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Abstract

Response time and accuracy are fundamental measures of behavioral science, but discerning participants’ underlying

abilities can be masked by speed–accuracy trade-offs (SATOs). SATOs are often inadequately addressed in experiment

analyses which focus on a single variable or which involve a suboptimal analytic correction. Models of decision-making,

such as the drift diffusion model (DDM), provide a principled account of the decision-making process, allowing the recovery

of SATO-unconfounded decision parameters from observed behavioral variables. For plausible parameters of a typical

between-groups experiment, we simulate experimental data, for both real and null group differences in participants’ ability

to discriminate stimuli (represented by differences in the drift rate parameter of the DDM used to generate the simulated

data), for both systematic and null SATOs. We then use the DDM to fit the generated data. This allows the direct comparison

of the specificity and sensitivity for testing of group differences of different measures (accuracy, reaction time, and the

drift rate from the model fitting). Our purpose here is not to make a theoretical innovation in decision modeling, but to use

established decision models to demonstrate and quantify the benefits of decision modeling for experimentalists. We show,

in terms of reduction of required sample size, how decision modeling can allow dramatically more efficient data collection

for set statistical power; we confirm and depict the non-linear speed–accuracy relation; and we show how accuracy can be a

more sensitive measure than response time given decision parameters which reasonably reflect a typical experiment.

Keywords Speed-accuracy trade-off · Drift-diffusion model · Statistical power · Response time · Accuracy

Abbreviations

DDM - Drift diffusion model

SATO - Speed–accuracy trade-off

Introduction

Speed–accuracy trade-offs

Speed and accuracy of responding are fundamental mea-

sures of performance, collected by behavioral scientists

across diverse domains in an attempt to track participants’
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underlying capacities. As well as being affected by the

capacity of participants to respond quickly and accurately,

the two measures are also related by participants’ strategic

choices of a speed–accuracy trade-off (SATO; for reviews

see Heitz, 2014; Wickelgren, 1977).

The SATO confounds measurement of participant

capacity—which means that we cannot directly read either

speed or accuracy as an index of participant ability. The

SATO is inherent to decision-making—it arises whenever

we wish to respond as fast and as accurately as possible

based on uncertain incoming information. More accurate

responses require more information, which takes longer

to accumulate; faster responses forgo collecting additional

information at the cost of higher error rates. Importantly,

because the SATO is unavoidable, it is also necessary that

all decision-making processes are positioned with respect to

the trade-off. This does not need to be done deliberately or

explicitly, but any decision process can be characterized as

adopting some trade-off between speed and accuracy. For

the tasks studied by psychologists, it is important to recog-

nize that there will be individual differences, as well as task
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mailto: t.stafford@sheffield.ac.uk


Behav Res

and group-related differences, in how participants position

themselves on the SATO.

Outside of research focused on SATOs explicitly,

different practices have been adopted to account for SATOs

or potential SATOs in behavioral data. One approach is

to ignore either speed or accuracy. For example, ignoring

speed of response is common in psychophysics, whereas

some domains of cognitive psychology where high accuracy

is assumed, focus only on response times (e.g., Stafford,

Ingram, & Gurney, 2011),1 albeit sometimes after a cursory

check that standard null-hypothesis tests do not reveal

significant differences in error rates. Another approach is to

combine speed and accuracy. For example, in the domain

of visual search it is common to calculate ‘efficiency’

scores by dividing search time by search accuracy as a

proportion (e.g., Yates & Stafford, 2018, June). Despite

being widespread, there is evidence that this practice is

unlikely to add clarity to analysis (Bruyer & Brysbaert,

2011). We also note that the researchers who initially

formulated the efficiency score explicitly counseled against

using it in the case of SATOs (Townsend & Ashby, 1983).

The efficiency score shares the property with other recent

suggestions for accounting for SATOs (Davidson & Martin,

2013; Seli, Jonker, Cheyne, & Smilek, 2013) that it assumes

a linear relation between response time and accuracy. While

such approaches may be better than focusing on a single

behavioral variable, the assumption of linearity is at odds

with work which has explicitly characterized the SATO

(Fitts, 1966; Heitz, 2014; Wickelgren, 1977) and has shown

a distinctly curvilinear relation between response time and

accuracy. As such, although linear correction methods may

work for some portions of the SATO curve, they are likely

to be misleading, or at least fail to add clarity, where

accuracy and/or speed approaches upper or lower limits

of those variables. Recently, Liesefeld and Janczyk (2019)

showed that several current methods for combing speed and

accuracy to correct for SATOs are in fact sensitive to the

very SATOs they are designed to account for. These authors

advocate the balanced integration score (BIS; Liesefeld,

Fu, & Zimmer, 2015) as an alternative, but it seems likely

that the combination of speed and accuracy remains an

estimation problem of some delicacy, especially in the

presence of SATOs.

Context

The unprincipled combination of speed and accuracy mea-

sures becomes an urgent issue when considered in the

context of widespread questions surrounding the reliability

1Note that we choose to cite work by the lead author here for

illustration, rather than highlight any other researchers for their use of

these suboptimal practices.

of the literature in psychology. Established results fail to

replicate, or replicate with substantially reduced effect sizes

(Open Science Collaboration, 2015; Pashler & Wagenmak-

ers, 2012).

Low statistical power has been a persistent problem

across many areas of psychology and cognitive neuro-

science (Button et al., 2013; Lovakov & Agadullina, 2017,

November; Maxwell, 2004; Sedlmeier & Gigerenzer, 1989;

Stanley, Carter, & Doucouliagos, 2017; Szucs & Ioanni-

dis, 2017), including, but not limited to, research areas

which are bound by costly methods or hard-to-reach popu-

lations (Bezeau & Graves, 2001; Cohen, 1962; Geuter, Qi,

Welsh, Wager, & Lindquist, 2018). This, combined with

factors such as analytic flexibility (Silberzahn et al., 2017;

Simmons, Nelson, & Simonsohn, 2011)—which can only

be increased by the lack of a single standard method for

accounting for SATOs—has led to a widespread loss of faith

in many published results (Ioannidis, 2005).

Statistical power is defined with respect to the variability

and availability of data, as well as the analysis proposed.

For a set experimental design, an obvious candidate for

increasing statistical power is to increase sample size, but

this is not always easy. Each additional participant costs

additional time, money and resources. This is especially

true in the case of expensive methods, such as fMRI, or

special populations which may be hard to recruit. More

sensitive measures also increase statistical power: lower

measurement error will tend to reduce variability so that the

same mean differences produce larger observed effect sizes.

A motivation for the present work is to demonstrate the

practical utility, in terms of increased statistical power, of

combining speed and accuracy information in a principled

manner using decision models. Such an innovation has

the appeal of making the most of data which is normally

collected, even if not analyzed, while not requiring more

participants (which is costly), or more trials per participant

(which also has costs in terms of participant fatigue, which

may be especially high for some populations, e.g., children).

Decisionmodeling

Models of the decision-making process provide the founda-

tion for the principled combination of speed and accuracy

data, and thus afford experimenters access to considerable

statistical power gains.

Many models exist in which decision-making is repre-

sented by the accumulation of sensory evidence over time.

When the accumulated evidence surpasses some threshold

(also called a boundary) then a decision is triggered. The

accuracy of the decision depends on which accumulator

crosses which boundary; the speed is given by time this

takes, and thus such models can be used to fit speed and

accuracy data within the same framework.
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A prominent instance of such accumulator models is

the so called drift-diffusion model developed by Roger

Ratcliff (DDM, Ratcliff, 1978; Ratcliff & Rouder, 1998).

In these models, the rate at which evidence is accumulated

is represented by the drift rate parameter, which can

be thought of as co-determined by the sensitivity of

perceiver and the strength of the stimulus. After a long

and successful period of development and application on

purely behavioral data, the DDM model was at the center

of an important theoretical confluence. Neurophysiologists

found evidence for accumulation like processes in neurons

critical to sensory decision-making (Gold & Shadlen, 2001;

Smith & Ratcliff, 2004), while theoreticians recognized

that accumulator models could be related to statistical

methods of uncertain information integration. Under certain

parameterizations, many different decision models, all in

the family of accumulator models, can be shown to be

equivalent to the DDM, and thus in turn equivalent to a

statistical method which is optimal for making the fastest

decision with a given error rate, or the most accurate

decision within a fixed time (Bogacz, Brown, Moehlis,

Holmes, & Cohen, 2006; Gold & Shadlen, 2002).

While debate continues around the exact specification

of the decision model which best reflects human decision-

making, there is a consensus that the DDM captures

many essential features of decision processing (but see

Pirrone, Azab, Hayden, Stafford, & Marshall, 2018;

Pirrone, Stafford, & Marshall, 2014; Teodorescu, Moran,

& Usher, 2016). As you would expect, the DDM has

also shown considerable success modeling decision data

across many different domains (Ratcliff, Smith, & McKoon,

2015; Ratcliff, Smith, Brown, & McKoon, 2016), and

in particular at separating out response thresholds from

stimulus perception (Ratcliff & McKoon, 2008), and in

estimating these reliably (Lerche & Voss, 2017). In the

sense that the DDM implements a statistically optimal

algorithm for accumulation for uncertain information, we

would expect our neural machinery to implement the same

algorithm in the absence of other constraints (Pirrone et al.,

2014). The basic mechanism of the DDM is that of a

single accumulator, similar to that shown in Fig. 1, with the

following key parameters: v, the drift rate which reflects the

rate of evidence accumulation; a, the boundary separation,

which defines the threshold which must be crossed to trigger

a decision and so reflect response conservativeness; z, the

starting point of accumulation (either equidistant between

the two decision thresholds, or closer to one rather than

the other), which biases the response based on pre-stimulus

expectations and Ter , non-decision time, a fixed delay

which does not vary with stimulus information. Additional

parameters define noise factors which set factors such as the

trial-to-trial variability in drift rate.

Fig. 1 Decision-making by evidence accumulation. Here, a single

possible accumulation process is shown (in blue). The rate of

accumulation is determined by incoming sensory evidence as well as

Gaussian noise. The response is determined when the accumulator

value on the y-axis crosses the upper or lower threshold (dashed lines;

in this case, Decision A is triggered). The response time is determined

by the distance the accumulator travels on the x-axis (time)

For our purposes, the value of these decision models is that

they provide a principled reconciliation of speed and accuracy

data. Within this framework, these observed behavioral

measures reflect the hidden parameters of the decision

model, most important of which are the drift rate (reflecting

the rate of evidence accumulation) and the decision

boundary separation (reflecting the conservativeness of the

participant’s decision criterion; higher boundaries produce

slower but more accurate responses).

By fitting the DDM to our data, we can deconfound the

observed behavioral variables—speed and accuracy—and

recover the putative generating parameters of the decision—

drift and boundary separation. In principle, this allows a

more sensitive measure of participant capability (reflected

in the drift parameter). Drift is a more sensitive measure

because (a) it is estimated using both speed and accuracy,

(b) this estimation takes account of both mean response

time and the distribution of response times for correct

and error responses, and because (c) the estimation of

the drift parameter is isolated from the effect of different

participant’s SATOs (which are reflected in the boundary

parameter).

Prior work

Previous authors have established the principled benefits

of this approach (Ratcliff & McKoon, 2008). Within a

psychophysics framework, Stone (2014) extended Palmer,

Huk, and Shadlen (2005)’s decision model to show that

response time and accuracy contain different, but possibly
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overlapping, components of Shannon information about the

perceived stimulus. If these components do not overlap

(as suggested by Stone, in preparation) then combining

response time and accuracy data should provide better

estimates of key parameters, which govern the decision

process than relying on either response time or accuracy

alone. However, our purpose here is not to make a

theoretical innovation in decision modeling, but to use

established decision models to demonstrate and quantify the

benefits of decision modeling for experimentalists.

Previous authors have shown for specific paradigms

and decisions that using decision models confers benefits

beyond relying on speed, accuracy or some sub-optimal

combination of the two, especially in the case of speed–

accuracy trade-offs (Park and Starns, 2015; Zhang & Rowe,

2014). These results use data collected from participants

in single experiments. Park and Starns (2015) show that

for their data using decision models to estimate a drift

parameter allows participant ability to be gauged separately

from speed–accuracy trade-offs, and that these estimates

consequently have higher predictive value. Zhang and Rowe

(2014) used decision modeling to show that, for their

data, it was possible to dissociate behavioral changes due

to learning from those due to speed–accuracy trade-offs

(revealing the distinct mechanisms of these two processes).

In contrast to these studies, our approach is to use simulated

data of multiple experiments so as to interrogate the value

of decision models across a wide range of possibilities.

Ravenzwaaij, Donkin, and Vandekerckhov (2017, hence-

forth vRDV) have considerable sympathy with the approach

we adopt here. They show that the EZ model, for across vari-

ations in participant number, trial number and effect size,

has higher sensitivity to group differences than the full dif-

fusion model, which they ascribe to its relative simplicity (a

striking illustration of the bias/variance trade-off in model

fitting, Yarkoni & Westfall, 2017).

Contribution of the current work

Our work extends prior work in a number of ways. Our

fundamental comparison is in the sensitivity of model

parameters compared to behaviorally observed measures

(RT, accuracy). Our purpose is not to compare different

‘measurement models’ (Ravenzwaaij et al., 2017), but

to illustrate the benefits for experimentalists of using

any decision model over analyzing a singular behavioral

measure (reaction time or accuracy in isolation). We use

the EZ model, for reasons of computational efficiency, and

because prior work has shown that in most circumstances

it preserves the benefits of fuller decision modeling

approaches. We also confirm that the basic pattern of results

holds for other model fitting methods, the HDDM (Wiecki,

Sofer, & Frank, 2013) and fast-dm (Voss & Voss, 2007).

We simulate null group effects and so can show false alarm

rates as well as calculate results in terms of d’. Our use

of d’ allows quantitative comparison and estimation of size

of benefit across different speed–accuracy conditions. We

explore the combined effects of group shifts in both drift and

boundary, and so can show implications of speed–accuracy

trade-offs between groups, alongside drift differences. As

with all modeling work, the results we present have

always been latent in existing models. Our focus is not on

theoretical innovation, but in drawing out the implications

of established models in a way that reveals the extent of

their value and so promotes their uptake. For a discussion of

the contribution of elaborating the consequences of existing

models see Stafford (2009, 2010).

Our results are translated into the power-sample size

space, which is familiar to experimental psychologists. Our

results are accompanied by an interactive data explorer to

aid in the translation of the value of decision models into a

form most easily comprehendible by experimentalists. For

these reasons, we hope that the current work can make a

contribution in allowing experimentalists with less model-

fitting experience to readily apprehend the large benefits of

model fitting for decision-making data.

Method

The broad approach is to consider a simple standard

experimental design: a between-groups comparison, where

each group contains a number of participants who complete

a number of decision trials, providing both response time

and accuracy data. We simulate data for true and null

differences in drift rate between the groups, as well as true

and null differences in boundary between the groups. By

varying the number of simulated participants, we generate

a fixed number of ‘scenarios’ defined by true/null effects in

ability (drift) between groups, true/null SATOs (boundary)

between groups and experiment sample size. We keep the

number of decision trials per participant constant for all

these analyses. For each scenario, we simulate many virtual

experiments and inspect the behavioral measures to see how

sensitive and specific they are to true group differences.

We also fit the DDM and estimate the participant drift

parameters, similarly asking how sensitive and specific

estimates of drift are to true group differences. An overview

of the method is illustrated in Fig. 2.

Decisionmodeling

To generate simulated response data, we use the hierar-

chical drift diffusion model (HDDM, 2013). The toolbox

can also perform model fitting, which uses Bayesian esti-

mation methods to simultaneously fit individual decision
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Fig. 2 Overview of method: A between-groups experiment is simu-

lated whereby there simulated participants have decision parameters

(drift and boundary separation) sampled from defined distributions.

From these defined distributions, which contain either a true or null

difference between groups, simulated participants are sampled. From

these sampled participant-level parameters, simulated decisions are

generated, using the DDM, which generates behavioral outcome vari-

ables (RT and accuracy). For each participant, these outcome variables

are modeled using the DDM to recover an estimated drift parameter.

A test of group differences is then performed on the generated accu-

racy and RTs and on the estimated drifts. This is compared to the

known difference in drift to categorize the test as correctly detecting a

true difference between groups in participant discrimination (a hit), or

incorrectly detecting a difference when there is none (a false alarm).

Over many simulated experiments, and a range of parameter values for

simulated sample size and size of true group differences in drift, the

average probability of a hit and a false alarm, and the sensitivity (d’)

are calculated

parameters and the group distributions from which they are

drawn.

While the HDDM offers a principled and comprehen-

sive model fitting approach, it is computationally expen-

sive. An alternative model fitting method, the EZ-DDM

(Wagenmakers, Van Der Maas, & Grasman, 2007) offers

a simple approximation, fitting a decision model with a

smaller number of parameters, assuming no bias towards

either of the two options and no inter-trial variability. This

allows an analytic solution which is computationally cheap.

Furthermore, the EZ-DDM has been shown to match the full

DDM for a range of situations (Ravenzwaaij et al., 2017).

For the model fitting presented here (Figs. 5–8), we use

the EZ-DDM, although initial exploration using both the

HDDM and the fast-dm (Voss & Voss, 2007, a third model

fitting framework) found qualitatively similar results, so our

current belief is that these results do not depend on the

particular decision model deployed from the broad class of

accumulator models.2

Obviously, where we wish to simulate many thousands

of independent experiments there are significant speed

gains from parallelization. Parallelization was done by Mike

Croucher, and the code run on University of Sheffield High

Performance Computing cluster. A sense of the value of

2Computational constraints mean that systematically confirming this

by fully exploring the parameter space presented in this manuscript

must be future work.
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parallelization can be had by noting the data shown in,

for example, Fig. 8 would have taken around one calendar

month to generate on a single high-performance machine,

even though they use the computationally ‘cheap’ EZ-DDM

method. Python code for running the simulations, as well as

the output data, figures and manuscript preparation files, is

here https://doi.org/10.5281/zenodo.2648995.

Analysis

Because we are not generating a comprehensive analytic

solution for the full DDM we cannot claim that our findings

are true for all situations. Our aim is merely to show

that, for some reasonable choices of DDM parameters,

using decision modeling is a superior approach to analyzing

response time or accuracy alone, and to quantify the gain in

statistical power.

To be able to make this claim of relevance of our

simulations to typical psychology experiments, we need to

be able to justify that our parameter choice is plausible

for a typical psychology experiment. In order to establish

this, we pick parameters which generate response times

of the order of 1 s and accuracy of the order 90%.

Each participant contributes 40 trials (decisions) to each

experiment. Parameters for drift and boundary separation

are defined for the group and individual participant values

for these parameters are drawn from the group parameters

with some level of variability (and, in the case of true

effects, a mean difference between the group values, see

below for details).

To illustrate this, we show in Fig. 3 a direct visualization

of the speed–accuracy trade-off, by taking the base

Fig. 3 Directly visualizing the speed–accuracy trade-off: average

response time and accuracy from a single simulated participant with all

decision parameters kept fixed except for boundary separation, which

is drawn from a normal distribution (mean = 2, variance = 1). 1000

simulated experiments, each of 40 trials

parameters we use in our simulated experiments and

generating a single participant’s average response time and

accuracy, using 1000 different boundary separation values.

This shows the effect of varying boundary separation alone,

while all other decision parameters are stable.

Simulating experimental data

For each scenario, we simulate a large number of

experiments, testing a group (“A”) of participants against

another group (“B”), with each participant contributing 40

trials. Participant parameters (most importantly the drift

rate and boundary parameters) are sampled each time

from distributions defined for each of the two simulated

experimental groups, A and B. For the simulations with no

true difference in sensitivity between A and B the drift rate

of each group has a mean of 2 and within-group standard

deviation of 0.05. For the simulations with a true difference

in drift group B has a mean of 2 + δ, where δ defines an

increase in the mean drift rate; the within-group standard

deviations remain the same. For the simulations where there

is no SATO, the mean boundary parameter is 2, with a

within-group standard deviation of 0.05. For the simulations

where there is a SATO, the boundary parameter of group

B has an average of 2 − δ, where δ defines the size of the

decrease in the mean boundary; the within-group standard

deviations remain the same.

All simulations assume a non-decision time of 0.3 s, no

initial starting bias towards either decision threshold and the

inter-trial variability parameters for starting point, drift and

non-decision time set to 0. Sample sizes between 10 and 400

participants were tested, moving in steps of ten participants

for samples sizes below 150 and steps of 50 for samples

sizes above 150. For each sample size 10,000 simulated

experiments were run (each of 40 simulated participants in

each of two groups).

Effect sizes, observed and declared

The difference between two groups can be expressed

in terms of Cohen’s d effect size—the mean difference

between the groups standardized by the within-group

standard deviation. For the observed variables, response

time and accuracy, effect sizes can only be observed since

these arise from the interaction of the DDM parameters

and the DDM model which generates responses. For drift

rate, the difference between groups is declared (by how we

define the group means, see above). The declared group

difference in drift rate produces the observed effect size in

response time and accuracy (which differ from each other),

depending on both the level of noise in each simulated

experiment, and the experiment design, particularly on the

number of trials per participant. Experiment designs which

https://doi.org/10.5281/zenodo.2648995
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Fig. 4 How differences in drift convert to observed differences in

response time and accuracy (40 trials per ppt). Effect sizes for observed

behavioral measures that are within the range typically observed by

experimentalists are generated by larger actual differences in the

underlying decision parameters

have a higher number of trials per participant effectively

sample the true drift rate more accurately, and so have effect

sizes for response time and accuracy which are closer to the

“true”, declared, effect size in drift rate.

This issue sheds light on why decision modeling is more

effective than analyzing response time or accuracy alone

(because it recovers the generating parameter, drift, which

is more sensitive to group differences), and why there are

differences in power between measuring response time and

accuracy (because these variables show different observed

effect sizes when generated by the same true different in

drift rates). Figure 4 shows how declared differences in drift

translate into observed effect sizes for response time and

accuracy.

Hits (power) and false alarms (alpha)

For each simulated experiment, any difference between

groups is gauged with a standard two-sample t test.3

Statistical power is the probability of your measure

reporting a group difference when there is a true group

difference, analogous to the “hit rate” in a signal detection

paradigm. Conventional power analysis assumes a standard

false positive (alpha) rate of 0.05. For our simulations, we

can measure the actual false-alarm rate, rather than assume

it remains at the intended 0.05 rate.

For situations where only the drift differs between two

groups, we would not expect any significant variations

3Note, for high-accuracy values, t tests may not be appropriate (they

are strictly not applicable to proportions anyway, but this may become

a real issue for values very close to 1 or 0).

in false-alarm rate. However, when considering speed–

accuracy trade-off changes between groups (with or without

drift rate differences as well) the situation is different. This

means that it is possible to get false positives in tests of a

difference in drifts between groups because of SATOs. Most

obviously, if a SATO means one group prioritizes speed

over accuracy, analysis of response time alone will mimic

an enhanced drift rate, but analysis of accuracy alone will

mimic degraded drift rate. Ideally, the DDM will be immune

to any distortion of estimates of drift rates, but that is what

we have set out to demonstrate so we should not assume.

The consequence of this is that it makes sense to calculate

the overall sensitivity, accounting for both the false-alarm

rate, as well as the hit rate. A principled way for combining

false alarm and hit rate into a single metric is d’ (“d prime”),

which gives an overall sensitivity of the test, much as we

would calculate the sensitivity independent of bias for an

observer in a psychophysics experiment (Green & Swets,

1966).

Results

The results shown here support our central claim that decision

modeling can have substantial benefits. To explore the inter-

action of power, sample size, effect size, and measure sen-

sitivity, we have prepared an interactive data explorer which

can be found here https://sheffield-university.shinyapps.io/

decision power/ (Krystalli & Stafford, 2019, May).

Without speed–accuracy trade-offs

For an idea of the main implications, it is sufficient to plot a

slice of the data when the true difference in drift is a Cohen’s

d of 2. Recall from Fig. 4 above that although this is a large

difference in terms of the generating parameter, drift, this

translates into small observed effect sizes in accuracy and

response time (approximately 0.3–0.4, reflecting ‘medium’

effect sizes).

Figure 5, left, shows how sample size and hit rate

interact for the different measures. The results will be

depressingly familiar to any experimentalist who has taken

power analysis seriously—a sample size far larger than that

conventionally recruited is required to reach adequate power

levels for small/medium group differences.

From this figure, we can read off the number of

participants per group required to reach the conventional

80% power level (equivalent to hit rate of 0.8, if we assume

a constant false-positive rate). For this part of the parameter

space, for this size of difference between groups in drift, and

no speed–accuracy trade-off, ∼140 participants are required

to achieve 80% power if the difference between groups

is tested on the speed of correct responses only. If the

https://sheffield-university.shinyapps.io/decision_power/
https://sheffield-university.shinyapps.io/decision_power/
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Fig. 5 Hit rate and false-alarm rate against simulated experiment sample size, no speed–accuracy trade-off; comparing a between groups Cohen’s

d effect size in the drift parameter of 2 (left) with 0 (right)

difference between groups is tested on the accuracy rate

only, then ∼115 participants per group are required. If speed

and accuracy are combined using decision modeling, and

difference between groups is tested on the recovered drift

parameters, then we estimate that ∼55 participants per group

are required for 80% power. An experimentalist who might

have otherwise had to recruit 280 (or 230) participants could

therefore save herself (and her participants) significant

trouble, effort, and cost by deploying decision modeling,

recruiting half that sample size and still enjoying an increase

in statistical power to detect group differences.

Figure 5, right, shows the false-alarm rate. When the

difference in drifts is a Cohen’s d of 0, i.e., no true

difference, the t tests on response time and accuracy both

generate false-alarm rates at around the standard alpha level

of 0.05.

Figure 6 shows the measure sensitivity, d’ for each

sample size. In effect, this reflects the hit rate (Fig. 5, left)

corrected for fluctuations in false-alarm rate (Fig. 5, right).

This correction will be more important when there are

systematic variations in false-positive rate due to SATOs.

Note that the exact value of d’ is sensitive to small

fluctuations in the proportions of hits and false alarms

observed in the simulations, and hence the d’ curves are

visibly kinked despite being derived from the apparently

smooth hit and false-alarm curves.

Fig. 6 Measure sensitivity (d’) against simulated experiment sample size, no speed–accuracy trade-off; comparing a between-groups Cohen’s d

effect size in the drift parameter of 2 (hits) with 0 (false alarms)
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Fig. 7 Hit rate and false-alarm rate against simulated experiment sample size, with a speed–accuracy trade-off (lowered decision boundary);

comparing a between groups Cohen’s d effect size in the drift parameter of 2 (left) with 0 (right), and the boundary parameter also differing

between groups with a Cohen’s d effect size of 2

With SATOs

The superiority of parameter recovery via a decision model

becomes even more stark if there are systematic speed–

accuracy trade-offs. To see this, we re-run the simulations

above, but with a shift in the boundary parameter between

group A and group B, such that individuals from group B

have a lower boundary, and so tend to make faster but less

accurate decisions compared to group A. On top of this

difference, we simulate different sizes of superiority of drift

rate of group B over group A.

For the plots below, the drift rate difference is, as above

in the non-SATO case, 0.1 (which, given the inter-individual

variability translates into an effect size of 2). The boundary

parameter difference is also 0.1, a between group effect size

2.

Unlike the case where there are no SATOs, the response

time measure is now superior for detecting a group

difference over the drift measure; Fig. 7, left.

This, however, is an artifact of the SATO. If the boundary

shift had been in the reverse direction then accuracy, not

response time, would appear the superior measure (see

Fig. 8 Measure sensitivity (d’) against simulated experiment sample size, no speed–accuracy trade-off (lowered decision boundary); comparing a

between groups Cohen’s d effect size in the drift parameter of 2 (hits) with 0 (false alarms) as well as a between-groups Cohen’s d effect size of 2

in the boundary parameter
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Fig. 9 Hit rate and false-alarm rate against simulated experiment sample size, with a speed–accuracy trade-off (raised decision boundary);

comparing a between- groups Cohen’s d effect size in the drift parameter of 2 (left) with 0 (right), and the boundary parameter also differing

between groups with a Cohen’s d effect size of 2

below). Once we compare the false-positive rate, the danger

of using a single observed measure becomes clear, Fig. 7,

right.

When using the drift parameter as a measure, the SATO

between the groups does not induce false alarms. The

accuracy measure is insensitive so also does not suffer (but

would if the boundary shift was in the opposite direction).

The response time measure is catastrophically sensitive to

false alarms, approaching 100% false-alarm rate with larger

samples.

Figure 8 shows d’, which combines hit rate and the false-

alarm rate, shows that the best measure overall is drift rate,

as it is in the no-SATO case.

To confirm our intuitions concerning the effect of a

raised decision boundary, as a opposed to a lowered one,

we repeat the simulations with the boundary raised up by

the same amount as it was lowered for the results shown

in Figs. 7 & 8. The results are shown in Figs. 9 & 10.

Comparing Fig. 9 with Fig. 7, we can see that, with a

raised boundary, the accuracy appears the superior measure

Fig. 10 Measure sensitivity (d’) against simulated experiment sample size, no speed–accuracy trade-off (raised decision boundary); comparing a

between-groups Cohen’s d effect size in the drift parameter of 2 (hits) with 0 (false alarms) as well as a between-groups Cohen’s d effect size of

2 in the boundary parameter
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if hits alone are considered (left), but not if false alarms

are taken into account (right). With the boundary raised,

and hence more conservative responses, response time is

less sensitive to group differences. As with the lowered

boundary, it is possible to combine hits and false alarms

in a single d’ measure (Fig. 10), which shows the same

superiority of the estimated drift measure in comparison to

both raw behavioral measures.

Discussion

Main conclusions

We have shown the benefits of fitting response time

and accuracy data with standard decision models. Such

decision models allow the estimation of the generating

parameters of simple perceptual decisions, such that the

participants’ sensitivity and response conservativeness are

deconfounded. This allows more powerful tests of between-

group differences, given a set sample size and/or the

reduction in required sample for a set statistical power.

Some insight into why decision modeling brings these

benefits can be gained from Fig. 3. Here we show that the

speed–accuracy trade-off exists as the decision threshold

is shifted, and that it has a non-linear shape. Combining

speed and accuracy not only provides more information,

but cannot be done directly, but instead is best done via an

accurate model of the underlying decision processes (such

as the DDM).

Inter alia our results show that accuracy can be a

more sensitive measure than response time given decision

parameters which reasonably reflect a typical experiment.

This confirms, in simulation, the result of Ratcliff and

McKoon (2008) whose analysis of 18 experimental data

sets showed that accuracy better correlated with participant

drift rate than response time. Our results also provide some

insight into why this is. Figure 4 shows that standard

between-group effect size is more closely matched by

generated accuracy than generated response times.

In the presence of systematic shifts in the speed–

accuracy trade-off, this approach offers protection against

false positives or false negatives (in the case that SATOs

disguise true differences in sensitivity). Interestingly, under

the parameter range used in these simulations, calculation of

the d’ sensitivity measure shows that accuracy outperforms

response time for SATO in both directions (whether more

liberal, Fig. 8, or more conservative, Fig. 10).

We do not claim to make theoretical innovation in deci-

sion modeling—the work deploys widely used decision

models ‘off the shelf’ and seeks to quantify the extent of the

benefit for experimentalists of deploying decision modeling

on their behavioral data. The extent of the statistical power

gain is considerable. The exact benefit will vary according to

the phenomenon and populations investigated, as well as

experimental design. For the example design and parameter

regime we showcase here, the use of decision modeling allows

total sample size to be halved while still increasing sta-

tistical power. To explore the relation of sample size and

effect size to the sensitivity of behavioral measures, and

the decision modeling measures, we provide an interactive

data explorer here https://sheffield-university.shinyapps.io/

decision power/ (Krystalli & Stafford, 2019, May).

Qualifications

The results we showcase here and in the data explorer hold

only for the parameter regime chosen. We have not analytically

proved that parameter recovery with the DDM will always

provide a statistical power gain. We have chosen a simple

experimental design, with a plausible trial numbers per

participant and decision parameters which generate realistic

values for speed and accuracy of responses, but it is possible

that for smaller effects, at the boundaries of maximum or

minimum speed or accuracy, and/or with higher within and

between participant noise, that decision modeling may not

have the benefits depicted here (although it may also have

greater benefits than those depicted here as well).

We have chosen not to explore a within-participants

design because the issue of systematically different speed–

accuracy trade-offs between conditions seems, prima

facie, less likely. For between-groups designs, we know

of several prominent cases where systematic SATOs

confounded conclusions. For example, Pirrone, Dickinson,

Gomez, Stafford, and Milne (2017) found that an apparent

impairment of perceptual judgment among autism spectrum

disorder (ASD) participants could be attributed to a

difference in their SATO. The ASD group responded

more conservatively, but decision modeling showed they

had equivalent sensitivity to the non-ASD group. Ratcliff,

Thapar, and McKoon (2006) found an analogous result for

young vs. old participants on perceptual discrimination and

recognition memory tasks.

We expect the statistical power gains of decision

modeling to apply to within-participants designs. All

other things being equal, between-groups designs have

lower statistical power than within-participants designs,

so it is for between-groups designs, which we assume

an experimentalist would only deploy if they had no

alternative, that decision modeling brings the greatest gains.

As well as occupying a particular point in the parameter

space of decision models, our results are also generated

using a particular model and model-fitting approach

(the EZ-DDM, Wagenmakers et al., 2007), although we

have verified that the same qualitative pattern can be

produced by alternative approaches (Voss & Voss, 2007;

Wiecki et al., 2013). Additionally, it is worth noting

https://sheffield-university.shinyapps.io/decision_power/
https://sheffield-university.shinyapps.io/decision_power/
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that for some parameterizations several prominent decision

models are equivalent (Bogacz et al., 2006). A recent

collaborative analysis project found that despite a large

diversity of fitting methods, common inferences were made

across different decision models (Dutilh et al. 2016). A

reasonable conclusion from this project was that in many

circumstances, the simple models should be preferred

(Lerche & Voss, 2016). Ratcliff and Childers (2015) claim

that hierarchical Bayesian methods of fitting, as used by

the HDDM are best, at least for individual difference

investigations (although see Jones & Dzhafarov, 2014 who

claim that many variants of the DDM cannot be successfully

distinguished by empirical measurement). Although we

have not verified this, we expect to obtain similar results

with many established models of decision-making, e.g., the

LBA (Brown & Heathcote, 2008) or the LCA (Usher &

McClelland, 2001), since we have no reason to suspect that

our results are only dependent on the specific decision-

making model used and rather depend on the established

ability of a wide class of decision models to capture the

regularities in behavioral data from human decisions.

Wider context

As well as power gains, and protection against SATO

confounds, decision modeling has other benefits to offer the

experimentalist. It allows differences between participants

or groups to be localized to particular components of the

decision process. Decision modeling, since it relies on the

distribution of responses rather than just the means, can

also reveal underlying differences when single variables

(e.g., response time) are stable (White, Ratcliff, Vasey, &

McKoon, 2010).

There is a growing awareness of the limitations of

studying only speed or accuracy alone (Oppenheim, 2017).

A recent meta-analysis confirms a low correlation between

speed and accuracy costs in psychological tasks (Hedge,

Powell, Bompas, Vivian-Griffiths, & Sumner, in press).

Vandierendonck (2017) compares seven transformations

which combine reaction time and accuracy, without use of

decision modeling, but finds none unambiguously superior

either to the others or to inspecting raw reaction time and

accuracy.

Related work

A recent paper (Hedge, Powell, & Sumner, 2018) used

a comparable simulation-based approach and reached a

similar conclusion to ours—that model-free transformations

of reaction time and accuracy, even if hallowed by common

usage, are outperformed by a model-based transformation,

which assumes a sequential sampling model like the DDM.

White, Servant, and Logan (2018) also present a parame-

ter recovery account, but compare different variations of the

sequential sampling models which are designed to account

for decisions under conflict. Their focus is on comparing bet-

ween different decision models rather than model-free and

model-based transformations of reaction time and accuracy.

Baker et al. (2019) used the simulation method to address

a question of equal importance to experimentalists—how

does the number of trials interact with sample size to

affect statistical power? Like us, they present an interactive

demonstration of their findings https://shiny.york.ac.uk/

powercontours/

Getting started with decisionmodeling

Those who wish to apply decision models to their data

have a range of tutorials and introductory reviews available

(Forstmann, Ratcliff, & Wagenmakers, 2016; Voss, Nagler,

& Lerche, 2013), as well as statistical computing packages

which support model fitting (Voss & Voss, 2007; Wiecki-

etal:2013). Although analyzing speed and accuracy data

with decision models incurs a technical overhead, we

hope we have made clear the considerable gains in both

enhanced sensitivity to true differences and protection

against spurious findings that it affords.

Conclusions

Decision modeling offers large benefits to the experimen-

talist, and is based on a principled framework that has seen

substantial validation and exploration. No analysis plan can

rescue an ill-conceived study, and experimentalists have

many other considerations which can enhance statistical

power before they attempt decision modeling (Lazic, 2018).

Our attempt here has just been to illustrate how, in cases

where speed and accuracy are collected from two groups of

participants, decision modeling offers considerable power

gains, and the attendant increased chances of discovering a

true effect and/or reduction of required sample size, without

increased risk of false positives. The contribution this paper

hopes to make concerns the size of these benefits. These are

not just, as could be theoretically shown, non-zero, but they

are, under conditions which it is realistic to expect to hold

for a typical experiment, consequential and so worthy of the

experimentalist’s consideration.
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