatial Durbin models where the transformation from €}, to ¢}, accounts for the
endogeneity of the SAR variable (Elhorst, 2009). e denotes a transformation of variables
which is dependent on the weight that is attached to the cross-sectional component of
the data, 9, where 0 < ¥? = 02,/ (T2, + 02,) < 1. Using this notation the transformed

data is expressed in quasi-differenced form as:

-~ 1 L
Gy =cu— (1-17) ?Zcﬁ, (5)
t=1
N N B 1N
2wiiCie | = Y wisu — (1= 0) 7 D wice, (6)
7=1 7=1 7=1
1T
t=1
Step 2 of our PML estimator estimates A,, and u;;. To estimates \,, we maximize
the concentrated log-likelihood function in Eq. 8 which involves substituting in from step

1 &, for €5, and substituting in for § and 4’ in Eq. 9 § and B’ to obtain 7, which we then

substitute in for o, in Eq. 8.

N T 535)\% 1 N T 09
LL(Aw) = —NTIog,+3> Y In|1—® I (8)

i=1t=1 ww QUW i=1t=1

where ® denotes the standard normal cumulative distribution function and

1/2
1 N T

G = | 2 [?:'—5@1%@) —~ x] =270/ (L+A0)] ] - (9

i=1t=1

The solution to LL(\,,) is the ML estimate Xm, which we substitute into Eq. 9 to obtain
the ML estimate 7,,.

The consistent estimate of the constant term, «, is then scaled up by the value of
Le,, (XW,&?W) = ;. For stochastic cost and output distance frontiers the productive
unit is assumed to be minimizing the objective variable or vector of objective variables,
as is appropriate, so for these technologies the constant is scaled up. In contrast, for
stochastic production, revenue, profit and input distance frontiers the constant is scaled
down by i, (XWJ, Egv) = U;. To compute u;; we use the following Jondrow et al. (1982)
(JMLS) method, which involves, as we have done in other parts of our PML estimator

above, substituting in the relevant estimates into Eq. 10.



-~ ° OuOy Pit EAuw
Ui = E (uyley) = » (1 o, ;uv > 7 (10)
where @ = (5, u0/0w), Pit = ¢ (€5 uww/0w), P is as previously defined and ¢ is the
probability density function for the standardized normal distribution.

In step 3 of our PML estimation routine we estimate A, and 7; using the correspond-
ing step 2 procedures to estimate \,, and wu;. In short this involves using a similar ML
estimator to that in step 2 to estimate ), using &; from step 1. The ML estimate XW
is then used to compute the ML estimate o,,. There is a also a further scaling up of «
by Jie, (Xm,afm) = 7, and as in step 2 we compute the estimate of 7; using the JMLS
method.

As a result of our SDCF in Eq. 1 being in logged form NV E;; = exp (uy), NIE; =
exp (n;) and GV E;; = exp (n; +uir) = NIE; *x NV Ej;; are the net time-variant, net time-
invariant and gross time-variant efficiencies. Even though we compute NV E;;, NIFE; and
GV E;; from a spatial model it should be noted that they are own efficiency measures and
do not include any efficiency spillovers across the system/network as they are computed
from the structural form of our model specification. Efficiency spillovers across the sys-
tem /network are obtained from the reduced form of our spatial model, which is what we

provide an overview of in the next subsection.

2.3 Elasticities and Asymmetric Flows of Cost Efficiency Spillovers

It is now well-established for models that contain the SAR variable such as Eq. 1 that
the fitted parameters for the exogenous regressors are not elasticities. This is because the
elasticity for an exogenous regressor is a function of the SAR parameter. To disentangle
the effect of an exogenous regressor from the effect of the SAR variable it is now standard
in spatial econometrics to calculate direct, indirect and total elasticities using the fitted
parameters from a model such as Eq. 1. A direct elasticity is interpreted in the same way
as an elasticity from a non-spatial model, although a direct elasticity takes into account
feedback effects which occur via the spatial multiplier matrix. Feedback is the effect
of a change in an independent variable of a particular unit which reverberates back to
the same unit’s dependent variable through its effect on the dependent variables of the
other units in the sample. An indirect elasticity can be calculated in two ways yielding
the same numerical value. This leads to two interpretations of an indirect elasticity: (i)
average change in the dependent variable of all the other units in the sample following a
change in an independent variable for one particular unit; or (ii) average change in the
dependent variable for a particular unit following a change in an independent variable for
all the other units in the sample. The total elasticity is the sum of the direct and indirect
elasticities.

Calculation of the direct, indirect and total elasticities is based on the reduced form

10



of a spatial model. Accordingly, we rewrite Eq. 1 in its reduced form, where we drop the
1 subscripts to denote vectors of successively stacked cross-sectional observations. This
reduced form in Eq. 11 is also used in part to obtain the absolute direct, indirect and

total efficiencies.

TL (v, Dy, t ' STL (W, WD,
= (In —5WN)_1 ( vt (oo b, 0) 772 + (Wige, Wpi) + ) ) (11)

EWnNz + K+ v+ 1+

where (In — W)~ " is the spatial multiplier matrix, ¢ is an (N x 1) vector of ones and
everything else is as previously defined for Eq. 1.

We set out the approach to calculate the direct, indirect and total elasticities at
the sample mean for a first order output which we denote y,,;. From the local spatial
counterpart of Eq. 1 (i.e., Eq. 1 with the SAR variable omitted), which would only
capture first order neighbor effects, if we use mean adjusted data all the fitted parameters
from this local spatial model are elasticities. This is because at the sample mean the own
and local spatial quadratic and interaction terms are zero. Extending this to Eq. 11 the
fitted ¢, and ¢, parameters for y,, , and W, can be used to directly calculate the
direct, indirect and total elasticities for ¥,,; at the sample mean. Differentiating Eq. 11
with respect to v, as follows yields a matrix of direct and indirect elasticities for each

unit, where the right-hand side of Eq. 13 is independent of the time index.

Oa .. _da
8y'm,l 6ym,N
ac oc _ . .
Oym,1”’ 7 OYm,N t o (12)
dcn . ocn
OYm,1 OYm,N 14
Pm st WINPs,m
—1 . . .
= (In — dWn) : .. : - (13)
WN1Psm ©m

Since Eq. 13 yields different direct and indirect elasticities for each unit, to facilitate
interpretation we report the mean direct elasticity (average of the diagonal elements of
Eq. 13) and the mean indirect elasticity (this average spillover elasticity to a unit is
the average row sum of the off-diagonal elements of Eq. 13 and is numerically the same
as the average spillover elasticity from a unit which is the average column sum of the
off-diagonal elements of Eq. 13).” For ¢ and 2, whose spatial lags are omitted from Eq.
1, the mean direct, mean indirect and mean total elasticities are calculated using Eq. 13

but with the off-diagonal elements in the second matrix set equal to zero by construction.

9We compute the associated t—statistics by Monte Carlo simulation of the distributions of the mean
direct, mean indirect and mean total elasticities.
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Turning now to an overview of the salient features of absolute direct, indirect and total
efficiencies. For a detailed coverage of these efficiencies see Glass et al. (2016b), which is
an extension of the first contribution on efficiency spillovers (Glass et al., 2016a). Direct
efficiency for a unit is interpreted in the same way as own efficiency from a non-spatial
model. In contrast to own efficiency from a non-spatial or a spatial stochastic frontier
model, however, direct efficiency is own efficiency plus efficiency feedback. Efficiency
feedback is the component of a unit’s direct efficiency which due to the spatial multiplier
matrix has rebounded back to the unit having passed through 1st order and higher order
neighbors. As was the case for an indirect elasticity, indirect efficiency can be interpreted
in two ways: (i) the sum of the efficiency spillovers to a unit from all the other units
in the sample; and (ii) the sum of efficiency spillovers from a unit to all the other units
in the sample. When these two indirect efficiencies are averaged across the sample they
will yield the same numerical value but they will be asymmetric for individual units. In
the same way as a total elasticity is calculated, a unit’s total efficiency is the sum of its
direct and indirect efficiencies. Due to there being two asymmetric indirect efficiencies
for a unit, there are two asymmetric total efficiencies for each unit. When the two total
efficiencies are averaged across the sample, however, they yield the same numerical value.

From the reduced form of our model in Eq. 11 we recognize that (In — dWy) "7 =
kot and (In — SWn) ™y = ul'%,, where ke and ul%, are (N x 1) vectors of total N11
and total NV I, respectively. The subscript T'o denotes that the inefficiency spillovers used
in the calculation of these total inefficiency vectors are inefficiency spillovers which come to
the ith unit from all the jth units in the sample for ¢ # j. Since from above GV I, = NI+
NV I, is own gross inefficiency, (In — W) ™" (7 + ;) = GV 1}'%, is the (N x 1) vector of
total GV I. Based on own NV E; = exp (u;) and own NIE = exp (n) from above, the vec-
tors of total efficiencies that directly correspond to the vectors of total inefficiencies -2
and ul%, are (In — Wn) " exp (1) = NIEFS and (In — 6Wn) ™ exp (u) = NVE]%,.
In similar vein, based on GV E; = NIE x NV E; = exp (n + u;) from above, the vector of
total gross efficiencies that directly corresponds to GV I%, is (In — W) exp (74 w) =
GV E{'%,. Intuitively, a unit’s NIELS, NV E[%, and GV E['%,, measure its NIE, NVE
and GV E across a system/network, where in our empirical analysis we apply these mea-
sures to obtain cost efficiencies for individual banks’ across the U.S. banking system. An
appealing feature of the computation of these total efficiencies is that they can be addi-
tively decomposed into their direct and indirect components. See Glass et al. (2016b) for
details on this.

In our empirical application Wy is asymmetric which is typically the case in spatial
econometrics. If Wy is asymmetric (In — (5WN)_1 will also be asymmetric resulting in
asymmetric indirect NI FE, NV E and GV E spillovers to and from a unit. Furthermore, in
contrast to the own NIE, NV E and GV E from Eq. 1, the direct, indirect and total NI FE,

NV E and GV E from the reduced form of our model all include some form of efficiency
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spillover. In line with the own NIE, NVE and GV E from Eq. 1, the lower bound of
the direct, indirect and total NITE, NV E and GV E scores from the reduced form of our
model is of course 0. Other than that direct, indirect and total NIE, NVE and GV E
are unbounded. This in no way precludes these efficiencies from being incorporated into
a spatial TFP growth decomposition because our direct, indirect and total NIE, NVE
and GV E measures are easily interpretable as they are percentages. This is because
direct, indirect and total NIE, NV E and GV E are scaled own NIE, NVE and GVE.
As a result these direct, indirect and total efficiencies have a simple interpretation as
they are relative to the own NIE, NV E and GV E benchmarks. The magnitude of the
scaling relates to the magnitude of the efficiency spillover that is included in the direct,
indirect and total NIE, NV E and GV E. If the magnitude of the efficiency spillover is
sufficiently large a direct/indirect/total NIE, NV E or GV E score will be greater than
1. If this is the case the efficiency spillover has pushed the unit beyond the best practice

frontier for the relevant own efficiency from Eq. 1.

2.4 Spatial TFP Growth with Spatial Efficiency Change Com-

ponents

The starting point for the calculation of the components of the spatial TFP index that
we propose are the estimated direct, indirect and total models which have the following
forms. See Glass et al. (2015) for details on how the presence of the SAR variable in a
model gives rise to estimates of the direct, indirect and total models (referred to in their

paper as estimates of the internal, external and total models):

1 1 1
Dzr — pDzrt + 2§Dzrt2 4 CDzr Dit + 90 yzt + pztGDlrpzt + ZthI\Dlrth+
P ¥y + 0P Pt + &Pyt + 4P 2y + GV I (14)

N N
clnd — pind Z wijt; + <I”d Z wigt + MY wigb ™Y wiyset
j=1 J=1
1 1 3 Y N
Ind oy Ind fnd
2 Z wi;Pj,© Z wiPje + 5 Z Wiyl Y wiyie+ ) wigpp Oy wiyiet
= = s =1 =1 j=1

I”d/ Z Wi Pt Z w;t; + e Z Wi Yt + de Z w;jzie + GV I I”do

Jj=1 Jj=1

YV i#j. (15)
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N N N N
1 ’ ~ !
Cz;ot _ pTot Z wijtj + §gTot Z w”t? + CTOt Z Wi; Pt + sDTot Z wijyjt+
j=1 j=1

j=1 j=1
1 N N 1 N N N N
5 2 Wilp®™ D wigi + 5 3wyl Y wigys + ) wighh WY wiyiet
j=1 j=1 j=1 j=1 j=1 =1

N N N N
o Z Wi Pje Z wijt; +w! o Z wijyiit; + T Z wijze + GVIIY, Vi, j, (16)

j=1 j=1 j=1 j=1

where ¢! = ¢ + cI"d and although we do not observe c?, ¢ and 1!, if necessary,

they can be estimated using the estimates of Eqs. 14 — 16.

The decomposition of our spatial TFP index is in the spirit of the non-spatial TFP
growth decompositions in Bauer (1990) and Orea (2002). In particular, we decompose
spatial total TFP growth, which we denote as ATF P . into the four total components
in Eq. 17, where the corresponding four non-spatial components represent the non-spatial
version of our TFP growth decomposition in the literature. Each of these total compo-
nents can be decomposed into a direct component for a unit which includes feedback and

an indirect component that accounts for spatial spillovers.

ATFPY = ATAJY, + AGVELY 1, + AAELY, + ARSE] (17)

) it+1 it+1

where AT AT, is the total technical advancement component; AGV EJ?, 1, is total gross

cost efficiency change, which we calculate using the indirect GV E spillovers that come

to the ¢th unit from all the jth units as we are interested in TFP growth for the uth

unit; AAELY, is total allocative efficiency change; and ARSELY, is returns to scale
Tot

efficiency change. We calculate these components of AT F P, (| as follows:

1.
1 (0ckst,  Ocket 1[/0ckir,  dclind dclir dclnd
ATATot N it4-1 it - _ it41 it+41 it it .
i 2(8t+8t 2 o0 o )T\ T
(18)
2.

AGVELY 1y = (GVERE 1o+ GVEYS 1) — (GVERT, + GVEL,) . (19)
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AAERS = 53 (st — elitn) + (52 = eb)] (ohets — k) (20)
k=1
Ly ( (5B = eBin) + (sBir = eB)] (R, — pBY) + ) o
265\ [l — edihn) + (s — b)) (pi — i)

; N , . N , ,
where ppi” = prit, Phi = Zj:1 Wijpkje ¥ i # j and piet = pri + Zj:1 wijpkje ¥ i # J

are the direct, indirect and total prices, respectively. This is to say that we compute
pPir pind and plat from the data, where p2i includes a component which feeds back to
the ¢th unit from the other units, which will be inherent in the data for pg;;. Moreover,
ePirelnd and el9 are scaled direct, indirect and total elasticities for the kth input
price. These elasticities are the optimal cost shares as the direct, indirect and total input
price elasticities from Eqs. 14 — 16 are scaled proportionally to sum to 1. We must
scale up/down the direct, indirect and total input price elasticities because although the
structural form of our model in Eq. 1 is characterized by homogeneity of degree 1 in
input prices this is not the case for the estimated direct, indirect and total models.

Turning now to s2i sind and sIo which are direct, indirect and total input expendi-

ture share weights from the data. The calculation of skDZ@T is based on pr;1qrir, where q;; is
the kth input quantity. Additionally because in the empirical application we use specifi-
cations of Wy that reflect the systemic nature of the U.S. banking industry by assuming
some degree of spatial interaction between every bank in each sample, Zjvzl Wi Dkjt it
is the basis of the calculation of sind V i £ j. We are therefore taking the view that
the indirect spillover share for an individual bank is a spatially weighted average of the
shares of other banks in the sample. From the calculations of sPi" and s it follows that

PritQrit + Ejvzl W;iiPritdrje ¥ 1, j is the basis of the calculation of s{%.!"

10 Although outside the scope of this paper an alternative possible approach to compute the data
informed actual indirect input expenditure weights, si?td, which are needed to calculate AAE{tﬁdl, is the
least absolute shrinkage and selection operator (Lasso). Such an approach would resemble the use of this
estimator in the spatial literature to obtain a data informed specification of Wy. That said, since the
Lasso method has been exclusively used in this context in methodological spatial studies its empirical
tractability needs to be established.
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(22)
[(1 - szgitl) enD@Z+1 ngl] +
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(23)
where el el"d and el are the direct, indirect and total elasticities for the mth output

which we obtain directly from Eqs. 14 — 16, respectively. In addition, (1 — Q%°") /Q% is

the total scale factor where RT'SEt = 1/Q%ot = 1/ M S~ i1 Emy V4, j is total returns
to scale. See Glass et al. (2015) for details on how the presence of a SAR variable that
shifts the production technology gives rise to direct, indirect and total returns to scale
(referred to in their paper as internal, external and total returns). Intuitively, total returns
to scale measure the percentage change in the ¢th unit’s cost following a simultaneous
1% increase in the output(s) of all the units in the sample (the ith unit and all the other
N — 1 units). These total returns to scale are the sum of direct and indirect returns to

scale, RTSD" = 1/QRr = 1/ "M ePir and RTS = 1/Q = 1/ M 12:] e
where for RT'SP™ and RT S} i # j. Direct returns to scale from a spatial cost function
with a SAR environmental variable and returns to scale from a non-spatial cost function
are interpreted in the same way and measure the percentage change in the ith unit’s
cost due to a 1% increase in the ith unit’s output(s). Unlike non-spatial returns to scale,
however, direct returns to scale also include feedback effects (i.e., when the ith unit’s
output(s) change, which via the spatial multiplier matrix affect neighbors’ costs, some
of this effect on neighbors’ costs rebounds and affects the cost of the ith unit). Indirect
returns to scale from a spatial cost function with a SAR environmental variable measure
the percentage change in the ith unit’s cost as a result of a simultaneous 1% increase in
the output(s) of all the other N — 1 units. We observe decreasing direct, indirect and
total returns if RT'SP" < 1, RTSi" < 1 and RTSL < 1, constant direct, indirect and
total returns if RT'SP" = 1, RTSi = 1 and RT'SL = 1, and increasing direct, indirect
and total returns if RT'SP" > 1, RTSi* > 1 and RTSL° > 1. The classification of
RTSP" RTSIn and RT'SL need not of course be the same.

It is important to note that in Eq. 23 to additively decompose ARS ngl into its direct
and indirect components, ARSE}", and ARSE{t’jrdl, the total scale factor is applied to

the output direct and indirect elasticities. This is to weight the contribution of the change
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in the direct and indirect output elasticities by the change in total returns to scale.

3 Application to U.S. Banks

3.1 Data, Variables and Spatial Weights Matrices

Due to the extent of the heterogeneity in the U.S. banking industry we estimate Eq. 1
separately for large and medium-sized banks. Among other things, this has the benefit
of allowing us to examine whether the degree of SAR dependence between medium-sized
banks differs from that between large banks. Based on the classification of large and
medium-sized U.S. banks in Berger and Roman (2016) we classify a large bank as having
total assets greater than $3 billion in 2015 and a medium-sized bank as having total assets
in 2015 between $1 billion and $3 billion. For large and medium-sized banks the data
samples comprise annual observations for the period 1992 — 2015, which is a particularly
interesting period as it includes the period covering the financial crisis as well sufficiently
long pre and post-crisis periods. Furthermore, both our data samples are balanced panels
because we analyze continuously operating banks to avoid the impact of entry and exit
and to focus on the performance of the core groups of surviving large and medium-sized
institutions.

All the data for the variables was either extracted directly from the Reports of Condi-
tion and Income (i.e., the Call Reports) of the Federal Reserve System, which we obtain
from the Federal Deposit Insurance Corporation (FDIC), or was constructed by the au-
thors using data from this source. Monetary volumes were then deflated to 2005 prices
using the consumer price index. After omitting banks where there is a missing bank-
year observation for a variable we are left with rich samples of 192 large banks and 299

medium-sized banks.!!

To make appropriate comparisons between large and medium-
sized banks we use the same set of variables to estimate the model for each data sample.
The outputs and input prices in our SDCF specification are based on the Sealey and Lind-
ley (1977) intermediation approach to banking. We therefore assume, firstly, that banks
use the savings of consumers and firms to make investments, which are the outputs, and,
secondly, that banks seek to minimize the costs associated with the production of these
outputs. In table 1 we describe the variables we use to estimate the models and provide
summary statistics for these variables. In short, the three outputs in the models, which
reflect the lending and non-lending activities of banks are loans, total securities and total

non-interest income (y; — y3), and the three input prices relate to the cost of fixed assets,

1'Using the same approach for small U.S. banks we are left with in excess of 2,900 small banks. Based
on the classification in Berger and Roman (2016) we classify a small U.S. bank as having total assets less
than $1 billion in 2015. We do not, however, estimate the corresponding SDCF for small banks because
model estimation time was excessive. To illustrate, even after an entire week of estimating we had still
not obtained the results for the non-frontier model for step 1 for the small banks sample.
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labor and deposits (p; — p3), where p; is the normalizing input price. We therefore sum
the expenditures on these three inputs to obtain the dependent variable total operating
cost (T'C'), where T'C' is also normalized by p;. The remaining 12 variables in table 1 plus
a further variable are the z variables that shift the cost frontier technology. This further
variable is a financial crisis dummy variable (2008 Dum) which takes a value of 1 in 2008
and thereafter and 0 before.

We specify a single corresponding Wy for each of our models for large and medium-
sized banks. As we want to account for the entire large and medium-sized bank networks,
for each sample the Wy is based on the inverse distance between the zip codes of the
headquarters of each pair of banks. We are therefore taking the view that- the shorter
(larger) the distance between banks’ headquarters, the greater (smaller) the degree of
spatial interaction between the banks, which is entirely reasonable because there is likely
to be a greater overlap of banks’ branch networks if their headquarters are in close
proximity. Since we use distances between the headquarters of all the banks in each
sample to calculate the spatial weights, the specifications of W that we use are denoted
WhaE® and Whled, Wharee and Whled therefore avoid omitting any meaningful spatial
interaction by applying an arbitrary cut-off to a unit’s neighborhood set. Applying a cut-
off would involve making an arbitrary assumption about the number of nearest neighbors
in a unit’s neighborhood set (i.e., three, four, five, etc.) or, alternatively, assuming
that all units within a arbitrary distance of one another are neighbors. Also, as we use
geographical location rather than financial linkages (e.g., inter-bank lending) to construct
WA and W)ed the spatial weights are exogenous.!?> In regional science and urban
economics the analogous Wy is often used and is constructed using the inverse distances
between the centroids of each pair of geographical areas in the sample.

Furthermore, our specifications of Wy are row-normalized which preserves the scaling
of the data. This is because for a particular bank the SAR variable will be a weighted
average of the dependent variable observations for all the other banks in the bank’s
neighborhood set. When a row-normalized inverse distance specification of Wy is used
spillovers are inversely related to the relative distance between the units. Viewing geo-
graphical distance as a relative measure is reasonable because it allows the interpretation
of distance to vary from bank-to-bank depending on how remote or central the location of
a bank’s headquarters compared to the headquarters of every other bank in the sample.
In addition, a relative interpretation of geographical distance is particularly appropriate
for the banking industry because the financial connectedness of banks ensures that no

bank’s headquarters are isolated within the banking system.

2Data on inter-bank lending is not publicly available but if it was possible to access this data or
alternatively use some other measure of the financial interconnectedness of banks it would be possible to
construct a financial distance based specification of Wy;. There would, however, be the added compli-
cation of endogenous spatial weights with this type of Wi. To account for endogenous spatial weights
our modeling framework for step 1 would need to be adapted.
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Table 1: Variable descriptions and summary statistics

Medium-Sized

Banks (299 banks)

Large Banks
(192 banks)

Variable description Mod.el Mean St. Dev. Mean St. Dev.
notation

Operating cost (in 000s 2005 U.S. $): Sum of salaries, interest expenses on deposits TC 27,671 18,657 686,945 2,953,757
and expenditure on fixed assets
Cost of fixed assets: Expenditure on fixed assets divided by the sum of the value of P 0.33 0.64 1.06 19.67
premises and fixed assets
Cost of labor: Salaries divided by number of full-time equivalent total employees D2 52.80 19.07 58.95 20.09
Cost of deposits: Interest expenses on deposits divided by total deposits D3 0.02 0.01 0.02 0.01
Loans: Net loans and leases (in 000s 2005 U.S. $) Y1 519,122 382,209 13,941,319 59,409,848
Total securities (in 000s 2005 U.S. $) Y2 193,002 167,684 4,676,564 22,249,192
Total non-interest income (in 000s 2005 U.S. §) Y3 9,002 17,206 519,222 2,458,490
Return on assets ROA 1.062 0.840 1.145 1.171
Debt securities: Ratio of debt securities to total securities (y2) DebtSec 0.967 0.107 0.975 0.075
Loan loss allowance as a share of loans (y1) LLA 0.014 0.009 0.016 0.009
Tier 1 capital ratio: Tier 1 capital divided by total assets CR; 0.091 0.023 0.086 0.032
Tier 2 capital ratio: Tier 2 capital divided by total assets CR»> 0.008 0.004 0.011 0.008
Equity ratio: Total equity capital divided by total assets ER 0.098 0.027 0.100 0.038
Hirschman-Herfindahl Index (HHI) of each bank’s asset portfolio across real estate Scope
loans, farm loans, commercial and industrial loans, loans to individuals and other 0.609 0.188 0.574 0.200
loans as ratios of total loans
Bank asset market share: Each bank’s total assets as a share of industry assets MS 0.008 0.005 0.243 1.082
Security share: Securities (y2) as a share of of total assets SEC 0.250 0.137 0.238 0.139
Asset quality: Ratio of non-performing loans to total loans NPL 0.003 0.009 0.003 0.007
Number of domestic U.S. branches Branches 16 17 165 555
Number of years the institution has been established Age 81 44 89 48




3.2 Estimated Models

In table 2 we present the fitted Wed and W%ar8® SDCF models.'* The standard
interpretation of such models is to recognize that the SAR parameter, d, is not a spillover
elasticity. Spillover elasticities from models that contain the SAR variable are the indirect
elasticities, which as is apparent from Eq. 13 depend on, among other things, §. In table
3 we present the direct, indirect and total elasticities from the fitted Wied and WEaree
SDCF models. An estimate of d, however, does have an informative interpretation as it
represents the degree of SAR dependence across the cross-sectional units. We can see from
table 2 that the estimates of § from the WXied and W53 SDCF models are 0.34 and
0.13, respectively, both of which are significant at the 0.1% level. The estimates of § are
interesting as they indicate that there is non-negligible positive SAR dependence across
large banks and substantial positive SAR dependence between medium-sized banks, which
justifies modeling the cross-sectional SAR dependence in each sample. In particular, a
one-sided t-test indicates that the estimate of § from the Whtd SDCF is significantly
larger than that from the W58 SDCF at the 0.1% level. We suggest that there is a
higher degree of SAR dependence across medium-sized banks than there is between large
banks because the business of medium-sized banks is more regionally oriented than that of
large banks. An interesting issue for further work when computing speed makes it feasible
would be to investigate if the estimate of ¢ for small banks from the corresponding SDCF is
greater than we observe here for medium-sized banks because the business of small banks
is more localized than the business of their medium-sized counterparts. Furthermore,
we can see from table 2 that our preference for a spatial Durbin specification over a
SAR specification for medium-sized banks and large banks is supported by a number

of significant local spatial parameters at the 5% level or lower in our fitted Wited and

WLaree SDCF models (e.g., the Wy, Wp, and W5 parameters in the W}ied model
and the Wys and Wps parameters in the W58 model).

In table 3 we present the direct, indirect and total elasticities from the fitted W5aree
and WYied SDCF models. In line with production theory, the first order direct output
and input price parameters from the fitted W58 and W}ted SDCF models are positive.
We can therefore conclude that the fitted W58 and W¥ied SDCF models satisfy the
monotonicity property of the translog cost function at the sample mean. All the direct
output and input price elasticities at the sample mean are also significant at the 0.1%
level. Moreover, we can see from table 3 that there are a number of significant indirect
elasticities at the 5% level or lower, which further justifies the spatial Durbin modeling

of the costs of medium-sized and large banks in this application.

13 As is the case with standard non-spatial non-frontier random effects models, the log;, ¥ parameter
in the reported Wied and WEAr8® SDCF models is the weight that is attached to the cross-sectional
component of the data. In both models this parameter is significant at the 0.1% level.
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Table 2: Estimated spatial Durbin stochastic cost frontier models for medium-sized and large U.S. banks

Medium Large Medium Large Medium Large
banks banks banks banks banks banks

Y1 0.335*** 0.444*** LLA 0.539** —0.216 Wiyaps 0.022 0.020*
Yo 0.252%** 0.178*** CR;y —0.634*** —0.699""*  Wysps —0.033 —0.012
Y3 0.156*** 0.244**  CRy —0.251 —0.192 WysDs 0.039*** 0.024
D2 0.524*** 0.494*** ER 0.394*** 0.239 Wiyt —0.014*** —0.019**
D3 0.420*** 0.431*** Scope —0.003 —0.045 Wiyt —0.001 —0.002
y3 0.041*** 0.047*** MS 10.325*** 0.023*** Wyst 0.005** 0.011***
Y3 0.030*** 0.007*** SEC —0.452*** 0.069 Wpot —0.012** —0.003
y3 0.031*** 0.041*** NPL 0.896*** 1.287*** Wpst 0.010*** 0.000
Y1Y2 —0.086*** —0.036***  Age 0.018* —0.027* WROA 0.030*** 0.017*
Y1Y3 —0.056*** —0.082***  Branches 0.259*** 0.178*** WDebtSec  0.126 —0.071
Y2Ys3 0.005* 0.012*** 2008 Dum  —0.016 —0.046" WLLA —1.900* —1.468
P> 0.017*** 0.015* Constant —0.271 0.169 WCR; 0.695 0.066
p3 0.016*** 0.053*** Wy, —0.188*** 0.019 WCR, 3.385 —3.982*
DaD3 —0.042*** —0.080""* Wy —0.075 —0.045 WER —0.058 —0.058
Y1D2 —0.034*** —0.055"*  Wys 0.013 —0.067"** W Scope 0.038 0.034
Y103 0.039*** 0.074*** Wpo —0.079** 0.016 WMS —5.836 —0.025
YoD2 0.013*** 0.035*** Wps —0.118*** —0.088"** WSEC 0.349 0.092
Y23 0.006* 0.003 Wy? —0.004 0.002 WNPL 0.864 5.325%**
Y3D2 0.044*** 0.014* W2 —0.016* —0.005 W Age —0.137*** —0.136***
Y3Ds3 —0.049*** —0.060***  Wy3 —0.019* —0.035*** W Branches —0.001 —0.049*
t —0.002 —0.002 Wuyiy2 0.018 0.025 0 0.335*** 0.133***
12 0.001*** 0.001*** Wy1ys3 0.017 0.035 logg ¥ —1.684*** —1.440***
y1t 0.002* 0.005*** Wyays 0.004 —0.001 LL 5877.68 2401.91
Yot —0.002*** —0.001 Wp2 0.042 0.005 Oy 0.44 (0.01)  0.80 (0.01)
yst 0.000 —0.001 Wp2 0.016* 0.000 Oy 0.84 (0.02)  0.00 (0.15)
Dat 0.008*** 0.006** Wpaps —0.052* 0.016 Ok 0.09 (0.00)  0.10 (0.00)
pat —0.012*** —0.003 Wy1p2 0.104*** 0.081** oy 0.15 (0.00)  0.15 (0.01)
ROA —0.032*** —0.039"*  Wuyips —0.062** —0.048**
DebtSec 0.010 —0.127"*  Wyapo —0.015 —0.030*

* K and *** denote statistical significance at the 5%, 1% and 0.1% levels, respectively.
Standard errors are in parentheses.
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Table 3: Direct, indirect and total elasticities for medium-sized and large U.S. banks

Direct Indirect Total Direct Indirect Total
Medium Large Medium Large Medium Large Medium Large Medium Large Medium Large
banks banks banks banks banks banks banks banks banks banks banks banks

Y1 0.334*** 0.445*** —0.111 0.090 0.223** 0.535*** t —0.002 —0.002 —0.001 0.000 —0.002 —0.002
Y2 0.253*** 0.179™** —0.016 —0.034 0.237" 0.145" t2 0.001*** 0.001*** 0.001*** 0.000™ 0.002"** 0.001***
Y3 0.157*** 0.244*** 0.075** —0.043" 0.232*** 0.200"** yit 0.001 0.005*** —0.020"** -0.022"**  —0.018"** —0.017***
D2 0.526™** 0.495*** 0.146™** 0.098*** 0.672*** 0.593*** yat —0.002*** —0.001 —0.002 —0.002 —0.004 —0.003
D3 0.421*** 0.432*** 0.033** —0.037** 0.454*** 0.395*** yst 0.000 —0.001 0.008** 0.012*** 0.007* 0.012***
y? 0.042*** 0.048*** 0.012 0.009 0.054™* 0.057*** Ppat 0.008*** 0.006*** —0.014* —0.003 —0.006 0.003

y3 0.030*** 0.007*** —0.009 —0.005 0.022 0.002 D3t —0.012*** —0.003* 0.009* 0.000 —0.003 —0.002
Y2 0.031*** 0.041*** —0.012 —0.033***  0.019 0.008 ROA —0.032*** —0.039"**  0.026 0.012 —0.006 —0.028™
y1y2  —0.087*** —0.036™* —0.014 0.025 —0.101"** —0.011 DebtSec 0.011 —0.128"**  0.178 —0.104 0.189 —0.232
yiys —0.056™"* —0.082***  0.000 0.029 —0.056™ —0.053"* LLA 0.532™* —0.183 —2.604" —1.795 —2.072 —1.978
y2y3  0.006™ 0.013*** 0.006 —0.001 0.012 0.012 CRy —0.613"** —0.684"*  0.692 —0.085 0.079 —0.769
D2 0.018*** 0.015* 0.065 0.006 0.082* 0.021 CR» —0.217 —0.270 4.598 —4.765" 4.381 —5.035"
s 0.016™*~ 0.053*** 0.031*** 0.008 0.047*** 0.060"** ER 0.375™* 0.218 0.130 —0.024 0.505 0.194
p2ps  —0.043"** —0.080"**  —0.094* 0.010 —0.137*** —0.070""  Scope —0.002 —0.044 0.044 0.024 0.042 —0.020
yip2  —0.032"** —0.054***  0.138*** 0.084** 0.106™ 0.030 MS 10.114*** 0.022*** —3.243 —0.026 6.871 —0.004
yips  0.037"** 0.073*** -0.071" —0.043" —0.034 0.029 SEC —0.456*** 0.061 0.341 0.146 —0.114 0.207
y2p2  0.013** 0.035"** —0.016 —0.029 —0.003 0.006 NPL 0.903*** 1.304** 1.775 6.291*"* 2.678 7.596*"*
yeps  0.007" 0.004 0.033 0.022* 0.040" 0.026™ Age 0.016™ —0.028* —0.198*** —0.157***  —0.182*** —0.185™**
yspz  0.044*** 0.013" —0.023 —0.012 0.021 0.000 Branches  0.261*** 0.178*** 0.131*** —0.026 0.392"** 0.151***
ysps —0.049"** —0.059"**  0.034" 0.018 —0.015 —0.041" 2008 Dum  —0.017 —0.048™* —0.008 —0.007" —0.026 —0.055*"

* K and *** denote statistical significance at the 5%, 1% and 0.1% levels, respectively.



In particular, there are number of indirect output and input price spillover elasticities
which are significant at the 5% level or lower from our fitted Wied and WE3r8® SDCF
models (i.e., those elasticities pertaining to ys, p» and ps for both models). Whereas
theory indicates what the sign of the direct output and input price elasticities should be,
there is no such prescription for indirect output and input price elasticities. From the
Whted SDCF all the significant indirect output and input price elasticities are positive,
whereas from the W58 SDCF the indirect P elasticity is positive and the indirect
ys and p3 elasticities are negative. These negative indirect elasticities are because the
negative local spatial y3 and ps parameters more than offset the positive SAR coefficient.
Despite these negative indirect elasticities and some of the indirect output elasticities
not being significant in both models, we find for our samples of medium-sized and large
banks that the direct output and input price elasticities dominate in the calculation of
the corresponding total elasticities. This is evident because for both models all the total
output and input price elasticities are positive and significant at the 5% level or lower.

Turning now to briefly discuss the direct first order time parameters. For both models
we expect this parameter to be negative to signify that the spatial cost frontier shifts
down annually for the sample average bank due to technical progress. In line with our
expectations the direct first order time parameters from the Whked and W%aree SDCF
models are negative but neither are significant. Glass et al. (2017) find from a non-spatial
random coefficients analysis of U.S. banks that the first order time trend parameter from
their fitted input distance function for the 1992 — 2007 pre-crisis period is, as we would
expect, positive and significant. From duality theory this is equivalent to a significant
negative first order time coefficient from the corresponding cost function. In contrast, they
report a significant negative first order time trend parameter from the same specification
of the input distance function for the 2008 — 2015 period. An overriding feature of the
2008 — 2015 period is a deepening of the financial crisis, which is the reason they provide
for their negative first order time parameter. This is also the reason we give to explain
why our negative direct first order time parameters are not significant.

The widespread differences in table 3 between the corresponding elasticities from the
two models highlights the heterogeneity between our samples of medium-sized and large
banks. Such widespread differences between the corresponding elasticities supports not
pooling the two samples. Nowhere are these differences in the corresponding elasticities
more apparent than for the z variables. We shed further light on this and conclude our
analysis of the fitted models by discussing the key differences between the corresponding
direct elasticities for the z variables. Of the 13 corresponding direct elasticities for the
z variables for medium-sized and large banks we can see from table 3 that four have
different signs where both are significant or just one is (DebtSec, LLA, SEC and Age),
and a further three have the same sign but differ substantially in magnitude (ER, MS

and N PL). In particular, we note that there is a huge difference between the magnitude
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Table 4: Summary own net and gross cost efficiencies for medium-sized and large U.S.

banks

Medium-Sized Banks Large Banks

NVE NIE GVE NVE NIE GVE
4th quartile 0.904 0.975 0.864 0.998 0.966 0.964
3rd quartile 0.648 0.928 0.577 0.998 0.922 0.920
2nd quartile 0.544 0.903 0.483 0.998 0.893 0.892
1st quartile 0.412 0.868 0.366 0.998 0.861 0.859
Average 0.524 0.892 0.466 0.998 0.883 0.881

of the significant positive direct M S elasticities because for medium-sized banks this
marginal effect is very large and for large banks it is very small. This suggests that, on
average, there are implications for the scale of a medium-sized bank’s operations following
a marginal change in its market share, whereas an incremental change in the market share
of a large bank has no such implications. Finally, we note that the direct dummy variable
parameter pertaining to the financial crisis is negative for both medium-sized and large
banks but only significant for the latter. The sign of these direct 2008 Dum parameters is
as we would expect because following the financial crisis interest rates went down which

reduced banks’ deposit account expenses.

3.3 Own Net and Own Gross Cost Efficiencies

In table 4 we summarize the own NITE, NV E and GV E from the fitted structural form of
the Whted and W38 SDCF models in Eq. 1. Although the fitted structural form of the
models accounts for global SAR and local spatial dependencies, the own efficiencies do not
include any form of efficiency spillover. This is in contrast to the direct, indirect and total
efficiencies that we present and discuss in the next subsection, which to different degrees
all include efficiency spillovers. We can see from table 4 that the sample average NIFE
for medium-sized and large banks are similar (0.892 and 0.883, respectively), whereas the
sample average NV E for large banks (0.998) is much larger than that for medium-sized
banks (0.524). This indicates in terms of own cost efficiency that our samples of large
and medium-sized banks are very different because, on average, the biggest source of
underperformance for large banks is quite a small amount of time-invariant inefficiency,
whereas for medium-sized banks it is a large amount of time-variant inefficiency. One-
tailed tests for the presence of n and u provide support for the magnitude of the sample
average estimates of NIFE and NV E because at nominal levels of significance we reject
~2 _

Ty

not 62 = 0. Multiplying the sample average NIE and NV F yields sample average GV E

0 and 52 = 0 for medium-sized banks and for large banks we reject 82 = 0 but

estimates for medium-sized and large banks of 0.466 and 0.881, respectively. Finally in
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this discussion of the own efficiencies, we observe that the NV E and NIFE distributions
for medium-sized banks and the NIFE distribution for large banks are negatively skewed

because from table 4 the 2nd quartile average is greater than the sample average.'*

3.4 Direct, Indirect and Total Gross Cost Efficiencies

We confine our discussion of the direct, indirect and total cost efficiencies to GV EP",
GV ER and GV EL% because these efficiencies provide a more complete picture of eco-
nomic performance than the corresponding N/E and NV E. In table 5 we summarize our
estimates of GV EP", GV EI' and GV ELS from the reduced form of the fitted Wiied
and W52 SDCF models for the sample and by quartile. The sample average GV EP™
for medium-sized and large banks are 0.468 and 0.883, respectively. These direct efficien-
cies are the sample average own GV E plus the efficiency feedback, which is a particular
form of efficiency spillover. Specifically, this feedback is the component of a unit’s direct
efficiency which via the spatial multiplier matrix, (In — (5WN)71, passes through a unit’s
1st order and higher order neighbors and rebounds back to the unit. For large banks the
magnitude of the sample average GV EP" is exactly that of the sample average own GV E
(see table 4), which suggests there is zero efficiency feedback. In contrast, for medium-
sized banks the sample average GV EP7 is of the order of 0.056 smaller than the sample
average own GV E,| which indicates in this case that there is negative efficiency feedback.
Also, we can see from table 5 that the sample average GV EX for medium-sized banks is
0.231 and for large banks it is 0.134. This suggests that the indirect efficiency spillovers
for medium-sized banks are substantial and for large banks they are non-negligible, which
provides support for our spatial efficiency methodology. Having summed the sample aver-
age GV EP"™ and GV EIn  the sample average GV EL°! for medium-sized banks is 0.699
and for large banks it is 1.016. It is therefore apparent for large banks that the indi-
rect efficiency spillovers are sufficiently large to push the sample average GV EX¢! slightly
above the own GV E benchmark of 1. With regard to the average efficiencies by quartile
in table 5 we highlight two features. Firstly, we can see that the 4th quartile average
GV EXet for medium-sized and large banks are both well above the own GV E benchmark.
Secondly, the difference between the 4th quartile average GV EX¢ for medium-sized and
large banks is twice the corresponding difference for the 1st quartile. Finally, from the
kernel densities of the GV EXS" scores for medium-sized and large banks in figure 1 it is
evident that the distribution of the GV EX scores for large banks is positively skewed

and not as smooth and less dispersed than we observe for medium-sized banks.

14Unlike for the whole sample, for the quartiles average GV E is not the product of average NIE and
average NV E. This is because a bank will not necessarily be in the same quartile for NIF and NV E.
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Figure 1: Kernel densiities of total gross cost efficiencies for medium-sized and large U.S. banks



Table 5: Summary direct, indirect and total gross cost efficiencies for medium-sized and

large U.S. banks

Medium-Sized Banks Large Banks
Direct GVE Indirect GVE Total GVE Direct GVE Indirect GVE Total GVE
4th quartile 0.870 0.307 1.138 0.964 0.143 1.103
3rd quartile 0.578 0.263 0.826 0.923 0.136 1.055
2nd quartile 0.486 0.234 0.719 0.892 0.135 1.027
1st quartile  0.368 0.205 0.582 0.860 0.133 0.994
Average 0.468 0.231 0.699 0.883 0.134 1.016

3.5 Spatial TFP Growth Decompositions

In figures 2 and 3 we present the average annual spatial TFP growth decompositions
for large and medium-sized U.S. banks over the period 1992 — 2015. In these figures
the spatial TFP growth decompositions are expressed as indices as we exponentiate the
growth rates. In particular, there are two aspects to each of these figures. The first is
the decomposition of AT FPT°! into ATFPP" and ATF P! (panel A). The second is
the decomposition of the direct, indirect and total TFP growth rates into direct, indirect
and total TA, GVI, AE and RSE growth rates (panels B-D).

For large banks we can see from panel A in figure 2 that ATF P7° increased sharply
since the financial crisis in 2008 due to a sharp increase in ATFPP". Prior to the
financial crisis there was a slower growing upward trend in ATF PP" for large banks and
over the entire study period there is a steady declining trend in their ATF P with
negative changes in the last few years of the sample. We can therefore infer from these
results that, on average, over the study period a large bank’s AT F PT°* has become more
dependent on the bank itself (i.e., ATFPP) and less dependent on spatial spillovers
(i.e., ATF pPind),

For large banks we identify from panels B-D in figure 2 three salient features of the
components of ATFPP" ATFP" and ATFPT. Firstly, we observe that over the
study period a key driver of AT F PP is AT AP and a key driver of AT F P is AT A4,
This is because AT AP consistently increases with progressively smaller negative changes
in the first portion of our sample and AT A™? consistently decreases with progressively
larger negative changes from 2005 — 06 onwards. Although negative SAR dependence
or negative spatial error autocorrelation are not frequently observed phenomena on the
occasions where either is observed it is attributed to the effects of competition between
neighbors (Kao and Bera, 2013). On this basis the declining positive AT A" in the first
portion of the sample suggests that there has been such a decline in technical diffusion
across space that in the second portion of the sample there is increasing geographical

technical competition owing to the increasing negative AT A4,
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Secondly, AT AT°! has an upward trend which reveals that AT AP" dominates AT AI"?
in the calculation of AT AT°. Thirdly, we can see that over the study period AT F PP
and AT F P closely track AAEP" and AAE™ and to a lesser extent AT FPT° tracks
AAET, Taken together these findings emphasize the importance of direct allocative
efficiency and indirect allocative efficiency spillovers for large U.S. banks. Also, in terms
of direct allocative efficiency we can see that large banks reacted appropriately to the
financial crisis as the crisis marked the beginning of a period of year-on-year increases in
AAEPT,

Panel A of figure 3 indicates the absence of trends in ATFPP" ATFP™ and
ATFPT for medium-sized banks which is in stark contrast to what we observed above
for large banks. It is evident, however, for medium-sized banks that AT FP?° closely
tracks ATF PP and ATF P whereas for large banks we found that AT FPT! closely
tracks ATF PP but not ATFP™. From panels B-D of figure 3 a noticeable feature of
the components of ATFPP" ATFP™ and ATFPT for medium-sized banks is that
they closely track AGV EP" AGV E™ and AGV ET, respectively. In contrast, as we
pointed out above for large banks this type of relationship was between, in particular, the
changes in direct and indirect TF'P and the corresponding changes in allocative efficiency.

In figure 4 we present the geographical distributions of the average total TFP indices
over the period 1992 — 2015 for large banks in panel A and medium-sized banks in panel
B. Interestingly there are some clear similarities between these geographical distributions
for large and medium-sized banks and also some clear differences. The similarities that
we highlight are the clusters of large and medium-sized banks with high average total
TFP indices in the Chicago and Kansas areas and in two nearby but distinct areas in the
vicinity of, as is expected, New York City. The differences relate to metropolitan areas
where there are clusters of high average total TFP banks which are all large (Los Angeles;
Denver; Omaha; Lincoln; and Columbus) or all medium-sized (e.g., San Antonio, Austin
and Dallas-Fort Worth).

4 Concluding Remarks

In this paper we set out the methodology for a new spatial TFP growth decomposition.
We also demonstrate the steps involved in the practical implementation of our decomposi-
tion via an empirical application. As a result our paper makes a substantial contribution
to the literature on the spatial decomposition of TFP growth because although, as we
highlight, there is a well-developed non-spatial literature on the decomposition of TFP
growth and an evolving literature on spatial stochastic frontier modeling, there is just
one short study by Glass et al. (2013) (denoted GKPF throughout this paper) on the

30



Panel A: Average TFP change for large U.S. banks
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Figure 4: Geographical distribution of average TFP change over the period 1992-2015 for
large and medium-sized U.S. banks
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decomposition of TFP growth in the presence of spillovers. Specifically, our paper has
extended GKPF in four varied ways, the first two of which are methodological. Firstly,
we introduce a cost efficiency spillover change component to the GKPF decomposition.
Secondly, we augment the GKPF decomposition with own and spillover allocative effi-
ciency changes. Thirdly, our paper provides a much more detailed coverage of the spatial
decomposition of TFP growth than the short communication in GKPF. Fourthly, whereas
the empirical application in GKPF is traditional as they apply their decomposition using
data for geographical areas (cities, regions, etc.), we apply our decomposition using firm
level data, which suggests that spatial efficiency and productivity analysis can have an
important future role in OR. With regard to our empirical application which focused on
U.S. banks over the period 1992 — 2015, among other things, for large banks we observe
a steady decline in technical diffusion across space in the first half of the sample and

increasing geographical technical competition in the second half of the study period.

References

ANDREWS, D. W. K. (2001): ’Testing when a parameter is on the boundary of the maintained
hypothesis’. Econometrica, vol. 69, pp. 683-734.

BADUNENKO, O. AND S. C. KUMBHAKAR (2016): ‘When, where and how to estimate persistent and
transient efficiency in stochastic frontier panel data models’. European Journal of Operational Research,
vol. 255, pp. 272-287.

BADUNENKO, O. AND S. C. KUMBHAKAR (2017): ‘Economies of scale, technical change and per-
sistent and time-varying cost efficiency in Indian banking: Do ownership, regulation and heterogeneity
matter?’. Furopean Journal of Operational Research, vol. 260, pp. 789-803.

BAUER, P. W. (1990): 'Decomposing TFP growth in the presence of cost inefficiency, nonconstant
returns to scale, and technological progress’. Journal of Productivity Analysis, vol. 1, pp. 287-299.

BERGER, A. N. AND R. A. ROMAN (2016): ‘Did saving Wall Street really save Main Street? The real
effects of TARP on local economic conditions’. Forthcoming in the Journal of Financial and Quantitative
Analysis. Available at SSRN: https://ssrn.com/abstract=2442070 or http://dx.doi.org/10.2139/ssrn.2442070

Bos, J. W. B., M. KOETTER, J. W. KoLARI AND C. J. M. KooL (2009): ‘Effects of heterogeneity
on bank efficiency scores’. Furopean Journal of Operational Research, vol. 195, pp. 251-261.

CHRISTENSEN, L. R., D. W. JORGENSON AND L. J. LAu (1973): ‘Transcendental logarithmic
production frontiers’. Review of Economics and Statistics, vol. 55, pp. 28-45.

CokeLrLny, T. J., S. PERELMAN AND E. ROMANO (1999): ‘Accounting for environmental influences in
stochastic frontier models: With application to international airlines’. Journal of Productivity Analysis,
vol. 11, pp. 251-273.

CoromMBI, R., S. C. KUMBHAKAR, G. MARTINI AND G. VITTADINI (2014): ‘Closed-skew normality
in stochastic frontiers with individual effects and long/short run efficiency’. Journal of Productivity
Analysis, vol. 42, pp. 123-136.

CORNWELL, C., P. SCHMIDT AND R. C. SICKLES (1990): ‘Production frontiers with cross-sectional
and time-series variation in efficiency levels’. Journal of Econometrics, vol. 46, pp. 185-200.

DiewerT, W. E. AND K. J. Fox (2017): ‘Decomposing productivity indexes into explanatory
factors’. FEuropean Journal of Operational Research, vol. 256, pp. 275-291.

DRUSKA, V. AND W. C. HORRACE (2004): ‘Generalized moments estimation for spatial panel data:
Indonesian rice farming’. American Journal of Agricultural Economics, vol. 86, pp. 185-198.

ELHORST, J. P. (2009): Spatial panel data models. In the Handbook of Applied Spatial Analysis,
Fischer, M. M., and A. Getis (Eds). New York: Springer.

Fiuippini, M. AND W. GREENE (2016): ‘Persistent and transient productive inefficiency: A maxi-
mum simulated likelihood approach’. Journal of Productivity Analysis, vol. 45, pp. 187-196.

Grass, A. J., A. KENJEGALIEV AND K. KENJEGALIEVA (2017): ‘Influence of a global shock on an
organization’s input substitution: The case of the financial crisis and U.S. banks. Mimeo.

32



Grass, A. J., K. KENJEGALIEVA AND J. PAEZ-FARRELL (2013): ‘Productivity growth decomposi-
tion using a spatial autoregressive frontier model’. Economics Letters, vol. 119, pp. 291-295.

Grass, A. J., K. KENJEGALIEVA AND R. C. SICKLES (2015): ‘Returns to scale and curvature in
the presence of spillovers: Evidence from European countries’. Oxford Economic Papers, vol. 68, pp.
40-63.

Grass, A. J., K. KENJECALIEVA AND R. C. SICKLES (2016a): ‘A spatial autoregressive stochastic
frontier model for panel data with asymmetric efficiency spillovers’. Journal of Econometrics, vol. 190,
pp. 289-300.

Grass, A. J., K. KENJEGALIEVA, R. C. SICKLES AND T. WEYMAN-JONES (2016b): ‘The spa-
tial efficiency multiplier and random effects in spatial stochastic frontier models’. Available at SSRN:
https://papers.ssrn.com/sol3/papers.cfm?abstract id=2873520

GOURIEROUX, C., A. HOLLY AND A. MONFORT (1982): ‘Likelihood ratio test, Wald test, and Kuhn-
Tucker test in linear models with inequality constraints on the regression parameters’. FEconometrica,
vol. 50, pp. 63-80.

GREENE, W. H. (2004): ‘Distinguishing between heterogeneity and inefficiency: Stochastic fron-
tier analysis of the World Health Organization’s panel data on national health care systems’. Health
Economics, vol. 13, pp. 959-980.

GREENE, W. H. (2005): ‘Reconsidering heterogeneity in panel data estimators of the stochastic
frontier model’. Journal of Econometrics, vol. 126, pp. 269-303.

Jonprow, J., C. A. K. LoveLL, I. S. MATEROV AND P. ScHMIDT (1982): ‘On the estimation
of technical inefficiency in the stochastic frontier production function model’. Journal of Econometrics,
vol. 19, pp. 233-238.

Kao, Y-H. anD A. K. BERA (2013): ‘Spatial regression: The curious case of negative spatial
dependence’. University of Illinois, Urbana-Champaign, Mimeo.

KELEJIAN, H. H. AND I. R. PRUCHA (1999): ‘A generalized moments estimator for the autoregres-
sive parameter in a spatial model ’. International Economic Review, vol. 40, pp. 509-533.

KUMBHAKAR, S. C.; G. LIEN AND J. B. HARDAKER (2014): ‘Technical efficiency in competing
panel data models: A study of Norwegian grain farming’. Journal of Productivity Analysis, vol. 41, pp.
321-327.

MUKHERJEE, K., S. C. RAY AND S. M. MILLER (2001): ‘Productivity growth in large US com-
mercial banks: The initial post-deregulation experience’. Journal of Banking and Finance, vol. 25, pp.
913-939.

O’DONNELL, C. J. (2016): ‘Using information about technologies, markets and firm behaviour to
decompose a proper productivity index’. Journal of Econometrics, vol. 190, pp. 328-340.

OREA, L. (2002): ‘Parametric decomposition of a generalized Malmquist productivity index’. Jour-
nal of Productivity Analysis, vol. 18, pp. 5-22.

OREA, L., I. C. ALVAREZ AND T. JAMASB (2016): ‘Using a spatial econometric approach to mitigate
omitted variables in stochastic frontier models: An application to Norwegian electricity distribution
networks’. University of Cambridge Faculty of Economics Working Paper 1673.

OUDE LANSINK, A., S. STEFANOU AND T. SERRA (2015): ‘Primal and dual dynamic Luenberger
productivity indicators’. Furopean Journal of Operational Research, vol. 241, pp. 555-563.

ScHMIDT, P. AND R. C. SICKLES (1984): ‘Production frontiers and panel data’. Journal of Business
and Economic Statistics, vol. 2, pp. 367-374.

SEALEY C., AND J. T. LINDLEY (1977): ‘Inputs, outputs and a theory of production and cost at
depository financial institutions’. Journal of Finance, vol. 32, pp. 1251-1266.

Sun, K., S. C. KUMBHAKAR AND R. TVERAS (2015): ‘Productivity and efficiency estimation: A
semiparametric stochastic cost frontier approach’. European Journal of Operational Research, vol. 245,
pp- 194-202.

TsioNas, E. G. aND S. C. KUMBHAKAR (2014): ‘Firm heterogeneity, persistent and transient
technical inefficiency: A generalized true random-effects model’. Journal of Applied Econometrics, vol.
29, pp. 110-132.

TsioNAs, E. G. AND P.G. MICHAELIDES (2016): ‘A spatial stochastic frontier model with spillovers:
evidence for Italian regions’. Scottish Journal of Political Economy, vol. 63, pp. 243-257.

33



